Sample records for laboratory abstract goal

  1. Sandia National Laboratories: Goal 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Goal 1: Degradation Study of Components and Subsystems On December 18, 2012, in Thermal Management Subsystem Inverters Capacitors Switches Thermal Management Subsystem Thermal...

  2. Sandia National Laboratories: Pollution Prevention: Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJune 26, 2015AwardsGoals

  3. Sandia National Laboratories: Online Abstracts and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Page Abstract (16.KB PDF) Report (2.0MB PDF) "Simulation and Testing of Resin Infusion Manufacturing Processes for Large Composite Structures" D.B. Mastbergen October 2007...

  4. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    NONE

    1997-11-01T23:59:59.000Z

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  5. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    NONE

    1998-11-01T23:59:59.000Z

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  6. Abstract--Automation has long been recognized as an im-portant goal in AFM (Atomic Force Microscope) nanomanipu-

    E-Print Network [OSTI]

    Southern California, University of

    Abstract--Automation has long been recognized as an im- portant goal in AFM (Atomic Force on the order of 10 nm, however, automation has re- mained an elusive goal, primarily because of the spatial multi-tip arrays) or by automating the manipulation process, thus bypassing the time-consuming and labor

  7. Abstract --Our approach to laboratory education in power electronics and electric machines is presented. The approach

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    1 Abstract --Our approach to laboratory education in power electronics and electric machines -- Power engineering education, education, en- ergy conversion, educational technology I. INTRODUCTION Power electronics and electric machines are largely appli- cation driven but draws from a broad

  8. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  9. ABSTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1 TEMPERATUREii ABSTRACT This report

  10. Abstract--In the control of heterogeneous unmanned vehicles in future military operations, it will be critical to provide goal-

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    of unmanned underwater and aerial vehicles, which included the automatic target recognition acknowledgement1 Abstract-- In the control of heterogeneous unmanned vehicles in future military operations heterogeneous unmanned vehicles (UVs). The DCDT was applied to several decision making processes involving a mix

  11. Abstract--The results presented in this paper are a part of the second phase of a body of research with the goal of co-

    E-Print Network [OSTI]

    Parker, Gary B.

    computation allows optimal development of robot's mind with minimal human influence. Yet, to confine the mind combined these pre-designed parts to evolve a robot suited for a certain type of movement. Manuscript with the goal of co- evolving the mind and morphology of dynamic robots. We use a 3-Dimensional simulated

  12. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulateEmissions Targetson6change.

  13. Annotated bibliography of radioactive waste management publications at Pacific Northwest Laboratory, January 1978 through July 1982. [831 abstracts

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    This bibliography lists publications (831 abstracts) from the Pacific Northwest Laboratory's Department of Energy sponsored research and development programs from January 1978 through July of 1982. The abstracts are grouped in subject categories, as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., High-Level Radioactive Wastes. Three indexes, each preceded by a brief description, are provided: personal author, subject, and report number. Cited are research reports, journal articles, books, patents, theses, and conference papers. Excluded are technical progress reports. Since 1978 the Nuclear Waste Management Quarterly Progress Report has been published under the series number PNL-3000. Beginning in 1982, this publication has been issued semiannually, under the series number PNL-4250. This bibliography is the successor to two others, BNWL-2201 (covering the years 1965-1976) and PNL-4050 (1975-1978). It is intended to provide a useful reference to literature in waste management written or compiled by PNL staff.

  14. Abstract--The goal of the common coil magnet R&D program at Brookhaven National Laboratory (BNL) is to develop a 12.5

    E-Print Network [OSTI]

    Gupta, Ramesh

    to be evaluated with a rapid throughput in a cost-effective way. Three 10-turn Nb3Sn coils have been built and one HTS coil is under construction. The initial test results of this "React & Wind" 10-turn coil program as a conventional cosine theta design. Index Terms--Accelerators, High Temperature Superconductors, Magnets

  15. Pacific Northwest Laboratory annual report for 1979 to the DOE Assistant Secretary for Environment. Part 1. Biomedical sciences. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1980-02-01T23:59:59.000Z

    Separate abstracts were prepared for the 101 individual papers presented in this annual report. (ERB)

  16. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 1. Biomedical sciences. [Lead abstract

    SciTech Connect (OSTI)

    Drucker, H.

    1981-02-01T23:59:59.000Z

    Separate abstracts were prepared for 31 sections in this progress report. The appendix which deals with dose-effect studies with inhaled plutonium in beagles is not represented by a separate abstract. (KRM)

  17. Pacific Northwest Laboratory annual report for 1981 to the DOE Office of Energy Research. Part 1. Biomedical sciences. [Lead abstract

    SciTech Connect (OSTI)

    Drucker, H.

    1982-02-01T23:59:59.000Z

    Separate abstracts were prepared for the 32 reports of this volume which describes progress on biomedical and health effects research conducted at Battelle PNL in 1981. (KRM)

  18. Volume, Number of Shipments Surpass Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory," said Pete Maggiore, assistant manager for environmental operations at the NNSA Los Alamos Site Office. "We exceeded our goals and are on track to double both volume...

  19. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J. [Idaho Univ., Moscow, ID (United States)

    1993-05-01T23:59:59.000Z

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho`s INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ``Data`` section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ``Data`` section does not include actual values or data.

  20. Sandia National Laboratories: energy system performance goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  1. Department of Energy Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortalTo help ensureNextCorporate

  2. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Area G, the Laboratory's waste storage facility, by June 30, 2014. The accelerated removal campaign is in its second year, with a goal to remove 2,600 cubic meters of waste...

  3. Energy Efficiency Goals

    Broader source: Energy.gov [DOE]

    In 2009, Missouri enacted the Missouri Energy Efficiency Investment Act, creating energy efficiency sales and peak reduction goals to be met through investment in demand side management. The goals...

  4. Water Efficiency Goal Guidance

    Broader source: Energy.gov [DOE]

    The Council on Environmental Quality (CEQ) issued water efficiency goal guidance in Federal Agency Implementation of Water Efficiency and Management Provisions of Executive Order 13514. This...

  5. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  6. Clean Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    In May 2011, Indiana enacted SB 251, creating the Clean Energy Portfolio Standard (CPS). The program sets a voluntary goal of 10% clean energy by 2025, based on the amount of electricity supplied...

  7. CNEEC - Center Goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAES HomeMaterialsComputationalGoals

  8. An I-P-O model of team goal, leader goal orientation, team cohesiveness, and team effectiveness 

    E-Print Network [OSTI]

    Yu, Chien-Feng

    2006-04-12T23:59:59.000Z

    of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2005 Major Subject: Management AN I-P-O MODEL OF TEAM GOAL, LEADER GOAL ORIENTATION, TEAM COHESIVENESS, AND TEAM EFFECTIVENESS A Dissertation by CHIEN... Members, Winfred Arthur Jr. Richard W. Woodman Michael Wesson Head of Department, Duane Ireland December 2005 Major Subject: Management iii ABSTRACT An I-P-O Model of Team Goal, Leader Goal Orientation, Team Cohesiveness...

  9. DOE Laboratory Catalysis Research Symposium - Abstracts

    SciTech Connect (OSTI)

    Dunham, T.

    1999-02-01T23:59:59.000Z

    The conference consisted of two sessions with the following subtopics: (1) Heterogeneous Session: Novel Catalytic Materials; Photocatalysis; Novel Processing Conditions; Metals and Sulfides; Nuclear Magnetic Resonance; Metal Oxides and Partial Oxidation; Electrocatalysis; and Automotive Catalysis. (2) Homogeneous Catalysis: H-Transfer and Alkane Functionalization; Biocatalysis; Oxidation and Photocatalysis; and Novel Medical, Methods, and Catalyzed Reactions.

  10. Sandia National Laboratories: Online Abstracts and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generator Modeling Radar Friendly Blades Special Programs Techno-Economic Modeling, Analysis, and Support Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014...

  11. Goal-oriented Web search

    E-Print Network [OSTI]

    Williamson, Victor Lamont

    2010-01-01T23:59:59.000Z

    We have designed and implemented a Goal-oriented Web application to search videos, images, and news by querying YouTube, Truveo, Google and Yahoo search services. The Planner module decomposes functionality in Goals and ...

  12. Goal-oriented hardware design

    E-Print Network [OSTI]

    Chau, Man Ping Grace

    2008-01-01T23:59:59.000Z

    This thesis presents Fide, a hardware design system that uses Goal-oriented programming. Goal-oriented programming is a programming framework to specify open-ended decision logic. This approach relies on two fundamental ...

  13. REGULATORY CONCEPTS ON SUSTAINABILITY GOALS

    E-Print Network [OSTI]

    , Energy Commission staff find no single definition or measurement system for sustainability Requirements AB 118 requires the Energy Commission to develop and implement sustainability goals as part Section 44271(a)(2) requires the Energy Commission to: "Establish sustainability goals to ensure

  14. Energy Research Abstracts. [DOE abstract journal

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    Energy Research Abstracts (ERA) provides abstracting and indexing coverage of all scientific and technical reports, journal articles, conference papers and proceedings, books, patents, theses, and monographs originated by the US Department of Energy, its laboratories, energy centers, and contractors. ERA also covers other energy information prepared in report form by federal and state government organizations, foreign governments, and domestic and foreign universities and research organizations. ERA coverage of non-report literature is limited to that generated by Department of Energy activity. ERA is comprehensive in its subject scope, encompassing the DOE's research, development, demonstration, and technological programs resulting from its broad charter for energy sources, conservation, safety, environmental impacts, and regulation. Corporate, author, subject, report number, and contract number indexes are included. ERA is available on an exchange basis to universities, research intitutions, industrial firms, and publishers of scientific information. Federal, state, and municipal agencies concerned with energy development, conservation, and usage may obtain ERA free of charge. Inquiries should be directed to the Technical Information Center, P.O. Box 62, Oak Ridge, Tennessee 37830. ERA is available to the public on a subscription basis for 24 semimonthly issues including a semiannual index and an annual index. All citations announced in ERA exist as separate records in the DOE Energy Data Base.

  15. Abstraction Layers for Scalable Microfluidic Biocomputers

    E-Print Network [OSTI]

    Amarasinghe, Saman

    Abstraction Layers for Scalable Microfluidic Biocomputers William Thies1 , John Paul Urbanski2 Hatsopoulos Microfluids Laboratory Massachusetts Institute of Technology {thies, urbanski, thorsen, saman}@mit.edu Abstract. Microfluidic devices are emerging as an attractive technol- ogy for automatically orchestrating

  16. Goals:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics31/2007GlobalUser Experiences Yun

  17. Goals:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat Pump Basics31/2007GlobalUser Experiences

  18. Sandia National Laboratories: Goal 1: Degradation Study of Components...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  19. Sandia National Laboratories: Goal 2: Development of Prognostics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  20. Small Business Goals and Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Statistics The Idaho National Laboratory (INL) is committed to supporting the small business objectives of the U.S. Government and the Department of Energy (DOE) and recognizes...

  1. Guam- Renewable Energy Portfolio Goal

    Broader source: Energy.gov [DOE]

    Guam Bill 166, enacted in March 2008, established a renewable energy portfolio goal of 25% renewable energy by 2035.* Under this law, each utility that sells electricity for consumption on Guam...

  2. Materials Technologies: Goals, Strategies, and Top Accomplishments...

    Energy Savers [EERE]

    Materials Technologies: Goals, Strategies, and Top Accomplishments (Brochure), Vehicle Technologies Program (VTP) Materials Technologies: Goals, Strategies, and Top Accomplishments...

  3. Sandia National Laboratories: BASF latent curing epoxy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  4. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  5. Long-term goals for solar thermal technology

    SciTech Connect (OSTI)

    Williams, T.A.; Dirks, J.A.; Brown, D.R.

    1985-05-01T23:59:59.000Z

    This document describes long-term performance and cost goals for three solar thermal technologies. Pacific Northwest Laboratory (PNL) developed these goals in support of the Draft Five Year Research and Development Plan for the National Solar Thermal Technology Program (DOE 1984b). These technology goals are intended to provide targets that, if met, will lead to the widespread use of solar thermal technologies in the marketplace. Goals were developed for three technologies and two applications: central receiver and dish technologies for utility-generated electricity applications, and central receiver, dish, and trough technologies for industrial process heat applications. These technologies and applications were chosen because they are the primary technologies and applications that have been researched by DOE in the past. System goals were developed through analysis of future price projections for energy sources competing with solar thermal in the middle-to-late 1990's time frame. The system goals selected were levelized energy costs of $0.05/kWh for electricity and $9/MBtu for industrial process heat (1984 $). Component goals established to meet system goals were developed based upon projections of solar thermal component performance and cost which could be achieved in the same time frame.

  6. Campus Sustainability Goals Energy & Climate

    E-Print Network [OSTI]

    Jacobs, Lucia

    Campus Sustainability Goals Energy & Climate By 2014, reduce greenhouse gas emissions to 1990 use to 10% below 2008 levels by 2020. Built Environment Design future projects to minimize energy and water consumption and wastewater production; incorporate sustainable design principles into capital

  7. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  8. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  9. PHYSICS 122 LABORATORY (Winter, 2014)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how) 3. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Noise (Tyson ­ Mitchell) Continuous-Wave Nuclear Magnetic Resonance (Chiang

  10. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd edition. (UCD Library call) Continuous-Wave Nuclear Magnetic Resonance (Chiang - Stenger) Pulsed Nuclear Magnetic

  11. Energy Research Abstracts; (USA)

    SciTech Connect (OSTI)

    Rutkowski, R.W.; Henline, D.M. (eds.)

    1991-01-01T23:59:59.000Z

    Energy Research Abstracts (ERA) provides abstracting and indexing coverage of all scientific and technical reports and patent applications originated by the US Department of Energy, its laboratories, energy centers, and contractors, as well as theses and conference papers and proceedings issued by these organizations in report form. Audiovisual materials, computer media (magnetic tapes, diskettes, etc.), and engineering drawings are included in this definition. ERA also covers other energy information prepared in report form by federal and state government organizations, foreign governments, and domestic and foreign universities and research organizations, provided that the full text of the document has been received by OSTI. Foreign report information is obtained through the International Energy Agency's fourteen nation Energy Technology Data Exchange, the International Atomic Energy Agency's International Nuclear Information System, or nation-to-nation agreements. The purpose of this publication is to announce documents produced or obtained by DOE that are not so readily available as journal articles, books, or patents. ERA does not cover nonreport literature. The scope of ERA encompasses DOE's research, development, demonstration, and technology programs resulting from its broad charter for energy sources, supplies, safety, environmental impacts, and regulation.

  12. Technical abstracts: Mechanical engineering, 1990

    SciTech Connect (OSTI)

    Broesius, J.Y. (comp.)

    1991-03-01T23:59:59.000Z

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing.

  13. A theory of goal-oriented communication

    E-Print Network [OSTI]

    Goldreich, Oded

    We put forward a general theory of goal-oriented communication, where communication is not an end in itself, but rather a means to achieving some goals of the communicating parties. Focusing on goals provides a framework ...

  14. ECOLOGY LABORATORY BIOLOGY 341

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

  15. The Goal of Net Zero

    E-Print Network [OSTI]

    Ronquillo, M.

    2014-01-01T23:59:59.000Z

    The Goal of Net Zero CATEE 2014 Clean Air Through Energy Efficiency Conference Andrew T. Cronberg, PE Interim Water Director City of Fort Worth, Texas November 19, 2014 Dallas, Texas ESL-KT-14-11-47 CATEE 2014: Clean Air Through Efficiency... Conference, Dallas, Texas Nov. 18-20 •10 Journey to Net Zero began in the 1960’s •Digester Gas fueled Engine Blowers & Generators •Some heat recovery for anaerobic digesters ESL-KT-14-11-47 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas...

