Powered by Deep Web Technologies
Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

formation at the Riley Ridge Unit on the LaBarge Platform in Southwest  

NLE Websites -- All DOE Office Websites (Extended Search)

formation at the Riley Ridge Unit on the LaBarge Platform in Southwest formation at the Riley Ridge Unit on the LaBarge Platform in Southwest Wyoming. The test will demonstrate the ability of a geological formation to safely, permanently, and economically store more than 2 million tons of carbon dioxide (CO 2 ); examine the entire CO 2 injection process from pre-injection characterization, injection process monitoring, and post-injection monitoring; and provide the groundwork for future carbon capture and storage (CCS) opportunities in the region. The eolian sandstone formations present throughout the region offer the opportunity to store more than 100 years of CO 2 emissions from regional point sources. BSCSP plans to drill a CO 2 injection well and inject up to 1 million tons of CO 2 per year into the Nugget Sandstone

2

Chemical processing in geothermal nuclear chimney  

DOE Patents (OSTI)

A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

Krikorian, O.H.

1973-10-01T23:59:59.000Z

3

Chimneys: Keep 'em Clean... and Closed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chimneys: Keep 'em Clean... and Closed Chimneys: Keep 'em Clean... and Closed Chimneys: Keep 'em Clean... and Closed October 27, 2008 - 3:34pm Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Growing up in Wisconsin and New Jersey, my family homes always had a fireplace. They were perfect for cold winter nights, for "indoors camping" or just for sitting near and watching TV. There's very little like the crackle and heat of an open fire. That said, while your fireplace may be decorative, enjoyable, even functional, it's also one other thing: a great big hole going to the outdoors. Many families have glass doors across their fireplaces. That's a good start, but there's something else you should remember to do, and that is keep the chimney closed. It's more than just a good idea; hot air rises,

4

Some characteristics of the Hardhat chimney and surrounding wall rock  

SciTech Connect

The Hardhat event was a 4.9 + 1.5 kt nuclear explosion at a depth of 286.2 m in granodiorite. Data from 3 underground drill holes have been analyzed in an effort to further define chimney characteristics. The chimney radius was determined to be 20.3 m near shot point level and 17.7 m near the apical void. The earlier determined cavity radius of 19.2 m was confirmed. Total chimney volume is calculated to be 113,860 cu m consisting of 30,800 cu m of void space and 222 million kg of rock. Of the total chimney volume, 27% is void space. In the rubble column itself, exclusive of the apical void, 22% is void space. The nature of the radioactive melt and its distribution in the puddle suggest that the cavity did not collapse until H + 11 hr when an audible rumble was heard. The zone of highly crushed rock outside the chimney is calculated to have a void column of about 2,500 cu m, roughly 8% of the void volume inside the chimney.

Boardman, C.R.

1966-01-01T23:59:59.000Z

5

Chimneys: Warm and Cozy or Easy Exit for Your Heat? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Your Fireplace and Chimney Efficiency Chimneys: Keep 'em Clean... and Closed A wood stove on a stone hearth. | Photo courtesy of iStockphotoKingLouie Wood and Pellet Heating...

6

Chimney Rock Public Power Dist | Open Energy Information  

Open Energy Info (EERE)

Chimney Rock Public Power Dist Chimney Rock Public Power Dist Jump to: navigation, search Name Chimney Rock Public Power Dist Place Nebraska Utility Id 3495 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELECTRIC THERMAL STORAGE Commercial GENERAL SEASONAL Commercial IRRIGATION SERVICE Single Phase Commercial IRRIGATION SERVICE Three Phase Commercial IRRIGATION STANDBY RATE, Single Phase Commercial IRRIGATION STANDBY RATE, Three Phase Commercial LARGE POWER SERVICE Commercial RESIDENTIAL SERVICE AND SEASONAL SERVICE Residential

7

BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency January 30, 2013 - 5:13pm Addthis A warm fireplace can save you energy and money with proper maintenance. | Photo courtesy of ©iStockphoto.com/Pgiam. A warm fireplace can save you energy and money with proper maintenance. | Photo courtesy of ©iStockphoto.com/Pgiam. Erin Connealy Communications Specialist, Office of Energy Efficiency and Renewable Energy How can I participate? Follow these tips to make sure that your cozy fireplace isn't wasting energy in your home. The Northeast and much of the country has had very frigid temperatures lately! If you're like me, nothing sounds better than cozying up to the fireplace with a cup of cocoa on a cold day. But be aware that while

8

Passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-01-01T23:59:59.000Z

9

Vibration Reduction Technology for Directional Blasting Demolition of 210m Chimney in Complex Environment  

Science Conference Proceedings (OSTI)

This paper describes the successful experience of the directional control blasting demolition of 210m reinforced concrete chimney, and elucidates the determination of the project scheme, parameter design, electronic digital detonator detonating network ... Keywords: reinforced concrete chimney, directional blasting, electronic digital detonator, blasting vibration, vibration reduction technology

Shunxiang Xu, Dezhi Chen

2013-01-01T23:59:59.000Z

10

Modelling and simulation of acid gas condensation in an industrial chimney - article no. A39  

Science Conference Proceedings (OSTI)

Coal power stations as well as waste incinerators produce humid acid gases which may condense in industrial chimneys. These condensates can cause corrosion of chimney internal cladding which is made of stainless steel, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine and characterize all the phenomena which occur throughout the chimney and more especially condensation and dissolution of acid gases (in this particular case, sulfur dioxide SO{sub 2}).

Serris, E.; Cournil, M.M.; Peultier, J. [Ecole des Mines de St Etienne, St Etienne (France)

2009-07-01T23:59:59.000Z

11

Chimneys: Warm and Cozy or Easy Exit for Your Heat? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chimneys: Warm and Cozy or Easy Exit for Your Heat? Chimneys: Warm and Cozy or Easy Exit for Your Heat? Chimneys: Warm and Cozy or Easy Exit for Your Heat? January 12, 2010 - 10:21am Addthis Drew Bittner Web Manager, Office of Energy Efficiency and Renewable Energy Both of my childhood homes featured fireplaces. If you've had one, you know how terrific they can be-great places to bask on cold winter nights, an easy opportunity to toast marshmallows, picturesque, undeniably a pleasure in the house that has one. However, fireplaces have chimneys...and chimneys can be problems when it comes to home energy efficiency. For one thing, many people do not take care to close their chimney flue when there is no fire. This means warm air has an easy exit from your home; you have a big hole in your roof, after all, and warm air will take advantage of that. Ditto cold air in the

12

A single dimensionless variable for solar chimney power plant modeling  

Science Conference Proceedings (OSTI)

The solar chimney power plant is a relatively new technology for generating electricity from solar energy. In this paper dimensional analysis is used together with engineering intuition to combine eight primitive variables into only one dimensionless variable that establishes a dynamic similarity between a prototype and its scaled models. Three physical configurations of the plant were numerically tested for similarity: fully geometrically similar, partially geometrically similar, and dissimilar types. The values of the proposed dimensionless variable for all these cases were found to be nominally equal to unity. The value for the physical plant actually built and tested previously was also evaluated and found to be about the same as that of the numerical simulations, suggesting the validity of the proposition. The physical meaning of this dimensionless (similarity) variable is also interpreted; and the connection between the Richardson number and this new variable was found. It was found also that, for a fixed solar heat flux, different-sized models that are fully or partially geometrically similar share an equal excess temperature across the roof outlet. (author)

Koonsrisuk, Atit; Chitsomboon, Tawit [School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, Muang District, Nakhon Ratchasima 30000 (Thailand)

2009-12-15T23:59:59.000Z

13

Optimization of a Solar Chimney Design to Enhance Natural Ventilation in a Multi-Storey Office Building  

E-Print Network (OSTI)

Natural ventilation of buildings can be achieved with solar-driven , buoyancy-induced airflow through a solar chimney channel. Research on solar chimneys has covered a wide range of topics, yet study of the integration in multi-storey buildings has been performed in few numerical studies , where steady-state conditions were assumed. In practice, if the solar chimney is to be used in an actual building, dynamic performance simulations would be required for the specific building design and climate. This study explores the applicability of a solar chimney in a prototype multi-storey office building in the Netherlands. Sensitivity analysis and optimization of the design will be performed via dynamic performance simulations in ESP-r. The robustness of the optimized design will be tested at the final stage , against e.g. windows' opening by users. This is an ongoing project; calibration of the solar chimney model and preliminary sensitivity analysis results are presented here. .

Gontikaki, M.; Trcka, M.; Hensen, J.; Hoes, P. J.

2010-01-01T23:59:59.000Z

14

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

15

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-01-01T23:59:59.000Z

16

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-01-01T23:59:59.000Z

17

Experimental Performance of a Solar Collector in Solar Chimney Power Plant System  

Science Conference Proceedings (OSTI)

Solar chimney power plant has been proposed as a device to economically generate electricity from solar energy in large scale in the future. There are many factors to influence on the performance of the solar collector. This paper describes details of ... Keywords: generate electricity, thermal storage material, pebbles, solar collector

Huilan Huang; Gang Li; Hua Zhang

2010-06-01T23:59:59.000Z

18

Simulation of directional solidification, thermochemical convection, and chimney formation in a Hele-Shaw cell  

Science Conference Proceedings (OSTI)

We have developed fully resolved, two-dimensional, finite volume simulations of directional solidification of a binary alloy in a Hele-Shaw cell. Use of Darcy's law and the Enthalpy Method throughout the computational domain allows us to avoid prescribing ... Keywords: 44.25.+f, 47.11.-j, 47.15.gp, 47.20.Bp, 81.30.Fb, Ammonium chloride, Casting, Chimneys, Convection, Mushy layers, Numerical methods, PETSc, Reactive flow, Solidification

Richard F. Katz; M. Grae Worster

2008-12-01T23:59:59.000Z

19

Paradox Basin source rock, southeastern Utah : organic geochemical characterization of Gothic and Chimney Rock units, Ismay and Desert Creek zones, within a sequence stratigraphic framework.  

E-Print Network (OSTI)

??The Chimney Rock and Gothic units of the Pennsylvanian Paradox Formation have long been considered source rocks for the rich hydrocarbon fields of southeastern Utah. (more)

Tischler, Keith Louris

2012-01-01T23:59:59.000Z

20

CONTAINED NUCLEAR DETONATIONS IN FOUR MEDIA-GEOLOGICAL FACTORS IN CAVITY AND CHIMNEY FORMATION  

SciTech Connect

Underground nuclear tests in tuff, alluvium, rock salt, and granite have yielded data essential to the evaluation of the effects of contained nuclear detonations. The data indicate that for these mediums the cavity radius is predictable within plus or minus 20% without regard to the physical or chemical properties of the rock in the immediate shot environment. Properties of the chimney of broken rock resulting from collapse of the cavity, on the other hand, were found to be related to the physical properties of the rock and to preshot structural weaknesses within the rock. (auth)

Boardman, C.R.; Rabb, D.D.; McArthur, R.D.

1964-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, October 1985--February 1986  

DOE Green Energy (OSTI)

At the present time all experimental towers (chimneys) are completed and operating. This consists of both a solar updraft and a natural-evaporative downdraft tower retrofitted to an existing residence structure and a greenhouse. The residential, experimental, natural-draft cooling system was completed in May, 1985, and five months of summer data on a Hewlet Packard 85 data acquisition computer with a digital voltmeter were acquired. The cooling tower and solar chimney on the experimental greenhouse became operational in September of 1985. A conceptual drawing of both the greenhouse and the residence natural-draft towers is included in the appendix along with the September 85 progress report.

Cunningham, W.A.; Mignon, G.V.

1986-12-31T23:59:59.000Z

22

Passive cooling with solar updraft and evaporative downdraft chimneys. Interim report, June 15, 1984--March 1, 1985  

DOE Green Energy (OSTI)

Computer models have been developed to describe the operation of both solar updraft and evaporative downdraft chimneys. Design studies are being conducted at the present time to use the towers for cooling an experimental, well instrumented, structure to study passive cooling in residential buildings. (MHR)

Mignon, G.V.; Cunningham, W.A.; Thompson, T.L.

1985-12-31T23:59:59.000Z

23

Exit chimney joint and method of forming the joint for closed circuit steam cooled gas turbine nozzles  

SciTech Connect

A nozzle segment for a gas turbine includes inner and outer band portions and a vane extending between the band portions. The inner and outer band portions are each divided into first and second plenums separated by an impingement plate. Cooling steam is supplied to the first cavity for flow through the apertures to cool the outer nozzle wall. The steam flows through a leading edge cavity in the vane into the first cavity of the inner band portion for flow through apertures of the impingement plate to cool the inner nozzle wall. Spent cooling steam flows through a plurality of cavities in the vane, exiting through an exit chimney in the outer band. The exit chimney is secured at its inner end directly to the nozzle vane wall surrounding the exit cavities, to the margin of the impingement plate at a location intermediate the ends of the exit chimney and to margins of an opening through the cover whereby each joint is externally accessible for joint formation and for subsequent inspection.

Burdgick, Steven Sebastian (Schenectady, NY); Burns, James Lee (Schenectady, NY)

2002-01-01T23:59:59.000Z

24

Establish feasibility for providing passive cooling with solar updraft and evaporate downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some applications.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

25

Establish feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Final report, June 15, 1984--December 31, 1987  

DOE Green Energy (OSTI)

Natural draft towers can be used for cooling and ventilating structures. From an operational perspective, the downdraft evaporatively cooled tower is preferred for a dry climate. Solar chimneys, when used alone, tend to require an excessively large solar collector area when appreciable quantities of air must be moved. When used in combination with a downdraft tower, the roof and attic of buildings may assist the solar chimney and their use becomes more attractive. Both a frame building and a greenhouse were successfully cooled during this program. The economics of the downdraft tower compare favorably with conventional evaporative cooling for some application.

Cunningham, W.A.; Mignon, G.V.; Thompson, T.L.

1987-12-31T23:59:59.000Z

26

Endovascular Repair of Acute Symptomatic Pararenal Aortic Aneurysm With Three Chimney and One Periscope Graft for Complete Visceral Artery Revascularization  

SciTech Connect

PurposeTo describe a modified endovascular technique for complete revascularization of visceral and renal arteries in symptomatic pararenal aortic aneurysm (PRAA).TechniqueArterial access was surgically established in both common femoral arteries (CFAs) and the left subclavian artery (LSA). Revascularization of the left renal artery, the celiac trunk, and the superior mesenteric artery was performed through one single sheath via the LSA. Suitable covered stents were put in the aortic branches but not deployed. The right renal artery was accessed over the left CFA. Due to the longitudinal extension of the presented aneurysm two stent-grafts were introduced via the right CFA. After deploying the aortic stent-grafts, all covered stents in the side branches were deployed consecutively with a minimum overlap of 5 mm over the cranial and caudal stent-graft edges. Simultaneous ballooning was performed to fully expand all stent-grafts and warranty patency. Conclusion: This is the first report in the literature of chimney grafting in PRAA for complete revascularization of visceral and renal branches by using more than two covered stents introduced from one side through one single sheath. However this technique is modified, it should be used only in bailout situations when branched stent-grafts are not available and/or surgery is not suitable.

