Powered by Deep Web Technologies
Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

2

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

3

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Lithium Battery, Inc. America's Next Top Energy Innovator Challenge 626 likes California Lithium Battery, Inc. Argonne National Laboratory California Lithium Battery ("CALBattery") is a start-up California company established in 2011 to develop and manufacture a breakthrough high energy density and long cycle life lithium battery for utility energy storage, transportation, and defense industries. The company is a joint venture between California-based Ionex Energy Storage Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the initial batteries for CALBattery JV partner Ionex Energy Storage Systems for use in 1-100MW grid scale energy storage

4

EERE Partner Testimonials - Phil Roberts, California Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phil Roberts, California Lithium Battery (CalBattery) EERE Partner Testimonials - Phil Roberts, California Lithium Battery (CalBattery) Addthis Text Version The words "Office of...

5

California Geothermal Power Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

brines in California. Batteries from Brine California: Geothermal Plant to Help Meet High Lithium Demand Mineral Recovery Creates Revenue Stream for Geothermal Energy Development...

6

Sandia National Laboratories: lithium-ion-based solid electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lithium-ion-based solid electrolyte battery Sandia Labs, Front Edge Technology, Inc., Pacific Northwest National Lab, Univ. of California-Los Angeles: Micro Power Source On March...

7

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Integrated Dynamic Electron Solutions, Inc. Integrated Dynamic Electron Solutions, Inc. Lawrence Livermore National Laboratory 333 likes Integrated Dynamic Electron Solutions, Inc., based in Belmont, California, uses Dynamic Transmission Electron Microscopes (DTEM) to enable imaging of nanoscale objects, such as proteins, thin films and nanoparticles at unprecedented time scales and frame rates. By utilizing a laser-driven electron source, DTEMs are able to produce short bursts of electrons that can form an image with nanometer resolution in as little as 10 nanoseconds. This enables observation of dynamics in material systems that play an important role in a wide range of energy technologies, including battery electrodes, petroleum catalysts, solar cell materials, and organisms for bio fuel growth. Integrated Dynamic Electron Solutions uses technology

8

California Geothermal Power Plant to Help Meet High Lithium Demand  

Broader source: Energy.gov [DOE]

Ever wonder how we get the materials for the advanced batteries that power our cell phones, laptops, and even some electric vehicles? The U.S. Department of Energy's Geothermal Technologies Program (GTP) is working with California's Simbol Materials to develop technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines produced during the geothermal production process.

9

University of California RiversideLABORATORY SAFETY  

E-Print Network [OSTI]

the safety culture in laboratories. The UCR Injury and Illness Prevention Plan (IIPP) is a guide and implementation of SOPs is a core component of promoting a strong safety culture in the laboratory and helpsUniversity of California RiversideLABORATORY SAFETY MANUAL Department of Chemistry #12;1 Laboratory

Reed, Christopher A.

10

Sandia National Laboratories: Locations: Livermore, California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Livermore, California Livermore, California Livermore, California administration building For more than 50 years, the California campus of Sandia National Laboratories has delivered essential science and technology to resolve the nation's most challenging security issues. Many of these challenges - like energy resources, transportation, immigration, ports, and more - surfaced early in the state of California, providing Sandia/California with a special opportunity to participate in the first wave of solutions to important national problems. For example, Sandia's scientists are breaking new ground in energy research and are helping to accelerate the development of next-generation biofuels so that we can reduce our nation's dependence on foreign oil and mitigate the effects of global climate change.

11

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7AC Technologies, Inc. 7AC Technologies, Inc. National Renewable Energy Laboratory 498 likes 7AC Technologies, based in Woburn, Massachusetts, is developing Liquid Desiccant HVAC systems for Commercial and Industrial buildings using technology from the National Renewable Energy Laboratory. These Liquid Desiccant HVAC systems deliver a 50 to 75 percent reduction in energy usage over conventional HVAC units. The system consists of a membrane conditioner responsible for drying and cooling the air and a heat-driven regenerator. The liquid desiccant design allows for the utilization of solar or waste heat sources, paving the way for net-zero energy retrofits to existing buildings with costs comparable to conventional HVAC. Learn More Borla Performance Industries, Inc. Oak Ridge National Laboratory

12

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Element One, Inc. Element One, Inc. National Renewable Energy Laboratory 191524 likes Element One, based in Boulder, Colorado, has created the only available coatings that change color when detecting hydrogen and other hazardous gas leaks, either reversibly or non-reversibly, to provide both current and historical information about leaks. Element One's patented gas indicators and sensors use catalyzed thin films or nanoparticles of a transition metal oxide to create very low cost sensors for use in industrial and consumer environments, greatly reducing the potential for undetected leaks and their cost and safety implications. This technology is also being integrated for use in refineries, industry gas and fuel cells systems and was developed using technology from the National Renewable Energy Laboratory.

13

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

14

RAELRenewable and Appropriate Energy Laboratory University of California Berkeley  

E-Print Network [OSTI]

RAELRenewable and Appropriate Energy Laboratory University of California BerkeleyJon, and community outreach facility based at the University of California, BerkeleyJon of the Switch computaJonal model. With Switch (a loose acronym for Solar, Wind

Kammen, Daniel M.

15

California: Geothermal Plant to Help Meet High Lithium Demand...  

Energy Savers [EERE]

technologies that extract battery materials like lithium, manganese, and zinc from geothermal brines. Simbol has the potential to power 300,000-600,000 electric vehicles per...

16

Sandia National Laboratories: Locations: Livermore, California: Visiting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California Livermore, California administration building Our location and hours of operation Sandia/California is located at 7011 East Avenue in Livermore, Calif., a suburban community about 45 miles east of San Francisco. Positioned at the eastern edge of the San Francisco Bay Area, Sandia is within easy commuting distance of many affordable housing communities in San Joaquin County and the Central Valley. The official hours of operation at Sandia/California are from 7:30 a.m. to 4 p.m. PST, Monday through Friday. General inquiries can be made by calling (925) 294-3000. See our contacts page for additional information. Getting here All three major airports in the San Francisco Bay Area provide access to Sandia/California. Oakland International Airport is the closest airport to

17

American Lithium Energy Corp | Open Energy Information  

Open Energy Info (EERE)

Lithium Energy Corp Jump to: navigation, search Name: American Lithium Energy Corp Place: San Marcos, California Zip: 92069 Product: California-based developer of lithium ion...

18

JCESR: Moving Beyond Lithium-Ion | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JCESR: Moving Beyond Lithium-Ion Share Topic Energy Energy usage Energy storage Batteries Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive...

19

Sandia National Laboratories/California site environmental report for 1997  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

1998-06-01T23:59:59.000Z

20

Sandia National Laboratories, California Environmental Management System program manual.  

SciTech Connect (OSTI)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

Larsen, Barbara L.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Site environmental report for 2003 Sandia National Laboratories, California.  

SciTech Connect (OSTI)

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

Larsen, Barbara L.

2004-06-01T23:59:59.000Z

22

Site environmental report for 2005 Sandia National Laboratories, California.  

SciTech Connect (OSTI)

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

Larsen, Barbara L.

2006-06-01T23:59:59.000Z

23

Site environmental report for 2006 Sandia National Laboratories, California.  

SciTech Connect (OSTI)

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

Larsen, Barbara L.

2007-06-01T23:59:59.000Z

24

Site environmental report for 2004 Sandia National Laboratories, California.  

SciTech Connect (OSTI)

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

2005-06-01T23:59:59.000Z

25

Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.  

SciTech Connect (OSTI)

Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

Catechis, Christopher Spyros

2013-10-01T23:59:59.000Z

26

LBL-15480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5480 5480 Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA Materials & Molecular Research Division Presented at the International Conference on Photochemistry and Photobiology, Alexandria, Egypt, January 5-10, 1983 MOLECULAR BEAM STUDIES OF PRIMARY PHOTOCHEMICAL PROCESSES Yuan T. Lee December 1982 Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 DISTRIBUTION OF THIS DOCUMENT 16 miMVrf} LEGAL NOTICE This book was prepared as an account of work

27

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

28

Energy efficiency in California laboratory-type facilities  

SciTech Connect (OSTI)

The central aim of this project is to provide knowledge and tools for increasing the energy efficiency and performance of new and existing laboratory-type facilities in California. We approach the task along three avenues: (1) identification of current energy use and savings potential, (2) development of a {ital Design guide for energy- Efficient Research Laboratories}, and (3) development of a research agenda for focused technology development and improving out understanding of the market. Laboratory-type facilities use a considerable amount of energy resources. They are also important to the local and state economy, and energy costs are a factor in the overall competitiveness of industries utilizing laboratory-type facilities. Although the potential for energy savings is considerable, improving energy efficiency in laboratory-type facilities is no easy task, and there are many formidable barriers to improving energy efficiency in these specialized facilities. Insufficient motivation for individual stake holders to invest in improving energy efficiency using existing technologies as well as conducting related R&D is indicative of the ``public goods`` nature of the opportunity to achieve energy savings in this sector. Due to demanding environmental control requirements and specialized processes, laboratory-type facilities epitomize the important intersection between energy demands in the buildings sector and the industrial sector. Moreover, given the high importance and value of the activities conducted in laboratory-type facilities, they represent one of the most powerful contexts in which energy efficiency improvements stand to yield abundant non-energy benefits if properly applied.

Mills, E.; Bell, G.; Sartor, D. [and others

1996-07-31T23:59:59.000Z

29

UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

UCRL-5257 Rev. UCRL-5257 Rev. UNIVERSITY OF CALIFORNIA Radiation Laboratory Liver more : California Contract No. W- 7405 -eng -48 PEACEFUL USES OF FUSION Edward Teller July 3, 1958 Printed for the U. S. Atomic Energy Commission f . DISCLAIMER This report was prepared as an account by an agency of t h e United States United States Government nor of their employees, or assumes any legal accuracy, completeness, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

30

MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MASTER MASTER UCRL-9537 UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California Contract No.W-7405-eng-48 A NHARMONIC POTENTIAL CONSTANTS AND THEIR DEPENDENCE UPON BOND LENGTH Dudley R. Herschbach and Victor W. Laurie January 1961 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or

31

Site Environmental Report for 2010 Sandia National Laboratories, California.  

SciTech Connect (OSTI)

Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

Larsen, Barbara L.

2011-06-01T23:59:59.000Z

32

Sandia National Laboratories, California Environmental Management System Program Manual.  

SciTech Connect (OSTI)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Not Available

2009-04-01T23:59:59.000Z

33

Sandia National Laboratories, California Environmental Management System Program Manual.  

SciTech Connect (OSTI)

The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories, New Mexico (SNL/NM). Although these groups, from an organizational perspective, are part of Division 8000, they are managed locally and fall under the environmental requirements specific to their New Mexico location. The New Mexico groups in Division 8000 follow the corporate EMS Program for New Mexico operations.

Larsen, Barbara L.

2011-04-01T23:59:59.000Z

34

Sandia National Laboratories, California Chemical Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Chemical Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Chemical Management Program, one of six programs that supports environmental management at SNL/CA. SNL/CA is responsible for tracking chemicals (chemical and biological materials), providing Material Safety Data Sheets (MSDS) and for regulatory compliance reporting according to a variety of chemical regulations. The principal regulations for chemical tracking are the Emergency Planning Community Right-to-Know Act (EPCRA) and the California Right-to-Know regulations. The regulations, the Hazard Communication/Lab Standard of the Occupational Safety and Health Administration (OSHA) are also key to the CM Program. The CM Program is also responsible for supporting chemical safety and information requirements for a variety of Integrated Enabling Services (IMS) programs primarily the Industrial Hygiene, Waste Management, Fire Protection, Air Quality, Emergency Management, Environmental Monitoring and Pollution Prevention programs. The principal program tool is the Chemical Information System (CIS). The system contains two key elements: the MSDS library and the chemical container-tracking database that is readily accessible to all Members of the Sandia Workforce. The primary goal of the CM Program is to ensure safe and effective chemical management at Sandia/CA. This is done by efficiently collecting and managing chemical information for our customers who include Line, regulators, DOE and ES and H programs to ensure compliance with regulations and to streamline customer business processes that require chemical information.

Brynildson, Mark E.

2012-02-01T23:59:59.000Z

35

Routine environmental audit of the Sandia National Laboratories, California, Livermore, California  

SciTech Connect (OSTI)

This report documents the results of the Routine Environmental Audit of the Sandia National Laboratories, Livermore, California (SNL/CA). During this audit the activities the Audit Team conducted included reviews of internal documents and reports from preview audits and assessments; interviews with US Department of Energy (DOE), State of California regulators, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted from February 22 through March 4, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety, and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, state, and local environmental laws and regulations; compliance with DOE Orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements. The audit`s functional scope was comprehensive and included all areas of environmental management and a programmatic evaluation of NEPA and inactive waste sites.

Not Available

1994-03-01T23:59:59.000Z

36

Environmental Survey preliminary report, Sandia National Laboratories, Livermore, California  

SciTech Connect (OSTI)

This report contains the preliminary findings based on the first phase of an Environmental Survey at the Department of Energy (DOE) Sandia National Laboratories Livermore (SNLL), located at Livermore, California. The Survey is being conducted by DOE's Office of Environment, Safety and Health. The SNLL Survey is a portion of the larger, comprehensive DOE Environmental Survey encompassing all major operating facilities of DOE. The DOE Environmental Survey is one of a series of initiatives announced on September 18, 1985, by Secretary of Energy, John S. Herrington, to strengthen the environmental, safety, and health programs and activities within DOE. The purpose of the Environmental Survey is to identify, via a no fault'' baseline Survey of all the Department's major operating facilities, environmental problems and areas of environmental risk. The identified problem areas will be prioritized on a Department-wide basis in order of importance in 1989. The findings in this report are subject to modification based on the results from the Sampling and Analysis Phase of the Survey. The findings are also subject to modification based on comments from the Albuquerque Operations Office concerning the technical accuracy of the findings. The modified preliminary findings and any other appropriate changes will be incorporated into an Interim Report. The Interim Report will serve as the site-specific source for environmental information generated by the Survey, and ultimately as the primary source of information for the DOE-wide prioritization of environmental problems in the Survey Summary Report. 43 refs., 21 figs., 24 tabs.

Not Available

1988-01-01T23:59:59.000Z

37

Sandia National Laboratories: More California Gas Stations Can...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECFacilitiesCenter for Infrastructure Research and Innovation (CIRI)More California Gas Stations Can Provide Hydrogen than Previously Thought, Sandia Study Says More...

38

EIS-0402: Santa Susana Field Laboratory Area IV, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

2: Santa Susana Field Laboratory Area IV, California 2: Santa Susana Field Laboratory Area IV, California EIS-0402: Santa Susana Field Laboratory Area IV, California Summary This EIS evaluates the environmental impacts of remediation of Area IV of the Santa Susana Field Laboratory (SSFL Area IV). SSFL Area IV, occupying approximately 290 acres of the total 2,852-acre SSFL site is located in the hills between Chatsworth and Simi Valley, CA, and was developed as a remote site to test rocket engines and conduct nuclear research. This EIS will evaluate alternatives for disposition of radiological facilities and support buildings, remediation of the affected environment, and disposal of all resulting waste at existing, approved sites. Public Comment Opportunities No public comment opportunities available at this time.

39

Argonne, Western Lithium to develop lithium carbonate for multiple...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory as a step toward the commercialization of lithium carbonate from the Company's Kings Valley Lithium Project located in Humboldt County, Nevada, USA. Under the agreement,...

40

ALUMINUM REMOVAL FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION - LABORATORY SCALE VALIDATION ON WASTE SIMULANTS TEST REPORT  

SciTech Connect (OSTI)

To reduce the additional sodium hydroxide and ease processing of aluminum bearing sludge, the lithium hydrotalcite (LiHT) process has been invented by AREV A and demonstrated on a laboratory scale to remove alumina and regenerate/recycle sodium hydroxide prior to processing in the WTP. The method uses lithium hydroxide (LiOH) to precipitate sodium aluminate (NaAI(OH){sub 4}) as lithium hydrotalcite (Li{sub 2}CO{sub 3}.4Al(OH){sub 3}.3H{sub 2}O) while generating sodium hydroxide (NaOH). In addition, phosphate substitutes in the reaction to a high degree, also as a filterable solid. The sodium hydroxide enriched leachate is depleted in aluminum and phosphate, and is recycled to double-shell tanks (DSTs) to leach aluminum bearing sludges. This method eliminates importing sodium hydroxide to leach alumina sludge and eliminates a large fraction of the total sludge mass to be treated by the WTP. Plugging of process equipment is reduced by removal of both aluminum and phosphate in the tank wastes. Laboratory tests were conducted to verify the efficacy of the process and confirm the results of previous tests. These tests used both single-shell tank (SST) and DST simulants.

SAMS T; HAGERTY K

2011-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

LITHIUM-BASED ELECTROCHROMIC MIRRORS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

870 870 rd Presented at the 203 Meeting of the Electrochemical Society, April 28-30, 2003 in Paris, France and published in the Proceedings. Lithium-Based Electrochromic Mirrors Thomas J. Richardson and Jonathan L. Slack Lawrence Berkeley National Laboratory April 2003 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, State and Community Programs, Office of Building Research and Standards of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson* and Jonathan L. Slack Building Technologies Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, California 94720, USA

42

Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

Not Available

1987-12-01T23:59:59.000Z

43

Grant Awarded to California for Oversight of Santa Susana Field Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Contacts Contacts Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy today awarded a grant to the State of California Department of Toxic Substance Control (DTSC) for regulatory functions necessary to oversee investigation and cleanup at the Energy Technology Engineering Center (ETEC) project at the Santa Susana Field Laboratory (SSFL), Canoga Park, California. The $5.6 million grant has five one-year performance periods. DOE must comply with the requirements for characterization and cleanup in the 2007 Consent Order with the State of California for groundwater and the 2010 Administrative Order on Consent for soils. ETEC's historic mission involved nuclear research and development for the U.S. Atomic Energy Commission, a predecessor to DOE. In the mid-1950s, a

44

Grant Awarded to California for Oversight of Santa Susana Field Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Contact Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy today awarded a grant to the State of California Department of Toxic Substance Control (DTSC) for regulatory functions necessary to oversee investigation and cleanup at the Energy Technology Engineering Center (ETEC) project at the Santa Susana Field Laboratory (SSFL), Canoga Park, California. The $5.6 million grant has five one-year performance periods. DOE must comply with the requirements for characterization and cleanup in the 2007 Consent Order with the State of California for groundwater and the 2010 Administrative Order on Consent for soils. ETEC's historic mission involved nuclear research and development for the U.S. Atomic Energy Commission, a predecessor to DOE. In the mid-1950s, a

45

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California California Categorical Exclusion Determinations: California Location Categorical Exclusion Determinations issued for actions in California. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2013 CX-010910: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09/25/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 23, 2013 CX-010928: Categorical Exclusion Determination Harsh Environment Adaptable Thermionic (HEAT) Sensor CX(s) Applied: B3.6 Date: 09/23/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based

46

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3, 2010 3, 2010 CX-002571: Categorical Exclusion Determination Street Lighting Fixture Energy Efficiency Retrofit Project CX(s) Applied: B5.1 Date: 06/03/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 3, 2010 CX-002486: Categorical Exclusion Determination Flow Battery Solution for Smart Grid Renewable Energy Applications CX(s) Applied: B3.6, B4.6, A1, B4.11 Date: 06/03/2010 Location(s): Sunnyvale, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 2, 2010 CX-003079: Categorical Exclusion Determination Applied Materials - Novel High Energy Density Lithium Ion Cell Designs CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): California

47

Laboratory corrosion studies in low- and high-salinity geobrines of the Imperial Valley, California  

SciTech Connect (OSTI)

Corrosion research is being conducted by the Federal Bureau of Mines to determine suitable construction materials for geothermal resource recovery plants. As part of this research, the corrosion resistance of 31 iron-, nickel-, aluminum-, copper-, titanium-, and molybdenum-base alloys was characterized and evaluated in laboratory corrosion studies in low- and high-salinity geobrines representative of those found in the Imperial Valley, California. General, crevice, pitting, weld, and stress corrosion were measured at 105/sup 0/ and 232/sup 0/C in deaerated brines and brines containing dissolved O/sub 2/, CO/sub 2/, and CH/sub 4/.

Cramer, S.D.; Carter, J.P.

1980-01-01T23:59:59.000Z

48

EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

49

Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.  

SciTech Connect (OSTI)

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

Wrons, Ralph Jordan; Vetter, Douglas Walter

2007-07-01T23:59:59.000Z

50

Pension fund activities at Department laboratories managed by the University of California. [Contains Management and Auditor Comments  

SciTech Connect (OSTI)

The Department of Energy's (Department) Office of Contractor Human Resource Management, and San Francisco and Albuquerque Field Offices have responsibility for contract administration of the Department's interest in two separate pension plans covering University of California (University) employees at Lawrence Livermore National Laboratory, Lawrence Berkeley Laboratory, and Los Alamos National Laboratory. The purpose of the audit was to review the Department's contract administration of its interest in those pension plans.

Not Available

1992-09-18T23:59:59.000Z

51

Lawrence Berkeley Laboratory, Berkeley, California solar energy system performance evaluation, July 1980-June 1981  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory site is an office building in California with an active solar energy system designed to supply from 23 to 33% of the space heating load and part of the hot water load. The solar heating system is equipped with 1428 square feet of flat-plate collectors, a 2000-gallon water storage tank, and two gas-fired boilers to supply auxiliary heat for both space heating and domestic hot water. Poor performance is reported, with the solar fraction being only 4%. Also given are the solar savings ratio, conventional fuel savings, system performance factor, and the coefficient of performance. The performance data are given for the collector, storage, solar water heating and solar space heating subsystems as well as the total system. Typical system operation and solar energy utilization are briefly described. The system design, performance evaluation techniques, weather data, and sensor technology are presented. (LEW)

Wetzel, P.E.

1981-01-01T23:59:59.000Z

52

Environmental Survey preliminary report, Laboratory for Energy-Related Health Research, Davis, California  

SciTech Connect (OSTI)

This report presents the preliminary findings from the first phase of the Survey of the United States Department of Energy (DOE) Laboratory for Energy-Related Health Research (LEHR) at the University of California, Davis (UC Davis), conducted November 16 through 20, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the LEHR. The Survey covers all environmental media and all areas of environmental regulation, and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the LEHR and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the LEHR at UC Davis. The Interim Report will reflect the final determinations of the LEHR Survey. 75 refs., 26 figs., 23 tabs.

Not Available

1988-03-01T23:59:59.000Z

53

Success Stories: Solid Electrolyte Lithium Ion Batteries - Seeo, Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Electrolyte May Usher in a New Generation of Solid Electrolyte May Usher in a New Generation of Rechargeable Lithium Batteries For Vehicles With sky rocketing gasoline prices and exploding laptops, there could not have been a better time for a new rechargeable battery breakthrough. Enter Lawrence Berkeley National Laboratory's (LBNL) nanostructured polymer electrolyte (NPE). NPE is a solid electrolyte designed for use in rechargeable lithium batteries. The unique material was developed by LBNL researchers Nitash Balsara, Hany Eitouni, Enrique Gomez, and Mohit Singh and licensed to startup company Seeo Inc. in 2007. With solid financial backing from Khosla Ventures, located in Menlo Park, California, and an impressive scientific team recruited from LBNL, University of California, Berkeley, and the battery industry, Seeo is now

54

Sandia National Laboratories, California Quality Assurance Project Plan for Environmental Monitoring Program.  

SciTech Connect (OSTI)

This Quality Assurance Project Plan (QAPP) applies to the Environmental Monitoring Program at the Sandia National Laboratories/California. This QAPP follows DOE Quality Assurance Management System Guide for Use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance (DOE G 414.1-2A June 17, 2005). The Environmental Monitoring Program is located within the Environmental Operations Department. The Environmental Operations Department is responsible for ensuring that SNL/CA operations have minimal impact on the environment. The Department provides guidance to line organizations to help them comply with applicable environmental regulations and DOE orders. To fulfill its mission, the department has groups responsible for waste management; pollution prevention, air quality; environmental planning; hazardous materials management; and environmental monitoring. The Environmental Monitoring Program is responsible for ensuring that SNL/CA complies with all Federal, State, and local regulations and with DOE orders regarding the quality of wastewater and stormwater discharges. The Program monitors these discharges both visually and through effluent sampling. The Program ensures that activities at the SNL/CA site do not negatively impact the quality of surface waters in the vicinity, or those of the San Francisco Bay. The Program verifies that wastewater and stormwater discharges are in compliance with established standards and requirements. The Program is also responsible for compliance with groundwater monitoring, and underground and above ground storage tanks regulatory compliance. The Program prepares numerous reports, plans, permit applications, and other documents that demonstrate compliance.

Holland, Robert C.

2005-09-01T23:59:59.000Z

55

Sandia National Laboratories, California Environmental Monitoring Program annual report for 2011.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the SNL/California Environmental Monitoring Program. It functions as supporting documentation to the SNL/California Environmental Management System Program Manual. The 2010 program report describes the activities undertaken during the previous year, and activities planned in future years to implement the Environmental Monitoring Program, one of six programs that supports environmental management at SNL/California.

Holland, Robert C.

2011-03-01T23:59:59.000Z

56

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

57

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

58

Spherical torus plasma interactions with large-area liquid lithium surfaces in CDX-U  

Science Journals Connector (OSTI)

The current drive experiment-upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego (UCSD). Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance.

R Kaita; R Majeski; M Boaz; P Efthimion; B Jones; D Hoffman; H Kugel; J Menard; T Munsat; A Post-Zwicker; V Soukhanovskii; J Spaleta; G Taylor; J Timberlake; R Woolley; L Zakharov; M Finkenthal; D Stutman; G Antar; R Doerner; S Luckhardt; R Maingi; M Maiorano; S Smith

2002-01-01T23:59:59.000Z

59

Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California  

SciTech Connect (OSTI)

Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

NONE

1994-12-01T23:59:59.000Z

60

Manufacturing of Protected Lithium Electrodes for Advanced Lithium...  

Broader source: Energy.gov (indexed) [DOE]

Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries, April 2013 Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air,...

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 20, 2011 September 20, 2011 CX-010375: Categorical Exclusion Determination Replace Existing Firehouse CX(s) Applied: B1.15 Date: 09/20/2011 Location(s): California Offices(s): Berkeley Site Office September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007056: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 09/19/2011 Location(s): California, Iowa, Maine, Missouri, Montana, Nevada, New Mexico, Tennessee, Utah, Virginia, Washington Office(s): Energy Efficiency and Renewable Energy, Savannah River

62

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

, 2011 , 2011 Berkeley Lab: 80 Years of Excellence in Science Congratulations to Lawrence Berkeley National Laboratory, which celebrated its 80th anniversary on August 26. September 1, 2011 EIS-0455: Record of Decision Genesis Solar Energy Project, Riverside County, California September 1, 2011 How to See the Supernova Berkeley Lab Just Discovered According to astronomers, this is the closest and brightest supernova of this type detected in the last 30 years and will be closely studied for years to come. In this video, Berkeley Lab's Peter Nugent explains how to find the event with a small telescope or pair of binoculars. August 25, 2011 CX-006510: Categorical Exclusion Determination Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500 Watthours per Liter

63

Lithium Ion Accomplishments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium ion Battery Commercialization Lithium ion Battery Commercialization Johnson Controls-Saft Advanced Power Solutions, of Milwaukee, Wisconsin: Johnson Controls-Saft (JCS) will supply lithium-ion batteries to Mercedes for their S Class Hybrid to be introduced in October 2009. Technology developed with DOE support (the VL6P cell) will be used in the S Class battery. In May 2006, the Johnson Controls-Saft Joint Venture was awarded a 24 month $14.4 million contract by the DOE/USABC to develop a 40kW Li ion HEV battery system offering improved safety, low temperature performance, and cost. JCS has reported a 40% cost reduction of the 40kW system being developed in their DOE/USABC contract while maintaining performance. Lithium Ion Battery Material Commercialization Argonne National Laboratory has licensed cathode materials and associated processing

64

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

65

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

It all began in 2001, when three NREL researchers took their thin-film It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers knew that lithium batteries tended to degrade quickly because the fragile lithium metal anode was on the top of the battery, where any cracks in the encapsulant could lead to rapid failure. The team developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte, made of lithium phosphorous oxynitride (LiPON), then the cathode, a metal oxide. Lithium is typically intercalated (chemically trapped) within the cathode material. Placing an initial charge on the battery causes the lithium ions to migrate out of the cathode

66

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

67

EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

68

Cost of presumptive source term Remedial Actions Laboratory for energy-related health research, University of California, Davis  

SciTech Connect (OSTI)

A Remedial Investigation/Feasibility Study (RI/FS) is in progress at the Laboratory for Energy Related Health Research (LEHR) at the University of California, Davis. The purpose of the RI/FS is to gather sufficient information to support an informed risk management decision regarding the most appropriate remedial actions for impacted areas of the facility. In an effort to expedite remediation of the LEHR facility, the remedial project managers requested a more detailed evaluation of a selected set of remedial actions. In particular, they requested information on both characterization and remedial action costs. The US Department of Energy -- Oakland Office requested the assistance of the Pacific Northwest National Laboratory to prepare order-of-magnitude cost estimates for presumptive remedial actions being considered for the five source term operable units. The cost estimates presented in this report include characterization costs, capital costs, and annual operation and maintenance (O&M) costs. These cost estimates are intended to aid planning and direction of future environmental remediation efforts.

