National Library of Energy BETA

Sample records for lab laser accelerator

  1. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA: The Berkeley Lab Laser Accelerator Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Navigate Section Community...

  2. EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

    Broader source: Energy.gov [DOE]

    Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

  3. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Jefferson Lab Cryomodule Assembly A cryomodule being prepared for assembly and later installation in Jefferson Lab's accelerator. Jefferson Lab is a world leader in superconducting radiofrequency (SRF) technologies. A D D I T I O N A L L I N K S: CEBAF SRF Institute Free-Electron Laser JLab Brochures NP Brochure Accelerator Brochure top-right bottom-left-corner bottom-right-corner About Accelerators Jefferson Lab is home to two superconducting radiofrequency accelerators: the Continuous

  4. #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1pm EST | Department of Energy Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST May 15, 2012 - 2:03pm Addthis SLAC’s linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world’s brightest X-ray laser

  5. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thomas Jefferson Site Office Staff Cryomodules, sections of Jefferson Lab's accelerator, are designed, assembled, tested and maintained in the Test Lab building. A D D I T I O N A L L I N K S: SRF Institute CASA Operations Injector Group CEBAF About Accelerators top-right bottom-left-corner bottom-right-corner Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the

  6. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December 9, 2014 Contact: Kate Greene, kgreene@lbl.gov, 510-486-4404 particleaccelerator A 9 cm-long capillary discharge waveguide used in BELLA experiments to generate multi-GeV electron beams. The plasma plume has been made more prominent with the use of HDR photography. Image: Roy Kaltschmidt Using one of the most powerful

  7. Newport News Lab Zaps Record for Laser Power | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newport News Lab Zaps Record for Laser Power Researchers at the Thomas Jefferson National Accelerator Facility vaporized previous records for power produced by a laser. Thursday afternoon and into the night, scientists slowly cranked up the power to Jefferson Lab's free-electron laser and blew away even their own estimates of its capabilities. "We had to pull a few people off the ceiling," said Fred Dylla, director of Jefferson Lab's free-electron laser program. "We're pretty

  8. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Inspecting an injector assembly at Jefferson Lab's Free-Electron Laser. A D D I T I O N A L L I N K S: FEL Users FEL Description JLAMP Proposal Applications FEL News Contact top-right bottom-left-corner bottom-right-corner Free-Electron Laser Jefferson Lab's Free-Electron Laser is the world's highest-power tunable infrared laser and was developed using the lab's expertise in superconducting radiofrequency (SRF) accelerators. The FEL also provides ultraviolet laser light, including

  9. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  10. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Twinkles in Rare Color NEWPORT NEWS, VA, Dec. 21 - December is a time for twinkling lights, and scientists at the Department of Energy's Thomas Jefferson National Accelerator Facility are delivering. They've just produced a long-sought, rare color of laser light 100 times brighter than that generated anywhere else. The light was produced by Jefferson Lab's Free-Electron Laser facility. The laser delivered vacuum ultraviolet light in the form of 10 eV photons (a wavelength of 124

  11. New Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Targets Fat Ivanhoe Newswire Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital, Harvard Medical School, and the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Va., are the first to show a laser can heat body fat without harming the skin. The new study measured how different wavelengths of infrared laser light -- 800 nanometers to 2,600 nanometers -- heated human fat from surgically removed tissue

  12. Lab seeks venture acceleration initiative partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners The Venture Acceleration Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in...

  13. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Pave Way for Tabletop Accelerators 'Erratic' Lasers Pave Way for Tabletop Accelerators Simulations at NERSC help researchers simplify design of mini particle accelerators June 9, 2014 Kate Green, KGreene@lbl.gov, 510-486-4404 laserplasmaaccelerator 3D map of the longitudinal wakefield generated by the incoherent combination of 208 low-energy laser beamlets. In the region behind the driver, the wakefield is regular. Image: Carlo Benedetti, Berkeley Lab Making a tabletop particle

  14. Experts at Newport News Lab Develop Powerful New Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experts at Newport News Lab Develop Powerful New Laser By John S. MacNeil, Richmond-Times Dispatch A year after emitting its "first light," a highly focused and powerful experimental laser at the Thomas Jefferson National Accelerator Facility has become the world's most powerful tunable laser. Don't expect this laser on a compact disc player. With just 10 watts, the Jefferson Lab laser, called the Free Electron Laser, can burn holes through metal and pieces of ceramic. With 1,720

  15. Jefferson Laser Team Meets Goal | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Team Meets Goal - Beam Reaches Record 1,720 Watts For a few seconds, it was like a golf ball hovering on the rim of a hole without dropping. Except at the Thomas Jefferson National Accelerator Facility, the ball dropped. Thursday night, the lab's free-electron laser briefly flickered off when the power of its light beam reached 990 watts. As scientists held their breath, it turned back on and passed the 1,000-watt mark - topping the project's goal and prompting one scientist to grab

  16. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  17. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces Venture Acceleration Fund recipients Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. selected as recipients of awards. August 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  18. Lab seeks ideas for Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund ideas Lab seeks ideas for Venture Acceleration Fund Projects selected will support LANL's core missions and provide a significant opportunity for new company formation or growth in New Mexico. April 20, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  19. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration fund Lab seeks ideas for Venture Acceleration Fund The fund will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  20. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Andrew Hutton Named Head of Jefferson Lab's Accelerator Division March 23, 2007 Newport News, Va. - Andrew Hutton has been appointed as the new Associate Director of the Accelerator Division of the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (DOE's Jefferson Lab). Jefferson Lab's accelerator provides the world's most precise electron beam for exploring the fundamental nature of matter. As head of the Accelerator Division, Hutton will supervise the

  1. Energy Department Announces New Lab Program to Accelerate Commercialization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Clean Energy Technologies | Department of Energy Lab Program to Accelerate Commercialization of Clean Energy Technologies Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies October 29, 2014 - 2:30pm Addthis News Media Contact 202-586-4940 Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies Lab-Corps Will Help Move Innovative Technologies from National Labs into the Marketplace

  2. Carrigan, Jr., Richard A. [Fermi National Accelerator Lab. (FNAL...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Lab. (FNAL), Batavia, IL (United States) 43 PARTICLE ACCELERATORS; BEAM OPTICS; CHANNELING; ATTENUATION; BEAM EXTRACTION; BENDING; CRYSTALS; MESON BEAMS; BEAMS;...

  3. Governor to Join Jefferson Lab in Celebrating Completion of Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upgrade Construction | Jefferson Lab Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction CEBAF Race Track This aerial photo shows the outline of the racetrack-shaped CEBAF accelerator at Jefferson Lab in Newport News, Va. NEWPORT NEWS, VA, Sept. 25, 2014 - The Governor of Virginia, Terry McAuliffe, will be the guest speaker at the U.S. Department of Energy's Jefferson Lab on Sept. 26 to commemorate the completion of accelerator and civil construction

  4. Jefferson Lab accelerator upgrade completed: Initial operations set to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begin while experimental equipment upgrades continue | Jefferson Lab Jefferson Lab accelerator upgrade completed: Initial operations set to begin while experimental equipment upgrades continue areial Aerial of Jefferson Lab NEWPORT NEWS, VA, August 12, 2014 - The Department of Energy's Thomas Jefferson National Accelerator Facility ("Jefferson Lab") has just received formal approval from DOE to begin initial operations of the Continuous Electron Beam Accelerator Facility (CEBAF) as

  5. For laser at Jefferson Lab, it's 'pick a wavelength' | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For laser at Jefferson Lab, it's 'pick a wavelength' By Jon W. Glass, The Virginian-Pilot NEWPORT NEWS - The search for a weapon that could knock down an incoming cruise missile drew the Navy. A possible cure for adult acne attracted a Harvard dermatologist. The potential for building lighter, stronger planes and spacecraft brought a NASA engineer. From war to peace, their quests led them to the same place: the free-electron laser lab at the Thomas Jefferson National Accelerator Facility. The

  6. Tunable Laser Reaches Record Power Level | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Laser Reaches Record Power Level Researchers at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) have produced record setting levels of laser power from their Free Electron Laser (FEL). Last summer when the FEL was first turned on, it produced 155 watts of infrared light. On July 15, the FEL exceeded its design goal of 1,000 watts (a million times more powerful than the laser in a supermarket scanner or CD player) by producing 1,720 watts of

  7. FEL Program | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lab's expertise in superconducting radiofrequency (SRF) accelerators. The FEL uses electrons to produce laser light. The electrons are energized using the lab's superconducting...

  8. Jefferson Lab's Free-Electron Laser Joins With Others in New Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture | Jefferson Lab Free-Electron Laser Joins With Others in New Research Venture NEWPORT NEWS, VA, April 29, 2009 - The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility will participate in a $777 million federal effort to accelerate scientific breakthroughs. Jefferson Lab will be among nine universities and six DOE labs collaborating with the Carnegie Geophysical Institution of Washington, D.C., under an Energy Frontier Research Center award announced Monday by

  9. Jefferson Lab Laser Twinkles in Rare Color (PhysOrg) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    phys.org/news/2010-12-jefferson-lab-laser-twinkles-rare.html Submitted: Tuesday, December 21

  10. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Single Cell Cavity This single cell cavity was made from a single crystal of niobium. Made in the same shape as the low-loss design proposed as an improvement to the baseline for the International Linear Collider (ILC), this cavity performs much better than the ILC design goal. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity May 18, 2005 Jefferson Lab's Institute for Superconducting Radiofrequency Science & Technology has, for the first time,

  11. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Single Cell Cavity This single cell cavity was made from a single crystal of niobium. Made in the same shape as the low-loss design proposed as an improvement to the baseline for the International Linear Collider (ILC), this cavity performs much better than the ILC design goal. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Jefferson Lab's Institute for Superconducting Radiofrequency Science & Technology has, for the first time, successfully

  12. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional particle accelerators, like the Large Hadron Collider at CERN, which is 17 miles ... Particle Accelerators NERSC Resources Used: Edison, Hopper DOE Program ...

  13. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partner Lab announces selection of partner for Venture Acceleration initiative The initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab. September 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  14. Jefferson Lab Fall Lecture: Exploring Our World With Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab Fall Lecture: Exploring Our World With Particle Accelerators NEWPORT NEWS, Va., Nov. 9, 2010 - Jefferson Lab's 2010 Fall Science Lecture Series concludes on Tuesday, Nov. 23, with James E. Brau, University of Oregon, presenting "The Mysterious Universe: Exploring Our World with Particle Accelerators." The universe is dark and mysterious, more so than even Einstein imagined, Brau says. While modern science has established an understanding of ordinary matter,

  15. Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy

    Office of Environmental Management (EM)

    Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing

  16. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  17. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  18. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    visiting scientists may continue commissioning the accelerator and dependent upon funding availability, some limited early physics running may be feasible as the capabilities of...

  19. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces selection of Venture Acceleration Fund recipients Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon are recipients of awards. January 7, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  20. Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Department of Energy Supercomputing Power to Accelerate Fossil Energy Research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer that enables the simulation of processes or technologies that are difficult or impossible to demonstrate using traditional methods. | Video by the National Energy Technology Laboratory. Ben Dotson Ben

  1. 8,000 visitors tour Jefferson Lab: Electron accelerator shut down for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rebuild (Daily Press) | Jefferson Lab articles.dailypress.com/2012-05-19/news/dp-nws-jeff-lab-open-house-20120519_1_electron-accelerator-jefferson-labs... Submitted: Saturday, May 19, 2012 - 12

  2. Lab-Corps Program Helping to Accelerate Commercialization of Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies from our National Labs | Department of Energy Program Helping to Accelerate Commercialization of Clean Energy Technologies from our National Labs Lab-Corps Program Helping to Accelerate Commercialization of Clean Energy Technologies from our National Labs July 30, 2015 - 1:00pm Addthis The Energy Department's Lab-Corps pilot program is a national network that aims to unleash national lab researchers to successfully transition their discoveries into high-impact technologies in

  3. Four Crazy Uses for Lasers in the National Labs | Department of Energy

    Office of Environmental Management (EM)

    Four Crazy Uses for Lasers in the National Labs Four Crazy Uses for Lasers in the National Labs September 14, 2012 - 2:50pm Addthis SLAC staff scientist Yiping Feng examines a chamber at LCLS' Front End Enclosure, where a thin crystal spectrometer is installed to measure the shot-by-shot characteristics of X-ray laser pulses. | SLAC National Accelerator Photo by Matt Beardsley SLAC staff scientist Yiping Feng examines a chamber at LCLS' Front End Enclosure, where a thin crystal spectrometer is

  4. Jefferson Lab's upgraded Free-Electron Laser produces first ligh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Free-Electron Laser upgrade project is funded by the Department of Defense's Office of ... for accelerating electrons to high energy in efficient, cost-effective accelerators. ...

  5. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  6. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  7. Free-Electron Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Targets Fat April 10, 2006 Free-Electron Laser Scientists Rox Anderson, right, and Free-Electron Laser Scientist Steve Benson, left, discuss laser beam parameters while conducting the experiment on pig fat. Image courtesy: Greg Adams, Jefferson Lab Boston, Mass. - Fat may have finally met its match: laser light. Researchers at the Wellman Center for Photomedicine at Massachusetts General Hospital, Harvard Medical School and the Department of Energy's Thomas Jefferson National

  8. Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Pilot Accelerates Private-Sector Adoption of Game-Changing Technologies Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing Technologies November 20, 2015 - 4:29pm Addthis Energy Department investments in the Lab-Corps initiative are teaming innovative scientists with entrepreneurs to bring latebreaking technologies to market. Energy Department investments in the Lab-Corps initiative are teaming innovative scientists with entrepreneurs to

  9. Energy Department Announces New Lab Program to Accelerate Commercializ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab-Corps, which builds on the National Science Foundation's successful Innovation Corps ... that will enable lab-based teams to gain direct market feedback on their technologies and ...

  10. Laser turns 50 (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https://www.jlab.org/news/articles/laser-turns-50-inside-business Laser turns 50 Not yet beaming us up, lasers have still come a long way, Scotty By Michael Schwartz, Inside Business December 17, 2007 Where were you on the laser's 50th birthday? Perhaps you didn't get the invitation, but about 200 people showed up earlier this month at the Jefferson Laboratory in Newport News to celebrate a technology that has been decades in the making but has become part of everyday life and a multi-billion

  11. Jefferson Lab Laser Breakthrough Opens Way for Navy Funding | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Breakthrough Opens Way for Navy Funding The powerful laser in development at Jefferson Laboratory in Newport News is not "Star Wars" technology, in either the Ronald Reagan or the George Lucas sense. It's more realistic than both the 1980s missile-defense fantasy and the 1990s (and '70s) Jedi space fantasy. The Jefferson Lab's free-electron laser has made believers out of doubters and possibly earned itself federal funding. That could be great economic news for Newport News and

  12. Microwave accelerator E-beam pumped laser

    DOE Patents [OSTI]

    Brau, Charles A.; Stein, William E.; Rockwood, Stephen D.

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  13. Core of First Section of New Accelerator Rolled Out | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Core of First Section of New Accelerator Rolled Out Moving Forward - New components to be added to Jefferson Lab's CEBAF accelerator as part of the 12 GeV Upgrade have been manufactured, encased and rolled out for further assembly. This "string" of components will become the heart of a cryomodule, which will be added to the lab's particle accelerator in 2012. Core of First Section of New Accelerator Rolled Out The first of the new accelerating components that will be installed in

  14. Laser diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser diagnostics Subscribe to RSS - Laser diagnostics The Multi-Point Thomson Scattering (MPTS) diagnostic system has been providing time dependent Te and ne profile measurements on NSTX for ten years. COLLOQUIUM: Controlling the Production and Performance of Materials at the Mesoscale: The Matter-Radiation Interactions in Extremes (MaRIE) Capability The Matter-Radiation Interactions in Extremes (MaRIE) project will provide capability that will address the control of performance and production

  15. Lab-Corps Program Helping to Accelerate Commercialization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Site Lab offered a series of weekly industry information sessions in February and March, supplemented by entrepreneur training sessions held at the University of California-Davis. ...

  16. Jefferson Lab Gears up for 'Accelerating Discovery' Open House on May 17 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Gears up for 'Accelerating Discovery' Open House on May 17 Jefferson Lab Open House This slide show includes photos from the Jefferson Lab Open House held in May 2012. Between 7,000 and 8,000 visitors attended. They were able to see many of the unique research facilities and learn about the leading-edge projects underway at the lab, as well as participate in a variety of science education activities and catch the ever-popular Liquid Nitrogen Demonstration. NEWPORT NEWS, Va.,

  17. Jefferson Lab Builds First Single Crystal Single Cell Accelerating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    superconducting accelerator cavities, visit: http:www.jlab.orgexpprogtechtransfernewtech.htmlcavities. For more information, or to schedule an interview, contact: Linda...

  18. Laser driven compact ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-03-15

    A laser driven compact ion source including a light source that produces an energy pulse, a light source guide that guides the energy pulse to a target and produces an ion beam. The ion beam is transported to a desired destination.

  19. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  20. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    venture capital fund that invests in seed-stage, high-growth ventures in New Mexico. "The Venture Acceleration Initiative is an innovative program in a comprehensive...

  1. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-11-15

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA.

  2. Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons On December 14, full-energy 12 GeV electron beam was provided for the first time, to the Experimental Hall D complex, located in the upper, left corner of this aerial photo of the Continuous Electron Beam Accelerator Facility. Hall D is the new experimental research facility - added to CEBAF as part of the 12 GeV Upgrade project. Beam was also delivered to Hall A (dome in the lower left). NEWPORT NEWS, VA, December 21, 2015 -

  3. Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Webs of nanotubes on collector plates Webs of nanotubes form on collector plates during the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes By James Schultz January 27, 2003 Jefferson Lab's Free-Electron Laser used to explore the fundamental science of how and why nanotubes form, paying close attention to the atomic and molecular details Scientists and technologists of all stripes are working

  4. Jefferson Lab: Laser gun to eventually shoot down missiles (Daily...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articles.dailypress.com2011-02-21newsdp-nws-jefferson-lab-201102211jefferson-lab-researchers-free-electron-l... Submitted: Monday, February 21, 2011

  5. Chirped pulse inverse free-electron laser vacuum accelerator

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  6. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a

    Office of Scientific and Technical Information (OSTI)

    Transverse Gradient Undulator (Journal Article) | SciTech Connect Journal Article: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy

  7. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transverse Gradient Undulator (Journal Article) | SciTech Connect Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders

  8. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  9. Beam Dynamics Studies for a Laser Acceleration Experiment (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Beam Dynamics Studies for a Laser Acceleration Experiment Citation Details In-Document Search Title: Beam Dynamics Studies for a Laser Acceleration Experiment The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment,

  10. Laser wakefield accelerator based light sources: potential applications and requirements

    SciTech Connect (OSTI)

    Albert, F; Thomas, A G; Mangles, S P; Banerjee, S; Corde, S; Flacco, A; Litos, M; Neely, D; Viera, J; Najmudin, Z; Bingham, R; Joshi, C; Katsouleas, T

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future eff orts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefi eld accelerators for these specifi c applications.

  11. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of power is required at the Lab to support our national security science, and we're committed to finding ways to incorporate more renewable energy and reduce our carbon footprint. In addition to the collaborative Smart Grid Technology Test Bed, Los Alamos and partners helped develop other ways to generate renewable power to

  12. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and quantum computing and as components for microelectromechanical sensors, or MEMS. The tubes could also function as a "lab on a chip," with attached microelectronics and...

  13. Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators

    SciTech Connect (OSTI)

    Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2012-12-21

    The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

  14. Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News item slideshow Undergrad Women in Physics Tour Lab Undergrad Women in Physics Tour Lab Nearly 150 college students representing 35 colleges and universities from Virginia; North Carolina; Maryland; Washington, D.C.; Delaware and New Jersey participated in a Conferences for Undergraduate Women in Physics event co-hosted by Jefferson Lab and Old Dominion University. On Jan. 16 the group toured Jefferson Lab facilities. <<<< Ken Surles-Law, Accelerator Operations, discusses running

  15. Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action |

    Office of Environmental Management (EM)

    Department of Energy X-ray Laser Captures Atoms and Molecules in Action Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action July 18, 2012 - 12:51pm Addthis The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser, which helps researchers understand the extreme conditions found in the hearts of stars and giant planets guiding research into nuclear fusion, the mechanism that powers the sun. View the entire Lab Breakthrough playlist. Michael Hess Michael

  16. Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a

    Office of Scientific and Technical Information (OSTI)

    Transverse-Gradient Undulator (Journal Article) | SciTech Connect Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator Citation Details In-Document Search Title: Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator Authors: Huang, Zhirong ; Ding, Yuantao ; Schroeder, Carl B. Publication Date: 2012-11-12 OSTI Identifier: 1101325 Type: Publisher's Accepted Manuscript Journal Name: Physical

  17. Laser Tricks: Making a New Color (Discovery News) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    news.discovery.com/tech/laser-tricks-making-a-new-color.html Submitted: Monday, December 27

  18. Stable laserplasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-07-28

    We report stable laser wakefield acceleration using 1750 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.482.0??10{sup 19?}cm{sup ?3}. High-quality 100MeV electron beams were generated at the plasma density of 7.5??10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  19. SAF 114O Laser Safety Orientation Training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Safety Orientation (SAF114 O) training opportunity. Date: Friday, October 23 Time: 10:30 - noon Location: CEBAF Center Room A110 Read JLab EH&S Manual Chapter 6410 Laser...

  20. SAF 114O Laser Safety Orientation Training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAF 114O Laser Safety Orientation Training For staff and students: Course: SAF 114O Laser Safety Orientation Date: Tuesday, July 14, 2015 Time: 10:30 - noon Location: CEBAF Center,...

  1. Free Electron Lasers Come of Age - Photonics Spectra | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Lasers Come of Age - Photonics Spectra Submitted: Saturday, August 13, 2005 - 4:35pm

  2. 'Erratic' Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their work was supported by supercomputing resources at the National Energy Research Scientific Computing Center (NERSC). Traditional accelerators, like the Large Hadron Collider ...

  3. Electron acceleration by a chirped Gaussian laser pulse in vacuum

    SciTech Connect (OSTI)

    Sohbatzadeh, F.; Mirzanejhad, S.; Ghasemi, M.

    2006-12-15

    Electron acceleration by a chirped Gaussian laser pulse is investigated numerically. A linear and negative chirp is employed in this study. At first, a simple analytical description for the chirp effect on the electron acceleration in vacuum is provided in one-dimensional model. The chirp mechanism is then extended to the interaction of a femtosecond laser pulse and electron. The electron final energy is obtained as a function of laser beam waist, laser intensity, chirp parameter, and initial phase of the laser pulse. It is shown that the electron final energy depends strongly on the chirp parameter and the initial phase of the laser pulse. There is an optimal value for the chirp parameter in which the electron acceleration takes place effectively. The energy gain increases with laser beam waist and intensity. It is also shown that the electron is accelerated within a few degrees to the axial direction. Emphasis is on the important aspect of the chirp effect on the energy gained by an electron from the electromagnetic wave.

  4. 2005 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2005 Sat, 08/13/2005 - 4:35pm Free Electron Lasers Come of Age - Photonics Spectra July 2005 Tue, 07/26/2005 - 4:26pm JLab FEL Wins R&D 100 Award May 2005 Wed, 05/18/2005 - 4:58pm Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity

  5. Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    SciTech Connect (OSTI)

    Masson-Laborde, P. E. Teychenné, D.; Mo, M. Z.; Ali, A.; Fedosejevs, R.; Fourmaux, S.; Lassonde, P.; Kieffer, J. C.; Rozmus, W.

    2014-12-15

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional particle-in-cell simulations support this analysis and confirm the scenario.

  6. 2003 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2003 Mon, 01/27/2003 - 2:00pm Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator Mon, 01/27/2003 - 2:00pm Experiment generates THz radiation 20,000 times brighter than anyone else Mon, 01/27/2003 - 2:00pm Jefferson Lab experiment works to clarify Real Compton Scattering Mon, 01/27/2003 - 2:00pm Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes

  7. 2006 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2006 Mon, 11/27/2006 - 3:00pm Reaching New Heights in Accelerator Technology Wed, 11/08/2006 - 3:45pm Researchers' Hottest New Laser Beams 14.2 kW October 2006 Fri, 10/13/2006 - 2:00pm Jefferson Lab Programmer a Finalist in Google's Global Code Jam September 2006 Tue, 09/26/2006 - 2:00pm Jefferson Lab announces two Fall Science Series lectures; examine evidence of an ancient supernova, the magic of Harry Potter Thu, 09/21/2006 - 2:00pm Lab Enhances Scientific Data Sharing with

  8. 2010 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2010 Tue, 12/21/2010 - 2:00pm Jefferson Lab Laser Twinkles in Rare Color Tue, 12/14/2010 - 2:00pm NSC Technologies Joins DOE Mentor-Prot&eacute;g&eacute; Program With Jefferson Lab November 2010 Tue, 11/09/2010 - 2:00pm Jefferson Lab Fall Lecture: Exploring Our World With Particle Accelerators October 2010 Thu, 10/14/2010 - 2:00pm JLab Cluster Tops 100 Teraflops September 2010 Wed, 09/22/2010 - 2:00pm Fall Lectures Feature Life of Einstein; Exploring Our World With Particle

  9. Laser Safety Orientation SAF 114O Training Opportunity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Safety Orientation SAF 114O Training Opportunity Date: Thursday, January 14, 2016 Time: 10:30 - Noon Location: CEBAF Center, Room A110 Prerequisites: 1. Schedule an Eye Exam for Laser Safety - MED 02 Contact Occupational Medicine - ext. 7539 2. Review JLab EH&S Manual Chapter 6410 Laser Safety Program https://www.jlab.org/ehs/ehsmanual/manual/6410.html Any questions contact Bert Manzlak, ext. 7556 Submitted: Tuesday, January 5, 2016 - 3:38pm

  10. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  11. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  12. Laser Safety Orientation SAF114O | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Room A110 Time: 9:30 - 11:00 am Prerequisite ... Review JLab EH&S Manual Chapter 6410 Laser Safety Program and appendices at https:www.jlab.orgehsehsmanualmanual6410.html....