Brechtel, Klaus, E-mail: klaus.brechtel@med.uni-tuebingen.de; Ketelsen, Dominik [Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology (Germany); Endisch, Andrea [Eberhard-Karls-University, Department of Thoracic and Cardiovascular Surgery (Germany); Heller, Stephan; Heuschmid, Martin [Eberhard-Karls-University, Department of Diagnostic and Interventional Radiology (Germany); Stock, Ulrich A.; Kalender, Guenay [Eberhard-Karls-University, Department of Thoracic and Cardiovascular Surgery (Germany)

2012-04-15T23:59:59.000Z

27

Modeling Collapse Chimney and Spall Zone Settlement as a Source of Post-Shot Subsidence Detected by Synthetic Aperture Radar Interferometry  

Science Conference Proceedings (OSTI)

Ground surface subsidence resulting from the March 1992 JUNCTION underground nuclear test at the Nevada Test Site (NTS) imaged by satellite synthetic aperture radar interferometry (InSAR) wholly occurred during a period of several months after the shot (Vincent et al., 1999) and after the main cavity collapse event. A significant portion of the subsidence associated with the small (less than 20 kt) GALENA and DIVIDER tests probably also occurred after the shots, although the deformation detected in these cases contains additional contributions from coseismic processes, since the radar scenes used to construct the deformation interferogram bracketed these two later events, The dimensions of the seas of subsidence resulting from all three events are too large to be solely accounted for by processes confined to the damage zone in the vicinity of the shot point or the collapse chimney. Rather, the subsidence closely corresponds to the span dimensions predicted by Patton's (1990) empirical relationship between spall radius and yield. This suggests that gravitational settlement of damaged rock within the spall zone is an important source of post-shot subsidence, in addition to settlement of the rubble within the collapse chimney. These observations illustrate the potential power of InSAR as a tool for Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring and on-site inspection in that the relatively broad ({approx} 100 m to 1 km) subsidence signatures resulting from small shots detonated at normal depths of burial (or even significantly overburied) are readily detectable within large geographical areas (100 km x 100 km) under favorable observing conditions. Furthermore, the present results demonstrate the flexibility of the technique in that the two routinely gathered satellite radar images used to construct the interferogram need not necessarily capture the event itself, but can cover a time period up to several months following the shot.

Foxwall, W.

2000-07-24T23:59:59.000Z

28

CHIMNEY FOR BOILING WATER REACTOR  

DOE Patents (OSTI)

A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

Petrick, M.

1961-08-01T23:59:59.000Z

29

American Journal of Botany 87(4): 727734. 2000. MITOCHONDRIAL AND CHLOROPLAST DNA-BASED  

E-Print Network (OSTI)

) Botterkloof,WCape,RSA;STEU2055(STEU) Steynsberg,EGreatKaroo,WCape,RSA;CPG8518(BM) Hogsback,ECape,RSA;STEU1872

Hammerton, James

30

The Solar Chimney Schlaich Bergermann und Partner  

E-Print Network (OSTI)

Energy consumption per capita [kWh/a] Yearly average growth of population [%] Industrialized Countries! Development requires mechanization and energy. Energy consumption increases propor- tionally to the gross poverty and deprivation. Fig. 1: Standard of living - energy consumption - population growth To achieve

Lucier, Bradley J.

31

BR UFF BIG PINEY WILD ROSE BLU E GAP BR UFF UNIT WAMSUT TER  

Annual Energy Outlook 2012 (EIA)

Morehouse (2), Jack Perrin (1), Steve Jackson (1) and Robert King (2) (1) Z, Inc., (2) Energy Information Administration BIG PINEY TIP TOP BIR D CANYON SWAN FONTEN ELL E LABARGE...

32

When Her Thousand Chimneys Smoked: Virginia's Enslaved Cooks and Their Kitchens  

E-Print Network (OSTI)

Chambers, Murder at Montpelier: Igbo African in Virginia (Douglas B. Murder at Montpelier: Igbo African in Virginia, (Chambers. Murder at Montpelier: Igbo African in Virginia, (

Deetz, Kelley

2010-01-01T23:59:59.000Z

33

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-01-01T23:59:59.000Z

34

The "Carina Flare" Supershell: Probing the Atomic and Molecular ISM in a Galactic Chimney  

E-Print Network (OSTI)

The "Carina Flare" supershell, GSH 287+04-17, is a molecular supershell originally discovered in 12CO(J=1-0) with the NANTEN 4m telescope. We present the first study of the shell's atomic ISM, using HI 21 cm line data from the Parkes 64m telescope Southern Galactic Plane Survey. The data reveal a gently expanding, ~ 230 x 360 pc HI supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at z ~ 280 pc and a capped high-latitude extension reaching z ~ 450 pc. The molecular clouds form co-moving parts of the atomic shell, and the morphology of the two phases reflects the supershell's influence on the structure of the ISM. We also report the first discovery of an ionised component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of 2.6 +- 0.4 kpc. Associated HI and H2 masses are estimated as M(HI) ~ 7 +- 3 x 10^5 Msol and M(H2) ~ 2.0 +- 0.6 x 10^5 Msol, and the kinetic energy of the expanding shell as E ~ 1 x 10^51 erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 10^51 to ~ 10^52 erg, and an age of ~ 10^7 yr. This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.

J. R. Dawson; N. Mizuno; T. Onishi; N. M. McClure-Griffiths; Y. Fukui

2008-02-29T23:59:59.000Z

35

Three-Dimensional Observations of a Deep Convective Chimney in the Greenland Sea during Winter 1988/89  

Science Conference Proceedings (OSTI)

All available temperature data, including moored thermistor, hydrographic, and tomographic measurements, have been combined using least-squares inverse methods to study the evolution of the three-dimensional temperature field in the Greenland Sea ...

W. M. L. Morawitz; P. J. Sutton; P. F. Worcester; B. D. Cornuelle; J. F. Lynch; R. Pawlowicz

1996-11-01T23:59:59.000Z

36

Establishing feasibility for providing passive cooling with solar updraft and evaporative downdraft chimneys. Progress report, March 1985--September 1985  

DOE Green Energy (OSTI)

The solar updraft and a natural evaporative downdraft tower built onto an existing residence structure and a greenhouse were completed and operating. Performance data for the hottest days of June, July, and August, 1985 are included. (MHR)

Cunningham, W.A.; Migon, G.V.

1985-12-31T23:59:59.000Z

37

Complete genome sequence of the aerobic, heterotroph Marinithermus hydrothermalis type strain (T1T) from a deep-sea hydrothermal vent chimney  

Science Conference Proceedings (OSTI)

Marinithermus hydrothermalis Sako et al. 2003 is the type species of the monotypic genus Marinithermus. M. hydrothermalis T1 T was the first isolate within the phylum ThermusDeinococcus to exhibit optimal growth under a salinity equivalent to that of sea water and to have an absolute requirement for NaCl for growth. M. hydrothermalis T1 T is of interest because it may provide a new insight into the ecological significance of the aerobic, thermophilic decomposers in the circulation of organic compounds in deep-sea hydrothermal vent ecosystems. This is the first completed genome sequence of a member of the genus Marinithermus and the seventh sequence from the family Thermaceae. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,269,167 bp long genome with its 2,251 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

Copeland, A [U.S. Department of Energy, Joint Genome Institute; Gu, Wei [U.S. Department of Energy, Joint Genome Institute; Yasawong, Montri [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Deshpande, Shweta [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Tapia, Roxanne [Los Alamos National Laboratory (LANL); Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Pan, Chongle [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Tindall, Brian [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Sikorski, Johannes [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute

2012-01-01T23:59:59.000Z

38

Fuel cell with internal flow control  

SciTech Connect

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

39

Einar Strmmen: Theory of bridge aerodynamics  

Science Conference Proceedings (OSTI)

... BOOK REVIEW ... In addition to bridges, the book also covers chimneys susceptible to vortex-shedding and aeroelas- tic response. ...

2013-07-24T23:59:59.000Z

40

A:\1FRONT(REVISED).PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACKNOWLEDGMENTS ACKNOWLEDGMENTS Special "Thanks" are given to the many individuals who participated in the multi-disciplinary team from DOE Headquarters and Field Elements. They wrote the chapters or provided insight, input and information arising from their own experiences. It was their valuable expertise which formed the basis for this Reference Book. Sponsor: Richard H. Hopf, Director, Office of Procurement & Assistance Management Lead Office Director: Stephen J. Michelsen, Director, Office of Contract & Resource Management Team Lead: James Tower, Office of Contract & Resource Management Sounding Board Advisors: Donette Cappello, PC-1 Gwendolyn Cowan, MA-51 Leif Erickson, RL Linda Johnson, GC-61 John LaBarge, SC-7 Richard Mehl, FI-10 William C. Meyers, AL

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

LDRD Program Contacts | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

LDRD Program Contacts LDRD Program Contacts Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Laboratory Directed Research and Development (LDRD) LDRD Program Contacts Print Text Size: A A A RSS Feeds FeedbackShare Page DOE/NNSA Headquarters Office of Science John LaBarge

42

feb2004.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 *Sequestration in the News *Recent Publications *Events and Announcements *Legislative Activity Sequestration in the News T HE CARBON S EQUESTRATION NEWSLETTER http://www.netl.doe.gov/coalpower/sequestration/ ABC News, "US Begins Work on CO2 Storage Project." Anadarko Petroleum Corp. will begin pumping CO2 into an oil reservoir in Wyoming's Salt Creek field starting Feb. 1, 2004. Over a 30 year project life, 25 million tons of injected CO2 are expected to remain sequestered underground. The CO2 is "anthropogenic," that is it is captured from Exxon-Mobil's natu- ral gas plant at LaBarge and transported to the oil field via pipeline. "This week the Wyoming State Geological Survey released a map of about 50 oil fields in the state that would be

43

Sawing2  

Science Conference Proceedings (OSTI)

... The white pipe with an upper heat shield (mock) simulates a chimney placed over an oil well to allow flames to escape through the top and workers ...

2011-08-11T23:59:59.000Z

44

DOE Solar Decathlon: West Virginia University  

NLE Websites -- All DOE Office Websites (Extended Search)

with innovative and modern home automation and energy-saving technologies. Features A solar chimney in the center of the house provides passive ventilation and represents a...

45

Shallow gas off the Rhone prodelta, Gulf of Lions  

E-Print Network (OSTI)

in press. What controls shallow gas in Western Adriatic Sea?L. , Arntsen, B. , 2003. Gas chimneys indicating aseismic maping of shallow gas in the Belgian coastal zone.

2006-01-01T23:59:59.000Z

46

Golfo de California : Bibliografa de las Ciencias Marinas = Gulf of California : Bibliography of Marine Sciences  

E-Print Network (OSTI)

Drilling Project Leg 65 NUMBER: 6595 Stable isotopes and fluidDrilling Project Leg 63, Neogene NUMBER: 7446 Sulfur isotope study of chimney minerals and vent fluids

Schwartzlose, Richard A.; Alvarez-Milln, Dantnoc; Brueggeman, Peter

1992-01-01T23:59:59.000Z

47

Alloying and Precipitation  

Science Conference Proceedings (OSTI)

Oct 19, 2011... aimed at replacing Type 316Ti in elevated-temperature applications such as automotive flexible connectors and residential chimney liners.

48

Development and Characterization of ATI 216Cb Alloy, a Mo ...  

Science Conference Proceedings (OSTI)

... flexible connectors and residential chimney liners. This presentation will review the development of ATI 216Cb alloy and present results of mechanical testing,...

49

DOE Solar Decathlon: 2007 Teams - Lawrence Technological University  

NLE Websites -- All DOE Office Websites (Extended Search)

reflect its healing effect on the Earth. It features a central solar chimney, extensive solar electric panels on the roof, and solar thermal collectors extending from its west...

50

Analysis of Fire Reports on File in the Massachusetts State ...  

Science Conference Proceedings (OSTI)

... only the first letter of the first key word unless a proper name; separated by semicolons) Accident investigations; chimneys; coal; creosote; fire ... Price ...

2009-12-24T23:59:59.000Z

51

Available Technologies: Convection Heat Pump  

APPLICATIONS OF TECHNOLOGY: Solar thermal systems; Heating and cooling systems for buildings; Refrigeration; Compressed air source; Recycling waste heat from chimneys

52

Bibliographies AI  

Science Conference Proceedings (OSTI)

... Also, limited system run-time during mild weather was identified as a limitation of ... the buoyancy effect, the school was equipped with a solar chimney ...

53

Preliminary concept Post-Piledriver Exploratory Program  

SciTech Connect

This is the concept for a series of post-shot investigations at the Piledriver site, Area 15, Nevada Test Site (NTS), to gain information on: Chimney geometry and associated wall rock conditions resulting from a deeply buried (1500 ft) nuclear explosion in granite; The characteristics and distribution of rubble and radioactivity in the chimney; and Data pertinent to in-situ leaching.

Nordyke, M. D.

1966-10-13T23:59:59.000Z

54

Hydraulic-fracture diagnostic research. Final report, December 1989-December 1990  

SciTech Connect

The results of the research in microseismic methods to determine hydraulic fracture dimensions during the contract were significant. The GRI Hydraulic Fracture Test Site (HFTS) development planning was a major effort. Ten meetings of the Planning Team were coordinated and hosted. A statement of the HFTS mission, scope, objectives, and requirements was created. The primary objectives were to provide for interdisciplinary experiments on fracture modeling and fracture diagnostics. A Conceptual Plan for the HFTS was compiled by Teledyne Geotech and distributed at the Project Advisors Group meeting. An experiment at the Shell South Belridge Field in California was a direct analog of the HFTS. Multiple fracture stimulations were monitored from 3 wells with cemented-in geophones. Methods of handling and processing large data volumes in real time were established. The final fracture geometry did not fit the circular model. Fracture diagnostics were monitored at two GRI cooperative wells: the Enron S. Hogsback No. 13-8A and the Phillips Ward C No. 11. Theoretical studies indicate that crack waves might be used as an estimate of fracture length. After applying advanced signal enhancement techniques to low-frequency signals from 14 surveys, it was concluded that the data from presently available sondes is contaminated by sonde resonances.

Fix, J.E.; Adair, R.G.; Clawson, G.E.; Lawhorn, W.S.; Mahrer, K.D.

1992-05-01T23:59:59.000Z

55

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rooftop PV, use 2600 SF addition to house various passive (solar chimney, earthducts, thermal mass,etc) systems; and training 03 30 2010 Cliff Whyte Digitally signed by Cliff...

56

Windy Gap Firming Project  

NLE Websites -- All DOE Office Websites (Extended Search)

action is to relocate approximately 3.8 miles of the existing Estes to Lyons 115-kilovolt transmission line, if the Chimney Hollow Reservoir alternative is constructed. The line...

57

HOMOGENEOUS NUCLEAR REACTOR  

DOE Patents (OSTI)

Nuclear reactors of the homogeneous liquid fuel type are discussed. The reactor is comprised of an elongated closed vessel, vertically oriented, having a critical region at the bottom, a lower chimney structure extending from the critical region vertically upwardly and surrounded by heat exchanger coils, to a baffle region above which is located an upper chimney structure containing a catalyst functioning to recombine radiolyticallydissociated moderator gages. In operation the liquid fuel circulates solely by convection from the critical region upwardly through the lower chimney and then downwardly through the heat exchanger to return to the critical region. The gases formed by radiolytic- dissociation of the moderator are carried upwardly with the circulating liquid fuel and past the baffle into the region of the upper chimney where they are recombined by the catalyst and condensed, thence returning through the heat exchanger to the critical region.

Hammond, R.P.; Busey, H.M.

1959-02-17T23:59:59.000Z

58

Integral Effects of Deep Convection  

Science Conference Proceedings (OSTI)

The large-scale, integral effect of convective elements (plumes) constituting an open-ocean chimney is investigated both theoretically and with a plume-resolving numerical model. The authors consider an initially homogeneous patch of ocean of ...

Uwe Send; John Marshall

1995-05-01T23:59:59.000Z

59

How I Learned to Stop Worrying and Love Professional Energy Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pgiam. BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency A wood stove on a stone hearth. | Photo courtesy of iStockphotoKingLouie Wood and Pellet Heating...

60

How I Learned to Stop Worrying and Love Professional Energy Assessment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BRRR...5 Ways to Maximize Your Fireplace and Chimney Efficiency A wood stove on a stone hearth. | Photo courtesy of iStockphotoKingLouie Wood and Pellet Heating Energy Audits...

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Effects of the Boussinesq Approximation on the Results of Strongly-Buoyant Plume Calculations  

Science Conference Proceedings (OSTI)

Nearly all mathematical models which are commonly used to predict the dispersion of chimney gases in the atmosphere or heated water discharges in the aquatic environment employ the so-called Boussinesq approximation. It is part of this ...

M. Schatzmann; A. J. Policastro

1984-01-01T23:59:59.000Z

62

GreenTower | Open Energy Information  

Open Energy Info (EERE)

GreenTower Jump to: navigation, search Name GreenTower Place Haiger 6, Germany Zip 35708 Sector Solar Product Developer of a solar chimney technology, with greenhouses for food...

63

Solar-air power plant. Interim report, January 1, 1980-November 1, 1981  

DOE Green Energy (OSTI)

The chimney conversion efficiency of transferring solar energy into wind energy for the proposed solar-air power plant has been investigated. The application of a chimney as the air-cooling system for a large-scale photovoltaic concentration power plant to transfer solar energy into electricity has also been studied. Several conclusions in reference to this basic research project and suggestions for further research phases are also summarized in this report.

Chen, I.

1982-01-01T23:59:59.000Z

64

Home heating system  

SciTech Connect

A home heating system is disclosed that has a furnace with a combustion chamber for burning fuel and creating heat, and a chimney with a draft therein. An improvement is described that has an exhaust flue connected between the combustion chamber and the chimney for venting heated exhaust products from the furnace, a heat reclaimer connected into the exhaust flue between the combustion chamber and the chimney for reclaiming heat from the heated exhaust product, and an outside air line for supplying air from the outside of the house to the combustion chamber. A first flue portion of the exhaust flue is connected between the combustion chamber and the heat reclaimer, and a second insulated flue portion of the exhaust flue is connected between the heat reclaimer and the chimney. An outside air by-pass or balancing line is connected between the outside air line and the chimney for satisfying the chimney suction at flame-out. A flow sensing and regulating device may be connected into the outside air line for regulating the flow or air so that outside air is supplied to the furnace only when fuel is burned therein.

Bellaff, L.

1980-03-25T23:59:59.000Z

65

Low-quality natural gas sulfur removal/recovery  

Science Conference Proceedings (OSTI)

Low quality natural gas processing with the integrated CFZ/CNG Claus process is feasible for low quality natural gas containing 10% or more of CO{sub 2}, and any amount of H{sub 2}S. The CNG Claus process requires a minimum CO{sub 2} partial pressure in the feed gas of about 100 psia (15% CO{sub 2} for a 700 psia feed gas) and also can handle any amount of H{sub 2}S. The process is well suited for handling a variety of trace contaminants usually associated with low quality natural gas and Claus sulfur recovery. The integrated process can produce high pressure carbon dioxide at purities required by end use markets, including food grade CO{sub 2}. The ability to economically co-produce high pressure CO{sub 2} as a commodity with significant revenue potential frees process economic viability from total reliance on pipeline gas, and extends the range of process applicability to low quality gases with relatively low methane content. Gases with high acid gas content and high CO{sub 2} to H{sub 2}S ratios can be economically processed by the CFZ/CNG Claus and CNG Claus processes. The large energy requirements for regeneration make chemical solvent processing prohibitive. The cost of Selexol physical solvent processing of the LaBarge gas is significantly greater than the CNG/CNG Claus and CNG Claus processes.

Damon, D.A. [CNG Research Co., Pittsburgh, PA (United States); Siwajek, L.A. [Acrion Technologies, Inc., Cleveland, OH (United States); Klint, B.W. [BOVAR Inc., AB (Canada). Western Research

1993-12-31T23:59:59.000Z

66

Post-piledriver concept letter  

SciTech Connect

This is the concept for a series of post-shot investigations at the Piledriver site, Area 15, Nevada Test Site (NTS), to gain information on: Chimney geometry and associated wall rock conditions resulting from a deeply buried (1500-ft) nuclear explosion in granite; The characteristics and distribution of rubble and radioactivity in the chimney; and Data pertinent to in-situ leaching. These categories define the three phases of this proposal in chronological order. The technical programs under Phases II and III will depend on the results of Phase 1. Presently, it is not known whether or not there has been a collapse of the Piledriver cavity. If collapse occurred, the predicted dimensions of the chimney, based on Hardhat experience, are expected to be 250 ft in diameter and 560 ft high. For the purpose of this discussion, it is assumed this condition exists.

Werth, G. C.

1967-07-01T23:59:59.000Z

67

Low-energy Passive Solar Residence in Austin, Texas  

E-Print Network (OSTI)

From the various studies, it can be concluded that the excessive summer heating and the humidity are one of the major problems of the hot, humid climatic region. The literature review for this study shows that natural ventilation alone cannot meet year long optimum indoor comfort in buildings. This research, through a design exercise, intends to verify whether a naturally ventilated house, in hot humid region of Austin, TX, can enhance its passive cooling potential through double?walled wind catcher and solar chimney. In this research, a passive solar residence has been designed. Two designs have been explored on the chosen site: a basecase design without the wind catcher and solar chimney and another design with wind catcher and solar chimney. In the designcase, the placement of the wind catcher and the solar chimney has been designed so that a thermal siphon of airflow inside the building can be created. The design might show that there will be a natural airflow during the time of the year when natural wind does not flow. Moreover, the double walled wind catcher will resist the cool winter wind due to its shape and orientation. In the design, the placement of the wind catcher and the solar chimney has been done so that a thermal siphon inside the building can be created. Therefore, inside the home, there will be a natural airflow during the time of the year when natural wind does not flow. The double walled wind catcher has been designed and placed according to the orientation of the building in order to achieve the optimum wind flow throughout the year. The solar chimney has been placed in a certain part of the building where it can get maximum solar exposure. By comparing two cases, it can be clearly said that there will some kind of changed indoor comfort level. Since the potential of the design has been judged through perception, a computational fluid dynamics simulation analysis for a year is to be done.

Sau, Arunabha

2010-08-01T23:59:59.000Z

68

Steam Generator Management Program: Thermal-Hydraulic Analysis of Representative Steam Generators with Various Tube Support Plate B lockages  

Science Conference Proceedings (OSTI)

Three primary-to-secondary leaks recently occurred at Cruas in France. The steam generators at Cruas were designed with a chimney region near the centerline, where 12 tubes were omitted but broach holes were still present in the tube support plates (TSPs). Sludge deposits accumulated in broached holes of the upper TSPs of the Cruas units. All three leaks were located near the chimney region and just above the top TSP. NRC Information Notice 2007-37, Buildup of Deposits in Steam Generators, was issued to ...

2008-12-22T23:59:59.000Z

69

Nuclear reactor I  

DOE Patents (OSTI)

A nuclear reactor, particularly a liquid-metal breeder reactor whose upper internals include provision for channeling the liquid metal flowing from the core-component assemblies to the outlet plenum in vertical paths in direction generally along the direction of the respective assemblies. The metal is channeled by chimneys, each secured to, and extending from, a grid through whose openings the metal emitted by a plurality of core-component assemblies encompassed by the grid flows. To reduce the stresses resulting from structural interaction, or the transmissive of thermal strains due to large temperature differences in the liquid metal emitted from neighboring core-component assemblies, throughout the chimneys and the other components of the upper internals, the grids and the chimneys are supported from the heat plate and the core barrel by support columns (double portal support) which are secured to the head plate at the top and to a member, which supports the grids and is keyed to the core barrel, at the bottom. In addition to being restrained from lateral flow by the chimneys, the liquid metal is also restrained from flowing laterally by a peripheral seal around the top of the core. This seal limits the flow rate of liquid metal, which may be sharply cooled during a scram, to the outlet nozzles. The chimneys and the grids are formed of a highly-refractory, high corrosion-resistant nickel-chromium-iron alloy which can withstand the stresses produced by temperature differences in the liquid metal. The chimneys are supported by pairs of plates, each pair held together by hollow stubs coaxial with, and encircling, the chimneys. The plates and stubs are a welded structure but, in the interest of economy, are composed of stainless steel which is not weld compatible with the refractory metal. The chimneys and stubs are secured together by shells of another nickel-chromium-iron alloy which is weld compatible with, and is welded to, the stubs and has about the same coefficient of expansion as the highly-refractory, high corrosion-resistant alloy.

Ference, Edward W. (Central City, PA); Houtman, John L. (Acme, PA); Waldby, Robert N. (New Stanton, PA)

1977-01-01T23:59:59.000Z

70

System for disposing of radioactive water  

DOE Patents (OSTI)

A system for reducing radioactivity released to the biosphere in the course of producing natural gas from a reservoir stimulated by the detonation of nuclear explosives therein. Tritiated water produced with the gas is separated out and returned to a nuclear chimney through a string of tubing positioned within the well casing. The tubing string is positioned within the well casing in a manner which enhances separation of the water out of the gas and minimizes entrainment of water into the gas flowing out of the chimney.

Gotchy, Reginald L. (Bethesda, MD)

1976-01-13T23:59:59.000Z

71

The Pennsylvania State University Confined Space Entry Program and Procedures  

E-Print Network (OSTI)

Mechanical/Electrical Compactor Dumpsters Mechanical/Dangerous Air Cooling Towers Mechanical/Dangerous Air/Electrical/Dangerous Air 2 Chimney Mechanical/Dangerous Air Compactor Dumpsters Mechanical/Dangerous Air Cooling Towers Dumpsters Mechanical/Dangerous Air Cooling Towers Mechanical/Dangerous Air Crawl Spaces Mechanical

Yener, Aylin

72

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research  

E-Print Network (OSTI)

applications (small and large scale water heating) and solar power plants for electricity production (concentrated solar power plants and solar chimney plants) in Brazil. The results demonstrate the feasibility of Brazilian Institute for Space Research (INPE). The Solar Energy Laboratory of University of Santa Catarina

73

Avian inhalation exposure chamber  

DOE Patents (OSTI)

An exposure system is designed for delivering gaseous material ranging in particle size from 0.4 micrometers to 20.0 micrometers uniformly to the heads of experimental animals, primarily birds. The system includes a vertical outer cylinder and a central chimney with animal holding bottles connected to exposure ports on the vertical outer cylinder. 2 figs.

Briant, J.K.; Driver, C.J.

1992-05-05T23:59:59.000Z

74

REDUCING MISMATCH LOSSES IN GRID-CONNECTED RESIDENTIAL BIPV ARRAYS USING ACTIVE POWER CONVERSION COMPONENTS  

E-Print Network (OSTI)

/Simulink© environment for each topology using a 3 kWp rooftop-type plant. Simulation results show that a considerable amount of additional solar generated energy can be grid-fed using alternative plant layouts. 1 occur due to nearby buildings, trees, antennas or chimneys, which are usually inherent to the solar

Paris-Sud XI, Université de

75

Guidelines for Prioritizing Inspections of Aging Plant Infrastructure  

Science Conference Proceedings (OSTI)

This report outlines an approach that utilities can employ when prioritizing the inspections and testing of infrastructure at fossil power plants. The equipment and systems considered in this report include cabling, piping, tanks, building structures, chimneys, railways, and related infrastructure. The report also provides information on assessment methods suitable for evaluating these infrastructure systems.

2012-03-29T23:59:59.000Z

76

Avian inhalation exposure chamber  

DOE Patents (OSTI)

An exposure system for delivering gaseous material ranging in particle size from 0.4 micrometers to 20.0 micrometers uniformly to the heads of experimental animals, primarily birds. The system includes a vertical outer cylinder and a central chimney with animal holding bottles connected to exposure ports on the vertical outer cylinder.

Briant, James K. (P.O. Box 999, Richland, WA 99352); Driver, Crystal J. (P.O. Box 999, Richland, WA 99352)

1992-01-01T23:59:59.000Z

77

Investigation of air supply conditions in the room of a B11type gas appliance  

Science Conference Proceedings (OSTI)

In Hungary, the prevalently used "B11" type gas appliances equipped with atmospheric burner and they have a draught hood beyond the outlet of the appliance. For the appropriate adjustment of the gas boiler to the conditions of the building, ... Keywords: CFD method, air supply, chimney, design requirements, gas appliances, numerical modelling

Lajos Barna; Rbert Goda

2007-05-01T23:59:59.000Z

78

Yangtze Patrol: American Naval Forces in China  

E-Print Network (OSTI)

Yangtze Patrol: American Naval Forces in China A Selected, Partially-Annotated Bibliography literature of the United States Navy in China. mvh #12;"Like Chimneys in Summer" The thousands of men who served on the China Station before World War II have been all but forgotten, except in the mythology

79

Explosive fracturing method  

SciTech Connect

A method of inducing a fracture system and multiple cavities in earthen formations is described. A first explosive, preferably nuclear, is buried at a sufficient depth so that its subsequent detonation is fully contained within the earth. Thereafter a second explosive, also preferably nuclear, is buried a predetermined distance from the situs of the first explosive. After detonation of the first explosive, time is allowed to elapse during which the cavity formed by the first explosive collapses to form a rubblized chimney. Thereafter, the second explosive is detonated to create a second chimney parallel to that of the first explosive together with a zone of enhanced permeability between the first and second. (10 claims)

Boardman, C.R.; Knutson, C.F.

1973-12-11T23:59:59.000Z

80

The application of borehole logging to characterize the hydrogeology of the Faultless site, Central Nevada Test Area  

SciTech Connect

The Central Nevada Test Area was the site of the Faultless underground nuclear test that could be a source of radionuclide contamination to aquifers in Hot Creek Valley, Nevada. Field studies in 1992 and 1993 have used hydrologic logging and water sampling to determine the adequacy of the current groundwater monitoring network and the status of water-level recovery to pre-shot levels in the nuclear chimney. The field studies have determined that there is a possibility for contaminant migration away from the Faultless event though the pre-event water level has not been attained, while new data raise questions about the ability of the current monitoring network to detect migration. Hydrologic logs from the postshot hole (drilled into the chimney created by the nuclear detonation) reveal inflow around 485 m below land surface. The physical and chemical characteristics of the inflow water indicate that its source is much deeper in the chimney, perhaps driven upward in a convection cell generated by heat near the nuclear cavity. Logging and sampling at monitoring wells HTH-1 and HTH-2 revealed that the completion of HTH-1 may be responsible for its elevated water level (as compared to pre-nuclear test levels) and may have also created a local mound in the water table in the alluvium that accounts for higher post-test water levels at HTH-2. This mound would serve to divert flow around the monitoring wells, so that only migration of contaminants through the underlying, higher pressure, volcanic units is currently monitored. A hydraulic high found in an abandoned hole located between the nuclear chimney and the monitoring wells further reduces the likelihood of HTH-1 or HTH-2 intercepting contaminant migration.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.F.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Building America Top Innovations Hall of Fame Profile … Attic Air Sealing Guidelines  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Terminology Terminology Air Barrier Material (ABM) --- A does not allow air to pass throu plywood/OSB, foam board, duc lumber. Backing --- Any material that s be sprayed so as to provide an glass batts. Baffle (B) --- Manufactured chu direct ventilation air flow up an foam board or cardboard. Thermal Blocking --- Any rigid heat sources like chimneys or metal and gypsum board. Fasteners --- Staples, screws o

82

Design of a tube bank waste heat reclaimer for residential heating systems  

SciTech Connect

Forced convection tube bank heat reclaimers are analyzed in detail for residential natural gas and oil-fired furnaces that are controlled by natural draft. Optimum reclaimer designs are obtained based on improved system efficiency, and considerations regarding manufacturing costs. Each reclaimer meets safety restrictions regarding allowable system pressure losses and minimum chimney gas temperatures. Reclaimer size and overall weight are also considered. Computer-generated solutions aid in determining heat recovery as a function of furnace fuel, furnace efficiency, ambient temperature, flue pipe size, and chimney height. The analysis considers a range of furnace efficiencies from 50 to 80%, and ambient temperatures from 0 to 60/sup 0/F, which are values considered typical for most domestic combustion heating equipment. Flue pipe sizes range from 4 to 6 inches in diameter and are 2 to 4 feet long. Chimney sizes range from 5 to 7 inches in equivalent diameter and include draft heights from 15 to 35 feet. The piping sizes correspond to furnace input capacities ranging from 50,000 to 170,000 Btu/h. For many domestic heating systems, the potential exists to recover the lost heat by as much as 30%, and to reduce fuel costs by as much as 15% by installing a flue pipe heat reclaimer.

Gretsinger, K.M.; Elias, T.I.

1987-01-01T23:59:59.000Z

83

Utilization of the noble gases in studies of underground nuclear detonations  

SciTech Connect

From symposium on noble gases; Las Vegas, Nevada, USA (24 Sep 1973). The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases except argon have been used as tracers, as have /sup 127/Xe and /sup 85/Kr. /sup 37/Ar and /sup 85/Kr have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases and the degree to which the sampled gas truly represents the underground gas mixture can be studied with the aid of the fission- product gases. /sup 222/Ra and He are released to the cavity from the surrounding rock and are therefore useful in studies of the interaction of the detonation with the surrounding medium. (auth)

Smith, C.F.

1973-09-17T23:59:59.000Z

84

Automatic flue gas heat recovery system  

Science Conference Proceedings (OSTI)

An automatic flue gas heat recovery system for supplementing or replacing a conventional, separate hot water system. In the example described, the heat recovery system is applied to a pizza restaurant where large quantities of heat energy are normally wasted up an oven chimney stack, and large quantities of hot water also are required for restaurant operations. An electric motor driven pump circulates water in a closed loop between a storage tank and a heat exchanger tube located in the oven chimney stack. A thermostat control automatically starts the pump when the oven heats the chimney stack to an effective water heating temperature. When temperature in the storage tank reaches a predetermined maximum, the thermostat control stops the pump, opens a drain valve, and dumps water quickly and completely from the heat exchanger tube. Three different embodiments are shown and described illustrating systems with one or more storage tanks and one or more pumps. In the plural storage tank embodiments, an existing hot water heating tank may be converted for use to augment a main tank supplied with the present system.

Whalen, D.A.

1983-02-22T23:59:59.000Z

85

Triggered massive-star formation on the borders of Galactic HII regions. III. Star formation at the periphery of Sh2-219  

E-Print Network (OSTI)

Context. Massive-star formation triggered by the expansion of HII regions. Aims. To understand if sequential star formation is taking place at the periphery of the HII region Sh2-219. Methods. We present 12CO(2-1) line observations of this region, obtained at the IRAM 30-m telescope (Pico Veleta, Spain). Results. In the optical, Sh2-219 is spherically symmetric around its exciting star; furthermore it is surrounded along three quarters of its periphery by a ring of atomic hydrogen. This spherical symmetry breaks down at infrared and millimetre wavelengths. A molecular cloud of about 2000\\msol lies at the southwestern border of Sh2-219, in the HI gap. Two molecular condensations, elongated along the ionization front, probably result from the interaction between the expanding HII region and the molecular cloud. In this region of interaction there lies a cluster containing many highly reddened stars, as well as a massive star exciting an ultracompact HII region. More surprisingly, the brightest parts of the molecular cloud form a `chimney', perpendicular to the ionization front. This chimney is closed at its south-west extremity by H-alpha walls, thus forming a cavity. The whole structure is 7.5 pc long. A luminous H-alpha emission-line star, lying at one end of the chimney near the ionization front, may be responsible for this structure. Confrontation of the observations with models of HII region evolution shows that Sh2-219 is probably 10^5 yr old. The age and origin of the near-IR cluster observed on the border of Sh2-219 remain unknown.

L. Deharveng; B. Lefloch; F. Massi; J. Brand; S. Kurtz; A. Zavagno; J. Caplan

2006-08-22T23:59:59.000Z

86

Characterization of the Dundee formation, Winterfield Field, Clare County, Michigan  

Science Conference Proceedings (OSTI)

The Devonian Dundee Formation of the Winterfield field was originally developed in the late 1930`s and early 1940`s and rapid production helped support the U.S. war effort. Poor completion and production practices may have caused the field to have been inefficiently developed, and wells prematurely watered out due to water coning. Production occurs in porous dolomitized {open_quotes}chimneys{close_quotes} where they extend above the oil-water contact within the otherwise {open_quotes}tight{close_quotes} limestone. Cross plots of the PEF (Photoelectric) log and the LLD (deep lateral) log separate the porous, oil-saturated dolomite from water-saturated dolomites and the {open_quotes}tight{close_quotes} limestone. The PEF distinguishes the lithologies (dolomite and limestone) and the LLD separates the fluids (water and oil); other useful logs are the CNL and GR to indicate porous and shale zones respectively. The dolomite {open_quotes}chimneys{close_quotes} are small in scale, less than 60` high and can be laterally discontinuous between wells on 40 acres spacing. The dolomite zones tend to have good porosity and permeability; the API gravity of the oil is 44.2 and the reservoir is produced by a strong, constant water drive. Initial production tests on some wells indicate the ability to produce up to nearly 2000 barrels per day (BOPD). Wells drilled in the 1980`s to the deeper Richfield intercepted and isolated oil pocket in the Dundee off structure, prompting further drilling activity; subsequent production has significantly added to the cumulative production in the field. Due to the heterogeneity of the reservoir, the strong water drive, the low density of the oil and the relatively high permeabilities, the reservoir and others like it are ideal candidates for horizontal drain technology. The horizontal wells could link {open_quotes}chimney`s{close_quotes} that have previously been untapped, significantly adding to the total production of these Dundee fields.

Chittick, S.; Salotti, C.; Wood, J.R. [and others

1995-09-01T23:59:59.000Z

87

OpenEI Community - natural gas+ condensing flue gas heat recovery+ water  

Open Energy Info (EERE)

Increase Natural Gas Increase Natural Gas Energy Efficiency http://en.openei.org/community/group/increase-natural-gas-energy-efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas.How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature?read more natural gas+ condensing flue gas heat

88

Physics review on inherently safe features of ESBWR  

SciTech Connect

The scope of this physics review includes: 1) the major differences among ESBWR, ABWR and conventional BWR cores, 2) the reason why ESBWR operation is inherently safe based on stability analysis, 3) an innovative wide-blades control rod conceptual core design to reduce cost by reducing number of control rod drives by near 50% for a natural circulation BWR, and 4) an innovative top-entry control rod conceptual core design to take advantage of additional space in the chimney area in order to reduce the plant size and cost for a natural circulation BWR. (authors)

Chiang, R. T. [GE Nuclear Energy, 1989 Little Orchard Street, San Jose, CA 95125 (United States); Fawcett, R. M. [GNF, Castle Hayne Road, Wilmington, NC 28402 (United States); Cheung, Y. K.; Chung, A. K. [GE Nuclear Energy, 1989 Little Orchard Street, San Jose, CA 95125 (United States)

2006-07-01T23:59:59.000Z

89

Detection of Gas Hydrates in Garden Banks and Keathley Canyon from Seismic Data  

E-Print Network (OSTI)

Gas hydrate is a potential energy source that has recently been the subject of much academic and industrial research. The search for deep-water gas hydrate involves many challenges that are especially apparent in the northwestern Gulf of Mexico, where the sub-seafloor is a complex structure of shallow salt diapirs and sheets underlying heavily deformed shallow sediments and surrounding diverse minibasins. Here, we consider the effect these structural factors have on gas hydrate occurrence in Garden Banks and Keathley Canyon blocks of the Gulf of Mexico. This was accomplished by first mapping the salt and shallow deformation structures throughout the region using a 2D grid of seismic reflection data. In addition, major deep-rooted faults and shallow-rooted faults were mapped throughout the area. A shallow sediment deformation map was generated that defined areas of significant faulting. We then quantified the thermal impact of shallow salt to better estimate the gas hydrate stability zone (GHSZ) thickness. The predicted base of the GHSZ was compared to the seismic data, which showed evidence for bottom simulating reflectors and gas chimneys. These BSRs and gas chimneys were used to ground-truth the calculated depth of the base of GHSZ. Finally, the calculated GHSZ thickness was used to estimate the volume of the gas hydrate reservoir in the area after determining the most reasonable gas hydrate concentrations in sediments within the GHSZ. An estimate of 5.5 trillion cubic meters of pure hydrate methane in Garden Banks and Keathley Canyon was obtained.

Murad, Idris

2009-05-01T23:59:59.000Z

90

A conceptual model and preliminary estimate of potential tritium migration from the Benham (U-20c) site, Pahute Mesa, Nevada Test Site  

Science Conference Proceedings (OSTI)

U-20c is the site of a large below-water-table nuclear test near the Nevada Test Site boundary. A conceptual model of potential groundwater migration of tritium from U-20c is constructed and quantitatively evaluated in this report. The lower portion of the collapse chimney at Benham is expected to intersect 200 m of permeable rhyolite lava, overlain by similar thicknesses of low-permeability zeolitized bedded tuff, then permeable welded tuff. Vertical groundwater flow through the chimney is predicted to be minimal, horizontal transport should be controlled by the regional groundwater flow. Analytic solutions treating only advective transport indicate 1 to 2 km of tritium movement (95% confidence interval 0.7--2.5 km) within 5 years after test-related pressure-temperature transients have dissipated. This point lies at the axis of a potentiometric surface trough along the west edge of Area 20, Nevada Test Site. Within 25 years, movement is predicted to extend to 3 km (95% confidence interval 2--5 km) approximately to the intersection of the trough and the Nevada Test Site boundary. Considering the effects of radioactive decay, but not dispersion, plume concentration would fall below Safe Drinking Water Act standards by 204 years, at a predicted distance of 11 km (95% confidence interval 7--31 km). This point is located in the eastern portion of the Timber Mountain Caldera moat within the Nellis Air Force Range (military bombing range).

Brikowski, T.; Mahin, G. [Nevada Univ., Reno, NV (United States). Water Resources Center

1993-08-01T23:59:59.000Z

91

Forced air fireplace furnace  

Science Conference Proceedings (OSTI)

The design of heating system for buildings including a fireplace with an open front hearth for burning firewood, a chimney extending from the upper portion of the hearth, a metal firebox being open in the front and closed on the sides and back, a plenum chamber within and surrounding the sides and back of the metal firebox and the chimney lower portion, a horizontal heat distribution chamber positioned in the building attic and communicating at one end with the plenum chamber is described. An air distribution duct connects to the other end of the air distributing chamber, the duct extending to discharge heated air to a place in the building remote from the fireplace. A fan is placed in the horizontal air distributing chamber, and a return air duct extends from selected place in the building and communicates with the plenum chamber lower portion so that the fan draws air through the return air duct, through the plenum chamber around the firebox where the air is heated, through the horizontal distribution chamber, and out through the distribution duct for circulation of the heated air within the building.

Bruce, R.W.; Gorman, R.E.

1980-10-28T23:59:59.000Z

92

Radiological assessment report for the Lansdowne property, 105-107 East Stratford Avenue, Lansdowne, Pennsylvania, October-December 1984  

Science Conference Proceedings (OSTI)

Areas with elevated levels of radioactivity were found throughout both residences, as well as on the surrounding property. Contamination was also found in the garage behind the 105 East structure. The 105 East residence had substantially more contamination than the 107 East residence, as was expected. The chimneys, particularly the rear chimney, from the 105 East residence had extensive contamination, indicating that contaminated materials may have been burned at the site. The high background radiation emanating from this residence made it difficult to establish the relatively lower levels of contamination in the 107 East residence. The property surrounding the 105 East residence was found to have substantial contamination scattered throughout, with the highest level occurring in the backyard. The soil surface contamination seemed to drop markedly (but not entirely) at the property lines. The property surrounding 107 East was found to be less contaminated, although the background radiation emanating from the adjoining area made it difficult to establish the degree of surface or near-surface contamination from surface surveys. Subsurface investigation of the soil surrounding the structure indicated that radium contamination was widespread and extended to a depth of eight feet at some locations. There was evidence that some of this contamination extended onto adjoining properties and may have been transported off the site via subsurface migration. Additionally, analysis of samples from access points in the residence sewer system effluent established that the system was contaminated. 3 refs., 26 figs., 13 tabs.

Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Flynn, K.F.

1985-09-01T23:59:59.000Z

93

Major Oil Plays In Utah And Vicinity  

SciTech Connect

Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

Thomas Chidsey

2007-12-31T23:59:59.000Z

94

Gasbuggy Site Assessment and Risk Evaluation  

Science Conference Proceedings (OSTI)

The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

None

2011-03-01T23:59:59.000Z

95

Hopper (Phase 1) Prepares NERSC for Petascale Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 A selection of scientific results produced by NERSC users. Prepared by the National Energy Research Scientific Computing Center Lawrence Berkeley National Laboratory Berkeley, CA 94720 SEARCH Computing Sciences ABOUT US RESEARCH OUR SCIENTISTS MEDIA CENTER CONTACT US Figure 1. In this model galactic plane (seen in cross section), the energy input of stellar superclusters causes gases to shoot out at speeds up to 1000 kilometers per second at temperatures reaching 100 million Kelvin. These appear as plumes or "chimneys," visible in the top three frames (showing density, temperature, and velocity; the bottom frame shows gas column density). Small bubbles of hot gas in the field (visible in the top two frames) are the result of stellar feedback from runaway stars.

96

Recovery Act Changes Hanford Skyline with Explosive Demolitions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Recovery and Reinvestment Act workers at the Hanford Site recently American Recovery and Reinvestment Act workers at the Hanford Site recently used explosives to demolish industrial structures that supported plutonium processing for national defense. The explosive demolitions took down two 250-foot-tall exhaust chimneys, two 90-foot-fall air filter structures, and a 140-foot-tall water tower. The water tower was marked by a "Work Safely" motto that greeted workers. "Given the sheer height of the structures, explosive demolition was selected as the safer method of demolition," said Kurt Kehler, vice president and decommissioning and demolition project manager of CH2M HILL Plateau Remediation Company, DOE's contractor at the Hanford Site. The structures supported the 284 West Power House, which was built in 1943 as

97

Energy Saver Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 19, 2010 January 19, 2010 Tax Credits Might Be Your Ticket to Savings Another way to cash in on big savings is by grabbing onto the energy efficiency tax credits. January 18, 2010 Our Dog Discovered Our Ducts Have Cats We don't own a cat, and Matilda's seeming insistence that one was living inside our duct work was a little unnerving, to say the least. January 14, 2010 What Are Your Reasons for Saving Energy? This week, Elizabeth discussed how saving energy could be contagious. January 12, 2010 Chimneys: Warm and Cozy or Easy Exit for Your Heat? Both of my childhood homes featured fireplaces. If you've had one, you know how terrific they can be-great places to bask on cold winter nights, an easy opportunity to toast marshmallows, picturesque, undeniably a pleasure in the house that has one.

98

Ohio | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sulfur Dioxide Regulations (Ohio) Sulfur Dioxide Regulations (Ohio) This chapter of the law establishes that the Ohio Environmental Protection Agency provides sulfur dioxide emission limits for every county, as well as regulations for the emission, monitoring and equipment for industries that have sulfur dioxide emissions. The Ohio EPA's Division of Air Pollution Control has monitoring and compliance programs authorized under this law. October 16, 2013 Stack Height Requirements (Ohio) This chapter of the law establishes that the Ohio Environmental Protection Agency provides regulations for stacks for industrial facilities. "Stack" means any chimney, flue, conduit or duct arranged to conduct any emissions to the ambient air, excluding flares. "Stack height" means the distance from the ground-level elevation at the base of the stack

99

Theoretical analysis of natural-convection towers for solar-energy conversion  

DOE Green Energy (OSTI)

A theoretical study of solar-powered natural convection tower (chimney) performance is presented. Both heated and cooled towers are analyzed, the latter using evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmospheric ideally approaches the Carnot efficiency limit of approx. 3.4%/km(1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. 2.75%/km(0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important for cooled natural convection towers.

Lasier, D.D.; Jacobs, E.W.

1983-05-01T23:59:59.000Z

100

JGI - Why Sequence Alvinella pompejana?  

NLE Websites -- All DOE Office Websites (Extended Search)

Pompeii Worm? Pompeii Worm? Alvinella pompeiiana One of the most thermophilic eukaryotes, Alvinella pompejana, the Pompeii worm, is a resident of the Pacific deep-sea hydrothermal vent area. These worms reside on black smoker chimneys 2500 meters under the ocean surface where they experience (1) the highest temperatures and temperature gradients known for any eukaryote (20-80°C), (2) a toxic soup of heavy metals, and (3) very low pH. Thus their environment is perhaps the most extreme known for any eukaryote. This project unites cDNA sequencing, which is crucial for genetic and protein analysis, with macromolecular structure determination by x-ray crystallography, solution small-angle x-ray scattering, and electron microscopy. Proteins from thermophilic sources, currently limited to unicellular bacteria and archaea, have proven to be

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recovery Act Changes Hanford Skyline with Explosive Demolitions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions American Recovery and Reinvestment Act workers at the Hanford Site recently used explosives to demolish industrial structures that supported plutonium processing for national defense. The explosive demolitions took down two 250-foot-tall exhaust chimneys, two 90-foot-fall air filter structures, and a 140-foot-tall water tower. The water tower was marked by a "Work Safely" motto that greeted workers. "Given the sheer height of the structures, explosive demolition was selected as the safer method of demolition," said Kurt Kehler, vice president and decommissioning and demolition project manager of CH2M HILL Plateau Remediation Company, DOE's contractor at the

102

Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Out With the Old, In With the New: New Hampshire Town to Upgrade Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting June 17, 2010 - 3:09pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Newfields, New Hampshire's town hall has a lot of old-time charm worth keeping, with its steeple, rusted-red brick and chimney stacks, but the town lights are ready for a makeover. "Obviously, they don't have gas lamps from the 1800s," jokes Clay Mitchell, Newfields' town planner. "But the lights are old. In the town hall meeting room, they are awful. They are big, fat and hum when you turn them on." Now, with a $2,000 Energy Efficiency and Conservation Block Grant (EECBG) from the U.S. Department of Energy and New Hampshire Office of Energy and

103

natural gas+ condensing flue gas heat recovery+ water creation+ CO2  

Open Energy Info (EERE)

natural gas+ condensing flue gas heat recovery+ water creation+ CO2 natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy efficiency+ power plant energy efficiency+ Home Increase Natural Gas Energy Efficiency Description: Increased natural gas energy efficiency = Reduced utility bills = Profit In 2011 the EIA reports that commercial buildings, industry and the power plants consumed approx. 17.5 Trillion cu.ft. of natural gas. How much of that energy was wasted, blown up chimneys across the country as HOT exhaust into the atmosphere? 40% ~ 60% ? At what temperature? Links: The technology of Condensing Flue Gas Heat Recovery natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building

104

Applied Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sciences Geological Sciences Atomic-scale structure of the orthoclase (001)-water interface measured with high-resolution x-ray reflectivity P. Fenter, H. Teng, P. Geissbühler, J.M. Hanchar, K.L. Nagy, and N.C. Sturchio Chemical analysis of individual interplanetary dust particles G.J. Flynn, S.R. Sutton, M. Rivers, P. Eng, and M. Newville Diffusion-limited biotransformation of metal contaminants in soils/sediments: chromium T. Tokunaga, J. Wan, D. Joyner, T. Hazen, M. Firestone, E. Schwartz, S. Sutton, and M. Newville Investigation of meteorite porosity by computed microtomography G.J. Flynn, M. Rivers, and S.R. Sutton Microscale imaging of pore structure in hydrothermal sulfide chimneys using synchrotron x-ray computed tomography P. O'Day, J. Muccino, S. Thompson, M.Jew, and J. Holloway

105

Simple Maintenance Saves Costly Furnace Repair/Replacement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement Simple Maintenance Saves Costly Furnace Repair/Replacement January 6, 2010 - 8:26am Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy Laboratory For the past few weeks, my forced-air gas furnace has been on the fritz. I blame this on the fact that I haven't been as diligent as I should have been with regular furnace maintenance, which includes: Checking the condition of the vent connection pipe and chimney Checking the physical integrity of the heat exchanger Adjusting the controls to provide optimum water and air temperature settings for both efficiency and comfort Having a technician perform a combustion-efficiency test Checking the combustion chamber for cracks. Testing for carbon monoxide

106

Recovery Act Changes Hanford Skyline with Explosive Demolitions |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions Recovery Act Changes Hanford Skyline with Explosive Demolitions American Recovery and Reinvestment Act workers at the Hanford Site recently used explosives to demolish industrial structures that supported plutonium processing for national defense. The explosive demolitions took down two 250-foot-tall exhaust chimneys, two 90-foot-fall air filter structures, and a 140-foot-tall water tower. The water tower was marked by a "Work Safely" motto that greeted workers. "Given the sheer height of the structures, explosive demolition was selected as the safer method of demolition," said Kurt Kehler, vice president and decommissioning and demolition project manager of CH2M HILL Plateau Remediation Company, DOE's contractor at the

107

Wood and Pellet Heating Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wood and Pellet Heating Basics Wood and Pellet Heating Basics Wood and Pellet Heating Basics August 16, 2013 - 3:02pm Addthis Wood-burning and pellet fuel appliances use biomass or waste resources to heat homes or buildings. Types of Wood- and Pellet-Burning Appliances The following is a brief overview of the different types of wood and pellet fuel appliances available. High-Efficiency Fireplaces and Fireplace Inserts Designed more for show, traditional open masonry fireplaces should not be considered heating devices. Traditional fireplaces draw in as much as 300 cubic feet per minute of heated room air for combustion, then send it straight up the chimney. Fireplaces also produce significant air pollution. Although some fireplace designs seek to address these issues with dedicated air supplies, glass doors, and heat recovery systems, fireplaces are still

108

Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Out With the Old, In With the New: New Hampshire Town to Upgrade Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting Out With the Old, In With the New: New Hampshire Town to Upgrade Lighting June 17, 2010 - 3:09pm Addthis Stephen Graff Former Writer & editor for Energy Empowers, EERE Newfields, New Hampshire's town hall has a lot of old-time charm worth keeping, with its steeple, rusted-red brick and chimney stacks, but the town lights are ready for a makeover. "Obviously, they don't have gas lamps from the 1800s," jokes Clay Mitchell, Newfields' town planner. "But the lights are old. In the town hall meeting room, they are awful. They are big, fat and hum when you turn them on." Now, with a $2,000 Energy Efficiency and Conservation Block Grant (EECBG) from the U.S. Department of Energy and New Hampshire Office of Energy and

109

Baby Brutes: Simulations Help Solve the Mysteries of Massive Young  

NLE Websites -- All DOE Office Websites (Extended Search)

Baby Brutes Baby Brutes Baby Brutes Simulations Help Solve the Mysteries of Massive Young Star-Forming Galaxies March 31, 2010 | Tags: Astrophysics Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Primack-fig1a.png Figure 1. In this model galactic plane (seen in cross section), the energy input of stellar superclusters causes gases to shoot out at speeds up to 1000 kilometers per second at temperatures reaching 100 million Kelvin. These appear as plumes or "chimneys," visible in the top three frames (showing density, temperature, and velocity; the bottom frame shows gas column density). Small bubbles of hot gas in the field (visible in the top two frames) are the result of stellar feedback from runaway stars. Astronomers have in recent years been surprised to find hulking brutes

110

Windy Gap Firming Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Windy Gap Firming Project Windy Gap Firming Project Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Windy Gap Firming Project, Final Environmental Impact Statement, DOE/EIS-0370 (cooperating agency) Western's proposed action is to relocate approximately 3.8 miles of the existing Estes to Lyons 115-kilovolt transmission line, if the Chimney Hollow Reservoir alternative is constructed. The line would be moved outside the area proposed for the reservoir, and Western would ensure the new location would allow the agency to continue to operate and maintain it. Section 2.4.1.4 of the Final Environmental Impact Statement, Volume 1 provides more information on the transmission line relocation proposal. The U.S. Department of the Interior, Bureau of Reclamation is the Lead Agency for the National Environmental Policy Act Review. Cooperating agencies are Western, the U.S. Army Corps of Engineers and Grand County, Colo.

111

Stack Height Requirements (Ohio) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) Stack Height Requirements (Ohio) < Back Eligibility Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides regulations for stacks for industrial facilities. "Stack" means any chimney, flue, conduit or duct arranged to conduct any emissions to the ambient air, excluding flares. "Stack height" means the distance from the ground-level elevation at the base of the stack to the crown of the stack. If a stack arises from a building or other structure, the ground-level elevation of that building or structure will be

112

Stimuli-Responsive Metal Organic Frameworks: Stimuli-Responsive Metal Organic Frameworks for Energy-Efficient Post Combustion Capture  

Science Conference Proceedings (OSTI)

IMPACCT Project: A team led by three professors at Texas A&M is developing a subset of metal organic frameworks that respond to stimuli such as small changes in temperature to trap CO2 and then release it for storage. These frameworks are a promising class of materials for carbon capture applications because their structure and chemistry can be controlled with great precision. Because the changes in temperature required to trap and release CO2 in Texas A&Ms frameworks are much smaller than in other carbon capture approaches, the amount of energy or stimulus that has to be diverted from coal-fired power plants to accomplish this is greatly reduced. The team is working to alter the materials so they bind only with CO2, and are stable enough to withstand the high temperatures found in the chimneys of coal-fired power plants.

None

2010-07-01T23:59:59.000Z

113

Energy-Efficient Residence Hall  

E-Print Network (OSTI)

Recently, there has been an increase in the number of energy efficient buildings in the U.S. We want to encourage this green movement by providing people with a simple and systematic Stairwell Closable vents leading from the floor to the stairwell along with windows in the stairwell leading outside act as a thermal chimney which gets rid of excess heat. approach for green building construction. Our project focuses on creating a guideline for an energy-efficient residence hall. We have looked into energy-efficient and eco-friendly lighting, heating, insulation, and other aspects that integrate into a green building. Our guideline, as a result, will aid colleges in the Worcester community to design and construct green residence halls.

Giselle Chen; Nathaniel Eames; Andrew Holmes; Grant Wong; Advisor David Spanagel (humanities; Arts Department

2009-01-01T23:59:59.000Z

114

Remaining Sites Verification Package for the 100-B-18, 184-B Powerhouse Debris Pile, Waste Site Reclassification Form 2007-020  

SciTech Connect

The 100-B-18 Powerhouse Debris Pile contained miscellaneous demolition waste from the decommissioning activities of the 184-B Powerhouse. The debris covered an area roughly 15 m by 30 m and included materials such as concrete blocks, mixed aggregate/concrete slabs, stone rubble, asphalt rubble, traces of tar/coal, broken fluorescent lights, brick chimney remnants, and rubber hoses. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2007-11-30T23:59:59.000Z

115

Department of Astrophysics, American Museum of Natural History,  

E-Print Network (OSTI)

Abstract. Three-dimensional simulations of the disk-halo interaction show the formation of a thick HI and HII gas disk with different scale heights. The thick HI disk prevents the disk gas from expanding freely upwards, unless some highly energetic event such as chimneys occurs, whereas the thick HII disk acts as a diskhalo interaction region from where the hot ionized gas flows freely into the halo. The upflowing gas reaches the maximum height at z ? 9.3 1 kpc becoming thermally unstable due to radiative losses, and condenses into HI clouds. Because the major fraction of the gas is gravitationally bound to the Galaxy, the cold gas returns to the disk. The descending clouds will have at some height high velocities. In a period of 200 Myr of fountain evolution, some 10 percent of the total number of clouds are HVCs.

Miguel A. De Avillez

2000-01-01T23:59:59.000Z

116

Rapid Deployment Drilling System for on-site inspections under a Comprehensive Test Ban Preliminary Engineering Design  

Science Conference Proceedings (OSTI)

While not a new drilling technology, coiled-tubing (CT) drilling continues to undergo rapid development and expansion, with new equipment, tools and procedures developed almost daily. This project was undertaken to: analyze available technological options for a Rapid Deployment Drilling System (RDDS) CT drilling system: recommend specific technologies that best match the requirements for the RDDS; and highlight any areas where adequate technological solutions are not currently available. Postshot drilling is a well established technique at the Nevada Test Site (NTS). Drilling provides essential data on the results of underground tests including obtaining samples for the shot zone, information on cavity size, chimney dimensions, effects of the event on surrounding material, and distribution of radioactivity.

Maurer, W.C.; Deskins, W.G.; McDonald, W.J.; Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States); Heuze, F.E.; Butler, M.W. [Lawrence Livermore National Lab., CA (United States)

1996-09-01T23:59:59.000Z

117

Design and Predictive Control of a Net Zero Energy Home  

E-Print Network (OSTI)

This paper analyzes two methods to reduce residential energy consumption for a Net Zero home in Austin, Texas. The first method seeks to develop a control algorithm that actively engages environmental conditioning. The home must preserve user-defined comfort while minimizing energy consumption. An optimization function governed by user input chooses the degree to which various comfort-defining systems are active, optimizing comfort while maintaining minimal energy usage. These systems include a geothermal heat pump and ceiling fans to effect convection, humidity, and dry bulb temperature. The second method reflects an analysis towards augmenting traditional home systems with modern and efficient counterparts. Electrochromic glass is used to attenuate heat transfer from outside the home envelope. A thermal chimney passively removes heat from the home while increasing convection. Replacing conventional incandescent bulbs with compact fluorescent and LED illumination reduces lighting energy waste.

Morelli, F.; Abbarno, N.; Boese, E.; Bullock, J.; Carter, B.; Edwards, R.; Lapite, O.; Mann, D.; Mulvihill, C.; Purcell, E.; Stein, M. IV; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

118

Measurement of biocarbon in flue gases using 14C  

SciTech Connect

A preliminary investigation of the biocarbon fraction in carbon dioxide emissions of power plants using both fossil- and biobased fuels is presented. Calculation of the biocarbon fraction is based on radiocarbon content measured in power plant flue gases. Samples were collected directly from the chimneys into plastic sampling bags. The C-14 content in CO{sub 2} was measured by accelerator mass spectrometry (AMS). Flue gases from power plants that use natural gas, coal, wood chips, bark, plywood residue, sludge from the pulp factory, peat, and recovered fuel were measured. Among the selected plants, there was one that used only fossil fuel and one that used only biofuel; the other investigated plants burned mixtures of fuels. The results show that C-14 measurement provides the possibility to determine the ratio of bio and fossil fuel burned in power plants.

Haemaelaeinen, K.M.; Jungner, H.; Antson, O.; Rasanen, J.; Tormonen, K.; Roine, J. [University of Helsinki, Helsinki (Finland). Radiocarbon Dating Laboratory

2007-07-01T23:59:59.000Z

119

SOLAR RADIATION ESTIMATION ON BUILDING ROOFS AND WEB-BASED SOLAR CADASTRE  

E-Print Network (OSTI)

The aim of this study is the estimation of solar irradiance on building roofs in complex Alpine landscapes. Very high resolution geometric models of the building roofs are generated by means of advanced automated image matching methods. Models are combined with raster and vector data sources to estimate the incoming solar radiation hitting the roofs. The methodology takes into account for atmospheric effects, site latitude and elevation, slope and aspect of the terrain as well as the effects of shadows cast by surrounding buildings, chimneys, dormers, vegetation and terrain topography. An open source software solution has been developed and applied to a study area located in a mountainous site and containing some 1250 residential, commercial and industrial buildings. The method has been validated by data collected with a pyranometer and results made available through a prototype WebGIS platform. 1.

G. Agugiaro A; Commission Ii Wg

2012-01-01T23:59:59.000Z

120

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Theoretical analysis of solar-driven natural convection energy conversion systems  

DOE Green Energy (OSTI)

This report presents a theoretical study of solar-powered natural convection tower (chimney) performance. Both heated and cooled towers are analyzed; the latter uses evaporating water as the cooling mechanism. The results, which are applicable to any open-cycle configuration, show that the ideal conversion efficiencies of both heated and cooled natural convection towers are linear functions of height. The performance of a heated tower in an adiabatic atmosphere ideally approaches the Carnot efficiency limit of approx. = 3.4%/km (1.0%/1000 ft). Including water pumping requirements, the ideal limit to cooled tower performance is approx. = 2.75%/km (0.85%/1000 ft). Ambient atmospheric conditions such as vertical temperature gradient (lapse rate) and relative humidity can have significantly adverse effects on natural convection tower performance. The combined effects of lapse rate and ambient relative humidity are especially important to cooled natural convection towers.

Jacobs, E.W.; Lasier, D.D.

1984-01-01T23:59:59.000Z

122

Natural Ventilation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Ventilation Natural Ventilation Natural Ventilation May 30, 2012 - 7:56pm Addthis Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion Opening a window is a simple natural ventilation strategy. | Credit: ©iStockphoto/Simotion What does this mean for me? If you live in a part of the country with cool nights and breezes, you may be able to cool your house with natural ventilation. If you're building a new home, design it to take advantage of natural ventilation. Natural ventilation relies on the wind and the "chimney effect" to keep a home cool. Natural ventilation works best in climates with cool nights and regular breezes. The wind will naturally ventilate your home by entering or leaving windows, depending on their orientation to the wind. When wind blows against your

123

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

SciTech Connect

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

124

Performance study of a thermal-envelope house: Phase II. Cooling performance. Final report  

Science Conference Proceedings (OSTI)

The thermal envelope house is shown to perform much better than conventional houses without mechanical refrigeration and better than one would expect from most passively cooled houses in the hot-humid climate of Georgia. Peak temperatures inside the house were 8 to 15/sup 0/F below peak ambient temperatures. Peak inside temperature measured during the test period was 80/sup 0/F with an outside ambient peak of 93/sup 0/F. Air flow rates within the envelope were less than 1 ft/sec even when the attic fan was operating. The earth cooling tubes provided noticeable sensible cooling to the house. Exit temperatures from the cooling tubes were between 72 to 76/sup 0/F, depending upon the air velocity through the tubes. The thermal chimney performed poorly as an air mover, especially when used to induce flow through the earth cooling tubes. The performance of the earth cooling tube could be improved by using the attic fan to increase the air flow through the cooling tubes and to insure it flowed in the cooling tube, through the envelope and out the thermal chimney. Being an exhaust fan, the attic fan created a negative pressure in the house. While this increased air flow through the cooling tubes, it also increased air infiltration through the building shell, thus increasing load. The humidity level within the living space remains relatively high year-round due to low rates of air infiltration and water vapor transmission through the building skin. The problem is aggravated during the summer by the introduction of cool moist air from the cooling tubes to the envelope and frequently to the inner space. While the cooling tubes are able to reduce the sensible load, and they are incapable of significantly reducing humidity or latent loads. This results in relatively comfortable air temperatures but uncomfortable humidities within the living space.

Akridge, J.M.; Benton, C.C.

1981-01-01T23:59:59.000Z

125

ASSESSMENT OF HYDROCARBON SEEPAGE DETECTION METHODS ON THE FORT PECK RESERVATION, NORTHEAST MONTANA  

Science Conference Proceedings (OSTI)

Surface exploration techniques have been employed in separate study areas on the Fort Peck Reservation in northeastern Montana. Anomalies associated with hydrocarbon seepage are documented in all three areas and a variety of surface exploration techniques can be compared. In a small area with established production, Head Gas and Thermal Desorption methods best match production; other methods also map depletion. In a moderate-size area that has prospects defined by 3D seismic data, Head Gas along with Microbial, Iodine, and Eh soil anomalies are all associated with the best hydrocarbon prospect. In a large area that contains many curvilinear patterns observed on Landsat images, that could represent micro-seepage chimneys, results are inconclusive. Reconnaissance mapping using Magnetic Susceptibility has identified a potential prospect; subsequent Soil Gas and Head Gas surveys suggest hydrocarbon potential. In the final year of this project the principle contractor, the Fort Peck Tribes, completed a second survey in the Wicape 3D Seismic Prospect Area (also known as Area 6 in Phase I of the project) and sampled several Landsat image features contained in the Smoke Creek Aeromag Anomaly Area (also known as Area 1 in Phase II of the project). Methods determined to be most useful in Phases I and II, were employed in this final Phase III of the study. The Southwest Wicape seismic anomaly was only partially confirmed. The abundant curvilinears proposed to be possible hydrocarbon micro-seepage chimneys in the Smoke Creek Area were not conclusively verified as such. Insufficient sampling of background data precludes affirmative identification of these mostly topographic Landsat features as gas induced soil and vegetation anomalies. However relatively higher light gas concentrations were found associated with some of the curvilinears. Based on the findings of this work the Assiniboine & Sioux Tribes of the Fort Peck Reservation intend to utilize surface hydrocarbon exploration techniques for future identification and confirmation of oil and gas prospects.

Lawrence M. Monson

2003-06-30T23:59:59.000Z

126

SHALE OIL--THE ELUSIVE ENERGY  

E-Print Network (OSTI)

An early settler in the valley of Parachute Creek in western Colorado built a log cabin, and made the fireplace and chimney out of the easily cut, locally abundant black rock. The pioneer invited a few neighbors to a house warming. As the celebration began, he lit a fire. The fireplace, chimney, and ultimately the whole cabin caught fire, and burned to the ground. The rock was oil shale. It was a sensational house warming! Oil shales are reported to have been set afire by lightning strikes. The Ute Indians of northwestern Colorado told stories of "mountains that burned. " Cowboys and ranchers of the region burned the dark rock in their fires, like coal. The flammable nature of the richer oil shales is basis for the title of a fascinating book by H. K. Savage (1967), The Rock That Burns. During oil shale enthusiasms in the early part of this century, stock promoters brought pieces of oil shale to Chicago street corners and set them afire. Clouds of smoke attracted crowds, and the promoters sold stock in oil shale companies. Nature of oil shale. Shale oil comes from oil shale, but oil shale is a misnomer. It is neither a true shale nor does it generally have any oil in it. It is better identified as organic marlstone, marl being a mixture of clay and calcium carbonate. The organic material is kerogen, derived from myriad organisms, chiefly plants. Savage (1967) notes the term "oil shale " is a promotional term: "The magic word 'oil ' would raise large sums of promotion money while organic marlstone wouldn't raise a dime." The U. S. Geological Survey (USGS) defines oil shale as "organic-rich shale that yields substantial quantities of oil by conventional methods of destructive distillation of the contained organic matter, which employ low confining pressures in a closed retort system. " (Duncan and HC#98/4-1-1

M. King; Hubbert Center; Walter Youngquist

1998-01-01T23:59:59.000Z

127

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

Science Conference Proceedings (OSTI)

The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (fromfan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

Singer, Brett C.; Delp, William W.; Apte, Michael G.

2010-11-01T23:59:59.000Z

128

T  

Office of Legacy Management (LM)

. . ~- - - Environmental . T r i t i u m S u r v e i l l a n c e f o r ; P r o j e c t R u l i s o n . -~ - Donald T.' Wruble 36411 Vernon E. Andrews George A. Boysen I n t r o d u c t i o r ! 1 I \ Project!Rui-isY-was t h e second n u c l e a r experiment conducted j o i n t l y by t h e U. S. Government and p r i v a t e i n d u s t r y t o i n v e s t i g a t e t h e f e a s i b i l i t y of u s i n g n u c l e a r exp&tb&?s t o s t i m u l a t e p r o d u c t i o n of n a t u r a l g a s f r o m a low- p e r m e a b i l i t y gas-bearinggf ormation by producing a zone of f r a c t u r e d r o c k and a t D ' i _ - 11 chimney" of rock rubbleg I 1 around and above t h e d e t o n a t i o n p o i n t . The v o i d s p a c e s U t h u s produced p r o v i d e d a reservqiq i n t o which t h e n a t u r a l g a s s f l o w . A Y Lcrhs s t a n d a r d gas w e l l s then d r i l r l e d t o t h e chimney, a l l o w i n g recovery o f t h e g a s . T h i s t e c h n i q u e w a s shown t o b e m

129

Natural Gas Variability In California: Environmental Impacts And Device  

NLE Websites -- All DOE Office Websites (Extended Search)

Natural Gas Variability In California: Environmental Impacts And Device Natural Gas Variability In California: Environmental Impacts And Device Performance - Experimental Evaluation Of Installed Cooking Exhaust Fan Performance Title Natural Gas Variability In California: Environmental Impacts And Device Performance - Experimental Evaluation Of Installed Cooking Exhaust Fan Performance Publication Type Report Year of Publication 2011 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley, CA Keywords energy analysis and environmental impacts department Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing more than $1000. Capture efficiency varied widely (from < 5 percent to roughly 100 percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above-the-range systems that do not cover the front burners.

130

Experimental Evaluation of Installed Cooking Exhaust Fan Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental Evaluation of Installed Cooking Exhaust Fan Performance Experimental Evaluation of Installed Cooking Exhaust Fan Performance Title Experimental Evaluation of Installed Cooking Exhaust Fan Performance Publication Type Report LBNL Report Number LBNL-4183E Year of Publication 2010 Authors Singer, Brett C., William W. Delp, and Michael G. Apte Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords airflow & pollutant transport group, cooktop, energy analysis and environmental impacts department, gas burners, indoor air quality, indoor environment department, kitchen, nitrogen dioxide, oven, pollutant emissions, range hood, residential, source control, task ventilation, technology, sustainability and impact assessment group Abstract The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners. Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g. single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from <5% to roughly 100%) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range systems that do not cover the front burners.

131

Hummingbirds  

NLE Websites -- All DOE Office Websites (Extended Search)

Hummingbirds Hummingbirds Nature Bulletin Mo. 347-A May 31, 1969 Forest Preserve District of Cook County George W. Dunne, President Roland F. Eisenbeis, Supt. of Conservation HUMMINBIRDS Hummingbirds, found only in the Western Hemisphere, are undoubtedly the most remarkable birds in the world. They are not only unique for their brilliant iridescent plumage, manner of flying and way of feeding, but also for their great variation in size, form, color, habits and other attributes. Many species are midgets no larger than bumblebee, weighing no more than a dime, but the largest is about the size of a chimney swift -- to which they are distantly related. One species has a bill only one-quarter inch in length, while that of another is almost five inches long -- greater than the combined length of its head, neck, body and tail. The bill is usually straight or nearly so, awl-shaped and needle-pointed, but in one species it curves downward like a sickle and in a few others it curves upward. The wings and tail are equally variable.

132

Reconnaissance geological and mineral resource map of northern Sierra Madre Occidental, Mexico  

SciTech Connect

The northern Sierra Madre Occidental (SMO) map (scale 1:500,000) comprises 305,000 km/sup 2/ in the states of Chihuahau and Sonora. The centrally-located plateau section is divided into an upper, predominantly rhyolitic sequence, overlying an andesite-rich interval, directly correlatable with Tertiary volcanic units in central and southern SMO, respectively (Clark, 1983; 1984). Precambrian rocks occur in both flanks of SMO, either in the subsurface or surface exposures. They are succeeded by Early and Late Paleozoic sedimentary strata in Sonora and by a more discontinuous sequence in western Chihuahua. Mesozoic strata are dominated by Cretaceous carbonate sequences in central Chihuahua, and by late Triassic - Early Jurassic continental and Jurassic magmatic arc deposits in Sonora. Late Mesozoic - Early Cenozoic batholiths were emplaced in numerous localities in Sonora, whereas only isolated granitoid stocks are exposed in Chihuahua. Widespread lavas of basaltic composition are Late Tertiary to Quaternary in age. Late Cenozoic unconsolidated clastic deposits fill basins and constitute the coastal plain on the west. The main mineralizing epoch occurred in Late Cretaceous - Early Tertiary time, is aligned in northwesterly-trending belts and included numerous porphyry (Cu-Mo) deposits, scattered contact metasomatic (Cu-W) ores and a fissure-vein (Ag-Au) assemblage in the western margin; a (Pb-Zn-Ag) assemblage in fissure-veins and manto-chimney deposits, manganese and volcanogenic uranium ores in the eastern flank. Important industrial minerals and rocks include graphite, fluorspar and building materials.

Clark, K.F.

1985-01-01T23:59:59.000Z

133

TITLE  

Office of Legacy Management (LM)

Hydrologic Processes and Hydrologic Processes and Radionuclide Distribution in a Cavity and Chimney Produced by the Cannikin Nuclear Explosion I Amchitka Island, Alaska By HANS C. C M S S E N H Y D R O L O G Y O F N U C L E A R T E S T S I T E S G E O L O G I C A L S U R V E Y P R O F E S S I O N A L P A P E R 7 1 2 - D Prepared on behay o J the US. Energy Research and Deuclopment Administration U N I T E D S T A T E S G O V E R N M E N T P R I N T I N G O F F I C E . W A S H I N G T O N : 1978 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS. sectwary GEOLOGICAL SURVEY V. E. McKelvey. Direcror Library of Conlresr Cnrriolrtn# tn Puhltcrtban Udtr Ct*aaasn. Wnnr C. WydrOlo~nC procesbes and radionucl~dc distributnon in a cavity and chnmncv praduccd by rna Cannukin nuslssr ~ n n l u r r u n . h m c n n u r islrnd. AI;n*U*. (Hydrolory o f nuclssr tcat ritsal (Caoloyicsl Survey Profeuionai P

134

Bats  

NLE Websites -- All DOE Office Websites (Extended Search)

Bats Bats Nature Bulletin No. 147 March 20, 1948 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt of Conservation BATS Flying squirrels only glide. Bats are the only fur bearing animals that truly fly, and they've been doing it for at least 50 million years Twisting, looping and zig-zagging through the air, at dusk and dawn, they catch flying insects more skillfully than the swallow or the chimney swift. Each twist and turn means another insect caught, A bat can consume one-half its weight in insects in a single twilight. Harmful? No, We have one in Trailside Museum that likes to be handled and fed mealworms. They do not get in women's hair. They do not distribute our kind of bed bugs. They are not blind; even in daytime they see fairly well. But they can fly through timber or the narrow twisting passages of caves in total darkness because they have radar, Bats have large specialized ears, Their squeak is pitched so high that few people can hear it, As they fly they also make a supersonic squeak about 30 times per second and are guided by the echoes bouncing back from obstacles.

135

Heat reclaimer  

Science Conference Proceedings (OSTI)

A heat reclaimer for the exhaust flue of a heating unit comprises a housing having an air input space, an air output space, and an exhaust space, with a plurality of tubes connected between and communicating the air input space with the air output space and extending through the exhaust space. The exhaust flue of the heating unit is connected into the exhaust space of the housing and an exhaust output is connected to the housing extending from the exhaust space for venting exhaust coming from the heater into the exhaust space to a chimney, for example. A float or level switch is connected to the housing near the bottom of the exhaust space for switching, for example, an alarm if water accumulates in the exhaust space from condensed water vapor in the exhaust. At least one hole is also provided in the housing above the level of the float switch to permit condensed water to leave the exhaust space. The hole is provided in case the float switch clogs with soot. A wiping device may also be provided in the exhaust space for wiping the exterior surfaces of the tubes and removing films of water and soot which might accumulate thereon and reduce their heat transfer capacity.

Bellaff, L.

1981-10-20T23:59:59.000Z

136

High temperature testing of TRUPACT-I materials: Kevlar, honeycomb, rigid polyurethane foam  

Science Conference Proceedings (OSTI)

When the Transuranic Package Transporter Model-I (TRUPACT-I) failed to afford sufficient containment after a 35-minute JP-4 fueled open-pool fire, component tests were conducted, in conjunction with analyses, to guide and assess the redesign of TRUPACT-I. Since materials which change phase or combust are difficult to numerically analyze, the component tests determined the behavior of these materials in TRUPACT-I. The component tests approximated the behavior of Kevlar (registered trademark of DuPont), metal honeycomb, and rigid polyurethane foam, as they appear in TRUPACT-I, in an open-pool fire environment. Six series of tests were performed at Sandia's Radiant Heat Facility and one test at the wind-shielded fire test facility (LAARC Chimney). Each test facility was controlled to yield temperatures or heat fluxes equivalent to those measured in the TRUPACT-I, Unit 0, open-pool fire. This extensive series of component tests (34 runs total) provided information on the high-temperature behavior of unique materials which was not previously available or otherwise attainable. The component tests were a timely and cost-effective means of providing the data for the TRUPACT-I redesign.

Hudson, M.L.

1985-12-01T23:59:59.000Z

137

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network (OSTI)

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand the combustion and thermal flow behaviors inside the boiler. This study performs a detailed simulation of combustion and thermal flow behaviors inside an industrial boiler. The simulations are conducted using the commercial CFD package FLUENT. The 3-D Navier-Stokes equations and five species transport equations are solved with the eddy-breakup combustion model. The simulations are conducted in three stages. In the first stage, the entire boiler is simulated without considering the steam tubes. In the second stage, a complete intensive calculation is conducted to compute the flow and heat transfer across about 496 tubes. In the third stage, the results of the saturator/superheater sections are used to calculate the thermal flow in the chimney. The results provide insight into the detailed thermal-flow and combustion in the boiler and showing possible reasons for superheater tube rupture. The exhaust gas temperature is consistent with the actual results from the infrared thermograph inspection.

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

138

Geologic evidence for a magma chamber beneath Newberry Volcano, Oregon  

SciTech Connect

At Newberry Volcano, central Oregon, more than 0.5 m.y. of magmatic activity, including caldera collapse and renewed caldera-filling volcanism, has created a structural and thermal chimney that channels magma ascent. Holocene rhyolitic eruptions (1) have been confined mainly within the caldera in an area 5 km in diameter, (2) have been very similar in chemical composition, phenocryst mineralogy, and eruptive style, and (3) have occurred as recently as 1300 years ago, with repose periods of 2000--3000 years between eruptions. Holocene basaltic andesite eruptions are widespread on the flanks but are excluded from the area of rhyolitic volcanism. Basaltic andesite in fissures at the edge of the rhyolite area has silicic inclusions and shows mixed basalt-rhyolite magma relations. These geologic relations and the high geothermal gradient that characterizes the lower part of a drill hole in the caldera (U.S. Geological Survey Newberry 2) indicate that a rhyolitic magma chamber has existed beneath the caldera throughout the Holocene. Its longevity probably is a result of intermittent underplating by basaltic magma.

Macleod, N.S.; Sherrod, D.R.

1988-09-10T23:59:59.000Z

139

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

140

Integrated reactor-containment hyperbolic-cooling-tower system  

Science Conference Proceedings (OSTI)

A preliminary feasibility analysis has been conducted to evaluate placing a nuclear reactor containment building inside a large hyperbolic cooling tower, a concept previously suggested for fossil-fired units but for reasons other than those that motivate this evaluation. The geometry of the design, the amount of water available, and the shielding provided by the cooling tower are beneficial to the safety characteristics of the containment under accident conditions. Three means of decay heat management are employed: an initial water spray on the containment exterior, long-term air convection on side of the containment, and creation of a water pool inside the containment. A continuously spraying water tank on top of the containment allows for a completely passive decay heat removal system. An annular air chimney around the containment is effective in long-term removal of {approximately} 1O MW (thermal) through air convection. Five percent of the water inventory in the cooling-tower pond surrounding the containment is sufficient to flood the containment interior to a depth of 14.6 ft, thereby providing an internal containment heat sink. The packing and the height of the tower provide major scrubbing and dispersing sources for any uncontrolled radioactive leak. The cooling tower veil also protects the containment from external events such as lane crashes.

Patel, A.R.; Todreas, N.E.; Driscoll, M.J. [Massachusetts Institute of Technology, Cambridge, MA (United States)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "labarge hogsback chimney" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Economic impacts of wood energy in the Northeast, 1985: State report: Northeast Regional Biomass Program  

DOE Green Energy (OSTI)

This report summarizes the economic impacts of wood energy for the 11 Northeastern states. The report begins with a brief description of the types of economic impacts estimated in the study. The direct economic impacts are the jobs and income directly attributable to wood energy activities. They are referred to as first round impacts since they reflect the economic activity generated by the first spending of the fuelwood dollar, from the consumer to the supplier. Direct impacts include employment in logging, transport, and end-use operations such as chimney sweeping and boiler operating. Direct impacts also include personal income to employees, payments of stumpage fees to landowners, and profits earned by fuelwood enterprises. Indirect employment and income result from purchases made by fuelwood supply businesses, purpose made by the employees of fuelwood supply businesses, and purchases made by wood burning households or companies for wood combustion system installation, construction, and maintenance. They include purchases of equipment, spare parts, supplies, and services, including financial services.

Chamberlin, R.; High, C.

1986-05-01T23:59:59.000Z

142

Proceedings of the Monterey Containment Symposium, Monterey, California, August 26-28, 1981. Volume 1  

SciTech Connect

Since the Atmospheric Test Ban Treaty was signed in 1963, the United States has conducted all nuclear weapons tests underground. To meet US treaty responsibilities and to ensure public safety, the containment community must prevent any release of radioactive gases to the atmosphere. In the past two decades we have gained considerable insight into the scientific and engineering requirements for complete containment, but the papers and discussions at the Monterey Symposium indicate that a great deal remains to be done. Among papers included here, those dealing with mature topics will serve as reviews and introductions for new workers in the field. Others, representing first looks at new areas, contain more speculative material. Active research topics include propagation of stress waves in rocks, formation and decay of residual hoop stresses around a cavity, hydrofracture out of a cavity, formation of chimneys, and geologic and geophysical investigations of the Nevada Test Site. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Hudson, B.C. [comp.] [Lawrence Livermore National Lab., CA (United States)] [comp.; Lawrence Livermore National Lab., CA (United States); Jones, E.M. [comp.] [Los Alamos National Lab., NM (United States)] [comp.; Los Alamos National Lab., NM (United States); Keller, C.E. [comp.] [Field Command (DNA), Kirtland Air Force Base, NM (United States)] [comp.; Field Command (DNA), Kirtland Air Force Base, NM (United States); Smith, C.W. [comp.] [Sandia National Labs., Albuquerque, NM (United States)] [comp.; Sandia National Labs., Albuquerque, NM (United States)

1983-02-01T23:59:59.000Z

143

Comparison of the Acceptability of Various Oil Shale Processes  

Science Conference Proceedings (OSTI)

While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

Burnham, A K; McConaghy, J R

2006-03-11T23:59:59.000Z

144

Specialty Cellular Glass Products and Their Applications  

E-Print Network (OSTI)

Cellular glass products are composed of hermetically-sealed cells containing gases which exhibit no extracellular diffusion. As such, these products are impermeable to liquids and gases. FOAMGLAS blocks have long been used as fireproof thermal insulation, especially in low temperature applications where condensation and subsequent ice formation in insulation can cause significant reduction in insulating value. Recently, specialty compositions have been developed in the borosilicate and boroaluminosilicate fields which exhibit a high degree of resistance to corrosion by aggressive chemicals as well. One product, sold as PENNGUARDTM block by Pennwalt Corporation, is used as a liner for chimneys where acid corrosion had previously caused substantial maintenance problems. The product is also used as an insulative, acid-resistant liner in numerous chemical processes. A more refractory foam called FOAMSID12 insulation has been developed for use in extremely corrosive environments at elevated temperatures. One such field of application, the Alcoa Smelting Process, involves the use of molten salts which tend to impregnate materials which are porous to either salt vapors or to the liquid phase. Such impregnation of ordinary insulating materials causes a significant increase in heat transfer rates. FOAMSID-12 blocks, with their unique properties of light weight, high strength, impermeability, and low thermal conductivity offer an opportunity for industrial energy conservation which did not previously exist.

Rostoker, D.

1979-01-01T23:59:59.000Z

145

Field investigation at the Faultless Site Central Nevada Test Area  

DOE Green Energy (OSTI)

An evaluation of groundwater monitoring at non-Nevada Test Site underground nuclear test sites raised questions about the potential for radionuclide migration from the Faultless event and how to best monitor for such migration. With its long standing interest in the Faultless area and background in Nevada hydrogeology, the Desert Research Institute conducted a field investigation in FY92 to address the following issues: The status of chimney infilling (which determines the potential for migration); the best level(s) from which to collect samples from the nearby monitoring wells, HTH-1 and HTH-2; the status of hydraulic heads in the monitoring well area following records of sustained elevated post-shot heads. The field investigation was conducted from July 27 to 31 and August 4 to 7, 1992. Temperature and electrical conductivity logging were performed in HTH-1, HTH-2, and UC-1-P-2SR. Water samples were collected from HTH-1 and HTH-2. Lawrence Livermore National Laboratory (LLNL) also collected samples during the July trip, including samples from UC-1-P-2SR. This report presents the data gathered during these field excursions and some preliminary conclusions. Full interpretation of the data in light of the issues listed above is planned for FY93.

Chapman, J.B.; Mihevc, T.M.; Lyles, B.

1992-11-01T23:59:59.000Z

146

WEXFORD containment data report  

SciTech Connect

The WEXFORD event was detonated in hole U2cr of the Nevada Test Site. A plan view map of the local region of hole U2cr showing the surface projections of the faults and the local drill holes is given. The device had a depth-of-burial of 314 m in the Tunnel Beds tuff of Area 2, about 120 m above the standing water level (SWL). Stemming of the 2.44 m diameter emplacement hole followed the plan. A log of the stemming operations was maintained by Holmes and Narver. Detonation time was 07:45 PDT on August 30, 1984 and about 26 minutes later the chimney collapsed to the surface leaving a small, off-center crater which grew, over several days, until it took on a cookie cutter form encompassing the emplacement hole and having a mean diameter of about 35 m. An interior, highly asymmetric crater had a mean diameter of about 12 m. No functioning monitors detected radiation arrivals in the emplacement hole above a depth of 130 m and the WEXFORD containment was considered successful.

Stubbs, T.; Heinle, R.

1995-05-01T23:59:59.000Z

147

Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples. Environ. Health Perspect. 47  

E-Print Network (OSTI)

Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil shale soot, and gasoline vehicle exhaust materials have been examined by this method. The studies reported here have been constructed to compare the carcinogenic and tumorigenic potency of extracts from various particulate emissions: coke ovens, diesel and gasoline vehicles and a roofing tar pot. Automobile emission samples were obtained by collecting the diluted and cooled exhaust on Teflon-coated glass fiber filters. Coke oven and roofing tar samples were particulate emission samples collected by impaction and filtration. The organic components associated with each of the particles were extracted with dichloromethane and dermally applied to SENCAR mice. All agents were applied as tumor initiators by using a five-dose protocol. Selected extracts were also applied as complete carcinogens and as tumor promotors. Statistical analyses of the resulting tumor data were performed by using nonlinear Poisson and probit models. The results from these experiments provide a suitable data base for comparative potency estimation of complex mixtures.

S. Nesnow; L. L. Triplettt; T. J. Slagat

1983-01-01T23:59:59.000Z

148

D-Zero Superconducting Soleniod RTD Instrumentation Readings Upon Receipt at Fermialb  

SciTech Connect

This engineering note documents the Dzero Superconducting Solenoid Platinum RTD, Carbon Glass RTD, and Helium level gage instrumentation values upon receipt at Fermilab. This note is concerned with the internal instrumentation, the external instrumentation can easily be repaired if any problems arise. The Solenoid was Purchased from Toshiba and shipped from the Kehin Works in Japan. The Solenoid was received at Dzero May 12, 1997. The Solenoid was shipped in three large components. They are the Solenoid, Control Dewar, and Chimney. There are 2 main instrumentation port areas where all the internal instrumentation is available to the outside world. These 2 places are the top of the Control Dewar and the North end of the Solenoid. These two instrumentation feedthrough area's have Cyocera hermetic feedthrough port connectors welded into place. The Cyocera connector can and does mate with the Burndy Bantom cable end connector of the same pin/socket number. Since the Hermetic feedthrough and cable connector are different manufacturers, the pin layout pattern is not the same. The Toshiba drawings show both manufacturers pin numbers. The Dzero engineering notes show only the Burndy pin numbers.

Markley, D.; /Fermilab

1998-03-10T23:59:59.000Z

149

An Integrated Solid-State LED Luminaire for General Lighting  

Science Conference Proceedings (OSTI)

A strong systems approach to designing and building practical LED-based replacement lamps is lacking. The general method of taking high-performance LEDs and marrying them to standard printed circuit boards, drivers and a heat sink has fallen short of the promise of LED lighting. In this program, a top-down assessment of requirements and a bottom-up reinvention of LED sources, electronics, optics and mechanics have resulted in the highest performance lamp possible. The team, comprised of Color Kinetics, the leaders in LED lighting and Cree, the leaders in LED devices took an approach to reinvent the package, the driver and the overall form and aesthetic of a replacement source. The challenge was to create a new benchmark in LED lighting - the resultant lamp, a PAR38 equivalent, met the light output, color, color quality and efficacy marks set out in the program as well as being dimmable, which is important for market acceptance. The approach combined the use of multiple source die, a chip-on-board approach, a very efficient driver topology, the use of both direct emission and phosphor conversion, and a unique faceted optic to avoid the losses, artifacts and hotspots of lensed approaches. The integral heat sink provided a mechanical base and airflow using a chimney-effect for use in a wide variety of locations and orientations. These research results led to a much better understanding of the system effects of component level technologies. It was clear that best-of-breed sub-system results do not necessarily result in the best end result for the complete system. In doing this work, we did not neglect the practical aspects of these systems. These were not rarified results and commercially impractical but lent themselves to eventual commercial products in the marketplace. The end result - a high performance replacement lamp - will save significant energy while providing a high-quality light source.

Kevin Dowling; Fritz Morgan Ihor Lys; Mike Datta; Bernd Keller; Thomas Yuan

2009-03-31T23:59:59.000Z

150

Radionuclide Migation Project 1984 progress report  

SciTech Connect

The report discusses the hydrogeologic settings and histories of studies associated with the Cheshire (U20n), Cambric (U5e), Nash (UE2ce), Bilby (U3cn), Bourbon (U7n), and Faultless (UC1) Events. Radionuclide and some chemical data are presented for water samples from cavity or chimney wells associated with the Cheshire, Cambric, and Bilby Events, and from satellite wells at the Cambric, Nash, Bibly, Bourbon, and Faultless Event sites. The report also gives the results of studies of specific sampling or analytical methodologies. These studies demonstrated that the apparent migration of /sup 155/Eu is an artfact of spectrometric misidentification of gamma- and x-ray peaks from other constituents. A potential problem with atmospheric contamination of samples collected with evacuated thief samples was also identified. Ultrafiltration techniques were applied to some of the Cheshire cavity samples collected, and preliminary results suggest that substantial amounts of activity may be associated with colloidal particles in the size range of 0.006 to 0.45 ..mu..m. A study has begun of the recharge of effluent water from RNM-2S (Cambric satellite well) into the desert floor as a result of nine years of continuous pumping. This report gives the initial results of unsaturated zone studies showing the propagation of moisture and tritium fronts through the shallow soil. Geochemical modeling of the behavior of ruthenium and technetium was carried out, with particular emphasis on the identification of ionic species that would be potentially mobile under NTS ground-water conditions. The report compares the results with observations of ruthenium migration to the Cambric satellite well.

Buddemeier, R.W.; Isherwood, D. (comps.)

1985-04-01T23:59:59.000Z

151

Review of geomechanics data from French nuclear explosions in the Hoggar granite, with some comparisons to tests in US granite  

SciTech Connect

Numerous unclassified reports on the French nuclear explosions in the Hoggar (1961-1966) were reviewed from the standpoint of geomechanics. The following aspects of the tests are summarized: spectral content of the tests compared to U.S. results; shock front positions with time; cavity radius as a function of yield, coupling, density of rock, rock shear strength, and overburden; radial pressure, tangential pressure and peak velocity as a function of distance and yield; pressure vs. time at various distances; mechanical properties of granite; scaling laws for acceleration, velocity and displacement as a function of yield and distance for all Hoggar shots; extent of tunnel damage as a function of distance and yield; time to collapse of chimney as a function of yield, or cavity radius; extent of granite crushing and disking as a function of distance and yield cavity height relation to cavity radius; faulting and jointing on the Taourirt Tan Afella massif; and influence of water content on cavity radius vs. yield. Whenever possible, these French data are compared to corresponding data obtained in the U.S. granite events Hard Hat, Shoal, and Piledriver. The following results emerge from the comparison: (1) agreement is found between the French and U.S. experience for: mechanical properties of the granites, rock damage due to the blast, and yield-scaled peak values of acceleration, velocity and displacement; and (2) lack of agreement exists for: cavity size, chminey height, and time to cavity collapse. Average spacing of rock joints also was about 5 times greater in the Hoggar.

Heuze, F.E.

1983-05-01T23:59:59.000Z

152

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

153

An Innovative Transponder-Based Interferometric Radar for Vibration Measurements  

SciTech Connect

Ground-based radar interferometry has recently emerged as an innovative technology of remote sensing, able to accurately measure the static or dynamic displacement of several points of a structure. This technique in the last couple of years has been applied to different types of structures, such as bridges, towers and chimneys. This paper presents a prototype system developed by IDS, originally aimed at measuring the structural vibrations of helicopter rotor blades, based on an interferometric technique and constituted by combination of a radar sensor and a series of transponders installed on the target structure. The main advantages of this solution with respect to conventional interferometric radars, are related to the increased spatial resolution of the system, provided by the possibility to discriminate different transponders installed within the same resolution cell of the radar sensor, and to the reduction of the ambient noise (e.g. multi-path) on the radar measurement. The first feature allows the use of the microwave technology even on target areas with limited dimensions, such as industrial facilities, while the second aspect may extend the use of radar interferometric systems to complex scenarios, where multi-reflections are expected due to the presence of natural targets with high reflectivity to the radar signal. In the paper, the system and its major characteristics are first described; subsequently, application to the measurement of ambient vibration response of a lab set-up is summarized. Then the data acquired on a rotating mock-up are reported and analyzed to identify natural frequencies and mode shapes of the investigated structure.

Coppi, F.; Cerutti, A.; Farina, P.; De Pasquale, G.; Novembrini, G. [IDS Ingegneria dei Sistemi S.p.A., Via Livornese 1019, Pisa (Italy)

2010-05-28T23:59:59.000Z

154

Mitigation of Anticipated Transients Without Scram in the ESBWR  

Science Conference Proceedings (OSTI)

The ESBWR has robust ATWS performance due to the use of passive systems. The heatup of the suppression pool is minimized and the ATWS can be managed at high pressure. ATWS prevention/mitigation features of ESBWR include: An Alternate Rod Insertion (ARI) system that utilizes sensors, logic and valves that are diverse and independent of the Reactor Protection System RPS, Electrical insertion of Fine Motion Control Rod Drives (FMCRDs) that utilize sensors and logic which are diverse and independent of the RPS, Automatic feedwater run-back under conditions indicative of an ATWS An automatic Standby Liquid Control System (SLCS) with a capacity equivalent to 5.42 E-3 m{sup 3}/sec (86 gpm) of 13-weight percent sodium penta-borate solution. The boron is supplied by 2 accumulators and injection is triggered by Squib valves. The boron solution is piped inside the reactor to the core bypass, and discharges at several distribution points in high velocity jets. Several other ESBWR features help to mitigate an ATWS. The large steam volume in the chimney results in a reduced vessel pressurization rate. The isolation condensers terminate suppression pool heatup while there is still steam generation occurring in the core. Analysis with the TRACG computer code shows the ESBWR safety valve capacity is effective in limiting the pressure in the reactor vessel pressure. The automatic FW reduction reduces water level and core flow, which in turn reduces power to approximately one-quarter of the initial value. Finally the reactor is brought sub-critical by boron injection into the core bypass region from two Standby Liquid Control System accumulators. The results show that the mitigation systems are adequate to meet the acceptance criteria without operator action. (authors)

Marquino, Wayne; Shiralkar, Bharat; Sitaraman, Shivakumar [GE Energy (United States)

2006-07-01T23:59:59.000Z

155

Lignite Fuel Enhancement  

Science Conference Proceedings (OSTI)

The Design Team continues to conference this quarter albeit not as often. Primary focus this quarter is the continued procurement of material, receiving, and construction/installation. Phase 1 extension recommendation, and subsequent new project estimate. Forms 424 and 4600 were submitted to Ms. Zysk. The NETL technology team subsequently agreed that the increase is justified and made their recommendation to DOE HQ. All major mechanical equipment was delivered this quarter. Three hot water in-bed coils are all that remains for delivery. Two of the five are installed above the dryer air distribution bed. The dryer, baghouse, bucket elevator, control room, exhaust fan, process ductwork, and piping have all been installed. The mezzanine level over the inlet ductwork for access to the dryer was installed. Instrumentation was delivered and locations were identified. Cable is being pulled and connections made from the Control Room to the Motor Control Center. ''Emergency Stop'' equipment logic conditions were discussed and finalized. The functional description was competed and reviewed with Honeywell Controls. Piping & Instrument diagrams are completed. Some electrical schematics have been delivered for equipment south of Q-line. Dry & Wet coal conveyors are not completed. The exhaust chimney was installed. An Open House and ribbon cutting took place on August 9th. GRE project manager gave a presentation of the technology. Joe Strakey, NETL, also spoke. The Open House was attended by Governor Hoevon and Senator Conrad who also spoke about Clean Coal and helped kick-off Blue Flint ethanol and a potential Liquefaction plant. The deign team met the following day to discuss test plan and progress update. Headwaters Energy Incorporated also attended the Open House. A meeting was conducted with them to begin planning for the marketing and finalize our memorandum of understanding. Headwaters still plans to contact all US lignite plants and all bituminous plants who have switched to PRB. Major pieces of equipment received this quarter included the Dryer, Exhaust Fan, additional duct work, and control cabinets.

Charles Bullinger

2005-10-03T23:59:59.000Z

156

Extraplanar Dust in the Edge-On Spiral NGC 891 1  

E-Print Network (OSTI)

We present high-resolution (0.6 ? ?-0.65 ? ? ) optical broad-band images of the edge-on Sb galaxy NGC 891 obtained with the WIYN 3.5-m telescope. These BVR images reveal a complex network of hundreds of dust absorbing structures far from the mid-plane of the galaxy. The dust structures have a wide range of morphologies and are clearly visible to |z | ? 1021 cm ?2, with masses estimated to be more than 2 10 5 ? 5 10 6 M?, assuming Galactic gas-to-dust relationships. The gravitational potential energies of the individual dust structures, given their observed heights and derived masses, lie in the range of 20 ? 200 10 51 ergs, which represents the energy input of at least tens to hundreds of supernovae. Rough number counts of extraplanar dust features find ?>120 structures at |z |> 400 pc with apparent B-band extinction ?> 0.25 mag. If these have similar properties to those structures studied in detail, the mass of high-z gas associated with extraplanar dust in NGC 891 likely exceeds 2 10 8 M?, which is ?2 % of the total neutral ISM mass of the galaxy. The absorbing properties of extraplanar dust structures in NGC 891 are best fit with RV ? AV /E(B ? V) = 3.6 0.4. A comparison of the new WIYN images with an archival Hubble Space Telescope image of the central region of NGC 891 suggests that the quantities we measure for the extraplanar dust features are not seriously affected by atmospheric blurring in the WIYN images. Some of the dust features seen in NGC 891 suggest supernova-driven galactic fountain or chimney phenomena are responsible for their production and are clearly associated with ionized gas structures thought to be tracing the violent disk-halo interface of this galaxy. However, other structures are not so readily associated with

J. Christopher Howk; Blair D. Savage

1997-01-01T23:59:59.000Z

157

AHTR Mechanical, Structural, And Neutronic Preconceptual Design  

SciTech Connect

This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming a commercial reactor class. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month 2-batch cycle with 9 weight-percent enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The present design intent is for used fuel to be stored inside of containment for at least 6 months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates multiple levels of radioactive material containment including fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents. Key building design elements include: 1) below grade siting to minimize vulnerability to aircraft impact, 2) multiple natural circulation decay heat rejection chimneys, 3) seismic base isolation, and 4) decay heat powered back-up electricity generation. The report provides a preconceptual design of the manipulators, the fuel transfer system, and the salt transfer loops. The mechanical handling of the fuel and how it is accomplished without instrumentation inside the salt is described within the report. All drives for the manipulators reside outside the reactor top flange. The design has also taken into account the transportability of major components and how they will be assembled on site

Varma, Venugopal Koikal [ORNL; Holcomb, David Eugene [ORNL; Peretz, Fred J [ORNL; Bradley, Eric Craig [ORNL; Ilas, Dan [ORNL; Qualls, A L [ORNL; Zaharia, Nathaniel M [ORNL

2012-10-01T23:59:59.000Z

158

AHTR Mechanical, Structural, and Neutronic Preconceptual Design  

SciTech Connect

This report provides an overview of the mechanical, structural, and neutronic aspects of the Advanced High Temperature Reactor (AHTR) design concept. The AHTR is a design concept for a large output Fluoride salt cooled High-temperature Reactor (FHR) that is being developed to enable evaluation of the technology hurdles remaining to be overcome prior to FHRs becoming an option for commercial reactor deployment. This report documents the incremental AHTR design maturation performed over the past year and is focused on advancing the design concept to a level of a functional, self-consistent system. The reactor concept development remains at a preconceptual level of maturity. While the overall appearance of an AHTR design is anticipated to be similar to the current concept, optimized dimensions will differ from those presented here. The AHTR employs plate type coated particle fuel assemblies with rapid, off-line refueling. Neutronic analysis of the core has confirmed the viability of a 6-month two-batch cycle with 9 wt. % enriched uranium fuel. Refueling is intended to be performed automatically under visual guidance using dedicated robotic manipulators. The report includes a preconceptual design of the manipulators, the fuel transfer system, and the used fuel storage system. The present design intent is for used fuel to be stored inside of containment for at least six months and then transferred to local dry wells for intermediate term, on-site storage. The mechanical and structural concept development effort has included an emphasis on transportation and constructability to minimize construction costs and schedule. The design intent is that all components be factory fabricated into rail transportable modules that are assembled into subsystems at an on-site workshop prior to being lifted into position using a heavy-lift crane in an open-top style construction. While detailed accident identification and response sequence analysis has yet to be performed, the design concept incorporates fully passive responses to all identified design basis or non-very-low frequency beyond design basis accidents as well as multiple levels of radioactive material containment. Key building design elements include (1) below grade siting to minimize vulnerability to aircraft impact, (2) multiple natural circulation decay heat rejection chimneys, (3) seismic base isolation, and (4) decay heat powered back-up electricity generation.

Varma, V.K.; Holcomb, D.E.; Peretz, F.J.; Bradley, E.C.; Ilas, D.; Qualls, A.L.; Zaharia, N.M.

2012-09-15T23:59:59.000Z

159

Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)  

Science Conference Proceedings (OSTI)

Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature, and so on). For furnaces or boilers using an induced-draft (ID) fan, the furnace negative pressure depends on the fan performance and frictional losses between the fan inlet and the point of air leakage. In most cases, it would be necessary to measure or estimate negative pressure at the opening. The amount of air leakage, the heat lost in flue gases, and their effects on increased furnace or boiler fuel consumption can be calculated by using the equations and graphs given in Industrial Furnaces (see W. Trinks et al., below). Note that the actual heat input required to compensate for the heat loss in flue gases due to air leakage would be greater than the heat contained in the air leakage because of the effect of available heat in the furnace. For a high-temperature furnace that is not maintained properly, the fuel consumption increase due to air leakage can be as high as 10% of the fuel input.

Not Available

2011-10-01T23:59:59.000Z

160

MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4  

DOE Green Energy (OSTI)

Unit 4 of the Fukushima Dai-ichi Nuclear Power Plant suffered a hydrogen explosion at 6:00 am on March 15, 2011, exactly 3.64 days after the earthquake hit the plant and the off-site power was lost. The earthquake occurred on March 11 at 2:47 pm. Since the reactor of this Unit 4 was defueled on November 29, 2010, and all its fuel was stored in the spent fuel pool (SFP4), it was first believed that the explosion was caused by hydrogen generated by the spent fuel, in particular, by the recently discharged core. The hypothetical scenario was: power was lost, cooling to the SFP4 water was lost, pool water heated/boiled, water level decreased, fuel was uncovered, hot Zircaloy reacted with steam, hydrogen was generated and accumulated above the pool, and the explosion occurred. Recent analyses of the radioisotopes present in the water of the SFP4 and underwater video indicated that this scenario did not occur - the fuel in this pool was not damaged and was never uncovered the hydrogen of the explosion was apparently generated in Unit 3 and transported through exhaust ducts that shared the same chimney with Unit 4. This paper will try to answer the following questions: Could that hypothetical scenario in the SFP4 had occurred? Could the spent fuel in the SPF4 generate enough hydrogen to produce the explosion that occurred 3.64 days after the earthquake? Given the magnitude of the explosion, it was estimated that at least 150 kg of hydrogen had to be generated. As part of the investigations of this accident, MELCOR models of the SFP4 were prepared and a series of calculations were completed. The latest version of MELCOR, version 2.1 (Ref. 1), was employed in these calculations. The spent fuel pool option for BWR fuel was selected in MELCOR. The MELCOR model of the SFP4 consists of a total of 1535 fuel assemblies out of which 548 assemblies are from the core defueled on Nov. 29, 2010, 783 assemblies are older assemblies, and 204 are new/fresh assemblies. The total decay heat of the fuel in the pool was, at the time of the accident, 2.284 MWt, of which 1.872 MWt were from the 548 assemblies of the last core discharged and 0.412 MWt were from the older 783 assemblies. These decay heat values were calculated at Oak Ridge National Laboratory using the ORIGEN2.2 code (Ref. 2) - they agree with values reported elsewhere (Ref. 3). The pool dimensions are 9.9 m x 12.2 m x 11.8 m (height), and with the water level at 11.5 m, the pool volume is 1389 m3, of which only 1240 m3 is water, as some volume is taken by the fuel and by the fuel racks. The initial water temperature of the SFP4 was assumed to be 301 K. The fuel racks are made of an aluminum alloy but are modeled in MELCOR with stainless steel and B4C. MELCOR calculations were completed for different initial water levels: 11.5 m (pool almost full, water is only 0.3 m below the top rim), 4.4577 m (top of the racks), 4.2 m, and 4.026 m (top of the active fuel). A calculation was also completed for a rapid loss of water due to a leak at the bottom of the pool, with the fuel rapidly uncovered and oxidized in air. Results of these calculations are shown in the enclosed Table I. The calculation with the initial water level at 11.5 m (full pool) takes 11 days for the water to boil down to the top of the fuel racks, 11.5 days for the fuel to be uncovered, 14.65 days to generate 150 kg of hydrogen and 19 days for the pool to be completely dry. The calculation with the initial water level at 4.4577 m, takes 1.1 days to uncover the fuel and 4.17 days to generate 150 kg of hydrogen. The calculation with the initial water level at 4.02 m takes 3.63 days to generate 150 kg of hydrogen this is exactly the time when the actual explosion occurred in Unit 4. Finally, fuel oxidation in air after the pool drained the water in 20 minutes, generates only 10 kg of hydrogen this is because very little steam is available and Zircaloy (Zr) oxidation with the oxygen of the air does not generate hydrogen. MELCOR calculated water levels and hydrogen generated in the SFP4 as a function of time for initial water le

Carbajo, Juan J [ORNL

2012-01-01T23:59:59.000Z