Last, G.V.; Bagaasen, L.M.; Josephson, G.B.; Lanigan, D.C.; Liikala, T.L.; Newcomer, D.R.; Pearson, A.W.; Teel, S.S.

1995-12-01T23:59:59.000Z

69

LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS  

Office of Scientific and Technical Information (OSTI)

HEDL-TME 78-15 HEDL-TME 78-15 uc-20 LITHIUM LITERATURE REVIEW: LITHIUM'S PROPERTIES AND INTERACTIONS Hanf ord Engineering Development Laboratory -~ - - , . .. . D.W. Jeppson J.L. Ballif W.W. Yuan B.E. Chou - - - . - . - -- r - N O T l C E n ~ h u mpon w prepared as an account of work iponrored by the United States Government. Neither the Unitcd States nor the United Stater Department of Energy. nor any of their employees, nor any of then contractor^, subcontractors. or their employees, maker any warranty, cxprcu or Implied. or anumcs any legal liability or rcrponabllity for the accuracy. cornplctcncs or uvfulnes of any information. apparatus, product or p r o a s ditclorcd. or rcpments that its u s would not infringe pnvatcly owned nghts. April 1978 HANFORD ENGINEERING DEVELOPMENT LABORATORY

70

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

71

Hydrogen, lithium, and lithium hydride production  

DOE Patents [OSTI]

A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.

Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J

2014-03-25T23:59:59.000Z

72

NREL Enhances the Performance of a Lithium-Ion Battery Cathode (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhances the Performance of Enhances the Performance of a Lithium-Ion Battery Cathode Scientists from NREL and the University of Toledo have combined theoretical and experimental studies to demonstrate a promising approach to significantly enhance the performance of lithium iron phosphate (LiFePO 4 ) cathodes for lithium-ion batteries. In the most common commercial design for lithium-ion (Li-ion) batteries, the positive electrode or cathode is lithium cobalt oxide (LiCoO 2 ). This material exhibits high electrical conductivity, meaning that it can transport electrons very effectively. However, the cobalt in LiCoO 2 has at least two detrimental characteristics-it is relatively expensive, which leads to higher battery costs, and it is toxic, which poses potential environmental and safety issues.

73

Report of the Preliminary Archaeological Reconnaissance of the Lawrence Livermore Laboratory Site 300, San Joaquin County, California  

SciTech Connect (OSTI)

The area subject to this investigation is the existing Lawrence Livermore Laboratory Site 300, located in the region north of Corral Hollow; approximately eight and one half miles southwest of Tracy, San Joaquin County, California. Cartographic location can be determined from the Tracy and Midway USGS 7.5 minute topographic quadrangles, the appropriate portions of which are herein reproduced as Maps 1 and 2. The majority of the approximate 7000 acres of the location lies within San Joaquin County. This includes all of the area arbitrarily designated the 'Eastern Portion' on Map 2 and the majority of the area designated the 'Western Portion' on Map 1. The remaining acreage, along the western boundary of the location, lies within Alameda County. The area is located in the region of open rolling hills immediately north of Corral Hollow, and ranges in elevation from approximately 600 feet, on the flood plain of Corral Hollow Creek, to approximately 1700 feet in the northwest portion of the project location. Proposed for the area under investigation are various, unspecified improvements or modifications to the existing Site 300 facilities. Present facilities consist of scattered buildings, bunkers and magazines, utilized for testing and research purposes, including the necessary water, power, and transportation improvements to support them. The vast majority of the 7000 acres location is presently open space, utilized as buffer zones between test locations and as firing ranges.

Busby, C

2009-11-24T23:59:59.000Z

74

Imaging Lithium Air Electrodes | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Neutron Imaging Reveals Lithium Distribution in Lithium-Air Electrodes Agatha Bardoel - January 01, 2013 Image produced by neutron-computed tomography. The next step in revolutionizing electric vehicle capacity Research Contacts: Hassina Bilheux, Jagjit Nanda, and S. Pannala Using neutron-computed tomography, researchers at the CG-1D neutron imaging instrument at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) have successfully mapped the three-dimensional spatial distribution of lithium products in electrochemically discharged lithium-air cathodes. Lithium-air chemistry promises very high-energy density that, if successful, would revolutionize the world of electric vehicles by extending their range to 500 miles or more. The high-energy density comes from

75

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Broader source: Energy.gov (indexed) [DOE]

Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory 2013 DOE Hydrogen...

76

Final Revised Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California  

Broader source: Energy.gov (indexed) [DOE]

R R Final Revised Environmental Assessment for The Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California Issued: December 2002 Revised: January 2008 Department of Energy National Nuclear Security Administration Livermore Site Office This page intentionally left blank. FINAL Revised EA for the Proposed Construction and Operation of a Biosafety Level 3 Facility at LLNL ii FORWARD The National Nuclear Security Administration (NNSA) of the Department of Energy (DOE) has responsibility for national programs to reduce and counter threats from weapons of mass destruction including nuclear, chemical, and biological weapons (bioweapons). NNSA's bioscience work at Lawrence Livermore National Laboratory (LLNL) in support of these

77

Renewable & Appropriate Energy Laboratory Energy & Resources Group  

E-Print Network [OSTI]

Renewable & Appropriate Energy Laboratory Energy & Resources Group University of California Goldman School of Public Policy Renewable and Appropriate Energy Laboratory University of California ------------------------------------------------------------------------------------------------------------ 23 2.4 Solar

Kammen, Daniel M.

78

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

79

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

80

Lithium/Sulfur Batteries Based on Doped Mesoporous Carbon - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Advanced Materials Find More Like This Return to Search LithiumSulfur Batteries Based on Doped Mesoporous Carbon Oak Ridge National Laboratory Contact ORNL About...

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lithium Ion Electrode Production NDE and QC Considerations |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

QC Considerations Lithium Ion Electrode Production NDE and QC Considerations Review of Oak Ridge process and QC activities by David Wood, Oak Ridge National Laboratory, at the...

82

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-58252 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Rationale for Measuring Duct Division Ernest Orlando Lawrence Berkeley National Laboratory University of California Berkeley, California thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National

83

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thin-Film Battery with Lithium Anode Courtesy of Oak Ridge National Laboratory, Materials Science and Technology Division Thin-Film Lithium Batteries Resources with Additional Information The Department of Energy's 'Oak Ridge National Laboratory (ORNL) has developed high-performance thin-film lithium batteries for a variety of technological applications. These batteries have high energy densities, can be recharged thousands of times, and are only 10 microns thick. They can be made in essentially any size and shape. Recently, Teledyne licensed this technology from ORNL to make batteries for medical devices including electrocardiographs. In addition, new "textured" cathodes have been developed which have greatly increased the peak current capability of the batteries. This greatly expands the potential medical uses of the batteries, including transdermal applications for heart regulation.'

84

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

13, 2009 13, 2009 CX-000386: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Alameda, California CX(s) Applied: A1, A9 Date: 11/13/2009 Location(s): Berkley, California Office(s): Fossil Energy, National Energy Technology Laboratory November 13, 2009 CX-000384: Categorical Exclusion Determination Carbon Dioxide Capture Site Survey in California CX(s) Applied: A1, A9, B3.1 Date: 11/13/2009 Location(s): Contra Costa County, California Office(s): Fossil Energy, National Energy Technology Laboratory November 11, 2009 CX-000179: Categorical Exclusion Determination California City Irvine CX(s) Applied: A9, A11, B5.1 Date: 11/11/2009 Location(s): Irvine, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 10, 2009

85

DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I  

E-Print Network [OSTI]

Paul Berdahl et al. , California Solar Data Hanual, LawrenceBerkeley Laboratory, California Solar Data Manual, Draft,here. The solar insolation falling upon California is more

Authors, Various

2010-01-01T23:59:59.000Z

86

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network [OSTI]

the county. Southern California Solar Energy Association.Berkeley Laboratory, California Solar Data Manual, (Draft),of the Southern California Solar Energy Association), August

Balderston, F.

2010-01-01T23:59:59.000Z

87

Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis  

SciTech Connect (OSTI)

The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

Not Available

1992-09-01T23:59:59.000Z

88

Sandia National Laboratories: LVOC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

89

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-003180: Categorical Exclusion Determination Manchester Band of Pomo Indians of the Manchester-Point Arena Rancheria, California CX(s) Applied: A9, B5.1 Date: 07/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 22, 2010 California Team to Receive up to $122 Million for Energy Innovation Hub to Develop Method to Produce Fuels from Sunlight California Institute of Technology to lead team in partnership with Lawrence Berkeley National Laboratory and other California institutions July 19, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California

90

Lithium Iron Phosphate Composites for Lithium Batteries | Argonne...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium Iron Phosphate Composites for Lithium Batteries Technology available for licensing: Inexpensive, electrochemically active phosphate compounds with high functionality for...

91

Reducing Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foreign Lithium Dependence through Co-Production of Lithium from Foreign Lithium Dependence through Co-Production of Lithium from Geothermal Brine Kerry Klein 1 , Linda Gaines 2 1 New West Technologies LLC, Washington, DC, USA 2 Center for Transportation Research, Argonne National Laboratory, Argonne, IL, USA KEYWORDS Mineral extraction, zinc, silica, strategic metals, Imperial Valley, lithium ion batteries, electric- drive vehicles, battery recycling ABSTRACT Following a 2009 investment of $32.9 billion in renewable energy and energy efficiency research through the American Recovery and Reinvestment Act, President Obama in his January 2011 State of the Union address promised deployment of one million electric vehicles by 2015 and 80% clean energy by 2035. The United States seems poised to usher in its bright energy future,

92

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

United States » California United States » California California January 15, 2014 Dr. Adam Weber oversees the work of intern Sara Kelly at Lawrence Berkeley National Laboratory in California. Dr. Weber was recently named one of the winners of the Presidential Early Career Awards for Scientists and Engineers. | Photo by Roy Kaltschmidt, Lawrence Berkeley National Laboratory 10 Questions for a Scientist: Dr. Adam Weber of Lawrence Berkeley National Laboratory Dr. Adam Weber of the Energy Department's Lawrence Berkeley National Laboratory was recently honored for his cutting edge work to help make hydrogen fuel cells and their components more efficient and durable. Dr. Weber talks to us about what inspired him to become a scientist, why he loves Lord of the Rings, and gives some advice to future scientists.

93

Lithium Insertion into Anatase Nanotubes  

Science Journals Connector (OSTI)

Lithium Insertion into Anatase Nanotubes ... Improving the Performance of Titania Nanotube Battery Materials by Surface Modification with Lithium Phosphate ...

V. Gentili; S. Brutti; L.J. Hardwick; A.R. Armstrong; S. Panero; P.G. Bruce

2012-11-01T23:59:59.000Z

94

Tennessee, Pennsylvania: Porous Power Technologies Improves Lithium Ion Battery, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Porous Power Technologies, partnered with Oak Ridge National Laboratory (ORNL), developed SYMMETRIX HPX-F, a nanocomposite separator for improved lithium-ion battery technology.

95

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary, confidential, or otherwise restricted information Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

96

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne...  

Broader source: Energy.gov (indexed) [DOE]

DC This presentation contains no proprietary information. Project ID: ES166 Post-test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Overview...

97

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

Raistrick, I.D.; Poris, J.; Huggins, R.A.

1980-07-18T23:59:59.000Z

98

Molten salt lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

Raistrick, Ian D. (Menlo Park, CA); Poris, Jaime (Portola Valley, CA); Huggins, Robert A. (Stanford, CA)

1982-02-09T23:59:59.000Z

99

Argonne Transportation - Lithium Battery Technology Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awarded Lithium Battery Technology Patents Awarded Lithium Battery Technology Patents "Composite-structure" material is a promising battery electrode for electric vehicles Argonne National Laboratory has been granted two U.S. patents (U.S. Pat. 6,677,082 and U.S. Pat. 6,680,143) on new "composite-structure" electrode materials for rechargeable lithium-ion batteries. Electrode compositions of this type are receiving worldwide attention. Such electrodes offer superior cost and safety features over state-of-the-art LiCoO2 electrodes that power conventional lithium-ion batteries. Moreover, they demonstrate outstanding cycling stability and can be charged and discharged at high rates, making them excellent candidates to replace LiCoO2 for consumer electronic applications and hybrid electric vehicles.

100

Towards Safer Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Towards Safer Lithium-Ion Batteries Towards Safer Lithium-Ion Batteries Speaker(s): Guoying Chen Date: October 25, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Venkat Srinivasan Safety problems associated with rechargeable lithium batteries are now well recognized. Recent spectacular fires involving cell phones, laptops, and (here at LBNL) AA cells have made the news. These events are generally caused by overcharging and subsequent development of internal shorts. Before these batteries can be used in vehicle applications, improvement in cell safety is a must. We have been active in the area of lithium battery safety for many years. For example, a versatile, inexpensive overcharge protection approach developed in our laboratory, uses an electroactive polymer to act as a reversible, self-actuating, low resistance internal

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect (OSTI)

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

102

Lithium Supply Grows  

Science Journals Connector (OSTI)

Military-requirements are of course classified, but there is general speculation that lithium is required for the thermonuclear reactions. ...

1955-11-21T23:59:59.000Z

103

Manufacturing of Protected Lithium Electrodes for Advanced Batteries  

Broader source: Energy.gov [DOE]

Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water, and Lithium-Sulfur Batteries

104

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 28, 2003 February 28, 2003 EA-1426: Finding of No Significant Impact Linac Coherent Light Source Project, Stanford Linear Accelerator Center, Menlo Park, California February 3, 2003 EA-1441: Environmental Assessment Construction and Operation of the Molecular Foundry at Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California January 1, 2003 EA-1422: Final Site-wide Environmental Assessment Sandia National Laboratories December 2, 2002 EA-1426: Final Environmental Assessment Linac Coherent Light Source Experimental Facility December 2, 2002 EA-1442: Final Environmental Assessment Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, CA November 1, 2002 EIS-0323: Final Environmental Impact Statement

105

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54767 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Duct Tape Durability Testing M of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. Legal

106

Lithium pellet production (LiPP): A device for the production of small spheres of lithium  

SciTech Connect (OSTI)

With lithium as a fusion material gaining popularity, a method for producing lithium pellets relatively quickly has been developed for NSTX. The Lithium Pellet Production device is based on an injector with a sub-millimeter diameter orifice and relies on a jet of liquid lithium breaking apart into small spheres via the Plateau-Rayleigh instability. A prototype device is presented in this paper and for a pressure difference of {Delta}P= 5 Torr, spheres with diameters between 0.91 < D < 1.37 mm have been produced with an average diameter of D= 1.14 mm, which agrees with the developed theory. Successive tests performed at Princeton Plasma Physics Laboratory with Wood's metal have confirmed the dependence of sphere diameter on pressure difference as predicted.

Fiflis, P.; Andrucyzk, D.; McGuire, M.; Curreli, D.; Ruzic, D. N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Roquemore, A. L. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

2013-06-15T23:59:59.000Z

107

Sandia National Laboratories: Energy Surety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

108

California Energy Incentive Programs  

Broader source: Energy.gov (indexed) [DOE]

California Energy California Energy Incentive Programs: An Annual Update on Key Energy Issues and Financial Opportunities for Federal Sites in California Prepared for the U.S. Department of Energy Federal Energy Management Program December 2011 i Contacts Utility Acquisitions, ESPCs, PPAs Tracy Logan U.S. Department of Energy Federal Energy Management Program EE-2L 1000 Independence Avenue, SW Washington, DC 20585-0121 Phone: (202) 586-9973 E-mail: tracy.logan@ee.doe.gov Principal Research Associate Elizabeth Stuart Lawrence Berkeley National Laboratory One Cyclotron Road Berkeley, CA 94720 Phone: (510)495-2370 E-mail: estuart@lbl.gov ii Contents Overview ...................................................................................................................................................... 1

109

Thomas Wallner | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

110

Pairing in dense lithium  

Science Journals Connector (OSTI)

... of valence electrons. Here we report the results of first-principles calculations, indicating that lithium, the band structure of which is largely free-electron-like at ordinary densities, does ... b.c.c.) becomes unstable to a pairing of the ions. Once paired, lithium possesses an even number of electrons per primitive cell which, although not sufficient, is ...

J. B. Neaton; N. W. Ashcroft

1999-07-08T23:59:59.000Z

111

The impact of lithium wall coatings on NSTX discharges and the engineering of the Lithium Tokamak eXperiment (LTX)  

SciTech Connect (OSTI)

Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both L- and H-mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500-600 degrees C to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to Operate at reactor-relevant temperatures. The engineering of LTX will be discussed. (c) 2010 Elsevier B.V. All rights reserved.

Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Kugel, H. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Avasarala, S. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Berzak, L. [Princeton Plasma Physics Laboratory (PPPL); Beiersdorfer, P. [Lawrence Livermore National Laboratory (LLNL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Gransted, E. [Princeton Plasma Physics Laboratory (PPPL); Gray, T. [Princeton Plasma Physics Laboratory (PPPL); Jacobson, C. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); Kozub, T. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Lepson, J. [Lawrence Livermore National Laboratory (LLNL); Lundberg, D. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Pereverzev, G. V. [Max-Planck-Institut fur Plasmaphysik, EURATOM Association, Garching, Germany; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Strickler, T. [Princeton Plasma Physics Laboratory (PPPL); Stotler, D. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

2010-01-01T23:59:59.000Z

112

Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory January 4, 2013 State of California Office, MS76-225 Berkeley, California 94720 #12;#12;1 Ernest Orlando Lawrence Berkeley National Laboratory projects and activities managed or led by the University of California Lawrence Berkeley National

Eisen, Michael

113

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

114

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4, 2010 4, 2010 CX-003570: Categorical Exclusion Determination R10 Heat Mirror Technology with Optimized Solar Heat Gain Coefficient CX(s) Applied: B3.6 Date: 08/24/2010 Location(s): Palo Alto, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 24, 2010 CX-003510: Categorical Exclusion Determination Sulfur Based Thermochemical Heat Storage for Based Load Concentrated Solar Power Generation CX(s) Applied: A9, B3.6 Date: 08/24/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 18, 2010 CX-003481: Categorical Exclusion Determination California - City - Compton CX(s) Applied: A9, A11, B2.5, B5.1 Date: 08/18/2010 Location(s): Compton, California Office(s): Energy Efficiency and Renewable Energy

115

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-002348: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (LCFI3) CX(s) Applied: A1, A9, B5.1 Date: 05/11/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 10, 2010 CX-002215: Categorical Exclusion Determination San Buenaventura's Joint Partnership to meet Clean Air Mandates CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/10/2010 Location(s): Ventura, California Office(s): Energy Efficiency and Renewable Energy May 10, 2010 CX-002214: Categorical Exclusion Determination Susanville Indian Rancheria Portfolio Manager Tool CX(s) Applied: B2.5, B5.1 Date: 05/10/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy

116

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 19, 2011 January 19, 2011 CX-005046: Categorical Exclusion Determination Evaluating and Commercializing a Solvent Based EOR Technology CX(s) Applied: B3.6 Date: 01/19/2011 Location(s): Santa Barbara County, California Office(s): Fossil Energy, National Energy Technology Laboratory January 19, 2011 Truck 51 of the Chula Vista Fire Department. How Chula Vista, California Is Turning Cooking Oil Into Savings Chula Vista, California is saving their citizens money and reducing emissions by converting over 125 of their heavy-duty fleet vehicles to run off biodiesel. January 19, 2011 CX-005051: Categorical Exclusion Determination PAX Cooling Cycle CX(s) Applied: B3.6, B5.1 Date: 01/19/2011 Location(s): Petaluma, California Office(s): Energy Efficiency and Renewable Energy, National Energy

117

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-002706: Categorical Exclusion Determination California-Tribe-Tuolumne Band of Me-Wuk Indians CX(s) Applied: A9, B5.1 Date: 06/11/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 11, 2010 More than $60 Million in Recovery Act Funding to Expand Local Energy Efficiency Efforts in 20 Communities Competitive block grants to support jobs, save money and increase energy independence June 10, 2010 CX-002621: Categorical Exclusion Determination Compressed Air Energy Storage (CAES) System CX(s) Applied: B3.6, A9, B5.1 Date: 06/10/2010 Location(s): San Luis Obispo, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 9, 2010 CX-002710: Categorical Exclusion Determination California City-Fullerton

118

Lithium metal oxide electrodes for lithium batteries  

DOE Patents [OSTI]

An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.

Thackeray, Michael M. (Naperville, IL); Kim, Jeom-Soo (Naperville, IL); Johnson, Christopher S. (Naperville, IL)

2008-01-01T23:59:59.000Z

119

California: Conducting Polymer Binder Boosts Storage Capacity, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Working with Nextval, Inc., Lawrence Berkeley National Laboratory (LBNL) developed a Conducting Polymer Binder for high-capacity lithium-ion batteries.

120

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

29, 2010 29, 2010 CX-000753: Categorical Exclusion Determination Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Literature and Computer Review) CX(s) Applied: B3.1 Date: 01/29/2010 Location(s): Arcadia, California Office(s): Fossil Energy, National Energy Technology Laboratory January 28, 2010 CX-000746: Categorical Exclusion Determination Recovery Act: Macroalgae for Carbon Dioxide Capture and Renewable Energy - A Pilot Project CX(s) Applied: B3.6 Date: 01/28/2010 Location(s): La Jolla, California Office(s): Fossil Energy, National Energy Technology Laboratory January 27, 2010 CX-000608: Categorical Exclusion Determination Reaching for the Stars - California State University San Bernardino

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cellulosic biomass could help meet California’s transportation fuel needs  

E-Print Network [OSTI]

t uels Cellulosic biomass could help * meet California’smeasures are needed to help overcome the per- ceived risksrun; addition of the word "help." Laboratories at the Center

Wyman, Charles E.; Yang, Bin

2009-01-01T23:59:59.000Z

122

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-254E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY ALDEHYDE AND OTHER VOLATILE ORGANIC of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;LBNL Environment Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory

123

Enforcement Letter, Lawrence Berkeley National Laboratory- July 21, 1998  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Radiological Work Controls at the Lawrence Berkeley National Laboratory

124

Enforcement Letter, Lawrence Livermore National Laboratory- August 22, 1996  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Radiological Worker Training Deficiencies at the Lawrence Livermore National Laboratory

125

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

126

An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of Concentrating Solar Power An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with TES o How would a plant actually be used to minimize system production cost? * Quantify the value of adding storage to CSP in a high renewable energy (RE) scenario in California

127

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

128

CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

129

California's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

district district 2 Registered Research Institutions in California's 9th congressional district 3 Registered Networking Organizations in California's 9th congressional district 4 Registered Policy Organizations in California's 9th congressional district 5 Registered Energy Companies in California's 9th congressional district US Recovery Act Smart Grid Projects in California's 9th congressional district Seeo, Inc Smart Grid Demonstration Project Registered Research Institutions in California's 9th congressional district Energy BioSciences Institute Lawrence Berkeley National Laboratory (LBNL) UC Berkeley- Energy Institute UC Berkeley-Renewable and Appropriate Energy Laboratory UC Berkeley-Transportation Sustainability Research Center UC Center for Information Technology Research in the Interest of

130

Sandia National Laboratories: Livermore Valley Open Campus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Facility Opens at Sandia's California Site On June 13, 2012, in Cyber, Cybersecurity Technologies Research Laboratory, Energy Assurance, Energy Surety, Facilities,...

131

E-Print Network 3.0 - area liquid lithium Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Physics Laboratory - National Spherical Torus Experiment Collection: Plasma Physics and Fusion 10 Guidance on the use of Lithium Batteries in NERC Version 1.0 8th Summary: weight...

132

Vehicle Technologies Office Merit Review 2014: Lithium-Bearing Mixed Polyanion Glasses as Cathode Materials  

Broader source: Energy.gov [DOE]

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lithium-bearing...

133

Design of a testing device for quasi-confined compression of lithium-ion battery cells  

E-Print Network [OSTI]

The Impact and Crashworthiness Laboratory at MIT has formed a battery consortium to promote research concerning the crash characteristics of new lithium-ion battery technologies as used in automotive applications. Within ...

Roselli, Eric (Eric J.)