  13. Compact x-ray free electron laser from a laser-plasma accelerator using a

    Office of Scientific and Technical Information (OSTI)

    transverse gradient undulator (Journal Article) | SciTech Connect Compact x-ray free electron laser from a laser-plasma accelerator using a transverse gradient undulator Citation Details In-Document Search Title: Compact x-ray free electron laser from a laser-plasma accelerator using a transverse gradient undulator Authors: Huang, Zhirong ; Ding, Yuantao ; Schroeder, Carl Publication Date: 2012-09-11 OSTI Identifier: 1172711 Report Number(s): LBNL-5931E DOE Contract Number: DE-AC02-05CH11231

  14. About Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Target for Experiments Experiments carried out at Jefferson Lab probe the building blocks of matter - helping us to better understand these particles and the forces that bind them - and ultimately our world. ABOUT JEFFERSON LAB Thomas Jefferson National Accelerator Facility (Jefferson Lab) is one of 17 national laboratories funded by the U.S. Department of Energy. The lab also receives support from the City of Newport News and the Commonwealth of Virginia. The lab's primary mission is to

  15. Laser Polishing: Green Path to Improved Accelerator Surfaces

    SciTech Connect (OSTI)

    Kelley, Michael

    2015-10-06

    We pursued three paths toward reducing the initial cost and operating expense of particle accelerators. First, we investigated laser surface melting as an alternative to the present cavity processing approach using noxious chemicals. We successfully demonstrated a process that can be scaled up and defined the path to do so. Second, we sought to develop tailored laser pulsing as a way to simulate the thermal fatigue environment responsible for damaging accelerator components. Though the first three steps along the path were successfully accomplished, the final segment depended on collaborators with unique facilities, whose program was terminated. The third segment aimed to acquire a fundamental understanding of the widely used chemical process that yields the rough surfaces smoothed by laser melting. We found that the roughness is an inherent and unavoidable outcome that limits the performance of components processed thusly.

  16. Direct High-Power Laser Acceleration of Ions for Medical Applications

    SciTech Connect (OSTI)

    Salamin, Yousef I.; Harman, Zoltan; Keitel, Christoph H.

    2008-04-18

    Theoretical investigations show that linearly and radially polarized multiterawatt and petawatt laser beams, focused to subwavelength waist radii, can directly accelerate protons and carbon nuclei, over micron-size distances, to the energies required for hadron cancer therapy. Ions accelerated by radially polarized lasers have generally a more favorable energy spread than those accelerated by linearly polarized lasers of the same intensity.

  17. New Laser's "First Light" Shatters Record | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser's "First Light" Shatters Record Researchers at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more than 150 watts (150,000 times more powerful than that of a supermarket scanner or CD player) was delivered today - fifteen times the power of existing free-electron lasers. The Free Electron Laser project was funded by

  18. New Laser's &quot;First Light&quot; Shatters Record | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser's "First Light" Shatters Record Researchers at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more than 150 watts (150,000 times more powerful than that of a supermarket scanner or CD player) was delivered today - fifteen times the power of existing free-electron lasers. The Free Electron Laser project was funded by

  19. Laser polishing for topography management of accelerator cavity surfaces

    SciTech Connect (OSTI)

    Zhao, Liang; Klopf, J. Mike; Reece, Charles E.; Kelley, Michael J.

    2015-07-20

    Improved energy efficiency and reduced cost are greatly desired for advanced particle accelerators. Progress toward both can be made by atomically-smoothing the interior surface of the niobium superconducting radiofrequency accelerator cavities at the machine's heart. Laser polishing offers a green alternative to the present aggressive chemical processes. We found parameters suitable for polishing niobium in all surface states expected for cavity production. As a result, careful measurement of the resulting surface chemistry revealed a modest thinning of the surface oxide layer, but no contamination.

  20. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 GeV Upgrade Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. Read more User Information Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. Read more Experiment Research Science Jefferson Lab's Accelerator Tunnel Jefferson Lab's accelerator is

  1. Lab-Corps Pilot Accelerates Private-Sector Adoption of Game-Changing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comprised of a laboratory innovator, an industry mentor, and an entrepreneur, teams spend ... mentor, and an entrepreneur - came together at NREL to begin the Lab-Corps journey. ...

  2. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEORGE NEIL Associate Director for FEL Division George Neil is Senior Team Lead for the LCLS-II Project at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), a Department of Energy particle accelerator facility run for nuclear physics research. The LCLS-II Project is a new DOE Basic Energy Sciences program centered at Stanford National Accelerator Facility involving the construction of a X-ray Free Electron Laser powered by a 4 GeV continuous wave superconducting accelerator.

  3. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2009 Wed, 12/02/2009 - 2:00pm Lasers Used to Make First Boron-Nitride Nanotube Yarn November 2009 Wed, 11/18/2009 - 2:00pm Proton's party pals may alter its internal structure Tue, 11/10/2009 - 2:00pm First Director Named for Center for Accelerator Science Wed, 11/04/2009 - 2:00pm Jefferson Lab Dec. 9 Science Lecture Discusses How Visual Illusions Trick the Mind September 2009 Tue, 09/29/2009 - 2:00pm Energy Secretary Chu Celebrates Jefferson Lab's 25th Anniversary Thu, 09/17/2009 -

  4. Researchers' Hottest New Laser Beams 14.2 kW | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers' Hottest New Laser Beams 14.2 kW For more information: Office of Naval Research press release The linear accelerator portion of the FEL. On Thursday, Oct. 26, Free-Electron Laser (FEL) team members knew they were within reach of a goal they'd pursued for two years. They were aiming to produce 10 kW of laser light at an infrared wavelength of 1.61 microns. On that day, they blew past the milestone to produce 11.7 kW. But the team didn't stop there. They pushed the machine they had

  5. Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science (SC) Fermi National Accelerator Laboratory Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Safety and Security Policy Laboratory Policy Operations Program

  6. Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science (SC) Thomas Jefferson National Accelerator Facility Laboratories Laboratories Home Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Safety and Security Policy Laboratory Policy Operations

  7. Selective deuterium ion acceleration using the Vulcan petawatt laser

    SciTech Connect (OSTI)

    Krygier, A. G.; Morrison, J. T.; Kar, S. Ahmed, H.; Alejo, A.; Green, A.; Jung, D.; Clarke, R.; Notley, M.; Fuchs, J.; Vassura, L.; Kleinschmidt, A.; Roth, M.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Zepf, M.; Borghesi, M.; Freeman, R. R.

    2015-05-15

    We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with >99% deuterium ions and peak energy 14?MeV/nucleon is produced with a 200?J, 700?fs, >10{sup 20}W/cm{sup 2} laser pulse by cryogenically freezing heavy water (D{sub 2}O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (08.5), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7?MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%.

  8. Laser induced electron acceleration in an ion-channel guiding

    SciTech Connect (OSTI)

    Esmaeilzadeh, Mahdi; Taghavi, Amin; Hanifpour, Maryam

    2011-09-15

    Direct electron acceleration by a propagating laser pulse of circular polarization in an ion-channel guiding is studied by developing a relativistic three-dimensional single particle code. The electron chaotic dynamic is also studied using time series, power spectrum, and Liapunov exponent. It is found that the electron motion is regular (non-chaotic) for laser pulse with short time duration, while for long enough time duration, the electron motion may be chaotic. In the case of non-chaotic motion, the electron can gain and retain very high energy in the presence of ion-channel before reaching the steady-state, whereas in the case of chaotic motion, the electron gains energy and then loses it very rapidly in an unpredictable manner.

  9. Search | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Beam Accelerator SEARCH JEFFERSON LAB Phone Book A-Z Index Departments Search the JLab Web Site Loading

  10. Human Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employee Relations Human Resources Installation Of A Cryomodule Workers prepare to install a cryomodule in Jefferson Lab's accelerator. Read more Business Services Human Resources Jefferson Lab Business Services Jefferson Lab provides opportunities for both large and small businesses to engage with the lab and its scientific mission. Read more Training Human Resources Training Programs at Jefferson Lab There exist many exciting career opportunities at Jefferson Lab, and the lab provides training

  11. Directors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director Hugh Montgomery Jefferson Lab Director Hugh Montgomery jefferson lab Director Hugh E. Montgomery is the Director of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). As the lab's chief executive officer, he is responsible for ensuring funding for the lab and for setting policy and program direction. In addition, he oversees the delivery of the lab program and ensures that Jefferson Lab complies with all regulations, laws and contract requirements. Montgomery also is

  12. Performance of the accelerator driver of Jefferson Laboratory's free-electron laser

    SciTech Connect (OSTI)

    Bohn, C.L.; Benson, S.; Biallas, G.

    1999-04-01

    The driver of Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam power and converts it to radiofrequency power. In achieving first lasing, the accelerator operated straight-ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. Just prior to first lasing, measured rms beam properties at the wiggler were 7.5{+-}1.5 mm-mr normalized transverse emittance, 26{+-}7 keV-deg longitudinal emittance, and 0.4{+-}0.1 ps bunch length which yielded a peak current of 60{+-}15A. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. Commissioning the recirculation loop then proceeded. As of this Conference, the machine has recirculated cw average current up to 4 mA, and has lased cw with energy recover up to 710 W.

  13. 2006 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Mon, 12/18/2006 - 10:47am For laser at Jefferson Lab, it's 'pick a wavelength'

  14. 2006 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2006 Mon, 12/18/2006 - 10:47am For laser at Jefferson Lab, it's 'pick a wavelength'

  15. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  16. Ultrafast pulse radiolysis using a terawatt laser wakefield accelerator

    SciTech Connect (OSTI)

    Oulianov, Dmitri A.; Crowell, Robert A.; Gosztola, David J.; Shkrob, Ilya A.; Korovyanko, Oleg J.; Rey-de-Castro, Roberto C.

    2007-03-01

    We report ultrafast pulse radiolysis transient absorption (TA) spectroscopy measurements from the Terawatt Ultrafast High Field Facility (TUHFF) at Argonne National Laboratory. TUHFF houses a 20 TW Ti:sapphire laser system that generates 2.5 nC subpicosecond pulses of multi-mega-electron-volt electrons at 10 Hz using laser wakefield acceleration. The system has been specifically optimized for kinetic TA measurements in a pump-probe fashion. This requires averaging over many shots which necessitates stable, reliable generation of electron pulses. The latter were used to generate excess electrons in pulse radiolysis of liquid water and concentrated solutions of perchloric acid. The hydronium ions in the acidic solutions react with the hydrated electrons resulting in the rapid decay of the transient absorbance at 800 nm on the picosecond time scale. Normalization of the TA signal leads to an improvement in the signal to noise ratio by a factor of 5 to 6. Due the pointing instability of the laser this improvement was limited to a 5 to 10 min acquisition period, requiring periodic recalibration and realignment. Time resolution, defined by the rise time of TA signal from hydrated electron in pulse radiolysis of liquid water, of a few picoseconds, has been demonstrated. The current time resolution is determined primarily by the physical dimensions of the sample and the detection sensitivity. Subpicosecond time resolution can be achieved by using thinner samples, more sensitive detection techniques, and improved electron beam quality.

  17. Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab articles.dailypress.com/2011-02-21/news/dp-nws-jefferson-lab-20110221_1_jefferson-lab-researchers-free-electron-l... Submitted: Monday, February 21, 2011

  18. Summary report of working group 3: High gradient and laser-structure based acceleration

    SciTech Connect (OSTI)

    Solyak, N.; Cowan, B.M.; /Tech-X, Boulder

    2010-01-01

    The charge for the working group on high gradient and laser-structure based acceleration was to assess the current challenges involved in developing an advanced accelerator based on electromagnetic structures, and survey state-of-the-art methods to address those challenges. The topics of more than 50 presentations in the working group covered a very broad range of issues, from ideas, theoretical models and simulations, to design and manufacturing of accelerating structures and, finally, experimental results on obtaining extremely high accelerating gradients in structures from conventional microwave frequency range up to THz and laser frequencies. Workshop discussion topics included advances in the understanding of the physics of breakdown and other phenomena, limiting high gradient performance of accelerating structures. New results presented in this workshop demonstrated significant progress in the fields of conventional vacuum structure-based acceleration, dielectric wakefield acceleration, and laser-structure acceleration.

  19. Modeling laser wakefield accelerators in a Lorentz boosted frame

    SciTech Connect (OSTI)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  20. Employees | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions & Departments Employees DIVISIONS & DEPARTMENTS Accelerator Operations, Research and Development Accelerator Home Accelerator Operations Department CASA (Center for Advanced Studies of Accelerators) Read more Emergency Information Employees Jefferson Lab Emergency Drill Jefferson Lab conducts regular exercises and drills to continually improve safety and emergency procedures

  1. Laser acceleration and deflection of 963 keV electrons with a silicon dielectric structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leedle, Kenneth J.; Pease, R. Fabian; Byer, Robert L.; Harris, James S.

    2015-02-12

    Radio frequency particle accelerators are ubiquitous in ultrasmall and ultrafast science, but their size and cost have prompted exploration of compact and scalable alternatives such as the dielectric laser accelerator. We present the first demonstration, to the best of our knowledge, of high gradient laser acceleration and deflection of electrons with a silicon structure. Driven by a 5 nJ, 130 fs mode-locked Ti:sapphire laser at 907 nm wavelength, our devices achieve accelerating gradients in excess of 200 MeV/m and suboptical cycle streaking of 96.30 keV electrons. These results pave the way for high gradient silicon dielectric laser accelerators using commercialmore » lasers and subfemtosecond electron beam experiments.« less

  2. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  3. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Policymakers Construction at Jefferson Lab The Technology & Engineering Development Facility or TEDF is one of the new facilities being constructed at Jefferon Lab is support of th enational science agenda. Read more Visiting JLab Policymakers An Aerial View of Jefferson Lab Campus An overhead view of Jefferson Lab. To the right is the racetrack outline of the lab's accelerator, while at the bottom right the lab's experimental halls are visible as three round mounds. The two

  4. Jefferson Lab's free-electron laser joins new research venture (Optics.org)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab optics.org/article/38950 Submitted: Friday, May 1

  5. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  6. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect (OSTI)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

    2014-04-15

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  7. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. ); Bhowmik, A. . Rocketdyne Div.)

    1991-01-01

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

  8. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to monitor every function of the accelerator and to make adjustments as needed. JEFFERSON LAB RESOURCES Read more Policymakers Resources U.S. Energy Secretary Steven Chu Former U.S. Energy Secretary Steven Chu speaks during Jefferson Lab's 25th Anniversary celebration. Read more News Media Resources Jefferson Lab

  9. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to monitor every function of the accelerator and to make adjustments as needed. JEFFERSON LAB RESOURCES Founded in 1985, Jefferson Lab is a world-leading nuclear physics research facility whose mission it is to explore the nucleus of the atom. The lab employs more than 800 physicists, engineers, computer specialists,

  10. 2006 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006 - 12:00am Jefferson Lab attracts record numbers to Geant4 workshop (Cern Courier) Sun, 11122006 - 12:00am Jefferson Lab laser sets power record (Richmond Times-Dispatch)...

  11. Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser. A D D I T I O N A L L I N K S: Read more Nuclear Imaging Research Jefferson Lab's Radiation Detector and Imaging Group Members of Jefferson Lab's Radiation Detector &...

  12. Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News item slideshow GlueX Detector GlueX Detector An overhead view of Hall D, the newest experimental hall at Jefferson Lab, and part of the 12 GeV Upgrade project. On Dec. 14, operators of the Continuous Electron Beam Accelerator Facility (CEBAF) delivered 12 GeV electrons (12.065 Giga electron Volts) to the Hall D complex. Critical to the detector system is the superconducting solenoid magnet - the large red and green equipment is the solenoid. <<<< The detector system will be used

  13. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particlemore » acceleration of ions and electrons.« less

  14. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect (OSTI)

    Lin, M.-W.; Jovanovic, I.

    2012-11-15

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  15. Weak Interaction | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weak Interaction February 22, 2011 Jefferson Lab has an accelerator designed to do incisive medium energy physics. This program is dominated by experiments aimed at developing our...

  16. 2005 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2005 Wed, 05/18/2005 - 4:58pm Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity

  17. 2010 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2010 Tue, 11/09/2010 - 2:00pm Jefferson Lab Fall Lecture: Exploring Our World With Particle Accelerators

  18. Jefferson Lab News - JLab FEL Wins R&D 100 Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab FEL Wins R&D 100 Award July 26, 2005 Researchers and engineers at the Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility (Jefferson Lab) have been awarded an R&D 100 Award, R&D Magazine's picks for the 100 most technologically significant new products of 2005. This is Jefferson Lab's second R&D 100 award. The 2005 award goes to: The Tunable Energy Recovered High Power Infrared Free-Electron Laser, lead by a team of nine Jefferson Lab scientists and

  19. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect (OSTI)

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-06-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  20. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect (OSTI)

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  1. 2003 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2003 Fri, 06/13/2003 - 2:00pm Jefferson Lab's upgraded Free-Electron Laser produces first ligh

  2. Relativistic attosecond electron pulses from a free-space laser-acceleration scheme

    SciTech Connect (OSTI)

    Varin, Charles; Piche, Michel

    2006-10-15

    In this paper we describe how relativistic attosecond electron pulses could be produced in free space by ultrafast and ultraintense transverse magnetic (TM) laser beams. Numerical solutions of the time-dependent three-dimensional Maxwell-Lorentz equations reveal that electrons initially at rest at the waist of a multi-TW pulsed TM{sub 01} laser beam can be accelerated to multi-MeV energies. The use of a few-cycle laser beam and a compact initial electron cloud forces the particles to effectively interact with a single half-cycle of the laser field and form a pulse of attosecond duration.

  3. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    SciTech Connect (OSTI)

    Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D.; Habs, D.; Ma, W.; Schreiber, J.

    2011-10-28

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  4. 2008 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2008 Fri, 11/14/2008 - 2:00pm Jefferson Lab News - Jefferson Lab Lecture to Celebrate 50th Anniversary of the Laser Thu, 11/13/2008 - 2:00pm Jefferson Lab Boasts Virginia's Fastest Computer Fri, 11/07/2008 - 3:00pm NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18

  5. Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field

    SciTech Connect (OSTI)

    Oguchi, A.; Takano, K.; Hotta, E.; Zhidkov, A.; Nemoto, K.; Nakajima, K.

    2008-04-15

    Multiple electron self-injection in laser wake-field acceleration is studied via fully relativistic two- and three-dimensional particle-in-cell simulation. The electron density modulation in the laser wake originating from oscillations of the laser pulse waist and relativistic effects can provoke the parametric resonance in the electron fluid momentum. This may result in repetitive trapping of plasma electrons in the acceleration phase of the laser wake: multiple electron self-injection. The maximal energy of the accelerated electrons depends strongly on the total charge of the injected electrons. A low energy spread, less than 1%, for an almost 1 GeV energy electron beam with charge about 10 pC is found numerically in the plasma channel irradiated by a 25 TW laser pulse, while a 200 TW laser pulse produces a few nC beam with only 150 MeV energy. Essentially thermalization of accelerated electrons is also a result of charge loading.

  6. Education - Students | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Nuclear Physics Education - Students Pulse Laser Deposit Hadware Research at Jefferson Lab leads to the development of technology that has practical applications, such as pulse laser deposit hardware

  7. Improved generation of ion fluxes by a long laser pulse using laser-induced cavity pressure acceleration

    SciTech Connect (OSTI)

    Badziak, J.; Parys, P.; Rosi?ski, M.; Krousky, E.; Ullschmied, J.; Torrisi, L.; Dipartimento di Fisica, Universita di Messina, 98166 S. Agata, Messina

    2013-09-16

    Generation of ion fluxes in the laser-induced cavity pressure acceleration (LICPA) scheme is investigated by the time-of-flight method and compared with the one in the conventional laser-planar target interaction scheme. It is shown that the ion current density and intensity of the ion flux produced in the LICPA scheme from CD{sub 2} foil target irradiated by a 0.3-ns laser pulse of intensity ?10{sup 14}10{sup 15} W/cm{sup 2} are by an order of magnitude higher and the mean and maximum ion energies by a factor 45 higher than those for the conventional scheme.

  8. 2014 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2014 Wed, 04/30/2014 - 10:22am Jefferson Lab Project Team Receives Department of Energy Award Mon, 04/14/2014 - 9:28am Beam On Target! - CEBAF Accelerator Achieves 12 GeV Commissioning Milestone Fri, 04/04/2014 - 11:18am Jefferson Lab Gears up for 'Accelerating Discovery' Open House on May 17

  9. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as "Firehose," for use on miniature satellites or CubeSats. Firehose will apply an algorithm developed at LANL to enable advanced functions, such as imaging and video...

  10. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lorentz Boosted Frame VayBoost.gif An image showing the "boosted frame," in which the observer moves at near light speed. The laser pulse is represented in blue and red; the...

  11. 1999 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1999 Tue, 07/20/1999 - 3:50pm Tunable Laser Reaches Record Power Level Sun, 07/18/1999 - 3:48pm Experts at Newport News Lab Develop Powerful New Laser Sat, 07/17/1999 - 3:46pm Jefferson Laser Team Meets Goal Sat, 07/17/1999 - 3:42pm Newport News Lab Zaps Record for Laser Power

  12. 1999 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1999 Tue, 07/20/1999 - 3:50pm Tunable Laser Reaches Record Power Level Sun, 07/18/1999 - 3:48pm Experts at Newport News Lab Develop Powerful New Laser Sat, 07/17/1999 - 3:46pm Jefferson Laser Team Meets Goal Sat, 07/17/1999 - 3:42pm Newport News Lab Zaps Record for Laser Power

  13. News Media | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Kit News Media Input Windows for Niobium Cavities Jefferson Lab is a world leader in SRF technologies, fabricating many of the parts essential to particle accelerators, such as these input windows for niobium cavities. Read more Contacts News Media Assembling A Cryomodule Jefferson Lab is a world leader in superconducting radiofrequency technologies. Here a cryomodule is being assembled for installation in the lab's accelerator. Read more News Links News Media NEWS LINKS JLab Mourns Loss

  14. The analytic model of a laser-accelerated plasma target and its stability

    SciTech Connect (OSTI)

    Khudik, V. Yi, S. A.; Siemon, C.; Shvets, G.

    2014-01-15

    A self-consistent kinetic theory of a laser-accelerated plasma target with distributed electron/ion densities is developed. The simplified model assumes that after an initial transition period the bulk of cold ions are uniformly accelerated by the self-consistent electric field generated by hot electrons trapped in combined ponderomotive and electrostatic potentials. Several distinct target regions (non-neutral ion tail, non-neutral electron sheath, and neutral plasma bulk) are identified and analytically described. It is shown analytically that such laser-accelerated finite-thickness target is susceptible to Rayleigh-Taylor (RT) instability. Particle-in-cell simulations of the seeded perturbations of the plasma target reveal that, for ultra-relativistic laser intensities, the growth rate of the RT instability is depressed from the analytic estimates.

  15. The phase-lock dynamics of the laser wakefield acceleration with an intensity-decaying laser pulse

    SciTech Connect (OSTI)

    Li, Wentao; Liu, Jiansheng Wang, Wentao; Zhang, Zhijun; Chen, Qiang; Tian, Ye; Qi, Rong; Yu, Changhai; Wang, Cheng; Li, Ruxin Xu, Zhizhan; Tajima, T.

    2014-03-03

    An electron beam with the maximum energy extending up to 1.8?GeV, much higher than the dephasing limit, is experimentally obtained in the laser wakefield acceleration with the plasma density of 3.5??10{sup 18}?cm{sup ?3}. With particle in cell simulations and theoretical analysis, we find that the laser intensity evolution plays a major role in the enhancement of the electron energy gain. While the bubble length decreases due to the intensity-decay of the laser pulse, the phase of the electron beam in the wakefield can be locked, which contributes to the overcoming of the dephasing. Moreover, the laser intensity evolution is described for the phase-lock acceleration of electrons in the uniform plasma, confirmed with our own simulation. Since the decaying of the intensity is unavoidable in the long distance propagation due to the pump depletion, the energy gain of the high energy laser wakefield accelerator can be greatly enhanced if the current process is exploited.