  16. Project Goals List Student Government Association

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Goal: Advocate the WV Congressional delegation to support student loan and financial aid reform. Chris

  17. NREL and DoD - Complementary Missions, Shared Goals: Comprehensive Energy Solutions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01T23:59:59.000Z

    By collaborating with the country's only national laboratory solely dedicated to advanced renewable energy, energy efficiency, and energy systems integration, DoD can leverage NREL's facilities and expertise to accelerate achievement of energy goals.

  18. 4th Annual DOE-ERSP PI Meeting: Abstracts

    SciTech Connect (OSTI)

    Hazen, Terry C.

    2009-03-01T23:59:59.000Z

    This contains abstracts from the 2009 Annual Environmental Remediation Sciences Program (ERSP) Principal Investigators (PI) Meeting. The ERSP seeks to advance fundamental science to understand, predict, and mitigate the impacts of environmental contamination from past nuclear weapons production and provide a scientific basis for the long-term stewardship of nuclear waste disposal. These ambitious goals cannot be achieved by any one project alone. Therefore, ERSP funds a combination of research programs at the DOE national laboratories, individual projects at universities and federal agencies, and large long(er)-term field site research. Integration of these activities to advance the ERSP goals is a constant challenge, but made significantly simpler by bringing together all funded ERSP researchers once a year to discuss the very latest research results. It is at these meetings where new ideas and/or scientific advancements in support of ERSP goals can be discussed and openly debated among all PIs in the program. The ERSP thrives, in part, on the new ideas, concepts, scientific connections, and collaborations generated as a result of these meetings. The annual PI Meeting is very much a working meeting with three major goals: (1) to provide opportunities for scientific interaction among the ERSP scientists, a critical element for the program; (2) to provide the ERSP program staff with an opportunity to evaluate the progress of each program and project; and (3) to showcase the ERSP to interested parties within DOE and within other federal agencies In addition to program managers from within OBER, there will be representatives from other offices within DOE and other federal agencies in attandance at the meeting.

  19. AbstractAbstract Improving efficiency of thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials method proposed to couple quantum and scattering effects to predict thermoelectric performance. · NEGF

  20. City of Phoenix- Renewable Energy Goal

    Broader source: Energy.gov [DOE]

    In 2008, the Phoenix City Council approved a renewable energy goal for the city. The city aims for 15% of the electricity used by the city to come from renewable energy sources by 2025. This goal...

  1. Is Conservation a Legitimate Goal of Regulation?

    E-Print Network [OSTI]

    Goble, G. L.

    1984-01-01T23:59:59.000Z

    Conservation of energy is a frequently cited goal of utility rate regulation. Implementing this goal through modification of consumer behavior has been achieved with varying degrees of success through rate design, incentive programs, direct load...

  2. ABSTRACT & DISSERTATION FORMAT GUIDELINES

    E-Print Network [OSTI]

    Lu, Yi

    2 ABSTRACT & DISSERTATION FORMAT GUIDELINES The Knowledge Navigation Center (second floor these guidelines. The most up-to-date version of the Abstract and Dissertation Format Guidelines is available;2 Abstract Format Guidelines ABSTRACT Title of the Dissertation by by Student's Name Chair: Chair's name Text

  3. Goals of the ARISE Space VLBI Mission

    E-Print Network [OSTI]

    James S. Ulvestad

    1999-01-26T23:59:59.000Z

    Supermassive black holes, with masses of 10^6 to more than 10^9 solar masses, are among the most spectacular objects in the Universe, and are laboratories for physics in extreme conditions. The primary goal of ARISE (Advanced Radio Interferometry between Space and Earth) is to use the technique of Space VLBI to increase our understanding of black holes and their environments, by imaging the havoc produced in the near vicinity of the black holes by their enormous gravitational fields. The mission will be based on a 25-meter space-borne radio telescope operating at frequencies between 8 and 86 GHz, roughly equivalent to an orbiting element of the Very Long Baseline Array. In an elliptical orbit with an apogee height of 40,000-100,000 km, ARISE will provide resolution of 15 microarcseconds or better, 5-10 times better than that achievable on the ground. At frequencies of 43 and 86 GHz, the resolution of light weeks to light months in distant quasars will complement the gamma-ray and X-ray observations of high-energy photons, which come from the same regions near the massive black holes. At 22 GHz, ARISE will image the water maser disks in active galaxies more than 15 Mpc from Earth, probing accretion physics and giving accurate measurements of black-hole masses. ARISE also will study gravitational lenses at resolutions of tens of microarcseconds, yielding important information on the dark-matter distribution and on the possible existence of compact objects with masses of 10^3 to 10^6 solar masses.

  4. AbstractThe goal of our study was to understand the spatial and tempo

    E-Print Network [OSTI]

    - dle and Big Bend were mainly summer spawned fish, whereas Southwest juve- niles had winter and summer

  5. Continental magmatism abstracts

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    This document contains abstracts on continental magmatism prepared by the International Association of Volcanology and Chemistry of the Earth's Interior. Abstracts are listed alphabetically by senior author, followed by late arrivals and an index. (KJD)

  6. Sandia National Laboratories: SAND2013-7238P

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  7. Sandia National Laboratories: NEPTCO glass fiber RodPack

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  8. FY 2015 Argonne Site Sustainability Plan | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2015 Argonne Site Sustainability Plan Argonne National Laboratory is committed to reducing its environmental footprint. Our site sustainability goals are in line with U.S....

  9. Energy Reduction Goals | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    aligned, but the goals are different. See https:www.burlingtonelectric.compage.php?pid6&nameenergyefficiency Burlington Electric Department for more information. Source...

  10. Goal Orientation as Shaping the Firm's Entrepreneurial Orientation and Performance

    E-Print Network [OSTI]

    Webb, Justin W.

    2011-02-22T23:59:59.000Z

    . Coombs Oi-man Kwok Laszlo Tihanyi Head of Department, Murray Barrick December 2009 Major Subject: Management iii ABSTRACT Goal Orientation as Shaping the Firm?s Entrepreneurial Orientation and Performance. (December 2009... Ireland and Mike Hitt, and my committee members, Laszlo Tihanyi, Joe Coombs, and Oi-man Kwok. I was exceptionally fortunate to have each of these individuals serve on my committee. I was provided extraordinary freedom in deciding my topic of interest...

  11. ERISII Initial Design Document I . Design Goals

    E-Print Network [OSTI]

    Wiederhold, Gio

    ERISII Initial Design Document I . Design Goals The goals behind the ERISII system are to present the directions of I*3 technology in general. In the first half of this document, we will examine the particular thee primary prototype will be used by environmental restoration managers, while being flexible enough

  12. Abstract Algebra done Concretely

    E-Print Network [OSTI]

    2004-02-19T23:59:59.000Z

    Feb 19, 2004 ... find a book that covered basic abstract algebra with the level and emphasis that ...... c) Substitute these back into the previous equation. 5. Let a ...

  13. BEMS: Abstract book

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This volume provides abstracts of presentations made at the Sixteenth Meeting of The Bioelectromagnetics Society held June 12-17, 1994 in Copenhagen, Denmark.

  14. CARTOGRAPHIC BASE FILES AT LAWRENCE BERKELEY LABORATORY: 1978. INVENTORY

    E-Print Network [OSTI]

    Burkhart, B.R.

    2011-01-01T23:59:59.000Z

    BERKELEY LABORATORY: 1978 INVENTORY f(ECEfVED tAWRENCE!FILES AT LAWRENCE BERKELEY LABORATORY: 1978 INVENTORY B. R.1979 ABSTRACT This inventory describes the cartographic base

  15. Construction Standards and Costs UC Irvine new construction pursues performance goals and applies quality standards that

    E-Print Network [OSTI]

    Rose, Michael R.

    Construction Standards and Costs UC Irvine new construction pursues performance goals and applies quality standards that affect the costs of capital projects. Periodic re-examination of these goals and standards is warranted. Construction costs are not "high" or "low" in the abstract, but rather in relation

  16. The Why UI: Using Goal Networks to Improve User Dustin A. Smith

    E-Print Network [OSTI]

    Herr, Hugh

    The Why UI: Using Goal Networks to Improve User Interfaces Dustin A. Smith MIT Media Lab 20 Ames St; Cambridge, MA 02139 dustin@media.mit.edu Henry Lieberman MIT Media Lab 20 Ames St; Cambridge, MA 02139 lieber@media.mit.edu ABSTRACT People interact with interfaces to accomplish goals, and knowl- edge about

  17. Wide Ruled: A Friendly Interface to Author-Goal Based Story Generation

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Wide Ruled: A Friendly Interface to Author-Goal Based Story Generation James Skorupski1 , Lakshmi@cs.ucsc.edu 2 Electronic Arts Abstract. We present Wide Ruled, an authoring tool for the creation of generative stories. It is based on the Universe author-goal-based model of story generation, and extends this model

  18. Stereotype threat in sports 1 Running head: STEREOTYPE THREAT AND ACHIEVEMENT GOALS IN SPORTS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Stereotype threat in sports 1 Running head: STEREOTYPE THREAT AND ACHIEVEMENT GOALS IN SPORTS Do Achievement Goals Mediate Stereotype Threat? An Investigation on Females' Soccer Performance Aďna Chalabaev Psycholoy 30 (2008) 143-158" #12;Stereotype threat in sports 2 Abstract This research investigated

  19. Automatic Conversion Software for the Safety Verification of Goal-based Control Programs

    E-Print Network [OSTI]

    Murray, Richard M.

    , an automatic software algorithm for converting goal network control programs into linear hybrid systemsAutomatic Conversion Software for the Safety Verification of Goal-based Control Programs Julia M. B. Braman and Richard M. Murray Abstract-- Fault tolerance and safety verification of control systems

  20. Earth Sciences Division collected abstracts: 1980

    SciTech Connect (OSTI)

    Henry, A.L.; Hornady, B.F. (eds.)

    1981-10-15T23:59:59.000Z

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  1. achieve transportation goals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uses goal networks to help users plan where and when to accomplish their desired goals. Dustin A. Smith 111 Active and Interactive Discovery of Goal Selection Knowledge Jay...

  2. Abstracting over Semantic Theories 

    E-Print Network [OSTI]

    Holt, Alexander G B

    The topic of this thesis is abstraction over theories of formal semantics for natural language.It is motivated by the belief that a metatheoretical perspective can contribute both to a better theoretical understanding of ...

  3. Abstracts of contributed papers

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  4. Sustainability Plan Part I: Strategy and Goals

    E-Print Network [OSTI]

    Escher, Christine

    Sustainability Plan Part I: Strategy and Goals Prepared By: Oregon State University Sustainability University (OSU) Sustainable Facilities Committee (SFC) was established in November, 2004 by the OSU infrastructure and operations toward sustainability. Additionally, the group serves as a discussion forum

  5. Energy Goals and Standards for Federal Government

    Broader source: Energy.gov [DOE]

    The federal Energy Policy Act of 2005 (EPAct 2005) established several goals and standards to reduce energy use in existing and new federal buildings. Executive Order 13423, signed in January 2007...

  6. Strategy for Meeting the Secretary of Energy and Hanford Site FY 2001 Pollution Prevention Goals

    SciTech Connect (OSTI)

    CLARK, D.E.

    2000-10-01T23:59:59.000Z

    The purpose of this strategy is to identify the Fiscal Year (FY) 2001 Hanford Site waste reduction, sanitary recycling and affirmative procurement goals and identify the action required to ensure that the Secretary of Energy's FY 2005 pollution prevention and the FY 2001 Hanford Site goals are met. The strategy and plan to ensure that the Secretary of Energy's routine waste reduction, recycling, cleanup/stabilization waste and affirmative procurement goals are met consists of four phases. The first phase is to ensure that the infrastructure is in place to support planning and organization. This phase involves ensuring that roles and responsibilities are identified; requirement documents are current; goals and successes are communicated; and accurate and current waste information is available. Roles and responsibilities are identified and the RL requirement documents (i.e., the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan and Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation) will specify the Secretary of Energy's goals. Goals will be communicated formally and informally via the Hanford Reach, training sessions, meetings and correspondence. Sharing of pollution prevention successes and goal progress are encouraged at the Pollution Prevention/Waste Minimization (PZ/WMin) quarterly meetings. Existing site waste generation databases will be utilized to provide current waste generation data. The second phase of the strategy and plan is to establish and allocate goals by prime contractor (i.e. Fluor Hanford, Inc. (FH), Pacific Northwest National Laboratory (PNNL), Bechtel Hanford Inc. (BHI), and CH2MHill Hanford Group (CHG)). This requires determining current status toward meeting the Secretary of Energy's goals; establishing the Hanford Site FY goals, and allocating waste reduction goals by prime contractor. The third phase of the strategy and plan is goal implementation. This phase involves the identification and implementation of corrective actions for problem areas identified either during the development of the Hanford Site goals or during monthly monitoring of the goals. Areas of concern identified during the development of the goals were the Mixed Low Level Waste (MLLW), Hazardous, and cleanup waste goal. The fourth phase of the strategy and plan is measuring results. This phase consists of: Measuring Results; Development of performance measures; and Reporting progress quarterly. The performance measures have been developed for the tracking of the waste reduction, sanitary recycling, affirmative procurement, and toxic chemical release goals. The first quarter performance measures tracking the recommended goals will be issued by January 3 I, 2001.

  7. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  8. Argonne National Laboratory's Solar Energy Development Programmatic...

    Open Energy Info (EERE)

    Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar Energy Development Programmatic EIS Website Abstract This...

  9. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  10. An I-P-O model of team goal, leader goal orientation, team cohesiveness, and team effectiveness

    E-Print Network [OSTI]

    Yu, Chien-Feng

    2006-04-12T23:59:59.000Z

    Based on a proposed input-process-output model of team goal, leader goal orientation, team cohesion, and team effectiveness, this study examined the influences of the leader trait goal orientation on the relationships between team goals and team...

  11. Environment, Safety and Health (ESH) Goals

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-08-02T23:59:59.000Z

    The purpose of this Policy is to establish Environment, Safety and Health (ES&H) goals for Department of Energy (DOE) personnel and its contractors. These goals are designed to establish Departmental ES&H expectations for: 1) DOE and contractor personnel ES&H behaviors and attitudes in the conduct of their daily work activities, and 2) operational performance regarding worker injuries and illnesses, regulatory enforcement actions, and environmental releases. Cancels DOE P 450.1, DOE P 450.6. Canceled by DOE O 450.4A

  12. Goal Seek Pamphlet for VIDRA© - HCID#1

    E-Print Network [OSTI]

    Rogers, C.; Sturdivant, A. W.; Rister, M.; Lacewell, R. D.

    , or for that matter, the baseline model solution results. This cell cannot contain a formula, only real numbers.3 If you wish to return Set cell (i.e., the answer cell) to its beginning or starting value, simply reset the data-4 input cell (i.e., By changing cell...) to its original (prior) value. page 2 of 5 Using Goal Seek (generically) Step 1 ?: Click Tools in the Excel menu bar, and select Goal Seek. You will see a dialog box like this pop up: Step 2: - Enter the cell address containing the formula you ?know...

  13. Platform-independent modelling in MDA: supporting abstract platforms

    E-Print Network [OSTI]

    Pires, LuĂ­s Ferreira

    Platform-independent modelling in MDA: supporting abstract platforms JoĂŁo Paulo Almeida, Remco { almeida, dijkman, sinderen, pires } @ cs.utwente.nl Abstract. An MDA-based design approach should be able as the various design goals. In this paper, we discuss how our design approach can be supported using the MDA

  14. Ecological Research Division Theoretical Ecology Program. [Contains abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    This report presents the goals of the Theoretical Ecology Program and abstracts of research in progress. Abstracts cover both theoretical research that began as part of the terrestrial ecology core program and new projects funded by the theoretical program begun in 1988. Projects have been clustered into four major categories: Ecosystem dynamics; landscape/scaling dynamics; population dynamics; and experiment/sample design.