2011-01-01T23:59:59.000Z

134

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

23, 2010 23, 2010 CX-004887: Categorical Exclusion Determination Cable and Conduit Addition Within the Fenced Area of the Buck Boulevard Substation CX(s) Applied: B4.6 Date: 11/23/2010 Location(s): Riverside County, California Office(s): Western Area Power Administration-Desert Southwest Region November 23, 2010 CX-004875: Categorical Exclusion Determination Buck Boulevard Substation (Conduit Addition) CX(s) Applied: B4.6 Date: 11/23/2010 Location(s): Riverside County, California Office(s): Bonneville Power Administration November 23, 2010 CX-007129: Categorical Exclusion Determination Buck Boulevard Substation CX(s) Applied: B4.6 Date: 11/23/2010 Location(s): Ripley, California Office(s): Western Area Power Administration-Desert Southwest Region November 19, 2010 An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. | Photo Courtesy of Argonne National Laboratory

135

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4, 2011 4, 2011 CX-005552: Categorical Exclusion Determination California-Tribe-Cold Springs Rancheria of Mono Indians of California CX(s) Applied: B2.5, B5.1 Date: 04/04/2011 Location(s): California Office(s): Energy Efficiency and Renewable Energy April 1, 2011 Two structures of the Mre11-Rad50 complex were solved independently and overlaid, further revealing a flexible hinge in Rad50 near the Mre11 binding site | Courtesy of Lawrence Berkeley National Laboratory Geek-Up[04.01.2011]: A Discovery to Fight Cancer and Other Diseases Learn more about DNA's remarkable "molecular motor" -- a discovery that could lead to new ways to fight cancer and other diseases such as cystic fibrosis. March 25, 2011 EIS-0458: Draft Environmental Impact Statement Proposed Loan Guarantee to Support Construction and Startup of the Topaz

136

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2010 5, 2010 CX-003343: Categorical Exclusion Determination Recovery Act: Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water CX(s) Applied: A9, B3.6 Date: 08/05/2010 Location(s): Palo Alto, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 4, 2010 EA-1634: Finding of No Significant Impact Lawrence Berkeley National Laboratory Seismic Life-Safety Modernization, and Replacement of General Purpose Buildings, Phase 2B August 4, 2010 CX-004911: Categorical Exclusion Determination University of California, Los Angeles - Solid State Cooling: Compact Micro Electro Mechanical Systems Electrocaloric Cooling Module CX(s) Applied: B3.6 Date: 08/04/2010 Location(s): California

137

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0, 2009 0, 2009 CX-000567: Categorical Exclusion Determination East Avenue East End Improvement CX(s) Applied: B1.11, B1.13 Date: 12/10/2009 Location(s): Livermore, California Office(s): Sandia Site Office December 7, 2009 CX-005086: Categorical Exclusion Determination Round Valley Indian Tribes of the Round Valley Reservation Energy Efficiency Retrofits CX(s) Applied: A1, B2.5, B5.1 Date: 12/07/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy December 7, 2009 CX-000459: Categorical Exclusion Determination Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide Sequestration CX(s) Applied: A9, B3.6 Date: 12/07/2009 Location(s): Pasadena, California Office(s): Fossil Energy, National Energy Technology Laboratory

138

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4, 2010 4, 2010 CX-004010: Categorical Exclusion Determination Advanced Laser-Based Sensors for Industrial Process Control CX(s) Applied: B3.6, B5.1 Date: 09/14/2010 Location(s): Mountain View, California Office(s): Energy Efficiency and Renewable Energy September 14, 2010 CX-003819: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project (Maintenance Building Modification) CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Orange, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003816: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Rancho Dominguez, California

139

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

0, 2010 0, 2010 CX-002256: Categorical Exclusion Determination From Algae to Oilgae: In Situ Studies of the Factors Controlling Growth, Oil Production, and Oil Ex CX(s) Applied: B3.6 Date: 03/20/2010 Location(s): California Office(s): Sandia Site Office March 19, 2010 CX-001302: Categorical Exclusion Determination Temecula Valley Unified School District Compressed Natural Gas Fueling Station (Administrative Tasks) CX(s) Applied: A1, A9, A11 Date: 03/19/2010 Location(s): Temecula, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 19, 2010 CX-001301: Categorical Exclusion Determination Temecula Valley Unified School District Compressed Natural Gas Fueling Station (Station Tasks) CX(s) Applied: B5.1 Date: 03/19/2010 Location(s): Temecula, California

140

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

carbon fiber in compressed H 2 storage tanks, and lithium in batteries or neodymium in electric motors), these commodity costs

Yang, Christopher

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate  

E-Print Network [OSTI]

Phenomenological theory of a single domain wall in uniaxial trigonal ferroelectrics: Lithium niobate and lithium tantalate David A. Scrymgeour and Venkatraman Gopalan Department of Materials Science, lithium niobate and lithium tantalate. The contributions to the domain- wall energy from polarization

Gopalan, Venkatraman

142

California Solar Initiative California Public Utilities Commission  

E-Print Network [OSTI]

..................................................................................... 30 5.8 California Solar Initiative Increases Statewide GridInstalled Capacity by 40 Percent since California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008

143

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-004066: Categorical Exclusion Determination American Recovery and Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide Capture CX(s) Applied: A1, A2, A9, A11, B3.6 Date: 10/01/2010 Location(s): Menlo Park, California Office(s): Fossil Energy, National Energy Technology Laboratory October 1, 2010 CX-004065: Categorical Exclusion Determination American Recovery and Reinvestment Act: Pilot Testing of a Membrane System for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11 Date: 10/01/2010 Location(s): Palo Alto, California Office(s): Fossil Energy, National Energy Technology Laboratory October 1, 2010 CX-004062: Categorical Exclusion Determination Strategy to Accelerate United States Transition to Electric Vehicles

144

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2010 22, 2010 CX-003951: Categorical Exclusion Determination San Diego Gas and Electric Borrego Springs Microgrid Demonstration (Office Component) CX(s) Applied: A1, A9 Date: 09/22/2010 Location(s): San Diego, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 22, 2010 CX-003950: Categorical Exclusion Determination San Diego Gas and Electric Borrego Springs Microgrid Demonstration (Community Component) CX(s) Applied: B3.11, B4.4, B4.6, B5.1 Date: 09/22/2010 Location(s): Borrego Springs, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 22, 2010 CX-003949: Categorical Exclusion Determination Smart Grid Initiative - Energy Demand Management (EDM) Demonstration

145

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7, 2011 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 7, 2011 CX-006032: Categorical Exclusion Determination Building 850 Mitigation Pond, Site 300 Lawrence Livermore National Laboratory CX(s) Applied: B1.20 Date: 06/07/2011 Location(s): California Office(s): Lawrence Livermore Site Office, NNSA-Headquarters June 2, 2011 Bitmap indices translate variable values into strings of bits, or ones and zeros. | Photo Courtesy Getty Images. Berkeley Lab Creates Superfast Search Engine

146

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

24, 2011 24, 2011 CX-005321: Categorical Exclusion Determination Boeing Distribution Management System (BDMS) CX(s) Applied: A1, A9, A11, B1.2, B1.7 Date: 02/24/2011 Location(s): San Diego, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 18, 2011 CX-007149: Categorical Exclusion Determination Gila-Knob Structure, Access Road Maintenance & Vegetation Removal Amendment 1 CX(s) Applied: B4.6 Date: 02/18/2011 Location(s): Yuma County, AZ; Imperial County, CA, Arizona, California Office(s): Western Area Power Administration-Desert Southwest Region February 16, 2011 At left, highly turbulent behavior as water flows into (clear) oil. At right, all turbulence is suppressed by using cornstarch. | Department of Energy Photo | Courtesy of Lawrence Livermore National Laboratory | Public Domain

147

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003290: Categorical Exclusion Determination High Efficiency 370 Kilowatt Microturbine with Integral Heat Recovery CX(s) Applied: B5.1 Date: 08/09/2010 Location(s): Van Nuys, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 9, 2010 CX-003289: Categorical Exclusion Determination High Efficiency 370 Kilowatt Microturbine with Integral Heat Recovery CX(s) Applied: A1, A9, A11 Date: 08/09/2010 Location(s): Chatsworth, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 6, 2010 A $20 million Recovery Act award will help Solazyme take production from tens of thousands of gallons a year of its algae "drop-in" oil to an annual production capacity of over half a million gallons. | Photo courtesy of Solazyme, Inc. |

148

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-001037: Categorical Exclusion Determination Low-Cost Illumination Grade Light Emitting Diodes (LEDs) CX(s) Applied: B3.6, B5.1 Date: 03/02/2010 Location(s): San Jose, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001035: Categorical Exclusion Determination Solution Processable Transparent Conductive Hole Injection Electrode for Organic Light Emitting Diode (OLED) Solid State Lighting CX(s) Applied: B3.6 Date: 03/02/2010 Location(s): Sunnyvale, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2010 CX-001034: Categorical Exclusion Determination Recovery Act: Solar Reforming of Carbon Dioxide to Produce Diesel Fuel CX(s) Applied: B3.6

149

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9, 2010 9, 2010 CX-003825: Categorical Exclusion Determination Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9, B3.1 Date: 09/09/2010 Location(s): Long Beach, California Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003818: Categorical Exclusion Determination Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9, B3.1 Date: 09/09/2010 Location(s): Long Beach, California Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003814: Categorical Exclusion Determination Characterization of Pliocene and Miocene Formations in the Wilmington

150

Recent Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect (OSTI)

Recent experiments in the Current Drive eXperiment-Upgrade (CDX-U) provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R=34 cm, a=22 cm, B{sub toroidal} = 2 kG, I{sub P} =100 kA, T{sub e}(0) {approx} 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium pool limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium pool limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers; S. Angelini

2005-05-03T23:59:59.000Z

151

Liquid Lithium Limiter Experiments in CDX-U  

SciTech Connect (OSTI)

Recent experiments in the Current Drive Experiment-Upgrade provide a first-ever test of large area liquid lithium surfaces as a tokamak first wall, to gain engineering experience with a liquid metal first wall, and to investigate whether very low recycling plasma regimes can be accessed with lithium walls. The CDX-U is a compact (R = 34 cm, a = 22 cm, B{sub toroidal} = 2 kG, I{sub P} = 100 kA, T{sub e}(0) = 100 eV, n{sub e}(0) {approx} 5 x 10{sup 19} m{sup -3}) spherical torus at the Princeton Plasma Physics Laboratory. A toroidal liquid lithium tray limiter with an area of 2000 cm{sup 2} (half the total plasma limiting surface) has been installed in CDX-U. Tokamak discharges which used the liquid lithium limiter required a fourfold lower loop voltage to sustain the plasma current, and a factor of 5-8 increase in gas fueling to achieve a comparable density, indicating that recycling is strongly reduced. Modeling of the discharges demonstrated that the lithium-limited discharges are consistent with Z{sub effective} < 1.2 (compared to 2.4 for the pre-lithium discharges), a broadened current channel, and a 25% increase in the core electron temperature. Spectroscopic measurements indicate that edge oxygen and carbon radiation are strongly reduced.

R. Majeski; S. Jardin; R. Kaita; T. Gray; P. Marfuta; J. Spaleta; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R. Seraydarian; V. Soukhanovskii; R. Maingi; M. Finkenthal; D. Stutman; D. Rodgers

2004-10-28T23:59:59.000Z

152

Application of lithium in molten-salt reduction processes.  

SciTech Connect (OSTI)

Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li{sub 2}O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes.

Gourishankar, K. V.

1998-11-11T23:59:59.000Z

153

Princeton Plasma Physics Lab - Lithium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lithium Nearly everybody knows about lithium Nearly everybody knows about lithium - a light, silvery alkali metal - used in rechargeable batteries powering everything from laptops to hybrid cars. What may not be so well known is the fact that researchers hoping to harness the energy released in fusion reactions also have used lithium to coat the walls of donut-shaped tokamak reactors. Lithium, it turns out, may help the plasmas fueling fusion reactions to retain heat for longer periods of time. This could improve the chances of producing useful energy from fusion. en COLLOQUIUM: The Lithium Tokamak eXperiment (LTX) http://www.pppl.gov/events/colloquium-lithium-tokamak-experiment-ltx

154

ARE ABELL CLUSTERS CORRELATED WITH GAMMA-RAY BURSTS? Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450; khurley@sunspot.ssl.berkeley.edu  

E-Print Network [OSTI]

ARE ABELL CLUSTERS CORRELATED WITH GAMMA-RAY BURSTS? K. HURLEY Space Sciences Laboratory statistical evidence that gamma-ray burst (GRB) sources are correlated with Abell clusters, based on analyses -- gamma rays: bursts 1. INTRODUCTION A correlation between the positions of gamma-ray bursts (GRBs

California at Berkeley, University of

155

LA-10634-MS Los AISMOS National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405 -ENG-36,  

E-Print Network [OSTI]

and Resource ProjectJ > -L. ..-- Geology of the Platanares Geothermal Site `ViYJ Depwtamento de Copan, Honduras, Central America Field Report Y" bmlannos Los Alamos National Laboratory Los AIamos,New Mexico 87545 #12:May 1986 Geology of the Platanares Geothermal Site Departamento de Copan, Honduras, Central America Field

156

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-6607E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Measurement-Based Evaluation thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National. Singer Environmental Energy Technologies Division Lawrence Berkeley National Laboratory April 3, 2014

157

Lithium ion conducting electrolytes  

DOE Patents [OSTI]

A liquid, predominantly lithium-conducting, ionic electrolyte is described having exceptionally high conductivity at temperatures of 100 C or lower, including room temperature, and comprising the lithium salts selected from the group consisting of the thiocyanate, iodide, bromide, chloride, perchlorate, acetate, tetrafluoroborate, perfluoromethane sulfonate, perfluoromethane sulfonamide, tetrahaloaluminate, and heptahaloaluminate salts of lithium, with or without a magnesium-salt selected from the group consisting of the perchlorate and acetate salts of magnesium. Certain of the latter embodiments may also contain molecular additives from the group of acetonitrile (CH{sub 3}CN), succinnonitrile (CH{sub 2}CN){sub 2}, and tetraglyme (CH{sub 3}--O--CH{sub 2}--CH{sub 2}--O--){sub 2} (or like solvents) solvated to a Mg{sup +2} cation to lower the freezing point of the electrolyte below room temperature. Other particularly useful embodiments contain up to about 40, but preferably not more than about 25, mol percent of a long chain polyether polymer dissolved in the lithium salts to provide an elastic or rubbery solid electrolyte of high ambient temperature conductivity and exceptional 100 C conductivity. Another embodiment contains up to about but not more than 10 mol percent of a molecular solvent such as acetone. 2 figs.

Angell, C.A.; Liu, C.

1996-04-09T23:59:59.000Z

158

Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies of Atmospheric Brown Carbon  

E-Print Network [OSTI]

Effect of Solar Radiation on the Optical Properties and Molecular Composition of Laboratory Proxies A. Nizkorodov*, Department of Chemistry, University of California, Irvine, California 92697, United

Nizkorodov, Sergey

159

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

160

UNIVERSITY OF CALIFORNIA REPORT OF THE  

E-Print Network [OSTI]

-rated by the capacity factor of the technology; for a 1 MW solar facility operating on average 21% of the timeUNIVERSITY OF CALIFORNIA BERKELEY REPORT OF THE RENEWABLE AND APPROPRIATE ENERGY LABORATORY Putting, University of California, Berkeley. Copies of this report can be downloaded from the Renewable

Kammen, Daniel M.

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Recycling of Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Dunn B. Dunn Center for Transportation Research Argonne National Laboratory Recycling of Lithium-Ion Batteries Plug-In 2013 San Diego, CA October 2, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

162

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

even with excess negative capacity, lithium can deposit ifdeposits lithium and reaches cutoff sooner. electrode excessexcess by 10%, an extension of about 0.4 mm is sufficient to prevent the onset of lithium

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

163

CALIFORNIA SOLAR DATA MANUAL  

E-Print Network [OSTI]

room )I I( I I ,i I CALIFORNIA SOLAR DATA MANUAL I. ! I ienergy resource. The California Solar Data Manual describestowards fulfilling California's solar data needs is the

Berdahl, P.

2010-01-01T23:59:59.000Z

164

Norman Bourassa, Philip Haves and Joe Huang Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Norman Bourassa, Philip Haves and Joe Huang Ernest Orlando Lawrence Berkeley National Laboratory Technologies Department, Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National Lawrence Berkeley National Laboratory University of California 1 Cyclotron Road Berkeley, California 94720

165

Polymer Electrolytes for Advanced Lithium Batteries | Department...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Lithium Batteries Polymer Electrolytes for Advanced Lithium Batteries 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

166

Lithium Metal Anodes for Rechargeable Batteries. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Metal Anodes for Rechargeable Batteries. Lithium Metal Anodes for Rechargeable Batteries. Abstract: Rechargeable lithium metal batteries have much higher energy density than those...

167

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

168

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Newman, "Thermal Modeling of the LithiumIPolymer Battery I.J. Newman, "Thermal Modeling of the LithiumIPolymer Battery

Doyle, C.M.

2010-01-01T23:59:59.000Z

169

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

170

Simulations of Lithium-Based Neutron Coincidence Counter for Gd-Loaded Fuel  

SciTech Connect (OSTI)

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Lithium-Based Alternative Neutron Detection Technology Coincidence Counting for Gd-loaded Fuels at Pacific Northwest National Laboratory for the development of a lithium-based neutron coincidence counter for nondestructively assaying Gd loaded nuclear fuel. This report provides results from MCNP simulations of a lithium-based coincidence counter for the possible measurement of Gd-loaded nuclear fuel. A comparison of lithium-based simulations and UNCL-II simulations with and without Gd loaded fuel is provided. A lithium-based model, referred to as PLNS3A-R1, showed strong promise for assaying Gd loaded fuel.

Cowles, Christian C.; Kouzes, Richard T.; Siciliano, Edward R.

2014-10-31T23:59:59.000Z

171

Lithium-based electrochromic mirrors  

E-Print Network [OSTI]

LITHIUM-BASED ELECTROCHROMIC MIRRORS Thomas J. Richardson*with pure antimony films. Electrochromic cycling speed andand silver. INTRODUCTION Electrochromic devices that exhibit

Richardson, Thomas J.; Slack, Jonathan L.

2003-01-01T23:59:59.000Z

172

hybrid electric vehicle and lithium polymer nev testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing P1.2 - Hybrid Electric Vehicle and Lithium Polymer NEV Testing James Edward Francfort Advanced Vehicle Testing Activity Idaho National Laboratory P.O. Box 1625, Idaho Falls, ID. 83415-3830 james.francfort@inl.gov Abstract: The U.S. Department of Energy's Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery. Keywords: hybrid; neighborhood; electric; battery; fuel;

173

Preliminary Notice of Violation, Los Alamos National Laboratory- EA-2004-05  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Multiple Radioactive Material Uptakes at the Los Alamos National Laboratory

174

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 19, 2012 September 19, 2012 CX-010370: Categorical Exclusion Determination Interim Corrective Measures to Control Migration of Contaminated Groundwater CX(s) Applied: B6.9 Date: 09/19/2012 Location(s): California Offices(s): Berkeley Site Office September 5, 2012 "How Technology Can Change the World" Secretary Chu gave a speech commemorating SLAC National Accelerator Laboratory on its 50th Anniversary on August 24, 2012. September 5, 2012 Secretary Chu Speaks at SLAC National Accelerator Laboratory On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below. September 3, 2012 EA-1422-SA-01: Supplement Analysis Final Site-Wide Environmental Assessment for Sandia National

175

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 8, 2013 August 8, 2013 Audit Report: OAS-M-13-06 Lawrence Livermore National Laboratory's Use of Time and Materials Subcontracts July 22, 2013 EIS-0431: DOE Notice of Availability of Draft Environmental Impact Statement Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, Kern County, CA July 19, 2013 This 1981 photo shows the Mirror Fusion Test Facility (MFTF), an experimental magnetic confinement fusion device built using a magnetic mirror at Lawrence Livermore National Laboratory (LLNL). The MFTF functioned as the primary research center for mirror fusion devices. The design consisted of a 64-meter-long vacuum vessel fitted with 26 coil magnets bonding the center of the vessel and two 400-ton yin-yang magnet mirrors at either end. The first magnet produced a magnetic field force equal to the weight of 30 jumbo jets hanging from the magnet coil. | Photo courtesy of Lawrence Livermore National Laboratory.

176

California Geothermal Energy Collaborative  

E-Print Network [OSTI]

California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

177

University of California Lawrence Livermore  

E-Print Network [OSTI]

University of California Lawrence Livermore National Laboratory John Lindl - LLNL Fusion Energy Program Leader *This work was performed under the auspices of the U. S. Department of Energy by Lawrence and the Inertial Fusion Energy Program #12;Outline of Talk · The National Ignition Facility (NIF) · Indirect Drive

178

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 27, 2010 May 27, 2010 CX-003142: Categorical Exclusion Determination Advanced Biofuels Process Development Unit for Lawrence Berkeley National Laboratory CX(s) Applied: A7, B1.3, B1.4, B2.1, B2.2, B2.3, B3.6 Date: 05/27/2010 Location(s): Emeryville, California Office(s): Science, Berkeley Site Office May 26, 2010 San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego Solar Panels Generate Clean Electricity Along with Clean Water Thanks to San Diego's ambitious solar energy program, the Otay Water Treatment Plant may soon be able to do that with net zero electricity consumption. May 26, 2010 CX-002665: Categorical Exclusion Determination City of Woodland, California

179

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10, 2010 10, 2010 CX-001055: Categorical Exclusion Determination American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant City of Los Angeles Strategy CX(s) Applied: A9, A11, B5.1 Date: 02/10/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02/09/2010 Location(s): Freemont, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 8, 2010 CX-000665: Categorical Exclusion Determination Development of an Advanced Stimulation/Production Predictive Simulator for Enhanced Geothermal Systems

180

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 8, 1995 September 8, 1995 EA-1107: Final Environmental Assessment Construction and Operation of a Office Building at the Stanford Linear Accelerator Center September 8, 1995 EA-1087: Final Environmental Assessment Proposed Induction Linac System Experiments in Building 51B at Lawrence Berkeley National Laboratory, Berkeley, California August 14, 1995 EA-1053: Final Environmental Assessment Decontaminating and Decommissioning the General Atomics Hot Cell Facility October 20, 1994 EA-0962: Final Environmental Assessment Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California April 19, 1994 EA-0856: Finding of No Significant Impact

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LBNL-103E-2008 Laboratory Directed Research  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2008 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MARCH, 2009 Prepared for the U

182

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2009 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MARCH, 2010 Prepared for the U

183

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2011 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MAY, 2012 Prepared for the U

Knowles, David William

184

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2010 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MAY, 2011 Prepared for the U

185

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2012 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 APRIL, 2013 Prepared for the U

186

Laboratory Directed Research and Development Program  

E-Print Network [OSTI]

of California. Lawrence Berkeley Laboratory is an equal opportunity employer. #12;Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007 Ernest Orlando Lawrence Berkeley National Laboratory Berkeley, CA 94720 MARCH, 2008 Prepared for the U

187

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS – LITHIUM-ION | Overview  

Science Journals Connector (OSTI)

The need to increase the specific energy and energy density of secondary batteries has become more urgent as a result of the recent rapid development of new applications, such as electric vehicles (EVs), load leveling, and various types of portable equipments, including cellular phones, personal computers, camcorders, and digital cameras. Among various types of secondary batteries, rechargeable lithium-ion batteries have been used in a wide variety of portable equipments due to their high energy density. Many researchers have contributed to develop lithium-ion batteries, and their contributions are reviewed from historical aspects onward, including the researches in primary battery with metal lithium anode, and secondary battery with metal lithium negative electrode. Researches of new materials are still very active to develop new lithium-ion batteries with higher performances. The researches of positive and negative electrode active materials and electrolytes are also reviewed historically.

J. Yamaki

2009-01-01T23:59:59.000Z

188

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

189

CaliforniaFIRST (California) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CaliforniaFIRST (California) CaliforniaFIRST (California) CaliforniaFIRST (California) < Back Eligibility Agricultural Commercial Industrial Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Design & Remodeling Water Heating Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State California Program Type PACE Financing The CaliforniaFIRST Program is a Property Assessed Clean Energy (PACE) financing program for non-residential properties. PACE programs allow property owners to finance the installation of energy and water improvements on their buildings and to pay the amount back through their

190

Chapter 16 - Lithium Battery Energy Storage: State of the Art Including Lithium–Air and Lithium–Sulfur Systems  

Science Journals Connector (OSTI)

Abstract Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E0 = ?3.045 V), provides very high energy and power densities in batteries. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) have conquered the markets for portable consumer electronics and, recently, for electric vehicles. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. As lithium metal reacts violently with water and can thus cause ignition, modern lithium-ion batteries use carbon negative electrodes and lithium metal oxide positive electrodes. Rechargeable lithium-ion batteries should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This chapter covers all aspects of lithium battery chemistry that are pertinent to electrochemical energy storage for renewable sources and grid balancing.

Peter Kurzweil

2015-01-01T23:59:59.000Z

191

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

Policy, University of California, Berkeley (on leave) and Chief Technical Specialist for Renewable Energy

Yang, Christopher

2011-01-01T23:59:59.000Z

192

Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California  

SciTech Connect (OSTI)

The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

Not Available

1993-08-02T23:59:59.000Z

193

Type B accident investigation board report of the July 2, 1997 curium intake by shredder operator at Building 513 Lawrence Livermore National Laboratory, Livermore, California. Final report  

SciTech Connect (OSTI)

On July 2, 1997 at approximately 6:00 A.M., two operators (Workers 1 and 2), wearing approved personal protective equipment (PPE), began a shredding operation of HEPA filters for volume reduction in Building 513 (B-513) at Lawrence Livermore National Laboratory (LLNL). The waste requisitions indicated they were shredding filters containing {le} 1 {micro}Ci of americium-241 (Am-241). A third operator (Worker 3) provided support to the shredder operators in the shredding area (hot area) from a room that was adjacent to the shredding area (cold area). At Approximately 8:00 A.M., a fourth operator (Worker 4) relieved Worker 2 in the shredding operation. Sometime between 8:30 A.M. and 9:00 A.M., Worker 3 left the cold area to make a phone call and set off a hand and foot counter in Building 514. Upon discovering the contamination, the shredding operation was stopped and surveys were conducted in the shredder area. Surveys conducted on the workers found significant levels of contamination on their PPE and the exterior of their respirator cartridges. An exit survey of Worker 1 was conducted at approximately 10:05 A.M., and found contamination on his PPE, as well as on the exterior and interior of his respirator. Contamination was also found on his face, chest, back of neck, hair, knees, and mustache. A nose blow indicated significant contamination, which was later determined to be curium-244.

NONE

1997-08-01T23:59:59.000Z

194

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 14, 2012 August 14, 2012 CX-008948: Categorical Exclusion Determination Zero Emission Cargo Transport (ZECT) Demonstration CX(s) Applied: A1, B3.11, B5.1 Date: 08/14/2012 Location(s): California Offices(s): National Energy Technology LaboratoryZero Emission Cargo Transport (ZECT) Demonstration CX(s) Applied: A1, B3.11, B5.1 Date: 08/14/2012 Location(s): California Offices(s): National Energy Technology Laboratory August 10, 2012 CX-008955: Categorical Exclusion Determination Smart Grid Data Access and Customer Engagement CX(s) Applied: A1, A9, A11 Date: 08/10/2012 Location(s): California, Colorado Offices(s): National Energy Technology Laboratory August 9, 2012 CX-008893: Categorical Exclusion Determination California-City-Antioch CX(s) Applied: A9, A11, B2.5, B5.1 Date: 08/09/2012

195

Enforcement Documents - Lawrence Livermore National Laboratory | Department  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Enforcement Documents - Lawrence Livermore National Laboratory July 22, 2013 Enforcement Letter, NEL-2013-03 Issued to Lawrence Livermore National Security, LLC related to Programmatic Deficiencies in the Software Quality Assurance Program at the Lawrence Livermore National Laboratory February 23, 2006 Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation issued to the University of California related to Radiological Uptakes, a Radioactive Material Spill, and Radiological Protection Program, Quality Assurance, and Safety Basis Deficiencies at the Lawrence Livermore National Laboratory June 2, 2005 Enforcement Letter, Lawrence Livermore National Laboratory - June 2, 2005

196

SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Overview  

Science Journals Connector (OSTI)

Rechargeable lithium batteries have conquered the markets for portable consumer electronics and, recently, for electric vehicles. Lithium, the lightest and one of the most reactive of metals, having the greatest electrochemical potential (E°=–3.045 V), provides very high energy and power densities in batteries. As lithium metal reacts violently with water and can ignite into flame, modern lithium-ion batteries use carbon negative electrode and lithium metal oxide positive electrode. The electrolyte is usually based on a lithium salt in organic solution. Thin-film batteries use solid oxide or polymer electrolytes. Rechargeable lithium-ion batteries (containing an intercalation negative electrode) should not be confused with nonrechargeable lithium primary batteries (containing metallic lithium). This article outlines energy storage in lithium batteries, basic cell chemistry, positive electrode materials, negative electrode materials, electrolytes, and state-of-charge (SoC) monitoring.

P. Kurzweil; K. Brandt

2009-01-01T23:59:59.000Z

197

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

1990-01-09T23:59:59.000Z

198

Lithium niobate explosion monitor  

DOE Patents [OSTI]

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

199

Federal Facility Agreement for the Laboratory for Energy-Related...  

Office of Environmental Management (EM)

Energy Related Health Research Agreement Name Federal Facility Agreement for the Laboratory for Energy- Related Health Research State California Agreement Type Federal Facility...

200

Lattice Dynamics of Dense Lithium  

Science Journals Connector (OSTI)

We report low-frequency high-resolution Raman spectroscopy and ab-initio calculations on dense lithium from 40 to 200 GPa at low temperatures. Our experimental results reveal rich first-order Raman activity in the metallic and semiconducting phases of lithium. The computed Raman frequencies are in excellent agreement with the measurements. Free energy calculations provide a quantitative description and physical explanation of the experimental phase diagram only when vibrational effect are correctly treated. The study underlines the importance of zero-point energy in determining the phase stability of compressed lithium.