  16. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect (OSTI)

    Downer, Michael C.

    2014-12-19

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these wake-fields, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than milliradian (i.e. millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma bubbles, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects e.g. laser-driven filaments in air and glass and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.

  17. Dual effects of stochastic heating on electron injection in laser wakefield acceleration

    SciTech Connect (OSTI)

    Deng, Z. G.; Wang, X. G.; Yang, L.; Zhou, C. T.; Yu, M. Y.; Ying, H. P.

    2014-08-15

    Electron injection into the wakefield of an intense short laser pulse by a weaker laser pulse propagating in the opposite direction is reconsidered using two-dimensional (2D) particle-in-cell simulations as well as analytical modeling. It is found that for linearly polarized lasers the injection efficiency and the quality of the wakefield accelerated electrons increase with the intensity of the injection laser only up to a certain level, and then decreases. Theory and simulation tracking test electrons originally in the beat region of the two laser pulses show that the reduction of the injection efficiency at high injection-laser intensities is caused by stochastic overheating of the affected electrons.

  18. Electron acceleration by linearly polarized twisted laser pulse with narrow divergence

    SciTech Connect (OSTI)

    Vaziri, Mohammad Sohaily, Sozha; Golshani, Mojtaba; Bahrampour, Alireza

    2015-03-15

    We numerically investigate the vacuum electron acceleration by a high-intensity linearly polarized twisted laser pulse. It is shown that the inherent spiral structure of a Laguerre-Gaussian laser pulse leads to improvement in trapping and acceleration of an electron to energies of the order of GeV in the off-axis case. Also, it is demonstrated that by employing a proper choice of initial injection parameters, the high-energetic electrons with very small scattering angles can be produced.

  19. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    SciTech Connect (OSTI)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Bulanov, S. V.; Margarone, D.; Korn, G.; Haberer, T.

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  20. The LACARA Vacuum Laser Accelerator Experiment: Beam Positioning and Alignment in a Strong Magnetic Field

    SciTech Connect (OSTI)

    Shchelkunov, Sergey V.; Marshall, T. C.; Hirshfield, J. L.; Wang, Changbiao; LaPointe, M. A.

    2006-11-27

    LACARA (laser cyclotron auto-resonance accelerator) is a vacuum laser accelerator of electrons that is under construction at the Accelerator Test Facility (ATF), Brookhaven National Laboratory. It is expected that the experiment will be assembled by September 2006; this paper presents progress towards this goal. According to numerical studies, as an electron bunch moves along the LACARA solenoidal magnetic field ({approx}5.2 T, length {approx}1 m), it will be accelerated from 50 to {approx}75 MeV by interacting with a 0.8 TW Gaussian-mode circularly polarized optical pulse provided by the ATF CO2 10.6{mu}m laser system. The LACARA laser transport optics must handle 10 J and be capable of forming a Gaussian beam inside the solenoid with a 1.4 mm waist and a Rayleigh range of 60 cm. The electron optics must transport a bunch having input emittance of 0.015 mm-mrad and 100 {mu}m waist through the magnet. Precision alignment between the electron beam and the solenoid magnetic axis is required, and a method to achieve this is described in detail. Emittance- filtering may be necessary to yield an accelerated bunch having a narrow ({approx}1%) energy-spread.

  1. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect (OSTI)

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  2. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Tung -Chang; Shao, Xi; Liu, Chuan -Sheng; Eliasson, Bengt; W. T. Hill, III; Wang, Jyhpyng; Chen, Shih -Hung

    2015-02-01

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO₂ laser pulse with a wavelength of 10 μm—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore » laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  3. Development of the C{sup 6+} laser ablation ion source for the KEK digital accelerator

    SciTech Connect (OSTI)

    Munemoto, Naoya; High Energy Accelerator Research Organization , 1-1 Oho, Tsukuba, Ibaraki 305-0801 ; Takayama, Ken; High Energy Accelerator Research Organization , 1-1 Oho, Tsukuba, Ibaraki 305-0801; Graduate University for Advanced Studies, Hayama, Miura, Kanagawa 240-8550 ; Takano, Susumu; Okamura, Masahiro; RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 ; Kumaki, Masahumi; Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-0072

    2014-02-15

    A laser ion source that provides a fully ionized carbon ion beam is under joint development at the High Energy Accelerator Research Organization and Brookhaven National Laboratory. Long-pulse (6 ns) and short-pulse (500 ps) laser systems were tested by using them to irradiate a graphite target. Notable differences between the systems were observed in these experiments. Preliminary experimental results, such as the charge-state spectrum, beam intensity, and stability, are discussed.

  4. 2004 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2004 Sat, 07/31/2004 - 12:00am Jefferson Lab beats record for laser (Daily Press) Sat, 07/31/2004 - 12:00am Supported Free Electron Laser Most Powerful Tunable Laser in World (Office of Naval Research) Fri, 07/30/2004 - 12:00am 'Star Wars' Defense? Laser beams up a record (Richmond Times-Dispatch

  5. Induction accelerators and free-electron lasers at LLNL: Beam Research Program

    SciTech Connect (OSTI)

    Briggs, R.J.

    1989-02-15

    Linear induction accelerators have been developed to produce pulses of charged particles at voltages exceeding the capabilities of single-stage, diode-type accelerators and at currents too high rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multistage induction machine. The advent of magnetic pulse power systems makes sustained operation at high repetition rates practical, and high-average-power capability is very likely to open up many new applications of induction machines. In Part A of this paper, we survey the US induction linac technology, emphasizing electron machines. We also give a simplified description of how induction machines couple energy to the electron beam to illustrate many general issues that designers of high-brightness and high-average-power induction linacs must consider. We give an example of the application of induction accelerator technology to the relativistic klystron, a power source for high-gradient accelerators. In Part B we address the application of LIAs to free-electron lasers. The multikiloampere peak currents available from linear induction accelerators make high-gain, free-electron laser amplifier configurations feasible. High extraction efficiencies in a single mass of the electron beam are possible if the wiggler parameters are appropriately ''tapered'', as recently demonstrated at millimeter wavelengths on the 4-MeV ELF facility. Key issues involved in extending the technology to shorter wavelengths and higher average powers are described. Current FEL experiments at LLNL are discussed. 5 refs., 16 figs.

  6. Laser ion acceleration by using the dynamic motion of a target

    SciTech Connect (OSTI)

    Morita, Toshimasa

    2013-09-15

    Proton acceleration by using a 620 TW, 18 J laser pulse of peak intensity of 510{sup 21} W/cm{sup 2} irradiating a disk target is examined using three-dimensional particle-in-cell simulations. It is shown that protons are accelerated efficiently to high energy for a light material in the first layer of a double-layer target, because a strongly inhomogeneous expansion of the first layer occurs by a Coulomb explosion within such a material. Moreover, a large movement of the first layer for the accelerated protons is produced by radiation-pressure-dominant acceleration. A time-varying electric potential produced by this expanding and moving ion cloud accelerates protons effectively. In addition, using the best material for the target, one can generate a proton beam with an energy of 200 MeV and an energy spread of 2%.

  7. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards upgrade contracts Michael Schwartz Inside Business, January 9, 2009 Jefferson Lab announced last week it awarded three contracts worth approximately a combined $5 million as part of its planned $310 million upgrade that will double the power of its electron beam accelerator. The Newport News-based nuclear physics lab, known officially as the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, received approval from DOE for the upgrade in September. The massive

  8. 1999 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1999 Thu, 07/22/1999 - 3:00pm Henry Whitehead - From Transistors to Lasers Thu, 07/22/1999 - 12:00am Henry Whitehead - From Transistors to Lasers (William & Mary News) Tue, 07/20/1999 - 12:00am Tunable Laser Reaches Record Power Level Sun, 07/18/1999 - 12:00am Experts at Newport News Lab Develop Powerful New Laser (Richmond-Times Dispatch) Sat, 07/17/1999 - 12:00am Newport News Lab Zaps Record for Laser Power (Virginian Pilot) Sat, 07/17/1999 - 12:00am Jefferson Laser Team Meets Goal

  9. Laser-seeded modulation instability in a proton driver plasma wakefield accelerator

    SciTech Connect (OSTI)

    Siemon, Carl; Khudik, Vladimir; Austin Yi, S.; Shvets, Gennady; Pukhov, Alexander

    2013-10-15

    A new method for initiating the modulation instability (MI) of a proton beam in a proton driver plasma wakefield accelerator using a short laser pulse preceding the beam is presented. A diffracting laser pulse is used to produce a plasma wave that provides a seeding modulation of the proton bunch with the period equal to that of the plasma wave. Using the envelope description of the proton beam, this method of seeding the MI is analytically compared with the earlier suggested seeding technique that involves an abrupt truncation of the proton bunch. The full kinetic simulation of a realistic proton bunch is used to validate the analytic results. It is further used to demonstrate that a plasma density ramp placed in the early stages of the laser-seeded MI leads to its stabilization, resulting in sustained accelerating electric fields (of order several hundred MV/m) over long propagation distances (?1001000 m)

  10. Photos | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new cryomodule built for the 12 GeV Upgrade ready for installation in Jefferson Lab's accelerator. A D D I T I O N A L L I N K S: Brochures Posters Flickr Public Affairs Fact Sheet Science at JLab top-right bottom-left-corner bottom-right-corner jefferson lab Photos Images on the Jefferson Lab website that are in the public domain may be used without permission. If you use images from the Jefferson Lab website, it is requested that you credit Jefferson Lab as the source, unless an image is

  11. Increased efficiency of ion acceleration by using femtosecond laser pulses at higher harmonic frequency

    SciTech Connect (OSTI)

    Psikal, J.; Klimo, O.; Weber, S.; Margarone, D.

    2014-07-15

    The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7 × 10{sup 21 }W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100 nm and 200 nm when switching from the fundamental frequency to the third harmonics.

  12. Experiment Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Jefferson Lab's Accelerator Tunnel Jefferson Lab's accelerator is shaped like an oval racetrack and is located 25 feet below ground. This is a view of one of the straight sections, showing the cryomodules linked end to end in the accelerator tunnel. A D D I T I O N A L L I N K S: Current Experiments Experiment Research Proposals Experiment Schedule Research Highlights Publications JLab Library top-right bottom-left-corner bottom-right-corner Recent Experiments Jefferson Lab has an

  13. Tuning laser produced electron-positron jets for lab-astrophysics experiment

    SciTech Connect (OSTI)

    Chen, Hui; Fiuza, F.; Hazi, A.; Kemp, A.; Link, A.; Pollock, B.; Marley, E.; Nagel, S. R.; Park, J.; Schneider, M.; Shepherd, R.; Tommasini, R.; Wilks, S. C.; Williams, G. J.; Barnak, D.; Chang, P-Y.; Fiksel, G.; Glebov, V.; Meyerhofer, D. D.; Myatt, J. F.; Stoeckel, C.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Hosoda, H.; Kojima, S.; Miyanga, N.; Morita, T.; Moritaka, T.; Nagai, T.; Namimoto, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.

    2015-02-23

    This paper reviews the experiments on the laser produced electron-positron jets using large laser facilities worldwide. The goal of the experiments was to optimize the parameter of the pair jets for their potential applications in laboratory-astrophysical experiment. Results on tuning the pair jets energy, number, emittance and magnetic collimation will be presented.

  14. 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Fri, 11/14/2008 - 2:00pm Jefferson Lab News - Jefferson Lab Lecture to Celebrate 50th Anniversary of the Laser Thu, 11/13/2008 - 2:00pm Jefferson Lab Boasts Virginia's Fastest Computer Fri, 11/07/2008 - 3:00pm NASA Expert Discusses NextGen - the Next Generation Air Transportation System on Nov. 18 October 2008 Fri, 10/24/2008 - 3:00pm Jefferson Lab electron beam charges up Mon, 10/06/2008 - 3:00pm Jefferson Lab, ODU team up for center September 2008 Fri, 09/19/2008 - 3:00pm ODU establishes a

  15. Advanced laser particle accelerator development at LANL: from fast ignition to radiation oncology

    SciTech Connect (OSTI)

    Flippo, Kirk A; Gaillard, Sandrine A; Offermann, D T; Cobble, J A; Schmitt, M J; Gautier, D C; Kwan, T J T; Montgomery, D S; Kluge, Thomas; Bussmann, Micheal; Bartal, T; Beg, F N; Gall, B; Geissel, M; Korgan, G; Kovaleski, S; Lockard, T; Malekos, S; Schollmeier, M; Sentoku, Y; Cowan, T E

    2010-01-01

    Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, SN M detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high current and high energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology in conjunction with our partners at the ForschungsZentrum Dresden-Rossendorf (FZD). Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent etliciencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

  16. Experimental validation of a radio frequency photogun as external electron injector for a laser wakefield accelerator

    SciTech Connect (OSTI)

    Stragier, X. F. D.; Luiten, O. J.; Geer, S. B. van der; Wiel, M. J. van der; Brussaard, G. J. H.

    2011-07-15

    A purpose-built RF-photogun as external electron injector for a laser wakefield accelerator has been thoroughly tested. Different properties of the RF-photogun have been measured such as energy, energy spread and transverse emittance. The focus of this study is the investigation of the smallest possible focus spot and focus stability at the entrance of the plasma channel. For an electron bunch with 10 pC charge and 3.7 MeV kinetic energy, the energy spread was 0.5% with a shot-to-shot stability of 0.05%. After focusing the bunch by a pulsed solenoid lens at 140 mm from the middle of the lens, the focal spot was 40 {mu}m with a shot-to-shot stability of 5 {mu}m. Higher charge leads to higher energy spread and to a larger spot size, due to space charge effects. All properties were found to be close to design values. Given the limited energy of 3.7 MeV, the properties are sufficient for this gun to serve as injector for one particular version of laser wakefield acceleration, i.e., injection ahead of the laser pulse. These measured electron bunch properties were then used as input parameters for simulations of electron bunch injection in a laser wakefield accelerator. The arrival time jitter was deduced from measurements of the energy fluctuation, in combination with earlier measurements using THz coherent transition radiation, and is around 150 fs in the present setup. The bunch length in the focus, simulated using particle tracking, depends on the accelerated charge and goes from 100 fs at 0.1 pC to 1 ps at 50 pC. When simulating the injection of the 3.7 MeV electron bunch of 10 pC in front of a 25 TW laser pulse with a waist of 30 {mu}m in a plasma with a density of 0.7 x 10{sup 24} m{sup -3}, the maximum accelerated charge was found to be 1.2 pC with a kinetic energy of {approx}900 MeV and an energy spread of {approx}5%. The experiments combined with the simulations show the feasibility of external injection and give a prediction of the output parameters that can be expected from a laser wakefield accelerator with external injection of electrons.

  17. Lab Supplies | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Supplies

  18. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2009-09-01

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  19. Measuring the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator

    SciTech Connect (OSTI)

    Albert, F.; Pollock, B. B.; Shaw, J. L.; Marsh, K. A.; Ralph, J. E.; Chen, Y. -H.; Alessi, D.; Pak, A.; Clayton, C. E.; Glenzer, S. H.; Joshi, C.

    2014-07-22

    This paper presents a new technique to measure the angular dependence of betatron x-ray spectra in a laser-wakefield accelerator. Measurements are performed with a stacked image plates spectrometer, capable of detecting broadband x-ray radiation up to 1 MeV. It can provide measurements of the betatron x-ray spectrum at any angle of observation (within a 40 mrad cone) and of the beam profile. A detailed description of our data analysis is given, along with comparison for several shots. As a result, these measurements provide useful information on the dynamics of the electrons are they are accelerated and wiggled by the wakefield.

  20. Spectral properties of laser-accelerated mid-Z MeV/u ion beams

    SciTech Connect (OSTI)

    Hegelich, B.M.; Albright, B.; Cobble, J.; Gautier, C.; Johnson, R.; Letzring, S.; Fernandez, J.C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Audebert, P.; Fuchs, J. [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau (France); Blazevic, A.; Brambrink, E.; Geissel, M.; Roth, M. [Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Cowan, T.; Kemp, A. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Gauthier, J.C. [Centre Lasers Intenses et Applications (CELIA), UMR 5107 CNRS, Universite Bordeaux 1, CEA, Universite Bordeaux 1, 33405 Talence (France); Habs, D.; Schramm, U.; Schreiber, J. [Ludwig-Maximilian Universitaet Muenchen, 85748 Garching (Germany); Karsch, S. [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany)] (and others)

    2005-05-15

    Collimated jets of beryllium, carbon, oxygen, fluorine, and palladium ions with >1 MeV/nucleon energies are observed from the rear surface of thin foils irradiated with laser intensities of up to 5x10{sup 19} W/cm{sup 2}. The normally dominant proton acceleration is suppressed when the target is subjected to Joule heating to remove hydrogen-bearing contaminant. This inhibits screening effects and permits effective energy transfer to and acceleration of heavier ion species. The influence of remnant protons on the spectral shape of the next highest charge-to-mass ratio species is shown. Particle-in-cell simulations confirming the experimental findings are presented.

  1. Jefferson Lab's Free-Electron Laser Joins With Others in New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Joins With Others in New Research Venture NEWPORT NEWS, VA, April 29, ... D.C., under an Energy Frontier Research Center award announced Monday by the White House. ...

  2. Lasers Used to Make First Boron-Nitride Nanotube Yarn | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lasers Used to Make First Boron-Nitride Nanotube Yarn Visualization of helium-4 and beryllium nuclei. A yarn spun of boron-nitride nanotubes suspends a quarter. NEWPORT NEWS, VA, Dec. 2 -Researchers have used lasers to create the first practical macroscopic yarns from boron nitride fibers, opening the door for an array of applications, from radiation-shielded spacecraft to stronger body armor, according to a just-published study. Researchers at NASA's Langley Research Center, the Department of

  3. 2014 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 Thu, 09/25/2014 - 1:51pm Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction Mon, 09/22/2014 - 5:03pm View TEDxCERN in Jefferson Lab Auditorium on Sept. 24 Mon, 09/22/2014 - 4:58pm Studying the Building Blocks of Matter: Public Talk Planned for Oct. 7 at Jefferson Lab

  4. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOE Patents [OSTI]

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  5. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 10{sup 21} W/cm{sup 2}), high contrast (10{sup ?15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1?m) plastic foil targets resulted in maximum proton energies that were consistently 20%100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  6. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    SciTech Connect (OSTI)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-15

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  7. 2005 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2005 Wed, 05/18/2005 - 5:50pm Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Mon, 05/02/2005 - 2:00pm Governor's Distinguished CEBAF Professorship Awarded to JLab Chief Scientist

  8. 2001 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2001 Sun, 04222001 - 12:00am Doors to Discovery (Daily Press) Thu, 04192001 - 12:00am Peek in Jefferson Lab (Daily Press) Tue, 04172001 - 12:00am Electron Accelerator...

  9. 2015 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2015 Mon, 12/21/2015 - 3:18pm Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons Wed, 12/02/2015 - 4:11pm Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, Dec. 4

  10. Creating a Well-focused Laser-accelerated Proton Beam as a Driver for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proton Fast Ignition | U.S. DOE Office of Science (SC) Creating a Well-focused Laser-accelerated Proton Beam as a Driver for Proton Fast Ignition Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  11. High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density

    SciTech Connect (OSTI)

    Dong, Kegong; Wu, Yuchi; Zhu, Bin; Zhang, Zhimeng; Zhao, Zongqing; Zhou, Weimin; Hong, Wei; Cao, Leifeng; Gu, Yuqiu

    2014-12-15

    The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoid the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.

  12. 2009 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2009 Wed, 05/20/2009 - 12:00am Jefferson Lab group wins national award (Daily Press) Tue, 05/05/2009 - 12:00am A Tribute to Professor Cornelius Bennhold Fri, 05/01/2009 - 12:00am Jefferson Lab's free-electron laser joins new research venture (Optics.org

  13. 2010 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Tue, 12/21/2010 - 2:00pm Jefferson Lab Laser Twinkles in Rare Color Tue, 12/14/2010 - 2:00pm NSC Technologies Joins DOE Mentor-Prot&eacute;g&eacute; Program With Jefferson Lab

  14. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect (OSTI)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  15. 2001 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2001 Wed, 08292001 - 11:00pm Learning to Teach Physics (Daily Press) Sun, 08192001 - 11:00pm Navy-Funded Lab Develops Powerful Laser for Missile Defense (Navy News) Sun,...

  16. BESTIA - the next generation ultra-fast CO2 laser for advanced accelerator research

    SciTech Connect (OSTI)

    Pogorelsky, Igor V.; Babzien, Markus; Ben-Zvi, Ilan; Skaritka, John; Polyanskiy, Mikhail N.

    2015-12-02

    Over the last two decades, BNL’s ATF has pioneered the use of high-peak power CO2 lasers for research in advanced accelerators and radiation sources. In addition, our recent developments in ion acceleration, Compton scattering, and IFELs have further underscored the benefits from expanding the landscape of strong-field laser interactions deeper into the mid-infrared (MIR) range of wavelengths. This extension validates our ongoing efforts in advancing CO2 laser technology, which we report here. Our next-generation, multi-terawatt, femtosecond CO2 laser will open new opportunities for studying ultra-relativistic laser interactions with plasma in the MIR spectral domain, including new regimes in the particle acceleration of ions and electrons.

  17. Characterization of proton and heavier ion acceleration in ultrahigh-intensity laser interactions with heated target foils

    SciTech Connect (OSTI)

    McKenna, P.; Ledingham, K.W.D.; Yang, J.M.; Robson, L.; McCanny, T.; Shimizu, S.; Clarke, R.J.; Neely, D.; Norreys, P.A.; Spohr, K.; Chapman, R.; Singhal, R.P.; Krushelnick, K.; Wei, M.S.

    2004-09-01

    Proton and heavy ion acceleration in ultrahigh intensity ({approx}2x10{sup 20} W cm{sup -2}) laser plasma interactions has been investigated using the new petawatt arm of the VULCAN laser. Nuclear activation techniques have been applied to make the first spatially integrated measurements of both proton and heavy ion acceleration from the same laser shots with heated and unheated Fe foil targets. Fe ions with energies greater than 10 MeV per nucleon have been observed. Effects of target heating on the accelerated ion energy spectra and the laser-to-ion energy conversion efficiencies are discussed. The laser-driven production of the long-lived isotope {sup 57}Co (271 days) via a heavy ion induced reaction is demonstrated.

  18. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pulsed Laser Deposition - Magnetic thin films Photodynamic therapy Dynamics of Impurities in Semiconductors FEL Research Highlights Pulsed Laser Deposition - Magnetic thin films Well-behaved magnetic thin films of stoichiometric alloys, such as an alloy of nickel and iron (NiFe), are not easily formed. Anne Reilly and colleagues at Jefferson Lab and The College of William & Mary excited bulk NiFe with the Jefferson Lab FEL and found a strikingly different response than that found with a

  19. Study of electron acceleration and x-ray radiation as a function of plasma density in capillary-guided laser wakefield accelerators

    SciTech Connect (OSTI)

    Ju, J.; Dpp, A.; Cros, B.; Svensson, K.; Genoud, G.; Wojda, F.; Burza, M.; Persson, A.; Lundh, O.; Wahlstrm, C.-G.; Ferrari, H.

    2013-08-15

    Laser wakefield electron acceleration in the blow-out regime and the associated betatron X-ray radiation were investigated experimentally as a function of the plasma density in a configuration where the laser is guided. Dielectric capillary tubes were employed to assist the laser keeping self-focused over a long distance by collecting the laser energy around its central focal spot. With a 40 fs, 16 TW pulsed laser, electron bunches with tens of pC charge were measured to be accelerated to an energy up to 300 MeV, accompanied by X-ray emission with a peak brightness of the order of 10{sup 21} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW. Electron trapping and acceleration were studied using the emitted X-ray beam distribution to map the acceleration process; the number of betatron oscillations performed by the electrons was inferred from the correlation between measured X-ray fluence and beam charge. A study of the stability of electron and X-ray generation suggests that the fluctuation of X-ray emission can be reduced by stabilizing the beam charge. The experimental results are in good agreement with 3D particle-in-cell (PIC) simulation.

  20. SRF Institute | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Niobium Cavities Fabricated At Jefferson Lab Jefferson Lab's SRF Institute designs, manufactures, assembles and tests SRF technology, such as these niobium cavities, for facilities worldwide. A D D I T I O N A L L I N K S: SRF Institute JLab SRF History Accelerator Science CASA IPAC 2013 SRF Worldwide top-right bottom-left-corner bottom-right-corner SRF Institute Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining

  1. 1997 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 1997 Fri, 03/28/1997 - 1:00am Jefferson Lab Earns Hammer (Daily Press) Wed, 03/26/1997 - 1:00am Defects Fade Away Surgical Uses Continue to Grow (Daily Press) Mon, 03/17/1997 - 1:00am Laboratory Profile: Jefferson Lab Outlook (Nuclear Physics News) Mon, 03/17/1997 - 1:00am Laboratory Profile: Jefferson Lab The Initial Complement of Experimental Equipment (Nuclear Physics News) Mon, 03/17/1997 - 1:00am Laboratory Profile: Jefferson Lab The Accelerator (Nuclear Physics News) Mon, 03/17/1997

  2. 2007 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2007 Fri, 03/30/2007 - 2:00pm JSA Fellowship Awards for Research at the Jefferson Lab Fri, 03/23/2007 - 2:00pm Andrew Hutton Named Head of Jefferson Lab's Accelerator Division Tue, 03/06/2007 - 2:00pm Record 18 teams prepare for Virginia Regional Middle School Science Bowl on March 10 at Jefferson Lab Tue, 03/06/2007 - 2:00pm Record 18 teams prepare for Virginia Regional Middle School Science Bowl on March 10 at Jefferson Lab

  3. 2012 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2012 Sat, 05/19/2012 - 12:00am 8,000 visitors tour Jefferson Lab: Electron accelerator shut down for rebuild (Daily Press) Wed, 05/09/2012 - 12:00am Hampton University professor to become group leader at Jefferson Lab (Virginia Business) Sat, 05/05/2012 - 12:00am Jefferson Lab to host open house May 19 (Inside Newport News Central) Sat, 05/05/2012 - 12:00am Jefferson Lab Hosts 2012 SPAFOA Members Meeting (Meyer Cryogenic, Vacuum and Pressure Technologies) Sat, 05/05/2012 - 12:00am Cold Facts

  4. Visiting JLab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policymakers An Aerial View of Jefferson Lab Campus An overhead view of Jefferson Lab. To the right is the racetrack outline of the lab's accelerator, while at the bottom right the lab's experimental halls are visible as three round mounds. The two white buildings (center) are part of the TEDF. The white building to the left is the EEL building. A D D I T I O N A L L I N K S: Directions Transportation JLab Site Map Accomodations Schedule a Tour International Visitors top-right bottom-left-corner

  5. Jefferson Lab Leadership Council - Hugh E. Montgomery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Director, Hugh E. Montgomery Hugh E. Montgomery Director, Thomas Jefferson National Accelerator Facility Hugh E. Montgomery is the Director of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). As the lab's chief executive officer, he is responsible for ensuring funding for the lab and for setting policy and program direction. In addition, he oversees the delivery of the lab program and ensures that Jefferson Lab complies with all regulations, laws and contract

  6. At A Glance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An overhead view of Jefferson Lab. An overhead view of Jefferson Lab showing the racetrack-shaped accelerator and experimental halls to the left. A D D I T I O N A L L I N K S: Brochures Fact Sheets Strategic Plan 12 GeV TEDF Economic Impact top-right bottom-left-corner bottom-right-corner JEFFERSON LAB AT A GLANCE -Jefferson Lab was created to build and operate the Continuous Electron Beam Accelerator Facility, or CEBAF. -Jefferson Lab is world-unique user facility for Nuclear Physics. -

  7. Ion Acceleration from the Interaction of Ultra-Intense Lasers with Solid Foils

    SciTech Connect (OSTI)

    Allen, M

    2004-11-24

    The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W {micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass. At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W {micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the front surface of the target to energies up to tens of MeV. Another model, known as Target Normal Sheath Acceleration (TNSA), describes the mechanism as an electrostatic sheath on the back surface of the laser target. According to the TNSA model, relativistic hot electrons created at the laser-solid interaction penetrate the foil where a few escape to infinity. The remaining hot electrons are retained by the target potential and establish an electrostatic sheath on the back surface of the target. In this thesis we present several experiments that study the accelerated ions by affecting the contamination layer from which they originate. Radiative heating was employed as a method of removing contamination from palladium targets doped with deuterium. We present evidence that ions heavier than protons can be accelerated if hydrogenous contaminants that cover the laser target can be removed. We show that deuterons can be accelerated from the deuterated-palladium target, which has been radiatively heated to remove contaminants. Impinging a deuteron beam onto a tritiated-titanium catcher could lead to the development of a table-top source of short-pulse, 14-MeV fusion neutrons. We also show that by using an argon-ion sputter gun, contaminants from one side of the laser target can be selectively removed without affecting the other side. We show that irradiating a thin metallic foil with an ultra-intense laser pulse produces a proton beam with a yield of 1.5-2.5 10{sup 11} and temperature, kT = 1.5 MeV with a maximum proton energy > 9 MeV. Removing contaminants from the front surface of the laser target with an argon-ion sputter gun, had no observable effect on the proton beam. However, removing contaminants from the back surface of the laser target reduced the proton beam by two orders of magnitude to, at most, a yield of {approx} 10{sup 9} and a maximum proton energy < 4 MeV. Based on these observations, we conclude that the majority (> 99%) of high energy protons (E > 5 MeV) from the interaction of an ultra-intense laser pulse with a thin foil originate on the back surface of the foil--as predicted by the TNSA model. Our experimental results are in agreement with PIC simulations showing back surface protons reach energies up to 13 MeV, while front surface protons reach a maximum energy of 4 MeV. Well diagnosed and controllable proton beams will have many applications: neutron radiography, material damage studies, production of medical isotopes, and as a high-resolution radiography tool for diagnosing opaque materials and plasmas. Well collimated and focusable ion beams may also prove beneficial for alternative inertial-fusion concepts such as proton fast ignition, a pote

  8. 2009 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2009 Wed, 04/29/2009 - 2:00pm Jefferson Lab's Free-Electron Laser Joins With Others in New Research Venture Mon, 04/27/2009 - 2:00pm Jefferson Lab Website Offers Preparation Help For Virginia Standards of Learning Tests Mon, 04/27/2009 - 2:00pm Jefferson Lab Recognizes Top Small Business Subcontractor for 2008 Wed, 04/15/2009 - 2:00pm Proton Research Earns 2008 JSA Thesis Prize Tue, 04/14/2009 - 2:00pm Jefferson Lab Breaks Ground On $310 Million Project Fri, 04/03/2009 - 2:00pm Media

  9. Brookhaven Lab Named an NVIDIA GPU Research Center: Designation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes research utilizing GPU-accelerated computing Brookhaven Lab Named an NVIDIA GPU Research Center: ...

  10. Optical control of electron phase space in plasma accelerators with incoherently stacked laser pulses

    SciTech Connect (OSTI)

    Kalmykov, S. Y. Shadwick, B. A.; Davoine, X.; Lehe, R.; Lifschitz, A. F.

    2015-05-15

    It is demonstrated that synthesizing an ultrahigh-bandwidth, negatively chirped laser pulse by incoherently stacking pulses of different wavelengths makes it possible to optimize the process of electron self-injection in a dense, highly dispersive plasma (n{sub 0}∼10{sup 19} cm{sup −3}). Avoiding transformation of the driving pulse into a relativistic optical shock maintains a quasi-monoenergetic electron spectrum through electron dephasing and boosts electron energy far beyond the limits suggested by existing scaling laws. In addition, evolution of the accelerating bucket in a plasma channel is shown to produce a background-free, tunable train of femtosecond-duration, 35–100 kA, time-synchronized quasi-monoenergetic electron bunches. The combination of the negative chirp and the channel permits acceleration of electrons beyond 1 GeV in a 3 mm plasma with 1.4 J of laser pulse energy, thus offering the opportunity of high-repetition-rate operation at manageable average laser power.

  11. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  12. Livermore Lab's giant laser system will bring star power to Earth

    SciTech Connect (OSTI)

    Moses, E

    2010-04-08

    In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon-free energy technology that can supply base load electricity to the world. Successful ignition experim

  13. The slingshot effect: A possible new laser-driven high energy acceleration mechanism for electrons

    SciTech Connect (OSTI)

    Fiore, Gaetano; Fedele, Renato; Angelis, Umberto de

    2014-11-15

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of the propagations of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation (slingshot effect). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or laser-wake-field ones.

  14. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  15. Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » 07.01.13 Two GeV Electrons Achieved

  16. Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror

    SciTech Connect (OSTI)

    Tsai, Hai-En; Wang, Xiaoming; Shaw, Joseph M.; Li, Zhengyan; Zgadzaj, Rafal; Henderson, Watson; Downer, M. C.; Arefiev, Alexey V.; Zhang, Xi; Khudik, V.; Shvets, G.

    2015-02-15

    We present an in-depth experimental-computational study of the parameters necessary to optimize a tunable, quasi-monoenergetic, efficient, low-background Compton backscattering (CBS) x-ray source that is based on the self-aligned combination of a laser-plasma accelerator (LPA) and a plasma mirror (PM). The main findings are (1) an LPA driven in the blowout regime by 30 TW, 30?fs laser pulses produce not only a high-quality, tunable, quasi-monoenergetic electron beam, but also a high-quality, relativistically intense (a{sub 0} ? 1) spent drive pulse that remains stable in profile and intensity over the LPA tuning range. (2) A thin plastic film near the gas jet exit retro-reflects the spent drive pulse efficiently into oncoming electrons to produce CBS x-rays without detectable bremsstrahlung background. Meanwhile, anomalous far-field divergence of the retro-reflected light demonstrates relativistic denting of the PM. Exploiting these optimized LPA and PM conditions, we demonstrate quasi-monoenergetic (50% FWHM energy spread), tunable (75200?KeV) CBS x-rays, characteristics previously achieved only on more powerful laser systems by CBS of a split-off, counter-propagating pulse. Moreover, laser-to-x-ray photon conversion efficiency (?6??10{sup ?12}) exceeds that of any previous LPA-based quasi-monoenergetic Compton source. Particle-in-cell simulations agree well with the measurements.

  17. 1999 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 1999 Sat, 09/11/1999 - 12:00am Laser Researcher to Speak at Museum (Daily Press) Thu, 09/09/1999 - 12:00am Success at Jefferson Lab Spurs Need for More Space (Burrelle's) Wed, 09/01/1999 - 12:00am BIG FEL Grows in Power (Laser Focus World

  18. 2011 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2011 Mon, 02/21/2011 - 1:00am Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) Sun, 02/20/2011 - 1:00am Navy Breaks World Record With Futuristic Free-Electron Laser (FOX News.com) Fri, 02/18/2011 - 1:00am Unexpectedly, Navy?s Superlaser Blasts Away a Record (Wired

  19. George Neil Named to Lead JLab's Free-Electron Laser Program | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab George Neil Named to Lead JLab's Free-Electron Laser Program NEWPORT NEWS, Va., Feb.15, 2008 - Dr. George Neil has been named Associate Director of the Free-Electron Laser Division at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Neil is responsible for managing the Free-Electron Laser (FEL) operations and research programs. The machine uses superconducting radiofrequency technology to convert electron-beam energy into light that is used to conduct an array of

  20. 2006 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2006 Thu, 11/16/2006 - 1:00am Jefferson Lab attracts record numbers to Geant4 workshop (Cern Courier) Sun, 11/12/2006 - 1:00am Jefferson Lab laser sets power record (Richmond Times-Dispatch) Fri, 11/10/2006 - 1:00am Goal: To make Hampton Roads a center for the cutting edge (The Virginian-Pilot) Fri, 11/10/2006 - 1:00am Free-electron laser shines at over 14 kilowatts in the infrared (Innovations Report) Thu, 11/09/2006 - 10:27am Free Electron Laser exceeds 14 kW in the infrared Thu,

  1. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, ODU team up for center Michael Schwartz Inside Business, October 6-12, 2008 It pays to have a world renowned subatomic particle accelerator in your backyard. Old Dominion University, in collaboration with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, better known as Jefferson Lab in Newport News, announced last week the creation of the Center for Accelerator Science, an academic entity that puts ODU in the same company as institutions the likes of Cornell,

  2. &quot;Science is Cool&quot; at Jefferson Lab's Open House, Saturday, April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 | Jefferson Lab "Science is Cool" at Jefferson Lab's Open House, Saturday, April 21 April 21, 2001 "Science is Cool" at Jefferson Lab's Open House, set for Saturday, April 21, 10 a.m. - 4 p.m. rain or shine. The event is free and will feature over 200 staff ready to share with visitors: the electron accelerator, an experimental hall, the Free Electron Laser, a variety of hands-on exhibits & learning activities, and liquid nitrogen demonstrations. The event will

  3. JLab FEL Wins R&D 100 Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEL Wins R&D 100 Award Researchers and engineers at the Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility (Jefferson Lab) have been awarded an R&D 100 Award, R&D Magazine's picks for the 100 most technologically significant new products of 2005. This is Jefferson Lab's second R&D 100 award. The 2005 award goes to: The Tunable Energy Recovered High Power Infrared Free-Electron Laser, lead by a team of nine Jefferson Lab scientists and engineers. The

  4. Jefferson Lab Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directorate Privacy and Security Notice Skip over navigation Search the JLab Site Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO CIO CSO CTO ESH&Q FEL IT Physics Mission of the Directorate The Jefferson Lab Directorate is responsible for supporting the

  5. Site map | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Front page Front page of Jefferson Lab Secondary links HOME ABOUT Brochures Contact JLab Director Montage Divisions & Departments Events JLab Video Org Charts Science at JLab Virtual Tour Visiting the Lab RESEARCH 12 GeV Accelerator Science Hall A Hall B Hall C Hall D LDRD Low Energy Recirculator Facility Nuclear Physics Radiation Detector & Imaging Recent Experiments SRF Institute Theory Center Users & Visiting Scientists CAREERS Appraisals Benefits Diversity Employee Assistance

  6. #LabSpotlight - People of the National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #LabSpotlight - People of the National Labs #LabSpotlight - People of the National Labs #LabSpotlight - People of the National Labs Our #LabSpotlight series profiles standout individuals at the National Labs. From a theoretical physicist working to better understand one of the most elusive particles in the universe to a master optician hand-polishing precision optics used in high-powered lasers, the National Labs are home to some of the most exceptional people in their fields. These are their

  7. 2010 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Wed, 12/29/2010 - 1:00am Laser Makes New Shade of Ultraviolet (COSMIC Log on MSNBC.com) Mon, 12/27/2010 - 1:00am Laser Tricks: Making a New Color (Discovery News) Thu, 12/23/2010 - 1:00am 10eV Photons of UV Laser Light Delivered (Photonics) Wed, 12/22/2010 - 1:00am Laser Twinkles in Rare Color (Science Daily) Tue, 12/21/2010 - 1:00am Jefferson Lab Laser Twinkles in Rare Color (PhysOrg

  8. 2008 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2008 Mon, 04/14/2008 - 12:00am Jefferson Lab finds its man Mont (Inside Business) Thu, 04/03/2008 - 12:00am New director of Jefferson Lab named (Daily Press) Thu, 04/03/2008 - 12:00am Energy Department appoints new director for Jefferson accelerator in Newport News (The Virginian-Pilot) Thu, 04/03/2008 - 12:00am New Director Named to Lead U.S. Department of Energy's Jefferson Lab (Interactions News Wire

  9. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources U.S. Energy Secretary Steven Chu Former U.S. Energy Secretary Steven Chu speaks during Jefferson Lab's 25th Anniversary celebration. A D D I T I O N A L L I N K S: Brochures Information Sheets At A Glance 12 GeV Upgrade Strategic Plan Economic Impact top-right bottom-left-corner bottom-right-corner Policymakers Thomas Jefferson National Accelerator Facility (Jefferson Lab) is one of 17 national laboratories funded by the U.S. Department of Energy. The lab also receives support from

  10. Contacts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media Assembling A Cryomodule Jefferson Lab is a world leader in superconducting radiofrequency technologies. Here a cryomodule is being assembled for installation in the lab's accelerator. A D D I T I O N A L L I N K S: Brochures News Room Fact Sheet Newsletter Virtual Tour JLab Video top-right bottom-left-corner bottom-right-corner Public affairs Contacts Mailing Address Jefferson Lab 12000 Jefferson Avenue, Suite 15 Newport News, VA 23606 fax (757) 269-7398 Public Affairs Manager John

  11. 1999 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 1999 Thu, 08/26/1999 - 12:00am New I-64 Sign Points to Times Past (Daily Press) Wed, 08/25/1999 - 12:00am Powerful Tunable Laser Exceeds Design Goals (DOE Pulse) Sun, 08/08/1999 - 12:00am U. Va. Gets $2.5 Million for Study at Jefferson Lab (Daily Press) Sat, 08/07/1999 - 12:00am Another Research Building Considered Near Jefferson Lab (Daily Press

  12. 2001 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2001 Tue, 03/20/2001 - 1:00am Tool of the Future Lies in the Answer to the Nanotubes (Daily Press) Thu, 03/15/2001 - 1:00am Jefferson Lab to Host Teachers' Course (Daily Press) Thu, 03/15/2001 - 1:00am State Should Invest More in High-Tech Economy (Daily Press) Mon, 03/12/2001 - 1:00am Lab's Laser Key to Strong Metals: Free-electron technique tested locally shows promise (Daily Press) Thu, 03/08/2001 - 1:00am Tiny Machines Hold Big Dreams: Jefferson Lab Scientists Hope for State Funds

  13. 2005 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2005 Tue, 05/31/2005 - 12:00am Jefferson Lab fabricates and tests a single cell accelerating cavity (M&C Science & Nature) Fri, 05/27/2005 - 12:00am Physics Research Gets a Boost and a Warning From Its Funders (Science Magazine) Thu, 05/26/2005 - 12:00am Gimme five? Try take five, scientists find (Times-Dispatch) Thu, 05/26/2005 - 12:00am First ever niobium single crystal single cell accelerating cavity (PhysOrg.com) Thu, 05/26/2005 - 12:00am Jefferson Lab Builds First Single Crystal

  14. 2010 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2010 Wed, 12/29/2010 - 1:00am Laser Makes New Shade of Ultraviolet (COSMIC Log on MSNBC.com) Mon, 12/27/2010 - 1:00am Laser Tricks: Making a New Color (Discovery News) Thu, 12/23/2010 - 1:00am 10eV Photons of UV Laser Light Delivered (Photonics) Wed, 12/22/2010 - 1:00am Laser Twinkles in Rare Color (Science Daily) Tue, 12/21/2010 - 1:00am Jefferson Lab Laser Twinkles in Rare Color (PhysOrg) November 2010 Tue, 11/23/2010 - 1:00am Jefferson Lab leads the way toward clean cavities

  15. Lab Equipment & Capability | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Equipment & Capability Lab Equipment & Capability Here you will find a list of the equipment and capabilities currently installed in PARC labs. This list will be updated as more information becomes available. Bocian Group: Laboratory: D. F. Bocian has ~2500 sq. ft. of laboratory space including both wet labs and instrument labs. These labs contain ~10 pentium-based PCs for routine computing applications. Laser Raman Facility-A complete laser Raman facility is available for the

  16. ILC Treatment of JLab Cavity Garners Exciting Result | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https://www.jlab.org/news/articles/ilc-treatment-jlab-cavity-garners-exciting-result ILC Treatment of JLab Cavity Garners Exciting Result Accelerator cavity HG-6 was electropolished with a recipe developed by ILC research and custom-tailored here at Jefferson Lab. Accelerator cavities for the ILC and Jefferson Lab's two accelerators are all similar in material and function. For the last few years, Jefferson Lab staff members have used the lab's unique facilities to test various accelerator

  17. ILC Treatment of JLab Cavity Garners Exciting Result | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of JLab Cavity Garners Exciting Result Accelerator cavitiy HG-6 was electropolished with a recipe developed by ILC research and custom-tailored here at Jefferson Lab. Accelerator cavities for the ILC and Jefferson Lab's two accelerators are all similar in material and function. For the last few years, Jefferson Lab staff members have used the lab's unique facilities to test various accelerator components for a proposed next-generation collider, the International Linear Collider.

  18. Jeff Lab director plans retirement (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articles/jeff-lab-director-plans-retirement-daily-press Jeff Lab director plans retirement Christoph Leemann, who has managed the federal site since 2001, will work until his successor is announced. By PLYNCH, Daily Press March 16, 2007 NEWPORT NEWS -- The director of the Thomas Jefferson National Accelerator Facility is stepping down as head of the advanced research center on Jefferson Avenue. Christoph Leemann, who has been at the helm at what's commonly called Jefferson Lab for more than six

  19. Jefferson Lab Names Chief Technology Officer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chief Technology Officer NEWPORT NEWS, VA, Feb. 19, 2009 - The Department of Energy's Thomas Jefferson National Accelerator Facility today announced the appointment of Roy Whitney as its chief technology officer. In the position, Whitney will be responsible for fostering technology development and enhancing the lab's technology transfer program. "My focus will be to lead Jefferson Lab's efforts to expand its technology development efforts and to seek opportunities where the lab can apply

  20. Jefferson Lab Tech Associate Invents Lockout Device for Equipment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1990s and building Jefferson Lab's Continuous Electron Beam Accelerator was in high gear. The Accelerator Division was busy installing some 30 vacuum ion pumps in the tunnel....

  1. From laser particle acceleration to the synthesis of extremely neutron rich isotopes via the novel fission-fusion mechanism

    SciTech Connect (OSTI)

    Thirolf, P. G.

    2015-02-24

    High-power, short pulse lasers have emerged in the last decade as attractive tools for accelerating charged particles (electrons, ions) to high energies over mm-scale acceleration lengths, thus promising to rival conventional acceleration techniques in the years ahead. In the first part of the article, the principles of laser-plasma interaction as well as the techniques and the current status of the acceleration of electron and ion beams will be briefly introduced. In particular with the upcoming next generation of multi-PW class laser systems, such as the one under construction for the ELI-Nuclear Physics project in Bucharest (ELI-NP), very efficient acceleration mechanisms for brilliant ion beams like radiation pressure acceleration (RPA) come into reach. Here, ultra-dense ion beams reaching solid-state density can be accelerated from thin target foils, exceeding the density of conventionally accelerated ion beams by about 14 orders of magnitude. This unique property of laser-accelerated ion beams can be exploited to explore the scenario of a new reaction mechanism called fission-fusion, which will be introduced in the second part of the article. Accelerating fissile species (e.g. {sup 232}Th) towards a second layer of the same material will lead to fission both of the beam-like and target-like particles. Due to the close to solid-state density of the accelerated ion bunches, fusion may occur between neutron-rich (light) fission products. This may open an access path towards extremely neutron-rich nuclides in the vicinity of the N=126 waiting point of the astrophysical r process. Waiting points at closed nucleon shells play a crucial role in controlling the reaction rates. However, since most of the pathway of heavy-element formation via the rapid-neutron capture process (r-process) runs in terra incognita of the nuclear landscape, in particular the waiting point at N=126 is yet unexplored and will remain largely inaccessible to conventional nuclear reaction schemes even at next-generation radioactive beam facilities, underlining the attractive perspectives offered, e.g., by ELI-NP.

  2. Laser wakefield acceleration of electrons with ionization injection in a pure N{sup 5+} plasma waveguide

    SciTech Connect (OSTI)

    Goers, A. J.; Yoon, S. J.; Elle, J. A.; Hine, G. A.; Milchberg, H. M.

    2014-05-26

    Ionization injection-assisted laser wakefield acceleration of electrons up to 120?MeV is demonstrated in a 1.5?mm long pure helium-like nitrogen plasma waveguide. The guiding structure stabilizes the high energy electron beam pointing and reduces the beam divergence. Our results are confirmed by 3D particle-in-cell simulations.

  3. Target normal sheath acceleration of foil ions by laser-trapped hot electrons from a long subcritical-density preplasma

    SciTech Connect (OSTI)

    Luan, S. X.; Yu, Wei; Shen, B. F.; Xu, Z. Z.; Yu, M. Y.; Zhuo, H. B.; Xu, Han; Wong, A. Y.; Wang, J. W.

    2014-12-15

    In a long subcritical density plasma, an ultrashort ultraintense laser pulse can self-organize into a fast but sub-relativistic propagating structure consisting of the modulated laser light and a large number of trapped electrons from the plasma. Upon impact of the structure with a solid foil target placed in the latter, the remaining laser light is reflected, but the dense and hot trapped electrons pass through the foil, together with the impact-generated target-frontsurface electrons to form a dense hot electron cloud at the back of the target suitable for enhancing target normal sheath acceleration of the target-backsurface ions. The accelerated ions are well collimated and of high charge and energy densities, with peak energies a full order of magnitude higher than that from target normal sheath acceleration without the subcritical density plasma. In the latter case, the space-charge field accelerating the ions is limited since they are formed only by the target-frontsurface electrons during the very short instant of laser reflection.

  4. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Public Interest Nuclear Physics Accelerator FEL Medical Imaging Engineering Archive print version SRF Technology SRF Cavities from Single-Crystal Niobium Low-Temperature RadioFrequency Feedthrough For CW Applications Cavity Processing and Procedure Improvements Energy-Recovering Linacs SRF-Based Energy-Recovering Linear Accelerators (ERLs) Electron Source Injector Advance: The Superlattice Photocathode Fiber-Based Drive Lasers Accelerator SRF Cavities from Single-Crystal Niobium

  5. Christoph W. Leemann Named Jefferson Lab Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Leemann Named Jefferson Lab Director November 16, 2001 The Southeastern Universities Research Association (SURA) has selected internationally recognized particle-accelerator physicist Christoph W. Leemann as director of the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). Leemann has been serving for the past year as interim director of the Newport News, Virginia nuclear physics laboratory, a world center for the study of the atom's nucleus. He served

  6. Scientists | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Links for Scientists and Researchers Below you will find links commonly used by scientists, users and others who conduct research at Jefferson Lab. Experimental Halls Nuclear Physics Program Other Resources User Resources Physics Division Work Planning Guidance Hall A Hall B Hall C Hall D Three-Year Accelerator Schedule Physics Home Page Experiment Schedule Program Advisory Committee (PAC) Experiments Proposals Research Highlights Publications Accelerator Science Experiment Research Low Energy

  7. Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Scientists Teach Bacterium a New Trick for Artificial Photosynthesis http:www.lbl.gov20160108berkeley-lab-scientists-teach-bacterium-a-new-trick-for-artificial-p...

  8. 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2015 Mon, 12/21/2015 - 3:18pm Jefferson Lab Accelerator Delivers Its First 12 GeV Electrons Wed, 12/02/2015 - 4:11pm Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, Dec. 4 November 2015 Tue, 11/03/2015 - 2:36pm Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, Nov. 6 October 2015 Thu, 10/15/2015 - 7:53pm Nuclear Science Advisory Committee Issues Plan for U.S. Nuclear Physics Research September 2015 Wed, 09/30/2015 - 8:28am Jefferson Lab to

  9. Dr. Yuan Ping Lawrence Livermore National Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM...

  10. 2009 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2009 Wed, 11/18/2009 - 2:00pm Proton's party pals may alter its internal structure Tue, 11/10/2009 - 2:00pm First Director Named for Center for Accelerator Science Wed, 11/04/2009 - 2:00pm Jefferson Lab Dec. 9 Science Lecture Discusses How Visual Illusions Trick the Mind

  11. 2010 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2010 Wed, 03/03/2010 - 1:00am May 3 Abstract for Colloquium/Public Lecture on May 11 at Jefferson Lab titled: Accelerator Driven System (ADS) in Support of Sustainable Nuclear Power Program in India. The lecture will be presented by Srikumar Banerjee, Chairman of the Atomic Energy Com

  12. 2014 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2014 Mon, 08/11/2014 - 11:18am Jefferson Lab accelerator upgrade completed: Initial operations set to begin while experimental equipment upgrades continue Fri, 08/08/2014 - 5:07pm W&M Student Elected to Represent American Physical Society's Graduate Student Forum

  13. News Links | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media NEWS LINKS JLab Mourns Loss of Dr. Brad Tippens, Dept. of Energy (March 16, 2011, A Message from Dr. Timothy Hallman, DOE) Jefferson Lab: Laser gun to eventually shoot down missiles (February 21, 2011, Daily Press) Navy Breaks World Record With Futuristic Free-Electron Laser (February 20, 2011, FOX News.com) Unexpectedly, Navy's Superlaser Blasts Away a Record (February 18, 2011, Wired) Two locals named among Virginia's outstanding scientists (January 26, 2011, The Virginian-Pilot)

  14. Jefferson Lab Plans Open House for May 19 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plans Open House for May 19 These are photos taken at Jefferson Lab's 2010 Open House. The event was attended by 7,000 visitors. Hundreds of lab employees and visiting researchers volunteered to spend the day talking to the public about their research and the capabilities provided at the lab NEWPORT NEWS, Va., April 20, 2012 -- The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility will hold an Open House on Saturday, May 19 between 9 a.m. and 3 p.m. Several of the lab's

  15. 1997 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 1997 Thu, 07/24/1997 - 12:00am Laser Losing an Ally (Washington Bureau) Thu, 07/24/1997 - 12:00am Fixing Others' Dreams (Daily Press) Tue, 07/01/1997 - 12:00am Scientists Report First Experimental Results from Jefferson Lab (Daily Press

  16. 1997 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 1997 Tue, 10/21/1997 - 12:00am Grunder to Talk on Jefferson Lab (Oak Ridger) Thu, 10/16/1997 - 12:00am Income Hike on Horizon (Daily Press) Wed, 10/01/1997 - 12:00am Super Laser Nearly Complete (News-Press, Burrelle's

  17. 2006 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2006 Mon, 12/18/2006 - 1:00am H. Frederick Dylla to Head the American Institute of Physics (Interactions.org) Mon, 12/18/2006 - 1:00am For laser at Jefferson Lab, it's 'pick a wavelength' (The Virginian-Pilot

  18. 2006 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2006 Sun, 04/23/2006 - 2:00pm Jefferson Lab News - HAPPEx II reveals proton isn't very strange Mon, 04/10/2006 - 2:00pm Free-Electron Laser Targets Fat Wed, 04/05/2006 - 2:00pm Landscaping company wins annual small business award

  19. Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz booster simulations

    SciTech Connect (OSTI)

    Vay, J.-L.; Geddes, C.G.R.; Esarey, E.; Esarey, E.; Leemans, W.P.; Cormier-Michel, E.; Grote, D.P.

    2011-12-01

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98 130405 (2007)] allows direct and e#14;fficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

  20. Ion cascade acceleration from the interaction of a relativistic femtosecond laser pulse with a narrow thin target

    SciTech Connect (OSTI)

    He Feng; Xu Han; Tian Youwei; Yu Wei; Lu Peixiang; Li Ruxin

    2006-07-15

    Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target.

  1. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  2. First Pass | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Pass February 25, 2014 The 12 GeV Upgrade Project at Jefferson Lab has many facets, and it is designed in such a way that some parts are completed and working while others are still in preparation. Recently, we have achieved a notable milestone. The accelerator commissioning was able to demonstrate 2.2 GeV of acceleration in a single pass around the upgraded accelerator. We have seen the completion of the bulk of civil construction work with the Central Helium Liquefier (CHL) Building

  3. 1997 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 1997 Sun, 04201997 - 11:00pm Free-Electron Lasers for U.S. Industry (Science & Technology) Thu, 04171997 - 11:00pm Accelerating Into Physics (Daily Press) Mon, 04071997...

  4. 2006 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Mon, 11/27/2006 - 3:00pm Reaching New Heights in Accelerator Technology Wed, 11/08/2006 - 3:45pm Researchers' Hottest New Laser Beams 14.2 kW

  5. 2004 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2004 Tue, 04/27/2004 - 12:00am A Region Better Than Advertised (Virginian-Pilot) Tue, 04/20/2004 - 12:00am Accelerator Facility Closer to Upgrade (Richmond Times-Dispatch) Tue, 04/20/2004 - 12:00am Energy Department announces $225 million for lab (The Virginian-Pilot) Tue, 04/20/2004 - 12:00am Jefferson Lab vies for expansion (Daily Press) Mon, 04/19/2004 - 12:00am GlueX Gets a Boost (ScienceNOW) Thu, 04/15/2004 - 12:00am The College, NASA and the Nanotube (DOG Street Journal

  6. 2008 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2008 Fri, 09/19/2008 - 3:00pm ODU establishes a Center for Accelerator Science Mon, 09/15/2008 - 3:00pm DOE's Jefferson Lab Receives Approval To Start Construction of $310 Million Upgrade Wed, 09/10/2008 - 3:00pm Moving Quarks Help Solve Proton Spin Puzzle Tue, 09/09/2008 - 3:00pm Have Fun With Astronomy at JLab on Oct. 14 Mon, 09/08/2008 - 3:00pm Jefferson Lab Invites Classes, Groups to 2008-2009 Physics Fests

  7. 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2014 Mon, 12/15/2014 - 6:01pm William & Mary Undergrad Receives JSA Research Assistantship October 2014 Thu, 10/16/2014 - 3:03pm Protons Hog the Momentum in Neutron-Rich Nuclei Mon, 10/06/2014 - 10:04am Celebrating Science: Jefferson Lab Plans Evening Programs on Oct. 7 and 9 as Part of Virginia Science Festival Week September 2014 Thu, 09/25/2014 - 1:51pm Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction Mon, 09/22/2014 - 5:03pm View

  8. 2015 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Wed, 04/29/2015 - 10:02am Oak Ridge Director Thom Mason to lecture on "Big Science" at the Science Museum of Virginia Wed, 04/29/2015 - 10:00am Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, May 1 Wed, 04/29/2015 - 9:59am International Particle Accelerator Community Prepares for May 3-8 Gathering in Richmond Thu, 04/02/2015 - 2:01pm Jefferson Lab to Test its Tornado Warning Siren at 10:30 a.m. on Friday, April 3

  9. Employee Relations | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources Installation Of A Cryomodule Workers prepare to install a cryomodule in Jefferson Lab's accelerator. A D D I T I O N A L L I N K S: Brochures Posters Strategic Plan 12 GeV TEDF Photos top-right bottom-left-corner bottom-right-corner Safety & Environment At Jefferson Lab, the health and safety of employees, users, contractors, visitors and the general public are our highest priorities. In concert with federal and state regulations, and based on years of experience and

  10. Media Kit | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Media Input Windows for Niobium Cavities Jefferson Lab is a world leader in SRF technologies, fabricating many of the parts essential to particle accelerators, such as these input windows for niobium cavities. A D D I T I O N A L L I N K S: Photos Publications Information Sheets News Releases Logo & Templates Subscribe to News top-right bottom-left-corner bottom-right-corner Media Kit The Public Affairs Office is prepared to aid media representatives in preparing for Jefferson Lab

  11. Acceleration of highly charged GeV Fe ions from a low-Z substrate by intense femtosecond laser

    SciTech Connect (OSTI)

    Nishiuchi, M. Sakaki, H.; Esirkepov, T. Zh.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kiriyama, H.; Fukuda, Y.; Kando, M.; Bulanov, S. V.; Kondo, K.; Nishio, K.; Orlandi, R.; Koura, H.; Imai, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Sako, H.; Matsukawa, K.; and others

    2015-03-15

    Almost fully stripped Fe ions accelerated up to 0.9?GeV are demonstrated with a 200 TW femtosecond high-intensity laser irradiating a micron-thick Al foil with Fe impurity on the surface. An energetic low-emittance high-density beam of heavy ions with a large charge-to-mass ratio can be obtained, which is useful for many applications, such as a compact radio isotope source in combination with conventional technology.

  12. Lab-Corps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab-Corps Lab-Corps Lab-Corps Lab-Corps-the U.S. Department of Energy's (DOE's) program to speed the transfer of innovative, clean energy technologies from its national laboratories into the commercial marketplace-will serve as a specialized technology accelerator providing training curriculum for laboratory researchers looking to move their high-impact, real world technologies into the private sector. Based on the National Science Foundation's successful Innovation Corps (I-Corps) model, this

  13. Plasma wakefields driven by an incoherent combination of laser pulses: A path towards high-average power laser-plasma accelerators

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2014-05-15

    The wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e., without constraining the pulse phases) is studied analytically and by means of fully self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region, the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structures in the laser energy density produced by the combined pulses exist on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators, and associated applications.

  14. Jefferson Lab News - Jefferson Lab Lecture to Celebrate 50th Anniversary of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Laser | Jefferson Lab Lecture to Celebrate 50th Anniversary of the Laser NEWPORT NEWS, VA, Nov. 14, 2007 -- The topic of Jefferson Lab's Dec. 4 public lecture will be The Laser at 50. Join Jefferson Lab's chief optical scientist, Dr. Michelle Shinn, as she discusses the advancements of the laser and performs demonstrations with light. There was a time not so long ago that the laser was "a solution looking for a problem," according to Shinn. Lasers are now used in many facets of

  15. 2015 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Fri, 10/30/2015 - 9:15am The winning tickets for the United Way Raffle Mon, 10/26/2015 - 1:38pm Tailgate Party Moved to Thursday, Oct. 29: Lab Staff & Users Invited, Volunteers Still Needed Thu, 10/15/2015 - 4:04pm SAF 114O Laser Safety Orientation Training Fri, 10/09/2015 - 8:44am Supervisor/Manager Training Fri, 10/02/2015 - 3:11pm Severe Weather Update: JLab Remains in HPC-2 for Nor'easter & Hurricane Fri, 10/02/2015 - 12:12pm Instructions to Determine the Jefferson Lab

  16. 2011 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2011 Sun, 12/04/2011 - 1:00am From Nepal to JLab â€" One Scientist's Journey (Daily Press) August 2011 Wed, 08/31/2011 - 12:00am MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, General News) March 2011 Wed, 03/16/2011 - 12:00am JLab Mourns Loss of Dr. Brad Tippens, Dept. of Energy (A Message from Dr. Timothy Hallman, DOE) February 2011 Mon, 02/21/2011 - 1:00am Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) Sun,

  17. Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search sun abstract Helios logo Overview Goals & Challenges Publications Research Highlights In the News SERC...

  18. Public Reading Room | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Seven-Cell Niobium Cavity At the heart of Jefferson Lab's accelerator are cavities made of niobium. New seven-cell cavities are being installed in the accelerator as the lab prepares to double the energy of the accelerator from 6 billion electron volts (GeV) to 12 GeV. A D D I T I O N A L L I N K S: DOE Report Card NEPA Summary Stormwater Plan DOE Summary (05) MS4 Program (09) Environmental Reports top-right bottom-left-corner bottom-right-corner Public Reading Room Welcome to the U.S.

  19. The Radiation Reaction Effect on Electrons at Super-High Laser Intensities with Application to Ion Acceleration

    SciTech Connect (OSTI)

    Naumova, N. M.; Sokolov, I. V.; Tikhonchuk, V. T.; Schlegel, T.; Nees, J. A.; Yanovsky, V. P.; Labaune, C.; Mourou, G. A.

    2009-07-25

    At super-high laser intensities the radiation back reaction on electrons becomes so significant that its influence on laser-plasma interaction cannot be neglected while simulating these processes with particle-in-cell (PIC) codes. We discuss a way of taking the radiation effect on electrons into account and extracting spatial and frequency distributions of the generated high-frequency radiation. We also examine ponderomotive acceleration of ions in the double layer created by strong laser pulses and we compare an analytical description with PIC simulations as well. We discuss: (1) non-stationary features found in simulations, (2) electron cooling effect due to radiation losses, and (3) the limits of the analytical model.

  20. Jefferson Lab News - Jefferson Lab Achieves Critical Milestone Toward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction of $310-Million Upgrade Project | Jefferson Lab Achieves Critical Milestone Toward Construction of $310-Million Upgrade Project Pion This architectural rendering shows the Hall D complex to be built as part of the CEBAF 12 GeV Upgrade at Jefferson Lab. Rendering by Hayes, Seay, Mattern & Mattern, Inc. NEWPORT NEWS, Va., Nov. 20, 2007 - A proposed $310-million project that will double the energy of the electron beam at the Thomas Jefferson National Accelerator Facility

  1. Jefferson Lab - Hypernuclear 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hypernuclear16 Privacy and Security Notice PREX - Credit:NASA LINKS Circular Registration Program Lodging Travel Visa Participants List Child Care Program print version Hypernuclear 2016 Hypernuclear 2016 March 14-15, 2016 Thomas Jefferson National Accelerator Facility Newport News, VA Circular The second JLab hypernuclear workshop will be held on the 15th of March, 2016 (Tuesday) at Jefferson Lab. Prior to the workshop, we will have a JLab hypernuclear collaboration meeting on the 14th March,

  2. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Aerial In this aerial view of Jefferson Lab and some of the surrounding area, the accelerator site is visible in the foreground. Experimental Halls A, B and C are visible as the three round mounds on the left, and Hall D and its counting house are on the far right. The long, one-story white buildings sit, respectively, over the North and South Linear Accelerator sections of CEBAF. A D D I T I O N A L L I N K S: Hall A Hall B Hall C Hall D 12 GeV Nuclear Physics top-right bottom-left-corner

  3. User Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. A D D I T I O N A L L I N K S: User Liaison User Training International Services User Registration User Group Wiki PAC Three-Year Accelerator Schedule Students Advisors top-right bottom-left-corner bottom-right-corner Users: Scientists, Students & Postdocs New User Checklist us citizen non-us-citizen An invitation letter is required at the port of entry for all non-U.S.citizens

  4. SURA Rewards Inventors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SURA Rewards Inventors Eleven scientists and a former high school intern were rewarded at a ceremony for inventions they created while pursuing the fundamental research mission of U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. Lukasz Majewski, now a sophomore at Johns Hopkins University, helped develop three inventions during his summer internship at Jefferson Lab. A ceremony was held at 1 p.m. October 30, 1997, in the CEBAF Center Auditorium at Jefferson Lab. The

  5. Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Berkeley Lab Learning Institute (BLI) website is a resource with links to a wide range of online and offsite opportunities. The following pages provide links to internal and...

  6. Jefferson Lab technology, capabilities take center stage in construction of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    portion of DOE's Spallation Neutron Source accelerator | Jefferson Lab Medium beta cryomodule JLab staff prepare to load the medium β cryomodule onto a flatbed semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January 27, 2003 Jefferson Lab is once again taking center stage, as Lab scientists, engineers and technicians mobilize to provide 81 niobium cavities for 23

  7. Lab-Corps Documents | Department of Energy

    Energy Savers [EERE]

    Lab-Corps Documents Lab-Corps Documents These documents are related the Tech-to-Market Lab-Corps Pilot. Lab-Corps Pilot Summary The Lab-Corps pilot program has $2.3 million in available funding aimed at accelerating the transfer of innovative clean energy technologies from the Energy Department's national laboratories into the commercial marketplace. To accomplish this, the program has selected a "node" for its national network-the National Renewable Energy Laboratory-to develop a

  8. Zapping fat, zits | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zapping fat, zits A Harvard doctor doing research at the lab hopes to market a new way to remove acne and body fat. By Fred Carroll, Daily Press NEWPORT NEWS -- A 2-inch-thick hunk of pigskin and pork fat zapped with a laser at a Newport News research lab could lead within several years to a new way for doctors to remove excess body fat and treat severe acne. The pigskin was part of a study at Jefferson Lab that showed Rox Anderson, a dermatologist at Harvard Medical School and Massachusetts

  9. Christoph Leeman becomes Jefferson Lab's first Deputy Director | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Leeman becomes Jefferson Lab's first Deputy Director August 31, 2000 Christoph W. Leemann is Jefferson Lab's first Deputy Director. Lab Director Hermann Grunder recently announced Leemann's appointment to the new position at the Department of Energy's Thomas Jefferson National Accelerator Facility. As Deputy Director, Leemann will oversee the day-to-day operations of Jefferson Lab, located in Newport News, Va. His priorities include maintaining and improving an environment where high

  10. Lab-Corps Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab-Corps Fact Sheet Lab-Corps Fact Sheet This fact sheet provides an overview of the Lab-Corps program, which is a specialized training curriculum aimed at accelerating the transfer of clean energy technologies from national laboratories into the commercial marketplace. PDF icon Lab-Corps fact sheet More Documents & Publications Lab-Corps Documents Amped Up! Volume 1, No.2 Small Business Vouchers Documents Technology-to-Market Home About the Technology-to-Market Program Cleantech University

  11. DOE Congratulates Under Secretary, National Lab Director and Other National

    Office of Environmental Management (EM)

    Lab Scientists for Receiving Top Scientific Honor | Department of Energy Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor DOE Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor April 29, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Under Secretary for Science Steven E. Koonin, SLAC National Accelerator Laboratory Director Persis

  12. Berkeley Lab Innovation Corps (BLIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Innovation Corps (BLIC

  13. Brochures | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions & Departments BROCHURES JLab General Brochure JLab Brochure 12GeV Upgrade Brochure 12GeV Upgrade Brochure Free-Electron Laser Brochure Free-Electron Laser Brochure Nuclear Imaging Brochure Nuclear Imaging Brochure Science Education Brochure Science Education Brochure Superconducting Radiofrequency Superconducting Radio Frequency Technology Brochure JLab Viewbook JLaB View Book Accelerating Innovation JLaB View Book Experimental Hall A Poster Science Highlights from the First 15

  14. Proton and Ion Acceleration by BNL Terewatt Picosecond CO2 Laser. New Horizons

    SciTech Connect (OSTI)

    Shkolnikov, Peter

    2014-09-30

    The report covers pioneering research on proton and ion generation in gas jets by the world's first picosecond TW CO2 laser developed at Brookhaven National Laboratory

  15. Zooming in on a proton packed with surprises | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab experiments, researchers directed the accelerator's polarized electron beam toward liquid hydrogen cooled to 17 Kelvin (-429F). Each electron in the beam has an intrinsic...

  16. Swapan Chattopadhyay Named as AAAS Fellow | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chattopadhyay click for hi-resolution image Swapan Chattopadhyay, Jefferson Lab's Associate Director for Accelerators, now a 2005 Fellow of the American Association for the...

  17. On Target December 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility Governor Joins Jefferson Lab in Celebrating 12 GeV Upgrade Milestone upgraded linac Virginia Gov. Terry McAuliffe acknowledges Jerry Draayer (left), President and CEO of the Southeastern Universities Research Association and Vice Chair of the Board of Jefferson Science Associates, and Jefferson Lab Director, Hugh Montgomery, as he addresses the federal, state and local officials and members of the Jefferson Lab

  18. Generation of ultra-high-pressure shocks by collision of a fast plasma projectile driven in the laser-induced cavity pressure acceleration scheme with a solid target

    SciTech Connect (OSTI)

    Badziak, J.; Rosi?ski, M.; Krousky, E.; Kucharik, M.; Liska, R.; Ullschmied, J.

    2015-03-15

    A novel, efficient method of generating ultra-high-pressure shocks is proposed and investigated. In this method, the shock is generated by collision of a fast plasma projectile (a macro-particle) driven by laser-induced cavity pressure acceleration (LICPA) with a solid target placed at the LICPA accelerator channel exit. Using the measurements performed at the kilojoule PALS laser facility and two-dimensional hydrodynamic simulations, it is shown that the shock pressure ? Gbar can be produced with this method at the laser driver energy of only a few hundred joules, by an order of magnitude lower than the energy needed for production of such pressure with other laser-based methods known so far.

  19. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chart Technology Transfer Lab Leadership Subscribe to RSS - Lab Leadership Stewart Prager Stewart Prager is the sixth director of PPPL. He joined the Laboratory in 2009...

  20. 2013 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2013 Tue, 08/27/2013 - 11:23am Jefferson Lab Graphic Identity Standards & Style Guide Now Available Fri, 08/23/2013 - 11:53pm JLab mourns Robert W. (Bob) Rice Thu, 08/15/2013 - 8:41am TIAA-CREF INDIVIDUAL COUNSELING - September 2013 Tue, 08/06/2013 - 11:13am HCO Training REQUIRED for 12 GeV Accelerator Operations; Live Session on Aug. 7 Tue, 08/06/2013 - 11:11am Agilent Seminar DATE CHANGED: Training Set for Aug. 14 MOVED to Sept. 11 Tue, 08/06/2013 - 11:10am JLab-Wide Phone Outage:

  1. 2013 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Fri, 12/27/2013 - 10:41am Email Issue And JLab Cybersecurity Alert: Phishing Wed, 12/18/2013 - 11:39am Notable Event Notice: Dec. 16 Failure to Comply with Posted Signs Tue, 12/17/2013 - 11:05am Jefferson Lab Three-Year Accelerator Schedule: Calendar Year 2014 - 2016 Wed, 12/11/2013 - 10:23am GEN034 Annual Security Awareness for Employees & Subcontractors Mon, 12/09/2013 - 10:34am Travel Policy/Requirements Briefing for Travelers Fri, 12/06/2013 - 5:12pm Pressure Systems Awareness Training

  2. 2013 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Fri, 12/27/2013 - 10:41am Email Issue And JLab Cybersecurity Alert: Phishing Wed, 12/18/2013 - 11:39am Notable Event Notice: Dec. 16 Failure to Comply with Posted Signs Tue, 12/17/2013 - 11:05am Jefferson Lab Three-Year Accelerator Schedule: Calendar Year 2014 - 2016 Wed, 12/11/2013 - 10:23am GEN034 Annual Security Awareness for Employees & Subcontractors Mon, 12/09/2013 - 10:34am Travel Policy/Requirements Briefing for Travelers Fri, 12/06/2013 - 5:12pm Pressure Systems Awareness Training

  3. Game Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Game Center September 2, 2010 It's a feature of Thomas Jefferson National Accelerator Laboratory that it has at least two other names, including Jefferson Lab and JLab. Similarly, parts of our organization go by different names - the Theory group, the Theory Department, the Theory Center and the Center for Theoretical and Computational Physics. But a new name might be "Game Center." Let me explain. Large-scale computing has been a major deal for the Department of Energy for many years.

  4. 2000 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2000 Thu, 03/30/2000 - 1:00am Jefferson Lab Gets New Funds (Washington Bureau/Daily Press) Mon, 03/27/2000 - 1:00am Practically Perfect, Prof. (Daily Press) Sat, 03/18/2000 - 1:00am Navy Will Open Supercomputer Facility for Outside Uses (The Virginian-Pilot) Wed, 03/01/2000 - 1:00am CLAS at Jefferson Offers a New Subnuclear View (CERN Courier) Wed, 03/01/2000 - 1:00am Free-Electron Laser Passes 1-kW Goal (Burrelle's

  5. 2008 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2008 Tue, 02/26/2008 - 2:00pm Media Advisory: March 1 Middle School Science Bowl Tournament Mon, 02/25/2008 - 3:15pm Jefferson Lab Hosts 20 Teams for Middle School Science Bowl on March 1 Wed, 02/20/2008 - 2:00pm Thomas Jefferson High School Wins Virginia Science Bowl for 7th Year Running Fri, 02/15/2008 - 2:00pm George Neil Named to Lead JLab's Free-Electron Laser Program Tue, 02/12/2008 - 2:00pm Civil War Unplugged Tue, 02/05/2008 - 2:00pm Inaugural JSA Postdoctoral Research Fellow

  6. 12 GeV Upgrade | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers

  7. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Astrophysics NIF experiments support studies relevant to the entire lifecycle of a star, from its formation from cold gas in molecular clouds, through its subsequent slow evolution, and on to what might be a rapid, explosive death. To determine a star's structure throughout the various stages of its life, astrophysicists need NIF's ability to mimic the temperatures (10 to 30 million kelvins or 18 to 54 million degrees Fahrenheit) found in stars' cores. One astrophysics project at NIF is

  8. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    SciTech Connect (OSTI)

    Schroeder, Carl; Benedetti, Carlo; Bulanov, Stepan; Chen, Min; Esarey, Eric; Geddes, Cameron; Vay, J.; Yu, Lule; Leemans, Wim

    2015-05-21

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection.

  9. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  10. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins 2011 Lawrence Award NEWPORT NEWS, VA, Nov. 28 - A Jefferson Lab scientist has received a prestigious national award from the U.S. Department of Energy that recognizes his leadership role in research and development in support of the department and its missions. Matt Poelker, a scientist with Jefferson Lab's accelerator division, was one of just nine winners of a 2011 Ernest Orlando Lawrence Award. Each winner receives a gold medal, a citation and $20,000. They also will be honored at a

  11. Safety Comes First | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Comes First When it comes to providing for the safety of employees and visiting researchers and protecting the environment, the Thomas Jefferson National Accelerator Facility is one of the best. "I don't compare the labs, but the results here are very good," said Thomas Staker, who led a team of inspectors that conducted an extensive inspection of environment, safety and health programs at Jefferson Lab in May and June. Staker is director of the U.S. Department of Energy's

  12. Advisory Committee Recommends Continued Investment in Jefferson Lab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Advisory Committee Recommends Continued Investment in Jefferson Lab This aerial view of the Continuous Electron Beam Accelerator Facility shows the footprint of the accelerator and the experimental halls where nuclear physics experiments are conducted.The newest experimental facility, dubbed Hall D, which is part of the 12 GeV Upgrade, is visible in the upper left. NSAC and JLab Advisory Committee Recommends Continued Investment in Jefferson Lab NEWPORT NEWS, Va., Feb. 6, 2013

  13. Supercomputing and Advanced Computing at the National Labs | Department of

    Energy Savers [EERE]

    Energy Supercomputing and Advanced Computing at the National Labs Supercomputing and Advanced Computing at the National Labs RSS September 30, 2013 Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research Learn how a new supercomputer at the National Energy Technology Laboratory will accelerate research into the next generation of fossil fuel systems. September 26, 2013 Infographic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department.

  14. Multistage ion acceleration in finite overdense target with a relativistic laser pulse

    SciTech Connect (OSTI)

    Sinha, Ujjwal [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-07-15

    Multistage ion acceleration has been analytically and computationally studied in the relativistic regime. For non-relativistic piston velocities, this phenomenon has been described before. But, as we go to relativistic piston velocities, the non-relativistic results hold no more. We have presented a fully relativistic calculation for second stage ion velocities and energies. To verify our calculations, we performed a fully relativistic 1D3V particle in cell simulations using the code LPIC++. It has been found that the relativistic calculations matched very well with the simulation results. Also, it has been seen that at relativistic piston velocities, the non-relativistic results differed by a significant margin. The feasibility of this process has been further established by three dimensional particle in cell simulations.

  15. Study of electron trapping by a transversely ellipsoidal bubble in the laser wake-field acceleration

    SciTech Connect (OSTI)

    Cho, Myung-Hoon; Kim, Young-Kuk; Hur, Min Sup

    2013-09-15

    We present electron trapping in an ellipsoidal bubble which is not well explained by the spherical bubble model by [Kostyukov et al., Phys. Rev. Lett. 103, 175003 (2009)]. The formation of an ellipsoidal bubble, which is elongated transversely, frequently occurs when the spot size of the laser pulse is large compared to the plasma wavelength. First, we introduce the relation between the bubble size and the field slope inside the bubble in longitudinal and transverse directions. Then, we provide an ellipsoidal model of the bubble potential and investigate the electron trapping condition by numerical integration of the equations of motion. We found that the ellipsoidal model gives a significantly less restrictive trapping condition than that of the spherical bubble model. The trapping condition is compared with three-dimensional particle-in-cell simulations and the electron trajectory in test potential simulations.

  16. Pennington To Lead Jefferson Lab Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pennington To Lead Jefferson Lab Theory Center dph0mrp.jpg NEWPORT NEWS, VA - After an extensive international search, the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has selected Michael R. Pennington, an internationally known physicist, as Associate Director for Theoretical and Computational Physics. Pennington is currently a Professor of Mathematical Sciences & Physics and Dean for Educational Outreach at the Durham University in England. Since 2007,

  17. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeology on Lab Land Archaeology on Lab Land People have lived in this area for more than 5,000 years. Lab archaeologists are studying and preserving the ancient human...

  18. Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes

    Energy Savers [EERE]

    research utilizing GPU-accelerated computing | Department of Energy Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes research utilizing GPU-accelerated computing Brookhaven Lab Named an NVIDIA GPU Research Center: Designation recognizes research utilizing GPU-accelerated computing March 14, 2016 - 4:56pm Addthis News release from Brookhaven National Laboratory, March 14, 2016 UPTON, NY- The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has been

  19. On the Margin | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Margin October 19, 2012 The primary component of Jefferson Lab's mission is nuclear physics - to explore the nature of nuclear matter and to explore fundamental symmetries. This dominance is reflected in the budgets we receive, and in what we do on a daily basis. In many ways, the whole laboratory revolves around the operation of the nuclear physics accelerator. However, when we make presentations about the laboratory, we usually talk about our activities in much broader terms. There are

  20. Jefferson Lab Divisions & Departments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Divisions & Departments Privacy and Security Notice Skip over navigation search Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Org Charts Directorate Accelerator COO CFO IT/CIO CSO Engineering ESH&Q FEL Physics 12000 Jefferson Avenue, Newport News, VA 23606 Phone: (757) 269-7100 Fax: (757)

  1. 1997 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Scientific Motivation and Research Program (Nuclear Physics News) Mon, 03171997 - 12:00am Laboratory Profile: Jefferson Lab Introduction (Nuclear Physics News)...

  2. 2007 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Tue, 11/20/2007 - 2:00pm Jefferson Lab News - Jefferson Lab Achieves Critical Milestone Toward Construction of $310-Million Upgrade Project

  3. Careers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting and challenging jobs in pursuit of a greater understanding of the visible universe. Read more Job Openings Careers Jobs at Jefferson Lab Jefferson Lab offers many...

  4. 2008 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2008 Wed, 02/27/2008 - 3:00pm Accelerator Division Personnel Announcement Thu, 02/21/2008 - 3:00pm Jefferson Lab: Possible icy driving condition Fri. morning Wed, 02/20/2008 - 3:00pm JLab Colloquium and Public Lecture Today at 4 p.m. Tue, 02/19/2008 - 3:00pm Timesheets are Due to Finance by 2:00 p.m. Today Wed, 02/13/2008 - 3:00pm Flexible Spending Accounts - How they work Wed, 02/13/2008 - 3:00pm George Neil - AD for FEL Wed, 02/13/2008 - 3:00pm FY 2009 Budget Data Tue, 02/12/2008 -

  5. On Target July 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2009 The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility JLab Chief Scientist Named Fellowship Winner Jefferson Lab's Groundbreaking Anthony W. "Tony" Thomas, Jefferson Lab's chief scientist, is one of 15 world-leading scholars selected to receive an inaugural Australian Laureate Fellowship. He will return to the University of Adelaide later this year to take up the fellowship and lead the newly created Research Centre for Complex Systems and the

  6. Jefferson Lab | Exploring the Nature of Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12/18/2014 - 12:54pm On Target December 2014 The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility Governor Joins Jefferson Lab in Celebrating 12 GeV Upgrade Milestone upgraded linac Virginia Gov. Terry McAuliffe acknowledges Jerry Draayer (left), President and CEO of the Southeastern Universities Research Association and Vice Chair of the Board of Jefferson Science Associates, and Jefferson Lab Director, Hugh Montgomery, as he addresses the federal, state and local

  7. About Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education - Students Pulse Laser Deposit Hadware Research at Jefferson Lab leads to the development of technology that has practical applications, such as pulse laser deposit hardware. A D D I T I O N A L L I N K S: Student Zone About Atoms Virginia SOL Virtual Tour JLab Video Brochures top-right bottom-left-corner bottom-right-corner ABOUT NUCLEAR PHYSICS Nuclear physics is an important pursuit because the study of the nucleus of the atom is at the heart of our ability to understand the

  8. 2009 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2009 Wed, 02/25/2009 - 3:00pm Jefferson Lab Weekly Briefs February 25, 2009 Wed, 02/18/2009 - 3:00pm Jefferson Lab Weekly Briefs February 18, 2009 Wed, 02/11/2009 - 3:00pm Jefferson Lab Weekly Briefs February 11, 2009 Wed, 02/04/2009 - 3:00pm Jefferson Lab Weekly Briefs February

  9. 2009 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2009 Wed, 03/25/2009 - 3:00pm Jefferson Lab Weekly Briefs March 25, 2009 Wed, 03/18/2009 - 3:00pm Jefferson Lab Weekly Briefs March 18, 2009 Wed, 03/11/2009 - 3:00pm Jefferson Lab Weekly Briefs March 11, 2009 Wed, 03/04/2009 - 3:00pm Jefferson Lab Weekly Briefs March

  10. 2010 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2010 Wed, 02/24/2010 - 3:00pm Jefferson Lab Weekly Briefs February 24, 2010 Wed, 02/24/2010 - 3:00pm Jefferson Lab Weekly Briefs February 17, 2010 Wed, 02/10/2010 - 3:00pm Jefferson Lab Weekly Briefs February 10, 2010 Wed, 02/03/2010 - 3:00pm Jefferson Lab Weekly Briefs February

  11. 2011 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2011 Wed, 02/23/2011 - 3:00pm Jefferson Lab Weekly Briefs February 23, 2011 Wed, 02/16/2011 - 3:00pm Jefferson Lab Weekly Briefs February 16, 2011 Wed, 02/09/2011 - 3:00pm Jefferson Lab Weekly Briefs February 9, 2011 Wed, 02/02/2011 - 3:00pm Jefferson Lab Weekly Briefs February

  12. 2011 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2011 Thu, 08/18/2011 - 3:00pm Senator Warner visits Jefferson Lab

  13. 2013 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2013 Wed, 02/27/2013 - 12:05pm Jefferson Lab Weekly Briefs February 27, 2013 Wed, 02/20/2013 - 3:00pm Jefferson Lab Weekly Briefs February 20, 2013 Wed, 02/13/2013 - 3:00pm Jefferson Lab Weekly Briefs February 13, 2013 Wed, 02/06/2013 - 3:00pm Jefferson Lab Weekly Briefs February

  14. 2014 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2014 Wed, 02/26/2014 - 6:38pm Jefferson Lab Weekly Briefs February 26, 2014 Wed, 02/19/2014 - 5:38pm Jefferson Lab Weekly Briefs February 19, 2014 Wed, 02/12/2014 - 4:23pm Jefferson Lab Weekly Briefs February 12, 2014 Wed, 02/05/2014 - 5:09pm Jefferson Lab Weekly Briefs February

  15. 2014 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2014 Wed, 03/26/2014 - 5:29pm Jefferson Lab Weekly Briefs March 26, 2014 Wed, 03/19/2014 - 2:39pm Jefferson Lab Weekly Briefs March 19, 2014 Wed, 03/12/2014 - 2:43pm Jefferson Lab Weekly Briefs March 12, 2014 Wed, 03/05/2014 - 5:50pm Jefferson Lab Weekly Briefs March

  16. 2015 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2015 Wed, 02/25/2015 - 5:14pm Jefferson Lab Weekly Briefs February 25, 2015 Wed, 02/18/2015 - 5:26pm Jefferson Lab Weekly Briefs February 18, 2015 Wed, 02/11/2015 - 6:50pm Jefferson Lab Weekly Briefs February 11, 2015 Wed, 02/04/2015 - 5:53pm Jefferson Lab Weekly Briefs February

  17. 2015 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2015 Wed, 03/25/2015 - 4:29pm Jefferson Lab Weekly Briefs March 25, 2015 Wed, 03/18/2015 - 2:55pm Jefferson Lab Weekly Briefs March 18, 2015 Wed, 03/11/2015 - 2:01pm Jefferson Lab Weekly Briefs March 11, 2015 Wed, 03/04/2015 - 7:55pm Jefferson Lab Weekly Briefs March

  18. 2010 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2010 Mon, 04/19/2010 - 12:00am National Lab Day - Open House

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. 2007 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2007 Wed, 12/19/2007 - 3:00pm Jefferson Lab Weekly Briefs December 19, 2007 Wed, 12/12/2007 - 3:00pm Jefferson Lab Weekly Briefs December 12, 2007 Wed, 12/05/2007 - 3:00pm Jefferson Lab Weekly Briefs December 5, 2007 November 2007 Wed, 11/21/2007 - 3:00pm Jefferson Lab Weekly Briefs November 21, 2007 Wed, 11/14/2007 - 3:00pm Jefferson Lab Weekly Briefs November 14, 2007 Wed, 11/07/2007 - 3:00pm Jefferson Lab Weekly Briefs November 7, 2007 Thu, 11/01/2007 - 3:00pm Jefferson Lab Weekly

  2. 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Wed, 12/17/2008 - 3:00pm Jefferson Lab Weekly Briefs December 17, 2008 Wed, 12/10/2008 - 3:00pm Jefferson Lab Weekly Briefs December 10, 2008 Wed, 12/03/2008 - 3:00pm Jefferson Lab Weekly Briefs December 3, 2008 November 2008 Wed, 11/26/2008 - 3:00pm Jefferson Lab Weekly Briefs November 26, 2008 Wed, 11/19/2008 - 3:00pm Jefferson Lab Weekly Briefs November 19, 2008 Wed, 11/12/2008 - 3:00pm Jefferson Lab Weekly Briefs November 12, 2008 Wed, 11/05/2008 - 3:00pm Jefferson Lab Weekly Briefs

  3. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Wed, 12/16/2009 - 3:00pm Jefferson Lab Weekly Briefs December 16, 2009 Wed, 12/09/2009 - 3:00pm Jefferson Lab Weekly Briefs December 9, 2009 Wed, 12/02/2009 - 3:00pm Jefferson Lab Weekly Briefs December 2, 2009 November 2009 Wed, 11/25/2009 - 3:00pm Jefferson Lab Weekly Briefs November 25, 2009 Wed, 11/18/2009 - 3:00pm Jefferson Lab Weekly Briefs November 18, 2009 Wed, 11/11/2009 - 3:00pm Jefferson Lab Weekly Briefs November 11, 2009 Wed, 11/04/2009 - 3:00pm Jefferson Lab Weekly Briefs

  4. 2010 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Wed, 12/22/2010 - 3:00pm Jefferson Lab Weekly Briefs December 22, 2010 Wed, 12/15/2010 - 3:00pm Jefferson Lab Weekly Briefs December 15, 2010 Wed, 12/08/2010 - 3:00pm Jefferson Lab Weekly Briefs December 8, 2010 Wed, 12/01/2010 - 3:00pm Jefferson Lab Weekly Briefs December 1, 2010 November 2010 Wed, 11/24/2010 - 3:00pm Jefferson Lab Weekly Briefs November 24, 2010 Wed, 11/17/2010 - 3:00pm Jefferson Lab Weekly Briefs November 17, 2010 Wed, 11/10/2010 - 3:00pm Jefferson Lab Weekly Briefs

  5. 2011 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wed, 12/21/2011 - 3:00pm Jefferson Lab Weekly Briefs December 21, 2011 Wed, 12/14/2011 - 3:00pm Jefferson Lab Weekly Briefs December 14, 2011 Wed, 12/07/2011 - 3:00pm Jefferson Lab Weekly Briefs December 7, 2011 November 2011 Wed, 11/30/2011 - 3:00pm Jefferson Lab Weekly Briefs November 30, 2011 Wed, 11/23/2011 - 3:00pm Jefferson Lab Weekly Briefs November 23, 2011 Wed, 11/16/2011 - 3:00pm Jefferson Lab Weekly Briefs November 16, 2011 Wed, 11/09/2011 - 3:00pm Jefferson Lab Weekly Briefs

  6. 2012 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Wed, 12/19/2012 - 3:00pm Jefferson Lab Weekly Briefs December 19, 2012 Wed, 12/12/2012 - 1:00pm Jefferson Lab Weekly Briefs December 12, 2012 Wed, 12/05/2012 - 3:00pm Jefferson Lab Weekly Briefs December 5, 2012 November 2012 Wed, 11/21/2012 - 3:00pm Jefferson Lab Weekly Briefs November 21, 2012 Wed, 11/14/2012 - 3:00pm Jefferson Lab Weekly Briefs November 14, 2012 Wed, 11/07/2012 - 3:00pm Jefferson Lab Weekly Briefs November 7, 2012 October 2012 Wed, 10/31/2012 - 3:00pm Jefferson Lab Weekly

  7. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  8. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as "Firehose," for use on miniature satellites or CubeSats. Firehose will apply an algorithm developed at LANL to enable advanced functions, such as imaging and video...

  9. 2007 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2007 Wed, 08/29/2007 - 3:00pm Jefferson Lab Weekly Briefs August 29, 2007 Wed, 08/22/2007 - 3:00pm Jefferson Lab Weekly Briefs August 22, 2007 Wed, 08/15/2007 - 3:00pm Jefferson Lab Weekly Briefs August 15, 2007 Wed, 08/08/2007 - 3:00pm Jefferson Lab Weekly Briefs August 8, 2007 Wed, 08/01/2007 - 3:00pm Jefferson Lab Weekly Briefs August

  10. 2008 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2008 Wed, 04/30/2008 - 3:00pm Jefferson Lab Weekly Briefs April 30, 2008 Wed, 04/23/2008 - 3:00pm Jefferson Lab Weekly Briefs April 23, 2008 Wed, 04/16/2008 - 3:00pm Jefferson Lab Weekly Briefs April 16, 2008 Wed, 04/09/2008 - 3:00pm Jefferson Lab Weekly Briefs April 9, 2008 Wed, 04/02/2008 - 3:00pm Jefferson Lab Weekly Briefs April 2

  11. 2008 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2008 Wed, 07/30/2008 - 3:00pm Jefferson Lab Weekly Briefs July 30, 2008 Wed, 07/23/2008 - 3:00pm Jefferson Lab Weekly Briefs July 23, 2008 Wed, 07/16/2008 - 3:00pm Jefferson Lab Weekly Briefs July 16, 2008 Wed, 07/09/2008 - 3:00pm Jefferson Lab Weekly Briefs July 9, 2008 Wed, 07/02/2008 - 3:00pm Jefferson Lab Weekly Briefs July 2

  12. 2008 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2008 Wed, 10/29/2008 - 3:00pm Jefferson Lab Weekly Briefs October 29, 2008 Wed, 10/22/2008 - 3:00pm Jefferson Lab Weekly Briefs October 22, 2008 Wed, 10/15/2008 - 3:00pm Jefferson Lab Weekly Briefs October 15, 2008 Wed, 10/08/2008 - 3:00pm Jefferson Lab Weekly Briefs October 8, 2008 Wed, 10/01/2008 - 3:00pm Jefferson Lab Weekly Briefs October 1

  13. 2009 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2009 Wed, 04/29/2009 - 3:00pm Jefferson Lab Weekly Briefs April 29, 2009 Wed, 04/22/2009 - 3:00pm Jefferson Lab Weekly Briefs April 22, 2009 Wed, 04/15/2009 - 3:00pm Jefferson Lab Weekly Briefs April 15, 2009 Wed, 04/08/2009 - 3:00pm Jefferson Lab Weekly Briefs April 8, 2009 Wed, 04/01/2009 - 3:00pm Jefferson Lab Weekly Briefs April 1

  14. 2009 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2009 Wed, 07/29/2009 - 3:00pm Jefferson Lab Weekly Briefs July 29, 2009 Wed, 07/22/2009 - 3:00pm Jefferson Lab Weekly Briefs July 22, 2009 Wed, 07/15/2009 - 3:00pm Jefferson Lab Weekly Briefs July 15, 2009 Wed, 07/08/2009 - 3:00pm Jefferson Lab Weekly Briefs July 8, 2009 Wed, 07/01/2009 - 3:00pm Jefferson Lab Weekly Briefs July 1

  15. 2009 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2009 Wed, 09/30/2009 - 3:00pm Jefferson Lab Weekly Briefs September 30, 2009 Wed, 09/23/2009 - 3:00pm Jefferson Lab Weekly Briefs September 23, 2009 Wed, 09/16/2009 - 3:00pm Jefferson Lab Weekly Briefs September 16, 2009 Wed, 09/09/2009 - 3:00pm Jefferson Lab Weekly Briefs September 9, 2009 Wed, 09/02/2009 - 3:00pm Jefferson Lab Weekly Briefs September 2

  16. 2010 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2010 Wed, 03/31/2010 - 3:00pm Jefferson Lab Weekly Briefs March 31, 2010 Wed, 03/24/2010 - 3:00pm Jefferson Lab Weekly Briefs March 24, 2010 Wed, 03/17/2010 - 3:00pm Jefferson Lab Weekly Briefs March 17, 2010 Wed, 03/10/2010 - 3:00pm Jefferson Lab Weekly Briefs March 10, 2010 Wed, 03/03/2010 - 10:50am Jefferson Lab Weekly Briefs March

  17. 2010 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2010 Wed, 06/30/2010 - 3:00pm Jefferson Lab Weekly Briefs June 30, 2010 Wed, 06/23/2010 - 3:00pm Jefferson Lab Weekly Briefs June 23, 2010 Wed, 06/16/2010 - 3:00pm Jefferson Lab Weekly Briefs June 16, 2010 Wed, 06/09/2010 - 3:00pm Jefferson Lab Weekly Briefs June 9, 2010 Wed, 06/02/2010 - 3:00pm Jefferson Lab Weekly Briefs June 2

  18. 2010 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2010 Wed, 09/29/2010 - 3:00pm Jefferson Lab Weekly Briefs September 29, 2010 Wed, 09/22/2010 - 3:00pm Jefferson Lab Weekly Briefs September 22, 2010 Wed, 09/15/2010 - 3:00pm Jefferson Lab Weekly Briefs September 15, 2010 Wed, 09/08/2010 - 3:00pm Jefferson Lab Weekly Briefs September 8, 2010 Wed, 09/01/2010 - 3:00pm Jefferson Lab Weekly Briefs September 1

  19. 2011 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2011 Wed, 03/30/2011 - 3:00pm Jefferson Lab Weekly Briefs March 30, 2011 Wed, 03/23/2011 - 3:00pm Jefferson Lab Weekly Briefs March 23, 2011 Wed, 03/16/2011 - 3:00pm Jefferson Lab Weekly Briefs March 16, 2011 Wed, 03/09/2011 - 3:00pm Jefferson Lab Weekly Briefs March 9, 2011 Wed, 03/02/2011 - 3:00pm Jefferson Lab Weekly Briefs March

  20. 2011 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2011 Wed, 06/29/2011 - 3:00pm Jefferson Lab Weekly Briefs June 29, 2011 Wed, 06/22/2011 - 3:00pm Jefferson Lab Weekly Briefs June 22, 2011 Wed, 06/15/2011 - 3:00pm Jefferson Lab Weekly Briefs June 15, 2011 Wed, 06/08/2011 - 3:00pm Jefferson Lab Weekly Briefs June 8, 2011 Wed, 06/01/2011 - 3:00pm Jefferson Lab Weekly Briefs June 1

  1. 2011 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2011 Wed, 08/31/2011 - 3:00pm Jefferson Lab Weekly Briefs August 31, 2011 Wed, 08/24/2011 - 3:00pm Jefferson Lab Weekly Briefs August 24, 2011 Wed, 08/17/2011 - 3:00pm Jefferson Lab Weekly Briefs August 17, 2011 Wed, 08/10/2011 - 1:00am Jefferson Lab Weekly Briefs August 10, 2011 Wed, 08/03/2011 - 3:00pm Jefferson Lab Weekly Briefs August 3

  2. 2011 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2011 Wed, 11/30/2011 - 3:00pm Jefferson Lab Weekly Briefs November 30, 2011 Wed, 11/23/2011 - 3:00pm Jefferson Lab Weekly Briefs November 23, 2011 Wed, 11/16/2011 - 3:00pm Jefferson Lab Weekly Briefs November 16, 2011 Wed, 11/09/2011 - 3:00pm Jefferson Lab Weekly Briefs November 9, 2011 Wed, 11/02/2011 - 3:00pm Jefferson Lab Weekly Briefs November 2

  3. 2012 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2012 Wed, 02/29/2012 - 3:00pm Jefferson Lab Weekly Briefs February 29, 2012 Wed, 02/22/2012 - 3:00pm Jefferson Lab Weekly Briefs February 22, 2012 Wed, 02/15/2012 - 3:00pm Jefferson Lab Weekly Briefs February 15, 2012 Wed, 02/08/2012 - 3:00pm Jefferson Lab Weekly Briefs February 8, 2012 Wed, 02/01/2012 - 3:00pm Jefferson Lab Weekly Briefs February 1

  4. 2012 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2012 Wed, 05/30/2012 - 3:00pm Jefferson Lab Weekly Briefs May 30, 2012 Wed, 05/23/2012 - 3:00pm Jefferson Lab Weekly Briefs May 23, 2012 Wed, 05/16/2012 - 3:00pm Jefferson Lab Weekly Briefs May 16, 2012 Wed, 05/09/2012 - 3:00pm Jefferson Lab Weekly Briefs May 9, 2012 Wed, 05/02/2012 - 5:00pm Jefferson Lab Weekly Briefs May 2

  5. 2012 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2012 Wed, 08/29/2012 - 3:00pm Jefferson Lab Weekly Briefs August 29, 2012 Wed, 08/22/2012 - 3:00pm Jefferson Lab Weekly Briefs August 22, 2012 Wed, 08/15/2012 - 3:00pm Jefferson Lab Weekly Briefs August 15, 2012 Wed, 08/08/2012 - 3:00pm Jefferson Lab Weekly Briefs August 8, 2012 Wed, 08/01/2012 - 3:00pm Jefferson Lab Weekly Briefs August

  6. 2012 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2012 Wed, 10/31/2012 - 3:00pm Jefferson Lab Weekly Briefs October 31, 2012 Wed, 10/24/2012 - 3:00pm Jefferson Lab Weekly Briefs October 24, 2012 Wed, 10/17/2012 - 3:00pm Jefferson Lab Weekly Briefs October 17, 2012 Wed, 10/10/2012 - 3:00pm Jefferson Lab Weekly Briefs October 10, 2012 Wed, 10/03/2012 - 3:00pm Jefferson Lab Weekly Briefs October 3

  7. 2013 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2013 Wed, 07/31/2013 - 1:42pm Jefferson Lab Weekly Briefs July 31, 2013 Wed, 07/24/2013 - 1:54pm Jefferson Lab Weekly Briefs July 24, 2013 Wed, 07/17/2013 - 2:19pm Jefferson Lab Weekly Briefs July 17, 2013 Wed, 07/10/2013 - 2:17pm Jefferson Lab Weekly Briefs July 10, 2013 Wed, 07/03/2013 - 1:30pm Jefferson Lab Weekly Briefs July 3

  8. 2013 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2013 Wed, 10/30/2013 - 3:29pm Jefferson Lab Weekly Briefs October 30, 2013 Wed, 10/23/2013 - 2:30pm Jefferson Lab Weekly Briefs October 23, 2013 Wed, 10/16/2013 - 2:53pm Jefferson Lab Weekly Briefs October 16, 2013 Wed, 10/09/2013 - 2:59pm Jefferson Lab Weekly Briefs October 9, 2013 Wed, 10/02/2013 - 3:11pm Jefferson Lab Weekly Briefs October 2

  9. 2014 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2014 Wed, 04/30/2014 - 4:43pm Jefferson Lab Weekly Briefs April 30, 2014 Wed, 04/23/2014 - 5:50pm Jefferson Lab Weekly Briefs April 23, 2014 Wed, 04/16/2014 - 7:05pm Jefferson Lab Weekly Briefs April 16, 2014 Wed, 04/09/2014 - 6:08pm Jefferson Lab Weekly Briefs April 9, 2014 Wed, 04/02/2014 - 5:21pm Jefferson Lab Weekly Briefs April 2

  10. 2014 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 Wed, 07/30/2014 - 6:42pm Jefferson Lab Weekly Briefs July 30, 2014 Wed, 07/23/2014 - 5:39pm Jefferson Lab Weekly Briefs July 23, 2014 Wed, 07/16/2014 - 6:25pm Jefferson Lab Weekly Briefs July 16, 2014 Wed, 07/09/2014 - 6:25pm Jefferson Lab Weekly Briefs July 9, 2014 Wed, 07/02/2014 - 3:27pm Jefferson Lab Weekly Briefs July 2

  11. 2015 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Wed, 04/29/2015 - 4:37pm Jefferson Lab Weekly Briefs April 29, 2015 Wed, 04/22/2015 - 2:02pm Jefferson Lab Weekly Briefs April 22, 2015 Wed, 04/15/2015 - 5:37pm Jefferson Lab Weekly Briefs April 15, 2015 Wed, 04/08/2015 - 6:19pm Jefferson Lab Weekly Briefs April 8, 2015 Wed, 04/01/2015 - 7:18pm Jefferson Lab Weekly Briefs April 1

  12. 2015 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2015 Wed, 07/29/2015 - 5:01pm Jefferson Lab Weekly Briefs July 29, 2015 Wed, 07/22/2015 - 4:00pm Jefferson Lab Weekly Briefs July 22, 2015 Wed, 07/15/2015 - 9:52pm Jefferson Lab Weekly Briefs - July 15, 2015 Wed, 07/08/2015 - 4:32pm Jefferson Lab Weekly Briefs July 8, 2015 Wed, 07/01/2015 - 5:13pm Jefferson Lab Weekly Briefs - July 1

  13. 2015 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Thu, 10/29/2015 - 11:57am Jefferson Lab Weekly Briefs October 29, 2015 Wed, 10/21/2015 - 3:50pm Jefferson Lab Weekly Briefs October 21, 2015 Thu, 10/15/2015 - 8:38am Jefferson Lab Weekly Briefs October 15, 2015 Wed, 10/07/2015 - 5:07pm Jefferson Lab Weekly Briefs October 7, 2015 Thu, 10/01/2015 - 8:00am Jefferson Lab Weekly Briefs September 30

  14. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Media print version Public Affairs Links Home Journalists' Newsroom Media Photographic Archives What is Jefferson Lab? Community Outreach Jefferson Lab Graphic Identity Standards and Style Guide Usage of the Jefferson Lab Logo - The following examples demonstrate correct use of the lab logo. Requests to use the Jefferson Lab logo by outside entities for conference posters, advertisements, presentations, websites, or other communications may be granted for one-time use on a

  15. Careers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physicists Discuss An Issue Physicists from across the U.S. and from around the world conduct research at Jefferson Lab, seeking to expand our knowledge of the visible universe. Currently, more than 1,300 users (visiting scientists and students) conduct research at the lab. CAREERS AT JEFFERSON LAB Welcome to Jefferson Lab, a world-leading nuclear physics research facility, where great ideas and great people can thrive. At Jefferson Lab, you can work with exceptional people, grow your skills and

  16. Bernhard Mecking steps down as Hall B leader at Jefferson Lab | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Bernhard Mecking Jefferson Lab staff scientist Bernhard Mecking with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B. Bernhard Mecking steps down as Hall B leader at Jefferson Lab April 2, 2003 On 1 February 2003, Bernhard Mecking stepped down as leader of Hall B to return to full-time research at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia. Mecking came to Jefferson Lab from the University of Bonn 18 years

  17. Jefferson Lab injector development for next generation parity violation experiments

    SciTech Connect (OSTI)

    J. Grames, J. Hansknect, M. Poelker, R. Suleiman

    2011-05-01

    To meet the challenging requirements of next generation parity violation experiments at Jefferson Lab, the Center for Injectors and Sources is working on improving the parity-quality of the electron beam. These improvements include new electron photogun design and fast helicity reversal of the Pockels Cell. We proposed and designed a new scheme for slow helicity reversal using a Wien Filter and two Solenoids. This slow reversal complements the insertable half-wave plate reversal of the laser-light polarization by reversing the electron beam polarization at the injector while maintaining a constant accelerator configuration. For position feedback, fast air-core magnets located in the injector were commissioned and a new scheme for charge feedback is planned.

  18. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Sessler, Andy

    2011-04-28

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  19. Laser Wakefield Particle Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in new capability for rapid data exploration and analysis. Investigators: Cameron Geddes, Jean-Luc Vay, Carl Schroeder, E. Cormier-Michel, E. Esarey, W.P. Leemans (LBNL); D.L....

  20. Proton's Weak Charge Determined for First Time | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weak Charge Determined for First Time Q-weak at Jefferson Lab has measured the proton's weak charge Q-weak at Jefferson Lab has measured the proton's weak charge. NEWPORT NEWS, VA, Sept. 17, 2013 - Researchers have made the first experimental determination of the weak charge of the proton in research carried out at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab). The results, accepted for publication in Physical Review Letters, also include the

  1. Hampton University Physics Professor, Jefferson Lab Staff Scientist Winner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Annual State Outstanding Faculty Award | Jefferson Lab Physics Professor, Jefferson Lab Staff Scientist Winner of Annual State Outstanding Faculty Award March 2, 2000 A Staff scientist from the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab), who is also an assistant professor at Hampton University, received the Commonwealth of Virginia's Outstanding Faculty Award (OFA) for 2000. Dr. Cynthia Keppel was one of 11 college faculty members - selected from

  2. JSA Accepting Applications for Graduate Fellowship Program at Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab Graduate Fellowship Program at Jefferson Lab Jefferson Science Associates, LLC, is now accepting applications for the JSA/JLab Graduate Fellowship Program for the 2016-2017 academic year. JSA will award fellowships to qualified doctoral students at SURA member universities for research related to the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia. Each fellowship will provide the awardee's home institution with a $10,000 stipend. The

  3. Lab Breakthrough: Record-Setting Cavities | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Record-Setting Cavities Lab Breakthrough: Record-Setting Cavities April 24, 2012 - 2:34pm Addthis At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the Jefferson Lab developed the technology, and how it will be used to impact the energy industry. Michael Hess Michael Hess Former Digital Communications

  4. 2016 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2016 Thu, 03/10/2016 - 2:57pm Jefferson Lab Weekly Briefs March 10, 2016 Wed, 03/02/2016 - 5:19pm Jefferson Lab Weekly Briefs March 2, 2016 February 2016 Wed, 02/24/2016 - 4:24pm Jefferson Lab Weekly Briefs February 24, 2016 Wed, 02/17/2016 - 6:05pm Jefferson Lab Weekly Briefs February 17, 2016 Thu, 02/11/2016 - 3:11pm Jefferson Lab Weekly Briefs February 11, 2016 Wed, 02/03/2016 - 4:49pm Jefferson Lab Weekly Briefs February 3, 2016

  5. 2002 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2002 Mon, 04/22/2002 - 2:00pm Jefferson Lab's Education Web Site Hits New High-Usage Record Mon, 04/22/2002 - 2:00pm Next Jefferson Lab Science Series Event Set for May 8 Mon, 04/22/2002 - 2:00pm Jefferson Lab Man Donates Bone Marrow to Save 12-Year-Old Boy Mon, 04/22/2002 - 2:00pm Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords Mon, 04/22/2002 - 2:00pm Six Local Teens Win Jefferson Lab Summer Externships Fri, 04/19/2002 - 2:00pm Jefferson Lab

  6. 2009 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2009 Fri, 03/27/2009 - 12:00am Jefferson Lab gets $75M in stimulus funds (Inside Business) Tue, 03/24/2009 - 12:00am Jefferson Lab gets stimulus money (Richmond Times-Dispatch) Tue, 03/24/2009 - 12:00am Stimulus money will update Jefferson Lab, create jobs (The Virginian-Pilot) Tue, 03/24/2009 - 12:00am Jefferson Lab gets $75 million stimulus grant (Daily Press) Mon, 03/23/2009 - 12:00am Jefferson Lab To Receive $75 Million In Recovery Act Funding Mon, 03/23/2009 - 12:00am Jefferson Lab

  7. Everything is a nail | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Everything is a nail October 7, 2010 There are many stories about how, if you possess a hammer, especially if it's a good hammer, lots of things appear to be nails. If you were to replace the hammer with an accelerator, particularly a superconducting radiofrequency accelerator, I must confess that I have a tendency to see many opportunities as nails worth tapping. A laboratory portrait of Jefferson Lab appeared in a recent edition of Nuclear Physics News . That article gave a fairly broad

  8. Recent News from the National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    experiments at Oak Ridge National Lab. By accelerating intense beams of light ions to strike a target, the facility creates short-lived, radioactive nuclei that are used for...

  9. Jefferson Lab scientists set to test germ-killing fabrics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Germ-killing fabrics Nylon-surfaced fabrics will be treated with deep UV light already shown to impart antimicrobial activity. Treated materials will be exposed to the range of conditions and operations expected for fire and safety personnel garments. Post- testing will verify that microbes are dead. Jefferson Lab scientists set to test germ-killing fabrics September 26, 2005 The Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) located in Newport News, Va.,

  10. FEL Achieves 10 Kilowatts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEL Achieves 10 Kilowatts Newport News, Va. - The Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, achieved 10 kilowatts of infrared laser light in late July, making it the most powerful tunable laser in the world. The recently upgraded laser's new capabilities will enhance defense and manufacturing technologies, and support advanced studies of chemistry, physics, biology, and more.

  11. 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Wed, 12172014 - 5:26pm Jefferson Lab Weekly Briefs December 17, 2014 Wed, 12102014 - 6:59pm Jefferson Lab Weekly Briefs December 10, 2014 Wed, 12032014 - 6:13pm Jefferson...

  12. 2014 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2014 Wed, 09/24/2014 - 6:55pm Jefferson Lab Weekly Briefs September 24, 2014 Wed, 09/10/2014 - 6:02pm Jefferson Lab Weekly Briefs September 10

  13. 2016 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2016 Thu, 03/10/2016 - 2:57pm Jefferson Lab Weekly Briefs March 10, 2016 Wed, 03/02/2016 - 5:19pm Jefferson Lab Weekly Briefs March 2

  14. 2011 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2011 Sun, 09252011 - 2:00pm Jefferson Lab Weekly Briefs September 28, 2011 Wed, 09212011 - 2:00pm Jefferson Lab Weekly Briefs September 21, 2011 Wed, 09142011 -...

  15. Directions to Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Genome Institute (JGI) San Francisco Bay Area Transit Information San Francisco Airport to the Lab by car San Francisco Airport to the Lab by BART San Francisco Airport to...

  16. Berkeley Lab Tour Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bring to get into Berkeley Lab? You must show a photo ID, such as driver's license or passport, to the tour guide in order to board the shuttle to the Lab. Tour participants' names...

  17. 2000 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2000 Wed, 10112000 - 11:00pm Jefferson Lab: Cancer-seeking Camera Demystifies Research Lab (Daily Press) Sat, 10072000 - 11:00pm Breast Cancer Biopsies Could Be Things...

  18. 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Thu, 10152015 - 8:38am Jefferson Lab Weekly Briefs October 15, 2015 Wed, 10072015 - 5:07pm Jefferson Lab Weekly Briefs October 7, 2015 Thu, 10012015 - 8:00am...

  19. 2004 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2004 Tue, 09/21/2004 - 2:00pm Catch Jefferson Lab's entertaining, educational Cryogenics Demonstration at the Virginia State Fair Fri, 09/10/2004 - 2:00pm Jefferson Lab Announces Two Fall Science Series Events

  20. 2007 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2007 Tue, 04/17/2007 - 2:00pm Jefferson Lab Experiment Pins Down Pion Tue, 04/17/2007 - 2:00pm Jefferson Lab scientist puts intriguing view on spin of the proton

  1. 2008 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2008 Fri, 10/24/2008 - 12:00am Jefferson Lab electron beam charges up (Inside Business) Mon, 10/06/2008 - 12:00am Jefferson Lab, ODU team up for center (Inside Business

  2. 2008 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2008 Fri, 10/24/2008 - 3:00pm Jefferson Lab electron beam charges up Mon, 10/06/2008 - 3:00pm Jefferson Lab, ODU team up for center

  3. 2009 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2009 Thu, 07/30/2009 - 2:00pm Jefferson Lab Hosts Science Poster Session Fri, 07/10/2009 - 2:00pm Jefferson Lab Scientist Receives 2009 Presidential Early Career Award

  4. 2011 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Mon, 05/23/2011 - 2:00pm National labs offer computing time to Japanese physicists Wed, 05/11/2011 - 2:00pm Two Jefferson Lab Scientists Win Prestigious Early Career Awards

  5. 2012 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2012 Fri, 08/03/2012 - 2:00pm Jefferson Lab to Test Tornado Warning Siren on Friday Morning Wed, 08/01/2012 - 6:42pm Media Advisory - Jefferson Lab Hosts Summer Intern Science Poster Session

  6. 2013 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 Wed, 03272013 - 2:55pm Jefferson Lab Weekly Briefs March 27, 2013 Wed, 03202013 - 2:11pm Jefferson Lab Weekly Briefs March 20, 2013 Wed, 03132013 - 5:24pm...

  7. 2013 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Wed, 12182013 - 3:04pm Jefferson Lab Weekly Briefs December 18, 2013 Wed, 12112013 - 2:43pm Jefferson Lab Weekly Briefs December 11, 2013 Wed, 12042013 - 1:07pm Jefferson...

  8. 2004 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 Sun, 10242004 - 12:00am efferson Lab Hopes to Bulk Up 'Strong Force' Theory (Daily Press) Mon, 10042004 - 12:00am Jefferson Lab a Worthy Investment (Roanoke.com...

  9. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lecture July 2009 Sun, 07052009 - 11:00pm Jefferson Lab creates better way to discover breast cancer Sun, 07052009 - 11:00pm Jefferson Lab employee invents low-tech gizmo to...

  10. Advisory Committee Recommends Continued Investment in Jefferson Lab |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Advisory Committee Recommends Continued Investment in Jefferson Lab fellowship This aerial view of the Continuous Electron Beam Accelerator Facility shows the footprint of the accelerator and the experimental halls where nuclear physics experiments are conducted. The newest experimental facility, dubbed Hall D, which is part of the 12 GeV Upgrade, is visible in the upper left NEWPORT NEWS, Va., Feb. 6, 2013 - A committee appointed by the U.S. Department of Energy and National

  11. Hampton University Scientists Complete Historic Experiment | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Complete Historic Experiment Two experiments recently completed at the Department of Energy's (DOE) Thomas Jefferson National Accelerator Facility (Jefferson Lab) will put scientists one step closer toward understanding the world we live in. The experiments used Jefferson Lab's high energy accelerator and experimental equipment to produce kaons [pronounced Ka- onz], subatomic particles made of quarks, that have puzzled scientists since their discovery almost 50 years ago. "I am

  12. Jefferson Lab Tech Associate Invents Lockout Device for Equipment with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removable Power Cords | Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords April 22, 2002 It was the early 1990s and building Jefferson Lab's Continuous Electron Beam Accelerator was in high gear. The Accelerator Division was busy installing some 30 vacuum ion pumps in the tunnel. Simultaneously, above ground in the long, low service buildings sitting over the tunnel, workers were installing and wiring the 7 kV, high-voltage power supplies for those

  13. Local firms benefit from Jefferson Lab upgrade | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local firms benefit from Jefferson Lab upgrade Michael Schwartz, Staff Writer Inside Business, February 16, 2009 Just two months into the year, the $310 million upgrade at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility is already paying off for local companies. A $14.1 million contract awarded earlier this month to S.B. Ballard made the Virginia Beach-based construction company the second local firm to reap the benefit of the massive upgrade getting under way at

  14. LCLS Prep Lab Images | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Prep Lab Images « Back to LCLS Prep Laboratory LCLS Prep Lab LCLS Prep Lab, Acid Wash and Water Purifier LCLS Prep Lab, Corner LCLS FEH LCLS Prep Lab, Acetone LCLS Prep Lab, First Aid LCLS Prep Lab, pH LCLS Prep Lab, Lisa Hammon LCLS Prep Lab, Glass LCLS Prep Lab, Hazardous Waste Cabinet LCLS Prep Lab, Door Previous Pause Next

  15. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  16. 2005 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2005 Wed, 11/23/2005 - 1:00am Jefferson Lab budget at risk for cuts

  17. 2007 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2007 Wed, 09/26/2007 - 3:00pm Jefferson Lab Weekly Briefs September 26, 2007 Wed, 09/19/2007 - 3:00pm Jefferson Lab Weekly Briefs September 19, 2007 Wed, 09/12/2007 - 3:00pm Jefferson Lab Weekly Briefs September 12, 2007 Wed, 09/05/2007 - 3:00pm Jefferson Lab Weekly Briefs September 5

  18. 2007 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2007 Wed, 10/24/2007 - 3:00pm Jefferson Lab Weekly Briefs October 24, 2007 Wed, 10/17/2007 - 3:00pm Jefferson Lab Weekly Briefs October 17, 2007 Wed, 10/10/2007 - 3:00pm Jefferson Lab Weekly Briefs October 10, 2007 Wed, 10/03/2007 - 3:00pm Jefferson Lab Weekly Briefs October 3

  19. 2007 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2007 Wed, 11/21/2007 - 3:00pm Jefferson Lab Weekly Briefs November 21, 2007 Wed, 11/14/2007 - 3:00pm Jefferson Lab Weekly Briefs November 14, 2007 Wed, 11/07/2007 - 3:00pm Jefferson Lab Weekly Briefs November 7, 2007 Thu, 11/01/2007 - 3:00pm Jefferson Lab Weekly Briefs November 1

  20. 2008 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2008 Wed, 01/30/2008 - 3:00pm Jefferson Lab Weekly Briefs January 30, 2008 Wed, 01/23/2008 - 5:44pm Jefferson Lab Weekly Briefs January 23, 2008 Wed, 01/16/2008 - 5:46pm Jefferson Lab Weekly Briefs January 16, 2008 Wed, 01/09/2008 - 3:00pm Jefferson Lab Weekly Briefs January 9

  1. 2008 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2008 Wed, 02/27/2008 - 3:00pm Jefferson Lab Weekly Briefs February 27, 2008 Wed, 02/20/2008 - 3:00pm Jefferson Lab Weekly Briefs February 20, 2008 Wed, 02/13/2008 - 3:00pm Jefferson Lab Weekly Briefs February 13, 2008 Wed, 02/06/2008 - 3:00pm Jefferson Lab Weekly Briefs February 6

  2. 2008 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2008 Wed, 03/26/2008 - 3:00pm Jefferson Lab Weekly Briefs March 26, 2008 Wed, 03/19/2008 - 3:00pm Jefferson Lab Weekly Briefs March 19, 2008 Wed, 03/12/2008 - 3:00pm Jefferson Lab Weekly Briefs March 12, 2008 Wed, 03/05/2008 - 3:00pm Jefferson Lab Weekly Briefs March 5

  3. 2008 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2008 Wed, 05/28/2008 - 3:00pm Jefferson Lab Weekly Briefs May 28, 2008 Wed, 05/21/2008 - 3:00pm Jefferson Lab Weekly Briefs May 21, 2008 Wed, 05/14/2008 - 3:00pm Jefferson Lab Weekly Briefs May 14, 2008 Wed, 05/07/2008 - 3:00pm Jefferson Lab Weekly Briefs May 7

  4. 2008 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2008 Wed, 06/25/2008 - 3:00pm Jefferson Lab Weekly Briefs June 25, 2008 Wed, 06/18/2008 - 3:00pm Jefferson Lab Weekly Briefs June 18, 2008 Wed, 06/11/2008 - 3:00pm Jefferson Lab Weekly Briefs June 11, 2008 Wed, 06/04/2008 - 3:00pm Jefferson Lab Weekly Briefs June 4

  5. 2008 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2008 Wed, 08/27/2008 - 3:00pm Jefferson Lab Weekly Briefs August 27, 2008 Wed, 08/20/2008 - 3:00pm Jefferson Lab Weekly Briefs August 20, 2008 Wed, 08/13/2008 - 3:00pm Jefferson Lab Weekly Briefs August 13, 2008 Wed, 08/06/2008 - 3:00pm Jefferson Lab Weekly Briefs August 6

  6. 2008 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2008 Wed, 09/24/2008 - 3:00pm Jefferson Lab Weekly Briefs September 24, 2008 Wed, 09/17/2008 - 2:46pm Jefferson Lab Weekly Briefs September 17, 2008 Wed, 09/10/2008 - 3:00pm Jefferson Lab Weekly Briefs September 10, 2008 Wed, 09/03/2008 - 3:00pm Jefferson Lab Weekly Briefs September 3

  7. 2008 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2008 Wed, 11/26/2008 - 3:00pm Jefferson Lab Weekly Briefs November 26, 2008 Wed, 11/19/2008 - 3:00pm Jefferson Lab Weekly Briefs November 19, 2008 Wed, 11/12/2008 - 3:00pm Jefferson Lab Weekly Briefs November 12, 2008 Wed, 11/05/2008 - 3:00pm Jefferson Lab Weekly Briefs November 5

  8. 2009 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2009 Wed, 05/27/2009 - 3:00pm Jefferson Lab Weekly Briefs May 27, 2009 Wed, 05/20/2009 - 3:00pm Jefferson Lab Weekly Briefs May 20, 2009 Wed, 05/13/2009 - 3:00pm Jefferson Lab Weekly Briefs May 13, 2009 Wed, 05/06/2009 - 3:00pm Jefferson Lab Weekly Briefs May 6

  9. 2009 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2009 Wed, 06/24/2009 - 3:00pm Jefferson Lab Weekly Briefs June 24, 2009 Wed, 06/17/2009 - 3:00pm Jefferson Lab Weekly Briefs June 17, 2009 Wed, 06/10/2009 - 3:00pm Jefferson Lab Weekly Briefs June 10, 2009 Wed, 06/03/2009 - 3:00pm Jefferson Lab Weekly Briefs June 3

  10. 2009 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2009 Wed, 08/26/2009 - 3:00pm Jefferson Lab Weekly Briefs August 26, 2009 Wed, 08/19/2009 - 3:00pm Jefferson Lab Weekly Briefs August 19, 2009 Wed, 08/12/2009 - 3:00pm Jefferson Lab Weekly Briefs August 12, 2009 Wed, 08/05/2009 - 3:00pm Jefferson Lab Weekly Briefs August 5

  11. 2009 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2009 Wed, 10/28/2009 - 3:00pm Jefferson Lab Weekly Briefs October 28, 2009 Wed, 10/21/2009 - 3:00pm Jefferson Lab Weekly Briefs October 21, 2009 Wed, 10/14/2009 - 3:00pm Jefferson Lab Weekly Briefs October 14, 2009 Wed, 10/07/2009 - 3:00pm Jefferson Lab Weekly Briefs October 7

  12. 2009 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2009 Wed, 11/25/2009 - 3:00pm Jefferson Lab Weekly Briefs November 25, 2009 Wed, 11/18/2009 - 3:00pm Jefferson Lab Weekly Briefs November 18, 2009 Wed, 11/11/2009 - 3:00pm Jefferson Lab Weekly Briefs November 11, 2009 Wed, 11/04/2009 - 3:00pm Jefferson Lab Weekly Briefs November 4

  13. 2010 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2010 Wed, 01/27/2010 - 3:00pm Jefferson Lab Weekly Briefs January 27, 2010 Wed, 01/20/2010 - 3:00pm Jefferson Lab Weekly Briefs January 20, 2010 Wed, 01/13/2010 - 3:00pm Jefferson Lab Weekly Briefs January 13, 2010 Wed, 01/06/2010 - 3:00pm Jefferson Lab Weekly Briefs January 6

  14. 2010 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2010 Wed, 04/28/2010 - 3:00pm Jefferson Lab Weekly Briefs April 28, 2010 Wed, 04/21/2010 - 3:00pm Jefferson Lab Weekly Briefs April 21, 2010 Wed, 04/14/2010 - 3:00pm Jefferson Lab Weekly Briefs April 14, 2010 Wed, 04/07/2010 - 3:00pm Jefferson Lab Weekly Briefs April 7

  15. 2010 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2010 Wed, 05/26/2010 - 3:00pm Jefferson Lab Weekly Briefs May 26, 2010 Wed, 05/19/2010 - 3:00pm Jefferson Lab Weekly Briefs May 19, 2010 Wed, 05/12/2010 - 3:00pm Jefferson Lab Weekly Briefs May 12, 2010 Wed, 05/05/2010 - 3:00pm Jefferson Lab Weekly Briefs May 5

  16. 2010 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2010 Wed, 07/28/2010 - 3:00pm Jefferson Lab Weekly Briefs July 28, 2010 Wed, 07/21/2010 - 3:00pm Jefferson Lab Weekly Briefs July 21, 2010 Wed, 07/14/2010 - 3:00pm Jefferson Lab Weekly Briefs July 14, 2010 Wed, 07/07/2010 - 3:00pm Jefferson Lab Weekly Briefs July 7

  17. 2010 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2010 Wed, 08/25/2010 - 3:00pm Jefferson Lab Weekly Briefs August 25, 2010 Wed, 08/18/2010 - 3:00pm Jefferson Lab Weekly Briefs August 18, 2010 Wed, 08/11/2010 - 3:00pm Jefferson Lab Weekly Briefs August 11, 2010 Wed, 08/04/2010 - 3:00pm Jefferson Lab Weekly Briefs August 4

  18. 2010 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2010 Wed, 10/27/2010 - 3:00pm Jefferson Lab Weekly Briefs October 27, 2010 Wed, 10/20/2010 - 3:00pm Jefferson Lab Weekly Briefs October 20, 2010 Wed, 10/13/2010 - 3:00pm Jefferson Lab Weekly Briefs October 13, 2010 Wed, 10/06/2010 - 3:00pm Jefferson Lab Weekly Briefs October 6

  19. 2010 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2010 Wed, 11/24/2010 - 3:00pm Jefferson Lab Weekly Briefs November 24, 2010 Wed, 11/17/2010 - 3:00pm Jefferson Lab Weekly Briefs November 17, 2010 Wed, 11/10/2010 - 3:00pm Jefferson Lab Weekly Briefs November 10, 2010 Wed, 11/03/2010 - 3:00pm Jefferson Lab Weekly Briefs November 3

  20. 2010 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Wed, 12/22/2010 - 3:00pm Jefferson Lab Weekly Briefs December 22, 2010 Wed, 12/15/2010 - 3:00pm Jefferson Lab Weekly Briefs December 15, 2010 Wed, 12/08/2010 - 3:00pm Jefferson Lab Weekly Briefs December 8, 2010 Wed, 12/01/2010 - 3:00pm Jefferson Lab Weekly Briefs December 1, 2010

  1. 2011 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2011 Wed, 04/27/2011 - 3:00pm Jefferson Lab Weekly Briefs April 27, 2011 Wed, 04/20/2011 - 3:00pm Jefferson Lab Weekly Briefs April 20, 2011 Wed, 04/13/2011 - 3:00pm Jefferson Lab Weekly Briefs April 13, 2011 Wed, 04/06/2011 - 3:00pm Jefferson Lab Weekly Briefs April 6

  2. 2011 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Wed, 05/25/2011 - 3:00pm Jefferson Lab Weekly Briefs May 25, 2011 Wed, 05/18/2011 - 3:00pm Jefferson Lab Weekly Briefs May 18, 2011 Wed, 05/11/2011 - 3:00pm Jefferson Lab Weekly Briefs May 11, 2011 Wed, 05/04/2011 - 3:00pm Jefferson Lab Weekly Briefs May 4

  3. 2011 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2011 Wed, 07/27/2011 - 3:00pm Jefferson Lab Weekly Briefs July 27, 2011 Wed, 07/20/2011 - 3:00pm Jefferson Lab Weekly Briefs July 20, 2011 Wed, 07/13/2011 - 3:00pm Jefferson Lab Weekly Briefs July 13, 2011 Wed, 07/06/2011 - 3:00pm Jefferson Lab Weekly Briefs July 6

  4. 2011 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2011 Wed, 10/26/2011 - 3:00pm Jefferson Lab Weekly Briefs October 26, 2011 Wed, 10/19/2011 - 3:00pm Jefferson Lab Weekly Briefs October 19, 2011 Wed, 10/12/2011 - 3:00pm Jefferson Lab Weekly Briefs October 12, 2011 Wed, 10/05/2011 - 3:00pm Jefferson Lab Weekly Briefs October 5

  5. 2012 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2012 Wed, 01/25/2012 - 3:00pm Jefferson Lab Weekly Briefs January 25, 2012 Wed, 01/18/2012 - 3:00pm Jefferson Lab Weekly Briefs January 18, 2012 Wed, 01/11/2012 - 3:00pm Jefferson Lab Weekly Briefs January 11, 2012 Wed, 01/04/2012 - 3:00pm Jefferson Lab Weekly Briefs January 4

  6. 2012 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2012 Wed, 03/28/2012 - 3:00pm Jefferson Lab Weekly Briefs March 28, 2012 Wed, 03/21/2012 - 3:00pm Jefferson Lab Weekly Briefs March 21, 2012 Wed, 03/14/2012 - 3:00pm Jefferson Lab Weekly Briefs March 14, 2012 Wed, 03/07/2012 - 3:00pm Jefferson Lab Weekly Briefs March 7

  7. 2012 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2012 Wed, 04/25/2012 - 3:00pm Jefferson Lab Weekly Briefs April 25, 2012 Wed, 04/18/2012 - 3:00pm Jefferson Lab Weekly Briefs April 18, 2012 Wed, 04/11/2012 - 3:00pm Jefferson Lab Weekly Briefs April 11, 2012 Wed, 04/04/2012 - 3:00pm Jefferson Lab Weekly Briefs April 4

  8. 2012 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2012 Wed, 06/27/2012 - 3:00pm Jefferson Lab Weekly Briefs June 27, 2012 Wed, 06/20/2012 - 3:00pm Jefferson Lab Weekly Briefs June 20, 2012 Wed, 06/13/2012 - 3:00pm Jefferson Lab Weekly Briefs June 13, 2012 Wed, 06/06/2012 - 3:00pm Jefferson Lab Weekly Briefs June 6

  9. 2013 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2013 Wed, 01/30/2013 - 3:00pm Jefferson Lab Weekly Briefs January 30, 2013 Wed, 01/23/2013 - 3:00pm Jefferson Lab Weekly Briefs January 23, 2013 Wed, 01/16/2013 - 3:00pm Jefferson Lab Weekly Briefs January 16, 2013 Wed, 01/09/2013 - 1:00am Jefferson Lab Weekly Briefs January 9

  10. 2013 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2013 Wed, 04/24/2013 - 3:22pm Jefferson Lab Weekly Briefs April 24, 2013 Wed, 04/17/2013 - 2:11pm Jefferson Lab Weekly Briefs April 17, 2013 Wed, 04/10/2013 - 2:01pm Jefferson Lab Weekly Briefs April 10, 2013 Wed, 04/03/2013 - 2:52pm Jefferson Lab Weekly Briefs April 3

  11. 2013 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2013 Wed, 05/29/2013 - 4:05pm Jefferson Lab Weekly Briefs May 29, 2013 Wed, 05/15/2013 - 2:24pm Jefferson Lab Weekly Briefs May 15, 2013 Wed, 05/08/2013 - 2:58pm Jefferson Lab Weekly Briefs May 8, 2013 Wed, 05/01/2013 - 1:39pm Jefferson Lab Weekly Briefs May 1

  12. 2013 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2013 Wed, 06/26/2013 - 2:43pm Jefferson Lab Weekly Briefs June 26, 2013 Wed, 06/19/2013 - 2:08pm Jefferson Lab Weekly Briefs June 19, 2013 Wed, 06/12/2013 - 2:47pm Jefferson Lab Weekly Briefs June 12, 2013 Wed, 06/05/2013 - 2:18pm Jefferson Lab Weekly Briefs June 5

  13. 2013 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2013 Wed, 08/28/2013 - 1:20pm Jefferson Lab Weekly Briefs August 28, 2013 Wed, 08/21/2013 - 1:22pm Jefferson Lab Weekly Briefs August 21, 2013 Wed, 08/14/2013 - 1:50pm Jefferson Lab Weekly Briefs August 14, 2013 Wed, 08/07/2013 - 1:29pm Jefferson Lab Weekly Briefs August 7

  14. 2013 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2013 Wed, 11/27/2013 - 3:31pm Jefferson Lab Weekly Briefs November 27, 2013 Wed, 11/20/2013 - 2:38pm Jefferson Lab Weekly Briefs November 20, 2013 Wed, 11/13/2013 - 4:10pm Jefferson Lab Weekly Briefs November 13, 2013 Wed, 11/06/2013 - 3:33pm Jefferson Lab Weekly Briefs November 6

  15. 2014 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2014 Wed, 05/28/2014 - 5:52pm Jefferson Lab Weekly Briefs May 28, 2014 Wed, 05/21/2014 - 5:43pm Jefferson Lab Weekly Briefs May 21, 2014 Wed, 05/14/2014 - 5:33pm Jefferson Lab Weekly Briefs May 14, 2014 Wed, 05/07/2014 - 5:05pm Jefferson Lab Weekly Briefs May 7

  16. 2014 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2014 Wed, 10/29/2014 - 5:31pm Jefferson Lab Weekly Briefs October 29, 2014 Wed, 10/22/2014 - 4:11pm Jefferson Lab Weekly Briefs October 22, 2014 Wed, 10/15/2014 - 3:58pm Jefferson Lab Weekly Briefs October 15, 2014 Wed, 10/08/2014 - 5:19pm Jefferson Lab Weekly Briefs October 8

  17. 2014 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2014 Wed, 11/26/2014 - 4:17pm Jefferson Lab Weekly Briefs November 26, 2014 Wed, 11/19/2014 - 6:52pm Jefferson Lab Weekly Briefs November 19, 2014 Wed, 11/12/2014 - 3:17pm Jefferson Lab Weekly Briefs November 12, 2014 Wed, 11/05/2014 - 5:59pm Jefferson Lab Weekly Briefs November 5

  18. 2015 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2015 Wed, 06/24/2015 - 12:50pm Jefferson Lab Weekly Briefs June 24, 2015 Wed, 06/17/2015 - 2:29pm Jefferson Lab Weekly Briefs June 17, 2015 Wed, 06/10/2015 - 3:02pm Jefferson Lab Weekly Briefs June 10, 2015 Wed, 06/03/2015 - 1:46pm Jefferson Lab Weekly Briefs June 3

  19. 2015 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2015 Wed, 08/26/2015 - 3:21pm Jefferson Lab Weekly Briefs August 26, 2015 Wed, 08/19/2015 - 4:29pm Jefferson Lab Weekly Briefs August 19, 2015 Wed, 08/12/2015 - 4:34pm Jefferson Lab Weekly Briefs August 12, 2015 Wed, 08/05/2015 - 4:53pm Jefferson Lab Weekly Briefs August 5

  20. 2015 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2015 Wed, 11/25/2015 - 12:54pm Jefferson Lab Weekly Briefs November 25, 2015 Wed, 11/18/2015 - 6:22pm Jefferson Lab Weekly Briefs November 18, 2015 Thu, 11/12/2015 - 10:40am Jefferson Lab Weekly Briefs November 12, 2015 Thu, 11/05/2015 - 10:08am Jefferson Lab Weekly Briefs - November 5

  1. 2016 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2016 Wed, 02/24/2016 - 4:24pm Jefferson Lab Weekly Briefs February 24, 2016 Wed, 02/17/2016 - 6:05pm Jefferson Lab Weekly Briefs February 17, 2016 Thu, 02/11/2016 - 3:11pm Jefferson Lab Weekly Briefs February 11, 2016 Wed, 02/03/2016 - 4:49pm Jefferson Lab Weekly Briefs February 3

  2. 2006 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2006 Sun, 03052006 - 12:00am Faces and Places: Fellowships for US lab directors (CERN Courier...

  3. Jefferson Lab Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Privacy and Security Notice Skip over navigation Search the JLab Site Search Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Jefferson Lab Navigation Home Search News Insight print version Jefferson Lab 12000 Jefferson Avenue Newport News, VA 23606 Phone: (757) 269-7100 Fax: (757) 269-7363 Contact Jefferson Lab Jefferson Lab's service departments and divisional

  4. 2000 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2000 Thu, 08/31/2000 - 2:00pm Christoph Leeman becomes Jefferson Lab's first Deputy Director

  5. 2001 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2001 Fri, 11/16/2001 - 2:00pm Christoph W. Leemann Named Jefferson Lab Director

  6. 2002 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2002 Fri, 09/06/2002 - 2:00pm Jefferson Lab announces Fall 2002 Science Series line

  7. 2004 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 Wed, 10/27/2004 - 2:00pm Jefferson Lab Announces Fall Science Series Event Nov. 23

  8. 2007 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2007 Thu, 02/08/2007 - 2:00pm Jefferson Lab Awards Contract for Next Cluster Computer

  9. 2007 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2007 Tue, 05/15/2007 - 12:00am Leemann Steps Down from Jefferson Lab Directorship

  10. 2007 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2007 Tue, 07/17/2007 - 2:00pm Education Secretary Morris, Senator Norment visit Jefferson Lab

  11. 2008 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2008 Fri, 03/28/2008 - 2:00pm Teachers Invited to Activities Night at Jefferson Lab

  12. 2009 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 Thu, 12/03/2009 - 10:08am Big changes for the Jefferson Lab campus

  13. 2011 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Wed, 05/11/2011 - 10:31am Two Jefferson Lab Scientists Win Prestigious Early Career Awards

  14. 2011 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2011 Mon, 11/28/2011 - 2:00pm Jefferson Lab Scientist Wins 2011 Lawrence Award

  15. Education | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Education Science Education staff support a range of educational programs. One popular program is the Physics Fest, seen here. K-12 classes take field trips to Jefferson Lab for this interactive program designed to give students an awareness of the research conducted at Jefferson Lab and to demonstrate the changing characteristics of materials caused by temperature and phase. Education Jefferson Lab is committed to providing training and education to the next generation of

  16. Geoscience Prep Lab Slideshow | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Prep Lab Slideshow « Back to Geoscience Laboratory Geoscience Prep Lab Geoscience Prep Lab 2 Geoscience Prep Lab 3 Geoscience Prep Lab 4 Geoscience Prep Lab 5 Geoscience Prep Lab Door

  17. 2001 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2001 Sat, 11/17/2001 - 1:00am Jefferson Lab Gets New Chief: Leemann takes top post (Times-Dispatch) Sat, 11/17/2001 - 1:00am Leemann Officially Takes Over Peninsula's Jefferson Lab (The Virginian-Pilot) Mon, 11/05/2001 - 1:00am Lab is Working to Build a Better Mouse Camera

  18. 2007 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2007 Wed, 07/25/2007 - 3:00pm Jefferson Lab Weekly Briefs July 25, 2007 Wed, 07/18/2007 - 3:00pm Jefferson Lab Weekly Briefs July 18, 2007 Wed, 07/11/2007 - 3:00pm Jefferson Lab Weekly Briefs July 1

  19. 2007 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Wed, 12/19/2007 - 3:00pm Jefferson Lab Weekly Briefs December 19, 2007 Wed, 12/12/2007 - 3:00pm Jefferson Lab Weekly Briefs December 12, 2007 Wed, 12/05/2007 - 3:00pm Jefferson Lab Weekly Briefs December 5, 2007

  20. 2008 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Wed, 12/17/2008 - 3:00pm Jefferson Lab Weekly Briefs December 17, 2008 Wed, 12/10/2008 - 3:00pm Jefferson Lab Weekly Briefs December 10, 2008 Wed, 12/03/2008 - 3:00pm Jefferson Lab Weekly Briefs December 3, 2008

  1. 2009 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2009 Wed, 01/28/2009 - 3:00pm Jefferson Lab Weekly Briefs January 28, 2009 Wed, 01/21/2009 - 3:00pm Jefferson Lab Weekly Briefs January 21, 2009 Wed, 01/14/2009 - 3:00pm Jefferson Lab Weekly Briefs January 1

  2. 2009 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    09 Wed, 12/16/2009 - 3:00pm Jefferson Lab Weekly Briefs December 16, 2009 Wed, 12/09/2009 - 3:00pm Jefferson Lab Weekly Briefs December 9, 2009 Wed, 12/02/2009 - 3:00pm Jefferson Lab Weekly Briefs December 2, 2009

  3. 2011 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2011 Wed, 01/26/2011 - 3:00pm Jefferson Lab Weekly Briefs January 26, 2011 Wed, 01/19/2011 - 3:00pm Jefferson Lab Weekly Briefs January 19, 2011 Wed, 01/12/2011 - 3:00pm Jefferson Lab Weekly Briefs January 1

  4. 2011 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Wed, 12/21/2011 - 3:00pm Jefferson Lab Weekly Briefs December 21, 2011 Wed, 12/14/2011 - 3:00pm Jefferson Lab Weekly Briefs December 14, 2011 Wed, 12/07/2011 - 3:00pm Jefferson Lab Weekly Briefs December 7, 2011

  5. 2012 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2012 Wed, 07/25/2012 - 3:00pm Jefferson Lab Weekly Briefs July 25, 2012 Wed, 07/18/2012 - 3:00pm Jefferson Lab Weekly Briefs July 18, 2012 Wed, 07/11/2012 - 3:00pm Jefferson Lab Weekly Briefs July 1

  6. 2012 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2012 Wed, 09/26/2012 - 3:00pm Jefferson Lab Weekly Briefs September 26, 2012 Wed, 09/19/2012 - 3:00pm Jefferson Lab Weekly Briefs September 19, 2012 Wed, 09/12/2012 - 3:00pm Jefferson Lab Weekly Briefs September 12

  7. 2012 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2012 Wed, 11/21/2012 - 3:00pm Jefferson Lab Weekly Briefs November 21, 2012 Wed, 11/14/2012 - 3:00pm Jefferson Lab Weekly Briefs November 14, 2012 Wed, 11/07/2012 - 3:00pm Jefferson Lab Weekly Briefs November 7

  8. 2012 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Wed, 12/19/2012 - 3:00pm Jefferson Lab Weekly Briefs December 19, 2012 Wed, 12/12/2012 - 1:00pm Jefferson Lab Weekly Briefs December 12, 2012 Wed, 12/05/2012 - 3:00pm Jefferson Lab Weekly Briefs December 5, 2012

  9. 2013 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2013 Wed, 09/25/2013 - 1:37pm Jefferson Lab Weekly Briefs September 25, 2013 Wed, 09/18/2013 - 2:40pm Jefferson Lab Weekly Briefs September 18, 2013 Wed, 09/11/2013 - 12:30pm Jefferson Lab Weekly Briefs September 11

  10. 2013 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Wed, 12/18/2013 - 4:04pm Jefferson Lab Weekly Briefs December 18, 2013 Wed, 12/11/2013 - 3:43pm Jefferson Lab Weekly Briefs December 11, 2013 Wed, 12/04/2013 - 2:07pm Jefferson Lab Weekly Briefs December 4, 2013

  11. 2014 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2014 Thu, 01/30/2014 - 4:00pm Jefferson Lab Weekly Briefs January 30, 2014 Wed, 01/15/2014 - 4:11pm Jefferson Lab Weekly Briefs January 15, 2014 Wed, 01/08/2014 - 5:12pm Jefferson Lab Weekly Briefs January 8

  12. 2014 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2014 Wed, 06/25/2014 - 5:23pm Jefferson Lab Weekly Briefs June 25, 2014 Wed, 06/11/2014 - 6:12pm Jefferson Lab Weekly Briefs June 11, 2014 Wed, 06/04/2014 - 7:13pm Jefferson Lab Weekly Briefs June 4

  13. 2014 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2014 Wed, 08/20/2014 - 6:43pm Jefferson Lab Weekly Briefs August 20, 2014 Wed, 08/13/2014 - 6:59pm Jefferson Lab Weekly Briefs August 13, 2014 Wed, 08/06/2014 - 7:11pm Jefferson Lab Weekly Briefs August 6

  14. 2014 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Wed, 12/17/2014 - 5:26pm Jefferson Lab Weekly Briefs December 17, 2014 Wed, 12/10/2014 - 6:59pm Jefferson Lab Weekly Briefs December 10, 2014 Wed, 12/03/2014 - 6:13pm Jefferson Lab Weekly Briefs December 3, 2014

  15. 2015 - 01 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 2015 Wed, 01/28/2015 - 4:26pm Jefferson Lab Weekly Briefs January 28, 2015 Wed, 01/21/2015 - 6:41pm Jefferson Lab Weekly Briefs January 21, 2015 Wed, 01/14/2015 - 5:50pm Jefferson Lab Weekly Briefs January 1

  16. 2015 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2015 Wed, 05/20/2015 - 3:37pm Jefferson Lab Weekly Briefs May 20, 2015 Wed, 05/13/2015 - 11:35am Jefferson Lab Weekly Briefs May 13, 2015 Wed, 05/06/2015 - 1:21pm Jefferson Lab Weekly Briefs May 6

  17. 2015 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2015 Wed, 09/23/2015 - 5:31pm Jefferson Lab Weekly Briefs September 23, 2015 Wed, 09/16/2015 - 5:02pm Jefferson Lab Weekly Briefs September 16, 2015 Wed, 09/02/2015 - 4:58pm Jefferson Lab Weekly Briefs September 2

  18. 2015 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2015 Wed, 12/23/2015 - 9:12am Jefferson Lab Weekly Briefs December 23, 2015 Wed, 12/16/2015 - 3:44pm Jefferson Lab Weekly Briefs December 16, 2015 Wed, 12/09/2015 - 6:20pm Jefferson Lab Weekly Briefs December 10

  19. 2001 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2001 Wed, 03/21/2001 - 2:00pm Six NN High School Students Win Jefferson Lab Externships Wed, 03/21/2001 - 2:00pm Jones O. &amp; Associates of Hampton wins Jefferson Lab's annual Small Disadvantaged Business Subcontractor award Wed, 03/14/2001 - 2:00pm Jefferson Lab Seeks Applicants for Science Teacher Enrichment Program

  20. 2003 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2003 Mon, 09/29/2003 - 2:00pm Jefferson Lab announces Oct. 7 Fall Science Series event Tue, 09/09/2003 - 2:00pm Female physicists lead the way on Jefferson Lab experiment Fri, 09/05/2003 - 2:00pm Jefferson Lab announces Fall Science Series line up