  15. EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman,

    E-Print Network [OSTI]

    Magee, Joseph W.

    EL Program: Smart Grid Program Manager: George Arnold, Designated Goal Liaison; David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Engineering Laboratory Office, x2433; Dean and power flows, and additional advancements to create a smart grid. In response to a mandate given

  16. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J. Prouty

    2006-07-14T23:59:59.000Z

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  17. GOALS FOR BASIC RESEARCH IN CONSTRUCTION

    E-Print Network [OSTI]

    Tommelein, Iris D.

    1 GOALS FOR BASIC RESEARCH IN CONSTRUCTION A Report on a Workshop Sponsored by THE STANFORD CONSTRUCTION INSTITUTE and Funded by THE NATIONAL SCIENCE FQUNDATION Grant ENG 74-23lll Boyd C, Paulson, Jr, construction will be challenged by increasingly difficult and complex problems in both engineering

  18. FUSION POWER PLANTS GOALS AND TECHNOLOGICAL CHALLENGES

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    FUSION POWER PLANTS ­ GOALS AND TECHNOLOGICAL CHALLENGES Farrokh Najmabadi Dept. of Electrical for fusion power plants is given and their economic, safety, and environmental features are explored. Concep- tual design studies predict that fusion power plants will be capital intensive and will be used

  19. Saving Money When Eating Out SESSION GOALS

    E-Print Network [OSTI]

    Saving Money When Eating Out SESSION GOALS: Participants will understand the impact that eating out has on their personal food budget. In addition, participants will learn ways that they can save money. Apply techniques that will enable participants to save money when eating out. #12;2 Saving Money When

  20. SSRL30 Abstracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton n u aOct.BALLOT -- pleaseABSTRACT

  1. ABSTRACTS OF PAPERS PUBLISHED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1 TEMPERATUREii ABSTRACT This

  2. Earth Sciences Division annual report 1981. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  3. Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The increasing scale-up of fast pyrolysis in North America and Europe, as well as the exploration and expansion of markets for the energy use of biocrude oils that now needs to take place, suggested that it was timely to convene an international meeting on the properties and combustion behavior of these oils. A common understanding of the state-of-the-art and technical and other challenges which need to be met during the commercialization of biocrude fuel use, can be achieved. The technical issues and understanding of combustion of these oils are rapidly being advanced through R&D in the United States, Canada, Europe and Scandinavia. It is obvious that for the maximum economic impact of biocrude, it will be necessary to have a common set of specifications so that oils can be used interchangeably with engines and combustors which require minimal modification to use these renewable fuels. Fundamental and applied studies being pursued in several countries are brought together in this workshop so that we can arrive at common strategies. In this way, both the science and the commercialization are advanced to the benefit of all, without detracting from the competitive development of both the technology and its applications. This United States-Canada-Finland collaboration has led to the two and one half day specialists meeting at which the technical basis for advances in biocrude development is discussed. The goal is to arrive at a common agenda on issues that cross national boundaries in this area. Examples of agenda items are combustion phenomena, the behavior of trace components . of the oil (N, alkali metals), the formation of NO{sub x}, in combustion, the need for common standards and environmental safety and health issues in the handling, storage and transportation of biocrudes.

  4. Earth Sciences Division collected abstracts: 1979

    SciTech Connect (OSTI)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30T23:59:59.000Z

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  5. Remote Laboratory Towards an integrated training system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Remote Laboratory Towards an integrated training system Arnaud LELEVE, Hcene BENMOHAMED, Patrick.Meyer@ictt.ec-lyon.fr Abstract ­ Remote laboratories are essential to e-learning platforms in scientific and technical with the aim of giving means to instructors to build generic remote laboratory environments, homogeneously melt

  6. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-265 Short;Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United thereof, Argonne National Laboratory, or The University of Chicago. ii #12;Contents Abstract 1 1

  7. EBS Radionuclide Transport Abstraction

    SciTech Connect (OSTI)

    J.D. Schreiber

    2005-08-25T23:59:59.000Z

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport from a breached waste package. Advective transport occurs when radionuclides that are dissolved or sorbed onto colloids (or both) are carried from the waste package by the portion of the seepage flux that passes through waste package breaches. Diffusive transport occurs as a result of a gradient in radionuclide concentration and may take place while advective transport is also occurring, as well as when no advective transport is occurring. Diffusive transport is addressed in detail because it is the sole means of transport when there is no flow through a waste package, which may dominate during the regulatory compliance period in the nominal and seismic scenarios. The advective transport rate, when it occurs, is generally greater than the diffusive transport rate. Colloid-facilitated advective and diffusive transport is also modeled and is presented in detail in Appendix B of this report.

  8. Abstract adiabatic charge pumping

    E-Print Network [OSTI]

    A. Joye; V. Brosco; F. Hekking

    2010-02-05T23:59:59.000Z

    This paper is devoted to the analysis of an abstract formula describing quantum adiabatic charge pumping in a general context. We consider closed systems characterized by a slowly varying time-dependent Hamiltonian depending on an external parameter $\\alpha$. The current operator, defined as the derivative of the Hamiltonian with respect to $\\alpha$, once integrated over some time interval, gives rise to a charge pumped through the system over that time span. We determine the first two leading terms in the adiabatic parameter of this pumped charge under the usual gap hypothesis. In particular, in case the Hamiltonian is time periodic and has discrete non-degenerate spectrum, the charge pumped over a period is given to leading order by the derivative with respect to $\\alpha$ of the corresponding dynamical and geometric phases.

  9. Chiller Plant Design Goals Low operating cost

    E-Print Network [OSTI]

    3/9/09 1 2 Chiller Plant Design Goals · Low operating cost ­Energy Efficiency ­No full time staffing · Reliability ­24/7 ­ 365 ­Maintainability · Future expansion capability #12;3/9/09 2 3 Chiller T 4 Chiller Plant Electrical · Electrical ­N+1 transformer capacity ­4160 volt Compressor Motors

  10. Los Angeles County's Green Idea House Achieves Efficient Goals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    County's Green Idea House Achieves Efficient Goals Los Angeles County's Green Idea House Achieves Efficient Goals Photo of an energy-efficient home with modern architecture. The...

  11. LM to Meet Energy Metering Goals Through Enhanced Data Collection...

    Office of Environmental Management (EM)

    to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater Treatment Systems LM to Meet Energy Metering Goals Through Enhanced Data Collection at Groundwater...

  12. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  13. D&D GoalD&D Goal The goal of the Argonne Decommissioning Program is to be recognized as a

    E-Print Network [OSTI]

    Kemner, Ken

    National Laboratory, · Brookhaven National Laboratory, · Savannah River Site, · Mound Site, · Battelle 1-2 days to 3-weeks) have been conducted for national and international trainees organizations, including: · Tokomak Fusion Test Reactor at Princeton Plasma Physics Laboratory, · Los Alamos

  14. Goals and Requirements | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAMGeneral Guidance onGlenn PodonskyAn overviewGoals and

  15. Widget:GoalMeter | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to:WestwoodCreatePageFormFieldsDisplayToggleGoalMeter Jump

  16. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublicexceeds waste shipping goal Los Alamos

  17. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublicexceeds waste shipping goal Los AlamosLos

  18. Los Alamos exceeds waste shipping goal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is YourAwardspublicexceeds waste shipping goal Los

  19. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

  20. Declarative & Procedural Goals in Intelligent Agent Systems Michael Winikoff

    E-Print Network [OSTI]

    Padgham, Lin

    Science and Information Technology RMIT University Melbourne, Australia. winikoff@cs.rmit.edu.au LinDeclarative & Procedural Goals in Intelligent Agent Systems Michael Winikoff School of Computer is that of goals (Winikoff et al., 2001). Goals have two aspects: declarative, where a goal is a description

  1. Demo Abstract: The SpiderBat Ultrasound Positioning System Georg Oberholzer, Philipp Sommer, Roger Wattenhofer

    E-Print Network [OSTI]

    Demo Abstract: The SpiderBat Ultrasound Positioning System Georg Oberholzer, Philipp Sommer, Roger Wattenhofer Computer Engineering and Networks Laboratory ETH Zurich, Switzerland sommer

  2. Science and engineering research semester internship, Fall 1996, abstracts and research papers

    SciTech Connect (OSTI)

    Williams, B.; Brown, E.; Davis, M.; Downs, J.; Fox, K.; Hayden, C.; Jacobsen, E.; Kraut, E.; Lawrence, S.; Legler, T.; Oram, S.; Ragland, S.

    1996-12-01T23:59:59.000Z

    This document consists of abstracts and research papers from the science and engineering research semester internship fall 1996 at Lawrence Livermore National Laboratory.

  3. Science and engineering research semester internship spring 1997 abstracts and research papers

    SciTech Connect (OSTI)

    Williams, Beverly

    1997-10-01T23:59:59.000Z

    This document consists of abstracts and research papers from the science and engineering research semester internship spring 1997 held at Lawrence Livermore National Laboratory.

  4. The Concept of Goals-Driven Safeguards

    SciTech Connect (OSTI)

    R. Wigeland; T Bjornard; B. Castle

    2009-02-01T23:59:59.000Z

    The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization’s purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations’ approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

  5. Comparing Approaches to Locating Boreholes in Spatially Heterogeneous Aquifers Sean A. McKenna, Sandia National Laboratories, Albuquerque, New Mexico

    E-Print Network [OSTI]

    Kenna, Sandia National Laboratories, Albuquerque, New Mexico Abstract Limited sampling of an aquifer

  6. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  7. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  8. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  9. A Multi-layered Synergistic Approach to Motion Planning with Complex Goals

    E-Print Network [OSTI]

    Kavraki, Lydia E.

    1 A Multi-layered Synergistic Approach to Motion Planning with Complex Goals Amit Bhatia, Matthew R of the discrete abstraction are critical issues that affect the overall performance of the approach. A geometry approaches for second-order nonlinear robot models in challenging workspace environments with obstacles

  10. Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2

    E-Print Network [OSTI]

    Gelman, Andrew

    1 Infovis and Statistical Graphics: Different Goals, Different Looks1 Andrew Gelman2 and Antony Unwin3 20 Jan 2012 Abstract. The importance of graphical displays in statistical practice has been graphics still occupies an awkward in-between position: Within statistics, exploratory and graphical

  11. The Goal Structuring Notation A Safety Argument Notation Tim Kelly and Rob Weaver

    E-Print Network [OSTI]

    Kelly, Tim

    industries (including defence, aerospace, nuclear and railways). Studying the safety standards and guidanceThe Goal Structuring Notation ­ A Safety Argument Notation Tim Kelly and Rob Weaver Department.kelly@cs.york.ac.uk, rw24@york.ac.uk Abstract In Europe, over recent years, the responsibility for ensuring system safety

  12. Oil Independence: Achievable National Goal or Empty Slogan? Submitted May 25, 2007

    E-Print Network [OSTI]

    07--1693 Oil Independence: Achievable National Goal or Empty Slogan? Submitted May 25, 2007 Word-488-2413; email: singhm@anl.gov #12;Greene, Leiby, Patterson, Plotkin and Singh 1 ABSTRACT Oil independence has. A rigorous, measurable definition is proposed: to reduce the costs of oil dependence to less than 1% of GDP

  13. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  14. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  15. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  16. Memory abstractions for parallel programming

    E-Print Network [OSTI]

    Lee, I-Ting Angelina

    2012-01-01T23:59:59.000Z

    A memory abstraction is an abstraction layer between the program execution and the memory that provides a different "view" of a memory location depending on the execution context in which the memory access is made. Properly ...

  17. Abstract

    E-Print Network [OSTI]

    2008-07-23T23:59:59.000Z

    excite seismic body waves in the earth. One detects these waves at seismic stations distributed over the earth's surface. Wave-equation tomography is derived ...

  18. ABSTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inc., the Management and Operating Contractor for the DOE's Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming. Project work was directed by Project...

  19. Abstracts

    E-Print Network [OSTI]

    Feb 24, 2000 ... A free boundary problem where the curvature and the flux balance ... of laminar flames as an asymptotic limit for high activation energy.

  20. Abstracts

    E-Print Network [OSTI]

    2013-11-13T23:59:59.000Z

    Nov 16, 2013 ... Charles Smart, MIT. Sat, Nov 16, 3:00–3:50, MATH 175. Quantitative stochastic homogenization of non-divergence form elliptic equations.

  1. Abstracts

    E-Print Network [OSTI]

    2012-05-26T23:59:59.000Z

    cus on the classification of ancient solutions in the curve shortening flow and the Ricci flow on ... has applications in heat control at the boundary of a domain.

  2. ABSTRACT

    E-Print Network [OSTI]

    Manfred Mauntz; Jürgen Gegner

    A new online diagnostics system for the continuous condition monitoring of lubricating oils in industrial gearboxes is presented. Characteristic features of emerging component damage, such as wear, contamination or chemical aging, are identified in an early stage. The OilQSens ® sensor effectively controls the proper operation conditions of bearings and cogwheels in gears. Also, the condition of insulating oils in transformers can be monitored. The online diagnostics system measures components of the specific complex impedance of oils. For instance, metal abrasion due to wear debris, broken oil molecules, forming acids or oil soaps result in an increase of the electrical conductivity, which directly

  3. ABSTRACT

    Office of Scientific and Technical Information (OSTI)

    environmental complaints in a dataset which was collected from 575 buildings in the USA. 77% of indoor-environmental complaints were about conditions perceived too hot or too...

  4. Abstract

    E-Print Network [OSTI]

    2007-05-17T23:59:59.000Z

    May 27, 2007 ... role of critical exponents. Regularity of the solutions: ... A large part of the material is taken from the following monograph: • J. L. Vázquez ...

  5. Abstracts

    E-Print Network [OSTI]

    2014-10-27T23:59:59.000Z

    Nov 1, 2014 ... The purpose of Wabash Seminar talks is to present surveys of interest to all analysts, including graduate students and scholars working in ...

  6. ABSTRACT

    Broader source: Energy.gov (indexed) [DOE]

    with an advanced reciprocating engine, hot water heat recovery and a single-effect absorption chiller; a Brooklyn laundry retrofitted with two reciprocating engine generators and...

  7. Abstract:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA couldAbout BudgetAbout

  8. ABSTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See the Energy Level79AJ01)8AJ01)TablesAAAS5448

  9. ABSTRACT

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youTheWSRC-TR-97-0100WHITE.3RDLead-Acidr_+_/.

  10. ABSTRACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced1 TEMPERATURE

  11. Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAbout AboutYouNAbstract In

  12. Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAbout AboutYouNAbstract

  13. Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAbout AboutYouNAbstract

  14. Abstract

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAbout

  15. Abstract:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAboutAs the

  16. Abstract:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In the designAboutAs theNew

  17. ABSTRACT

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic InputRudolph A. Marcus and HisEnergy,MeasuringA. A. AbrikosovPublished

  18. Abstract

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic InputRudolph A. Marcus and HisEnergy,MeasuringA.ANUDlSiTM-40

  19. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  20. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  1. Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands D, Lyngby Abstract. Two-dimensional unsaturated flow and transport through heterogeneous sand was investigated under controlled laboratory conditions. The unsaturated hydraulic conductivity of five homogeneous

  2. Macroeconomics: A Survey of Laboratory Research Department of Economics

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    to laboratory experiments involving human subjects but rather to computational experiments using calibrated Welcome Abstract This chapter surveys laboratory experiments addressing macroeconomic phenomena. The first and mechanisms for resolving these problems. Part three looks at experiments in specific macroeconomic sectors

  3. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  4. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  5. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  6. EM Exceeds Fiscal Year 2013 Small Business Goals | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Fiscal Year 2013 Small Business Goals EM Exceeds Fiscal Year 2013 Small Business Goals November 26, 2013 - 12:00pm Addthis Employees with Swift & Staley Inc., a Paducah site small...