F. A. Gorelli; S. F. Elatresh; C. L. Guillaume; M. Marqués; G. J. Ackland; M. Santoro; S. A. Bonev; E. Gregoryanz

2012-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 3, 2008 March 3, 2008 EA-1541: Final Environmental Assessment Demolition of Building 51 and the Bevatron at Lawrence Berkeley National Laboratory January 29, 2008 EIS-0389: Record of Decision and Floodplain Statement of Findings Trinity Public Utilities District Direct Interconnection Project January 28, 2008 EIS-0389: Record of Decision and Floodplain Statement of Findings Trinity Public Utilities District Direct Interconnection Project January 1, 2008 EIS-0389: Mitigation Action Plan Trinity Public Utilities District Direct Interconnection Project January 1, 2008 EA-1442: Final Environmental Assessment, Revised Proposed Construction and Operation of a Biosafety Level 3 Facility at Lawrence Livermore National Laboratory, Livermore, California November 30, 2007 EIS-0389: EPA Notice of Availability of the Final Environmental Impact

202

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 25, 2013 January 25, 2013 In this 1939 photo, Eric and Margaret Lawrence are sitting inside the tank of something called the 60-inch cyclotron -- a machine invented by their father, Ernest Lawrence. The cyclotron is a unique circular particle accelerator, which Lawrence himself referred to as a "proton merry-go-round." In reality, the cyclotron specialized in smashing atoms. Fun facts: this cyclotron contains a magnet that weighs 220 tons, and experiments conducted on this very machine led to the discovery of plutonium and Nobel Prizes for researchers Glenn Seaborg and Melvin Calvin. Ernest Lawrence passed away in 1958 -- just 23 days later, the Regents of the University of California voted to rename two of the university's nuclear research sites: Lawrence Livermore and Lawrence Berkeley Laboratories. | Photo courtesy of Lawrence Berkeley National Laboratory.

203

Lithium System Operation Dan Lev and David Stein  

E-Print Network [OSTI]

Lithium System Operation Dan Lev and David Stein March 1, 2011 (or Lithium tank for dummies) 1 #12 for Ordering . . . . . . . . . . . . . . . . . 51 9 Lithium Handling 52 9.1 Glove Box for Ordering . . . . . . . . . . . . . . . . . 57 9.2 Lithium Cleaning

204

Southern California Edison 32MWh Wind Integration Project  

Broader source: Energy.gov (indexed) [DOE]

, Southern California Edison , Southern California Edison Tehachapi Wind Energy Storage (TSP) Project Loïc Gaillac, Naum Pinsky Southern California Edison November 3, 2010 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy through National Energy Technology Laboratory 2 © Copyright 2010, Southern California Edison Outline * Policy Challenges - The challenge/opportunity * Testing a Solution: Tehachapi Storage Project Overview - Description of the project & objectives - Operational uses - Conceptual layout 3 © Copyright 2010, Southern California Edison CA 2020: Energy Policy Initiatives Highlighting potential areas for storage applications: * High penetration of Solar and Wind generation - Executive order requiring 33% of generated electricity to come from

205

Y-12 lithium-6 production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fusion materials on August 12, 1953. The explosion was quickly determined to be a thermonuclear-like test and was also believed to contain lithium. Y-12 chemists and engineers...

206

Air breathing lithium power cells  

DOE Patents [OSTI]

A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

Farmer, Joseph C.

2014-07-15T23:59:59.000Z

207

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 18, 2012 September 18, 2012 CX-009257: Categorical Exclusion Determination Radiography of Explosive Samples B321C CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): California Offices(s): Lawrence Livermore Site Office September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009370: Categorical Exclusion Determination Carbon Mineralization by Aqueous Precipitation for Beneficial Use of carbon dioxide from Flue Gas - Pilot Plant CX(s) Applied: A1, B3.6 Date: 09/17/2012 Location(s): California, California Offices(s): National Energy Technology Laboratory

208

Lithium Technology Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Jump to: navigation, search Name Lithium Technology Corporation Place Plymouth Meeting, Pennsylvania Zip PA 19462 Sector Vehicles Product Pennsylvania-based lithium secondary battery company manufacturing rechargeable batteries for plug-in and hybrid vehicles and for custom military and industrial applications. References Lithium Technology Corporation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Lithium Technology Corporation is a company located in Plymouth Meeting, Pennsylvania . References ↑ "Lithium Technology Corporation" Retrieved from "http://en.openei.org/w/index.php?title=Lithium_Technology_Corporation&oldid=348412"

209

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 8, 2010 December 8, 2010 CX-004683: Categorical Exclusion Determination City of Norco Waste to Energy Facility (California) CX(s) Applied: A11 Date: 12/08/2010 Location(s): Norco, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2010 CX-004638: Categorical Exclusion Determination Canby Cascaded Geothermal Development Project CX(s) Applied: A9, B3.1 Date: 12/03/2010 Location(s): Canby, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 30, 2010 CX-004632: Categorical Exclusion Determination California- City- Visalia CX(s) Applied: A9, B1.32, B5.1 Date: 11/30/2010 Location(s): Visalia, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004631: Categorical Exclusion Determination

210

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-62078 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Air Leakage of U.S. Homes: Model of the University of California or any other sponsor. Ernest Orlando Lawrence Berkeley National Laboratory of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air

211

Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Ernest Orlando Lawrence Berkeley National Laboratory LBL-27170 (2009) Volume I Site Environmental of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;Site Environmental Report for 2008 Volume I September 2009 Ernest Orlando Lawrence Berkeley National Laboratory

212

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage Program is funding research to develop longer-lifetime, lower-cost Li-ion batteries. Researchers at Pacific Northwest National Laboratory are investigating cost-effective electrode materials and electrolytes, as well as novel low-cost synthesis approaches for making highly efficient electrode materials using additives such as graphine, oleic acid, and paraffin. To address safety issues, researchers will also identify materials with better thermal stability. Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) More Documents & Publications Battery SEAB Presentation

213

California Energy Commission GUIDELINES  

E-Print Network [OSTI]

Utilities Commission, CPUC, solar, solar energy systems, solar energy system incentive programsCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR guidelines for solar energy system incentive programs in California. The Senate Bill 1

214

California's Water Energy Relationship  

E-Print Network [OSTI]

.........................................................................................................................7 THE ENERGY INTENSITY OF THE WATER USE CYCLE.........................................................................................9 ENERGY INTENSITY IN NORTHERN AND SOUTHERN CALIFORNIA1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support

215

Differentiating the role of lithium and oxygen in retaining deuterium on lithiated graphite plasma-facing components  

SciTech Connect (OSTI)

Laboratory experiments have been used to investigate the fundamental interactions responsible for deuterium retention in lithiated graphite. Oxygen was found to be present and play a key role in experiments that simulated NSTX lithium conditioning, where the atomic surface concentration can increase to >40% when deuterium retention chemistry is observed. Quantum-classical molecular dynamic simulations elucidated this oxygen-deuterium effect and showed that oxygen retains significantly more deuterium than lithium in a simulated matrix with 20% lithium, 20% oxygen, and 60% carbon. Simulations further show that deuterium retention is even higher when lithium is removed from the matrix. Experiments artificially increased the oxygen content in graphite to ?16% and then bombarded with deuterium. X-ray photoelectron spectroscopy showed depletion of the oxygen and no enhanced deuterium retention, thus demonstrating that lithium is essential in retaining the oxygen that thereby retains deuterium.

Taylor, C. N. [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States) [Fusion Safety Program, Idaho National Laboratory, P.O. Box 1625-7113, Idaho Falls, Idaho 83415 (United States); School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Allain, J. P. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States) [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, Illinois 61801 (United States); Luitjohan, K. E. [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States)] [School of Nuclear Engineering, Purdue University, 400 Central Drive, West Lafayette, Indiana 47907 (United States); Krstic, P. S. [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States) [Institute for Advanced Computational Science, Stony Brook University, New York 11794 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); TheoretiK, Knoxville, Tennessee 379XX (United States); Dadras, J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States) [Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996 (United States); Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095 (United States); Skinner, C. H. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

2014-05-15T23:59:59.000Z

216

California: Geothermal Plant to Help Meet High Lithium Demand  

Office of Energy Efficiency and Renewable Energy (EERE)

Using an EERE investment, Simbol Materials is co-producing electric vehicle batteries from co-produced fluids.

217

Sandia National Laboratories: California Energy Commission  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

218

Sandia National Laboratories: California Air Resources Board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

219

Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations  

E-Print Network [OSTI]

). It is pertinent to mention that lithium bases were previously used to deprotonate the acetal 3, albeit at lower1 Deprotonative metallation of ferrocenes using mixed lithium-zinc and lithium-cadmium combinations on the web Xth XXXXXXXXX 200X DOI: 10.1039/b000000x A mixed lithium-cadmium amide and a combination

Boyer, Edmond

220

Plasma Performance Improvements with Liquid Lithium Limiters in CDX-U  

SciTech Connect (OSTI)

The use of flowing liquid lithium as a first wall for a reactor has potentially attractive physics and engineering features. The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, Btoroidal = 2 kG, IP =100 kA, T(subscript)e(0) {approx} 100 eV, n(subscript)e(0) {approx} 5 x 10{sup 19} m-3] short-pulse (<25 msec) spherical tokamak with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. The total area of the tray is approximately 2000 cm{sup 2}. The tokamak edge plasma, when operated in contact with the lithium-filled tray, shows evidence of reduced impurities and recycling. The reduction in re cycling and impurities is largest when the lithium is liquefied by heating to 250 degrees Celsius. Discharges which are limited by the liquid lithium tray show evidence of performance enhancement. Radiated power is reduced and there is spectroscopic evidence for increases in the core electron temperature. Furthermore, the use of a liquid lithium limiter reduces the need for conditioning discharges prior to high current operation. The future development path for liquid lithium limiter systems in CDX-U is also discussed.

R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; and M. Ulrickson

2002-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

222

California's electricity crisis  

E-Print Network [OSTI]

The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

Joskow, Paul L.

2001-01-01T23:59:59.000Z

223

Chemical Shuttle Additives in Lithium Ion Batteries  

SciTech Connect (OSTI)

The goals of this program were to discover and implement a redox shuttle that is compatible with large format lithium ion cells utilizing LiNi{sub 1/3}Mn{sub 1/3}Co{sub 1/3}O{sub 2} (NMC) cathode material and to understand the mechanism of redox shuttle action. Many redox shuttles, both commercially available and experimental, were tested and much fundamental information regarding the mechanism of redox shuttle action was discovered. In particular, studies surrounding the mechanism of the reduction of the oxidized redox shuttle at the carbon anode surface were particularly revealing. The initial redox shuttle candidate, namely 2-(pentafluorophenyl)-tetrafluoro-1,3,2-benzodioxaborole (BDB) supplied by Argonne National Laboratory (ANL, Lemont, Illinois), did not effectively protect cells containing NMC cathodes from overcharge. The ANL-RS2 redox shuttle molecule, namely 1,4-bis(2-methoxyethoxy)-2,5-di-tert-butyl-benzene, which is a derivative of the commercially successful redox shuttle 2,5-di-tert-butyl-1,4-dimethoxybenzene (DDB, 3M, St. Paul, Minnesota), is an effective redox shuttle for cells employing LiFePO{sub 4} (LFP) cathode material. The main advantage of ANL-RS2 over DDB is its larger solubility in electrolyte; however, ANL-RS2 is not as stable as DDB. This shuttle also may be effectively used to rebalance cells in strings that utilize LFP cathodes. The shuttle is compatible with both LTO and graphite anode materials although the cell with graphite degrades faster than the cell with LTO, possibly because of a reaction with the SEI layer. The degradation products of redox shuttle ANL-RS2 were positively identified. Commercially available redox shuttles Li{sub 2}B{sub 12}F{sub 12} (Air Products, Allentown, Pennsylvania and Showa Denko, Japan) and DDB were evaluated and were found to be stable and effective redox shuttles at low C-rates. The Li{sub 2}B{sub 12}F{sub 12} is suitable for lithium ion cells utilizing a high voltage cathode (potential that is higher than NMC) and the DDB is useful for lithium ion cells with LFP cathodes (potential that is lower than NMC). A 4.5 V class redox shuttle provided by Argonne National Laboratory was evaluated which provides a few cycles of overcharge protection for lithium ion cells containing NMC cathodes but it is not stable enough for consideration. Thus, a redox shuttle with an appropriate redox potential and sufficient chemical and electrochemical stability for commercial use in larger format lithium ion cells with NMC cathodes was not found. Molecular imprinting of the redox shuttle molecule during solid electrolyte interphase (SEI) layer formation likely contributes to the successful reduction of oxidized redox shuttle species at carbon anodes. This helps to understand how a carbon anode covered with an SEI layer, that is supposed to be electrically insulating, can reduce the oxidized form of a redox shuttle.

Patterson, Mary

2013-03-31T23:59:59.000Z

224

E-Print Network 3.0 - abstracts berkeley california Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Biology and Medicine 5 Lawrence Berkeley National Laboratory Environmental Energy Technologies Division Summary: Environment: A Case Study of Sacramento, California."...

225

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

226

Multi-layered, chemically bonded lithium-ion and lithium/air batteries  

SciTech Connect (OSTI)

Disclosed are multilayer, porous, thin-layered lithium-ion batteries that include an inorganic separator as a thin layer that is chemically bonded to surfaces of positive and negative electrode layers. Thus, in such disclosed lithium-ion batteries, the electrodes and separator are made to form non-discrete (i.e., integral) thin layers. Also disclosed are methods of fabricating integrally connected, thin, multilayer lithium batteries including lithium-ion and lithium/air batteries.

Narula, Chaitanya Kumar; Nanda, Jagjit; Bischoff, Brian L; Bhave, Ramesh R

2014-05-13T23:59:59.000Z

227

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z (A.sub.1-aM''.sub.a).sub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Incheon, KR); Bloking, Jason T. (Mountain View, CA); Andersson, Anna M. (Vasteras, SE)

2012-04-03T23:59:59.000Z

228

Conductive lithium storage electrode  

DOE Patents [OSTI]

A compound comprising a composition A.sub.x(M'.sub.1-aM''.sub.a).sub.y(XD.sub.4).sub.z, A.sub.x(M'.sub.1-aM''.sub.a).sub.y(DXD.sub.4).sub.z, or A.sub.x(M'.sub.1-aM''.sub.a).sub.y(X.sub.2D.sub.7).sub.z, and have values such that x, plus y(1-a) times a formal valence or valences of M', plus ya times a formal valence or valence of M'', is equal to z times a formal valence of the XD.sub.4, X.sub.2D.sub.7, or DXD.sub.4 group; or a compound comprising a composition (A.sub.1-aM''.sub.a).sub.xM'.sub.y(XD.sub.4).sub.z, (A.sub.1-aM''.sub.a).sub.xM'.sub.y(DXD.sub.4).sub.z(A.sub.1-aM''.sub.a).s- ub.xM'.sub.y(X.sub.2D.sub.7).sub.z and have values such that (1-a).sub.x plus the quantity ax times the formal valence or valences of M'' plus y times the formal valence or valences of M' is equal to z times the formal valence of the XD.sub.4, X.sub.2D.sub.7 or DXD.sub.4 group. In the compound, A is at least one of an alkali metal and hydrogen, M' is a first-row transition metal, X is at least one of phosphorus, sulfur, arsenic, molybdenum, and tungsten, M'' any of a Group IIA, IIIA, IVA, VA, VIA, VIIA, VIIIA, IB, IIB, IIIB, IVB, VB, and VIB metal, D is at least one of oxygen, nitrogen, carbon, or a halogen, 0.0001lithium phosphate that can intercalate lithium or hydrogen. The compound can be used in an electrochemical device including electrodes and storage batteries and can have a gravimetric capacity of at least about 80 mAh/g while being charged/discharged at greater than about C rate of the compound.

Chiang, Yet-Ming (Framingham, MA); Chung, Sung-Yoon (Seoul, KR); Bloking, Jason T. (Cambridge, MA); Andersson, Anna M. (Uppsala, SE)

2008-03-18T23:59:59.000Z

229

Solid composite electrolytes for lithium batteries  

DOE Patents [OSTI]

Solid composite electrolytes are provided for use in lithium batteries which exhibit moderate to high ionic conductivity at ambient temperatures and low activation energies. In one embodiment, a ceramic-ceramic composite electrolyte is provided containing lithium nitride and lithium phosphate. The ceramic-ceramic composite is also preferably annealed and exhibits an activation energy of about 0.1 eV.

Kumar, Binod (Dayton, OH); Scanlon, Jr., Lawrence G. (Fairborn, OH)

2000-01-01T23:59:59.000Z

230

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

231

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

kg/m3) ! ef excess capacity of lithium foil ! rcn density ofU I read * ef ! excess capacity of lithium foil read * rcn !lx,f6.3,' ef, excess capacity of lithium foil' &/lx,f6.1,'

Doyle, C.M.

2010-01-01T23:59:59.000Z

232

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-13T23:59:59.000Z

233

Significant influence of insufficient lithium on electrochemical performance of lithium-rich layered oxide cathodes for lithium ion batteries  

Science Journals Connector (OSTI)

Abstract With an aim to broaden the understanding of the factors that govern electrochemical performance of lithium-rich layered oxide, the influences of insufficient lithium on reversible capacity, cyclic stability and rate capability of the oxide as cathode of lithium ion battery are investigated in this study. Various concentrations of lithium precursor are introduced to synthesize a target composition Li[Li0.13Ni0.30Ni0.57]O2, and the resulting products are characterized with inductively coupled plasma spectrum, scanning electron microscope, X-ray diffraction, Raman spectroscopy, and electrochemical measurements. The results indicate that the lithium content in the resulting oxide decreases with reducing the concentration of lithium precursor from 10wt%-excess lithium to stoichiometric lithium, due to insufficient compensation for lithium volatilization during synthesis process at high temperature. However, all these oxides still exhibit typically structural and electrochemical characteristics of lithium-rich layered oxides. Interestingly, with decreasing the Li content in the oxide, its reversible capacity increases due to relatively higher content of active transition-metal ions, while the cyclic stability degrades severely because of structural instability induced by higher content of Mn3+ ions and deeper lithium extraction.

Xingde Xiang; Weishan Li

2014-01-01T23:59:59.000Z

234

NUCLEAR POWER in CALIFORNIA  

E-Print Network [OSTI]

NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

235

HID Laboratories Inc | Open Energy Information  

Open Energy Info (EERE)

HID Laboratories Inc HID Laboratories Inc Jump to: navigation, search Name HID Laboratories, Inc. Place Menlo Park, California Zip 94025 Product HID Laboratories develops commercial-grade, high intensity lighting products that manage lighting demand and reduce energy use. References HID Laboratories, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HID Laboratories, Inc. is a company located in Menlo Park, California . References ↑ "HID Laboratories, Inc." Retrieved from "http://en.openei.org/w/index.php?title=HID_Laboratories_Inc&oldid=346520" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages

236

California Onshore Natural Gas Total Liquids Extracted in California...  

U.S. Energy Information Administration (EIA) Indexed Site

Total Liquids Extracted in California (Thousand Barrels) California Onshore Natural Gas Total Liquids Extracted in California (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3...

237

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 11, 2013 September 11, 2013 Pacific Rim Summit on Industrial Biotechnology & Bioenergy September 11, 2013 Advanced Biofuels Leadership Conference (ABLC) Next 2013 September 5, 2013 EIS-0431: Extension of public comment period; Notice of public hearing; Correction Hydrogen Energy California's Integrated Gasification Combined Cycle and Carbon Capture and Sequestration Project, CA August 29, 2013 Super HILAC (Super Heavy Ion Linear Accelerator) was one of the first particle accelerators that could accelerate heavier elements to "atom-smashing" speeds. The device was built in 1972 and played a significant role in four decades of scientific research at Lawrence Berkeley National Laboratory. In addition to being the launchpad for a variety of major experiments, the Super HILAC was crucial in the discovery of five superheavy elements.

238

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 1, 2011 July 1, 2011 DOE Completes Cleanup at New York, California Sites Recovery Act funds accelerate cleanup; support job creation and footprint reduction June 30, 2011 A collage of images. Top, optical images of: blue jay feather, squid, and fossil fish with feather. Bottom: x-ray images showing the distribution of copper (red) in the same organisms. | Photo Courtesy of Gregory Stewart, SLAC National Accelerator Laboratory X-ray Imaging Shows Feather Patterns of First Birds One-hundred million years ago, what did birds look like? Scientists have taken a huge step towards finding the answer, leaving the creative imaginations behind such classics as Jurassic Park, The Land Before Time and Dinotopic to contend with science. June 30, 2011 Obama Administration Announces 14 Initial Partners in the Better Buildings

239

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

Dudney, N. J.; Bates, J. B.; Lubben, D.

1995-06-00T23:59:59.000Z

240

he mobile world depends on lithium-ion batteries --today's ultimate  

E-Print Network [OSTI]

Laboratory in Berkeley, California, had cycled 1,500 times and had lost only half of their capacity1 attentionontechnologiesthatwillbecrucialin helpingtheworldtoswitchtorenewableenergy sources -- storing up solar energy for night- time down costs and boost capacity. BY RICHARD VAN NOORDEN 2

Napp, Nils

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Proton beam on lithium film experiment for the FRIB stripper - Laser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Engineering Experimentation > High Power Accelerator Components > Proton beam on lithium film experiment... Capabilities Engineering Experimentation Reactor Safety Testing and Analysis High Power Accelerator Components Proton beam on lithium film experiment for the FRIB stripper Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Proton beam on lithium film experiment for the FRIB stripper 1 2 Argonne National Laboratory has developed a liquid lithium charge stripper for use in the Facility for Rare Isotope Beams (FRIB) located at Michigan State University. FRIB will provide intense beams of rare isotopes that can not be handled by ordinary means, creating a challenge to find a workable concept for the charge stripper and to test it in a beamline environment. Argonne's experiment showed, for the first time, the operation of a liquid lithium stripper under realistic conditions of beam-deposited power, and verified that the liquid lithium film was not perturbed by a high power density beam.

242

CDX-U Operation with a Large Area Liquid Lithium Limiter  

SciTech Connect (OSTI)

The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) {approx} 100 eV, n(subscript)e(0) {approx} 5 x 10{sup 19} m{sup -3}] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius.

R. Majeski; M. Boaz; D. Hoffman; B. Jones; R. Kaita; H. Kugel; T. Munsat; J. Spaleta; V. Soukhanovskii; J. Timberlake; L. Zakharov; G. Antar; R. Doerner; S. Luckhardt; R.W. Conn; M. Finkenthal; D. Stutman; R. Maingi; and M. Ulrickson

2002-07-12T23:59:59.000Z

243

Solid solution lithium alloy cermet anodes  

DOE Patents [OSTI]

A metal-ceramic composite ("cermet") has been produced by a chemical reaction between a lithium compound and another metal. The cermet has advantageous physical properties, high surface area relative to lithium metal or its alloys, and is easily formed into a desired shape. An example is the formation of a lithium-magnesium nitride cermet by reaction of lithium nitride with magnesium. The reaction results in magnesium nitride grains coated with a layer of lithium. The nitride is inert when used in a battery. It supports the metal in a high surface area form, while stabilizing the electrode with respect to dendrite formation. By using an excess of magnesium metal in the reaction process, a cermet of magnesium nitride is produced, coated with a lithium-magnesium alloy of any desired composition. This alloy inhibits dendrite formation by causing lithium deposited on its surface to diffuse under a chemical potential into the bulk of the alloy.

Richardson, Thomas J.

2013-07-09T23:59:59.000Z

244

California ISO Real-Time Voltage Security Assessment (VSA) Summary Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Real-Time Real-Time Voltage Security Assessment (VSA) Summary Report Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: Lawrence Berkeley National Laboratory Consortium for Electric Reliability Technology Solutions APPENDIX B October 2008 CEC-500-2008-049-APB Prepared By: Lawrence Berkeley National Laboratory Joe Eto, Manu Parashar, Bernard Lesieutre, and Nancy Jo Lewis Berkeley, CA Administered by University of California, California Institute for Energy and Environment under 500-99-013, BOA-138. Jim Cole, Larry Miller Oakland, California 94612 Commission Contract No. 500-02-004 Commission Work Authorization No: MR-036 Prepared For: Public Interest Energy Research (PIER) California Energy Commission

245

TEST PROGRAM FOR ALUMINA REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect (OSTI)

This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

SAMS TL; GEINESSE D

2011-01-28T23:59:59.000Z

246

Cryogenic Toughness of Commercial Aluminum-Lithium Alloys: Role of Delamination Toughening  

E-Print Network [OSTI]

in recent years has been driven largely by nu- merous potential structural applications in the aerospace of the Center for Advanced Materials, Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory- nation at lower temperatures. I. INTRODUCTION THE rapid development of advanced aluminum-lithium alloys

Ritchie, Robert

247

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 11, 2010 May 11, 2010 CX-002216: Categorical Exclusion Determination Tuolumne Band of MeWuk Indians Propose to Reduce Fossil Fuel Emissions CX(s) Applied: A9, B5.1 Date: 05/11/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy May 11, 2010 CX-002348: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (LCFI3) CX(s) Applied: A1, A9, B5.1 Date: 05/11/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 10, 2010 CX-002215: Categorical Exclusion Determination San Buenaventura's Joint Partnership to meet Clean Air Mandates CX(s) Applied: A9, A11, B2.5, B5.1 Date: 05/10/2010 Location(s): Ventura, California Office(s): Energy Efficiency and Renewable Energy

248

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 8, 2010 March 8, 2010 CX-001145: Categorical Exclusion Determination Ford Thermoelectric Heating, Ventilation, and Air Conditioning Project CX(s) Applied: B3.6 Date: 03/08/2010 Location(s): Asuza, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 5, 2010 CX-006103: Categorical Exclusion Determination California-City-San Clemente CX(s) Applied: A1, A9, A11, B1.32, B5.1 Date: 03/05/2010 Location(s): San Clemente, California Office(s): Energy Efficiency and Renewable Energy March 5, 2010 CX-001054: Categorical Exclusion Determination Aquantis 2.5 Megawatt Ocean Current Generation Device CX(s) Applied: A9, B3.6 Date: 03/05/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

249

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11, 2010 11, 2010 CX-003364: Categorical Exclusion Determination Lawrence Livermore National Laboratory (LLNL) Mobile Hydrogen-Fueling Station and Use of Hydrogen Buses at LLNL CX(s) Applied: B5.1 Date: 08/11/2010 Location(s): Livermore, California Office(s): Lawrence Livermore Site Office August 11, 2010 CX-004958: Categorical Exclusion Determination University of Southern California-Iron-Air Rechargeable Battery for Grid-Scale Energy Storage CX(s) Applied: B3.6 Date: 08/11/2010 Location(s): Los Angeles, California Office(s): Advanced Research Projects Agency - Energy August 10, 2010 CX-003276: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A1, A9, A11 Date: 08/10/2010 Location(s): Berkeley, California

250

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 17, 2012 February 17, 2012 CX-007812: Categorical Exclusion Determination Smart Wire Grid, Inc. - Distributed Power Flow Control Using Smart Wires for Energy Routing CX(s) Applied: A9, B1.7, B3.6 Date: 02/17/2012 Location(s): California, Missouri, North Carolina, Georgia, Tennessee Offices(s): Advanced Research Projects Agency-Energy February 13, 2012 CX-007885: Categorical Exclusion Determination Room Temperature Hydrogen Storage in Nano-confined liquids CX(s) Applied: A9, B3.6 Date: 02/13/2012 Location(s): California Offices(s): Golden Field Office February 9, 2012 CX-007822: Categorical Exclusion Determination Routine Activities at the Laboratory for Energy-Related Health Research (LEHR), California, Site CX(s) Applied: B1.3, B3.1 Date: 02/09/2012 Location(s): California

251

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 17, 2010 February 17, 2010 CX-002270: Categorical Exclusion Determination Support to Lawrence Berkeley National Laboratory Single-Investigator and Small-Group Research Project CX(s) Applied: B3.6 Date: 02/17/2010 Location(s): California Office(s): Sandia Site Office February 16, 2010 CX-006100: Categorical Exclusion Determination California-City-Rancho Cordova CX(s) Applied: A1, A9, B2.5, B5.1 Date: 02/16/2010 Location(s): Rancho Cordova, California Office(s): Energy Efficiency and Renewable Energy February 16, 2010 CX-004873: Categorical Exclusion Determination Eastshore Trail Construction CX(s) Applied: B4.9 Date: 02/16/2010 Location(s): Shasta County, California Office(s): Western Area Power Administration-Sierra Nevada Region February 16, 2010 CX-000875: Categorical Exclusion Determination

252

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

, 2010 , 2010 CX-002763: Categorical Exclusion Determination Routine Maintenance Along TRY-CC 10/4-11/1 CX(s) Applied: B1.13, B1.3 Date: 06/01/2010 Location(s): Conta Costra County, California Office(s): Western Area Power Administration-Sierra Nevada Region June 1, 2010 CX-002711: Categorical Exclusion Determination California-Tribe-Big Lagoon Rancheria CX(s) Applied: B2.5, A9, B5.1 Date: 06/01/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 1, 2010 CX-002508: Categorical Exclusion Determination Solid State Batteries for Grid-Scale Energy Storage CX(s) Applied: B3.6, A1 Date: 06/01/2010 Location(s): Van Nuys, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 1, 2010 CX-002507: Categorical Exclusion Determination

253

Transparent lithium-ion batteries  

Science Journals Connector (OSTI)

...computers). Typically, a battery is composed of electrode...nanotubes (5, 7), graphene (11), and organic...is not suitable for batteries, because, to our knowledge...production of 30-inch graphene films for transparent electrodes...rechargeable lithium batteries . Nature 414 : 359 – 367...

Yuan Yang; Sangmoo Jeong; Liangbing Hu; Hui Wu; Seok Woo Lee; Yi Cui

2011-01-01T23:59:59.000Z

254

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 28, 2011 April 28, 2011 CX-005658: Categorical Exclusion Determination International Colloquium on Environmentally Preferred Advanced Power Generation - ICEPAG 2011 CX(s) Applied: A9 Date: 04/28/2011 Location(s): Irvine, California Office(s): Fossil Energy, National Energy Technology Laboratory April 19, 2011 CX-005633: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct Medium Voltage Connection CX(s) Applied: A1, A11, B3.6, B4.4, B5.1 Date: 04/19/2011 Location(s): San Jose, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 13, 2011 CX-007094: Categorical Exclusion Determination Internal Fence Reconfiguration CX(s) Applied: B1.11 Date: 04/13/2011 Location(s): Albuquerque, California, New Mexico

255

Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating Policy-Driven Greenhouse Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model Jeffery B. Greenblatt Energy Analysis and Environmental Impacts Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 November 2013 This work was supported by the Research Division, California Air Resources Board under ARB Agreement No. 12-329. LBNL-6451E DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

256

California Energy Commission STATE ENERGY  

E-Print Network [OSTI]

California Energy Commission CALIFORNIA STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM GUIDELINES FOURTH EDITION ADOPTED BY THE CALIFORNIA ENERGY COMMISSION DECEMBER 16, 2009 AMENDED MARCH 24 Recovery and Reinvestment Act 2009 #12; i CALIFORNIA ENERGY COMMISSION Karen Douglas

257

California Energy Commission STATE ENERGY  

E-Print Network [OSTI]

California Energy Commission CALIFORNIA STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM GUIDELINES SECOND THIRD EDITION ADOPTED BY THE CALIFORNIA ENERGY COMMISSION DECEMBER 16, 2009 AMENDED MARCH and Reinvestment Act 2009 #12; i CALIFORNIA ENERGY COMMISSION Karen Douglas Chairman James D

258

Energy and Environmental Impacts of Lithium Production for Automotive Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

B. Dunn and Linda Gaines B. Dunn and Linda Gaines Center for Transportation Research Argonne National Laboratory Energy and Environmental Impacts of Lithium Production for Automotive Batteries American Chemical Society New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

259

Can Automotive Battery recycling Help Meet Lithium Demand?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gaines, Jennifer B. Dunn, and Christine James Gaines, Jennifer B. Dunn, and Christine James Center for Transportation Research Argonne National Laboratory Can Automotive Battery Recycling Help Meet Lithium Demand? ACS Meeting New Orleans, LA April 7-11, 2013 The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

260

Synthesis and structural properties of lithium titanium oxide powder  

Science Journals Connector (OSTI)

Recently, lithium titanium oxide material has gained renewed interest in electrodes for lithium ion rechargeable batteries. We investigated the influence of excess Li on the structural characteristics of lithium ...

Soo Ho Kim; Kwang Hoon Lee; Baek Seok Seong…

2006-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High purity lithium iron phosphate/carbon composites prepared by using secondary lithium source  

Science Journals Connector (OSTI)

Abstract Various lithium salts including lithium carbonate, lithium hydroxide, lithium acetate and lithium citrate were used as secondary lithium sources for the synthesis of lithium iron phosphate/carbon composites with cheap iron sources in the form of Fe and FePO4. Samples were characterized by X-ray diffraction, scanning electron microscopy, cyclic voltammetry and constant-current charge–discharge tests. The results showed that lithium carbonate derived product generated a high purity LiFePO4 phase with high tap densities. Furthermore, satisfactory electrochemical performance with an initial discharge capacity of 146.1 mAh g? 1 at 0.5 C rate and good capacity retention of 95.2% after 50 cycles were achieved.

Jinhan Yao; Xiaohui Wang; Pinjie Zhang; Jianbo Wang; Jian Xie; Kondo-Francois Aguey-Zinsou; Chun'An Ma; Lianbang Wang

2013-01-01T23:59:59.000Z

262

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 59620 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Ventilation Behavior and Household the accuracy or adequacy of this information in this report. Ernest Orlando Lawrence Berkeley National and the Lawrence Berkeley National Laboratory under the sponsorship of the California Air Resources Board

263

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 54005 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Register Closing Effects on Forced Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. 2 #12;Executive Summary Closing registers

264

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-63193 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Multizone Age-of-Air Analysis MAX H thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Energy Performance of Buildings Group Lawrence Berkeley National Laboratory1 ABSTRACT Age of air

265

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-56292 LBNL 56292 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Efficacy of Intermittent Government or any agency thereof, or The Regents of the University of California. Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-56292 iii #12;Efficacy of Intermittent

266

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-57236 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Review of Literature Related Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;Abstract This paper Government or any agency thereof, or The Regents of the University of California or any other sponsor. Ernest

267

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL 53811 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Ventilation Technologies Scoping Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. #12;VENTILATIONS STANDARDS of the United States Government or any agency thereof, or The Regents of the University of California. Ernest

268

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-58713 LBNL-58713 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Report on Applicability Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. LBNL-58713 ii #12 of the United States Government or any agency thereof, or The Regents of the University of California. Ernest

269

ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY  

E-Print Network [OSTI]

LBNL-59041 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Development of a Mathematical Air Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. This work was also Government or any agency thereof, or The Regents of the University of California or any other sponsor. Ernest

270

Electrical detection of liquid lithium leaks from pipe joints  

SciTech Connect (OSTI)

A test stand for flowing liquid lithium is under construction at Princeton Plasma Physics Laboratory. As liquid lithium reacts with atmospheric gases and water, an electrical interlock system for detecting leaks and safely shutting down the apparatus has been constructed. A defense in depth strategy is taken to minimize the risk and impact of potential leaks. Each demountable joint is diagnosed with a cylindrical copper shell electrically isolated from the loop. By monitoring the electrical resistance between the pipe and the copper shell, a leak of (conductive) liquid lithium can be detected. Any resistance of less than 2 k? trips a relay, shutting off power to the heaters and pump. The system has been successfully tested with liquid gallium as a surrogate liquid metal. The circuit features an extensible number of channels to allow for future expansion of the loop. To ease diagnosis of faults, the status of each channel is shown with an analog front panel LED, and monitored and logged digitally by LabVIEW.

Schwartz, J. A., E-mail: jschwart@pppl.gov; Jaworski, M. A.; Mehl, J.; Kaita, R.; Mozulay, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States)

2014-11-15T23:59:59.000Z

271

Lithium borate cluster salts as novel redox shuttles for overcharge protection of lithium-ion cells.  

SciTech Connect (OSTI)

Redox shuttle is a promising mechanism for intrinsic overcharge protection in lithium-ion cells and batteries. Two lithium borate cluster salts are reported to function as both the main salt for a nonaqueous electrolyte and the redox shuttle for overcharge protection. Lithium borate cluster salts with a tunable redox potential are promising candidates for overcharge protection for most positive electrodes in state-of-the-art lithium-ion cells.

Chen, Z.; Liu, J.; Jansen, A. N.; Casteel, B.; Amine, K.; GirishKumar, G.; Air Products and Chemicals, Inc.

2010-01-01T23:59:59.000Z

272

Lithium Metal Oxide Electrodes For Lithium Cells And Batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2 M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Downers Grove, IL); Kim, Jaekook (Naperville, IL)

2004-01-20T23:59:59.000Z

273

Lithium metal oxide electrodes for lithium cells and batteries  

DOE Patents [OSTI]

A lithium metal oxide positive electrode for a non-aqueous lithium cell is disclosed. The cell is prepared in its initial discharged state and has a general formula xLiMO.sub.2.(1-x)Li.sub.2M'O.sub.3 in which 0

Thackeray, Michael M. (Naperville, IL); Johnson, Christopher S. (Naperville, IL); Amine, Khalil (Oakbrook, IL)

2008-12-23T23:59:59.000Z

274

,"California Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Prices" "Sourcekey","N3050CA3","N3010CA3","N3020CA3","N3035CA3","N3045CA3" "Date","Natural Gas Citygate Price in California (Dollars per Thousand Cubic Feet)","California...

275

CALIFORNIA CARBON SEQUESTRATION THROUGH  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

276

GUIDELINES PROPOSITION 39: CALIFORNIA  

E-Print Network [OSTI]

GUIDELINES PROPOSITION 39: CALIFORNIA CLEAN ENERGY JOBS ACT - 2013 PROGRAM IMPLEMENTATION Utilities Commission. Keywords: Proposition 39, California Clean Energy Jobs Act, Job Creation Fund, Senate Bill 73, energy efficiency, clean energy, conservation, conservation corps

277

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and...

278

Polymers For Advanced Lithium Batteries | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Polymers For Advanced Lithium Batteries Polymers For Advanced Lithium Batteries 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and...

279

Vehicle Technologies Office Merit Review 2014: High Energy Lithium...  

Broader source: Energy.gov (indexed) [DOE]

High Energy Lithium Batteries for PHEV Applications Vehicle Technologies Office Merit Review 2014: High Energy Lithium Batteries for PHEV Applications Presentation given by...

280

Additives and Cathode Materials for High-Energy Lithium Sulfur...  

Broader source: Energy.gov (indexed) [DOE]

Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries Additives and Cathode Materials for High-Energy Lithium Sulfur Batteries 2013 DOE Hydrogen and Fuel Cells...

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

282

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Broader source: Energy.gov (indexed) [DOE]

R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes 2012 DOE Hydrogen...

283

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

284

Interface Modifications by Anion Acceptors for High Energy Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Interface Modifications by Anion Acceptors for High Energy Lithium Ion Batteries. Abstract: Li-rich, Mn-rich...

285

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

286

Exploring the interaction between lithium ion and defective graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

287

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich...  

Broader source: Energy.gov (indexed) [DOE]

Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials Addressing the Voltage Fade Issue with Lithium-Manganese-Rich Oxide Cathode Materials 2013 DOE...

288

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2012p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

289

Celgard US Manufacturing Facilities Initiative for Lithium-ion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Celgard US Manufacturing Facilities Initiative for Lithium-ion Battery Separator Celgard US Manufacturing Facilities Initiative for Lithium-ion...

290

Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

15eswise2011p.pdf More Documents & Publications Expansion of Novolyte Capacity for Lithium Ion Electrolyte Production Expansion of Novolyte Capacity for Lithium Ion Electrolyte...

291

New lithium-based ionic liquid electrolytes that resist salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New lithium-based ionic liquid electrolytes that resist salt concentration polarization New lithium-based ionic liquid electrolytes that resist salt concentration polarization...

292

Dendrite-Free Lithium Deposition via Self-Healing Electrostatic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrostatic Shield Mechanism . Abstract: Lithium metal batteries are called the “holy grail” of energy storage systems. However, lithium dendrite growth in these...

293

Effects of Carbonate Solvents and Lithium Salts on Morphology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency of Lithium Electrode. Abstract: The application of lithium (Li) metal anode in rechargeable batteries is hindered by Li dendrite growth during Li deposition and...

294

High-capacity hydrogen storage in lithium and sodium amidoboranes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

capacity hydrogen storage in lithium and sodium amidoboranes. High-capacity hydrogen storage in lithium and sodium amidoboranes. Abstract: A substantial effort worldwide has been...

295

California Institute of Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California Institute of Technology o Ivan Celanovic, Principal Research Scientist, Massachusetts Institute of Technology o Geoffrey Kinsey, Director, Photovoltaic...

296

Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-98-06  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Criticality Safety and the Quality Assurance Program at the Lawrence Livermore National Laboratory, (EA-98-06)

297

Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2000-12  

Broader source: Energy.gov [DOE]

Issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12)

298

Preliminary Notice of Violation, Lawrence Livermore National Laboratory- EA-2003-04  

Broader source: Energy.gov [DOE]

Issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04)

299

Fume Hood Sash Stickers Increases Laboratory Safety and Efficiency at Minimal Cost  

Broader source: Energy.gov [DOE]

Case study describes two University of California campuses that increased laboratory exhaust efficiency and safety by using fume hood sash stickers.

300

California Sea Grant 1 California Sea Grant  

E-Print Network [OSTI]

California Sea Grant 1 California Sea Grant Strategic Plan 2010­2013 #12;2 Strategic Plan 2010­2013 The National Sea Grant College Program, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, supported this publication under NOAA grant number NA08OAR4170669, project number C/P-1 through

Jaffe, Jules

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

302

Ternary compound electrode for lithium cells  

DOE Patents [OSTI]

Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

1980-07-30T23:59:59.000Z

303

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

304

California's Green Economy  

E-Print Network [OSTI]

California's Green Economy California Green Workforce Coalition July 9, 2010 Bonnie Graybill Employment Development Department Labor Market Information Division #12;Understanding the Green Economy What a shared "green web page" http://www.labormarketinfo.edd.ca.gov/?pageid=1032 Surveying California

305

California Energy Commission  

E-Print Network [OSTI]

California Energy Commission: Although External Factors Have Caused Delays in Its Approval of Sites, Its Application Process Is Reasonable August 2001 2001-118 CaliforniaStateAuditor BUREAUOFSTATEAUDITS #12;The first five copies of each California State Auditor report are free. Additional copies are $3

306

Electrolytes for lithium ion batteries  

SciTech Connect (OSTI)

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

307

Lithium batteries for pulse power  

SciTech Connect (OSTI)

New designs of lithium batteries having bipolar construction and thin cell components possess the very low impedance that is necessary to deliver high-intensity current pulses. The R D and understanding of the fundamental properties of these pulse batteries have reached an advanced level. Ranges of 50--300 kW/kg specific power and 80--130 Wh/kg specific energy have been demonstrated with experimental high-temperature lithium alloy/transition-metal disulfide rechargeable bipolar batteries in repeated 1- to 100-ms long pulses. Other versions are designed for repetitive power bursts that may last up to 20 or 30 s and yet may attain high specific power (1--10 kW/kg). Primary high-temperature Li-alloy/FeS{sub 2} pulse batteries (thermal batteries) are already commercially available. Other high-temperature lithium systems may use chlorine or metal-oxide positive electrodes. Also under development are low-temperature pulse batteries: a 50-kW Li/SOCl{sub 2} primary batter and an all solid-state, polymer-electrolyte secondary battery. Such pulse batteries could find use in commercial and military applications in the near future. 21 refs., 8 figs.

Redey, L.

1990-01-01T23:59:59.000Z

308

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

energy use and emissions in 2050. The ultimate marketmarket introduction of FCVs and associated refueling infrastructure. Vehicle EnergyEnergy Use in California Studying these factors will also help determine the rate of adoption and also maximum market

Yang, Christopher

2011-01-01T23:59:59.000Z

309

Experiments with liquid metal walls: Status of the lithium tokamak experiment  

Science Journals Connector (OSTI)

Abstarct Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

Robert Kaita; Laura Berzak; Dennis Boyle; Timothy Gray; Erik Granstedt; Gregory Hammett; Craig M. Jacobson; Andrew Jones; Thomas Kozub; Henry Kugel; Benoit Leblanc; Nicholas Logan; Matthew Lucia; Daniel Lundberg; Richard Majeski; Dennis Mansfield; Jonathan Menard; Jeffrey Spaleta; Trevor Strickler; John Timberlake; Jongsoo Yoo; L. Zakharov; Rajesh Maingi; Vlad Soukhanovskii; Kevin Tritz; Sophia Gershman

2010-01-01T23:59:59.000Z

310

Mary Picel | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid Energy economy Energy policy Environment Biology Environmental biology Terrestrial...

311

California State Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California State Regulations: California State of California The California Department of Conservation's Division of Oil, Gas, and Geothermal Resources oversees the drilling, operation, maintenance, and plugging and abandonment of oil, natural gas, and geothermal wells. The regulatory program emphasizes the development of oil, natural gas, and geothermal resources in the state through sound engineering practices that protect the environment, prevent pollution, and ensure public safety. Other agencies that may be involved in the regulation of drilling wastes include the State Water Resources Control Board and appropriate Regional Water Quality Control Boards, the California Integrated Waste Management Board, the California Air Resources Board and appropriate Air Quality Management Districts or Air Pollution Control Districts, and the Department of Toxic Substances Control.

312

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-002868: Categorical Exclusion Determination California-Tribal Energy Program-Campo Band of Mission Indians CX(s) Applied: B3.1, A9 Date: 06/30/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 30, 2010 CX-002914: Categorical Exclusion Determination California-Tribe-Buena Vista Rancheria of Me-Wuk Indians CX(s) Applied: A9, A11, B5.1 Date: 06/30/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 30, 2010 CX-002913: Categorical Exclusion Determination California-Tribe-Cloverdale Rancheria of Pomo Indians CX(s) Applied: A9, B5.1 Date: 06/30/2010 Location(s): Cloverdale, California Office(s): Energy Efficiency and Renewable Energy June 28, 2010 Playing Around with Lighting Efficiency California town uses grant to make required upgrades that will also save

313

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Lawrence Livermore National Laboratory - EA-2003-04 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 September 3, 2003 Preliminary Notice of Violation issued to the University of California related to an Extremity Radiological Overexposure at the Lawrence Livermore National Laboratory, (EA-2003-04) This letter refers to the recent investigation by the Department of Energy's Office of Price-Anderson Enforcement (OE) of the June 2002 extremity radiological overexposure event. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2003-04 More Documents & Publications Preliminary Notice of Violation, University of California - EA-2006-01 Preliminary Notice of Violation, Lawrence Livermore National Laboratory -

314

Discovery of pre-galactic lithium  

Science Journals Connector (OSTI)

... so these combined in nuclear reactions to make deuterium, helium-3, helium-4 and lithium-7, production of heavier elements being aborted by the absence of stable nuclei at ... other hand, is totally destroyed in matter cycled through stars, and helium-3 and lithium-7 can be both created and destroyed, so that the net effect of stellar ...

Bernard Pagel

1982-06-10T23:59:59.000Z

315

National Laboratories: Focused Goals and Field Work Hinted Under DOE  

Science Journals Connector (OSTI)

...in which field contact will...expected to give field support for...assignments of the laboratories in the new...devoted to nuclear work will...fu-sion) development are the Bettis...breeder c Santa Susanna, California, Brunswick Laboratory, the Pri...producing nuclear warhea fense...ofthe DOE Field and Laboratory...

WILLIAM D. METZ

1977-12-02T23:59:59.000Z

316

Advanced Electrolyte Additives for PHEV/EV Lithium-ion Battery  

Broader source: Energy.gov (indexed) [DOE]

calculation method and provide insights for the next step research of advanced additives. 5 Pristine Lithium uptake Lithium removal Lithium anodes - Instantaneous...

317

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Li-Rich Layered Oxides for Lithium Batteries. Nano Lett. 13,O 2 Cathode Material in Lithium Ion Batteries. Adv. Energysolvent decomposition in lithium ion batteries: first-

Lin, Feng

2014-01-01T23:59:59.000Z

318

Aliovalent titanium substitution in layered mixed Li Ni-Mn-Co oxides for lithium battery applications  

E-Print Network [OSTI]

indicates that some of the excess lithium is indeed presentneither the presence of excess lithium on 3b sites nor ansamples not containing excess lithium. To minimize kinetic

Kam, Kinson

2011-01-01T23:59:59.000Z

319

How should findings on antisuicidal effects of lithium be integrated into practical treatment decisions?  

Science Journals Connector (OSTI)

Beyond its prophylactic efficacy lithium has demonstrated possibly specific antisuicidal effects. Lithium significantly reduces the high excess mortality of patients with affective disorders. Appropriate lithium ...

Prof.Dr.med. B. Müller-Oerlinghausen

2003-06-01T23:59:59.000Z

320

E-Print Network 3.0 - au-implanted lithium niobate Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

lithium niobate crystals Summary: O-doped lithium niobate crystals C. L. Sonesa Optoelectronics Research Centre, University of Southampton... lithium niobate crystals induced by...

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY  

E-Print Network [OSTI]

June 1995 UCRL-ID-119170 LAWRENCE LIVERMORE NATIONAL LABORATORY University of California · Livermore, California · 94550 Science on High-Energy Lasers: From Today to the NIF Richard W. Lee, Richard. WorkperformedundertheauspicesoftheU.S.DepartmentofEnergybyLawrenceLivermoreNationalLaboratoryunder Contract W-7405-Eng-48. #12

322

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7, 2010 7, 2010 CX-003690: Categorical Exclusion Determination Solar Upgrade CX(s) Applied: A9, B5.1 Date: 09/07/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 3, 2010 CX-003769: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Santa Clara, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy

323

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 4, 2013 April 4, 2013 CX-010350: Categorical Exclusion Determination Aerial Photography Activity Over the Proposed Richmond Bay Campus CX(s) Applied: B3.2 Date: 04/04/2013 Location(s): California Offices(s): Berkeley Site Office April 3, 2013 CX-010257: Categorical Exclusion Determination Characterizing Fracture Properties Using Resistivity measured at Different Frequencies CX(s) Applied: A9, B3.6 Date: 04/03/2013 Location(s): California Offices(s): Golden Field Office March 28, 2013 CX-010567: Categorical Exclusion Determination Lawrence Berkeley National Laboratory - Rapid Automated Modeling and Simulation of Existing Buildings for Energy Efficiency CX(s) Applied: B3.6 Date: 02/28/2013 Location(s): California, District of Columbia Offices(s): Advanced Research Projects Agency-Energy

324

University of california | Open Energy Information  

Open Energy Info (EERE)

california california Jump to: navigation, search Name Energy Biosciences Institute Address 146 Calvin Laboratory Place Berkeley, California Zip 94720 Region Bay Area Number of employees 501-1000 Year founded 2007 Phone number 6103294450 Coordinates 37.871005°, -122.2539563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.871005,"lon":-122.2539563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 16, 2010 August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14 Date: 08/16/2010 Location(s): San Francisco, California Office(s): Fossil Energy, National Energy Technology Laboratory August 14, 2010 CX-004959: Categorical Exclusion Determination Primus Power -Low Cost, High Performance, 50-Year Electrodes CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy August 14, 2010 CX-004941: Categorical Exclusion Determination Makani Power, Inc. - Advanced Wind Turbine CX(s) Applied: B3.6 Date: 08/14/2010 Location(s): Alameda, California Office(s): Advanced Research Projects Agency - Energy

326

Researchers Model Impact of Aerosols Over California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

327

Review of National and California Benchmarking Methods  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review of California and National Methods for Review of California and National Methods for Energy-Performance Benchmarking of Commercial Buildings Nance E. Matson and Mary Ann Piette Ernest Orlando Lawrence Berkeley National Laboratory September 5 th , 2005 LBNL No. 57364 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

328

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1, 2010 1, 2010 CX-002770: Categorical Exclusion Determination Cedarville Rancheria CX(s) Applied: A9, A11, B5.1 Date: 06/21/2010 Location(s): Cedarville, California Office(s): Energy Efficiency and Renewable Energy June 21, 2010 CX-002723: Categorical Exclusion Determination Area of Interest 3 Deployment of Flex Combined Heat and Power System (Funding Opportunity Announcement 0000016) CX(s) Applied: B3.6 Date: 06/21/2010 Location(s): El Centro, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 18, 2010 CX-002772: Categorical Exclusion Determination All Mission Indian Housing Authority CX(s) Applied: A9, B5.1 Date: 06/18/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 16, 2010 CX-002691: Categorical Exclusion Determination

329

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 2, 2012 May 2, 2012 CX-008184: Categorical Exclusion Determination Stanford Research Computer Facility CX(s) Applied: B1.15 Date: 05/02/2012 Location(s): California Offices(s): Stanford Linear Accelerator Site Office May 1, 2012 CX-008237: Categorical Exclusion Determination 2013 Solar Decathlon and Energy Efficiency and Renewable Energy Showcase Event CX(s) Applied: A9 Date: 05/01/2012 Location(s): California Offices(s): Golden Field Office April 27, 2012 CX-008298: Categorical Exclusion Determination Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 04/27/2012 Location(s): California, Indiana Offices(s): National Energy Technology Laboratory April 23, 2012 CX-008314: Categorical Exclusion Determination Next Generation Environmentally-Friendly Driving Feedback Systems Research

330

Satkartar Kinney and Mary Ann Piette Ernest Orlando Lawrence Berkeley National Laboratory  

E-Print Network [OSTI]

Satkartar Kinney and Mary Ann Piette Ernest Orlando Lawrence Berkeley National Laboratory HPCBS Division Ernest Orlando Lawrence Berkeley National Laboratory University of California 1 Cyclotron Road Technologies Department, Environmental Energy Technologies Division Ernest Orlando Lawrence Berkeley National

331

California Onshore Natural Gas Processed in California (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Processed in California (Million Cubic Feet) California Onshore Natural Gas Processed in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

332

Truth About Power Production From California's Happy Cows  

Broader source: Energy.gov (indexed) [DOE]

Electric Energy Storage Electric Energy Storage Update on DOE/California Program Collaboration by Pramod Kulkarni September 28, 2008 This project is part of the Energy Storage Collaboration between the California Energy Commission (CEC) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS) and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. California Has Had an Active Electricity Storage Program Since 1990 â—Ź California Energy Commission (CEC) has funded several EES technologies for multiple applications. â—Ź Invested in 17 projects since 1990

333

DOE - Office of Legacy Management -- University of California - Lab for  

Office of Legacy Management (LM)

- Lab for - Lab for Energy Related-Health Research - LEHR - CA 0-05 FUSRAP Considered Sites Site: University of California - Lab. for Energy Related-Health Research - (LEHR) (CA.0-05 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Laboratory for Energy-Related Health Research (LEHR), California, Site Documents Related to University of California - Lab. for Energy Related-Health Research - (LEHR) Annual Site Environmental Report Calendar Year 2008 for the Laboratory for Energy-Related Health Research University of California, DavisSeptember 2009Rev. 0 Annual Site Environmental Report Calendar Year 2007 for the

334

Doubly Excited States in Lithium  

Science Journals Connector (OSTI)

Doubly and triply excited states of lithium are considered in an effort to identify the energy levels responsible for the several narrow lines present in the optical spectrum of that element which are not classifiable in the normal singly excited spectra of that atom. Since most of these states are coupled to continuum states through the electrostatic interaction of the electrons and will thus have extremely short lifetimes, a majority of the multiply excited states can be excluded from consideration in identifying these narrow lines. The observed narrow spectral lines can be plasuibly identified on the basis of screening-theory estimates of the energies.