  7. Hydrogen Goal-Setting Methodologies Report to Congress

    Fuel Cell Technologies Publication and Product Library (EERE)

    DOE's Hydrogen Goal-Setting Methodologies Report to Congress summarizes the processes used to set Hydrogen Program goals and milestones. Published in August 2006, it fulfills the requirement under se

  8. Introduction Goals Dissolution Precipitation Continuation Questions Mathematical Models for Simultaneous

    E-Print Network [OSTI]

    Vuik, Kees

    for Simultaneous Particle Dissolution and Nucleation during Heat Treatment of Commercial Aluminium Alloys Jos de Dissolution and Nucleation during Heat Treatment of Commercial Aluminium Alloys #12;Introduction Goals Alloys #12;Introduction Goals Dissolution Precipitation Continuation Questions Aluminium alloy production

  9. Complex Systems--Goals & Metrics Long-term Objective

    E-Print Network [OSTI]

    Hayden, Nancy J.

    ://www.uvm.edu/cmplxsys/. Moving forward--Goals, Metrics, and Resources: Approach: Kaizen. Measurability is ke

  10. Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National

    E-Print Network [OSTI]

    Abstracts of papers presented at SRI '95 Status of the Advanced Photon Source at Argonne National Laboratory David E. Moncton Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 Presented on 18 October 1995 The Advanced Photon Source at Argonne National Laboratory is a third

  11. Abduction, Experience, and Goals: A Model of Everyday Abductive Explanation*

    E-Print Network [OSTI]

    Langseth, Helge

    Abduction, Experience, and Goals: A Model of Everyday Abductive Explanation* David B. Leake head: Abduction, Experience, and Goals *This research was supported in part by the National Science Foundation under Grant No. IRI-9409348. #12;Abduction, Experience, and Goals: A Model of Everyday Abductive

  12. Ris National Laboratory Radiation Research Department

    E-Print Network [OSTI]

    *) Risø National Laboratory DK-4000 Roskilde, Denmark Per Hedemann-Jensen Danish Decommissioning DK-4000 Laboratory DK-4000 Roskilde, Denmark Per Hedemann-Jensen Danish Decommissioning DK-4000 Roskilde, Denmark Abstract. In the event of a nuclear or radiological emergency resulting in an atmospheric re- lease

  13. The Cognitive Ergonomics Laboratory NSF Information Technology

    E-Print Network [OSTI]

    Kaber, David B.

    The Cognitive Ergonomics Laboratory NSF Information Technology Research (ITR) Annual Review David B Ergonomics Laboratory #12;Research Assistants w Becca Green (IE) - Cognitive task analysis (CTA); abstraction URO (funded by SMV): n Complimentary research - "Physio-ergonomic Optimized Human-machine Interfaces

  14. Abstract--The goal of this study was to develop an automated and objective method to separate swallowing

    E-Print Network [OSTI]

    Moussavi, Zahra M. K.

    swallowing sounds from breath sounds. Swallowing sound detection can be utilized as part of a system for swallowing mechanism assessment and diagnosis of swallowing dysfunction (dysphagia) by acoustical means of tracheal sound into swallowing and respiratory segments. Among many features examined, root- mean

  15. The influence of abstract and concrete mindsets on anticipating and guiding others' self-regulatory effortsq

    E-Print Network [OSTI]

    Freitas, Antonio L.

    The influence of abstract and concrete mindsets on anticipating and guiding others' self the impact of abstract and concrete mindsets on attention to goal-relevant aspects of others' situations. An abstract (relative to a concrete) mindset, by making accessible the cognitive operation of considering

  16. Mechanical Engineering Department technical abstracts

    SciTech Connect (OSTI)

    Denney, R.M. (ed.)

    1982-07-01T23:59:59.000Z

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  17. Meeting Department of Defense non-hazardous solid waste goals

    SciTech Connect (OSTI)

    Eakes, W.S.; Comstock, J.

    1999-07-01T23:59:59.000Z

    This paper will discuss the previous and present Department of Defense (DOD) non-hazardous solid waste goals and how Navy and Marine Corps installation collect solid waste data and measure the goals. The installation and central data collection systems used, data collection problems and solutions, data quality, and the yearly measure. The paper will also discuss the original solid waste reduction and diversion goal and how the Navy and Marine Corps performed. The new DOD landfill and incineration diversion goal will be discussed and some techniques the Navy will use to meet the new goals.

  18. Biological & Environmental Research Abstracts Database

    Office of Scientific and Technical Information (OSTI)

    Welcome to the Administrative section of the Biological and Environmental Research Abstracts Database. Please logon. Logon Name: Password: Logon CommentsEmail Us * Security...

  19. ECOAS 2011 Titles and Abstracts

    E-Print Network [OSTI]

    2011-10-11T23:59:59.000Z

    sociated to other families of representations, according to the so-called .... Abstract: We use the technology of linking algebras and linking groupoids to show.

  20. MatSE 452 Fall 2011 Course Description: The main goals of the course are to introduce and provide hands-on

    E-Print Network [OSTI]

    Weaver, John H.

    these error bars. #12;Guidelines to Preparing Laboratory Reports MatSE 452 Fall 2011 The following guidelines) Abstract: The abstract is to be placed on Page 1, in block style with no paragraph indentation and in bold

  1. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  2. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  3. Abstract Presented at Synchrotron Environmental Science II (SES-II)

    E-Print Network [OSTI]

    Brookhaven National Laboratory

    Abstract Presented at Synchrotron Environmental Science II (SES-II) Argonne National Laboratory - 6 an important environmental problem. As a result, the disposal of the dredged material removed from the Harbor in developing methods for the environmentally responsible handling of the approximately 3,000,000 m3 of dredged

  4. A Goal-driven Auto-Configuration Tool for the Distributed Workflow Management System Mentor-lite

    E-Print Network [OSTI]

    1 A Goal-driven Auto-Configuration Tool for the Distributed Workflow Management System Mentor,weissenfels,shegalov,wonner,weikum}@cs.uni-sb.de WWW: http://www-dbs.cs.uni-sb.de/ Abstract The Mentor-lite prototype has been developed within of Mentor-lite and elaborate on a goal-driven auto- configuration tool for Mentor-lite and similar workflow

  5. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  6. Logical Full Abstraction and PCF 

    E-Print Network [OSTI]

    Longley, John R; Plotkin, Gordon

    2000-01-01T23:59:59.000Z

    We introduce the concept of logical full abstraction, generalising the usual equational notion. We consider the language PCF and two extensions with “parallel” operations. The main result is that, for standard ...

  7. Abstract Algebra I Course Page

    E-Print Network [OSTI]

    Abstract Algebra I. MW 4:35-5:55, Skiles 246. OFFICE HOURS: Tues 11-12 or by appointment. Textbook: Topics in Algebra by I.M. Herstein. Topics covered:.

  8. Essays on Consumers' Goal Orientation and Price Sensitivity

    E-Print Network [OSTI]

    Choi, Woo Jin

    2012-07-16T23:59:59.000Z

    ESSAYS ON CONSUMERS? GOAL ORIENTATION AND PRICE SENSITIVITY A Dissertation by WOO JIN CHOI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of DOCTOR OF PHILOSOPHY May 2012 Major Subject: Marketing Essays on Consumers? Goal Orientation and Price Sensitivity Copyright 2012 Woo Jin Choi ESSAYS ON CONSUMERS? GOAL ORIENTATION AND PRICE...

  9. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  10. Goal Practice & Experience : Status Quo and Future for Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Experience : Status Quo and Future for Industrial Scale Biomass Energy Development in China Goal Practice & Experience : Status Quo and Future for Industrial Scale Biomass Energy...

  11. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishmen...

    Office of Environmental Management (EM)

    Program (VTP) vtpgoals-strategies-accomp.pdf More Documents & Publications Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Materials Technologies:...

  12. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National Nuclear...

  13. affordable housing goals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goal of the community Biology and Medicine Websites Summary: will have solar panels, passive housing, district heating, will reuse all stormwater and greywater on site affordable...

  14. Opening Remarks, Achieving Air Quality and Climate Change Goals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP, demand response, and integrated low carbon energy supply Scoping Plan Proposed Update Sector Recommendations 6 Light Duty Vehicle GHG Goals California ZEV Action Plan ...

  15. The Adequacy of DOE Natural Phenomena Hazards Performance Goals...

    Office of Environmental Management (EM)

    Assess whether the DOE NPH performance goal concept as used in the Documented Safety Analysis process is adequate or needs additional guidance Background * ANS Standard...

  16. International Pharmaceutical Abstracts (IPA) What is International Pharmaceutical Abstracts?

    E-Print Network [OSTI]

    Saskatchewan, University of

    topic into the search box. #12;2 2. Click on Search to continue. 3. Enter terms to describe another in your search results. "Or" broadens your search by letting you search for related terms or synonyms. #12-related health topics. Searching International Pharmaceutical Abstracts The example below illustrates a step

  17. HAWC Calibration: Near Term Goals John A.J. Matthews

    E-Print Network [OSTI]

    HAWC Calibration: Near Term Goals John A.J. Matthews johnm@phys.unm.edu University of New Mexico;Calibration system: Recent Progress (I) The near term goals from the Madison meeting included: · Upgrade the calibration systems at CSU and at MTU: 1. to incorporate minor design changes based on CSU/MTU studies 2

  18. Chapter 3.3: Cooperative Education Program1 Objectives & Goals

    E-Print Network [OSTI]

    Chapter 3.3: Cooperative Education Program1 Objectives & Goals Objective: Grow Cooperative Education into a sustainable, self-funded program for undergraduate students while enhancing (1) student in the Cooperative Education program are: Goal: Eliminate barriers to entry for undergraduate engineering students

  19. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  20. Online Search Aids Petroleum Abstracts

    E-Print Network [OSTI]

    Reynolds, Albert C.

    to enter the words for the query. The center frame will display the list of terms resulting from the queryOnline Search Aids User Guide Petroleum Abstracts® A Division of The University of Tulsa July 1. A compilation of relevant E&P technical index terms and their relationships, covering the areas of geology

  1. Brookhaven National Laboratory presentation 2007 Peer Review

    E-Print Network [OSTI]

    Homes, Christopher C.

    and milestones FY2007 activities and progress (total $300K): CRADA with AMSC: thick (>2 µµµµm) MOD films ($100K = 2 MA/cm2) CRADA Goal: >600 A/cm #12;Brookhaven National Laboratory presentation 2007 Peer Review layers: performance statistics Milestone 1 (CRADA), completed: 2 MA/cm2 level achieved for 2 µµµµm triple

  2. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  3. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  4. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  5. Sandia National Laboratories: National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    free access to any interested users and code developers. WEC-Sim has the ... Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in...

  6. Continuous Commissioning® of an Office/Laboratory Building

    E-Print Network [OSTI]

    Evans, C.; Cordero, J.; Atencio, M.; Claridge, D. E.; Martinez, J.; Oberle, C.; Baltazar-Cervantes, J. C.; Zhu, Y.

    2005-01-01T23:59:59.000Z

    ESL-IC-10/05-20 1 Continuous Commissioning ® of an Office/Laboratory Building Chris Evans Julie Cordero Miguel Atencio Sandia National Laboratory David E. Claridge P.E. Ph.D. Joseph T. Martinez Juan-Carlos Baltazar Yiwen... Zhu Clifton Oberle Energy Systems Laboratory The Texas A&M University System Abstract Initial implementation of Continuous Commissioning ® (CC ® ) measures in Building 6585, the Technology Support Center at Sandia National Laboratory...

  7. A RE-LOOK AT THE US NRC SAFETY GOALS

    SciTech Connect (OSTI)

    mubayi v.

    2013-09-22T23:59:59.000Z

    Since they were adopted in 1986, the US NRC’s Safety Goals have played a valuable role as a de facto risk acceptance criterion against which the predicted performance of a commercial nuclear power reactor can be evaluated and assessed. The current safety goals are cast in terms of risk metrics called quantitative health objectives (QHOs), limiting numerical values of the risks of the early and latent health effects of accidental releases of radioactivity to the offsite population. However, while demonstrating compliance with current safety goals has been an important step in assessing the acceptance of the risk posed by LWRs, new or somewhat different goals may be needed that go beyond the current early fatality and latent cancer fatality QHOs in assessing reactor risk. Natural phenomena such as hurricanes seem to be suitable candidates for establishing a background rate to derive a risk goal as their order of magnitude cost of damages is similar to those estimated in severe accident Level 3 PRAs done for nuclear power plants. This paper obtains a risk goal that could have a wider applicability, compared to the current QHOs, as a technology-neutral goal applicable to future reactors and multi-unit sites.

  8. A goal directed simulation method using fuzzy cognitive mapping

    E-Print Network [OSTI]

    Deines, Erich Vernon

    1996-01-01T23:59:59.000Z

    A goal directed simulation method using fuzzy cognitive mapping (FCM-GDS) is partially developed. The FCM-GDS system can be used for the analysis and experimental design associated with traditional manufacturing studies. The FCM-GDS system...

  9. A goal-oriented user interface for personalized semantic search

    E-Print Network [OSTI]

    Faaborg, Alexander James

    2006-01-01T23:59:59.000Z

    Users have high-level goals when they browse the Web or perform searches. However, the two primary user interfaces positioned between users and the Web, Web browsers and search engines, have very little interest in users' ...

  10. San Antonio City Public Service (CPS Energy)- Renewables Portfolio Goal

    Broader source: Energy.gov [DOE]

    In 2003 San Antonio's municipal electric utility, City Public Service (CPS Energy) established a goal of meeting 15% of its electrical peak demand with renewable energy by 2020 under its Strategic...

  11. U.S. Federal Government- Green Power Purchasing Goal

    Broader source: Energy.gov [DOE]

    The federal Energy Policy Act of 2005 (EPAct 2005) extended and expanded several previous goals and standards to reduce energy use in existing and new federal buildings. Section 203 of EPAct 2005...

  12. GOALS, EXPECTATIONS, AND SATISFACTION IN THE MAINTENANCE OF WEIGHT LOSS

    E-Print Network [OSTI]

    Chang, Olivia L.

    2009-08-19T23:59:59.000Z

    ......................................................................25 Satisfaction and Weight Loss 37 Measurement of Goals, Expectations, and Satisfaction with Weight Loss...............41 Goals, Expectations, and Satisfaction in the Treatment of Obesity 43 Limitations of Previous Research... of approximately 15-25% of initial weight in 2 to 4 months of treatment, but may also result in substantially greater weight regain than more conventional, calorie-restrictive diets (Wadden & Osei, 2002). Pharmacological interventions have been presented...

  13. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  14. Sandia National Laboratories: ESIF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESIF Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  15. Sandia National Laboratories: NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  16. Sandia National Laboratories: Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  17. Sandia National Laboratories: CIRI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CIRI Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  18. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a critical juncture where pressing issues in energy security, climate change, and economic competitiveness are converging. Aggressive national goals for reducing petroleum use...

  19. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  20. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  1. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  2. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  3. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  4. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  5. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01T23:59:59.000Z

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  6. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  7. Abstract DNA-type systems

    E-Print Network [OSTI]

    Diederik Aerts; Marek Czachor

    2005-12-22T23:59:59.000Z

    An abstract DNA-type system is defined by a set of nonlinear kinetic equations with polynomial nonlinearities that admit soliton solutions associated with helical geometry. The set of equations allows for two different Lax representations: A von Neumann form and a Darboux-covariant Lax pair. We explain why non-Kolmogorovian probability models occurring in soliton kinetics are naturally associated with chemical reactions. The most general known characterization of soliton kinetic equations is given and a class of explicit soliton solutions is discussed. Switching between open and closed states is a generic behaviour of the helices. The effect does not crucially depend on the order of nonlinearity (i.e. types of reactions), a fact that may explain why simplified models possess properties occuring in realistic systems. We explain also why fluctuations based on Darboux transformations will not destroy the dynamics but only switch between a finite number of helical structures.

  8. Organizational goals are created at the Vice Presidential, School, Department/Unit, and managerial level. The purpose of organizational goals is to communicate strategic goals that support the mission

    E-Print Network [OSTI]

    Whittle, Mark

    Organizational goals are created at the Vice Presidential, School, Department/Unit, and managerial level. The purpose of organizational goals is to communicate strategic goals that support the mission of our institution to all applicable employees. Organizational Goals--Information for Managers

  9. Organizational goals are created at the Vice Presidential, School, Department/Unit, and managerial level. The purpose of organizational goals is to communicate strategic goals that support the mission

    E-Print Network [OSTI]

    Whittle, Mark

    Organizational goals are created at the Vice Presidential, School, Department/Unit, and managerial level. The purpose of organizational goals is to communicate strategic goals that support the mission of our institution to all applicable employees. Organizational Goals--Information for Employees

  10. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    BRIGGS,S.L.K.

    2001-06-01T23:59:59.000Z

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key cost centers. Successes to date include the pilot process, heightened employee awareness, registration of the first DOE National Laboratory facility, line ownership of the program, and senior management commitment.

  11. Assessing the displacement goals in the Energy Policy Act

    SciTech Connect (OSTI)

    Santini, D.J.; Krinke, M.; Mintz, M.; Singh, M.

    1995-02-01T23:59:59.000Z

    This paper discusses studies required by sections 502 and 504 of the Energy Policy Act of 1992 (EPACT). The principal focus is the feasibility of achieving the percentage reduction in petroleum-based transportation fuels used by light-duty vehicles (10% in 2000, 30% in 2010) as required by section 502(b)(2). The percentage goals must be consistent with the general goals of section 502(a), which include reducing oil imports, reducing greenhouse gases, and improving the nation`s economy. This paper draws upon conditional projections of replacement-fuel use in two separate 1994 studies conducted by the U.S. Department of Energy`s Energy Information Administration and its Office of Transportation Technologies. By referring to these published results and their context, this paper identifies key issues that must be considered in an evaluation of various section 502 goals as required by section 504(a).

  12. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema (OSTI)

    Stepanauskas, Ramunas [Bigelow Laboratory

    2013-01-22T23:59:59.000Z

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  13. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect (OSTI)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31T23:59:59.000Z

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  14. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis to address the nation's energy and environmental goals. · The NREL Hydrogen Analysis Group provides

  15. Environmental, Safety, Security, and Health Policy Brookhaven National Laboratory

    E-Print Network [OSTI]

    Ohta, Shigemi

    Environmental, Safety, Security, and Health Policy Brookhaven National Laboratory This document is a statement of BNL's ESSH policy. BNL is a world leader in scientific research and strives to demonstrate's progress on ESSH goals and adherence to this policy, I invite all interested parties to provide me

  16. Laboratory Directed Research and Development FY 2000

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2001-02-27T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  17. Laboratories for the 21st Century: Case Studies; National Renewable Energy Laboratory, Science and Technology Facility, Golden, Colorado (Brochure)

    SciTech Connect (OSTI)

    Van Geet, O.

    2010-04-01T23:59:59.000Z

    As a Laboratories for the 21st Century (Labs21) partner, NREL set aggressive goals for energy savings, daylighting, and achieving a LEED Gold rating (through the U.S. Green Building Council's Leadership in Energy and Environmental Design program) for its S&TF building.

  18. UN Millennium Development Goal 1 Eradicate Extreme Poverty and Hunger

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    UN Millennium Development Goal 1 Eradicate Extreme Poverty and Hunger QUICK FACTS The World Bank estimates that 1.4 bill people in developing countries were living in extreme poverty in 2005. Recent into absolute poverty. About 25% of children under

  19. Transforming the advanced lab: Part I -Learning goals Benjamin Zwickl

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Transforming the advanced lab: Part I - Learning goals Benjamin Zwickl , Noah Finkelstein and H. J-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University, 01.40.Fk, 01.50.Qb INTRODUCTION At the University of Colorado Boulder (CU), we are transforming our

  20. A Goal-Directed Modeling Technique towards Business Process

    E-Print Network [OSTI]

    Perry, Dewayne E.

    A Goal-Directed Modeling Technique towards Business Process Yuqun Zhang, Dewayne E. Perry Center--The modeling techniques for business process are mostly graphics-based, that is argued to be simplified when- plore the properties of the business processes under this modeling technique, we define a set of metrics

  1. School of Science Educational Goals Endeavor to develop science competency

    E-Print Network [OSTI]

    Li, Kin-Yin

    the importance of compliance with the ethics of science and being a responsible citizen towards their communitySchool of Science Educational Goals Endeavor to develop science competency Educate our students and working lives. Intended learning outcome of science students Upon graduation, students should: 1. Be able

  2. the triple aim MEETING THE GOAL OF HEALTH REFORM

    E-Print Network [OSTI]

    Chapman, Michael S.

    the triple aim MEETING THE GOAL OF HEALTH REFORM Produced by OHSU Strategic Communications -- emphasizing shared decision-making and coordination between providers -- could influence reform in a big way care. health reform is about getting better health outcomes for our communities, improving access

  3. Observation and Imitation: Goal Sequence Learning in Neurally Controlled Construction

    E-Print Network [OSTI]

    Crabbe, Frederick

    Observation and Imitation: Goal Sequence Learning in Neurally Controlled Construction Animats: VI, bring them to the construction site, locate the correct loca­ tion for the building material, and add it to the struc­ ture. The motivation for this work is to create agents that can perform construction tasks while

  4. PROJECT GOALS Use electricity accounts and Building Management System

    E-Print Network [OSTI]

    PROJECT GOALS · Use electricity accounts and Building Management System (BMS) data to describe and annual rates of consumption. DESCRIPTION Approximately 82 per cent of the NGA electricity consumption can. Fluctuations in heat or humidity are therefore likely to have a significant influence on electricity

  5. Overall Project Goals The Global Ecology Research Center at Stanford

    E-Print Network [OSTI]

    -energy cooling. The Night Sky radiant system demon- strates the same principles of radiant heat loss to deep space that researchers are investigating while a Cool Tower serves as an iconic focal point that drawsOverall Project Goals The Global Ecology Research Center at Stanford University is an extremely low

  6. PROJECT GOALS Develop a framework for the documentation of

    E-Print Network [OSTI]

    PROJECT GOALS Develop a framework for the documentation of proposed `People' and `Integration A set of seven spreadsheet documents, each with multiple sheets, collating data on proposed indicators is ongoing and involves the collation of data from newsletters, staff documents, media reports, previous

  7. Abstract Scalable Performance Engineering Notation | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract Scalable Performance Engineering Notation May 01, 2013 Aspen (Abstract Scalable Performance Engineering Notation) is a domain specific language for performance modeling...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  9. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  10. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  11. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  12. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  13. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  14. nfang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Ph.D., the University of British Columbia, Canada, 2006 B.S. from Xiamen University, China, 1998...

  15. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  16. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  18. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for SCADA Security Assets On August 25, 2011, in Sandia established its SCADA Security Development Laboratory in 1998. Its purpose was to analyze vulnerabilities in...

  19. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  20. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  1. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  2. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  4. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  5. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  6. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  7. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  8. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  9. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  10. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  11. Exercise Design Laboratory

    Broader source: Energy.gov [DOE]

    The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

  12. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  13. DENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson

    E-Print Network [OSTI]

    Boyer, Edmond

    irradiation to heat and compress a target containing thermonuclear fuel to fusion conditions. This is stillDENSE MATTER IN LASER DRIVEN FUSION ! LABORATORY EXPERIMENTS R.L. Mc Crory and J. Wilson Laboratory. The high power lasers in quaestion were constructed with laser fusion studies as the goal, i

  14. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  15. Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    .C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

  16. Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories?

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    Can Computer Simulations Replace Real Equipment in Undergraduate Laboratories? N. D. Finkelstein, K, Boulder Abstract. This paper examines the effects of substituting computer simulations in place of real (DC) circuit laboratory was modified to compare the effects of using computer simulations

  17. Mixed Reality Environment for Web-Based Laboratory Interactive Learning

    E-Print Network [OSTI]

    1(8) Mixed Reality Environment for Web-Based Laboratory Interactive Learning Ashraf Saleem1 , Kasim learning, Mixed reality environment, Laboratory learning, Fuzzy logic, Learner modeling. Abstract environment for e-learning of applied sciences by incorporating hal-00197209,version1-14Dec2007 Author

  18. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    SciTech Connect (OSTI)

    Bianchi, M. V. A.

    2011-07-01T23:59:59.000Z

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  19. Labs21: Improving the Environmental Performance of U.S. Laboratories

    E-Print Network [OSTI]

    Mathew, P.

    Labs21: Improving the Environmental Performance of U.S. Laboratories Paul Mathew Staff Scientist Lawrence Berkeley National Laboratory Washington, DC ABSTRACT The Laboratories for the 21 sl Century (Labs21) program is a voluntary partnership... studies, design guides, and benchmarking tools. Several of these tools build upon the Design Guide for Energy-EffiCient Research Laboratories, developed by the Lawrence Berkeley National Laboratory. In addition, Labs21 has developed the Environmental...

  20. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  1. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  2. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  3. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  4. Vehicles and E85 Stations Needed to Achieve Ethanol Goals

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    This paper presents an analysis of the numbers of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85). The paper does not analyze issues related to the supply of ethanol which may turn out to be of even greater concern. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived and preliminary results for 2010, 2017 and 2030 consistent with the President s 2007 biofuels program goals are presented (1). A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85, and that 125 to 200 million flexible fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: (1) there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline, (2) the future prices of E85 and gasoline are uncertain; and (3) the method of analysis used is highly aggregated; it does not consider the potential benefits of regional strategies nor the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce FFVs and insure widespread availability of E85.

  5. 4th Annual DOE-ERSP PI Meeting: Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2009-01-01T23:59:59.000Z

    Kaplan, Savannah River National Laboratory Elliot StableDaniel Kaplan, Savannah River National Laboratory (lead PI),I. Kaplan, Savannah River National Laboratory, Aiken, SC,

  6. 2nd Annual DOE-ERSP PI Meeting: Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2007-01-01T23:59:59.000Z

    H. Nitsche 4 Savannah River National Laboratory, Aiken, SCColumbia, SC Savannah River National Laboratory, Aiken, SCE. Turick Savannah River National Laboratory, Aiken, SC

  7. Two Facilities, One Goal: Advancing America’s Wind Industry

    Office of Energy Efficiency and Renewable Energy (EERE)

    Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado.

  8. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  9. Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters

    E-Print Network [OSTI]

    Stachniss, Cyrill

    Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters Christian the problem of online failure detection and isolation for mobile robots. The goal is to enable a mobile robot failures of mobile robots. It uses a hierarchy of process models to actively validate the model assumptions

  10. Abstract--This paper addresses the problem of controlling wind energy conversion systems (WECS) which involve

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Abstract-- This paper addresses the problem of controlling wind energy conversion systems (WECS-inverter. The goal of control is to maximize wind energy extraction and this needs letting the wind turbine rotor wind energy extraction) only for one wind speed value depending on the considered value of turbine

  11. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  12. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  13. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Engine R&D: Goals, Strategies, and Top Accomplishments Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments advcombustiongoals.pdf More Documents...

  14. Rangeland Resource Management for Texans: Why are Goals Important for Natural Resource Management?

    E-Print Network [OSTI]

    White, Larry D.; Fox, William E.

    2002-04-29T23:59:59.000Z

    This publication discusses the need for rangeland resource managers to set goals and then to take the correct actions to achieve those goals....

  15. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  16. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  17. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  18. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory (BATLab) Abuse Testing B-Roll BatLab 894 B-Roll Cell...

  19. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  20. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  1. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  2. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  3. PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY

    E-Print Network [OSTI]

    Rathbun, Julie A.

    r PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY 28th ANNUAL MEETING NI\\SI\\National Aeronautit &II LPI #12;PROGRAM AND ABSTRACTS FOR CLAY MINERALS SOCIETY 28th ANNUAL MEETING Houston, Texas October contains abstracts that have been accepted for presentation at the Clay Minerals Society 28th Annual

  4. Classification and Utilization of Abstractions for Optimization

    E-Print Network [OSTI]

    Yi, Qing

    Classification and Utilization of Abstractions for Optimization Dan Quinlan1 , Markus Schordan2.sabjornsen@fys.uio.no Abstract. We define a novel approach to optimize the use of libraries within applications. We propose that library-defined abstractions be clas- sified to support their automated optimization and by leveraging

  5. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01T23:59:59.000Z

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  6. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  7. Greenidge multi-pollutant project achieves emissions reduction goals

    SciTech Connect (OSTI)

    NONE

    2008-07-01T23:59:59.000Z

    Performance testing at the Greenridge Multi-Pollutant Project has met or exceeded project goals, indicating that deep emission reduciton sin small, difficult-to-retrofit power plants can be achieved. The technology fitted at the 107 MWe AES Greenridge Unit 4 includes a hybrid selective non-catalytic reduction/selective catalytic reduction system for NOx control (NOxOUT CASCADE) and a Turbosorp circulating fluidized bed dry scrubber system for SO{sub 2}, mercury, SO{sub 3} HC and Hf control. 2 figs.

  8. Workshop Goals, Objectives, and Desired Outcomes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters |-- 9:00 AM Opening PlenaryNatural Gas and HydrogenGoals,

  9. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    SciTech Connect (OSTI)

    Davis, S.

    2000-10-01T23:59:59.000Z

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  10. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  11. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  12. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

  13. Materials Characterization Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

  14. Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

  15. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris National Laboratory

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risř National Laboratory N. Hagenb a Topsoe Fuel Cell A/S, Nymřllevej 55, DK-2800 Lyngby, Denmark b Risř National Laboratory, DTU, DK-4000 Roskilde, Denmark ABSTRACT Topsoe Fuel Cell A/S (TOFC) and Risř National Laboratory (Risř

  16. Imperfect Enforcement of Emissions Trading and Industry Welfare: A Laboratory Investigation

    E-Print Network [OSTI]

    Murphy, James J.

    March 2008 Imperfect Enforcement of Emissions Trading and Industry Welfare: A Laboratory of Emissions Trading and Industry Welfare: A Laboratory Investigation Abstract: This paper uses laboratory to be low. Thus, although a standard model of compliance with emissions trading programs tends to predict

  17. Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies (Revision)

    SciTech Connect (OSTI)

    Not Available

    2002-03-01T23:59:59.000Z

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

  18. Louis Stokes Laboratories, Building 50, National Institutes of Health, Bethesda, Maryland: Laboratories for the 21st Century Case Studies

    SciTech Connect (OSTI)

    Not Available

    2001-12-01T23:59:59.000Z

    This case study was prepared by participants in the Laboratories for the 21st Century program, a joint endeavor of the U.S. Environmental Protection Agency and the U.S. Department of Energy's Federal Energy Management Program. The goal of this program is to foster greater energy efficiency in new laboratory buildings for both the public and the private sectors. Retrofits of existing laboratories are also encouraged. The energy-efficient features of the new laboratories in Building 50 at the National Institutes of Health in Bethesda, Maryland, include extensive use of daylighting, variable-air-volume control of the ventilation air supply and exhaust air system, and a unique energy recovery system that makes use of large desiccant energy wheels. With nearly 300,000 gross square feet, the building is estimated to use much less energy than traditional research facilities consume because of its energy-efficient design and features.

  19. Automation of Termination: Abstracting CCG through MWG Automation of Termination: Abstracting Calling

    E-Print Network [OSTI]

    Ayala-Rincón, Mauricio

    Automation of Termination: Abstracting CCG through MWG Automation of Termination: Abstracting of Termination: Abstracting CCG through MWG Motivation Termination analysis is a fundamental topic in computer science. While classical results state the undecidability of various termination problems, automated

  20. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  1. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  2. Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  3. Analysis of complex networks using aggressive abstraction.

    SciTech Connect (OSTI)

    Colbaugh, Richard; Glass, Kristin. [New Mexico Institute of Mining and Technology, Socorro, NM; Willard, Gerald [Department of Defense, Ft. Meade, MD

    2008-10-01T23:59:59.000Z

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving - we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  4. Sandia Energy - Online Abstracts and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract (16.KB PDF) Report (2.0MB PDF) "Simulation and Testing of Resin Infusion Manufacturing Processes for Large Composite Structures" D.B. Mastbergen October 2007...

  5. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  6. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    procedure lists all the items Handbook 150 requires be covered in a management review. The records do and Management Reviews #12;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory's management review

  7. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect (OSTI)

    Hansen (Ed.), Todd

    2007-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  8. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  9. Road Transportable Analytical Laboratory system. Phase 1

    SciTech Connect (OSTI)

    Finger, S.M.; Keith, V.F.; Spertzel, R.O.; De Avila, J.C.; O`Donnell, M.; Vann, R.L.

    1993-09-01T23:59:59.000Z

    This developmental effort clearly shows that a Road Transportable Analytical Laboratory System is a worthwhile and achievable goal. The RTAL is designed to fully analyze (radioanalytes, and organic and inorganic chemical analytes) 20 samples per day at the highest levels of quality assurance and quality control. It dramatically reduces the turnaround time for environmental sample analysis from 45 days (at a central commercial laboratory) to 1 day. At the same time each RTAL system will save the DOE over $12 million per year in sample analysis costs compared to the costs at a central commercial laboratory. If RTAL systems were used at the eight largest DOE facilities (at Hanford, Savannah River, Fernald, Oak Ridge, Idaho, Rocky Flats, Los Alamos, and the Nevada Test Site), the annual savings would be $96,589,000. The DOE`s internal study of sample analysis needs projects 130,000 environmental samples requiring analysis in FY 1994, clearly supporting the need for the RTAL system. The cost and time savings achievable with the RTAL system will accelerate and improve the efficiency of cleanup and remediation operations throughout the DOE complex.

  10. Laboratory Directed Research and Development Program FY2004

    SciTech Connect (OSTI)

    Hansen, Todd C.

    2005-03-22T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions periodically under review by the Office of Science Program Offices, such as strategic LDRD projects germane to new research facility concepts and new fundamental science directions.

  11. A Guide to the Petroleum Abstracts

    E-Print Network [OSTI]

    Reynolds, Albert C.

    pertaining to petroleum exploration and production. Journals, patent gazettes, full-text patents, conferencePetroleum Abstracts A Guide to the Petroleum Abstracts Information Service Serving the Exploration & Production Sector of the Oil & Gas Industry Including: PA List of Publications Reviewed PA Selected

  12. Abstract Interpretation and Object-oriented Programming

    E-Print Network [OSTI]

    Cortesi, Tino

    and logic programming, have been in the past a very fertile test bed for the development of sophisticated abstract domains and specialized fix- point algorithms. On the other hand, when looking overshadow the great potentialities of abstract interpretation on the mainstream programming platforms where

  13. Development Abstract-One of the

    E-Print Network [OSTI]

    Chapman, Patrick

    into a teaching lab are discussed. II.DESIGN DISCUSSION The design process for this project had different objectives were sizing, magnetizing inductance of the stator, physical feasibility and observation on a laboratory bench. A stator length of roughly 35 cm and lamination stacking depth of roughly 5

  14. Our goal is to develop physically based lighting models and percep-tually based rendering procedures for computer graphics that will

    E-Print Network [OSTI]

    Ferwerda, James A.

    be a major paradigm shift for the computer graphics industry, but would have much broader applicability thanAbstract Our goal is to develop physically based lighting models and percep- tually based rendering framework is subdivided into three sub-sections: the local light reflection model, the energy transport

  15. The primary goal of my study was to develop a bioenergetic model to predict the food requirements of Steller sea lions (Eumetopias jubatus). An important component of

    E-Print Network [OSTI]

    #12;ii ABSTRACT The primary goal of my study was to develop a bioenergetic model to predict the food requirements of Steller sea lions (Eumetopias jubatus). An important component of the bioenergetic not resume growth until sometime after November. The bioenergetic model was used to estimate the food

  16. On the Prediction of Biomineralization Proteins in the Absence of Sequence Homologies One major goal of the bioinformatics research at Cal State San

    E-Print Network [OSTI]

    Zhang, Xiaoyu

    On the Prediction of Biomineralization Proteins in the Absence of Sequence Homologies ABSTRACT One major goal of the bioinformatics research at Cal State San Marcos is to identify gene and protein lack sequence homology, which makes it more challenging to identify such genes. On the other hand known

  17. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  18. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  19. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  20. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    in development, scale- up and deployment of first-of-a-kind processes to solve environmental problems in the fundamental chemistry of 4 RPL: RadiochemicalProcessingLaboratory Researchers design, build and operate small-scale-liquid suspensions. Developing Radiochemical Processes at All Scales Among the key features of the RPL are extensive

  1. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  2. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  3. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

  4. Nevis Laboratories Columbia University

    E-Print Network [OSTI]

    Detector 27 4 Data Selection 40 5 Majorana Neutrino Search Results 75 6 General Neutrino Search Results 79#12; Nevis Laboratories Columbia University Physics Department Irvington­on­Hudson, New York Search for an O(100 GeV ) Mass Right­Handed Electron Neutrino at the HERA Electron­Proton Collider Using the ZEUS

  5. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  6. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  7. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    -cycle applications. These proficiencies include extensive experience with U.S. Department of Energy tank waste.S. Department of Energy Hanford Site in south-central Washington State, the Radiochemical Processing Laboratory) thermogravimetric and calorimetric analysis microscopy (visible light, SEM, TEM, AFM) gas and thermal ionization

  8. Abstract--To reach the goal mentioned in the title, an intuitive solution using two pieces of ferrite is first proven to be effective.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    as inside transformers, especially at frequencies promoting eddy currents. Due to its rotational invariance of multipolar expansion of the external field. I. INTRODUCTION Increasing power efficiency is the main objective of power electronic designers. Wire related losses are a major concern in connecting conductors as well

  9. Abstract--The goal of this project is to develop a means for individuals with stroke to practice arm movement therapy at

    E-Print Network [OSTI]

    Bobrow, James E.

    to be practiced and monitored. Toward this end, we modified an anti-gravity arm orthosis, the Wilmington Robotic

  10. Lawrence Livermore National Laboratory 2007 Annual Report

    SciTech Connect (OSTI)

    Chrzanowski, P; Walter, K

    2008-04-25T23:59:59.000Z

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that started with a view toward the potential threat of terrorist use of biological weapons. As featured in our annual report, activities in this area have grown to many important projects contributing to homeland security and disease prevention and control. At times transformation happens in large steps. Such was the case when nuclear testing stopped in the early 1990s. As one of the nation's nuclear weapon design laboratories, Livermore embarked on the Stockpile Stewardship Program. The objectives are to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile and to develop a science-based, thorough understanding of the performance of nuclear weapons. The ultimate goal is to sustain confidence in an aging stockpile without nuclear testing. Now is another time of major change for the Laboratory as the nation is resizing its nuclear deterrent and NNSA begins taking steps to transform the nuclear weapons complex to meet 21st-century national security needs. As you will notice in the opening commentary to each section of this report, the Laboratory's senior management team is a mixture of new and familiar faces. LLNS drew the best talent from its parent organizations--Bechtel National, UC, Babcock & Wilcox, the Washington Group Division of URS, and Battelle--to lead the Laboratory. We are honored to take on the responsibility and see a future with great opportunities for Livermore to apply its exceptional science and technology to important national problems. We will work with NNSA to build on the successful Stockpile Stewardship Program and transform the nation's nuclear weapons complex to become smaller, safer, more secure, and more cost effective. Our annual report highlights progress in many relevant areas. Laboratory scientists are using astonishing computational capabilities--including BlueGene/L, the world's fastest supercomputer with a revolutionary architecture and over 200,000 processors--to gain key insights about performance of aging nuclear weapons. What we learn will help us sustain the stockpile without nuclear testing. Preparations are underway to start experiments at

  11. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    SciTech Connect (OSTI)

    Pirruccello, M.C.; Tobias, C.A. (eds.)

    1980-11-01T23:59:59.000Z

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)

  12. Biology and Medicine Division annual report, 1981-1982. [Lead abstract

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    Separate abstracts were prepared for the 61 research reports in the 1981-1982 annual report for the Biology and Medicine Division of the Lawrence Berkeley Laboratory. Programs reviewed include research medicine, Donner Pavilion, environmental physiology, radiation biophysics and structural biophysics. (KRM)

  13. Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

  14. The Aespoe Hard Rock Laboratory -- A preparation for the licensing of the deep geological repository for spent fuel in Sweden

    SciTech Connect (OSTI)

    Backblom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    1993-12-31T23:59:59.000Z

    The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository for demonstration deposition of spent fuel in Sweden. This paper describes the main and stage goals of the project. The site characterization prior to construction of the laboratory is described, as well as the on-going studies during construction of the laboratory. Excavation of the laboratory is planned to reach the final depth of 460 m below the surface in 1994. The program for the Operating Phase is in progress. It will be developed in cooperation with the seven organizations from six countries that are now participating in the Aespoe Hard Rock Laboratory.

  15. Idaho National Laboratory 2013-2022 Ten-Year Site Plan

    SciTech Connect (OSTI)

    Calvin Ozaki; Sheryl L. Morton; Elizabeth A. Connell; William T. Buyers; Craig L. Jacobson; Charles T. Mullen; Christopher P. Ischay; Ernest L. Fossum; Robert D. Logan

    2011-06-01T23:59:59.000Z

    The Idaho National Laboratory (INL) Ten-Year Site Plan (TYSP) describes the strategy for accomplishing the long-term objective of transforming the laboratory to meet Department of Energy (DOE) national nuclear research and development (R&D) goals, as outlined in DOE strategic plans. The plan links R&D mission goals and INL core capabilities with infrastructure requirements (single- and multi-program), establishs the 10-year end-state vision for INL complexes, and identifies and prioritizes infrastructure needs and capability gaps. The TYSP serves as the basis for documenting and justifying infrastructure investments proposed as part of the FY 2013 budget formulation process.

  16. 06241 Abstracts Collection Human Motion -Understanding, Modeling,

    E-Print Network [OSTI]

    06241 Abstracts Collection Human Motion - Understanding, Modeling, Capture and Animation. 13th Summary Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop Reinhard Klette 06241 Human Motion - Understanding, Modeling, Capture and Animation. 13th Workshop "Theoretical

  17. Pulmonary toxicology of respirable particles. [Lead abstract

    SciTech Connect (OSTI)

    Sanders, C.L.; Cross, F.T.; Dagle, G.E.; Mahaffey, J.A. (eds.)

    1980-09-01T23:59:59.000Z

    Separate abstracts were prepared for the 44 papers presented in these proceedings. The last paper (Stannard) in the proceedings is an historical review of the field of inhalation toxicology and is not included in the analytics. (DS)

  18. Kansas Statistical Abstract 2005 (40th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2008-10-21T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, finance, state and local...

  19. Kansas Statistical Abstract 2013 (48th Edition)

    E-Print Network [OSTI]

    Institute for Policy & Social Research

    2014-09-01T23:59:59.000Z

    The Kansas Statistical Abstract 2013, contains the latest available state, county, and city-level data for Kansas on population, vital statistics and health, housing, education, business and manufacturing, exports, employment, ...

  20. Kansas Statistical Abstract 2001 (36th Edition)

    E-Print Network [OSTI]

    2002-12-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  1. Kansas Statistical Abstract 2008 (43rd Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2009-09-21T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on agriculture, banking and finance, business and exports, climate, communications and information, crime, education, employment and ...

  2. Kansas Statistical Abstract 2004 (39th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2006-01-31T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  3. Kansas Statistical Abstract 2003 (38th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2004-09-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  4. Kansas Statistical Abstract 2012 (47th Edition)

    E-Print Network [OSTI]

    Institute for Policy & Social Research

    2014-05-27T23:59:59.000Z

    The Kansas Statistical Abstract 2012, contains the latest available state, county, and city-level data for Kansas on population, vital statistics and health, housing, education, business and manufacturing, exports, employment, ...

  5. Kansas Statistical Abstract 2002 (37th Edition)

    E-Print Network [OSTI]

    2003-09-01T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on population, vital statistics and health, housing, elections, education, business and manufacturing, exports, employment, income, ...

  6. Kansas Statistical Abstract 2009 (44th Edition)

    E-Print Network [OSTI]

    Policy Research Institute

    2011-03-02T23:59:59.000Z

    The Kansas Statistical Abstract contains state, county, and city-level data for Kansas on agriculture, banking and finance, business and exports, climate, communications and information, crime, education, employment and ...

  7. Overview | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest andOptimize carbonOtherdefault Sign InOverview Goals

  8. Abstract Interpretation from a Topological Perspective

    E-Print Network [OSTI]

    Schmidt, David A.

    , then c C such that c U also. (A Scott-open U is like an interval, (c, +], on the real line.) x f f(x) f to abstract interpretation: Cousots' -topology for a.i. [Cousot2 78] defines a Scott-like topology #12;For Galois connection, P() , A, for f : P() P(), an abstract function, f : A A, is sound iff f

  9. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  10. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  11. Metrics and Benchmarks for Energy Efficiency in Laboratories

    SciTech Connect (OSTI)

    Rumsey Engineers; Mathew, Paul; Mathew, Paul; Greenberg, Steve; Sartor, Dale; Rumsey, Peter; Weale, John

    2008-04-10T23:59:59.000Z

    A wide spectrum of laboratory owners, ranging from universities to federal agencies, have explicit goals for energy efficiency in their facilities. For example, the Energy Policy Act of 2005 (EPACT 2005) requires all new federal buildings to exceed ASHRAE 90.1-2004 [1] by at least 30%. A new laboratory is much more likely to meet energy efficiency goals if quantitative metrics and targets are specified in programming documents and tracked during the course of the delivery process. If not, any additional capital costs or design time associated with attaining higher efficiencies can be difficult to justify. This article describes key energy efficiency metrics and benchmarks for laboratories, which have been developed and applied to several laboratory buildings--both for design and operation. In addition to traditional whole building energy use metrics (e.g. BTU/ft{sup 2}.yr, kWh/m{sup 2}.yr), the article describes HVAC system metrics (e.g. ventilation W/cfm, W/L.s{sup -1}), which can be used to identify the presence or absence of energy features and opportunities during design and operation.

  12. Metrics and Benchmarks for Energy Efficiency in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul

    2007-10-26T23:59:59.000Z

    A wide spectrum of laboratory owners, ranging from universities to federal agencies, have explicit goals for energy efficiency in their facilities. For example, the Energy Policy Act of 2005 (EPACT 2005) requires all new federal buildings to exceed ASHRAE 90.1-2004 1 by at least 30 percent. The University of California Regents Policy requires all new construction to exceed California Title 24 2 by at least 20 percent. A new laboratory is much more likely to meet energy efficiency goals if quantitative metrics and targets are explicitly specified in programming documents and tracked during the course of the delivery process. If efficiency targets are not explicitly and properly defined, any additional capital costs or design time associated with attaining higher efficiencies can be difficult to justify. The purpose of this guide is to provide guidance on how to specify and compute energy efficiency metrics and benchmarks for laboratories, at the whole building as well as the system level. The information in this guide can be used to incorporate quantitative metrics and targets into the programming of new laboratory facilities. Many of these metrics can also be applied to evaluate existing facilities. For information on strategies and technologies to achieve energy efficiency, the reader is referred to Labs21 resources, including technology best practice guides, case studies, and the design guide (available at www.labs21century.gov/toolkit).

  13. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  14. Economic and emissions impacts of renewable fuel goals for aviation in the US

    E-Print Network [OSTI]

    McConnachie, Dominic

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the economic and emissions impacts of this goal ...

  15. Implicit and Self-Attributed Achievement Goals: Relationships with Effort and Persistence

    E-Print Network [OSTI]

    Beauchamp, Anne

    2011-02-05T23:59:59.000Z

    This dissertation investigates the existence of implicit, or non-conscious, achievement goals and their relationships with self-attributed achievement goals and two aspects of task performance: effort and persistence. One ...

  16. Predicting Academic Achievement: The Role Of Parenting, Nonverbal Intelligence, and Goal Orientation in Turkish Children

    E-Print Network [OSTI]

    Korkmaz, Ummugulsum

    2014-07-25T23:59:59.000Z

    The purpose of this research is to examine parenting, child goal orientation, and child nonverbal intelligence as predictors of academic achievement among fifth grade Turkish children. The influence of intelligence, parenting style, and goal...

  17. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  18. The thermionic fuel element verification program: Technical accomplishments and goals

    SciTech Connect (OSTI)

    Houts, M.G. (Los Alamos National Lab., NM (United States)); Wharton, W.R. Jr. (Department of Energy, Germantown, MD (United States)); Begg, L.L. (General Atomics, San Diego, CA (United States)); Lawrence, L.A. (Westinghouse Hanford Company, Richland, WA (United States))

    1993-01-01T23:59:59.000Z

    The goal of the Thermionic Fuel Element Verification Program (TFEVP) is to demonstrate the technological readiness of a thermionic fuel element in a thermionic reactor having an electric power output in the 0.5- to 5-MW(electric) range and a full-power life of 7 yr. The TFEVP has made significant progress in developing components capable of withstanding the required neutron fluence (4 x 10[sup 22] n/cm[sup 2], E > 0. 1 MeV) and the required burnup (5.3%) of a 2-MW(electric) system. Technology developed under the TFEVP also supports the 5- to 40-kW(electric) thermionic systems currently of interest to the Strategic Defense Initiative Organization and the US Air Force. The fast-neutron flux in certain 5- to 40-kW(electric) systems is up to a factor of 7 less than that in 0.5- to 5-MW(electric) systems. Component technology that has been developed for 0.5- to 5-MW(electric) systems will thus be suitable for use in long-life, high-performance, 5- to 40-kW(electric) systems. Components that are being developed by the TFEVP include insulator seals, sheath insulators, fueled emitters, cesium reservoirs, and inter- connective TFE components. In addition, the TFEVP has created a preliminary 2-MW(electric) system design and is currently evaluating converter performance under various conditions. Prototypical TFEs are also being tested. The TFEVP is developing accurate converter-performance models that are correlated to observed test data.

  19. Furthering Your Local Governments' Energy Efficiency Goals: Getting Support from Local Leaders

    Broader source: Energy.gov [DOE]

    Power Point presentation from the Furthering your Local Governments Energy Efficiency Goals part 1 Getting Support From Local Leaders webcast.

  20. Advanced Combustion Engine R&D: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01T23:59:59.000Z

    Fact sheet describes the top accomplishments, goals and strategies of DOEs Advanced Combustion Engine Research and Development sub program.

  1. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  2. Sandia National Laboratories: thermophysical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermophysical properties ECIS-I2CNER: Hydrogen Infrastructure Research Aids Energy Independence Goal On February 14, 2013, in CRF, Energy, Livermore Valley Open Campus (LVOC),...

  3. Sandia National Laboratories: Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Vehicle Technologies On November 9, 2010, in Vehicle Technology programs at Sandia share a common goal: reducing dependence on petroleum-based fuels and...

  4. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test loop directly supports the SunShot goals by providing development for thermal energy storage costs 15kWhth and by allowing greater collection efficiencies and...

  5. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goal 1: Degradation Study of Components and Subsystems On December 18, 2012, in Thermal Management Subsystem Inverters Capacitors Switches Thermal Management Subsystem Thermal...

  6. Sandia National Laboratories: Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EfficiencyVehicle Technologies Vehicle Technologies Combustion Research Facility (CRF) Vehicle Technology programs at Sandia share a common goal: reducing dependence on...

  7. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  8. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE's nuclear-waste efforts and the goals of the Deep ... Waste Isolation Pilot Plant Accident Investigation Analysis Support On December 3, 2014, in Computational Modeling &...

  9. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  10. Photoinduced Hydrogen Abstraction from Phenols by Aromatic Ketones. A New Mechanism for Hydrogen Abstraction by

    E-Print Network [OSTI]

    Leigh, William J.

    Photoinduced Hydrogen Abstraction from Phenols by Aromatic Ketones. A New Mechanism for Hydrogen carried out of the kinetics of inter- and intramolecular phenolic hydrogen abstraction phenolic hydrogen, which yields the corresponding phenoxyl-hemipinacol biradical. The biradicals have also

  11. Smithsonian/NASA ADS Physics/Geophysics Abstract Service Find Similar Abstracts (with default settings below)

    E-Print Network [OSTI]

    Mojahedi, Mohammad

    Smithsonian/NASA ADS Physics/Geophysics Abstract Service · Find Similar Abstracts (with default | Query Form | Preferences | HELP | FAQ Physics/Geophysics arXiv e-prints Send Query Reset #12;

  12. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

  13. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  14. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  15. Laboratory compaction of cohesionless sands

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01T23:59:59.000Z

    on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

  16. To appear in A. Ram & D.B. Leake, editors, Goal-Driven Learning, MIT Press/Bradford Books. Learning as Goal-Driven Inference

    E-Print Network [OSTI]

    Michalski, Ryszard S.

    "toolbox"), the inferential theory of learning proposes a taxonomy of the types of inferencesTo appear in A. Ram & D.B. Leake, editors, Goal-Driven Learning, MIT Press/Bradford Books. Chapter 21 Learning as Goal-Driven Inference Ryszard S. Michalski and Ashwin Ram 1 Inferential Theory

  17. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  18. Simon Thoma Implementation and Impact of the Millennium Development Goals on Development Policies in Pakistan

    E-Print Network [OSTI]

    Richner, Heinz

    in Pakistan Implementation and Impact of the Millennium Development Goals on Development Policies in Pakistan are asked to make special efforts to move towards the Goals. Pakistan as a developing country faces many in Pakistan. The first research hypothesis states that the Goals do not have a direct impact on development

  19. The Decade of Development: Goal Setting and Policy Challenges in India

    E-Print Network [OSTI]

    The Decade of Development: Goal Setting and Policy Challenges in India Jeffrey D. Sachs and Nirupam Papers #12;The Decade of Development: Goal Setting and Policy Challenges in India Jeffrey D. Sachs during several trips to India in the year 2000. #12;1 The Decade of Development: Goal Setting and Policy

  20. Economic and emissions impacts of renewable fuel goals for aviation in the US*

    E-Print Network [OSTI]

    t The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuelEconomic and emissions impacts of renewable fuel goals for aviation in the US* Niven Winchester and emissions impacts of renewable fuel goals for aviation in the US q Niven Winchester a, , Dominic Mc

  1. Internship Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Undergraduate Laboratory Internship Community College Internships Cooperative Education Student Research Participation Program Lee Teng Fellowship Temporary Employment...

  2. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01T23:59:59.000Z

    Roy, Nancy Jo Lewis, “CERTS Microgrid Laboratory Test Bed Report:Appendix K,” http://certs.lbl.gov/CERTS_P_

  3. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling Collaborative (PVPMC)...

  4. Sandia National Laboratories: Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  5. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  6. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  7. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01T23:59:59.000Z

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  8. Pacific Northwest National Laboratory FY96 Annual Self-Evaluation Report

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) research and development efforts are concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Fiscal year 1996 saw the Laboratory focus its efforts on the results necessary for us to meet DOE`s most important needs and expectations. Six Critical Outcomes were established in partnership with DOE. The Laboratory met or exceeded performance expectations in most areas, including these outcomes and the implementation of the Laboratory`s Integrated Assessment Program. We believe our overall performance for this evaluation period has been outstanding. A summary of results and key issues is provided.

  9. Humidity requirements in WSCF Laboratories

    SciTech Connect (OSTI)

    Evans, R.A.

    1994-10-01T23:59:59.000Z

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

  10. TAP Helps States and Local Governments Reach Their Wind Power Goals

    SciTech Connect (OSTI)

    Not Available

    2007-08-01T23:59:59.000Z

    Technical Assistance Project: Wind and Hydropower Program provides information to state and local officials regarding the U.S. Department of Energy's Technical Assistance Project (TAP). The TAP program provides access to wind energy experts at U.S. Department of Energy (DOE) national laboratories, including the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Lawrence Berkeley National Laboratory (LBNL).

  11. Sandia Energy - Online Abstracts and Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows JerryNuclear EnergyNuclear

  12. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  13. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  14. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  15. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  16. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  17. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  18. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  19. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  20. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  1. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  2. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  3. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  4. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  5. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  6. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  7. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  8. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  9. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  10. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  11. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  12. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  13. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  14. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  15. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  16. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory

  17. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,. .,3cbenetti Ames Laboratory

  18. constant | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile

  19. Pacific Northwest Laboratory Maintenance Implementation plan

    SciTech Connect (OSTI)

    Bright, J.D.

    1992-06-01T23:59:59.000Z

    This Maintenance Implementation plan has been developed for Pacific Northwest Laboratory`s (PNL) Nuclear Facilities: 306W, 324, 325, 327 and 329NMF. It is based on a graded approach, self-assessment of the existing maintenance program(s) per the requirements specified by US Department of Energy (DOE) Order 4330.4A, Chapter II, Change {number_sign}3. The results of this assessment were evaluated to determine needed improvements in PNL Craft Services` current maintenance program. The objective of this implementation plan is to provide baseline information for compliance to the DOE 4330.4A, and for needed improvements. The prime consideration in applying a graded approach to the Order has been to maintain safe and reliable operations, environmental compliance, safeguards and security, programmatic mission, facility preservation, and/or other facility-specific requirements. Using the results of the self-assessment, PNL has selected nine of the 18 elements of the Maintenance Program defined by DOE Order 4330.4A for improvement. The elements selected for improvement are Training and Qualification of Maintenance Personnel; Maintenance Procedures; Planning, Scheduling, and Coordination of Maintenance; Control of Maintenance Activities; Post-Maintenance Testing; Facility Condition Inspection; Management Involvement; Maintenance History; and Additional Maintenance Requirements. Based upon graded approach and current funding, those elements considered most important have been selected as goals for earliest compliance. Commitment dates for these elements have been established for compliance. The remaining elements of noncompliance will be targeted for implementation during later budget periods.

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect (OSTI)

    (Office of The Director)

    2012-04-25T23:59:59.000Z

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  1. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect (OSTI)

    (Office of The Director)

    2012-04-25T23:59:59.000Z

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  2. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    National Laboratory - November 2013 Independent Oversight Review, Los Alamos National Laboratory - November 2013 November 2013 Review of the Los Alamos National Laboratory...

  3. National Laboratory Liaisons | Department of Energy

    Office of Environmental Management (EM)

    Laboratory Liaisons National Laboratory Liaisons The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy...

  4. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  5. Demo Abstract: TOSS: Thermal Occupancy Sensing System

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    materials harnessing passive solar technologies along with increasingly efficient HVAC systems have,jlusby,acerpa}@andes.ucmerced.edu ABSTRACT We propose a system that can accurately determine the oc- cupancy of zones within a building to a building's energy management system in order to control the Heating, Ventilation, Air Condition- ing, (HVAC

  6. Transforming and Refining Abstract Constraint Specifications

    E-Print Network [OSTI]

    Walsh, Toby

    Transforming and Refining Abstract Constraint Specifications Alan M. Frisch1 , Brahim Hnich2 , Ian choose model transformations to reduce greatly the amount of effort that is required to solve a problem by systematic search. It is a consid- erable challenge to automate such transformations. A problem may be viewed

  7. Abstract polymer models with general pair interactions

    E-Print Network [OSTI]

    Aldo Procacci

    2008-11-26T23:59:59.000Z

    A convergence criterion of cluster expansion is presented in the case of an abstract polymer system with general pair interactions (i.e. not necessarily hard core or repulsive). As a concrete example, the low temperature disordered phase of the BEG model with infinite range interactions, decaying polynomially as $1/r^{d+\\lambda}$ with $\\lambda>0$, is studied.

  8. Natural radiation environment III. [Lead Abstract

    SciTech Connect (OSTI)

    Gesell, T.F.; Lowder, W.M. (eds.)

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for the 52 research papers presented at this symposium in April 1978. The major topics in this volume deal with penetrating radiation measurements, radiation surveys and population exposure, radioactivity in the indoor environment, and technologically enhanced natural radioactivity. (KRM)

  9. Jitter Regulation for Multiple Streams (Extended Abstract)

    E-Print Network [OSTI]

    Hay, David

    Jitter Regulation for Multiple Streams (Extended Abstract) David Hay and Gabriel Scalosub Computer as possible; the smoothness of a traffic is typically captured by its delay jitter, i.e., the difference between the maximal and minimal end-to-end delays. The task of minimizing the jitter is done by jitter

  10. Managed Data: Modular Strategies for Data Abstraction

    E-Print Network [OSTI]

    Cook, William R.

    these mechanisms to define specific kinds of data. Managed Data allows program- mers to take control of many management mechanism, not properties of individ- ual data types. It is possible to define such featuresManaged Data: Modular Strategies for Data Abstraction Alex Loh University of Texas at Austin

  11. Small Business Innovation Research: Abstracts of Phase 1 awards, 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-31T23:59:59.000Z

    The Small Business Innovation Research (SBIR) program enables DOE to obtain effective, innovative solutions to important problems through the private sector, which has a commercial incentive to pursue the resulting technology and bring it to the marketplace. The growing number of awardees, many of them started in business in response to SBIR solicitations, is becoming a significant resource for the solution of high risk, high technology problems for the Department. As detailed here, this publication describes the technical efforts for SBIR Phase 1 awards in 1994. It is intended for the educated layman, and may be of particular interest to potential investors who wish to get in on the ground floor of exciting opportunities. Contained in this booklet are abstracts of the Phase 1 awards made in FY 1994 under the DOE SBIR program. The 212 Phase 1 projects described here were selected in a highly competitive process from a total of 2,276 grant applications received in response to the 1994 DOE annual SBIR Solicitation. The selections for awards were made on scientific and technical merit, as judged against the specific criteria listed in the Solicitation. Conclusions were reached on the basis of detailed reports returned by reviewers drawn from DOE laboratories, universities, private industry, and government. (Any discrepancies noted in prior DOE releases naming the firms selected for awards are due either to the firm changing its name after the award selection or to the firm not proceeding to a signed grant.) It is expected that between one-third and one-half of the Phase 1 projects will be continued into Phase 2. The work described in the abstracts is novel, high-risk research, but the benefits will also be potentially high if the objectives are met. Brief comments on the potential applications are given after each abstract. Individuals and organizations with an interest in the research described are encouraged to contact the appropriate small business directly.

  12. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    SciTech Connect (OSTI)

    Beggs, S.D.

    2000-12-07T23:59:59.000Z

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes strategic plans for human resources; environmental protection, safety, and health; site and facilities; security, export control, and counterintelligence; information management; communications, outreach, and community affairs; performance-based management; and productivity improvement and overhead cost reduction. Finally, Chapter VI provides resource projections that are a reasonable baseline for planning the Laboratory's future.

  13. Advanced Light Source Compendium of User Abstracts andTechnical Reports 1997

    SciTech Connect (OSTI)

    Cross, J.; Devereaux, M.K.; Dixon, D.J.; Greiner, A.; editors

    1998-07-01T23:59:59.000Z

    The Advanced Light Source (ALS), a national user facility located at Ernest Orlando Lawrence Berkeley National Laboratory of the University of California is available to researchers from academia, industry, and government laboratories. Operation of the ALS is funded by the Department of Energy's Office of Basic Energy Sciences. This Compendium contains abstracts written by users summarizing research completed or in progress during 1997, ALS technical reports describing ongoing efforts related to improvement in machine operations and research and development projects, and information on ALS beamlines planned through 1998.

  14. Abstract--Smart Grid technology appears necessary to succeed in activating the demand through demand side management

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Abstract--Smart Grid technology appears necessary to succeed in activating the demand through recommendations regarding the instruments that should be implemented to maximize the benefits of smart grids by the European Union. The development of smart grids (SG) is a possible solution for achieving these goals [1

  15. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect (OSTI)

    Office of the Director

    2010-04-09T23:59:59.000Z

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to meeting all reporting requirements during fiscal year 2009, our LDRD Office continues to enhance its electronic systems to streamline the LDRD management process. You will see from the following individual project reports that Argonne's researchers have once again done a superb job pursuing projects at the forefront of their respective fields and have contributed significantly to the advancement of Argonne's strategic thrusts. This work has not only attracted follow-on sponsorship in many cases, but is also proving to be a valuable basis upon which to continue realignment of our strategic portfolio to better match the Laboratory's Strategic Plan.

  16. Savannah River Plant/Savannah River Laboratory radiation exposure report

    SciTech Connect (OSTI)

    Rogers, C.D.; Hyman, S.D.; Keisler, L.L. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Plant); Reeder, D.F.; Jolly, L.; Spoerner, M.T.; Schramm, G.R. (Du Pont de Nemours (E.I.) and Co., Aiken, SC (USA). Savannah River Lab.)

    1989-01-01T23:59:59.000Z

    The protection of worker health and safety is of paramount concern at the Savannah River Site. Since the site is one of the largest nuclear sites in the nation, radiation safety is a key element in the protection program. This report is a compendium of the results in 1988 of the programs at the Savannah River Plant and the Savannah River Laboratory to protect the radiological health of employees. By any measure, the radiation protection performance at this site in 1988 was the best since the beginning of operations. This accomplishment was made possible by the commitment and support at all levels of the organizations to reduce radiation exposures to ALARA (As Low As Reasonably Achievable). The report provides detailed information about the radiation doses received by departments and work groups within these organizations. It also includes exposure data for recent years to allow Plant and Laboratory units to track the effectiveness of their ALARA efforts. Many of the successful practices and methods that reduced radiation exposure are described. A new goal for personnel contamination cases has been established for 1989. Only through continual and innovative efforts to minimize exposures can the goals be met. The radiation protection goals for 1989 and previous years are included in the report. 27 figs., 58 tabs.

  17. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  18. FFCAct Clearinghouse, Directory of abstracts. Revision 1

    SciTech Connect (OSTI)

    Harwood, T.

    1994-05-01T23:59:59.000Z

    The Federal Facility Compliance Act (FFCAct) Clearinghouse is a card catalog of information about the FFCAct and its requirements for developing Site Treatment Plans (STP). The information available in the clearinghouse includes abstracts describing computer applications, technical reports, and a list of technical experts. Information can be accessed for use in responding to FFCAct requirements, and the clearinghouse provides search capabilities on particular topics and issues related to STP development. Appendix A includes: contacts from each site, for which contact has been made, who are developing STPs; the FFCAct Clearinghouse Fact Sheet and; additional hard copy forms to be used to populate the database. This report contains 50 abstracts related to the Radioactive Waste Technical Support Program.

  19. Automatic identification of abstract online groups

    DOE Patents [OSTI]

    Engel, David W; Gregory, Michelle L; Bell, Eric B; Cowell, Andrew J; Piatt, Andrew W

    2014-04-15T23:59:59.000Z

    Online abstract groups, in which members aren't explicitly connected, can be automatically identified by computer-implemented methods. The methods involve harvesting records from social media and extracting content-based and structure-based features from each record. Each record includes a social-media posting and is associated with one or more entities. Each feature is stored on a data storage device and includes a computer-readable representation of an attribute of one or more records. The methods further involve grouping records into record groups according to the features of each record. Further still the methods involve calculating an n-dimensional surface representing each record group and defining an outlier as a record having feature-based distances measured from every n-dimensional surface that exceed a threshold value. Each of the n-dimensional surfaces is described by a footprint that characterizes the respective record group as an online abstract group.

  20. Project Sponsors:UCI Combustion Laboratory www.ucicl.uci.edu

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Project Sponsors:UCI Combustion Laboratory www.ucicl.uci.edu MOTIVATION As Americans realize their dependency on foreign oil is unsustainable the next abundant fuel source that could meet environmental of the burner to optimize performance. Fuel Composition Sensors For Smart Combustion Date: 2/22/2012 GOAL

  1. The Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy

    E-Print Network [OSTI]

    , describes R&D needs for heavy-ion accelerator, target and chamber R&D. 44 pages. Defines goals and criteria tasks) - ion accelerator technologies - chamber and maintenance technologies - pulsed power technologiesThe Heavy Ion Fusion Virtual National Laboratory The Heavy Ion Path to Fusion Energy Grant Logan

  2. Workshop National Renewable Energy Laboratory DOE Hydrogen ProgramDOE Hydrogen Program

    E-Print Network [OSTI]

    1 Systems Analysis Workshop National Renewable Energy Laboratory DOE Hydrogen ProgramDOE Hydrogen Washington D.C. 28-29 Jul 04 Dale Gardner Systems Integration Operated for the U.S. Department of Energy by Midwest Research Institute · Battelle #12;2 Systems Analysis Workshop Topics · Meeting Goals · Systems

  3. Road Transportable Analytical Laboratory (RTAL) system. Quarterly technical report, September--November 1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-15T23:59:59.000Z

    Goal is development and demonstration of a mobile, field laboratory system for meeting DOE needs for rapid, accurate analysis of hazardous and radioactive contaminants in soil, ground water, and surface waters. Work during this period was carried out on tasks 1 and 2: information required for NEPA, and performance requirements.

  4. Sandia National Laboratories: Sandia Battery Abuse Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Battery Abuse Testing Laboratory Sandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program On January 21, 2014, in...

  5. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  6. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    SciTech Connect (OSTI)

    B.W. ARNOLD

    2004-10-27T23:59:59.000Z

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  7. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19T23:59:59.000Z

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  8. Pacific Northwest National Laboratory FY1996 midyear self-evaluation

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    As stated in our mission, the Laboratory is concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Our intent for fiscal year l996 is to focus our efforts on the critical outcomes necessary for us to meet DOE`s needs. Six Critical Outcomes were established and substantial progress has been made against five of those outcomes during the first half of the fiscal year. A summary of progress and key issues is provided. The Critical Outcomes are: Environmental Molecular Sciences Laboratory; Environmental Management; Scientific Excellence and Productivity; ES&H/Conduct of Operations; Leadership; and Economic Development. The Laboratory has also made a significant commitment to the implementation of a fully integrated self-assessment program. Efforts during the first half of the fiscal year have been focused on developing an approach for the overall program and implementation in selected organizations. The approach is holistic and focuses assessment on activities important to the successful completion of our critical outcomes. Progress towards full implementation of the integrated assessment program is meeting expectations in general, but significant effort still needs to be applied to obtain effective implementation across the Laboratory and to ensure integration with the business planning process.

  9. Measuring Residential Ventilation System Airflows: Part 1 Laboratory

    E-Print Network [OSTI]

    1 Measuring Residential Ventilation System Airflows: Part 1 ­ Laboratory Evaluation of Airflow: residential, mechanical ventilation, measurement, ASHRAE 62.2, flow hood ABSTRACT Building codes increasingly require tighter homes and mechanical ventilation per ASHRAE Standard 62.2. These ventilation flows must

  10. Review of controlled laboratory experiments on physics of magnetic reconnection

    E-Print Network [OSTI]

    Lundquist number of S 1 10 as well as in MHD plasmas with S 100 1000. This article puts a special focus Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey Abstract. We review results-correlated plasma parameters at multiple plasma locations simultaneously, while satellites can only provide

  11. Title of dissertation: INERTIAL WAVES IN A LABORATORY MODEL

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    ABSTRACT Title of dissertation: INERTIAL WAVES IN A LABORATORY MODEL OF THE EARTH'S CORE Santiago Andr´es Triana, Doctor of Philosophy, 2011 Dissertation directed by: Professor Daniel P. Lathrop by Santiago Andr´es Triana Dissertation submitted to the Faculty of the Graduate School of the University

  12. A Global Personal Energy Meter University of Cambridge Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    - sumption figures scaled by a predetermined factor for the type of energy used and divided equally amongstA Global Personal Energy Meter Simon Hay University of Cambridge Computer Laboratory Abstract of goods and provision of services. I envisage a personal energy meter which can record and apportion

  13. IRAN: laboratory test bench for hypertelescope pupil-plane recombination

    E-Print Network [OSTI]

    Liske, Jochen

    IRAN: laboratory test bench for hypertelescope pupil-plane recombination F. Allouchea,b, F. Vakilib-Antipolis, CNRS UMR 6525 Parc Valrose, 06108 Nice Cedex 2, France ABSTRACT In 2004, our group proposed IRAN-apertures illuminated by laser sources are recombined using the IRAN scheme. The validation of the IRAN recombination

  14. Laboratory directed research and development program FY 1999

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2000-03-08T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  15. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect (OSTI)

    Hansen, Todd; Levy, Karin

    2002-03-15T23:59:59.000Z

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  16. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  17. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March...

  18. REPORT OF RESEARCH ACCOMPLISHMENTS AND FUTURE GOALS HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    Wise, Mark B. [California Institute of Technology; Kapustin, Anton N. [California Institute of Technology; Schwarz, John Henry [California Institute of Technology; Carroll, Sean [California Institute of Technology; Ooguri, Hirosi [California Institute of Technology; Gukov, Sergei [California Institute of Technology; Preskill, John [California Institute of Technology; Hitlin, David G. [California Institute of Technology; Porter, Frank C. [California Institute of Technology; Patterson, Ryan B. [California Institute of Technology; Newman, Harvey B. [California Institute of Technology; Spiropulu, Maria [California Institute of Technology; Golwala, Sunil [California Institute of Technology; Zhu, Ren-Yuan

    2014-08-26T23:59:59.000Z

    Caltech High Energy Physics (HEP) has a broad program in both experimental and theoretical physics. We are known for our creativity and leadership. The future is uncertain and we strive to be involved in all the major areas of experimental and theoretical HEP physics so no matter where the important discoveries occur we are well positioned to play an important role. An outstanding group of postdoctoral scholars, graduate students, staff scientists, and technical and administrative personnel support our efforts in experimental and theoretical physics. The PI’s on this grant are involved in the following program of experimental and theoretical activities: I) EXPERIMENTAL PHYSICS Our CMS group, led by Harvey Newman and Maria Spiropulu, has played a key role in the discovery and interpretation of the Higgs boson and in searches for new physics. They have important hardware responsibilities in both ECAL and HCAL and are also involved in the upgrades needed for the High Luminosity LHC. Newman's group also develops and operates Grid-based computing, networking, and collaborative systems for CMS and the US HEP community. The charged lepton (Mu2e) and quark BaBar flavor physics group is led by David Hitlin and Frank Porter. On Mu2e they have been instrumental in the design of the calorimeter. Construction responsibilities include one third of the crystals and associated readout as well as the calibration system. They also will have responsibility for a major part of the online system software. Although data taking ceased in 2008 the Caltech BaBar group is active on several new forefront analyses. The neutrino group is led by Ryan Patterson. They are central to NOvA's core oscillation physics program, to calibration, and to detector readiness being responsible for the production and installation of 12,000 APD arrays. They have key roles in neutrino appearance and disappearance analysis in MINOS and MINOS+. Sunil Golwala leads the dark matter direct detection effort. Areas of activity include: CDMS II data analysis, contributions to SuperCDMS Soudan operations and analysis, R&D towards SuperCDMS SNOLAB, development of a novel screener for radiocontamination (the BetaCage), and development of new WIMP detector concepts. Ren-Yuan Zhu leads the HEP crystal laboratory for the advanced detector R&D effort. The crystal lab is involved in development of novel scintillating crystals and has proposed several crystal based detector concepts for future HEP experiments at the energy and intensity frontiers. Its current research effort is concentrated on development of fast crystal scintillators with good radiation hardness and low cost. II) THEORETICAL PHYSICS The main theme of Sergei Gukov's current research is the relation between the geometry of quantum group invariants and their categorification, on the one hand, and the physics of supersymmetric gauge theory and string theory, on the other. Anton Kapustin's research spans a variety of topics in non-perturbative Quantum Field Theory (QFT). His main areas of interest are supersymmetric gauge theories, non-perturbative dualities in QFT, disorder operators, Topological Quantum Field Theory, and non-relativistic QFT. He is also interested in the foundations and possible generalizations of Quantum Mechanics. Hirosi Ooguri's current research has two main components. One is to find exact results in Calabi-Yau compactification of string theory. Another is to explore applications of the AdS/CFT correspondence. He also plans to continue his project with Caltech postdoctoral fellows on BPS spectra of supersymmetric gauge theories in diverse dimensions. John Preskill works on quantum information science. This field may lead to important future technologies, and also lead to new understanding of issues in fundamental physics John Schwarz has been exploring a number of topics in superstring theory/M-theory, supersymmetric gauge theory, and their AdS/CFT relationships. Much of the motivation for these studies is the desire to gain a deeper understanding of superstring theory and M-theory. The research

  19. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect (OSTI)

    Newman,L.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  20. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect (OSTI)

    Newman,L.; Fox, K.J.

    2007-12-31T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included are a metric of success indicators and Self Assessment.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect (OSTI)

    FOX,K.J.

    2006-01-01T23:59:59.000Z

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Program Assessment Report contains a review of the program. The report includes a summary of the management processes, project peer review, and the portfolio's relatedness to BNL's mission, initiatives and strategic plans. Also included is a metric of success indicators and Self Assessment.

  2. Laboratory Directed Research and Development Program FY2011

    SciTech Connect (OSTI)

    none, none

    2012-04-27T23:59:59.000Z

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  3. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01T23:59:59.000Z

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  4. Solar/performance goals for solar and ground-coupled heat pump systems

    SciTech Connect (OSTI)

    Andrews, J.W.

    1980-09-01T23:59:59.000Z

    Cost goals for combined solar/heat pump systems are developed. Three methods of analysis are used: simple payback, positive cash flow, and life cycle costing. The goals are parameterized on system energy efficiency, with the air-to-air heat pump as the conventional system which is used as a basis for comparison. Cost goals for nine systems are determined in three generic climates.

  5. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  6. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

  7. Sandia National Laboratories: Sandia partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale,...

  8. GUIDELINES FOR SAFE LABORATORY PRACTICES

    E-Print Network [OSTI]

    Haller, Gary L.

    University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

  9. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  10. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  11. Sandia National Laboratories: System Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  12. Sandia National Laboratories: Inverter Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  13. Sandia National Laboratories: Component Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  14. Sandia National Laboratories: Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  15. Paul Kearns | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Golden Field Office, Golden, Colorado, and manager of the National Renewable and Environmental Laboratory and Solar Energy Research Institute (SERI) Area Office. Closer to...

  16. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  17. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States. I&C systems monitor the safe, reliable and secure generation and delivery of electricity and could have potential cyber vulnerabilities. At Sandia National Laboratories,...

  18. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  19. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  20. Aymeric Rousseau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School in La Rochelle, France in 1997. After working for PSA Peugeot Citroen in the Hybrid Electric Vehicle research department, he joined Argonne National Laboratory in 1999...