J. D. Garcia and J. E. Mack

1965-05-17T23:59:59.000Z

335

Sandia National Laboratories: Contact Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Contact Us Contact Us By email: For questions or comments about the Sandia website please contact the Sandia webmaster. By mail: New Mexico California Sandia National Laboratories, New Mexico P.O. Box 5800 Albuquerque, NM 87185-(mail stop)* non-mail deliveries: 1515 Eubank SE Albuquerque, NM 87123 Sandia National Laboratories, California P.O. Box 969 Livermore, CA 94551-0969 non-mail deliveries: 7011 East Avenue Livermore, CA 94550 * All mail must contain an appropriate mail stop to ensure delivery. For employee mail stops, reference our Employee Locator. Other Contacts Employee locator Online employee locator Telephone employee locator service: (505) 845-0011 Press Queries New Mexico News media help line: (505) 844-4902 (for members of the news media) Additional Media Relations contacts

336

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Feed-In Tariff Feed-In Tariff '''''Note: The California general feed-in tariff was amended by [http://leginfo.ca.gov/pub/09-10/bill/sen/sb_0001-0050/sb_32_bill_2009091... SB 32] of 2009 and [http://www.leginfo.ca.gov/pub/11-12/bill/sen/sb_0001-0050/sbx1_2_bill_20... SBX1-2] of 2011. The California Public Utilities Commission (CPUC) accounted for these amendments in Decision 12-05-035 in May 2012. October 16, 2013 Energy Upgrade California The Energy Upgrade California program serves as a one-stop shop for California homeowners who want to improve the energy efficiency of their homes. The program connects homeowners with qualified contractors, and helps homeowners find all the available incentives from their local utilities and local governments. Interested California homeowners should go

337

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

20, 2009 20, 2009 CX-000253: Categorical Exclusion Determination California County Monterey CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): Monterey County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 20, 2009 CX-000252: Categorical Exclusion Determination California City San Jose CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): San Jose, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 20, 2009 CX-000251: Categorical Exclusion Determination California City Riverside CX(s) Applied: A9, A11, B5.1 Date: 12/20/2009 Location(s): Riverside, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 17, 2009 CX-001253: Categorical Exclusion Determination

338

DOE - Office of Legacy Management -- University of California Chemistry  

Office of Legacy Management (LM)

California Chemistry California Chemistry Building and Radiation Lab - CA 05 FUSRAP Considered Sites Site: UNIVERSITY OF CALIFORNIA (CHEMISTRY BUILDING AND RADIATION LABORATORY) (CA.05) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Berkeley , California CA.05-1 Evaluation Year: 1989 CA.05-2 Site Operations: Performed research in areas including nuclear fission and the TTA extraction process. CA.05-3 CA.05-4 Site Disposition: Eliminated - NRC licensed CA.05-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium CA.05-1 CA.05-3 Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to UNIVERSITY OF CALIFORNIA (CHEMISTRY BUILDING AND

339

TECHNOLOGY MATURATION PLAN FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect (OSTI)

This Technology Maturation Plan schedules the development process that will bring the Lithium Hydrotalcite waste pretreatment process from its current estimated Technology Readiness Level of 3, to a level of 6. This maturation approach involves chemical and engineering research and development work, from laboratory scale to pilot scale testing, to incrementally make the process progress towards its integration in a fully qualified industrial system.

SAMS TL; GUILLOT S

2011-01-27T23:59:59.000Z

340

California Lighting Technology Center (University of California, Davis) |  

Open Energy Info (EERE)

Lighting Technology Center (University of California, Davis) Lighting Technology Center (University of California, Davis) Jump to: navigation, search Name California Lighting Technology Center (University of California, Davis) Place Davis, CA Website http://cltc.ucdavis.edu/ References CLTC Website[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections California Lighting Technology Center (University of California, Davis) is a research institution located in Davis, CA. References ↑ "CLTC Website" Retrieved from "http://en.openei.org/w/index.php?title=California_Lighting_Technology_Center_(University_of_California,_Davis)&oldid=381592"

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

. Keywords: California Energy Commission, cool roofs, lowsloped roofs, solar reflectance, thermal emittanceCalifornia Energy Commission STAFF REPORT DRAFT EVALUATION REPORT 2008 Building Energy Layer DECEMBER 2012 CEC4002012018SD CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor #12

342

California Energy Commission STAFF DRAFT  

E-Print Network [OSTI]

California Energy Commission STAFF DRAFT 20142015 INVESTMENT PLAN UPDATE FOR THE ALTERNATIVE AND RENEWABLE FUEL AND VEHICLE TECHNOLOGY PROGRAM OCTOBER 2013 CEC6002013003SD CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Charles Smith Primary

343

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT ENERGY EFFICIENCY COMPARISON California's Building Energy Efficiency Standards and the International Energy Conservation Code and American Society America Standard 90.1 JULY 2013 CEC4002013009 CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr

344

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

345

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT THE NATURAL GAS RESEARCH, DEVELOPMENT5002011029 #12; CALIFORNIA ENERGY COMMISSION Janna Franks Primary Author Janna Franks Project members of the California Energy Commission prepared this report. As such, it does not necessarily

346

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT THE NATURAL GAS RESEARCH, DEVELOPMENT-2010-020 #12;CALIFORNIA ENERGY COMMISSION Janna Franks Primary Author Steve Williams Senior Technical members of the California Energy Commission prepared this report. As such, it does not necessarily

347

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT THE NATURAL GAS RESEARCH, DEVELOPMENT COMMISSION Edmund G. Brown Jr., Governor MARCH 2013 CEC5002013014 #12;CALIFORNIA ENERGY COMMISSION members of the California Energy Commission prepared this report. As such, it does not necessarily

348

California Energy Commission PROPOSED REGULATIONS  

E-Print Network [OSTI]

California Energy Commission PROPOSED REGULATIONS ENFORCEMENT PROCEDURES CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor FEBRUARY 2013 CEC3002013002SD #12;CALIFORNIA ENERGY COMMISSION Lorraine Gonzalez Angela Gould Primary Authors and Project Managers Kate Zocchetti

349

California Energy Incentive Programs  

Broader source: Energy.gov [DOE]

Report from the Federal Energy Management Program (FEMP) discusses annual update on key energy issues and financial opportunities for federal sites in California.

350

,"California Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Prices",13,"Annual",2013,"6301967" ,"Release Date:","10312014"...

351

,"California Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Proved Nonproducing Reserves",5,"Annual",2012,"6301996" ,"Release Date:","410...

352

California Energy Commission  

Energy Savers [EERE]

California Energy Commission Quadrennial Water Review Comments - June 19, 2014 Water-Energy Nexus Water and energy systems are inextricably linked -- producing energy uses large...

353

California Valley Solar Ranch Biological Assessment  

Broader source: Energy.gov [DOE]

Biological Assessment for the California Valley Solar Ranch Project San Luis Obispo County, California

354

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Pacific Northwest National Laboratory Pacific Northwest National Laboratory Current Li-Ion Battery Improved Li-Ion Battery Novel Synthesis New Electrode Candidates Coin Cell Test Stability and Safety Full Cell Fabrication and Optimization Lithium-ion (Li-ion) batteries offer high energy and power density, making them popular in a variety of mobile applications from cellular telephones to electric vehicles. Li-ion batteries operate by migrating positively charged lithium ions through an electrolyte from one electrode to another, which either stores or discharges energy, depending on the direction of the flow. They can employ several different chemistries, each offering distinct benefits and limitations. Despite their success in mobile applications, Li-ion technologies have not demonstrated

355

Categorical Exclusion Determinations: California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 29, 2010 January 29, 2010 CX-000751: Categorical Exclusion Determination Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Seismic) CX(s) Applied: A9, B3.1 Date: 01/29/2010 Location(s): Long Beach, California Office(s): Fossil Energy, National Energy Technology Laboratory January 29, 2010 CX-000752: Categorical Exclusion Determination Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Pier F Drilling) CX(s) Applied: A9, B3.1 Date: 01/29/2010 Location(s): Long Beach, California Office(s): Fossil Energy, National Energy Technology Laboratory January 29, 2010 CX-000753: Categorical Exclusion Determination

356

A high power beam-on-target test of liquid lithium target for RIA.  

SciTech Connect (OSTI)

Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

2005-08-29T23:59:59.000Z

357

California Register | Open Energy Information  

Open Energy Info (EERE)

Register Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: California RegisterLegal Abstract California Register, current through...

358

DOE Awards Contract for Environmental Remediation Services at California  

Broader source: Energy.gov (indexed) [DOE]

Environmental Remediation Services at Environmental Remediation Services at California Santa Susana Field Laboratory DOE Awards Contract for Environmental Remediation Services at California Santa Susana Field Laboratory September 27, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a task order (contract) to CDM, A Joint Venture, of Fairfax, Virginia, to provide environmental remediation services for the Energy Technology Engineering Center at the Santa Susana Field Laboratory, Canoga Park, California. The cost-plus incentive fee task order has a 36-month performance period and a value of $11.3 million. CDM will continue to assist DOE in chemical sampling, the preparation of a chemical data gap analysis and preparing a soils remediation action

359

A rapid method for the determination of lithium transference numbers  

SciTech Connect (OSTI)

Lithium ion-conducting polymer electrolytes are of increasing interest for use in lithium-polymer batteries. Lithium transference numbers, the net fraction of current carried by lithium in a cell, are key figures of merit for potential lithium battery electrolytes. The authors describe the Electrophoretic NMR (ENMR) method for the determination of lithium ion transference numbers (T{sub Li}). The work presented is a proof-of-concept of the application of the ENMR method to lithium ion transference measurements for several different lithium salts in gelled electrolytes. The NMR method allows accurate determination of T{sub Li} values, as indicated by the similarity of T{sub Li} in the gelled electrolytes to those in aqueous electrolyte solutions at low salt concentration. Based on calculated tradeoffs of various experimental parameters, they also discuss some conclusions concerning the range of applicability of the method to other electrolytes with lower lithium mobility.

Zawodzinski, T.A. Jr.; Dai, H.; Sanderson, S.; Davey, J.; Uribe, F. [Los Alamos National Lab., NM (United States). Electronics Materials and Device Research Group

1997-05-01T23:59:59.000Z

360

A Material Change: Bringing Lithium Production Back to America | Department  

Broader source: Energy.gov (indexed) [DOE]

A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America A Material Change: Bringing Lithium Production Back to America June 29, 2012 - 5:34pm Addthis The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. The Rockwood Lithium manufacturing facility in Kings Mountain, North Carolina. | Photo courtesy of Rockwood Lithium. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs Between 1980 and 2009, the global demand for lithium has tripled. This metal is a key material in a number of growing industries -- including advanced vehicle batteries and consumer electronics. But more specifically, lithium-ion batteries are a vital component in electric vehicles and other rechargeable batteries for consumer electronics, and are used to produce

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CALIFORNIA ENERGY COMMISSIONCOMMISSION  

E-Print Network [OSTI]

Commission$ gy 0% rate loans and technical assistance grants · $3M: California Workforce Investment Board· $3M: California Workforce Investment Board Competitive grants for community-based and workforce requests for planning projects and energy expenditure plans #12;CHAPTER 2: LOCAL EDUCATIONAL AGENCY AWARD

362

Lithium-cation conductivity and crystal structure of lithium diphosphate  

SciTech Connect (OSTI)

The electrical conductivity of lithium diphosphate Li{sub 4}P{sub 2}O{sub 7} has been measured and jump-like increasing of ionic conductivity at 913 K has been found. The crystal structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction at 300–1050 K. At 913 K low temperature triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one, space group P2{sub 1}/n, a=8.8261(4) Ĺ, b=5.2028(4) Ĺ, c=13.3119(2) Ĺ, ?=104.372(6)°. The migration maps of Li{sup +} cations based on experimental data implemented into program package TOPOS have been explored. It was found that lithium cations in both low- and high temperature forms of Li{sub 4}P{sub 2}O{sub 7} migrate in three dimensions. Cross sections of the migrations channels extend as the temperature rises, but at the phase transition point have a sharp growth showing a strong “crystal structure – ion conductivity” correlation. -- Graphical abstract: Crystal structure of Li{sub 4}P{sub 2}O{sub 7} at 950 K. Red balls represent oxygen atoms; black lines show Li{sup +} ion migration channels in the layers perpendicular to [001] direction. Highlights: • Structure of Li{sub 4}P{sub 2}O{sub 7} has been refined using high temperature neutron diffraction. • At 913 K triclinic form of Li{sub 4}P{sub 2}O{sub 7} transforms into high temperature monoclinic one. • The migration maps of Li{sup +} implemented into program package TOPOS have been explored. • Cross sections of the migrations channels at the phase transition have a sharp growth.

Voronin, V.I., E-mail: voronin@imp.uran.ru [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Sherstobitova, E.A. [Institute of Metal Physics Urals Branch RAS, S.Kovalevskoy Street 18, 620041 Ekaterinburg (Russian Federation); Blatov, V.A., E-mail: blatov@samsu.ru [Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Ac.Pavlov Street 1, 443011 Samara (Russian Federation); Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shekhtman, G.Sh., E-mail: shekhtman@ihte.uran.ru [Institute of High Temperature Electrochemistry Urals Branch RAS, Akademicheskaya 20, 620990 Ekaterinburg (Russian Federation)

2014-03-15T23:59:59.000Z

363

The Saft Lithium — Silver Chromate Battery Performances of the LI 210 Type  

Science Journals Connector (OSTI)

After being involved in lithium power sources research since 1964, SAFT perfected in 1970 a new couple: lithium...

G. Lehmann; M. Broussely; P. Lenfant

1978-01-01T23:59:59.000Z

364

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewables Portfolio Standard Renewables Portfolio Standard California's Renewables Portfolio Standard (RPS) was originally established by legislation enacted in 2002. Subsequent amendments to the law have resulted in a requirement for California's electric utilities to have 33% of their retail sales derived from eligible renewable energy resources in 2020 and all subsequent years. The law established interim targets for the utilities as shown below. By January 1, 2012, the California Public Utilities Commission (CPUC) must establish specific electricity sales targets for electric retail sellers based on the interim targets: October 16, 2013 Renewable Auction Mechanism (RAM) (California) The Renewable Auction Mechanism (RAM), approved by the California Public Utilities Commission (CPUC) in December 2010, is expected to result in

365

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

6, 2010 6, 2010 Riverside, Calif., used a portion of its EECBG funds to buy 25 solar-powered trash compactors. | Courtesy of BigBelly Solar California City Implements Solar-Powered Trash Compactors This summer, Riverside, Calif., is harnessing the power of the sun in an effort aimed at slashing waste, costs and greenhouse gases. June 15, 2010 CX-002776: Categorical Exclusion Determination California-City-Elk Grove CX(s) Applied: B2.5, A9, A11, B5.1 Date: 06/15/2010 Location(s): Elk Grove, California Office(s): Energy Efficiency and Renewable Energy June 15, 2010 CX-002775: Categorical Exclusion Determination Bridgeport Indian Colony of California CX(s) Applied: B2.5, B5.1 Date: 06/15/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 15, 2010

366

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2010 22, 2010 CX-002788: Categorical Exclusion Determination California-Tribe-Bear River Band of the Rohnerville Rancheria CX(s) Applied: B2.5, B5.1 Date: 06/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 22, 2010 CX-002787: Categorical Exclusion Determination California-Tribe-Alturas Indian Rancheria CX(s) Applied: B2.5, B5.1 Date: 06/22/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy June 21, 2010 CX-002770: Categorical Exclusion Determination Cedarville Rancheria CX(s) Applied: A9, A11, B5.1 Date: 06/21/2010 Location(s): Cedarville, California Office(s): Energy Efficiency and Renewable Energy June 21, 2010 CX-002723: Categorical Exclusion Determination Area of Interest 3 Deployment of Flex Combined Heat and Power System

367

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

20, 2011 20, 2011 Ground Breaking of Blythe Solar Power Project Blythe Solar Power Project began construction on a solar thermal power plant near Blythe, California. June 16, 2011 CX-006097: Categorical Exclusion Determination California-City-Indio CX(s) Applied: A9, A11, B1.32, B2.5, B3.6, B5.1 Date: 06/16/2011 Location(s): Indio, California Office(s): Energy Efficiency and Renewable Energy June 14, 2011 Concentrating On California Solar Power Secretary Chu announced conditional commitments for approximately $2 billion in loan guarantees to two California concentrating solar power plants. June 14, 2011 Primus Power's energy cell stack. | Photo Courtesy of Primus Power Primus Power's Flow Battery Powered by $11 Million in Private Investment Investments in Primus Power's low-cost, distributed storage battery

368

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

30, 2010 30, 2010 CX-004631: Categorical Exclusion Determination California- City- Turlock CX(s) Applied: B5.1 Date: 11/30/2010 Location(s): Turlock, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004630: Categorical Exclusion Determination California- City- Tulare CX(s) Applied: A1, A9, A11, B5.1 Date: 11/30/2010 Location(s): Tulare, California Office(s): Energy Efficiency and Renewable Energy November 30, 2010 CX-004548: Categorical Exclusion Determination Active Flow Control on Bidirectional Rotors for Tidal Marine Hydrokinetic Applications CX(s) Applied: A9 Date: 11/30/2010 Location(s): Davis, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 29, 2010 CX-004555: Categorical Exclusion Determination

369

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

19, 2010 19, 2010 CX-001761: Categorical Exclusion Determination California-City-Palmdale CX(s) Applied: A1, A9, B1.32, B2.5, B5.1 Date: 04/19/2010 Location(s): Palmdale, California Office(s): Energy Efficiency and Renewable Energy April 16, 2010 CX-001698: Categorical Exclusion Determination Recovery Act, County of Monterey, California Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date: 04/16/2010 Location(s): Monterey County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 16, 2010 CX-001695: Categorical Exclusion Determination Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems CX(s) Applied: A9 Date: 04/16/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

370

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Broader source: Energy.gov (indexed) [DOE]

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

371

Rotation, inflation, and lithium in the Pleiades  

E-Print Network [OSTI]

The rapidly rotating cool dwarfs of the Pleiades are rich in lithium relative to their slowly rotating counterparts. Motivated by observations of inflated radii in young, active stars, and by calculations showing that radius inflation inhibits pre-main sequence (pre-MS) Li destruction, we test whether this pattern could arise from a connection between stellar rotation rate and radius inflation on the pre-MS. We demonstrate that pre-MS radius inflation can efficiently suppress lithium destruction by rotationally induced mixing, and that the net effect of inflation and rotational mixing is a pattern where rotation correlates with lithium abundance for $M_{*} {\\rm M}_{\\odot}$, similar to the empirical trend in the Pleiades. Next, we adopt different prescriptions for the dependence of inflation on rotation, and compare their predictions to the Pleiades lithium/rotation pattern. A connection between rotation and radius inflation naturally and generically reproduces the important qualitative features of this patte...

Somers, Garrett

2014-01-01T23:59:59.000Z

372

Layered electrodes for lithium cells and batteries  

DOE Patents [OSTI]

Lithium metal oxide compounds of nominal formula Li.sub.2MO.sub.2, in which M represents two or more positively charged metal ions, selected predominantly and preferably from the first row of transition metals are disclosed herein. The Li.sub.2MO.sub.2 compounds have a layered-type structure, which can be used as positive electrodes for lithium electrochemical cells, or as a precursor for the in-situ electrochemical fabrication of LiMO.sub.2 electrodes. The Li.sub.2MO.sub.2 compounds of the invention may have additional functions in lithium cells, for example, as end-of-discharge indicators, or as negative electrodes for lithium cells.

Johnson, Christopher S. (Naperville, IL); Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Kahaian, Arthur J. (Chicago, IL); Kim, Jeom-Soo (Naperville, IL)

2008-04-15T23:59:59.000Z

373

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

2.8 V vs. lithium suggests Tafel kinetics, but the bend in? a gives the slope of the Tafel region, k eff affects itsincreases, the slope of the Tafel region remains constant,

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

374

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

375

Preliminary Notice of Violation, Lawrence Livermore National Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

Lawrence Livermore National Lawrence Livermore National Laboratory - EA-2000-12 Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 September 27, 2000 Preliminary Notice of Violation issued to the University of California related to Authorization Basis Issues at the Lawrence Livermore National Laboratory, (EA-2000-12) This letter refers to the Department of Energy's (DOE) investigation of the facts and circumstances concerning Lawrence Livermore National Laboratory (LLNL) maintenance and adherence to documents, which form the Authorization Basis (AB) for the Laboratory's nuclear facilities. Preliminary Notice of Violation, Lawrence Livermore National Laboratory - EA-2000-12 More Documents & Publications Enforcement Letter, Lawrence Livermore National Laboratory - November 5,

376

University of California Energy Institute The California Electricity Market  

E-Print Network [OSTI]

University of California Energy Institute The California Electricity Market: What a long strange trip it's been #12;University of California Energy Institute Market Organization in California · ISO an `imbalance' energy (spot) market · Power Exchange (PX) runs day ahead and hour ahead energy markets · Other

California at Berkeley. University of

377

California/Incentives | Open Energy Information  

Open Energy Info (EERE)

California/Incentives California/Incentives < California Jump to: navigation, search Contents 1 Financial Incentive Programs for California 2 Rules, Regulations and Policies for California Download All Financial Incentives and Policies for California CSV (rows 1 - 310) Financial Incentive Programs for California Download Financial Incentives for California CSV (rows 1 - 242) Incentive Incentive Type Active Agricultural Biomass to Energy Program (California) Performance-Based Incentive No Agricultural Pumping Efficiency Program (California) State Rebate Program No Agriculture and Food Processing Energy Loans (California) State Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Loan Program (California) Utility Loan Program No Alameda Municipal Power - Commercial Energy Efficiency Rebate Program (California) Utility Rebate Program Yes

378

Design and simulation of lithium rechargeable batteries  

SciTech Connect (OSTI)

Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

Doyle, C.M.

1995-08-01T23:59:59.000Z

379

EA-1422: Sandia National Laboratories Site-Wide Environmental  

Broader source: Energy.gov (indexed) [DOE]

422: Sandia National Laboratories Site-Wide Environmental 422: Sandia National Laboratories Site-Wide Environmental Assessment/California EA-1422: Sandia National Laboratories Site-Wide Environmental Assessment/California SUMMARY Sandia National Laboratories (SNL) is one of three national laboratories that support the DOE's statutory responsibilities for nuclear weapons research and design, development of energy technologies, and basic scientific research. SNL is composed of four geographically separated facilities: Albuquerque, New Mexico (SNL/NM); Tonopah, Nevada; Kauai, Hawaii; and Livermore, California (SNL/CA). This SWEA focuses on SNL/CA. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD September 3, 2012 EA-1422-SA-01: Supplement Analysis Final Site-Wide Environmental Assessment for Sandia National

380

Costs of lithium-ion batteries for vehicles  

SciTech Connect (OSTI)

One of the most promising battery types under development for use in both pure electric and hybrid electric vehicles is the lithium-ion battery. These batteries are well on their way to meeting the challenging technical goals that have been set for vehicle batteries. However, they are still far from achieving the current cost goals. The Center for Transportation Research at Argonne National Laboratory undertook a project for the US Department of Energy to estimate the costs of lithium-ion batteries and to project how these costs might change over time, with the aid of research and development. Cost reductions could be expected as the result of material substitution, economies of scale in production, design improvements, and/or development of new material supplies. The most significant contributions to costs are found to be associated with battery materials. For the pure electric vehicle, the battery cost exceeds the cost goal of the US Advanced Battery Consortium by about $3,500, which is certainly enough to significantly affect the marketability of the vehicle. For the hybrid, however, the total cost of the battery is much smaller, exceeding the cost goal of the Partnership for a New Generation of Vehicles by only about $800, perhaps not enough to deter a potential buyer from purchasing the power-assist hybrid.

Gaines, L.; Cuenca, R.

2000-08-21T23:59:59.000Z

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Annual environmental monitoring report of the Lawrence Berkeley Laboratory  

SciTech Connect (OSTI)

The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

Schleimer, G.E.; Pauer, R.O. (eds.)

1990-08-01T23:59:59.000Z

382

Predissociation dynamics of lithium iodide  

E-Print Network [OSTI]

The predissociation dynamics of lithium iodide (LiI) in the first excited A-state is investigated for molecules in the gas phase and embedded in helium nanodroplets, using femtosecond pump-probe photoionization spectroscopy. In the gas phase, the transient Li+ and LiI+ ion signals feature damped oscillations due to the excitation and decay of a vibrational wave packet. Based on high-level ab initio calculations of the electronic structure of LiI and simulations of the wave packet dynamics, the exponential signal decay is found to result from predissociation predominantly at the lowest avoided X-A potential curve crossing, for which we infer a coupling constant V=650(20) reciprocal cm. The lack of a pump-probe delay dependence for the case of LiI embedded in helium nanodroplets indicates fast droplet-induced relaxation of the vibrational excitation.

Schmidt, H; Stienkemeier, F; Bogomolov, A S; Baklanov, A V; Reich, D M; Skomorowski, W; Koch, C P; Mudrich, M

2015-01-01T23:59:59.000Z

383

Electrode for a lithium cell  

DOE Patents [OSTI]

This invention relates to a positive electrode for an electrochemical cell or battery, and to an electrochemical cell or battery; the invention relates more specifically to a positive electrode for a non-aqueous lithium cell or battery when the electrode is used therein. The positive electrode includes a composite metal oxide containing AgV.sub.3O.sub.8 as one component and one or more other components consisting of LiV.sub.3O.sub.8, Ag.sub.2V.sub.4O.sub.11, MnO.sub.2, CF.sub.x, AgF or Ag.sub.2O to increase the energy density of the cell, optionally in the presence of silver powder and/or silver foil to assist in current collection at the electrode and to improve the power capability of the cell or battery.

Thackeray, Michael M. (Naperville, IL); Vaughey, John T. (Elmhurst, IL); Dees, Dennis W. (Downers Grove, IL)

2008-10-14T23:59:59.000Z

384

Glass for sealing lithium cells  

DOE Patents [OSTI]

Glass compositions resistant to corrosion by lithium cell electrolyte and having an expansion coefficient of 45 to 85 x 10/sup -70/C/sup -1/ have been made with SiO/sub 2/, 25 to 55% by weight; B/sub 2/O/sub 3/, 5 to 12%; Al/sub 2/O/sub 3/, 12 to 35%; CaO, 5 to 15%; MgO, 5 to 15%; SrO, 0 to 10%; and La/sub 2/O/sub 3/, 0 to 5%. Preferred compositions within that range contain 3 to 8% SrO and 0.5 to 2.5% La/sub 2/O/sub 3/.

Leedecke, C.J.

1981-08-28T23:59:59.000Z

385

Laboratory Fellows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

were confirmed by the Laboratory Director. Brenda Dingus has pioneered work in gamma-ray bursts and is a major contributor to the relatively young scientific field of...

386

Laboratory Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrological controls on carbon cycling in flood plain ecosystems into Earth System Models. - 5814 A neutron detector like this one at Los Alamos National Laboratory is...

387

EA-0856: Construction and Operation of a Human Genome Laboratory at  

Broader source: Energy.gov (indexed) [DOE]

56: Construction and Operation of a Human Genome Laboratory at 56: Construction and Operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory Berkeley, California EA-0856: Construction and Operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory Berkeley, California SUMMARY This EA evaluates the environmental impacts of a proposal to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center at the U.S. Department of Energy's Lawrence Berkeley Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 19, 1994 EA-0856: Finding of No Significant Impact Construction and Operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory Berkeley, California April 19, 1994 EA-0856: Final Environmental Assessment

388

Development of Lithium?ion Battery as Energy Storage for Mobile Power Sources Applications  

Science Journals Connector (OSTI)

In view of the need to protect the global environment and save energy there has been strong demand for the development of lithium?ion battery technology as a energy storage system especially for Light Electric Vehicle (LEV) and electric vehicles (EV) applications. The R&D trend in the lithium?ion battery development is toward the high power and energy density cheaper in price and high safety standard. In our laboratory the research and development of lithium?ion battery technology was mainly focus to develop high power density performance of cathode material which is focusing to the Li?metal?oxide system LiMO 2 where M=Co Ni Mn and its combination. The nano particle size material which has irregular particle shape and high specific surface area was successfully synthesized by self propagating combustion technique. As a result the energy density and power density of the synthesized materials are significantly improved. In addition we also developed variety of sizes of lithium?ion battery prototype including (i) small size for electronic gadgets such as mobile phone and PDA applications (ii) medium size for remote control toys and power tools applications and (iii) battery module for high power application such as electric bicycle and electric scooter applications. The detail performance of R&D in advanced materials and prototype development in AMREC SIRIM Berhad will be discussed in this paper.

Mohd Ali Sulaiman; Hasimah Hasan

2009-01-01T23:59:59.000Z

389

JET PROPULSION LABORATORY 1979 Annual Report  

E-Print Network [OSTI]

, is the most active and complex volcanic body in our solar system and has a surface composed primarily of Technology and the National Aeronautics and Space Administration for the period January 1 to December 31 JPL Technology Institutional Activities JET PROPULSION LABORATORY California Institute of Technology

Waliser, Duane E.

390

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006926: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 28, 2011 CX-006921: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006919: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): University Park, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Savannah River

391

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network [OSTI]

installations. This California Solar Initiative has the2. CALIFORNIA’S SOLAR PROGRAMS California’s PV market isramifications, both for California’s new solar programs and

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

392

Sorption of lithium from a geothermal brine by pelletized mixed aluminum-lithium hydrous oxides  

SciTech Connect (OSTI)

An inorganic ion exchanger was evaluated by the Bureau of Mines for recovering lithium from geothermal brines. The ion exchanger or sorbent was mixed hydrous oxide of aluminum and lithium that had been dried at 100 C. The dried precipitate was pelletized with a sodium silicate binder to improve flow rates in sorption tests. The sorbent was loaded to 2 mg Li/g of pellets and sorption from the solution was independent of the concentrations of Ca, Fe, Mn, and Zn. Manganese and zinc were sorbed by the pellets but did not suppress lithium sorption. Lithium was desorbed with water, but none of the washing solutions investigated removed entrained brine without stripping lithium. The complex nature of the sorption mechanisms is discussed.

Schultze, L.E.; Bauer, D.J.

1985-01-01T23:59:59.000Z

393

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 25, 2009 February 25, 2009 EIS-0414: Notice of Intent to Prepare an Environmental Impact Statement Energia Sierra Juarez Transmission Project February 23, 2009 EIS-0411: Notice of Intent to Prepare an Environmental Impact Statement Construction, Operation, and Maintenance of the Proposed Transmission Agency of Northern California Transmission Project, California January 20, 2009 EA-1602: Finding of No Significant Impact Alternative Intake Project Transmission Line and Interconnection, California November 28, 2008 EIS-0386: EPA Notice of Availability of the Programmatic Final Environmental Impact Statement Designation of Energy Corridors in 11 Western States, Preferred Location of Future Oil, Gas, and Hydrogen Pipelines and Electricity Transmission and Distribution Facilities on Federal Land

394

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

395

Energy Department Awards Contract to the University of California to Manage  

Broader source: Energy.gov (indexed) [DOE]

Contract to the University of California Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory Energy Department Awards Contract to the University of California to Manage and Operate Lawrence Berkeley National Laboratory April 19, 2005 - 12:11pm Addthis WASHINGTON, DC -- The Department of Energy (DOE) has awarded a new five-year contract to the University of California to manage and operate its Lawrence Berkeley National Laboratory (LBNL). The award is the result of the first competition of the management and operating (M&O) contract for the laboratory since its inception. The value of the new five-year contract is an estimated $2.3 billion. Berkeley Lab's $469 million annual budget is funded by the department's Office of Science, other DOE programs, as well as other government agencies

396

Molecular Structures of Polymer/Sulfur Composites for Lithium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long Cycle Life. Molecular Structures of PolymerSulfur Composites for Lithium-Sulfur Batteries with Long...

397

Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Direct Evidence of Lithium-Induced Atomic Ordering in Amorphous TiO2 Nanotubes . Abstract: In this paper,...

398

Promises and Challenges of Lithium- and Manganese-Rich Transition...  

Broader source: Energy.gov (indexed) [DOE]

Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide Cathodes Promises and Challenges of Lithium- and Manganese-Rich Transition-Metal Layered-Oxide...

399

Development of Large Format Lithium Ion Cells with Higher Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE...

400

Mitigating Performance Degradation of High-Energy Lithium-Ion...  

Broader source: Energy.gov (indexed) [DOE]

Mitigating Performance Degradation of High-Energy Lithium-Ion Cells Mitigating Performance Degradation of High-Energy Lithium-Ion Cells 2013 DOE Hydrogen and Fuel Cells Program and...

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

402

Shell Model for Atomistic Simulation of Lithium Diffusion in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Shell Model for Atomistic Simulation of Lithium Diffusion in Mixed MnTi Oxides. Abstract: Mixed...

403

Microplasticity and fatigue of some magnesium-lithium alloys  

Science Journals Connector (OSTI)

Cyclic stress-strain curves have been obtained for a series of magnesium-lithium alloys with lithium contents up to 12. 5wt%. The ... hardening exponents for stresses leading to failure in excess of 104...cycles ...

R. E. Lee; W. J. D. Jones

1974-03-01T23:59:59.000Z

404

Lithium-ion batteries having conformal solid electrolyte layers  

DOE Patents [OSTI]

Hybrid solid-liquid electrolyte lithium-ion battery devices are disclosed. Certain devices comprise anodes and cathodes conformally coated with an electron insulating and lithium ion conductive solid electrolyte layer.

Kim, Gi-Heon; Jung, Yoon Seok

2014-05-27T23:59:59.000Z

405

Nature of Bridging Bonds in Lithium and Potassium Acetate Dimers  

Science Journals Connector (OSTI)

The structures of lithium and potassium acetates were studied by the RHF/6-31G*...3COOLi)2 and (CH3COOK)2 are electrostatic in nature. The bridging lithium bond is intermediate between hydrogen and ionic, ... of ...

I. A. Panteleev; S. G. Semenov; D. N. Glebovskii

406

Loading of emulsions stacks with aqueous solutions of lithium acetate  

Science Journals Connector (OSTI)

It has been shown that thick pellicles can be loaded with lithium acetate solutions still maintaining all the desirable geometrical ... purpose of the method, that of introducing lithium atoms in the emulsion, th...

D. H. Davis; R. Levi Setti; M. Raymund; G. Tomasini

1962-11-01T23:59:59.000Z

407

Lithium carbide is prospective material for breeder of fusion reactor  

Science Journals Connector (OSTI)

It is shown that lithium carbide is a prospective material for breeder of fusion reactor. The lithium carbide equivalent dose rate reaches...?5...Sv/h) one minute after the irradiation with fusion reactor neutron...

M. V. Alenina; V. P. Kolotov; Yu. M. Platov

2014-03-01T23:59:59.000Z

408

California Air Resources Board | Open Energy Information  

Open Energy Info (EERE)

Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: http:...

409

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

the California Energy Commission (CEC) and the Californiaby the California Energy Commission and the S.D. Bechtelin several California Energy Commission studies, the total

2011-01-01T23:59:59.000Z

410

Diesel Use in California | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use in California Diesel Use in California 2002 DEER Conference Presentation: California Energy Commission 2002deerboyd.pdf More Documents & Publications Reducing Petroleum...

411

Chino, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, California. It falls under California's 42nd congressional district.12 Registered Energy Companies in Chino, California Inland Empire Utilities Agency IEUA...

412

Energy Incentive Programs, California | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California Energy Incentive Programs, California Updated August 2013 What public-purpose-funded energy efficiency programs are available in my state? California's restructuring law...

413

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-002328: Categorical Exclusion Determination Community Renewable Energy Deployment - Sacramento Municipal Utility District (SMUD): Solar Highways CX(s) Applied: A9 Date: 05/18/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 18, 2010 CX-002326: Categorical Exclusion Determination Community Renewable Energy Deployment - Sacramento Municipal Utility District (SMUD): BLT Anaerobic Digester Date: 05/18/2010 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 17, 2010 CX-002554: Categorical Exclusion Determination California-City-Hemet CX(s) Applied: B1.32, A1, A9, A11, B5.1 Date: 05/17/2010 Location(s): Hemet, California Office(s): Energy Efficiency and Renewable Energy

414

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 17, 2011 March 17, 2011 CX-005396: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - California-City-Escondido CX(s) Applied: A9, A11, B1.32, B5.1 Date: 03/17/2011 Location(s): Escondido, California Office(s): Energy Efficiency and Renewable Energy March 17, 2011 CX-005395: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant - California-City-Compton CX(s) Applied: A9, A11, B2.5, B5.1 Date: 03/17/2011 Location(s): Compton, California Office(s): Energy Efficiency and Renewable Energy March 16, 2011 Disneyland's Dry Cleaning Gets an Energy Efficient Upgrade As the provider of laundry and dry cleaning services for Disneyland Resort's costumes and hospitality supply items, L&N Costume and Linen Service knows a little something about both quantity and quality.

415

California | OpenEI  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 92, and contains only the reference case. The data is broken down into electric power sector, cumulative planned additions,cumulative unplanned additions,cumulative retirements, end-use sector, electricity sales, net energy for load, generation by fuel type and price by service category. Source EIA Date Released August 10th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO California EIA Electric Power projections Data application/vnd.ms-excel icon AEO2011: Electric Power Projections for EMM Region - Western Electricity Coordinating Council / California- Reference Case (xls, 259.5 KiB)

416

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program '''''Note: This program was modified by AB 2249, signed in September 2012. The bill allows for non-residential solar pool heating to qualify for incentives, and requires program administrators to modify their programs accordingly by July 1, 2013. Residential solar pool heating will continue to be ineligible for incentives. ''''' October 16, 2013 California Solar Initiative - Single-Family Affordable Solar Housing (SASH) Program The California Solar Initiative (CSI) provides financial incentives for installing solar technologies through a variety of smaller sub-programs. Of the $3.2 billion in total funding for the CSI, $216 million has been set aside for programs to help fund photovoltaic (PV) installations on

417

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2009 2, 2009 CX-000025: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Renewable Energy Technologies (Wind) on Government Buildings CX(s) Applied: B5.1, B3.6, A1 Date: 11/02/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000024: Categorical Exclusion Determination Cortina Rancheria of Wintun Indians Energy Efficiency Retrofits CX(s) Applied: B5.1, B2.5, A1 Date: 11/02/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy November 2, 2009 CX-000171: Categorical Exclusion Determination California City Sacramento CX(s) Applied: A9, A11, B5.1 Date: 11/02/2009 Location(s): Sacramento, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 27, 2009

418

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4, 2011 4, 2011 CX-005938: Categorical Exclusion Determination Roseville Elverta (RSC-ELV) Optical Ground Wire Replacement Project CX(s) Applied: B4.6, B4.7 Date: 05/04/2011 Location(s): Sacramento, California Office(s): Western Area Power Administration-Sierra Nevada Region May 2, 2011 The Gale Ranch Middle School of San Ramon, CA, received first place at the 2011 National Science Bowl. | Energy Department Image | Photo by Dennis Brack, Contractor California Schools Sweep the 2011 National Science Bowl The Mira Loma High School of Sacramento, California, and the Gale Ranch Middle School of San Ramon, California, beat out 1,800 sciences teams from across the country to become the 2011 National Science Bowl champions today. May 2, 2011 CX-005745: Categorical Exclusion Determination

419

CALIFORNIA ENERGY Project Brochures  

E-Print Network [OSTI]

the integrated design, construction, and operation of building systems. The Integrated Energy SystemsCALIFORNIA ENERGY COMMISSION Project Brochures Integrated Energy Systems: Productivity and Building of a larger research effort called Integrated Energy Systems: Productivity and Building Science Program

420

California Energy Commission PRELIMINARY  

E-Print Network [OSTI]

California Energy Commission PRELIMINARY STATE ENERGY PROGRAM GUIDELINES JULY 16, 2009 CEC-150 Recovery and Reinvestment Act State Energy Program Guidelines 5 A. Background ....................................................................................................................... 12 R. Reallocation of Funds

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

California Energy Commission REGULATIONS  

E-Print Network [OSTI]

California Energy Commission REGULATIONS NONRESIDENTIAL BUILDING ENERGY Office Manager High Performance Buildings and Standards Development Office Dave Ashuckian Deputy Director Efficiency and Renewable Energy Division Robert Oglesby Executive Director DISCLAIMER

422

San Diego County, California  

Broader source: Energy.gov [DOE]

Location: San Diego County, CaliforniaSeed Funding: $3.9 million—a portion of Los Angeles County's $30 million fundingTarget Building Types: Residential (single-family and multifamily)Website:...

423

San Jose, California  

Broader source: Energy.gov [DOE]

Location: Hillview-TOCKNA community in San Jose, CaliforniaSeed Funding: $750,000—a portion of Los Angeles County's $30 million fundingTarget Building Types: Residential (single-family)Learn More...

424

Sonoma County, California  

Broader source: Energy.gov [DOE]

Location: Town of Windsor in Sonoma County, CaliforniaSeed Funding: $665,000—a portion of Los Angeles County's $30 million fundingTarget Building Types: Residential (single-family, multifamily...

425

CALIFORNIA ENERGY GRANT SOLICITATION  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GRANT SOLICITATION Alternative and Renewable Fuel and Vehicle Energy Commission (Energy Commission) is seeking to fund projects that establish infrastructure necessary to store, distribute and dispense the following alternative transportation fuels: · Electricity, · Ethanol

426

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 1, 2002 April 1, 2002 EA-1363: Final Environmental Assessment California Department of Food and Agriculture Curly Top Virus Control Program December 5, 2001 EA-1391: Final Environmental Assessment Environmental Assessment for Presidential Permit Applications for Baja California, Inc. and Sempra Energy Resources December 5, 2001 EA-1391: Finding of No Significant Impact Baja California Power Inc. and Sempra Energy Resources September 30, 2001 EA-1383: Final Environmental Assessment Amendment of Presidential Permit (PP-68) San Diego Gas & Electric Company for Interconnection of Otay Mesa Generating Project to Miguel-Tijuana 230 kV Transmission Line San Diego, California September 24, 2001 EA-1383: Finding of No Significant Impact Amendment of Presidential Permit (PP-68) for San Diego Gas and Electric

427

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

25, 2010 25, 2010 CX-000899: Categorical Exclusion Determination "Fish-Friendly" Hydropower Turbine Development and Deployment: Phase II Preliminary Engineering and Model Testing CX(s) Applied: A9, B3.6 Date: 02/25/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 24, 2010 CX-000898: Categorical Exclusion Determination 20 Percent Wind by 2030: Overcoming the Challenges CX(s) Applied: A9, A11 Date: 02/24/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 23, 2010 CX-000925: Categorical Exclusion Determination Sustainable Hydrogen Fueling Station, California State University, Los Angeles CX(s) Applied: B5.1 Date: 02/23/2010 Location(s): Los Angeles, California

428

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5, 2009 5, 2009 CX-000591: Categorical Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12/15/2009 Location(s): California Office(s): Advanced Research Projects Agency - Energy December 15, 2009 CX-000235: Categorical Exclusion Determination California City Fresno CX(s) Applied: A9, A11, B5.1 Date: 12/15/2009 Location(s): Fresno, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office December 14, 2009 CX-001247: Categorical Exclusion Determination Biodiesel Tank Installation, Solar Installations, and Home Upgrades CX(s) Applied: A1, A9, A11, B3.6, B5.1 Date: 12/14/2009 Location(s): Chula Vista, California Office(s): Energy Efficiency and Renewable Energy December 14, 2009

429

Lawrence Berkeley National Laboratory Overview  

Broader source: Energy.gov (indexed) [DOE]

Berkeley National Laboratory Berkeley National Laboratory Overview Ashok Gadgil Division Director Environmental Energy Technologies Division May 2011 | LBNL Overview | 2 Berkeley Lab Mission Managed by the University of California for the United States Department of Energy * Solve the most pressing and profound scientific problems facing humankind - Basic science for a secure energy future - Understand living systems to improve the environment and energy supply - Understand matter and energy in the universe * Build and safely operate world-class scientific facilities * Train the next generation of scientists and engineers | LBNL Overview | 3 Founded on the Berkeley campus in 1931, moved to the current site in 1940 | LBNL Overview | 4 Lawrence Introduces Big Team Science LBNL: The First DOE National Laboratory

430

Electrolytes - R&D for Advanced Lithium Batteries. Interfacial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Electrolytes - R&D for Advanced Lithium Batteries. Interfacial Behavior of Electrolytes Interfacial Behavior of Electrolytes...

431

Methods for making lithium vanadium oxide electrode materials  

DOE Patents [OSTI]

A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

Schutts, Scott M. (Menomonie, WI); Kinney, Robert J. (Woodbury, MN)

2000-01-01T23:59:59.000Z

432

California utilities partner with Lawrence Livermore to improve state's  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2-12-04 2-12-04 For immediate release: 12/20/2012 | NR-12-12-04 California utilities partner with Lawrence Livermore to improve state's energy grid Lynda L Seaver, LLNL, (925) 423-3103, seaver1@llnl.gov Printer-friendly California utilities will use the advanced technologies and expertise of Lawrence Livermore National Laboratory to improve the efficiency, security and safety of the state's utility systems under an agreement approved today by the California Public Utilities Commission (CPUC). The CPUC approved funding of a five-year research and development agreement between Pacific Gas and Electric Company, Southern California Edison Company and San Diego Gas and Electric Company, and Lawrence Livermore (LLNL) that will provide the utilities with access to LLNL technological

433

Preliminary Notice of Violation issued to University of California |  

Broader source: Energy.gov (indexed) [DOE]

Violation issued to University of California Violation issued to University of California Preliminary Notice of Violation issued to University of California The Department of Energy (DOE) has completed its investigation of the unauthorized reproduction and removal of classified matter from the Los Alamos National Laboratory (LANL) discovered in October 2006. Based on investigation of the incident and evaluation of the evidence in this matter, and in consideration of information you and members of your staff provided during an enforcement conference held on April 13,2007, and supplemental written material submitted by the University of California on April 30, 2007, I am issuing the enclosed Preliminary Notice of Violation (PNOV), in accordance with 10 C.F.R. § 824.6. A summary of the April 13 enforcement conference is also enclosed.

434

Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures  

Science Journals Connector (OSTI)

The capturing process for carbon dioxide over porous solid adsorbents such as ... resonance (NMR), and surface area. The capturing of carbon dioxide over lithium silicate, lithium aluminate, ... as exposure time,...

P. V. Korake; A. G. Gaikwad

2011-06-01T23:59:59.000Z

435

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

26, 2010 26, 2010 CX-003250: Categorical Exclusion Determination California-Tribe-Redwood Valley Rancheria of Pomo Indians CX(s) Applied: A9, B2.5, B5.1 Date: 07/26/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003249: Categorical Exclusion Determination California-Tribe-San Pasqual Band of Mission Indians CX(s) Applied: A9, A11, B5.1 Date: 07/26/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy July 26, 2010 CX-003197: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 07/26/2010 Location(s): Pomona, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 22, 2010 Byron Washom, Director of Strategic Energy Initiatives at the University of California at San Diego, poses with an electric vehicle and some of the solar panels that cover UCSD's campus.| Photo courtesy of UCSD

436

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

13, 2010 13, 2010 CX-001226: Categorical Exclusion Determination End Station Test Beam CX(s) Applied: B3.10 Date: 03/13/2010 Location(s): California Office(s): Science, Stanford Linear Accelerator Site Office March 12, 2010 CX-006104: Categorical Exclusion Determination California-City-Temecula CX(s) Applied: A1, A9, A11, B1.32, B2.5, B5.1 Date: 03/12/2010 Location(s): Temecula, California Office(s): Energy Efficiency and Renewable Energy March 11, 2010 CX-006099: Categorical Exclusion Determination California-City-Pomona CX(s) Applied: A9, A11, B1.32, B5.1 Date: 03/11/2010 Location(s): Pomona, California Office(s): Energy Efficiency and Renewable Energy March 10, 2010 CX-006098: Categorical Exclusion Determination California-City-Lynwood CX(s) Applied: A9, A11, B2.5, B5.1 Date: 03/10/2010

437

EFFECTS OF NOISE ON SEALS AND SEA LIONS: LABORATORY APPROACHES  

E-Print Network [OSTI]

169 EFFECTS OF NOISE ON SEALS AND SEA LIONS: LABORATORY APPROACHES DAVID KASTAK Long Marine, and the evolutionary hiology of marine carnivores in general. Newer, more rapid technologies and psychophysical pinniped subjects reside at Long Marine Laboratory at the University of California, Santa Cruz, where

Reichmuth, Colleen

438

Use of Lithium Hexafluoroisopropoxide as a Mild Base for  

E-Print Network [OSTI]

Use of Lithium Hexafluoroisopropoxide as a Mild Base for Horner-Wadsworth-Emmons Olefination The weak base lithium 1,1,1,3,3,3-hexafluoroisopropoxide (LiHFI) is shown to be highly effective of base-sensitive substrates, leading to the discovery that lithium 1,1,1,3,3,3-hexafluoroisopropoxide (Li

439

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR  

E-Print Network [OSTI]

RESONANT FARADAY ROTATION IN A HOT LITHIUM VAPOR By SCOTT RUSSELL WAITUKAITIS A Thesis Submitted: #12;Abstract I describe a study of Faraday rotation in a hot lithium vapor. I begin by dis- cussing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The Lithium Oven and Solenoid . . . . . . . . . . . . . . . . . 7 3 Theoretical Framework

Cronin, Alex D.

440

Proposal on Lithium Wall Experiment (LWX) on PBXM 1  

E-Print Network [OSTI]

Proposal on Lithium Wall Experiment (LWX) on PBX­M 1 Leonid E. Zakharov, Princeton University; OUTLINE 1. Mini­conference on Lithium walls and low recycling regime. 2. PBX­M Capabilities. 3. Motivation "Lithium covered walls and low recycling regimes in toka­ maks". APS meeting, October 23­27, 2000, Quebec

Zakharov, Leonid E.

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide  

E-Print Network [OSTI]

with the excess lithium acetylide and a 1:3 (alkox- ide-rich) mixed tetramer. The stabilities of the mixedMechanism of Acylation of Lithium Phenylacetylide with a Weinreb Amide Bo Qu and David B. CollumVersity, Ithaca, New York 14853-1301 dbc6@cornell.edu ReceiVed June 14, 2006 Additions of lithium phenylacetylide

Collum, David B.

442

Lithium Ion Batteries DOI: 10.1002/anie.201103163  

E-Print Network [OSTI]

Lithium Ion Batteries DOI: 10.1002/anie.201103163 LiMn1Ă?xFexPO4 Nanorods Grown on Graphene Sheets for Ultrahigh- Rate-Performance Lithium Ion Batteries** Hailiang Wang, Yuan Yang, Yongye Liang, Li-Feng Cui cathode materials for rechargeable lithium ion batteries (LIBs) owing to their high capacity, excellent

Cui, Yi

443

Mechanical Properties of Lithium-Ion Battery Separator Materials  

E-Print Network [OSTI]

Mechanical Properties of Lithium-Ion Battery Separator Materials Patrick Sinko B.S. Materials Science and Engineering 2013, Virginia Tech John Cannarella PhD. Candidate Mechanical and Aerospace and motivation ­ Why study lithium-ion batteries? ­ Lithium-ion battery fundamentals ­ Why study the mechanical

Petta, Jason

444

Lithium intercalated graphite : experimental Compton profile for stage one  

E-Print Network [OSTI]

L-301 Lithium intercalated graphite : experimental Compton profile for stage one G. Loupias, J différence des profils Compton est compatible avec un transfert total de l'électron de conduction du lithium électronique due à l'insertion. Abstract. 2014 Electron momentum distribution of the first stage lithium

Paris-Sud XI, Université de

445

Lithium Niobate Devices in Switching and Multiplexing [and Discussion  

Science Journals Connector (OSTI)

28 September 1989 research-article Lithium Niobate Devices in Switching and Multiplexing...Thylen Integrated-optics devices in lithium niobate have reached a significant maturity...in fibre-optic transmission systems, lithium niobate devices currently offer the only...

1989-01-01T23:59:59.000Z

446

LITHIUM--2002 46.1 By Joyce A. Ober  

E-Print Network [OSTI]

recycling operation in Trail, British Columbia, Canada. Another ToxCo subsidiary, Ozark Fluorine Specialties, the concentration of the brine increases through solar evaporation to 6,000 ppm lithium. When the lithium chloride carbonate production. Australia, Canada, and Zimbabwe were important sources of lithium concentrates

447

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect (OSTI)

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges: (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density. (C) 2009 Elsevier B.V. All rights reserved

Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Gates, D. [Princeton Plasma Physics Laboratory (PPPL); Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Menard, J. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Ono, M. [Princeton Plasma Physics Laboratory (PPPL); Paul, S. [Princeton Plasma Physics Laboratory (PPPL); Raman, R. [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Ross, P. W. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. [Lawrence Livermore National Laboratory (LLNL); Stevenson, T. [Princeton Plasma Physics Laboratory (PPPL); Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Wilgen, John B [ORNL; Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL)

2009-01-01T23:59:59.000Z

448

Evaporated Lithium Surface Coatings in NSTX  

SciTech Connect (OSTI)

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: 1) plasma density reduction as a result of lithium deposition; 2) suppression of ELMs; 3) improvement of energy confinement in a low-triangularity shape; 4) improvement in plasma performance for standard, high-triangularity discharges; 5) reduction of the required HeGDC time between discharges; 6) increased pedestal electron and ion temperature; 7) reduced SOL plasma density; and 8) reduced edge neutral density.

Kugel, H. W.; Mansfield, D.; Maingi, R.; Bel, M. G.; Bell, R. E.; Allain, J. P.; Gates, D.; Gerhardt, S.; Kaita, R.; Kallman, J.; Kaye, S.; LeBlanc, B.; Majeski, R.; Menard, J.; Mueller, D.; Ono, M.

2009-04-09T23:59:59.000Z

449

Evaporated lithium surface coatings in NSTX.  

SciTech Connect (OSTI)

Two lithium evaporators were used to evaporate more than 100 g of lithium on to the NSTX lower divertor region. Prior to each discharge, the evaporators were withdrawn behind shutters, where they also remained during the subsequent HeGDC applied for periods up to 9.5 min. After the HeGDC, the shutters were opened and the LITERs were reinserted to deposit lithium on the lower divertor target for 10 min, at rates of 10-70 mg/min, prior to the next discharge. The major improvements in plasma performance from these lithium depositions include: (1) plasma density reduction as a result of lithium deposition; (2) suppression of ELMs; (3) improvement of energy confinement in a low-triangularity shape; (4) improvement in plasma performance for standard, high-triangularity discharges; (5) reduction of the required HeGDC time between discharges; (6) increased pedestal electron and ion temperature; (7) reduced SOL plasma density; and (8) reduced edge neutral density.

Zakharov, L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gates, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Menard, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Schneider, H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mueller, D. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wampler, William R.; Roquemore, A. L. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kallman, Jeffrey K. (Princeton Plasma Physics Laboratory, Princeton, NJ); Sabbagh, S. (Columbia University, New York, NY); LeBlanc, B. (Princeton Plasma Physics Laboratory, Princeton, NJ); Raman, R. (University of Washington, Seattle, WA); Ono, M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Wilgren, J. (Oak Ridge National Laboratory, Oak Ridge, TN); Allain, J.P. (Purdue University, West Lafayette, IN); Timberlake, J. (Princeton Plasma Physics Laboratory, Princeton, NJ); Stevenson, T. (Princeton Plasma Physics Laboratory, Princeton, NJ); Ross, P. W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Majeski, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kugel, Henry W. (Princeton Plasma Physics Laboratory, Princeton, NJ); Skinner, C. H. (Princeton Plasma Physics Laboratory, Princeton, NJ); Gerhardt, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Paul, S. (Princeton Plasma Physics Laboratory, Princeton, NJ); Bell, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaye, S. M. (Princeton Plasma Physics Laboratory, Princeton, NJ); Kaita, R. (Princeton Plasma Physics Laboratory, Princeton, NJ); Soukhanovskii, V. (Lawrence Livermore National Laboratory, Livermore, CA); Bell, Michael G. (Princeton Plasma Physics Laboratory, Princeton, NJ); Mansfield, D. (Princeton Plasma Physics Laboratory, Princeton, NJ)

2008-08-01T23:59:59.000Z

450

Evaluation of lithium as a toxicant and the modifying effect of sodium  

SciTech Connect (OSTI)

Routine compliance tests conducted for a groundwater treatment facility at the Y-12 Plant on the Department of Energy`s (DOE) Oak Ridge Reservation (ORR), TN, showed that the effluent was acutely toxic to Ceriodaphnia dubia and fathead minnow (Pimephales promelas) larvae. An evaluation of suspected contaminants revealed that increased toxicity coincided with increased concentrations of lithium. Lithium is a light, strong metal that is used in DOE operations, including fusion weapons and fission reactors. Little has been published about lithium toxicity. Toxicity tests were conducted with fathead minnows and C. dubia using lithium chloride and lithium tetraborate. Dilute mineral water (DMW) or the receiving stream water (East Fork Poplar Creek) was used as the dilution water in the toxicity evaluation. A concentration of 1 mg Li/L in DMW reduced the survival of both test species; 0.5 mg Li/L in DMW reduced C. dubia reproduction and minnow growth. Sodium appears to influence the toxicity of Li; the metal was six times more toxic in the low-sodium DMW than in stream water containing 30 mg Na/L. Tests with LiCl in combination with NaCl and NA{sub 2}SO{sub 4} demonstrated that the presence of sodium reduced the toxicity of Li to C. dubia. In laboratory tests with a snail (Elimia clavaeformis) common on the ORR, the feeding rate declined in 0.15 mg Li/L. Because Li has also been demonstrated to be toxic to several plant species, tests with LiCi were also conducted using buttercrunch lettuce (Lactuca saliva). The EC{sub 50} for seed growth after 8 d incubation was 37.5 mg Li/L. These findings are significant because of widespread industrial use and potential accumulation of Li in soils.

Kszos, L.A.; Stewart, A.J.; O`Reilly, S.E. [Oak Ridge National Lab., TN (United States)

1995-12-31T23:59:59.000Z

451

Laboratory Directors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. Agnew...

452

MICROSYSTEMS LABORATORIES  

E-Print Network [OSTI]

15 nm MICROSYSTEMS TECHNOLOGY LABORATORIES ANNUAL RESEARCH REPORT 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MA AUGUST 2014 #12;MTL Annual Research Report 2014 Director JesĂşs A. del Alamo Project........................................................................ 47 Energy: Photovoltaics, Energy Harvesting, Batteries, Fuel Cells

Culpepper, Martin L.

453

Magnetic moment of atomic lithium  

Science Journals Connector (OSTI)

Bound-state relativistic contributions to the gJ factor of ground-state atomic lithium are calculated and compared with the experimental value gJ(Li)ge=1-(8.9±0.4)×10-6, where ge is the free-electron g factor. This comparison is taken as the basis for judging the accuracy of several different Li wave functions taken from the literature. Most of these wave functions give agreement with the experimental value within the experimental uncertainty. A more precise experimental measurement would be desirable in order to provide a more stringent test. A wave function of the restricted Hartree-Fock type, however, leads to a value which is in disagreement with the experimental value. This is attributed to the inability of the restricted Hartree-Fock function to account for the exchange polarization of the 1s2 core electrons; the latter are found to contribute about -1.2 × 10-6 to gJ(Li)ge, or about 13% of the total relativistic correction. In addition to the dominant relativistic corrections of order ?2, radiative corrections (order ?3), and nuclear-mass corrections (order ?2mM) are also calculated. An isotopic shift gJ(Li6)gJ(Li7)=1+3.0×10-11 is predicted. The experimental measurements for Li are not yet precise enough to test these higher-order corrections.

Roger A. Hegstrom

1975-02-01T23:59:59.000Z

454

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

28, 2013 28, 2013 CX-010899: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010897: Categorical Exclusion Determination Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education CX(s) Applied: A9 Date: 06/27/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010896: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 27, 2013

455

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells  

E-Print Network [OSTI]

A New Method for Quantitative Marking of Deposited Lithium via Chemical Treatment on Graphite Anodes in Lithium-Ion Cells Yvonne Krämer*[a] , Claudia Birkenmaier[b] , Julian Feinauer[a,c] , Andreas*[e] and Thomas Schleid[f] Abstract: A novel approach for the marking of deposited lithium on graphite anodes from

Schmidt, Volker

456

Southern California Channel Islands Bibliography, through 1992  

E-Print Network [OSTI]

Southern California Bight/San Pedro Basin/San Nicolas Basin/the Southern California Bight: California Basin Study: DOE (from Tanner Basin, Southern California Bight. Annu. Rep. to

Channel Islands National Marine Sanctuary

1992-01-01T23:59:59.000Z

457

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

California renewable portfolio could be about 75% variable resources from solar andCalifornia Public Utilities Commission CSP Concentrating solara direct solar fuels industry. California’s Energy Future -

2011-01-01T23:59:59.000Z

458

Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog Analysis of Aerosol Indirect Effects in California Coastal Stratus and Fog Miller, Mark Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Bartholomew, Mary Jane Brookhaven National Laboratory Daum, Peter Brookhaven National Laboratory Dunn, Maureen Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Liu, Yangang Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Andrews, Betsy NOAA/CMDL Ogren, John NOAA/CMDL Turner, David University of Wisconsin-Madison Category: Field Campaigns Impacts of aerosol indirect effects are considered too uncertain for inclusion in reports issued by the Intergovernmental Panel on Climate Change. A major reason for this uncertainty is an insufficient physical

459

Phosphazene Based Additives for Improvement of Safety and Battery Lifetimes in Lithium-Ion Batteries  

SciTech Connect (OSTI)

There need to be significant improvements made in lithium-ion battery technology, principally in the areas of safety and useful lifetimes to truly enable widespread adoption of large format batteries for the electrification of the light transportation fleet. In order to effect the transition to lithium ion technology in a timely fashion, one promising next step is through improvements to the electrolyte in the form of novel additives that simultaneously improve safety and useful lifetimes without impairing performance characteristics over wide temperature and cycle duty ranges. Recent efforts in our laboratory have been focused on the development of such additives with all the requisite properties enumerated above. We present the results of the study of novel phosphazene based electrolytes additives.

Mason K Harrup; Kevin L Gering; Harry W Rollins; Sergiy V Sazhin; Michael T Benson; David K Jamison; Christopher J Michelbacher

2011-10-01T23:59:59.000Z

460

David Robertson Argonne National Laboratory Chemical Sciences and Engineering Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Robertson Robertson Argonne National Laboratory Chemical Sciences and Engineering Division 9700 South Cass Avenue, Building 205 Argonne, IL 60439-4837 Phone: 630/252-7906; fax: 630/972-4468 e-mail: robertsond@anl.gov Professional Experience * May 2010-present: Argonne National Laboratory, Argonne, IL: Engineering Specialist, Electrochemical Analysis and Diagnostics Laboratory, Testing of advanced battery technologies, DOE contract deliverables, benchmarking of foreign battery technologies * July 2007-May 2010: LGCPI, Troy, MI: Electrical Engineering Manager, Lead the development, validation and integration of Battery Management and Control systems, electrical interfaces, wiring systems and sensing interfaces of large format lithium ion batteries for automotive and other applications.

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lithium metal reduction of plutonium oxide to produce plutonium metal  

DOE Patents [OSTI]

A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

Coops, Melvin S. (Livermore, CA)

1992-01-01T23:59:59.000Z

462

California: California's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of California.

Not Available

2013-03-01T23:59:59.000Z

463

STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION  

E-Print Network [OSTI]

a comparison of the energy saving impacts of residential and nonresidential building energy efficiency measures concludes that California's residential and nonresidential energy standards exceed the energy savingsSTATE OF CALIFORNIA - NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION 151 6 NINTH STREET

464

California Energy Commission California Leadership on Land Use  

E-Print Network [OSTI]

% Reduction ~341 MMTCO2E #12;California Energy Commission CA Greenhouse Gas Emissions 2004 Commercial 3 Reduce carbon content of the fuel Reduce the miles of travel #12;California Energy Commission Energy Billion in efficiency by 2030 #12;California Energy Commission Energy EfficiencyEnergy Efficiency Per

465

Lithium-based Technologies | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lithium-based Technologies Lithium-based Technologies Lithium-based Technologies Y-12's 60 years of rich lithium operational history and expertise make it the clear choice for deployment of new lithium-based technologies and capabilities. There is no other U.S. site, government or commercial, that comes close to the breadth of Y-12's lithium expertise and capabilities. The Y-12 National Security Complex supplies lithium, in unclassified forms, to customers worldwide through the DOE Office of Science, Isotope Business Office. Historically, the typical order of 6Li was only gram quantities used in research and development. However, over the past three years demand has increased steadily with typical orders of around 10-20 kg each. Such increase in demand is a direct result of the use of

466

Lithium Surface Coatings for Improved Plasma Performance in NSTX  

SciTech Connect (OSTI)

NSTX high-power divertor plasma experiments have shown, for the first time, significant and frequent benefits from lithium coatings applied to plasma facing components. Lithium pellet injection on NSTX introduced lithium pellets with masses 1 to 5 mg via He discharges. Lithium coatings have also been applied with an oven that directed a collimated stream of lithium vapor toward the graphite tiles of the lower center stack and divertor. Lithium depositions from a few mg to 1 g have been applied between discharges. Benefits from the lithium coating were sometimes, but not always seen. These improvements sometimes included decreases plasma density, inductive flux consumption, and ELM frequency, and increases in electron temperature, ion temperature, energy confinement and periods of MHD quiescence. In addition, reductions in lower divertor D, C, and O luminosity were measured.

Kugel, H W; Ahn, J -W; Allain, J P; Bell, R; Boedo, J; Bush, C; Gates, D; Gray, T; Kaye, S; Kaita, R; LeBlanc, B; Maingi, R; Majeski, R; Mansfield, D; Menard, J; Mueller, D; Ono, M; Paul, S; Raman, R; Roquemore, A L; Ross, P W; Sabbagh, S; Schneider, H; Skinner, C H; Soukhanovskii, V; Stevenson, T; Timberlake, J; Wampler, W R

2008-02-19T23:59:59.000Z

467

Federal Laboratory Consortium | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Laboratory Consortium The Federal Laboratory Consortium for Technology Transfer (FLC) is the nationwide network of federal laboratories that provides the forum to develop...

468

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

469

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode  

Science Journals Connector (OSTI)

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode ... To the best of our knowledge, complete, graphene-based, lithium ion batteries having performances comparable with those offered by the present technology are rarely reported; hence, we believe that the results disclosed in this work may open up new opportunities for exploiting graphene in the lithium-ion battery science and development. ... A full Li-ion battery (Figure 4a) is obtained by coupling the Cu-supported graphene nanoflake anode with a lithium iron phosphate, LiFePO4, that is, a cathode commonly used in commercial batteries. ...

Jusef Hassoun; Francesco Bonaccorso; Marco Agostini; Marco Angelucci; Maria Grazia Betti; Roberto Cingolani; Mauro Gemmi; Carlo Mariani; Stefania Panero; Vittorio Pellegrini; Bruno Scrosati

2014-07-15T23:59:59.000Z

470

DOE and NASA Reach Cleanup Agreements with the State of California for the  

Broader source: Energy.gov (indexed) [DOE]

NASA Reach Cleanup Agreements with the State of California NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory DOE and NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory December 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy and NASA both signed Administrative Orders on Consent (AOC) with the California Environmental Protection Agency (Cal EPA) today that define the process for characterization and the cleanup end-state for portions of the Santa Susana Field Laboratory (SSFL). The agreements come after more than 10 months of negotiations and extensive public comment on the conceptual framework for cleanup outlined in the Agreement in Principle and additional public comment on the legally enforceable process and procedures in the draft Administrative Order on

471

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion  

Science Journals Connector (OSTI)

Muon Spin Relaxation Studies of Lithium Nitridometallate Battery Materials: Muon Trapping and Lithium Ion Diffusion ... The muons themselves are quasi-static, most probably located in a 4h site between the [Li2N] plane and the Li(1)/Ni layer. ... The initial fall in ? results from an increase in muon hopping as the temperature is raised, while the subsequent rise originates from an increasing proportion of trapped and therefore static muons. ...

Andrew S. Powell; James S. Lord; Duncan H. Gregory; Jeremy J. Titman

2009-10-27T23:59:59.000Z

472

Clean Electricity Initiatives in California  

U.S. Energy Information Administration (EIA) Indexed Site

* Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement...

473

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

19, 2010 19, 2010 CX-000858: Categorical Exclusion Determination Joint BioEnergy Institute Lease and Operation of Greenhouses at University of California at Davis CX(s) Applied: A7, B1.3, B1.15, B3.6 Date: 01/19/2010 Location(s): Davis, California Office(s): Science, Berkeley Site Office January 14, 2010 CX-000848: Categorical Exclusion Determination 25A3191 - Large-Scale Energy Reductions through Sensors, Feedback, and Information Technology CX(s) Applied: B3.6, B5.1 Date: 01/14/2010 Location(s): California Office(s): Advanced Research Projects Agency - Energy January 7, 2010 Alternative Fuels Created From Unlikely Sources Two companies work to create cost-effective biomass fuels. December 31, 2009 CX-000277: Categorical Exclusion Determination Energy Conservation Assistance Account Loan Projects

474

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-003843: Categorical Exclusion Determination Energy Efficiency Analysis and Upgrade Program for County Facilities - County of San Mateo CX(s) Applied: A9, A11, B5.1 Date: 09/02/2010 Location(s): County of San Mateo, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office September 2, 2010 CX-003649: Categorical Exclusion Determination California - City - Richmond CX(s) Applied: A1, A9, A11, B2.5, B5.1 Date: 09/02/2010 Location(s): Richmond, California Office(s): Energy Efficiency and Renewable Energy September 2, 2010 USDA and DOE Partnership Seeks to Develop Better Plants for Bioenergy WASHINGTON, Sept. 2, 2010 -- Energy Secretary Steven Chu and Agriculture Secretary Tom Vilsack today announced research awards under a joint

475

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 Department of Energy Announces $40 Million to Develop the Next Generation Nuclear Plant WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced selections for the award of approximately $40 million in total to two teams led by Pittsburgh-based Westinghouse Electric Co. March 5, 2010 CX-006103: Categorical Exclusion Determination California-City-San Clemente CX(s) Applied: A1, A9, A11, B1.32, B5.1 Date: 03/05/2010 Location(s): San Clemente, California Office(s): Energy Efficiency and Renewable Energy March 5, 2010 CX-001054: Categorical Exclusion Determination Aquantis 2.5 Megawatt Ocean Current Generation Device CX(s) Applied: A9, B3.6 Date: 03/05/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

476

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

January 10, 2011 January 10, 2011 Vintage DOE: What is Fusion This edition of vintage DOE pulls a discussion of nuclear fusion from the video archive. January 10, 2011 CX-004965: Categorical Exclusion Determination California-City-Walnut Creek CX(s) Applied: A1, A9, A11, B5.1 Date: 01/10/2011 Location(s): Walnut Creek, California Office(s): Energy Efficiency and Renewable Energy January 5, 2011 CX-004886: Categorical Exclusion Determination Copper Indium Gallium Sulfur-Selenide (CIGSS) Manufacturing Plant CX(s) Applied: B1.31 Date: 01/05/2011 Location(s): San Jose, California Office(s): Loan Guarantee Program Office December 17, 2010 EIS-0455: Notice of Adoption of an Environmental Impact Statement Genesis Solar Energy Project, Riverside County, CA December 17, 2010 EIS-0403: DOE and BLM Notice of Availability of the Draft Programmatic

477

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 1, 2010 June 1, 2010 EA-1733: Final Environmental Assessment Calpine Enhanced Geothermal Systems Project June 1, 2010 CX-004881: Categorical Exclusion Determination Culvert Cleanout - Olinda-Tracy 167-3 CX(s) Applied: B1.3, B1.13 Date: 06/01/2010 Location(s): Solano County, California Office(s): Western Area Power Administration-Sierra Nevada Region June 1, 2010 CX-004880: Categorical Exclusion Determination Routine Maintenance Along TRY-CC 10/4-11/1 CX(s) Applied: B1.3, B1.13 Date: 06/01/2010 Location(s): Contra Costa County, California Office(s): Western Area Power Administration-Sierra Nevada Region June 1, 2010 CX-002765: Categorical Exclusion Determination Culvert Cleanout - Olinda Tracy 167-3 CX(s) Applied: B1.13, B1.3 Date: 06/01/2010 Location(s): Solano County, California

478

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SoCalGas - Multi-Family Residential Rebate Program SoCalGas - Multi-Family Residential Rebate Program Southern California Gas Company provides incentives to encourage the owners and managers of multi-family residential buildings to increase their energy efficiency. The program offers rebates for the installation of qualified energy-efficient products in apartment dwelling units and in the common areas of apartment and condominium complexes, and common areas of mobile home parks. Equipment must meet the efficiency standards provided on the web site.Contact Southern California Gas Company for additional information. October 16, 2013 SoCalGas - Custom Non-Residential Energy Efficiency Program Southern California Gas Company (SoCalGas) offers non-residential customers incentive programs to encourage energy efficiency. More information about

479

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-001628: Categorical Exclusion Determination Solar American Initiative Incubator- TetraSun Inc.; Back Surface Passivation for High Efficiency Crystalline Silicon Solar Cells CX(s) Applied: B3.6 Date: 04/08/2010 Location(s): Milpitas, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 7, 2010 CX-001391: Categorical Exclusion Determination San Gabriel Energy Efficiency Project CX(s) Applied: A9, B5.1 Date: 04/07/2010 Location(s): San Gabriel, California Office(s): Energy Efficiency and Renewable Energy April 7, 2010 CX-001838: Categorical Exclusion Determination County Administrative Center Solar Facility CX(s) Applied: A9, A11, B5.1 Date: 04/07/2010 Location(s): Kern County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

480

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2, 2010 2, 2010 CX-001765: Categorical Exclusion Determination San Ramon Light-Emitting Diode Street Light Conversion CX(s) Applied: B5.1 Date: 04/22/2010 Location(s): San Ramon, California Office(s): Energy Efficiency and Renewable Energy April 21, 2010 CX-001836: Categorical Exclusion Determination City of Bakersfield 1 Megawatt Solar Energy Facility at Wastewater Plant 3 CX(s) Applied: B5.1 Date: 04/21/2010 Location(s): Bakersfield, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001713: Categorical Exclusion Determination Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids CX(s) Applied: B3.1, B3.6, A9 Date: 04/20/2010 Location(s): Calipatria, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

Note: This page contains sample records for the topic "laboratory california lithium" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

8, 2010 8, 2010 CX-002558: Categorical Exclusion Determination Municipal Financing of Private Energy Efficiency Retrofits in Cooperation with Los Angeles County CX(s) Applied: A1, B5.1 Date: 04/28/2010 Location(s): Covina, California Office(s): Energy Efficiency and Renewable Energy April 28, 2010 CX-002175: Categorical Exclusion Determination U tu Utu Gwaitu Paiute Tribe Energy and Conservation Strategy and Implementation Plan CX(s) Applied: B2.5, A9, A11, B5.1 Date: 04/28/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy April 23, 2010 CX-001844: Categorical Exclusion Determination Wister CX(s) Applied: B3.1, A9 Date: 04/23/2010 Location(s): Wister, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 23, 2010

482

California | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

22, 2010 22, 2010 EIS-0439: EPA Notice of Availability of the Draft Environmental Impact Statement Rice Solar Energy Project, Riverside County, California October 22, 2010 EA-1744: Finding of No Significant Impact Brea Power II, LLC's Olinda Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas, Brea, California October 20, 2010 CX-004261: Categorical Exclusion Determination State Energy Program - National Environmental Policy Act Template Amendment CX(s) Applied: B5.1 Date: 10/20/2010 Location(s): California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office October 18, 2010 MiaSolé will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery Act tax credits.| Photo courtesy of MiaSolé

483

Onion Seed Production in California  

E-Print Network [OSTI]

Center, Imperial Valley. P R O D U C T I O N A R E A S A N D S E A S O N S Commercial seed production of California, Davis; KEITH S. MAYBERRY, University of California Cooperative Extension Farm Advisor, Imperial for onion (Allium cepa, L.) in California occurs pri- marily in the low desert of Imperial County

Bradford, Kent

484

California Energy Commission BLOCK GRANT  

E-Print Network [OSTI]

California Energy Commission BLOCK GRANT GUIDELINES (FORMULA-BASED GRANTS) ENERGY EFFICIENCY CONSERVATION BLOCK GRANT PROGRAM ADOPTED BY THE CALIFORNIA ENERGY COMMISSION OCTOBER 7, 2009 CEC-150 Grant (EECBG) Program Guidelines 1. Background The California Energy Commission1 (Energy Commission) has

485

CALIFORNIA ENERGY Residential Duct Placement  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION Residential Duct Placement: Market Barriers Market Barriers, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Prepared By: GARD Analytics, Inc. Roger Hedrick, Lead Author DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission

486

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT STATUS OF THE NATURAL GAS RESEARCH, DEVELOPMENT5002010037 #12;CALIFORNIA ENERGY COMMISSION Leah Mohney Primary Author Project Manager Steve Williams Senior was prepared by staff of the California Energy Commission. It does not necessarily represent the views

487

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT THE NATURAL GAS RESEARCH, DEVELOPMENT COMMISSION Edmund G. Brown, Jr., Governor MARCH 2012 CEC5002012084 #12;CALIFORNIA ENERGY COMMISSION of the California Energy Commission prepared this report. As such, it does not necessarily represent the views

488

California Energy Commission PROPOSED REGULATIONS  

E-Print Network [OSTI]

California Energy Commission PROPOSED REGULATIONS MARCH 2012 CEC-400-2010-004-SD3, Article 9, Sections 1680 1685 CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor #12;CALIFORNIA ENERGY COMMISSION Martha Brook Program Senior Mechanical Engineer Justin Regnier Project Manager

489

California Energy Commission STAFF REPORT  

E-Print Network [OSTI]

California Energy Commission STAFF REPORT TRANSPORTATION FUEL PRICE CASES AND DEMAND SCENARIOS and alternative fuel penetration goals of the state. Keywords: California fuel price forecasts, transportation Eggers. 2011. California Energy Commission. CEC-600-2011-001. Transportation Fuel Price Cases and Demand

490

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT  

E-Print Network [OSTI]

CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT 2006 Prepared For: California Energy Commission Yee #12;#12;v ABSTRACT Since 2001, the California Alternative Fuels Market Assessment (formerly's alternative fuels programs. It has been designed to provide a dynamic process for periodic reviews and updates

491

Sandia National Laboratories: DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, News, News & Events, SMART Grid Berkeley, California,...

492

California.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

493

Lithium: Will Short Supply Constrain Energy Technologies?  

Science Journals Connector (OSTI)

...developments have improved the storage capacity and lifetime...century. Utility electric storage-a projected 1000 units...parts per million are pumped to the surface, concentrated...area currently being pumped. Kunasz says that the...recovering lithium from seawater, although few geologists...

ALLEN L. HAMMOND

1976-03-12T23:59:59.000Z

494

Nanocarbon Networks for Advanced Rechargeable Lithium Batteries  

Science Journals Connector (OSTI)

His research focuses on energy storage and conversion with batteries, fuel cells, and solar cells. ... As an important type of secondary battery, lithium-ion batteries (LIBs) have quickly dominated the market for consumer electronics and become one of key technologies in the battery industry after their first release by Sony Company in the early 1990s. ...

Sen Xin; Yu-Guo Guo; Li-Jun Wan

2012-09-06T23:59:59.000Z

495

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

496

Thin-film Rechargeable Lithium Batteries  

DOE R&D Accomplishments [OSTI]

Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

1993-11-00T23:59:59.000Z

497

NSTX plasma response to lithium coated divertor  

SciTech Connect (OSTI)

NSTX experiments have explored lithium evaporated on a graphite divertor and other plasma-facing components in both L- and H- mode confinement regimes heated by high-power neutral beams. Improvements in plasma performance have followed these lithium depositions, including a reduction and eventual elimination of the HeGDC time between discharges, reduced edge neutral density, reduced plasma density, particularly in the edge and the SOL, increased pedestal electron and ion temperature, improved energy confinement and the suppression of ELMs in the H-mode. However, with improvements in confinement and suppression of ELMs, there was a significant secular increase in the effective ion charge Z(eff) and the radiated power in H-mode plasmas as a result of increases in the carbon and medium-Z metallic impurities. Lithium itself remained at a very low level in the plasma core, < 0.1%. Initial results are reported from operation with a Liquid Lithium Divertor (LLD) recently installed. (C) 2010 Elsevier B.V. All rights reserved.

Kugel, H. W. [Princeton Plasma Physics Laboratory (PPPL); Bell, M. G. [Princeton Plasma Physics Laboratory (PPPL); Allain, J. P. [Purdue University; Bell, R. E. [Princeton Plasma Physics Laboratory (PPPL); Ding, S. [Academia Sinica, Institute of Plasma Physics, Hefei, China; Gerhardt, S. P. [Princeton Plasma Physics Laboratory (PPPL); Jaworski, M. A. [Princeton Plasma Physics Laboratory (PPPL); Kaita, R. [Princeton Plasma Physics Laboratory (PPPL); Kallman, J. [Princeton Plasma Physics Laboratory (PPPL); Kaye, S. M. [Princeton Plasma Physics Laboratory (PPPL); LeBlanc, B. P. [Princeton Plasma Physics Laboratory (PPPL); Maingi, Rajesh [ORNL; Majeski, R. [Princeton Plasma Physics Laboratory (PPPL); Maqueda, R. J. [Princeton Plasma Physics Laboratory (PPPL); Mansfield, D.K. [Princeton Plasma Physics Laboratory (PPPL); Mueller, D. [Princeton Plasma Physics Laboratory (PPPL); Nygren, R. E. [Sandia National Laboratories (SNL); Paul, S. F. [Princeton Plasma Physics Laboratory (PPPL); Raman, R [University of Washington, Seattle; Roquemore, A. L. [Princeton Plasma Physics Laboratory (PPPL); Sabbagh, S. A. [Columbia University; Schneider, H. [Princeton Plasma Physics Laboratory (PPPL); Skinner, C. H. [Princeton Plasma Physics Laboratory (PPPL); Soukhanovskii, V. A. [Lawrence Livermore National Laboratory (LLNL); Taylor, C. N. [Purdue University; Timberlake, J. [Princeton Plasma Physics Laboratory (PPPL); Wampler, W. R. [Sandia National Laboratories (SNL); Zakharov, L. E. [Princeton Plasma Physics Laboratory (PPPL); Zweben, S. J. [Princeton Plasma Physics Laboratory (PPPL)

2011-01-01T23:59:59.000Z

498

Electrothermal Analysis of Lithium Ion Batteries  

SciTech Connect (OSTI)

This report presents the electrothermal analysis and testing of lithium ion battery performance. The objectives of this report are to: (1) develop an electrothermal process/model for predicting thermal performance of real battery cells and modules; and (2) use the electrothermal model to evaluate various designs to improve battery thermal performance.

Pesaran, A.; Vlahinos, A.; Bharathan, D.; Duong, T.

2006-03-01T23:59:59.000Z

499

Laboratory Access | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Access Access Planning Ahead Planning Ahead Please complete the Beam Time Request (BTR) and Support Request forms thourgh the User Portal. Thorough chemical and sample information must be included in your BTR. Support Request forms include a list of collaborators that require laboratory access and your group's laboratory equipment requests. Researcher safety is taken seriously at SLAC. Please remember that radioactive materials, nanomaterials, and biohazardous materials have additional safety requirements. Refer to the SSRL or LCLS Safety Offices for further guidance. Upon Arrival Upon Arrival Once you arrive you must complete training and access forms before accessing the Sample Preparation Laboratories (SPL). All Sample Prep Lab doors are locked with access key codes. Once your SPL

500

Alternative Fuels Data Center: California Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

California Information California Information to someone by E-mail Share Alternative Fuels Data Center: California Information on Facebook Tweet about Alternative Fuels Data Center: California Information on Twitter Bookmark Alternative Fuels Data Center: California Information on Google Bookmark Alternative Fuels Data Center: California Information on Delicious Rank Alternative Fuels Data Center: California Information on Digg Find More places to share Alternative Fuels Data Center: California Information on AddThis.com... California Information This state page compiles information related to alternative fuels and advanced vehicles in California and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact.