Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition,...

2

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

3

The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator  

E-Print Network (OSTI)

The BErkeley Lab Laser Accelerator (BELLA):A 10 GeV Laser Plasma Accelerator W.P. Leemans ' , R.of the design of a 10 GeV laser plasma accelerator (LPA)

Leemans, W.P.

2011-01-01T23:59:59.000Z

4

#LabChat: Particle Accelerators, Lasers and Discovery Science...  

NLE Websites -- All DOE Office Websites (Extended Search)

a concentrated photovoltaic unit that when commercialized will revolutionize the way solar energy is collected. | Photo courtesy of Sandia National Lab LabChat: Science of...

5

#LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Particle Accelerators, Lasers and Discovery Science, May Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST May 15, 2012 - 2:03pm Addthis SLAC’s linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world’s brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by

6

Jefferson Lab Guided Tour - What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is an accelerator? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

7

Jefferson Lab Guided Tour - How does the accelerator work?  

NLE Websites -- All DOE Office Websites (Extended Search)

How does the accelerator work? Welcome to Jefferson Lab Why was Jefferson Lab built? How do scientists study quarks? What is an accelerator? How does the accelerator work? Why use...

8

Lab seeks venture acceleration initiative partners  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative is a pilot program to strategically spin off from the Lab start-up companies with emphasis on establishing new businesses in northern New Mexico. June 9, 2008...

9

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputing Power to Accelerate Fossil Energy Supercomputing Power to Accelerate Fossil Energy Research Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer that enables the simulation of processes or technologies that are difficult or impossible to demonstrate using traditional methods. | Video by the National Energy Technology Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs How can I participate? Watch the video and learn more about the National Labs and their work in high performance computing. The Lab Breakthroughs series features videos produced by each of the National Labs about their game-changing innovations and discoveries. To see

10

Terahertz radiation from laser accelerated electron bunches  

E-Print Network (OSTI)

NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

2004-01-01T23:59:59.000Z

11

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

Science Conference Proceedings (OSTI)

Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics.

Hules, John A

2008-12-12T23:59:59.000Z

12

SLAC National Accelerator Laboratory - Berkeley Lab Director...  

NLE Websites -- All DOE Office Websites (Extended Search)

to give a science talk as part of the commemoration of the 50th Anniversary of the SLAC National Accelerator Laboratory. In preparing for the talk, I took the opportunity to...

13

Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fermilab Accelerator Technology Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing fields. They treat cancer, cure inks on cereal boxes, sterilize medical supplies, create better shrink wrap, spot suspicious cargo, clean up dirty drinking water, and help design drugs. Fermi National Accelerator Laboratory scientist Stuart Henderson took some time discuss the role of particle accelerators in basic science,

14

Electron acceleration & laser pulse compression using a laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

acceleration & laser pulse compression using a laser-plasma accelerator Wednesday, August 14, 2013 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Andreas Walker, Oxford...

15

Laser Wakefield Particle Accelerators Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Acceleration Laser Wakefield Particle Acceleration Vorpal.jpg Key Challenges: Design of multiple-staged, 10-GeV laser-wakefield plasma accelerated next-generation hardware...

16

Laser Guiding for GeV Laser-Plasma Accelerators  

E-Print Network (OSTI)

Light pipe for high intensity laser pulses. Phys. Rev. Lett.and relativistically strong laser pulses in an underdensefrom Thomson scat- tering using laser wake?eld accelerators.

Leemans, Wim; Esarey, Eric; Geddes, Cameron; Schroeder, C.B.; Toth, Csaba

2005-01-01T23:59:59.000Z

17

Nonlinear laser energy depletion in laser-plasma accelerators  

E-Print Network (OSTI)

Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

Shadwick, B.A.

2009-01-01T23:59:59.000Z

18

Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

X-ray Laser Captures Atoms and Molecules in X-ray Laser Captures Atoms and Molecules in Action Lab Breakthrough: X-ray Laser Captures Atoms and Molecules in Action July 18, 2012 - 12:51pm Addthis The Linac Coherent Light Source at SLAC is the world's most powerful X-ray laser, which helps researchers understand the extreme conditions found in the hearts of stars and giant planets guiding research into nuclear fusion, the mechanism that powers the sun. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs How is the LCLS different? Rather than accelerate particles to collide them, it accelerates particles in a special way to create extremely bright bunches of photons. These pulses are about 10 billion times brighter and one thousand

19

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

20

Laser Wakefield Acceleration Experiments Using HERCULES Laser  

Science Conference Proceedings (OSTI)

Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing laser power and plasma electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 6.1x10{sup 19} W/cm{sup 2} at laser power of 80 TW to be delivered to the gas-jet using F/10 focusing optics. We found that electron beam charge was increased significantly with an increase of laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. We also studied the influence of laser focusing conditions by changing the f-number of the optics to F/15 and found an increase in density threshold for electron production compared to the F/10 configuration. The analysis of different phenomena such as betatron motion of electrons, side scattering of the laser pulse for different focusing conditions, the influence of plasma density down ramp on LWFA are shown.

Matsuoka, T.; McGuffey, C.; Dollar, F.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science and FOCUS Center, University of Michigan, Ann Arbor, MI 48109 (United States); Horovitz, Y. [Center for Ultrafast Optical Science and FOCUS Center, University of Michigan, Ann Arbor, MI 48109 (United States); Dynamical Experiments Group, Propulsion Division, Soreq NRC, Yavnee 81800 (Israel)

2009-07-25T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Staging laser plasma accelerators for increased beam energy  

E-Print Network (OSTI)

Staging Laser Plasma Accelerators for Increased Beam Energy94720, USA Abstract. Staging laser plasma accelerators is anefficient way of mitigating laser pump depletion in laser

Panasenko, Dmitriy

2010-01-01T23:59:59.000Z

22

Four Crazy Uses for Lasers in the National Labs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

crystal spectrometer is installed to measure the shot-by-shot characteristics of X-ray laser pulses. | SLAC National Accelerator Photo by Matt Beardsley SLAC staff scientist...

23

Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes  

E-Print Network (OSTI)

Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

Geddes, C.G.R.

2011-01-01T23:59:59.000Z

24

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

25

High-Energy Laser Ponderomotive Acceleration  

SciTech Connect

A new concept of TeV-range laser ponderomotive acceleration in a plasma is proposed. Particles are accelerated in the point-like scattering by the leading front of the laser pulse, propagating at the group velocity less than the vacuum speed of light. In this scheme, the gain in particle energy is determined by the group velocity and does not depend on laser intensity, which determines the quantum probability of acceleration. The quantum and classical analysis of the scheme proposed is presented. Estimates show that the concept proposed is a promising technique for compact laser acceleration of TeV energy range.

Smetanin, I.V.; /Lebedev Inst.; Barnes, C.; /SLAC; Nakajima, K.; /KEK, Tsukuba

2006-03-10T23:59:59.000Z

26

Lab announces selection of partner for venture acceleration initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab with emphasis on establishing new businesses in Northern New Mexico....

27

Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Fermi National Fermi National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Fermi National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Fermi National Accelerator Laboratory Logo Visit the Fermi National Accelerator

28

Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

SLAC National SLAC National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: SLAC National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page SLAC National Accelerator Laboratory Logo Visit the SLAC National Accelerator

29

Princeton Plasma Physics Lab - Laser diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

laser-diagnostics The Multi-Point laser-diagnostics The Multi-Point Thomson Scattering (MPTS) diagnostic system has been providing time dependent Te and ne profile measurements on NSTX for ten years. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

30

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.particle accelerators, plasmas can sustain acceleratingthat use laser-driven plasma waves. These plasma- based

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

31

Free-electron laser driven by the LBNL laser-plasma accelerator  

E-Print Network (OSTI)

OF AN XUV FEL DRIVEN BY THE LASER-PLASMA ACCELERATOR AT THEFree-electron laser driven bythe LBNL laser-plasma accelerator C. B. Schroeder ? , W. M.

Schroeder, C. B.

2010-01-01T23:59:59.000Z

32

Laser triggered injection of electrons in a laser wakefield accelerator with the colliding pulse method  

E-Print Network (OSTI)

Laser Triggered Injection ofElectrons in a Laser Wake?eld Accelerator with the CollidingAn injection scheme for a laser wake?eld accelerator that

2004-01-01T23:59:59.000Z

33

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

34

Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators Elementary Particles Detectors Accelerators Visit World Labs For Children - for younger people For Children The Electric Force For Children Electric Force Fields For...

35

Photonic laser-driven accelerator for GALAXIE  

SciTech Connect

We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

2012-12-21T23:59:59.000Z

36

Microwave accelerator E-beam pumped laser  

DOE Patents (OSTI)

A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

Brau, Charles A. (Los Alamos, NM); Stein, William E. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM)

1980-01-01T23:59:59.000Z

37

Oak Ridge 25URC Tandem Accelerator 2008 SNEAP Lab Report  

Science Conference Proceedings (OSTI)

During FY 2008, the 25URC operated for slightly over 3,000 research hours. The radioactive species {sup 80}Ge and {sup 17,18}F accounted for 763 of these hours. This included an experiment using {sup 17}F which was only possible due to an improvement of a factor of 50 in beam intensity over our previous facility record. Twenty stable beam species were provided this year. Operation for the experimental program was at terminal potentials from 2.02 to 23.8 MV. Approximately 200 hours of conditioning were done to return the machine to operation after tank openings. There were six tank openings during the year: three scheduled for general maintenance and three unscheduled. Two of the unscheduled openings were required to correct shorting rod issues and the other was to reestablish communication with one of the major dead sections. On July 28, an event happened that caused all accelerators at the Holifield Radioactive Ion Beam Facility (HRIBF) to suspend operation. At approximately 8 AM on that Monday, during operations with approximately 12 {micro}A of 50-MeV protons on a uranium carbide target, delivering neutron-rich {sup 81}Zn beam to the new Low-energy Radioactive Ion Beam Spectroscopy Station (LeRIBSS), a radiological control technician (RCT) reported higher than normal radiation levels just outside the shield door to the IRIS1 vault (the room in which RIBs are produced at HRIBF). The measured dose rate equivalent was 4 mrem/hr. The presence of radiological contamination on the floor just outside the shield door was subsequently noted, as was the possible presence of airborne radioactivity. These observations were reported to facility management. Accelerators were put in standby immediately and the building evacuated. The event was subsequently declared a laboratory operational emergency. Parts of the building were cleared for reentry to collect belongings on Monday afternoon. The entire building was cleared for reoccupation on Tuesday morning after a detailed radiological survey found no contamination outside the shielded vaults. No decontamination was required. No individual received any detectable radiological dose as a result of this event. The 25URC tandem accelerator was given permission to resume operation with stable beams in early September, but radioactive ion production is still not allowed. Subsequent analysis indicated a release that consisted entirely of noble gasses (Xe and Kr isotopes). We believe we have identified two unrelated failures, one associated with the HVAC system and the other with the roughing system exhaust which accounts for both the escape of noble gasses into the IRIS1 vault and their migration outside the vault. An investigation team report is expected by October 24. At that time, corrective actions will be determined and the path to future radioactive ion beam production will be known. The break from operations allowed a few upgrades to be implemented. The most notable was the installation and commissioning of a SNICS ion source purchased from National Electrostatics Corporation (NEC). The SNICS replaced the old Alton/Aarhus source that we have used for many years. An ANU style gas cathode holder was purchased also but has not yet been implemented. The first beams have been produced by the source and the biggest problem encountered was reducing the beam for very low current experiments. A new power supply for the injection magnet was installed during this period also. Radioactive ion beam (RIB) development at the High Power Target Laboratory (HPTL) has been delayed this year while installing the platforms, conduits and equipment for the second Injector for Radioactive Ion Species (IRIS2) which is co-located with the HPTL facility. Therefore, the majority of development activities have been performed at the two off-line ion source test facilities (ISTF1 and ISTF2) and the On-Line Test Facility (OLTF). Both test facilities have been developing systems which will eventually be used with IRIS2. Two new tunable Ti:Sapphire lasers have been ordered for continuing development of an ion source

Meigs, Martha J [ORNL; Juras, Raymond C [ORNL

2011-01-01T23:59:59.000Z

38

Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power to Accelerate Fossil Energy Research September 30, 2013 - 4:49pm Addthis At the heart of the Simulation-Based Engineering User Center (SBEUC) is a high-performance computer...

39

Free Electron Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Free Electron Laser Building Exterior Top Floor Control Room RF Gallery User Lab Beam Enclosure Injector Linear Accelerator Wiggler Magnet Return Line Free Electron Laser Most...

40

Berkeley Lab A to Z Index: L  

NLE Websites -- All DOE Office Websites (Extended Search)

LabAlert - LabAlert Emergency Alerting Service LabAlert - LabAlert Emergency Alerting Service Lab Advisory Board Lab Population Table Lab Property Review Lab Wiki Laboratory Counsel Laboratory Directed Research & Development Program (LDRD) Laboratory Research Computing Laboratory Support Services Labor Employee Relations Lactation Accommodation Program Lactation / Nursing Moms Laser Ablation: Advanced Laser Technologies Lab Laser Management System (Laser Inventory) Laser Safety Web Page Lasers, Optical Accelerator Systems Integrated Studies (L'OASIS) Group LaTeX (& TeX) information Lawrence Berkeley National Laboratory 75th Anniversary Website LBLnet Service at LBL (Ethernet, IP, VPN, etc.) LBNL Corrective Action Tracking System (CATS) LBNL Incident Notification/Contact x6999 LBNL Merchandise, Food and Drink for Sale 24/7 at the Guest House

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Advances in laser driven accelerator R&D  

E-Print Network (OSTI)

and Zgadzaj, R. , Plasma Channels and Laser Pulse Tailoringfor GeV Laser-Plasma Accelerators, in Advanced Acceleratormulti-terawatt ti:sapphire laser system for laser wake-?eld

Leemans, Wim

2004-01-01T23:59:59.000Z

42

World Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle Physics Labs Worldwide Elementary Particles Detectors Accelerators Visit World Labs Brookhaven National Laboratory-RHIC CERN -- European Organization for Nuclear Research...

43

Jefferson Lab Science Series - Proton Therapy - Accelerating Protons to  

NLE Websites -- All DOE Office Websites (Extended Search)

The Science of Chocolate The Science of Chocolate Previous Video (The Science of Chocolate) Science Series Video Archive Next Video (Adventures in Infectious Diseases) Adventures in Infectious Diseases Proton Therapy - Accelerating Protons to Save Lives Dr. Cynthia Keppel - Hampton University Proton Therapy Institute October 25, 2011 In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy

44

PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS  

SciTech Connect

Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

2011-07-19T23:59:59.000Z

45

Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Wakefield Accelerators in a Lorentz Boosted Frame Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame VayBoost.gif An image showing the "boosted frame," in which...

46

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15, 2012 15, 2012 SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat kicks off May 17, 1 p.m. EST with atom smashers and laser scientists from Fermi National Accelerator Lab, Thomas Jefferson National Accelerator Lab, and SLAC National Accelerator Lab. May 14, 2012 Lab Breakthrough: Fermilab Accelerator Technology Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient

47

Physics of Laser-driven plasma-based acceleration  

SciTech Connect

The physics of plasma-based accelerators driven by short-pulse lasers is reviewed. This includes the laser wake-field accelerator, the plasma beat wave accelerator, the self-modulated laser wake-field accelerator, and plasma waves driven by multiple laser pulses. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse direction, electron dephasing, laser pulse energy depletion, as well as beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and plasmas with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Recent experimental results are summarized.

Esarey, Eric; Schroeder, Carl B.

2003-06-30T23:59:59.000Z

48

Surfatron laser-plasma accelerator: prospects and limitations  

SciTech Connect

The surfatron laser-plasma accelerator is an extension of the plasma beat wave accelerator scheme. It utilizes very intense electric fields, 10/sup 9/ to 10/sup 10/ V/cm, associated with focussed laser beams to accelerate particles. (GHT)

Joshi, C.

1983-01-01T23:59:59.000Z

49

Characterisation of electron beams from laser-driven particle accelerators  

Science Conference Proceedings (OSTI)

The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

2012-12-21T23:59:59.000Z

50

Thomas Jefferson National Accelerator Facility Technologies ...  

Jefferson Lab also conducts a variety of research using its Free-Electron Laser, which is based on the same electron-accelerating technology used in CEBAF.

51

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

52

Charge Diagnostics for Laser Plasma Accelerators  

SciTech Connect

The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

2010-06-01T23:59:59.000Z

53

Charge Diagnostics for Laser Plasma Accelerators  

Science Conference Proceedings (OSTI)

The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

2010-11-04T23:59:59.000Z

54

Chirped pulse inverse free-electron laser vacuum accelerator  

SciTech Connect

A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z

55

Summary Report of Working Group 6: Laser-Plasma Acceleration  

Science Conference Proceedings (OSTI)

A summary is given of presentations and discussions in theLaser-Plasma Acceleration Working Group at the 2006 Advanced AcceleratorConcepts Workshop. Presentation highlights include: widespreadobservation of quasi-monoenergetic electrons; good agreement betweenmeasured and simulated beam properties; the first demonstration oflaser-plasma acceleration up to 1 GeV; single-shot visualization of laserwakefield structure; new methods for measuringpetawatt laser technology for future laser-plasmaaccelerators.

Leemans, Wim P.; Downer, Michael; Siders, Craig

2006-07-01T23:59:59.000Z

56

Sandia National Labs: PCNSC: Departments: Lasers, Optics, & Remote...  

NLE Websites -- All DOE Office Websites (Extended Search)

Manager Idabelle Idabelle Courtney Admin. Asst. Resources SNLO Software Solid State Lasers and Non-Linear Optics VECSEL: The Other Surface Emitting Semiconductor Laser Compact...

57

Berkeley Lab View -- March 28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

March 28th, 2008 Search the View Archive March 28th, 2008 Search the View Archive State of the Lab: New Initiatives, Construction Daniel Chemla (1940-2008): A Remembrance of His Career The View is Going Green DOE Excellence Award to Foundry Project Team Berkeley Lab View Here Comes BELLA: The BErkeley Lab Laser Acceleration Project Berkeley Lab Science Roundup State of the Lab: New Initiatives, Construction By Lynn Yarris image Photo by Roy Kaltschmidt, CSO Free electron lasers with attosecond capabilities, a high-energy electron accelerator less than a meter in length, the arrival of NERSC-6 and the departure of GELCO-4 were some of the highlights of Berkeley Lab Director Steve Chu's State-of-the-Lab address, which he delivered at the Building 50 Auditorium during the noon hour on March 10, with simulcast to the

58

Trident Laser Laboratory - Los Alamos National Lab: National ...  

Conducts experiments requiring high-energy laser-light pulses. Facility description, equipment and access information provided.

59

Integration of photonic and passive microfluidic devices into lab-on-chip with femtosecond laser materials processing  

E-Print Network (OSTI)

Femtosecond laser materials processing is a powerful method for the integration of high resolution, 3D structures into Lab-On-Chip (LOC) systems. One major application of femtosecond laser materials processing is waveguide ...

Gu, Yu, Ph.D. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

60

Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring  

Science Conference Proceedings (OSTI)

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

2011-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Operational plasma density and laser parameters for future colliders based on laser-plasma accelerators  

SciTech Connect

The operational plasma density and laser parameters for future colliders based on laser-plasma accelerators are discussed. Beamstrahlung limits the charge per bunch at low plasma densities. Reduced laser intensity is examined to improve accelerator efficiency in the beamstrahlung-limited regime.

Schroeder, C. B.; Esarey, E.; Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

62

Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Laser Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame VayBoost.gif An image showing the "boosted frame," in which the observer moves at near light speed. The laser pulse is represented in blue and red; the wakefields are colored pale blue and yellow. In this frame, the plasma (yellow box) has contracted and the wavefronts are fewer and farther apart, resulting in far fewer calculations and faster results. Why it Matters: Laser driven plasma waves can produce accelerating gradients orders of magnitude greater than standard accelerating structures. High quality electron beams of energy up to 1 GeV have been produced in just a few centimeters and 10-GeV stages being planned as

63

Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels  

E-Print Network (OSTI)

pulsed, THz radiation from laser accelerated relativisticGuiding of Relativistic Laser Pulses by Plasma Channels,"Wake Fields by Colliding Laser Pulses,"Phys. Rev. Lett.

2005-01-01T23:59:59.000Z

64

SLAC National Accelerator Laboratory - X-ray Laser Sees Photosynthesis...  

NLE Websites -- All DOE Office Websites (Extended Search)

new window on the way plants generate the oxygen we breathe, researchers used an X-ray laser at the Department of Energy's (DOE) SLAC National Accelerator Laboratory to...

65

Analysis of Laser Wakefield Particle Acceleration Data at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Laser Wakefield Particle Acceleration Data LWFAIllustrationSmall.png In collaboration with researchers of the LOASIS program (LBNL) and the SciDAC SDM center (LBNL) we...

66

Progress Report on Modelling of Laser-Plasma Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Report on Modelling of Laser-Plasma Acceleration Karoly Nemeth presented a positive referee report from the PRL article that was submitted on Apr. 20, and discussed the most...

67

Characteristics of an envelope model for laser-plasma accelerator simulation  

Science Conference Proceedings (OSTI)

Simulation of laser-plasma accelerator (LPA) experiments is computationally intensive due to the disparate length scales involved. Current experiments extend hundreds of laser wavelengths transversely and many thousands in the propagation direction, ... Keywords: Envelope model, Laser wakefield acceleration, Laser-plasma acceleration, PIC, Plasma accelerator

Benjamin M. Cowan; David L. Bruhwiler; Estelle Cormier-Michel; Eric Esarey; Cameron G. R. Geddes; Peter Messmer; Kevin M. Paul

2011-01-01T23:59:59.000Z

68

Effects of Ionization in a Laser Wakefield Accelerator  

Science Conference Proceedings (OSTI)

Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

McGuffey, C.; Schumaker, W.; Matsuoka, T.; Dollar, F. J.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI (United States); Kneip, S. [Imperial College London, SW 7 2AZ (United Kingdom); Bychenkov, V. Yu. [P. N. Lebedev Physics Institute, Leninskij prospekt, 53, Moscow (Russian Federation); Glazyrin, I. V.; Karpeev, A. V. [Russian Federal Nuclear Centre All-Russian Institute of Technical Physics, 456770, Snezhinsk, Chelyabinsk Region (Russian Federation)

2010-11-04T23:59:59.000Z

69

Laser wakefield acceleration experiments at the University of Michigan  

Science Conference Proceedings (OSTI)

Laser wakefield acceleration (LWFA) in a supersonic gas-jet using a self-guided laser pulse was studied by changing the laser power and electron density. The recently upgraded HERCULES laser facility equipped with wavefront correction enables a peak intensity of 8x10{sup 19} W/cm{sup 2} at laser power of 100 TW to be delivered to the gas-jet using f/10 focusing optics. We found that electron beam charge was increased significantly with an increase of the laser power from 30 TW to 80 TW and showed density threshold behavior at a fixed laser power. Betatron motion of electrons was also observed depending on laser power and electron density.

Matsuoka, T.; McGuffey, C.; Horovitz, Y.; Dollar, F.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; Reed, S.; Rousseau, P.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science and FOCUS Center, University of Michigan, Ann Arbor, MI 48109 (United States); Huntington, C. M.; Drake, R. P. [Atmospheric Oceanic and Space Sciences, Space Physics Research Lab., University of Michigan, Ann Arbor, MI 48109 (United States); Levin, M.; Zigler, A. [Hebrew University, Jerusalem (Israel)

2009-01-22T23:59:59.000Z

70

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

laser. This laser plasma accelerator explores new physics while saving space and energy. Dark energy probe Dark energy probe image Expect spectacular final results from the Baryon...

71

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

SciTech Connect

Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

2010-05-17T23:59:59.000Z

72

Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

Cowan, Benjamin; /Tech-X, Boulder; Lin, M.C.; /Tech-X, Boulder; Schwartz, Brian; /Tech-X, Boulder; Byer, Robert; /Stanford U., Phys. Dept.; McGuinness, Christopher; /Stanford U., Phys. Dept.; Colby, Eric; /SLAC; England, Robert; /SLAC; Noble, Robert; /SLAC; Spencer, James; /SLAC

2012-07-02T23:59:59.000Z

73

SLAC National Accelerator Laboratory - Laser Mashup: Researchers...  

NLE Websites -- All DOE Office Websites (Extended Search)

have provided a wealth of information on atoms, molecules and materials. But even when laser research was in its infancy more than 40 years ago, scientists pondered the potential...

74

Free electron laser using Rf coupled accelerating and decelerating structures  

DOE Patents (OSTI)

A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

75

Optimized laser pulse profile for efficient radiation pressure acceleration of ions  

SciTech Connect

The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarela-tivistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States) and University of California, Berkeley, California 94720 (United States)

2012-12-21T23:59:59.000Z

76

Optimized laser pulse profile for efficient radiation pressure acceleration of ions  

Science Conference Proceedings (OSTI)

The radiation pressure acceleration regime of laser ion acceleration requires high intensity laser pulses to function efficiently. Moreover, the foil should be opaque for incident radiation during the interaction to ensure maximum momentum transfer from the pulse to the foil, which requires proper matching of the target to the laser pulse. However, in the ultrarelativistic regime, this leads to large acceleration distances, over which the high laser intensity for a Gaussian laser pulse must be maintained. It is shown that proper tailoring of the laser pulse profile can significantly reduce the acceleration distance, leading to a compact laser ion accelerator, requiring less energy to operate.

Bulanov, S. S. [University of California, Berkeley, California 94720 (United States); Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Leemans, W. P. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

2012-09-15T23:59:59.000Z

77

Stimulated Raman Side Scattering in Laser Wakefield Acceleration  

Science Conference Proceedings (OSTI)

Stimulated Raman side scattering of an ultrashort high power laser pulse is studied in experiments on laser wakefield acceleration. Experiments and simulations reveal that stimulated Raman side scattering occurs at the beginning of the interaction, that it contributes to the evolution of the pulse prior to wakefield formation, and also that it affects the quality of electron beams generated. The relativistic shift of the plasma frequency is measured.

Matsuoka, T.; McGuffey, C.; Cummings, P. G.; Horovitz, Y.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Rousseau, P.; Yanovsky, V.; Bulanov, S. S.; Thomas, A. G. R.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science and FOCUS Center, University of Michigan, Ann Arbor, Michigan 48109 (United States)

2010-07-16T23:59:59.000Z

78

Particle physicist's dreams about PetaelectronVolt laser plasma accelerators  

Science Conference Proceedings (OSTI)

Present day accelerators are working well in the multi TeV energy scale and one is expecting exciting results in the coming years. Conventional technologies, however, can offer only incremental (factor 2 or 3) increase in beam energies which does not follow the usual speed of progress in the frontiers of high energy physics. Laser plasma accelerators theoretically provide unique possibilities to achieve orders of magnitude increases entering the PetaelectronVolt (PeV) energy range. It will be discussed what kind of new perspectives could be opened for the physics at this new energy scale. What type of accelerators would be required?.

Vesztergombi, G. [KFKI-RMKI. 1525-H Budapest P.O.B. 49. (Hungary)

2012-07-09T23:59:59.000Z

79

Preformed transient gas channels for laser wakefield particle acceleration  

SciTech Connect

Acceleration of electrons by laser-driven plasma wake fields is limited by the range over which a laser pulse can maintain its intensity. This distance is typically given by the Rayleigh range for the focused laser beam, usually on the order of 0.1 mm to 1 mm. For practical particle acceleration, interaction distances on the order of centimeters are required. Therefore, some means of guiding high intensity laser pulses is necessary. Light intensities on the order of a few times 10{sup 17} W/cm{sup 2} are required for laser wakefield acceleration schemes using near IR radiation. Gas densities on the order of or greater than 10{sup 17} cm{sup {minus}3} are also needed. Laser-atom interaction studies in this density and intensity regime are generally limited by the concomitant problems in beam propagation introduced by the creation of a plasma. In addition to the interaction distance limit imposed by the Rayleigh range, defocusing of the high intensity laser pulse further limits the peak intensity which can be achieved. To solve the problem of beam propagation limitations in laser-plasma wakefield experiments, two potential methods for creating transient propagation channels in gaseous targets are investigated. The first involves creation of a charge-neutral channel in a gas by an initial laser pulse, which then is ionized by a second, ultrashort, high-intensity pulse to create a waveguide. The second method involves the ionization of a gas column by an ultrashort pulse; a transient waveguide is formed by the subsequent expansion of the heated plasma into the neutral gas.

Wood, W.M.

1994-11-01T23:59:59.000Z

80

First measurements of laser-accelerated proton induced luminescence  

Science Conference Proceedings (OSTI)

We present our first results about laser-accelerated proton induced luminescence in solids. In the first part, we describe the optimization of the proton source as a function of the target thickness as well as the laser pulse duration and energy. Due to the ultra high contrast ratio of our laser beam, we succeeded in using targets ranging from the micron scale down to nanometers thickness. The two optimal thicknesses we put in evidence are in good agreement with numerical simulations. Laser pulse duration shows a small influence on proton maximum energy, whereas the latter turns out to vary almost linearly as a function of laser energy. Thanks to this optimisation work, we have been able to acquire images of the proton energy deposition in a solid scintillator.

Floquet, V.; Ceccotti, T.; Dobosz Dufrenoy, S.; Bonnaud, G.; Monot, P.; Martin, Ph. [CEA, IRAMIS, SPAM, F-91191 Gif sur Yvette (France); Gremillet, L. [CEA, DAM, DIF, Bruyeres-le-Chatel, 91297 Arpajon (France)

2012-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Direct High-Power Laser Acceleration of Ions for Medical Applications  

Science Conference Proceedings (OSTI)

Theoretical investigations show that linearly and radially polarized multiterawatt and petawatt laser beams, focused to subwavelength waist radii, can directly accelerate protons and carbon nuclei, over micron-size distances, to the energies required for hadron cancer therapy. Ions accelerated by radially polarized lasers have generally a more favorable energy spread than those accelerated by linearly polarized lasers of the same intensity.

Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Physics Department, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

2008-04-18T23:59:59.000Z

82

Quasi-monoenergetic protons accelerated by laser radiation pressure and shocks in thin gaseous targets  

Science Conference Proceedings (OSTI)

Recent experiments and simulations have demonstrated effective CO{sub 2} laser acceleration of quasi-monoenergetic protons from thick gaseous hydrogen target (of thickness tens of laser wavelengths) via hole boring and shock accelerations. We present here an alternative novel acceleration scheme by combining laser radiation pressure acceleration with shock acceleration of protons in a thin gaseous target of thickness several laser wavelengths. The laser pushes the thin gaseous plasma forward while compressing it with protons trapped in it. We demonstrated the combined acceleration with two-dimensional particle-in-cell simulation and obtained quasi-monoenergetic protons {approx}44 MeV in a gas target of thickness twice of the laser wavelength irradiated by circularly polarized CO{sub 2} laser with normalized laser amplitude a{sub 0}=10.

He Minqing; Shao Xi; Liu Chuansheng; Liu Tungchang; Su Jaojang; Dudnikova, Galina; Sagdeev, Roald Z. [East-West Space Science Center, University of Maryland, College Park, Maryland 20742 (United States); Sheng Zhengming [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2012-07-15T23:59:59.000Z

83

Experimental laser wakefield acceleration scalings exceeding 100 TW  

Science Conference Proceedings (OSTI)

Understanding the scaling of laser wakefield acceleration (LWFA) is crucial to the design of potential future systems. A number of computational and theoretical studies have predicted scalings with laser power for various parameters, but experimental studies have typically been limited to small parameter ranges. Here, we detail extensive measurements of LWFA experiments conducted over a considerable range in power from 20 to 110 TW, which allows for a greater plasma density range and for a large number of data points. These measurements include scalings of the electron beam charge and maximum energy as functions of density as well as injection threshold density, beam charge, and total beam energy as functions of laser power. The observed scalings are consistent with theoretical understandings of operation in the bubble regime.

McGuffey, C.; Matsuoka, T.; Schumaker, W.; Dollar, F.; Zulick, C.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kneip, S.; Najmudin, Z. [Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom)

2012-06-15T23:59:59.000Z

84

Toward laser ablation Accelerator Mass Spectrometry of actinides  

Science Conference Proceedings (OSTI)

A project to measure neutron capture cross sections of a number of actinides in a reactor environment by Accelerator Mass Spectrometry (AMS) at the ATLAS facility of Argonne National Laboratory is underway. This project will require the precise and accurate measurement of produced actinide isotopes in many (>30) samples irradiated in the Advanced Test Reactor at Idaho National Laboratory with neutron fluxes having different energy distributions. The AMS technique at ATLAS is based on production of highlycharged positive ions in an electron cyclotron resonance (ECR) ion source followed by acceleration in the ATLAS linac and mass-to-charge (m/q) measurement at the focus of the Fragment Mass Analyzer. Laser ablation was selected as the method of feeding the actinide material into the ion source because we expect it will have higher efficiency and lower chamber contamination than either the oven or sputtering techniques, because of a much narrower angular distribution of emitted material. In addition, a new multi-sample holder/changer to allow quick change between samples and a computer-controlled routine allowing fast tuning of the accelerator for different beams, are being developed. An initial test run studying backgrounds, detector response, and accelerator scaling repeatability was conducted in December 2010. The project design, schedule, and results of the initial test run to study backgrounds are discussed.

R. C. Pardo; F. G. Kondev; S. Kondrashev; C. Nair; T. Palchan; R. Scott; D. Seweryniak; R. Vondrasek; M. Paul; P. Collon; C. Deibel; M. Salvatores; G. Palmiotti; J. Berg; J. Fonnesbeck; G. Imel

2013-01-01T23:59:59.000Z

85

Ionization Induced Trapping in a Laser Wakefield Accelerator  

Science Conference Proceedings (OSTI)

Experimental studies of electrons produced in a laser wakefield accelerator indicate trapping initiated by ionization of target gas atoms. Targets composed of helium and controlled amounts of various gases were found to increase the beam charge by as much as an order of magnitude compared to pure helium at the same electron density and decrease the beam divergence from 5.1+-1.0 to 2.9+-0.8 mrad. The measurements are supported by particle-in-cell modeling including ionization. This mechanism should allow generation of electron beams with lower emittance and higher charge than in preionized gas.

McGuffey, C.; Thomas, A. G. R.; Schumaker, W.; Matsuoka, T.; Chvykov, V.; Dollar, F. J.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K.; Bychenkov, V. Yu.; Glazyrin, I. V.; Karpeev, A. V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); P. N. Lebedev Physics Institute, Russian Academy of Science, Leninskii Prospect 53, Moscow 119991 (Russian Federation); RFNC-VNIITF, Snezhinsk 456770, Chelyabinsk region (Russian Federation)

2010-01-15T23:59:59.000Z

86

Laser-driven proton acceleration using a conical nanobrush target  

Science Conference Proceedings (OSTI)

A conical nanobrush target is proposed to improve the total proton energy-conversion efficiency in proton beam acceleration and investigated by two-dimensional particle-in-cell (2D-PIC) simulations. Results indicate a significant enhancement of the number and energies of hot electrons through the target rear side of the conical nanobrush target. Compared with the plain target, the field increases several times. We observe enhancements of the average proton energy and total laser-proton energy conversion efficiency of 105%. This enhancement is attributed to both nanobrush and conical configurations. The proton beam is well collimated with a divergence angle less than 28{sup Degree-Sign }. The proposed target may serve as a new method for increasing laser to proton energy-conversion efficiency.

Yu Jinqing [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhao Zongqing; Yan Yonghong; Zhou Weimin; Cao Leifeng; Gu Yuqiu [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Jin Xiaolin; Li Bin [Vacuum Electronics National Laboratory, University of Electronic Science and Technology of China, Chengdu 610054 (China); Wu Fengjuan [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Laboratory of Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010 (China)

2012-05-15T23:59:59.000Z

87

Wakefield Simulations for the Laser Acceleration Experiment at SLAC  

SciTech Connect

Laser-driven acceleration in dielectric photonic band gap structures can provide gradients on the order of GeV/m. The small transverse dimension of the structure, on the order of the laser wavelength, presents interesting wakefield-related issues. Higher order modes can seriously degrade beam quality, and a detailed understanding is needed to mitigate such effects. On the other hand, wakefields also provide a direct way to probe the interaction of a relativistic bunch with the synchronous modes supported by the structure. Simulation studies have been carried out as part of the effort to understand the impact on beam dynamics, and to compare with data from beam experiments designed to characterize candidate structures. In this paper, we present simulation results of wakefields excited by a sub-wavelength bunch in optical photonic band gap structures.

Ng, Johnny

2012-04-18T23:59:59.000Z

88

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

2010-06-01T23:59:59.000Z

89

Acceleration of electrons using an inverse free electron laser auto- accelerator  

SciTech Connect

We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

Wernick, I.K.; Marshall, T.C.

1992-07-01T23:59:59.000Z

90

Acceleration of electrons using an inverse free electron laser auto- accelerator  

SciTech Connect

We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

Wernick, I.K.; Marshall, T.C.

1992-07-01T23:59:59.000Z

91

Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays  

E-Print Network (OSTI)

of coherent transition radiation generated at a plasma-and G. Fubiani, Terahertz radiation from laser acceleratedW. P. Leemans, Synchrotron radiation from electron beams in

2004-01-01T23:59:59.000Z

92

Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story  

Science Conference Proceedings (OSTI)

The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

2008-07-01T23:59:59.000Z

93

Fundamental difference of subpicosecond laser interaction compared to longer pulses for ultrahigh acceleration  

Science Conference Proceedings (OSTI)

Interaction of picosecond laser pulses above terawatt power with high density plasmas shows a nearly 100% conversion of the laser energy into directed acceleration of the electron cloud by nonlinear (ponderomotive) forces giving the ion cloud accelerations several orders of magnitude higher than comparable nanosecond interaction based on thermal pressure processes.

Foeldes, I. B.; Lalousis, P.; Moustaizis, S.; Hora, H. [Wigner Research Centre for Physics HAS, Institute for Particle and Nuclear Physics, Association EURATOM HAS, H-1525 Budapest (Hungary); Institute of Electronic Structure and Laser FORTH, Heraklion (Greece); Technical University of Crete, Chania (Greece); Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

2012-07-09T23:59:59.000Z

94

Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams  

SciTech Connect

Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

2001-08-30T23:59:59.000Z

95

Beam transport and monitoring for laser plasma accelerators  

SciTech Connect

The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

Nakamura, K.; Sokollik, T.; Tilborg, J. van; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States) and University of California, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

96

Modeling laser wakefield accelerators in a Lorentz boosted frame  

Science Conference Proceedings (OSTI)

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

2010-06-15T23:59:59.000Z

97

Modeling laser wakefield accelerators in a Lorentz boosted frame  

Science Conference Proceedings (OSTI)

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

2010-09-15T23:59:59.000Z

98

Electron Beam Charge Diagnostics for Laser Plasma Accelerators  

SciTech Connect

A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

2011-06-27T23:59:59.000Z

99

Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma  

E-Print Network (OSTI)

The advent of high-intensity pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei, by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.

C. Labaune; C. Baccou; S. Depierreux; C. Goyon; G. Loisel; V. Yahia; J. Rafelski

2013-10-08T23:59:59.000Z

100

SLAC National Accelerator Laboratory - Ultrafast Lasers at the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Lasers at the Linac Coherent Light Source By Alan Fry, LCLS Laser Group July 5, 2011 The Linac Coherent Light Source at SLAC is the world's first hard X-ray free-electron laser, or...

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cavity-stabilized laser with acceleration sensitivity below 10 g  

Science Conference Proceedings (OSTI)

... Typically, lasers for such applications are stabilized by locking them to a Fabry-Prot cavity such that the fractional frequency stability of the laser is ...

2013-04-02T23:59:59.000Z

102

A Pulsed Laser-Electromagnetic Hybrid Accelerator For Space Propulsion Application  

SciTech Connect

A fundamental study of a newly developed rectangular pulsed laser-electromagnetic hybrid thruster was conducted, in which laser-ablation plasma was induced through laser beam irradiation onto a solid target and accelerated by electrical means instead of direct acceleration only by using a laser beam. The performance of the thruster was evaluated by measuring the mass per shot and impulse bit. As results, significantly high specific impulse ranging from 5,000 approx6,000 sec were obtained at energies of 0.1 and 8.6 J, respectively. In addition, the typical thrust efficiency varied from 17% to 19% depending on the charge energy.

Shinohara, Tadaki; Horisawa, Hideyuki [Department of Aeronautics and Astronautics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan (Japan); Baba, Msahumi; Tei, Kazuyoku [Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

2010-05-06T23:59:59.000Z

103

Modeling laser wakefield accelerator experiments with ultrafast particle-in-cell simulations in boosted frames  

Science Conference Proceedings (OSTI)

The development of new laser systems at the 10 Petawatt range will push laser wakefield accelerators to novel regimes, for which theoretical scalings predict the possibility to accelerate electron bunches up to tens of GeVs in meter-scale plasmas. Numerical simulations will play a crucial role in testing, probing, and optimizing the physical parameters and the setup of future experiments. Fully kinetic simulations are computationally very demanding, pushing the limits of today's supercomputers. In this paper, the recent developments in the OSIRIS framework [R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)] are described, in particular the boosted frame scheme, which leads to a dramatic change in the computational resources required to model laser wakefield accelerators. Results from one-to-one modeling of the next generation of laser systems are discussed, including the confirmation of electron bunch acceleration to the energy frontier.

Martins, S. F.; Fonseca, R. A.; Vieira, J.; Silva, L. O. [GoLP/Instituto de Plasmas e Fusao Nuclear-Laboratorio Associado, Instituto Superior Tecnico, Lisbon (Portugal); Lu, W.; Mori, W. B. [University of California Los Angeles, Los Angeles, California 90095 (United States)

2010-05-15T23:59:59.000Z

104

Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic  

Science Conference Proceedings (OSTI)

The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

2010-06-01T23:59:59.000Z

105

Simulating Poynting Flux Acceleration in the Laboratory with Colliding Laser Pulses  

E-Print Network (OSTI)

We review recent PIC simulation results which show that double-sided irradiation of a thin over-dense plasma slab with ultra-intense laser pulses from both sides can lead to sustained comoving Poynting flux acceleration of electrons to energies much higher than the conventional ponderomotive limit. The result is a robust power-law electron momentum spectrum similar to astrophysical sources. We discuss future ultra-intense laser experiments that may be used to simulate astrophysical particle acceleration.

Edison Liang

2006-11-21T23:59:59.000Z

106

Free-electron laser driven by the LBNL laser-plasma accelerator  

E-Print Network (OSTI)

Free-electron laser driven by the LBNL laser-plasmaA design of a compact free-electron laser (FEL), generatingare considered. Keywords: Free-electron laser, laser-plasma

Schroeder, C. B.

2010-01-01T23:59:59.000Z

107

SLAC National Accelerator Laboratory - SLAC's X-ray Laser Explores...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Laser Explores Big Data Frontier By Glenn Roberts Jr. June 12, 2013 It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn...

108

SLAC National Accelerator Laboratory - X-ray Laser Helps Fight...  

NLE Websites -- All DOE Office Websites (Extended Search)

human health. "This is the first new biological structure solved with a free-electron laser," said Henry Chapman of the Center for Free-Electron Laser Science in Hamburg,...

109

Observation of Synchrotron Radiation from Electrons Accelerated in a Petawatt-Laser-Generated Plasma Cavity  

Science Conference Proceedings (OSTI)

The dynamics of plasma electrons in the focus of a petawatt laser beam are studied via measurements of their x-ray synchrotron radiation. With increasing laser intensity, a forward directed beam of x rays extending to 50 keV is observed. The measured x rays are well described in the synchrotron asymptotic limit of electrons oscillating in a plasma channel. The critical energy of the measured synchrotron spectrum is found to scale as the Maxwellian temperature of the simultaneously measured electron spectra. At low laser intensity transverse oscillations are negligible as the electrons are predominantly accelerated axially by the laser generated wakefield. At high laser intensity, electrons are directly accelerated by the laser and enter a highly radiative regime with up to 5% of their energy converted into x rays.

Kneip, S.; Nagel, S. R.; Bellei, C.; Dangor, A. E.; Mangles, S. P. D.; Nilson, P. M.; Willingale, L.; Najmudin, Z. [Blackett Laboratory, Imperial College London SW7 2AZ (United Kingdom); Bourgeois, N.; Marques, J. R. [Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, 91128 Palaiseau (France); Gopal, A. [Department of Electronics, Technological Educational Institute of Crete, Romanou, 3-GR73133 Chania (Greece); Heathcote, R. [Central Laser Facility, Rutherford Appleton Laboratory, Oxon OX11 0QX (United Kingdom); Maksimchuk, A.; Reed, S. [Center for Ultrafast Optical Science (CUOS) University of Michigan, Ann Arbor, Michigan 48109 (United States); Phuoc, K. Ta; Rousse, A. [Laboratoire d'Optique Applique, ENSTA, Ecole Polytechnique, 91761 Palaiseau (France); Tzoufras, M.; Tsung, F. S.; Mori, W. B. [Department of Physics and Astronomy and Department of Electrical Engineering, UCLA, Los Angeles, California 90095 (United States); Krushelnick, K. [Blackett Laboratory, Imperial College London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science (CUOS) University of Michigan, Ann Arbor, Michigan 48109 (United States)

2008-03-14T23:59:59.000Z

110

Controlling the betatron oscillations of a wakefield-accelerated electron beam by temporally asymmetric laser pulses  

Science Conference Proceedings (OSTI)

Based on two-dimensional particle-in-cell simulations, we investigated the electron beam's transverse oscillations by temporally asymmetric laser pulses in laser wakefield acceleration. Of particular interest in this article are the effects of ultrashort laser pulses having sharp rising and slow falling time scales. In this situation, the accelerated electron beam interacts directly with the laser field and undergoes transverse oscillations due to a phase-slip with the laser field. This oscillation can be matched with the betatron oscillation due to the focusing force of the ions, which can lead to a large transverse oscillation amplitude due to the resonance between them. Furthermore, in this case, the electron beam can be microbunched at the laser wavelength, which may provide the possibility for generation of a coherent synchrotron radiation.

Nam, Inhyuk [Graduate Program of Photonics and Applied Physics, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Hur, Min Sup [School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798 (Korea, Republic of); Uhm, Han Sup [Electrophysics Department, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of); Hafz, Nasr A. M.; Suk, Hyyong [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712 (Korea, Republic of)

2011-04-15T23:59:59.000Z

111

Sustained Acceleration of Over-dense Plasmas by Colliding Laser Pulses  

Science Conference Proceedings (OSTI)

We review recent PIC simulation results which show that double-sided irradiation of a thin overdense plasma slab by ultra-intense laser pulses from both sides can lead to sustained comoving acceleration of surface electrons to energies much higher than the conventional ponderomotive limit. The acceleration stops only when the electrons drift transversely out of the laser beam. We show results of parameter studies based on this concept and discuss future laser experiments that can be used to test these computer results.

Liang, Edison [Rice University, Houston, TX 77005-1892 (United States)

2006-04-07T23:59:59.000Z

112

Characteristics of a tapered capillary plasma waveguide for laser wakefield acceleration  

SciTech Connect

We developed a gas-filled capillary with a tapered density for laser wakefield acceleration, of which the tapering was realized by employing gas feed-lines with different cross-sections. Plasma diagnostics show that the capillary plasma has a significant longitudinal density tapering and a transverse parabolic profile. By using the tapered capillary plasma, high transmission (over 90%) of laser beams, meaning good optical guiding, was observed. These results demonstrate the potential of the tapered plasma source for high-energy laser wakefield acceleration, where the dephasing problem is minimized.

Kim, M. S.; Jang, D. G.; Lee, T. H.; Nam, I. H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)] [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); Lee, I. W.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of) [Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of); APRI, Gwangju Institute of Science and Technology (GIST), Cheomdan-gwagiro, Buk-gu, Gwangju 500-712 (Korea, Republic of)

2013-05-20T23:59:59.000Z

113

Laser Ion Acceleration Toward Future Ion Beam Cancer Therapy - Numerical Simulation Sudy-  

E-Print Network (OSTI)

Ion beam has been used in cancer treatment, and has a unique preferable feature to deposit its main energy inside a human body so that cancer cell could be killed by the ion beam. However, conventional ion accelerator tends to be huge in its size and its cost. In this paper a future intense-laser ion accelerator is proposed to make the ion accelerator compact. An intense femtosecond pulsed laser was employed to accelerate ions. The issues in the laser ion accelerator include the energy efficiency from the laser to the ions, the ion beam collimation, the ion energy spectrum control, the ion beam bunching and the ion particle energy control. In the study particle computer simulations were performed to solve the issues, and each component was designed to control the ion beam quality. When an intense laser illuminates a target, electrons in the target are accelerated and leave from the target; temporarily a strong electric field is formed between the high-energy electrons and the target ions, and the target ions ...

Kawata, Shigeo; Nagashima, Toshihiro; Takano, Masahiro; Barada, Daisuke; Kong, Qing; Gu, Yan Jun; Wang, Ping Xiao; Ma, Yan Yun; Wang, Wei Ming

2013-01-01T23:59:59.000Z

114

Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration | U.S.  

Office of Science (SC) Website

Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » July 2013 Two GeV Electrons Achieved by Laser Plasma Wakefield Acceleration Scientists at University of Texas, Austin, accelerate electrons to 2 GeV in table top apparatus. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Neil Fazel The inside of the University of Texas, Austin, vacuum chamber where

115

The BEAMS Program at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Thomas Jefferson National Accelerator Facility and Newport News City Public Schools The Thomas Jefferson National Accelerator Facility (Jefferson Lab) is a U.S....

116

Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator  

SciTech Connect

Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

Huang, Zhirong; Ding, Yuantao; /SLAC; Schroeder, Carl B.; /LBL, Berkeley

2012-09-13T23:59:59.000Z

117

Lab Supplies  

Science Conference Proceedings (OSTI)

reference materials, bleaching clay, activated bleaching earth and refining cups. Lab Supplies Lab Supplies Lab Supplies Laboratory Services analysis analytical methods aocs certified Certified Reference Materials (CRM) chemist chemists fats lab

118

SLAC National Accelerator Laboratory - X-ray Laser Pulses in...  

NLE Websites -- All DOE Office Websites (Extended Search)

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals...

119

Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration  

Science Conference Proceedings (OSTI)

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Ma, W.; Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

2011-10-28T23:59:59.000Z

120

Mitsubishi Electric Research Labs (MERL) Amit Agrawal Amit Agrawal  

E-Print Network (OSTI)

Scan (MEMS mirror) Microvision Laser Pico TI's DLP, $349 #12;Mitsubishi Electric Research Labs (MERL

Agrawal, Amit

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

SLAC National Accelerator Laboratory - X-ray Laser Takes Aim...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Takes Aim at Cosmic Mystery December 12, 2012 Menlo Park, Calif. - Scientists have used powerful X-rays from the Linac Coherent Light Source (LCLS) at the U.S. Department of...

122

SLAC National Accelerator Laboratory - X-ray Laser Brings Cellular...  

NLE Websites -- All DOE Office Websites (Extended Search)

a March experiment indicates it has, for the first time, used an X-ray free-electron laser - SLAC's Linac Coherent Light Source - to reconstitute the structure of a G...

123

SLAC National Accelerator Laboratory - X-ray Laser Explores How...  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Write Data with Light By Glenn Roberts Jr. March 19, 2013 Using laser light to read and write magnetic data by quickly flipping tiny magnetic domains could help keep pace...

124

SLAC National Accelerator Laboratory - X-ray Laser Research Ranks...  

NLE Websites -- All DOE Office Websites (Extended Search)

selected science "Breakthrough of the Year": the discovery of what appears to be the Higgs boson. Scientists aimed the Linac Coherent Light Source X-ray laser at thousands of tiny...

125

Two-stage acceleration of protons from relativistic laser-solid interaction  

Science Conference Proceedings (OSTI)

A two-stage proton acceleration scheme using present-day intense lasers and a unique target design is proposed. The target system consists of a hollow cylinder, inside which is a hollow cone, which is followed by the main target with a flat front and dish-like flared rear surface. At the center of the latter is a tapered proton layer, which is surrounded by outer proton layers at an angle to it. In the first acceleration stage, protons in both layers are accelerated by target normal sheath acceleration. The center-layer protons are accelerated forward along the axis and the side protons are accelerated and focused towards them. As a result, the side-layer protons radially compress as well as axially further accelerate the front part of the accelerating center-layer protons in the second stage, which are also radially confined and guided by the field of the fast electrons surrounding them. Two-dimensional particle-incell simulation shows that a 79fs 8.5 Multiplication-Sign 10{sup 20} W/cm{sup 2} laser pulse can produce a proton bunch with {approx} 267MeV maximum energy and {approx} 9.5% energy spread, which may find many applications, including cancer therapy.

Liu Jinlu; Sheng, Z. M.; Zheng, J.; Wang, W. M.; Yu, M. Y.; Liu, C. S.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China and Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) and Institute for Theoretical Physics I, Ruhr University, Bochum D-44780 (Germany); East-West Space Science Center, University of Maryland, College Park, MD (United States); Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China) and Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2012-12-21T23:59:59.000Z

126

Experimental Research on the Laser Cyclotron Auto-Resonance Accelerator LACARA  

SciTech Connect

The Laser Cyclotron Auto-Resonant Accelerator LACARA has successfully operated this year. Results are summarized, an interpretation of operating data is provided in the body of the report, and recommendations are made how the experiment should be carried forward. The Appendix A contains a description of the LACARA apparatus, currently installed at the Accelerator Test Facility, Brookhaven National Laboratory. This report summarizes the project, extending over three grant-years.

Marshall, T C

2008-11-11T23:59:59.000Z

127

Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations  

DOE Green Energy (OSTI)

Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.

Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.

2008-09-08T23:59:59.000Z

128

Comoving acceleration of overdense electron-positron plasma by colliding ultra-intense laser pulses  

Science Conference Proceedings (OSTI)

Particle-in-cell (PIC) simulation results of sustained acceleration of electron-positron (e+e-) plasmas by comoving electromagnetic (EM) pulses are presented. When a thin slab of overdense e+e- plasma is irradiated with linear-polarized ultra-intense short laser pulses from both sides, the pulses are transmitted when the plasma is compressed to thinner than {approx}2 relativistic skin depths. A fraction of the plasma is then captured and efficiently accelerated by self-induced JxB forces. For 1 {mu}m laser and 10{sup 21} W cm{sup -2} intensity, the maximum energy exceeds GeV in a picosecond.

Liang, Edison [Rice University, P.O. Box 1892, Houston, Texas 77251 (United States)

2006-06-15T23:59:59.000Z

129

BELLA World Record Sets Stage for Laser Experiments in Novel Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

BELLA World Record Sets Stage for Laser Experiments in Novel BELLA World Record Sets Stage for Laser Experiments in Novel Acceleration Techniques High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » October 2012 BELLA World Record Sets Stage for Laser Experiments in Novel Acceleration Techniques Laser Delivers One Petawatt of Power in a Pulse only 40 Femtoseconds Long Every Second Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Roy Kaltschmidt, LBNL

130

Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses  

E-Print Network (OSTI)

Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

2013-01-01T23:59:59.000Z

131

Design of 10 GeV laser wakefield accelerator stages with shaped laser modes  

E-Print Network (OSTI)

DESIGN OF 10 GEV LASER WAKEFIELD ACCELERATORSTAGES WITH SHAPED LASER MODES ? E. Cormier-Michel, E.PAL framework, of 10 GeV laser plasma wake?eld ac- celerator

Cormier-Michel, Estelle

2010-01-01T23:59:59.000Z

132

What is an accelerator operator?  

NLE Websites -- All DOE Office Websites (Extended Search)

is an accelerator operator? First I'll explain the education one must have in order to be considered for an Accelerator Operator position. Jefferson Lab's typical Accelerator...

133

Acceleration of electrons by a circularly polarized laser pulse in the presence of an intense axial magnetic field in vacuum  

Science Conference Proceedings (OSTI)

Acceleration of electrons by a circularly polarized laser pulse in the presence of a short duration intense axial magnetic field has been studied. Resonance occurs between the electrons and the laser field for an optimum magnetic field leading to effective energy transfer from laser to electrons. The value of optimum magnetic field is independent of the laser intensity and decreases with initial electron energy. The electrons rotate around the axis of the laser pulse with small angle of emittance and small energy spread. Acceleration gradient increases with laser intensity and decreases with initial electron energy.

Singh, K. P. [Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504 (United States)

2006-08-15T23:59:59.000Z

134

Accelerator and Fusion Research Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Outreach and Diversity Highlights Safety Other Sites and Labs Intramural Historical photo of Laboratory founder and cyclotron inventor Ernest Orlando Lawrence at his desk OUR SCIENTIFIC PROGRAMS Accelerator Physics for the ALS Center for Beam Physics LOASIS Laboratory Fusion Science and Ion Beam Technology Superconducting Magnets Free Electron Laser R&D News: AFRD's Jean-Luc Vay and former AFRD scientist Kwang-Je Kim share the US Particle Accelerator School Prize. Andre Anders places two articles among the year's top 30 in the Journal of Applied Physics. AFRD personnel win an R&D 100 in a joint project with industry; the laser at the heart of BELLA sets a world record for laser power. Employees: Safety tips regarding the mountain lion are available. The results from our two most recent Self-Assessment Focus Groups are up, covering emergency preparedness and ergonomics while working offsite.

135

Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame  

Science Conference Proceedings (OSTI)

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] has been shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups required mitigation of a high-frequency instability ... Keywords: Boosted frame, Laser wakefield acceleration, Numerical instability, Particle-in-cell, Plasma simulation, Special relativity

J. -L. Vay; C. G. R. Geddes; E. Cormier-Michel; D. P. Grote

2011-07-01T23:59:59.000Z

136

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION*  

Science Conference Proceedings (OSTI)

A series of laser wake field accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Callisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3 x 10{sup 18} cm{sup -3} plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.

Marsh, K A; Clayton, C E; Joshi, C; Lu, W; Mori, W B; Pak, A; silva, L O; Lemos, N; Fonseca, R A; de Freitas, S; Albert, F; Doeppner, T; Filip, C; Froula, D; Glenzer, S H; Price, D; Ralph, J; Pollock, B B

2011-03-22T23:59:59.000Z

137

FAST LAB  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of the entrance to the FAST Lab building. FAST LAB Located on the campus of Aiken Technical College (see map 28k) in Aiken, South Carolina, the FAST Lab is a partnership of...

138

Jefferson Lab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

News item slideshow News item slideshow Final Piece Final Piece Workers install a section of the pre-shower calorimeter, or PCAL, which is part of the CLAS12 detector package in Jefferson Lab's Experimental Hall B. The new equipment is being installed for the 12 GeV Upgrade project. <<< Installation of PCAL in Hall B. Upgraded Detector Upgraded Detector Work on the 12 GeV Upgrade project continues at Jefferson Lab. Shown here is the new CLAS12 detector in Experimental Hall B after the recent installation of the pre-shower calorimeter, or PCAL. <<< Installation work on Hall B detector. Neutron Stopper Neutron Stopper Jefferson Lab engineer Paul Brindza holds up samples of a new system of concrete products designed to stop neutrons and other particles from harming sensitive scientific computers and detectors. The new system was

139

Advanced Laser Particle Accelerator Development at LANL: From Fast Ignition to Radiation Oncology  

Science Conference Proceedings (OSTI)

Laser-plasma accelerated ion and electron beam sources are an emerging field with vast prospects, and promise many superior applications in a variety of fields such as hadron cancer therapy, compact radioisotope generation, table-top nuclear physics, laboratory astrophysics, nuclear forensics, waste transmutation, Special Nuclear Material (SNM) detection, and inertial fusion energy. LANL is engaged in several projects seeking to develop compact high-current and high-energy ion and electron sources. We are especially interested in two specific applications: ion fast ignition/capsule perturbation and radiation oncology. Laser-to-beam conversion efficiencies of over 10% are needed for practical applications, and we have already shown inherent efficiencies of >5% from flat foils, on Trident using only a 5th of the intensity and energy of the Nova Petawatt laser. With clever target designs, like structured curved cone targets, we have also been able to achieve major ion energy gains, leading to the highest energy laser-accelerated proton beams in the world [3]. These new target designs promise to help usher in the next generation of particle sources realizing the potential of laser-accelerated beams.

Flippo, K. A.; Offermann, D. T.; Cobble, J. A.; Schmitt, M. J.; Gautier, D. C.; Kwan, T. J.; Montgomery, D. S. [Los Alamos National Laboratory, PO BOX 1663, Los Alamos, NM 87545 (United States); Gaillard, S. A.; Kluge, T.; Bussmann, M.; Cowan, T. E. [ForschungsZentrum Dresden-Rossendorf, Bautzner Landstr. 400, 01328 Dresden (Germany); Bartal, T.; Beg, F. N. [University of California, San Diego, Mechanical and Aerospace Engineering Dept., La Jolla, CA 92038 (United States); Gall, B.; Kovaleski, S. [University of Missouri, Electrical and Computer Engineering, Columbia MO 65211 (United States); Geissel, M.; Schollmeier, M. [Sandia National Laboratories, PO Box 5800, Albuquerque, NM 87185 (United States); Korgan, G.; Malekos, S. [Nanolabz, 661 Sierra Rose Dr., Reno, NV 89511 (United States); Lockard, T. [University of Nevada, Physics, Reno, NV 89557 (United States)

2010-11-04T23:59:59.000Z

140

Above-60-MeV proton acceleration with a 150 TW laser system.  

Science Conference Proceedings (OSTI)

Laser-accelerated proton beams can be used in a variety of applications, e.g. ultrafast radiography of dense objects or strong electromagnetic fields. Therefore high energies of tens of MeV are required. We report on proton-acceleration experiments with a 150 TW laser system using mm-sized thin foils and mass-reduced targets of various thicknesses. Thin- foil targets yielded maximum energies of 50 MeV. A further reduction of the target dimensions from mm-size to 250 x 250 x 25 microns increased the maximum proton energy to >65 MeV, which is comparable to proton energies measured only at higher-energy, Petawatt-class laser systems. The dependence of the maximum energy on target dimensions was investigated, and differences between mm-sized thin foils and mass-reduced targets will be reported.

Sefkow, Adam B.; Atherton, Briggs W.; Geissel, Matthias; Schollmeier, Marius; Rambo, Patrick K.; Schwarz, Jens

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC  

SciTech Connect

We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

2000-06-01T23:59:59.000Z

142

Acceleration of laser-driven ion bunch from double-layer thin foils  

SciTech Connect

Generation of monoenergetic ion bunch from a double-layer thin-foil target irradiated by an intense linearly polarized laser pulse is investigated using two-dimensional particle-in-cell simulation. The protons in the front low-density hydrogen target layer accelerated by the space-charge field of the laser-driven hot electrons can penetrate through the high-Z high-mass and high-density ion layer, resulting in an energetic proton bunch. A part of the latter is further accelerated by the space-charge field of the hot electrons in the vacuum behind the high-Z ion layer. With this scheme, quasi-monoenergetic proton bunches can be produced using presently available laser pulses of moderate contrast and duration.

Wang, X.; Liang, E. [Rice University, Houston, Texas 77005-1892 (United States); Yu, W. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Yu, M. Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

2012-05-15T23:59:59.000Z

143

Frostbite Theater - Just for Fun - Jefferson Lab Open House (2010)  

NLE Websites -- All DOE Office Websites (Extended Search)

Nitrogen Viewer Requests! Nitrogen Viewer Requests! Previous Video (Liquid Nitrogen Viewer Requests!) Frostbite Theater Main Index Next Video (Season One Bloopers) Season One Bloopers Jefferson Lab Open House (2010) Highlights from Jefferson Lab's 2010 Open House including portions of our electron accelerator, a peek inside an end station, and a visit to the Free Electron Laser. [ Show Transcript ] Announcer: Frostbite Theater presents... Cold Cuts! No baloney! Joanna and Steve: Just science! Joanna: Hi! I'm Joanna! Steve: And I'm Steve! Joanna: And we're here at Jefferson Lab's Open House! If you're interested in science, this is the place to be! Steve: Thousands of people have come to Jefferson Lab today to learn more about science, what we do here and to just have fun! Joanna: So what are some of the things that people can do when they're

144

A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator  

Science Conference Proceedings (OSTI)

The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

2011-08-17T23:59:59.000Z

145

Livermore Lab's giant laser system will bring star power to Earth  

DOE Green Energy (OSTI)

In the 50 years since the laser was first demonstrated in Malibu, California, on May 16, 1960, Lawrence Livermore National Laboratory (LLNL) has been a world leader in laser technology and the home for many of the world's most advanced laser systems. That tradition continues today at LLNL's National Ignition Facility (NIF), the world's most energetic laser system. NIF's completion in March 2009 not only marked the dawn of a new era of scientific research - it could also prove to be the next big step in the quest for a sustainable, carbon-free energy source for the world. NIF consists of 192 laser beams that will focus up to 1.8 million joules of energy on a bb-sized target filled with isotopes of hydrogen - forcing the hydrogen nuclei to collide and fuse in a controlled thermonuclear reaction similar to what happens in the sun and the stars. More energy will be produced by this 'ignition' reaction than the amount of laser energy required to start it. This is the long-sought goal of 'energy gain' that has eluded fusion researchers for more than half a century. Success will be a scientific breakthrough - the first demonstration of fusion ignition in a laboratory setting, duplicating on Earth the processes that power the stars. This impending success could not be achieved without the valuable partnerships forged with other national and international laboratories, private industry and universities. One of the most crucial has been between LLNL and the community in which it resides. Over 155 businesses in the local Tri-Valley area have contributed to the NIF, from industrial technology and engineering firms to tool manufacturing, electrical, storage and supply companies. More than $2.3B has been spent locally between contracts with nearby merchants and employee salaries. The Tri-Valley community has enabled the Laboratory to complete a complex and far-reaching project that will have national and global impact in the future. The first experiments were conducted on NIF last summer and fall, successfully delivering a world-record level of ultraviolet laser energy - more than 1.2 million joules - to a target. The experiments also demonstrated the target drive and target capsule conditions required to achieve fusion ignition. When ignition experiments begin later this year, NIF's lasers will create temperatures and pressures in the hydrogen target that exist only in the cores of stars and giant planets and inside thermonuclear weapons. As a key component of the National Nuclear Security Administration's Stockpile Stewardship Program, NIF will offer the means for sustaining a safe, secure and reliable U.S. nuclear deterrent without nuclear testing. NIF is uniquely capable of providing the experimental data needed to develop and validate computer models that will enable scientists to assess the continuing viability of the nation's nuclear stockpile. Along with this vital national security mission, success at NIF also offers the possibility of groundbreaking scientific discoveries in a wide variety of disciplines ranging from hydrodynamics to astrophysics. As a unique facility in the world that can create the conditions that exist in supernovas and in the cores of giant planets, NIF will help unlock the secrets of the cosmos and inspire the next generation of scientists. It is NIF's third mission, energy security that has been generating the most excitement in the news media and the international scientific community. The reasons are obvious: global energy demand, driven by population growth and the aspirations of the developing world, already is straining the planet's existing energy resources. Global need for electricity is expected to double from its current level of about two trillion watts (TW) to four TW by 2030 and could reach eight to ten TW by the end of the century. As many as 10,000 new billion-watt power plants will have to be built to keep up with this demand. Meeting this pressing need will require a sustainable carbon-free energy technology that can supply base load electricity to the world. Successful ignition experim

Moses, E

2010-04-08T23:59:59.000Z

146

FEL-accelerator related diagnostics  

SciTech Connect

Free Electron Lasers (FEL) present a unique set of beam parameters to the diagnostics suite. The FEL requires characterization of the full six dimensional phase space of the electron beam at the wiggler and accurate alignment of the electron beam to the optical mode of the laser. In addition to the FEL requirements on the diagnostics suite, the Jefferson Lab FEL is operated as an Energy Recovered Linac (ERL) which imposes additional requirements on the diagnostics. The ERL aspect of the Jefferson Lab FEL requires that diagnostics operate over a unique dynamic range and operate with simultaneous transport of the accelerated and energy recovered beams. This talk will present how these challenges are addressed at the Jefferson Lab FEL.

Kevin Jordan; David Douglas; Stephen V. Benson; Pavel Evtuschenko

2007-08-02T23:59:59.000Z

147

What's used to steer Jefferson Lab's...  

NLE Websites -- All DOE Office Websites (Extended Search)

What's used to steer Jefferson Lab's electron beam? Although it may not look like it at first, the Jefferson Lab accelerator really works much like your TV set. Electrons are...

148

acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

middle name. The head of Fermilab's Accelerator Division explains a basic idea of high-energy physics in everyday language. Painless Physics Articles BEAM COOLING August 2, 1996...

149

Submillimeter-Resolution Radiography of Shielded Structures with Laser-Accelerated Electron Beams  

SciTech Connect

We investigate the use of energetic electron beams for high-resolution radiography of flaws embedded in thick solid objects. A bright, monoenergetic electron beam (with energy >100 MeV) was generated by the process of laser-wakefield acceleration through the interaction of 50-TW, 30-fs laser pulses with a supersonic helium jet. The high energy, low divergence, and small source size of these beams make them ideal for high-resolution radiographic studies of cracks or voids embedded in dense materials that are placed at a large distance from the source. We report radiographic imaging of steel with submillimeter resolution.

Ramanathan, Vidya [University of Nebraska, Lincoln; Banerjee, Sudeep [University of Nebraska, Lincoln; Powell, Nathan [University of Nebraska, Lincoln; Cummingham, N. J. [University of Nebraska, Lincoln; Chandler-Smith, Nate [University of Nebraska, Lincoln; Zhao, Kun [University of Nebraska, Lincoln; Brown, Kevin [University of Nebraska, Lincoln; Umstadter, Donald [University of Nebraska, Lincoln; Clarke, Shaun [University of Michigan; Pozzi, Sara [University of Michigan; Beene, James R [ORNL; Vane, C Randy [ORNL; Schultz, David Robert [ORNL

2010-10-01T23:59:59.000Z

150

Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators  

E-Print Network (OSTI)

A new generation of laser wakefield accelerators, supported by the extreme accelerating fields generated in the interaction of PW-Class lasers and underdense targets, promises the production of high quality electron beams in short distances for multiple applications. Achieving this goal will rely heavily on numerical modeling for further understanding of the underlying physics and identification of optimal regimes, but large scale modeling of these scenarios is computationally heavy and requires efficient use of state-of-the-art Petascale supercomputing systems. We discuss the main difficulties involved in running these simulations and the new developments implemented in the OSIRIS framework to address these issues, ranging from multi-dimensional dynamic load balancing and hybrid distributed / shared memory parallelism to the vectorization of the PIC algorithm. We present the results of the OASCR Joule Metric program on the issue of large scale modeling of LWFA, demonstrating speedups of over 1 order of magni...

Fonseca, Ricardo A; Fiza, Frederico; Davidson, Asher; Tsung, Frank S; Mori, Warren B; Silva, Lus O

2013-01-01T23:59:59.000Z

151

Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

1. ACCELERATOR PHYSICS OF COLLIDERS Revised July 2011 by D. A. Edwards (DESY) and M. J. Syphers (MSU) 1.1. Luminosity This article provides background for the High-Energy Collider...

152

Energetics and energy scaling of quasi-monoenergetic protons in laser radiation pressure acceleration  

Science Conference Proceedings (OSTI)

Theoretical and computational studies of the ion energy scaling of the radiation pressure acceleration of an ultra-thin foil by short pulse intense laser irradiation are presented. To obtain a quasi-monoenergetic ion beam with an energy spread of less than 20%, two-dimensional particle-in-cell simulations show that the maximum energy of the quasi-monoenergetic ion beam is limited by self-induced transparency at the density minima caused by the Rayleigh-Taylor instability. For foils of optimal thickness, the time over which Rayleigh-Taylor instability fully develops and transparency occurs is almost independent of the laser amplitude. With a laser power of about one petawatt, quasi-monogenetic protons with 200 MeV and carbon ions with 100 MeV per nucleon can be obtained, suitable for particle therapy applications.

Liu Tungchang; Shao Xi; Liu Chuansheng; Su Jaojang; Dudnikova, Galina; Sagdeev, Roald Z. [University of Maryland, College Park, Maryland 20742 (United States); Eliasson, Bengt [University of Maryland, College Park, Maryland 20742 (United States); Ruhr-University Bochum, D-44780 Bochum (Germany); Tripathi, Vipin [Indian Institute of Technology, New Delhi 110016 (India)

2011-12-15T23:59:59.000Z

153

Berkeley Lab Community Relations: Construction Information: Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

part of Berkeley Lab and occupies approximately 2.25 acres. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and...

154

GeV Wakefield acceleration of low energy electron bunches using Petawatt lasers  

Science Conference Proceedings (OSTI)

The possibility of accelerating electrons to the GeV level using a Petawatt laser focused in a uniform plasma is investigated. The proposed scheme relies on the wakefield acceleration of an electron bunch from a state-of-the-art radio-frequency accelerator. Using an analytical model as well as numerical simulations performed with WAKE [P. Mora and T. M. Antonsen, Phys. Plasmas 4, 217 (1997)], a systematical study of the injector parameters is carried out. In particular, it is found that the quality of the accelerated electron bunch--in terms of bunch length and energy spread--depends crucially on the injection energy. Injection energies of a few MeV lead to a GeV electron beam with sub-100 fs bunches and 10% energy spreads. Most of the features of the acceleration process can be explained within the linear response framework, including both the reduction of energy spread and bunch length at low injection energies. The role of nonlinear effects is discussed.

Lifschitz, A.F.; Faure, J.; Malka, V.; Mora, P. [Laboratoire d'Optique Appliquee, Ecole Polytechnique, ENSTA, CNRS, UMR 7639, 91761 Palaiseau (France); Laboratoire de Physique Theorique, Ecole Polytechnique, CNRS, UMR 7644, 91128 Palaiseau (France)

2005-09-15T23:59:59.000Z

155

Experimental study of new laser-based alignment system at the KEK B-factory injector linear accelerator  

Science Conference Proceedings (OSTI)

A new laser-based alignment system for the precise alignment of accelerator components along an ideal straight line at the KEK B-factory injector linear accelerator (linac) is under development. This system is strongly required in the next generation of B-factories for the stable acceleration of high-brightness electron and positron beams with high bunch charges and also for maintaining the stability of injection beams with high quality. A new laser optics for the generation of a so-called Airy beam has been developed for the laser-based alignment system. The laser propagation characteristics both in vacuum and at atmospheric pressure have been systematically investigated in an 82-m-long straight section of the injector linac. The laser-based alignment measurements based on the new laser optics have been carried out with a measurement resolution of {+-}0.1 mm level by using an existing laser detection electronics. The horizontal and vertical displacements from a reference laser line measured using this system are in good agreement with those measured using a standard telescope-based optical alignment technique. In this report, we describe the experimental study in detail along with the basic designs and the recent developments in the new laser-based alignment system.

Suwada, T.; Satoh, M.; Kadokura, E. [Accelerator Laboratory, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

2010-12-15T23:59:59.000Z

156

Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory  

SciTech Connect

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G

2010-05-01T23:59:59.000Z

157

Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

158

Synchrotron Radiation from a Laser Plasma Accelerator in the Bubble Regime  

Science Conference Proceedings (OSTI)

A laser wakefield accelerator is shown to operate in the highly non-linear bubble regime, following the characteristic scaling of energy gain with density and leading to monoenergetic electron beams with up to 400 MeV and hundreds of pC charge. The bubble acts at the same time as a miniature undulator, causing the electrons to give off a beam of betatron x-rays with milliradian divergence, {mu}m source size, 1-100 keV photon energy and 10{sup 22} ph/mm{sup 2}/mrad{sup 2}s/0.1% BW.

Kneip, S. [Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109 (United States); McGuffey, C.; Chvykov, V.; Dollar, F.; Kalintchenko, G.; Maksimchuk, T.; Matsuoka, T.; Thomas, A. G. R.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Mangles, S. P. D.; Nagel, S. R.; Palmer, C. A. J.; Schreiber, J.; Najmudin, Z. [Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom); Ta Phuoc, K. [Laboratoire d'Optique Appliquee, ENSTA, Ecole Polytechnique, Palaiseau, 91761 (France)

2010-11-04T23:59:59.000Z

159

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to Laboratory budget cuts, most Berkeley Lab Learning Institute-sponsored workshops have been cancelled starting August 1. This website is now a resource for supervisors and...

160

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Menu Training and Policy Ethical Values And Conduct New Employee Training Policies, Manuals and Reference RPM PUB3000 All Training Resources JHA Berkeley Lab Institute (BLI)...

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Control of Laser Plasma Based Accelerators up to 1 GeV  

E-Print Network (OSTI)

2 1.2 LOASIS Laser Plasma Based94 Laser Energy Loss vs.Laser Pointintg (310 m) . . . . . . . . . . . . . . . 95

Nakamura, Kei

2008-01-01T23:59:59.000Z

162

Human Accelerator - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

electrons. The cavities are arranged in two long, straight sections called Linear Accelerators. In this activity, students pass tennis balls down a line like Jefferson Lab's...

163

The LLNL/UCLA high gradient inverse free electron laser  

SciTech Connect

We describe the Inverse Free Electron Accelerator currently under construction at Lawrence Livermore National Lab. Upon completion of this accelerator, high brightness electrons generated in the photoinjector blowout regime and accelerated to 50 MeV by S-band accelerating sections will interact with > 4 TW peak power Ti:Sapphire laser in a highly tapered 50 cm undulator and experience an acceleration gradient of > 200 MeV/m. We present the final design of the accelerator as well as the results of start-to-end simulations investigating preservation of beam quality and tolerances involved with this accelerator.

Moody, J. T.; Musumeci, P.; Anderson, G.; Anderson, S.; Betts, S.; Fisher, S.; Gibson, D.; Tremaine, A.; Wu, S. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States); Lawrence Livermore National Laboratory (United States)

2012-12-21T23:59:59.000Z

164

Control of Laser Plasma Based Accelerators up to 1 GeV  

Science Conference Proceedings (OSTI)

This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> {+-} 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 {micro}m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10{sup 18} W/cm{sup 2}) over 3.3 centimeters of sufficiently low density ({approx_equal} 4.3 x 10{sup 18}/cm{sup 3}) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of {approx_equal} 0.5 GeV by using a 225 {micro}m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10{sup 18}W/cm{sup 2}) were guided over 3.3 centimeters of low density ({approx_equal} 3.5 x 10{sup 18}/cm{sup 3}) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t{sub dsc}, and input energy E{sub in}, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.

Nakamura, Kei

2007-12-03T23:59:59.000Z

165

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Search 29 Breakthroughs Search 29 Breakthroughs At Berkeley Lab, we've: Discovered sixteen elements. The periodic table would be smaller without Berkeley Lab. Among the Lab's handiwork is an instrumental role in the discovery of technetium-99, which has revolutionized the field of medical imaging. There's also americium, which is widely used in smoke detectors. Identified good and bad cholesterol. The battle against heart disease received a boost in the 1960s when Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives. Big Bang Confirmed the Big Bang, and discovered dark energy. Lab detectors aboard a NASA satellite revealed the birth of the galaxies in the echoes of the Big Bang. And dark energy - the mysterious something

166

Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating  

SciTech Connect

A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

2012-12-21T23:59:59.000Z

167

Thomas Jefferson National Accelerator Facility  

Science Conference Proceedings (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

168

The Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

The Lab The Lab The Lab Photo Gallery Images of the Lab's world-class facilities and buildings. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. LANL buildings at Technical Area 3 LANL buildings at Technical Area 3 Technical Area 3 early morning Technical Area 3 early morning Aerial View of Neutron Science Center Aerial View of Neutron Science Center Aerial View of TA-15 - 1 Aerial View of TA-15 - 1 Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 3 Aerial View of Los Alamos National Laboratory - 3

169

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

for the U.S. Department of Energy (DOE). Started in 1931, it moved to its present site above the UC Berkeley campus in 1940. January 2007 Why is Berkeley Lab preparing a Long...

170

Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays  

E-Print Network (OSTI)

by an intense ultrashort laser pulse, Science, vol. 298,generated from intense laser-plasma interactions, Appl.monochromatic x-rays in the laser synchrotron source

2004-01-01T23:59:59.000Z

171

Proposed few-optical cycle laser-driven particle accelerator structure T. Plettner, P. P. Lu, and R. L. Byer  

E-Print Network (OSTI)

. The shorter pulses enable the structure to sustain higher peak electric fields and also improve the overlap an accelerator structure geometry that is natu- rally matched for usage with such few-cycle laser pulses of the pulse envelope is seriously compromised and is considerably lower than c. Typical group-velocity values

Byer, Robert L.

172

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

173

THE BNL ASTD FIELD LAB - NEAR - REAL - TIME CHARACTERIZATION OF BNL STOCKPILED SOILS TO ACCELERATE COMPLETION OF THE EM CHEMICAL HOLES PROJECT.  

SciTech Connect

As of October 2001, approximately 7,000 yd{sup 3} of stockpiled soil remained at Brookhaven National Laboratory (BNL) after the remediation of the BNL Chemical/Animal/Glass Pits disposal area. The soils were originally contaminated with radioactive materials and heavy metals, depending on what materials had been interred in the pits, and how the pits were excavated. During the 1997 removal action, the more hazardous/radioactive materials were segregated, along with, chemical liquids and solids, animal carcasses, intact gas cylinders, and a large quantity of metal and glass debris. Nearly all of these materials have been disposed of. In order to ensure that all debris was removed and to characterize the large quantity of heterogeneous soil, BNL initiated an extended sorting, segregation, and characterization project directed at the remaining soil stockpiles. The project was co-funded by the Department of Energy Environmental Management Office (DOE EM) through the BNL Environmental Restoration program and through the DOE EM Office of Science and Technology Accelerated Site Technology Deployment (ASTD) program. The focus was to remove any non-conforming items, and to assure that mercury and radioactive contaminant levels were within acceptable limits for disposal as low-level radioactive waste. Soils with mercury concentrations above allowable levels would be separated for disposal as mixed waste. Sorting and segregation were conducted simultaneously. Large stockpiles (ranging from 150 to 1,200 yd{sup 3}) were subdivided into manageable 20 yd{sup 3} units after powered vibratory screening. The 1/2-inch screen removed almost all non-conforming items (plus some gravel). Non-conforming items were separated for further characterization. Soil that passed through the screen was also visually inspected before being moved to a 20 yd{sup 3} ''subpile.'' Eight samples from each subpile were collected after establishing a grid of four quadrants: north, east, south and west, and two layers: top and bottom. Field personnel collected eight 100-gram samples, plus quality assurance (QA) duplicates for chemical analysis, and a 1-liter jar of material for gamma spectroscopy. After analyses were completed and reviewed, the stockpiles were reconstructed for later disposal as discrete entities within a disposal site profile. A field lab was set up in a trailer close to the stockpile site, equipped with instrumentation to test for mercury, RCRA metals, and gamma spectroscopy, and a tumbler for carrying out a modified Toxicity Characteristic Leaching Procedure (TCLP) protocol. Chemical analysis included X-ray fluorescence (XRF) to screen for high (>260 ppm) total mercury concentrations, and modified TCLP tests to verify that the soils were not RCRA hazardous. The modified TCLP tests were 1/10th scale, to minimize secondary (leachate) waste and maximize tumbler capacity and sampler throughput. TCLP leachate analysis was accomplished using a Milestone Direct Mercury Analyzer (DMA80). Gamma spectroscopy provided added assurance of previously measured Am-241, Cs-137, and Co-60 contamination levels.

BOWERMAN,B.S.; ADAMS,J.W.; HEISER,J.; KALB,P.D.; LOCKWOOD,A.

2003-04-01T23:59:59.000Z

174

Environment/Health/Safety (EHS): Laser Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Safety Home Whom to Call Analysis of Laser Safety Occurrences: 2005-2011 Laser Bio-effects Laser Classification Laser Disposal Guide Laser Forms Laser Newsletter Laser Lab...

175

BERKELEY LAB  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Science Solutions to the World Bringing Science Solutions to the World lbl.gov Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Understanding the Effects of the Gulf Oil Spill In the aftermath of the explosion of BP's Deepwater Horizon drilling rig in the Gulf of Mexico, a dispersed oil plume was formed at a depth between 3,600 and 4,000 feet, extending some 10 miles out from the wellhead. An intensive study by Berkeley Lab scientists, using a DNA-analytical tool they developed

176

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA JOHANNESBURG ERITREA Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Roll your mouse across the map to see how the Lab is making a difference. gulf-oil-spill_2 Understanding the Effects of the Gulf Oil Spill / Gulf of Mexico

177

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Berkeley The Lab at a Glance 13 Nobel Prizes $700 million Annual contribution to local economy $1.6 billion Impact on U.S. economy 4,200 Employees, including: 1,685 Scientists, engineers, and faculty 475 Postdoctoral fellows 560 Undergraduate and graduate student employees Lab Budget FY 2011 $836 million $735 million + $101 million (ARRA) FY 2010 $811 million $707 million + $104 million (ARRA) FY 2009 $648 million $637 million + $ 11 million (ARRA) FY 2008 $590 million (ARRA = American Recovery and Reinvestment Act) Berkeley Lab hosts six major national user facilities that attract more than 7,000 visitors a year to conduct joint research, run experiments, and analyze sample materials: Advanced Light Source Energy Sciences Network Joint Genome Institute

178

Simulations of laser-wakefield acceleration with external electron-bunch injection for REGAE experiments at DESY  

Science Conference Proceedings (OSTI)

We present particle-in-cell simulations for future laser-plasma wakefield experiments with external bunch injection at the REGAE accelerator facility at DESY, Hamburg, Germany. Two effects have been studied in detail: emittance evolution of electron bunches externally injected into a wake, and longitudinal bunch compression inside the wakefield. Results show significant transverse emittance growth during the injection process, if the electron bunch is not matched to its intrinsic betatron motion inside the wakefield. This might introduce the necessity to include beam-matching sections upstream of each plasma-accelerator section with fundamental implications on the design of staged laser wakefield accelerators. When externally injected at the zero-field crossing of the laser-driven wake, the electron bunch may undergo significant compression in longitudinal direction and be accelerated simultaneously due to the gradient in the acting force. The mechanism would allow for production of single high-energy, ultra-short (on the order of one femtosecond) bunches at REGAE. The optimal conditions for maximal bunch compression are discussed in the presented studies.

Grebenyuk, Julia; Mehrling, Timon; Tsung, Frank S.; Floettman, Klaus; Osterhoff, Jens [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, 22761 Hamburg (Germany); University of California, Los Angeles, CA 90095 (United States); Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Institut fuer Experimentalphysik, Universitaet Hamburg, 22761 Hamburg (Germany)

2012-12-21T23:59:59.000Z

179

Modeling of 10 GeV-1 TeV laser-plasma accelerators using Lorentz booster simulations  

SciTech Connect

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [J.-L. Vay, Phys. Rev. Lett. 98 130405 (2007)] allows direct and e#14;fficient full-scale modeling of deeply depleted and beam loaded laser-plasma stages of 10 GeV-1 TeV (parameters not computationally accessible otherwise). This verifies the scaling of plasma accelerators to very high energies and accurately models the laser evolution and the accelerated electron beam transverse dynamics and energy spread. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively. Agreement at the percentage level is demonstrated between simulations using different frames of reference for a 0.1 GeV class stage. Obtaining these speedups and levels of accuracy was permitted by solutions for handling data input (in particular particle and laser beams injection) and output in a relativistically boosted frame of reference, as well as mitigation of a high-frequency instability that otherwise limits effectiveness.

Vay, J.-L.; Geddes, C.G.R.; Esarey, E.; Esarey, E.; Leemans, W.P.; Cormier-Michel, E.; Grote, D.P.

2011-12-01T23:59:59.000Z

180

Self-injection and acceleration of electrons during ionization of gas atoms by a short laser pulse  

Science Conference Proceedings (OSTI)

Using a relativistic three-dimensional single-particle code, acceleration of electrons created during the ionization of nitrogen and oxygen gas atoms by a laser pulse has been studied. Barrier suppression ionization model has been used to calculate ionization time of the bound electrons. The energy gained by the electrons peaks for an optimum value of laser spot size. The electrons created near the tail do not gain sufficient energy for a long duration laser pulse. The electrons created at the tail of pulse escape before fully interacting with the trailing part of the pulse for a short duration laser pulse, which causes electrons to retain sufficient energy. If a suitable frequency chirp is introduced then energy of the electrons created at the tail of the pulse further increases.

Singh, K.P. [Computational Plasma Dynamics Laboratory, Kettering University, Flint, Michigan 48504 (United States)

2006-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Jefferson Lab Treasure Hunt  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab Treasure Hunt Students tour Jefferson Lab's site while searching for answers to challenging questions. Teacher Overview Download this Activity Lab Pages Questions...

182

Progress on laser plasma accelerator development using transversely and longitudinally shaped plasmas  

E-Print Network (OSTI)

For BPS data, a second laser pulse (2 TW) was present frompointing. Spectrom- eter data (no second laser), verifiedthe second laser did not affect the bunch. C.G.R. Geddes, et

Nakamura, K.

2010-01-01T23:59:59.000Z

183

Supercomputing and Advanced Computing at the National Labs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supercomputing 1000 Independence Ave. SW Washington DC supercomputing 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research http://energy.gov/articles/lab-breakthrough-supercomputing-power-accelerate-fossil-energy-research lab-breakthrough-supercomputing-power-accelerate-fossil-energy-research" class="title-link">Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

184

Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator  

Science Conference Proceedings (OSTI)

The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

2012-06-15T23:59:59.000Z

185

The Jefferson Lab High Power Light Source  

Science Conference Proceedings (OSTI)

Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

James R. Boyce

2006-01-01T23:59:59.000Z

186

Directions to Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Airport to the Lab by BART San Francisco Airport to the Lab by commercial shuttle San Francisco to the Lab by BART Downtown San Francisco to the Lab by car Oakland...

187

Jefferson Lab Technology Transfer  

For more information about Intellectual Property and Inventions, please see the Jefferson Lab Employee Handbook, the Jefferson Lab Administrative ...

188

BNL | Accelerators for Scientific Research  

NLE Websites -- All DOE Office Websites (Extended Search)

for Basic Research Brookhaven National Lab excels at the design, construction, and operation of large-scale accelerator facilities, a tradition that started with the Cosmotron and...

189

Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime  

Science Conference Proceedings (OSTI)

An electron density bubble driven in a rarefied uniform plasma by a slowly evolving laser pulse goes through periods of adiabatically slow expansions and contractions. Bubble expansion causes robust self-injection of initially quiescent plasma electrons, whereas stabilization and contraction terminate self-injection thus limiting injected charge; concomitant phase space rotation reduces the bunch energy spread. In regimes relevant to experiments with hundred terawatt- to petawatt-class lasers, bubble dynamics and, hence, the self-injection process are governed primarily by the driver evolution. Collective transverse fields of the trapped electron bunch reduce the accelerating gradient and slow down phase space rotation. Bubble expansion followed by stabilization and contraction suppresses the low-energy background and creates a collimated quasi-monoenergetic electron bunch long before dephasing. Nonlinear evolution of the laser pulse (spot size oscillations, self-compression, and front steepening) can also cause continuous self-injection, resulting in a large dark current, degrading the electron beam quality.

Kalmykov, S. Y.; Shadwick, B. A.; Umstadter, D. P. [Department of Physics and Astronomy, University of Nebraska - Lincoln, Lincoln, Nebraska 68588-0299 (United States); Beck, A.; Lefebvre, E. [CEA, DAM, DIF, Arpajon F-91297 (France); Yi, S. A.; Khudik, V. N.; Downer, M. C. [Department of Physics, C1500, niversity of Texas at Austin, Austin, Texas 78712 (United States)

2011-05-15T23:59:59.000Z

190

Physics Out Loud - Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Previous Video (Hybrid Meson) Physics Out Loud Main Index Next Video (Matter) Matter Laser Learn all about different types of lasers with Jefferson Lab's Michelle Shinn, a...

191

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 The Truth about Clean Energy Jobs Director of Public Affairs Dan Leistikow details how the Loan Program will support 60K American jobs and save 300 million gallons of gasoline a year. September 14, 2011 Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs To accelerate high-growth entrepreneurship across the nation and move cutting-edge clean energy technologies from the lab to the marketplace, a year ago the Energy Department launched the Innovation Ecosystem Initiative. 

 September 12, 2011 A view of a cryogenically cooled National Ignition Facility (NIF) target as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory.

192

Generation of tunable, 100-800 MeV quasi-monoenergetic electron beams from a laser-wakefield accelerator in the blowout regime  

Science Conference Proceedings (OSTI)

In this paper, we present results on a scalable high-energy electron source based on laser wakefield acceleration. The electron accelerator using 30-80 TW, 30 fs laser pulses, operates in the blowout regime, and produces high-quality, quasi-monoenergetic electron beams in the range 100-800 MeV. These beams have angular divergence of 1-4 mrad, and 5%-25% energy spread, with a resulting brightness 10{sup 11} electrons mm{sup -2} MeV{sup -1} mrad{sup -2}. The beam parameters can be tuned by varying the laser and plasma conditions. The use of a high-quality laser pulse and appropriate target conditions enables optimization of beam quality, concentrating a significant fraction of the accelerated charge into the quasi-monoenergetic component.

Banerjee, S.; Powers, N. D.; Ramanathan, V.; Ghebregziabher, I.; Brown, K. J.; Maharjan, C. M.; Chen, S.; Umstadter, D. P. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588-0299 (United States); Beck, A.; Lefebvre, E.; Kalmykov, S. Y.; Shadwick, B. A. [CEA, DAM, DIF, 91297 Arpajon Cedex (France)

2012-05-15T23:59:59.000Z

193

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

194

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

195

Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator  

Science Conference Proceedings (OSTI)

After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

2012-04-17T23:59:59.000Z

196

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book The Jefferson Lab Coloring Book, Quarks - More Than Meets the Eye, was written to help...

197

Lab announces security changes  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab announces security changes Lab announces security changes The Laboratory is implementing several changes to its security procedures as the result of a recent security...

198

Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses  

SciTech Connect

Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

Hosokai, Tomonao [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Mizuta, Yoshio [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Uesaka, Mitsuru [Graduate School of Engineering, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan) and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)

2010-03-22T23:59:59.000Z

199

Berkeley Lab Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab social media guidelines Berkeley Lab social media guidelines Read this before you tweet! These guidelines, developed by Berkeley Lab's Public Affairs Department, are intended to help Lab employees who use social media in an official capacity on behalf of Berkeley Lab. Social media is a great way to engage a large audience, but there are ways to do it well-and not so well-so please read on. These guidelines are for Lab staff interested in establishing a social media presence for a department, division, or user facility. They're also for Lab staff using social media as an individual but representing the Lab in some way. For Berkeley Lab's policies on basic computing and communications, which pertain to all Lab employees, read RPM 9.01 Computing and Communication and RPM 9.02 Operational Procedures for Computing and

200

SLAC National Accelerator Laboratory - About SLAC  

NLE Websites -- All DOE Office Websites (Extended Search)

About SLAC Overview Director's Office Vision & Mission Organization History Brochures Contact SLAC About SLAC SLAC lab at night Since its opening in 1962, SLAC National Accelerator...

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction  

Science Conference Proceedings (OSTI)

Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

202

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 Investing in a New Era of Manufacturing Technology The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. June 23, 2011 Uwe Bergmann | Photo Courtesy of Brad Plummer, SLAC 10 Questions for a Physicist: Uwe Bergmann How can we better use sunlight to create new fuels? SLAC National Accelerator Lab physicist Uwe Bergmann is helping answer this by using the world's first free electron x-ray laser to make an atomic resolution movie of photosynthesis -- how "tiny machines" in plants and algae use sunlight to split water into oxygen. June 22, 2011

203

Industry-Lab Research Opportunities  

Partnering With Berkeley Lab: Industry-Lab Research Opportunities. Some of the most innovative technology transfer at Berkeley Lab involves collaborative projects ...

204

The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils  

DOE Green Energy (OSTI)

This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

Offermann, D

2008-09-04T23:59:59.000Z

205

Institutions Related to Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions Related to Berkeley Laboratory Institutions Related to Berkeley Laboratory DOE logo Office of Science logo UC seal Berkeley Lab logo University of California Department of Energy (DOE) and DOE National Laboratories NERSC (National Energy Research Scientific Computing Center) ESnet Stanford Linear Accelerator Center (SLAC) Lawrence Livermore National Laboratory Los Alamos National Laboratory High Energy Physics Information Center U.S. Government University of California UC Berkeley UC Berkeley colleges, schools, and teaching units The Daily Cal independent student newspaper at UC Berkeley. University of California campuses and labs UC Office of the President UC National Laboratories provides news and information on UC's management of three DOE laboratories -- Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National

206

Berkeley Lab Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

To Your Lab Gmail Signature Instructions Use the Firefox browser - it does not work in Google Chrome Open Lab Gmail Click on Settings button on far right - it looks like a round...

207

GridLAB-D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GridLAB-D GridLAB-D 2010 Peer Review Overview * What is GridLAB-D? * Why use GridLAB-D? * How does GridLAB-D work? * How has GridLAB-D been used so far? * What is it expected in the coming year? * Funding and management details GridLAB-D Simulates the Smart Grid Power system models Load models Market models GridLAB-D model unifies keys elements of a Smart Grid  Next generation tool  Integrates models  Smart Grid analysis  Projects  Technologies  Cost/benefits  Business cases  Multi-scale models  Seconds to decades  Links to existing tools  Open source  Contributions from  Government  Industry  Academic  Vendors  Drives need for high performance computers  Vendors can add/extract modules for their own uses 3 Why simulate the smart grid?

208

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

E-Print Network (OSTI)

Katherine Yelick (right) NERSC Division Directornational user facilities NERSC and ESnet and by conduct-and applied mathematics. NERSC serves more than 3,000

Hules, John A

2009-01-01T23:59:59.000Z

209

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

E-Print Network (OSTI)

facilities NERSC and ESnet and by conduct- ing appliedCOMPUTATIONAL SCIENCE ESnet is a reliable, high- bandwidthdevelopment. NERSC and ESnet staff participate in advanced

Hules, John A

2009-01-01T23:59:59.000Z

210

Berkeley Lab Computing Sciences: Accelerating Scientific Discovery  

E-Print Network (OSTI)

Sciences national user facilities, services, and researchoperating two national user facilities NERSC and ESnet

Hules, John A

2009-01-01T23:59:59.000Z

211

Lab seeks ideas for venture acceleration fund  

NLE Websites -- All DOE Office Websites (Extended Search)

investments of up to 100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits...

212

Berkeley Lab Scientific Programs: Soft X-Ray Science for Discovery  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Beamline 7.0.1 - Northern California site of the Joint Center for Artificial Photosynthesis (JCAP). Scientists in Berkeley Lab's Advanced Light Source, Accelerator and Fusion...

213

BNL | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

214

Results of the SNS front end commissioning at Berkeley Lab  

E-Print Network (OSTI)

RESULTS OF THE SNS FRONT END COMMISSIONING AT BERKELEY LAB *USA A. Aleksandrov for the SNS Accelerator Physics Group andT. Shea for the SNS Beam Diagnostics Collaboration Oak Ridge

2002-01-01T23:59:59.000Z

215

National Labs Open Doors to Displaced Japanese Researchers  

Energy.gov (U.S. Department of Energy (DOE))

The Japan Proton Accelerator Research Complex (J-PARC) has been shut down due to damage from the devastating Tohoku Earthquake in March. Our national labs are offering a helping hand... and their supercomputers.

216

Berkeley Lab A to Z Index: B  

NLE Websites -- All DOE Office Websites (Extended Search)

BABAR (Experiment at the SLAC B-Factory for observation of CP violation) BABAR (Experiment at the SLAC B-Factory for observation of CP violation) Back-Up Dependent Care Backups for Computers Backups for Macintosh Backups for PC Servers (Novell, NT, etc.) Backups for PC and Mac desktops (self-service using Carbonite) Backups for Linux and UNIX Badge Office Badges: Employee ID Badges BASE (Berkeley Accelerator Space Effects) Batteries:Technology Transfer Bay Area Gigabit (BAGnet) Testbed Benefits Benefits (Total Rewards) Berkeley Center for Structural Biology(BCSB) Berkeley Electrochemical Research Council (BERC) Berkeley Lab 75th Anniversary Site Berkeley Lab Energy and Environmental Research Blog Berkeley Lab Learning Institute (BLI) Berkeley Lab Merchandise for Sale 24/7 at the Guest House Berkeley Structural Genomics Center Beryllium Safety

217

Berkeley Lab - ARRA - In the News  

NLE Websites -- All DOE Office Websites (Extended Search)

IN THE NEWS IN THE NEWS New accelerator to study steps on the path to fusion Symmetry Breaking, May 9, 2012 Berkeley Lab scientists and engineers announced in a press release on May 8 that they have completed a machine tailor-made to examine one approach to fusion power. More > Biomass pretreatment CNET, Aug 20, 2011 Here in the analytics lab, ABPDU's Rakesh Banka (right) explains the lab capabilities as Paul Bryan (left), of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy, listens with the first group to tour the facility following Thursday's ribbon cutting. More > Berkeley Lab Offers Smart Building Tests Earth Techling, Aug 3, 2011 The promise of green buildings married to super efficient smart building tech is huge, considering the fact that buildings currently account for

218

12 GeV Upgrade | Jefferson Lab  

NLE Websites -- All DOE Office Websites

Science Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. A D D I T I O N A L L I N K S: 12 GeV Home Public Interest Scientific Opportunities Hall D Status Updates Contacts Three-Year Accelerator Schedule 2014 - 2016 top-right bottom-left-corner bottom-right-corner 12 GeV Upgrade Physicists at Jefferson Lab are trying to find answers to some of nature's most perplexing questions about the universe by exploring the nucleus of the atom. Their goal is to answer such questions as: "What is the universe made of?" and "What holds everyday matter together?" In their search for answers, physicists smash electrons into atoms using

219

NOPA/AOCS Certified Labs  

Science Conference Proceedings (OSTI)

Lab certification listing for soybean meal according to NOPA trading rules. NOPA/AOCS Certified Labs Laboratory Directory aocs applicants Approved Chemists certified chemist chemists fat lab laboratories laboratory Laboratory Directory labs methods NOPA

220

Science Education Lab | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Science Education Laboratory Overview Gallery: (Photo by Remote Control Glow Discharge) (Photo by DC Glow Discharges for Undergraduate Laboratories) (Photo by Atmospheric Plasma Laboratory) (Photo by 3D Printing Laboratory) (Photo by Remote Control Glow Discharge) (Photo by Plasma Speaker with 200 Hz input) (Photo by Dusty Plasma Laboratory) The Science Education Laboratory is a fusion (pun intended) of research between education and plasma science. This unique facility includes a teaching laboratory/classroom, two research labs, and student offices/storage/prep room. The research performed in the Science Education Laboratory is currently centered upon dusty plasmas, plasma speakers, remote control of plasmas for educational purposes, atmospheric plasmas and

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Suppressing longitudinal double-layer oscillations by using elliptically polarized laser pulses in the hole-boring radiation pressure acceleration regime  

SciTech Connect

It is shown that well collimated mono-energetic ion beams with a large particle number can be generated in the hole-boring radiation pressure acceleration regime by using an elliptically polarized laser pulse with appropriate theoretically determined laser polarization ratio. Due to the J Multiplication-Sign B effect, the double-layer charge separation region is imbued with hot electrons that prevent ion pileup, thus suppressing the double-layer oscillations. The proposed mechanism is well confirmed by Particle-in-Cell simulations, and after suppressing the longitudinal double-layer oscillations, the ion beams driven by the elliptically polarized lasers own much better energy spectrum than those by circularly polarized lasers.

Wu Dong; Yan, X. Q. [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Zheng, C. Y.; Zhou, C. T.; He, X. T. [Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Key Laboratory of High Energy Density Physics Simulation, Ministry of Education, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Yu, M. Y. [Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China)

2013-02-15T23:59:59.000Z

222

Proton trajectories and electric fields in a laser-accelerated focused proton beam  

SciTech Connect

The focusing properties of a laser generated proton beam have been investigated using hemispherical targets in both freestanding and enclosed cone-shaped geometries. The proton trajectories and focusing were strongly affected by the electric fields in the beam, bending the trajectories near the axis. In the cone targets, a sheath field effectively channels the proton beam through the open cone tip, substantially improving the beam focusing from Almost-Equal-To 90 {mu}m to Almost-Equal-To 55 {mu}m diameter for protons with energies >3 MeV. The proton generation and focusing were modeled using 2D hybrid particle-in-cell simulations, which compared well with the experimental results. Simulations predict further improvement in focusing with more uniform target illumination. These results are of significant interest to proton fast ignition and other high energy density physics applications.

Foord, M. E.; Bellei, C.; Key, M.; Patel, P. K.; McLean, H. S.; Jarrott, L. C. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bartal, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); University of California, San Diego, California 92093 (United States); Flippo, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephens, R. B.; Wei, M. S. [General Atomics, San Diego, California 92121 (United States); Beg, F. N. [University of California, San Diego, California 92093 (United States)

2012-05-15T23:59:59.000Z

223

SLAC National Accelerator Laboratory - Seen Above SLAC: A Bird...  

NLE Websites -- All DOE Office Websites (Extended Search)

Seen Above SLAC: A Bird's-Eye View of the Lab By Mike Ross February 8, 2012 About 50 new aerial photos of SLAC National Accelerator Laboratory have been added to the lab's Flickr...

224

Berkeley Lab Nobel Laureates  

NLE Websites -- All DOE Office Websites (Extended Search)

Since Berkeley Lab's founding, 13 Lab researchers have been awarded the Since Berkeley Lab's founding, 13 Lab researchers have been awarded the Nobel Prize. The links below take you to the laureates' acceptance speeches and their biographies. Ernest Orlando Lawrence 1939: Ernest Orlando Lawrence Ernest Orlando Lawrence, founder of the Berkeley Lab, for "the invention and development of the cyclotron, and for the results thereby attained, especially with regard to artificial radioelements." blue spacer image Glenn T. Seaborg 1951: Glenn T. Seaborg Glenn T. Seaborg, with Edwin M. McMillan for "their discoveries in the chemistry of the transuranic elements." blue spacer image Edwin M. McMillan 1951: Edwin M. McMillan Edwin M. McMillan, former Director of the Berkeley Lab, with Glenn T. Seaborg for "their discoveries in the chemistry of the transuranic elements."

225

Friends of Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Friends of Berkeley Lab masthead Friends of Berkeley Lab masthead About Friends of Berkeley Lab Join Friends of Berkeley Lab Event/Video Archive Newsletter Archive Laboratory Tours Learn About the Geology of Berkeley Lab Email: friendsofberkeleylab@lbl.gov Public Affairs State Government and Community Relations Center for Science and Engineering Education (CSEE) Facebook icon Visit Our Facebook Page and Become a Fan YouTube icon Watch Our Videos on YouTube Twitter icon Follow Us on Twitter Twitter icon View our Photo Stream on Flickr Web feed icon Read Our Latest Science News Video Glossary icon See Berkeley Lab Scientists Define Scientific Terms in Lay Language at Our Video Glossary 29 Breakthroughs SCIENCE AT THE THEATER, OCTOBER 28, 2013 Poster Google Maps Speakers include: Peter Nugent -- Supercomputing and the search for supernovae

226

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, J.S.; Sheffield, R.L.

1985-05-20T23:59:59.000Z

227

Optically pulsed electron accelerator  

DOE Patents (OSTI)

An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

228

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

229

Far field acceleration  

SciTech Connect

Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail.

Fernow, R.C.

1995-07-01T23:59:59.000Z

230

Jefferson Lab Technology Transfer  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an ...

231

Lab Report - TMS  

Science Conference Proceedings (OSTI)

"Unit Process Modeling Developments at the Edison Materials Technology Center" (Forum Lab Report), L.L. Midolo and E.F. Moore, October 1991, pp. 55-

232

Brookhaven National Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

of Stradivari Violins: Fact or Myth? What Can Science Tell Us? Bonita London Brookhaven Lab and Stony Brook University Launch Program to Increase Underrepresented Minority Faculty...

233

Jefferson Lab Technology Transfer  

Tool for Breast Cancer Research - Reducing the need for Biopsy. ... Jefferson Lab is a Department of Energy national laboratory for nuclear physics re ...

234

Berkeley Lab - ARRA - Articles  

NLE Websites -- All DOE Office Websites (Extended Search)

and the Princeton Plasma Physics Laboratory. More> Berkeley Lab Opens Advanced Biofuels Facility August 18, 2011 The ailing United States' economy would receive a much...

235

Berkeley Lab Holiday Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the Berkeley Lab Holiday Schedule via Google Calendar or ICS. Go here for Google CalendarICS subscription help. The Laboratory has announced the following holiday...

236

Berkeley Lab Strategic Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Development (LDRD) BER Review Annual Lab Plan Notable Outcomes Division-Level Strategic Planning Related Links Strategic Planning Laboratory Directed Research and...

237

Lab Breakthrough: Record-Setting Cavities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record-Setting Cavities Record-Setting Cavities Lab Breakthrough: Record-Setting Cavities April 24, 2012 - 2:34pm Addthis At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi "Gigi" Ciovati, a superconducting radiofrequency scientist, discusses how scientists at the Jefferson Lab developed the technology, and how it will be used to impact the energy industry. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What does this project do? With more powerful accelerators, researchers can someday build new power plants that produce little or no nuclear waste. At Jefferson Lab, researchers have fabricated a niobium cavity for particle accelerators that has set a world record for energy efficiency. Gianluigi

238

High Power Electrodynamics (HPE): Accelerator Operations and Technology,  

NLE Websites -- All DOE Office Websites (Extended Search)

CONTACTS CONTACTS Group Leader Bruce Carlsten Deputy Group Leader Ellen Guenette Administrator Josephine (Jo) Torres High-Power Electrodynamics (HPE) The High-Power Electrodynamics (AOT-HPE) Group applies accelerator and beam technologies to national-security-directed energy missions. AOT-HPE has three programmatic thrusts: free-electron lasers (FELs), high-power microwaves (HPM), and compact radiography. To maintain a vigorous and robust technical base for addressing DOE and DoD needs, the group's project portfolio is balanced between exploratory research, infrastructure development, and programmatic deliverables for sponsors. Funding is roughly 25% from the Lab's Directed Research and Development Program, 65% from DoD, and 10% from DOE. Technology Focus Areas AOT-HPE is the Laboratory's main vehicle for applying accelerator-based technologies to directed-energy mission needs. The group recognizes that many directed-energy missions are enabled by compact high-brightness electron accelerators and mm-wave and THz technologies.

239

Theoretical Investigations of Plasma-Based Accelerators and Other Advanced Accelerator Concepts  

SciTech Connect

Theoretical investigations of plasma-based accelerators and other advanced accelerator concepts. The focus of the work was on the development of plasma based and structure based accelerating concepts, including laser-plasma, plasma channel, and microwave driven plasma accelerators.

Shuets, G.

2004-05-21T23:59:59.000Z

240

DOE Congratulates Under Secretary, National Lab Director and Other National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congratulates Under Secretary, National Lab Director and Other Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor DOE Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor April 29, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Under Secretary for Science Steven E. Koonin, SLAC National Accelerator Laboratory Director Persis Drell, and other National Lab affiliated scientists and engineers are among the 72 new members elected to the National Academy of Sciences (NAS). NAS is a private, nonprofit, honorific society of distinguished scholars engaged in scientific and engineering research, dedicated to furthering science and technology and to their use for the general welfare.

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CEBAF accelerator achievements  

Science Conference Proceedings (OSTI)

In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

2011-06-01T23:59:59.000Z

242

The Future of LAB  

Science Conference Proceedings (OSTI)

The global linear alkylbenzene (LAB) industry has experienced depressed margins and feedstock shortages during the past few years. The following is an analysis of the industrys current state and its most likely future. The Future of LAB inform Ma

243

Working With Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with the Lab Working with the Lab A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Technology Transfer Patent Department Sponsored Projects Office Procurement: Doing Business with the Lab Visitor Information Scientififc Divisions and National User Facilities UC Campus-Labs Collaboration Programs Berkeley Lab stresses collaboration in everything we do. The Laboratory is involved in many research partnerships with private industry. Our mission also includes the transfer of Laboratory inventions to the private sector for rapid commercialization. The role of the Technology Transfer Office is to make technology and expertise developed here available to industry. Contact the Technology Transfer Office to pinpoint research areas of common interest, negotiate rights to Laboratory intellectual property, and to discuss current patent and copyright licensing opportunities.

244

Berkeley Lab Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

can get your Berkeley Lab any way you like it. Many of our user can get your Berkeley Lab any way you like it. Many of our user facilities, scientific divisions, and other groups want to connect with you on Facebook, Twitter, YouTube, and other sites. Join the conversation! Berkeley Lab's Primary Social Media Channels FB Twitter Google+ youtube Flickr Other Berkeley Lab Facebook Pages fb icon Joint Genome Institute (JGI) fb icon Energy Sciences Network fb icon Environmental Energy Technologies Division fb icon Advanced Light Source (ALS) National Energy Research Scientific Computing (NERSC) Joint Bio Energy Institute (JBEI) Computing Sciences LBNL Research Library Life Sciences Division Earth Sciences Division Berkeley Lab Recruiters Information Technology Division Engineering Division Home Energy Saver Home Energy Saver Pro

245

SLAC National Accelerator Laboratory - Fermi-LAT Designer Awarded...  

NLE Websites -- All DOE Office Websites (Extended Search)

said. Now with the Santa Cruz Institute for Particle Physics, Atwood was a long-time SLAC National Accelerator Laboratory particle physicist who maintains his lab ties through...

246

Lab Scale Hydraulic Parameter Estimation .  

E-Print Network (OSTI)

??Hydraulic tomography has been tested at the field scale, lab scale and in synthetic experiments. Recently Illman and Berg have conducted studies at the lab (more)

Hartz, Andrew Scott

2011-01-01T23:59:59.000Z

247

Undergraduate Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

248

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Mission Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities in Northern Illinois Advance accelerator technology Oversee a selected, strategic, lab-wide, and acclaimed accelerator R&D portfolio In order to accomplish the above goals, the institute has established five objectives. These are coupled to programmatic objectives, and are dependent on each other, but they serve to identify important areas for the institute to focus its activities. Educate the "next generation" of accelerator physicists and engineers Work with area Universities to establish Joint Appointments and Adjunct Professorships Identify students Provide research opportunities at Argonne Work with the US Particle Accelerator School

249

North Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

North Linear Accelerator North Linear Accelerator Building Exterior Beam Enclosure Level Walk to the North Spreader North Recombiner Extras! North Linear Accelerator The North Linear Accelerator is one of the two long, straight sections of Jefferson Lab's accelerator. Electrons gain energy in this section by passing through acceleration cavities. There are 160 cavities in this straightaway, all lined up end to end. That's enough cavities to increase an electron's energy by 400 million volts each time it passes through this section. Electrons can pass though this section as many as five times! The cavities are powered by microwaves that travel down the skinny rectangular pipes from the service buildings above ground. Since the cavities won't work right unless they are kept very cold, they

250

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

251

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

R. D. McKeown

2013-03-26T23:59:59.000Z

252

Overview of Nuclear Physics at Jefferson Lab  

E-Print Network (OSTI)

The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

McKeown, R D

2013-01-01T23:59:59.000Z

253

Princeton Plasma Physics Lab - Lab Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

lab-leadership en Adam Cohen lab-leadership en Adam Cohen http://www.pppl.gov/people/adam-cohen

From Hot Cells to Hot PlasmasCohen approaches science challenges with practicalityBy John GreenwaldAdam Cohen grew up as the family handyman. "I was the kid who tacked down the carpet, repaired the roof, fixed the toilet and worked on the car," he said of his youth in northern New Jersey. "I would pull apart batteries and tear apart things and try to make them work again."That Mr. Fixit

254

Berkeley Lab Energy Breakthroughs  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver 11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver It all started during the 1973 energy crisis, when scientists from Lawrence Berkeley National Laboratory, a U.S. Department of Energy laboratory managed by the University of California, began to explore ways to improve energy efficiency in buildings and industry. Since then, Berkeley Lab has become a world leader in developing technologies and standards that have slashed energy costs by billions of dollars and helped bring energy-efficient products to your home. That same drive to bring energy efficiency to all facets of our lives continues today. AT BERKELEY LAB WE'VE: windows Turned windows into energy savers. Americans save billions of dollars in energy bills each year thanks to a

255

Berkeley Lab Community Relations  

NLE Websites -- All DOE Office Websites (Extended Search)

Bay Campus Environmental/ Bay Campus Environmental/ Construction Info Long-Range Development Plan Laboratory Tours Friends of Berkeley Lab Community Activities Community News LBL LBL LBL LBL Twitter Eureka twitter Facebook Berkeley Rep facebook browercenter address UPDATES Check out Berkeley Lab on: Flickr logo Twitter logo Facebook logo YouTube logo Proposed Richmond Bay Campus: Visit our Richmond Bay Campus website for information and updates. Capital Projects Website: Berkeley Lab is in the process of upgrading existing buildings and facilities and is proceeding with the planning and construction of new buildings. The work will enable the Lab to address some of the most urgent scientific challenges of our time, such as climate change and energy security. Go here for more information on the projects.

256

Lab celebrates Earth Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab celebrates Earth Day Lab celebrates Earth Day Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Great Garbage Grab From April 1 - 12 employees were encouraged to don work gloves and very attractive orange vests to pick up litter around their workplace-both on and off Lab property. This year's winner of the coveted Traveling Trash Trophy (for picking up the most litter) went to the Worker Safety and

257

Berkeley Lab - ARRA - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Berkeley Lab Projects infrastructure Advanced Light Source User Support Building Total Project Cost: $35.1 million ARRA funding: $14.7 million The Advanced Light Source (ALS) User Support Building is a three-story, 30,928 gross-square-foot building that will house user-support operations at the ALS. It will include office and lab space for some 80 researchers. The $35-million project is funded by the DOE Office of Science. It will house experiment assembly spaces, conference rooms, and labs. The project is scheduled to be completed in 2011. Go here for more information. Bevatron demolition Total Project Cost: $50 million ARRA funding: $14.3 million Building 51, which houses the Bevatron, is an approximately 125,000 gross-square-foot, steel-frame structure built in the early 1950s. The

258

Jefferson Lab's Open House  

NLE Websites -- All DOE Office Websites (Extended Search)

Currently, the date for Jefferson Lab's next Open House hasn't been announced. If you would like to be notified when a date has been set, you can subscribe to the Science Education...

259

Jefferson Lab Coloring Book  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs and Events Search Education Privacy and Security Notice Jefferson Lab Coloring Book Use the multi-colored crayon on the left-hand side of the screen to select a color....

260

AI Lab Faculty  

E-Print Network (OSTI)

This document is meant to introduce new graduate students in the MIT AI Lab to the faculty members of the laboratory and their research interests. Each entry consists of the faculty member's picture, if available, some ...

Torrance, Mark C.

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Berkeley Lab - ARRA - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

to Study Steps on the Path to Fusion May 8, 2012 Berkeley Lab Opens Advanced Biofuels Facility August 18, 2011 Tools and Toys for Builders: New Test Center for Low-Energy...

262

Lab women researchers highlighted  

NLE Websites -- All DOE Office Websites (Extended Search)

813women 04082013 Lab women researchers highlighted Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly The Laboratory's Dawn Shaughnessy is one of the women...

263

Argonne's Accelerator Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

has significant expertise in modeling, design, and operation of both electron accelerators and free electron lasers; undulator design, fabrication, and measurement; control...

264

Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL  

Science Conference Proceedings (OSTI)

An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

1992-08-01T23:59:59.000Z

265

X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator  

Science Conference Proceedings (OSTI)

We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

2011-08-29T23:59:59.000Z

266

Transformative Science: Energy Efficiency at the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs November 4, 2013 - 4:00pm Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building

267

Energy Efficiency at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency at the National Labs Energy Efficiency at the National Labs Energy Efficiency at the National Labs Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building at Fermilab, is aiming for a LEED Gold rating from the US Green Building

268

Transformative Science: Energy Efficiency at the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs November 4, 2013 - 4:00pm Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building

269

Berkeley Lab Media Advisory: Berkeley Lab Celebrates Its 75th Anniversary  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Media Advisory Berkeley Lab Media Advisory For Information, Contact: For Immediate Release Ron Kolb: 510-486-7586, RRKolb@lbl.gov May 10, 2006 Berkeley Lab Celebrates Its 75th Anniversary in 2006 Since the day in late August of 1931 when young physics genius Ernest Orlando Lawrence was granted access to an old wooden building on the University of California campus in Berkeley to house his particle accelerator invention, the world of science has been transformed. And Lawrence's scientific progeny, conducting 75 years of seminal research in a variety of fields, have contributed greatly to that transformation. The legacy of Lawrence and his successors - who include nine other Nobel Laureates, scores of National Academy of Science members, and thousands of others who contributed to the institution's international reputation -

270

About Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Laboratory Organization Chart Divisional/Departmental Organization Charts Interactive Laboratory Map History of the Laboratory Nobel Laureates Image of A. Paul Alivisatos spacer DIRECTOR OF BERKELEY LAB A. Paul Alivisatos spacer Image of Horst D. Simon spacer DEPUTY LABORATORY DIRECTOR Horst Simon spacer Image of Glenn D. Kubiak spacer CHIEF OPERATING OFFICER Glenn D. Kubiak Image of Jay D. Keasling spacer ASSOCIATE LABORATORY DIRECTOR FOR BIOSCIENCES Jay D. Keasling spacer Image of Katherine Yelick spacer ASSOCIATE LABORATORY DIRECTOR FOR COMPUTING SCIENCES Katherine Yelick spacer Image of Don DePaolo spacer ASSOCIATE LABORATORY DIRECTOR FOR ENERGY AND ENVIRON-MENTAL SCIENCES Don DePaolo Image of James Symons spacer ASSOCIATE LABORATORY DIRECTOR

271

Tri-Lab Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-Lab Resources Tri-Lab Resources Tri-Lab Computing Resources Computing resources available to Alliance users as of January 2012. Computing resources available Los Alamos Moonlight - 294 compute nodes, 4,704 cores, 488 TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors with two NVIDIA Tesla GPUs per node, w/ InfiniBand. Mustang - 1,600 compute nodes, 38,400 cores, 353 TF system. 24-core AMD Opteron w/ InfiniBand. Mapache - 592 compute nodes, 4,736 cores, 50.4 TF system. SGI XE1300 dual-socket, quad-core Intel Nehalem processors w/ InfiniBand. Pinto - 154 compute nodes, 2,464 cores, 51.3 TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors w/ Infiniband. Lawrence Livermore Cab - 1,296 nodes, 20,736 cores, 333-TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors w/ InfiniBand. Additional information at Cab

272

Electron Self-Injection into an Evolving Plasma Bubble: The Way to a Dark Current Free GeV-Scale Laser Accelerator  

Science Conference Proceedings (OSTI)

A time-varying electron density bubble created by the radiation pressure of a tightly focused petawatt laser pulse traps electrons of ambient rarefied plasma and accelerates them to a GeV energy over a few-cm distance. Expansion of the bubble caused by the shape variation of the self-guided pulse is the primary cause of electron self-injection in strongly rarefied plasmas (n{sub e{approx}}10{sup 17} cm{sup -3}). Stabilization and contraction of the bubble extinguishes the injection. After the bubble stabilization, longitudinal non-uniformity of the accelerating gradient results in a rapid phase space rotation that produces a quasi-monoenergetic bunch well before the de-phasing limit. Combination of reduced and fully self-consistent (first-principle) 3-D PIC simulations complemented with the Hamiltonian diagnostics of electron phase space shows that the bubble dynamics and the self-injection process are governed primarily by the driver evolution; collective transverse fields of the trapped electron bunch reduce the accelerating gradient, slow down phase space rotation, and result in a formation of monoenergetic electron beam with higher energy than test-particle modeling predicts.

Kalmykov, S. Y.; Shadwick, B. A. [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE 68588-0299 (United States); Beck, A.; Lefebvre, E. [CEA, DAM, DIF, Bruyeres-le-Chatel, 91297 Arpajon Cedex (France); Yi, S. A.; Khudik, V.; Downer, M. C. [Department of Physics, C1500, University of Texas at Austin, Austin, TX 78712 (United States)

2010-11-04T23:59:59.000Z

273

Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory  

E-Print Network (OSTI)

and Phase Diagnostics, SLAC Report LCLS-TN-00-12. Emma P.al. 2009, First Results of the LCLS Laser-Heater System, PACLinac Coherent Light Source (LCLS) Conceptual Design Report,

Kur, E.

2010-01-01T23:59:59.000Z

274

Berkeley Lab: Educational Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Sites Educational Sites The Center for Science & Engineering Education (CSEE) Berkeley Lab's Center for Science & Engineering Education (CSEE) carries out the Department of Energy's education mission to train the next generation of scientists, as well as helping them to gain an understanding of the relationships among frontier science, technology, and society. CSEE supports science literacy in the community and nationally through a broad range of programs from elementary school to undergraduate and graduate education, including internships, mentoring, school workshops and summer research programs for teachers. Through its broad range of programs, CSEE serves as the center for Berkeley Lab's science education efforts, developing partnerships with schools, government agencies, and non-profit

275

Jefferson Lab Technology Transfer  

Cryogenic Liquid Level Measuring Apparatus; Uniform Raster Pattern Generating System; ... Injection Mode-locking Ti-Sapphire Laser System; Radial ...

276

Questions and Answers - Why did it take so long to build Jefferson Lab? Why  

NLE Websites -- All DOE Office Websites (Extended Search)

are the Halls inbio-dome shapes? are the Halls in<br>bio-dome shapes? Previous Question (Why are the Halls in bio-dome shapes?) Questions and Answers Main Index Next Question (What would happen if part of the accelerator were to break?) What would happen if part ofthe accelerator were to break? Why did it take so long to build Jefferson Lab? Why was Jefferson Lab built in Newport News? Newport News was one of several places around the nation that competed for Jefferson Lab. The Southeastern Universities Research Association (SURA) won the contract to build and run Jefferson Lab in Newport News. A couple reasons helped bring the Lab to this area: 1) The city and state governments worked hard with SURA to earn the Department of Energy's approval to bring the Lab here. (Good teamwork means

277

Jefferson Lab Treasure Hunt - Teacher Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

a chance to see more of Jefferson Lab. Objectives: In this activity students will: - tour Jefferson Lab - collect information to answer questions in the BEAMS Lab Book Notes: -...

278

MECHANICAL TEST LAB CAPABILITIES  

E-Print Network (OSTI)

MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

279

FermiLab  

NLE Websites -- All DOE Office Websites (Extended Search)

a high-energy physics laboratory, a high-energy physics laboratory, named after particle physicist pioneer Enrico Fermi, is located 30 miles west of Chicago. It is the home of the world's most powerful particle accelerator, the Tevatron, which was used to discover the top quark. For more information: Booster: There is a short linear accelerator and a 95 meter booster accelerator. Hydrogen is ionized (stripped of its electrons), leaving protons, which are accelerated to 8 GeV before injection into the main accelerator. Antiproton Production Protons are crashed into a target. Antiprotons found among the resulting particles are collected in the antiproton accumulator, and then sent in the opposite direction as the protons in the ring. Tevatron The main accelerator, the Tevatron is a synchrotron about 6.4

280

Electromagnetic Isotope Separation Lab (EMIS) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Isotope Separation Lab Electromagnetic Isotope Separation Lab May 30, 2013 ORNL established the Stable Isotope Enrichment Laboratory (SIEL) as part of a project funded by the DOE Office of Science, Nuclear Physics Program to develop a modernized electromagnetic isotope separator (EMIS), optimized for separation of a wide range of stable isotopes. The SIEL is located in the Building 6010 Shield Test Station, space formerly allocated to the Oak Ridge Electron Linear Accelerator, on the main campus of ORNL. ORNL staff have designed and built a nominal 10 mA ion current EMIS (sum of all isotopes at the collector) in the SIEL. This EMIS is currently being tested to determine basic performance metrics such as throughput and enrichment factor per pass. This EMIS unit and space will be used to

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lab Breakthroughs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthroughs Lab Breakthroughs Lab Breakthroughs The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Energy Department's 17 National Labs are world-class scientific

282

Scientific Labs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

pipetting water. chemistry lab picture A well-appointed chemistry lab serves the HFIR users. A new complex of laboratories is now open at SNS, providing a flexible, mobile...

283

High brightness electron accelerator  

DOE Patents (OSTI)

A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity.

Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

1992-12-31T23:59:59.000Z

284

Jefferson Lab Technology Transfer  

List the name (s) of Thomas Jefferson National Accelerator Facility's technology of interest: * Does any foreign entity (company, person, ... Select license type:

285

Dr. Yuan Ping Lawrence Livermore National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating, diagnosing and Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM Refreshments at 2:45PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Since their invention in 1960's, lasers with power spanning from Kilo- Watt to PetaWatt have been widely used in almost every branch of sci- ence, leading to numerous discoveries and novel techniques. At present, lasers are capable of creating extreme states of matter in a laboratory, at conditions resembling those most extreme in the Universe: they heat matter up to the temperatures inside stars, they create electric field and

286

Labs and Field Site Histories | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historical Resources » Labs Historical Resources » Labs and Field Site Histories Labs and Field Site Histories Labs and Field Site Histories Note: Every effort is made to keep these links current and updated. Yet as many of the links below point to sites not under our direct control, some may stop working without warning . National Laboratories & Technology Centers Operations Offices & Field Sites Ames Laboratory (Iowa) -- History Chicago Office (Illinois) -- History Argonne National Laboratory (Illinois) -- Laboratory History and Timeline Fernald Environmental Management Project (Ohio) -- Site History Brookhaven National Laboratory (New York) -- Tour Brookhaven's History Grand Junction (Colorado) -- Site Description and History (pdf - less than 1MB) Fermi National Accelerator Laboratory (Illinois) -- History Idaho Operations Office (Idaho) -- Site History

287

Supercomputing and Advanced Computing at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy.gov » Supercomputing and Advanced Computing at the National Energy.gov » Supercomputing and Advanced Computing at the National Labs Supercomputing and Advanced Computing at the National Labs RSS September 30, 2013 Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research Learn how a new supercomputer at the National Energy Technology Laboratory will accelerate research into the next generation of fossil fuel systems. September 26, 2013 Infographic by Sarah Gerrity, Energy Department. INFOGRAPHIC: Everything You Need to Know About Supercomputers In our newest infographic, we explain some of the complex terms associated with the speed, storage and processing on supercomputers; the game changing work being done with them; and the top 8 supercomputers that call the

288

New facility boosts Lab's ability to ship transuranic waste  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab's ability to ship transuranic waste Lab's ability to ship transuranic waste New facility boosts Lab's ability to ship transuranic waste Construction has begun on a new facility that will help Los Alamos accelerate the shipment of transuranic waste stored in large boxes at Technical Area 54. February 9, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email "375 Box Line" facility to allow workers to repackage radioactive items stored in large boxes LOS ALAMOS, New Mexico, February 9, 2012-Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. The new "375 Box Line" facility will allow the Laboratory to repackage

289

National Lab Scientists Win Nobel Recognition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Scientists Win Nobel Recognition Lab Scientists Win Nobel Recognition National Lab Scientists Win Nobel Recognition October 6, 2011 - 3:46pm Addthis Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science Science is all about opening eyes and expanding horizons. This week,

290

Electron Microscopy Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

291

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

292

Scientific Labs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Labs Scientific Labs SHARE SNS Scientific Labs Meilleur-lab-students-300.jpg Students in the SNS chemistry lab practice pipetting water. A new complex of laboratories is now open at SNS, providing a flexible, mobile environment where users can work efficiently. The labs, on the second floor of the SNS Central Laboratory and Office Building, are built with "green" operations in mind, as well as to optimize the available space for researchers' ever-changing scientific needs. With overhead utilities and mobile furniture, the complex's 13 labs allow staff to easily reconfigure the layout of equipment and quickly change an experiment's setup as needed. "We surveyed more than 900 users on what they needed, and they gave us a wish list," says Chrissi Schnell, the Neutron Scattering Science Division

293

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

294

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

295

Summary - WTP Analytical Lab, BOF and LAW Waste Vitrification Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wa Wa Schem DOE is Immob site's t facilitie Balanc Activity of this techno facilitie are su WTP d Readin The as along w Level ( * Tw 1. 2. The Ele Site: H roject: W Report Date: M ited States aste Trea Labo Why DOE matic of Laser Ab s constructing bilization Plant tank wastes. T es including an ces of Facilities y Waste (LAW assessment w ology elements es (LAB, BOF, fficiently matur design, which n ness Level of 6 What th ssessment team with each elem (TRL) for the L wo LAB system . Autosamplin Laser ablati AES/LA-ICP To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen atment a oratory, B E-EM Did This blation Analytical a Waste Treat (WTP) at Hanf The WTP is com n Analytical Lab s (BOF) operat ) Vitrification F was to identify t s (CTEs) in the

296

Laser diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

297

Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process  

E-Print Network (OSTI)

We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.

D. Habs; P. G. Thirolf; M. Gross; K. Allinger; J. Bin; A. Henig; D. Kiefer; W. Ma; J. Schreiber

2010-07-07T23:59:59.000Z

298

Charged particle accelerator grating  

DOE Patents (OSTI)

A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

Palmer, R.B.

1985-09-09T23:59:59.000Z

299

BNL | Our History: Accelerators  

NLE Websites -- All DOE Office Websites (Extended Search)

> See also: Reactors > See also: Reactors A History of Leadership in Particle Accelerator Design Cosmotron Cosmotron (1952-1966) Early in Brookhaven Lab history, the consortium of universities responsible for founding the new research center, decided that Brookhaven should provide leading facilities for high energy physics research. In April 1948, the Atomic Energy Commission approved a plan for a proton synchrotron to be built at Brookhaven. The new machine would accelerate protons to previously unheard of energies-comparable to the cosmic rays showering the earth's outer atmosphere. It would be called the Cosmotron. The Cosmotron was the first accelerator in the world to send particles to energies in the billion electron volt, or GeV, region. The machine reached its full design energy of 3.3 GeV in 1953.

300

Scientific Labs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

New Nanomaterials-Handling Laboratory opens at SNS New Nanomaterials-Handling Laboratory opens at SNS Rhonda Moody (far right) shows visitors the new nanomaterials lab in the SNS Central Laboratory and Office Building. Rhonda Moody (far right) trains scientific associates in the new nanomaterials lab. The associates provide support for users and staff at the instrument beam lines. (Click for larger image.) The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. (Click for larger image.) A new nanomaterials-handling lab recently opened in the second floor lab suites (G-202A) of the SNS Central Laboratory and Office Building (CLO).

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Berkeley Lab - 75 Years of World-Class Science: Berkeley Lab...  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab by the Numbers Aerial view of Berkeley Lab Aerial view of Berkeley Lab. Annual Budget: 500 million Scientific and Support Staff: 4,000 Joint facultyscientist...

302

D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition  

SciTech Connect

Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the converter-foil which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra bonus energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for hot spot ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10%meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

Miley, George H.

2012-10-24T23:59:59.000Z

303

Science Education at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

regional and national education community. Jefferson Lab's long-term commitment to science education continues to focus on increasing the number and quality of undergraduate...

304

NVLAP Handbooks and Lab Bulletins  

Science Conference Proceedings (OSTI)

... NIST Handbook 150-1:2010-12 ed. NVLAP Energy Efficient Lighting Products. ... Lab Bulletin LB-44-2009 Nuclear Density-Moisture Gauges. ...

2013-08-09T23:59:59.000Z

305

Los Alamos Lab: Bioscience Division  

NLE Websites -- All DOE Office Websites (Extended Search)

menubar | toolbar | links | content Los Alamos National Laboratory Lab Home | Phone ABOUT LANL ContactsEvent CalendarMapsOrganizationPhonebookPolicy CenterEmergency NEWS LIBRARY...

306

Currents, Berkeley Lab's Biweekly Newspaper  

NLE Websites -- All DOE Office Websites (Extended Search)

Currents Index A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Search Currents Back Issues (1994 to present) Search Lab science articles...

307

Berkeley Lab Services for Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

(PUB 5344) Comprehensive Planning Calendar DOE-UC LBNL Management Contract (Contract 31) DOE Directives Employee Handbook Institutional Plan for the Lab Office of the CFO...

308

Jefferson Lab Technology Transfer - JLab  

What is Technology Transfer at Jefferson Lab? The transfer of technology (intellectual property) developed at JLab to the private sector is an important element of ...

309

Operations Division at Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

isolate release if possible, evacuate affected area, contact EHSS duty Officer. Odor (Natural Gas) Complaint: If on-site, call Lab emergency number x7911. Indoor Air Quality...

310

The National Labs on Flickr | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flickr Flickr The National Labs on Flickr The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. EXPLORE THE NATIONAL LABS ON FLICKR Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory

311

SLAC National Accelerator Laboratory - LCLS Graphite Experiment...  

NLE Websites -- All DOE Office Websites (Extended Search)

LCLS Graphite Experiment Poses New Questions for Researchers By Glenn Roberts Jr. May 21, 2012 In experiments at SLAC National Accelerator Laboratory, a powerful X-ray laser...

312

Berkeley Lab: 80 Years of Excellence in Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Berkeley Lab: 80 Years of Excellence in Science Berkeley Lab: 80 Years of Excellence in Science Berkeley Lab: 80 Years of Excellence in Science September 2, 2011 - 11:45am Addthis Berkeley Lab: 80 Years of Excellence in Science Kate Bannan Communications and Outreach Specialist Congratulations to Lawrence Berkeley National Laboratory, which celebrated its 80th anniversary on August 26. Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a University of California Berkeley physicist who won the 1939 Nobel Prize in physics for his invention of the cyclotron, a circular particle accelerator that opened the door to high-energy physics. It was Lawrence's belief that scientific research is best done through teams of individuals with different fields of expertise working together. His teamwork concept is a Berkeley Lab legacy that continues today.

313

Accelerator Technology Division progress report, FY 1992  

SciTech Connect

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

314

Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report  

E-Print Network (OSTI)

) ................................................................................... Section 12: Hybrid Electric Vehicle Team (HEVT the United States and overseas. Our Hybrid Electric Vehicle Team took first place at EcoCAR this year (2011Joseph F. Ware Advanced Engineering Lab Ware Lab Summary Report Academic Year 2011-12 Virginia Tech

Beex, A. A. "Louis"

315

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu "Technology transfer is a superb opportunity to demonstrate the value of our discoveries and to benefit society. It is an area I would like to see grow." Steve Chu, Secretary, US Department of Energy, and Former Lab Director What You Need to Know and Do What you, as a Berkeley Lab researcher or guest, need to do to protect the intellectual property you create to meet Lab requirements and how publishing and pursuing a patent are fully compatible. The Tech Transfer Proces The steps to patent, market and commercialize an invention and the role of Technology Transfer and Intellectual Property Management (TTIPM). Business Development Services Resources available within TTIPM to help move your technology to market. Berkeley Lab LaunchPad Services available at the Lab and beyond to help launch your startup

316

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

ABS>A combination of two accelerators, a cyclotron and a ring-shaped accelerator which has a portion disposed tangentially to the cyclotron, is described. Means are provided to transfer particles from the cyclotron to the ring accelerator including a magnetic deflector within the cyclotron, a magnetic shield between the ring accelerator and the cyclotron, and a magnetic inflector within the ring accelerator.

Teng, L.C.

1960-01-19T23:59:59.000Z

317

Can Accelerators Accelerate Learning?  

Science Conference Proceedings (OSTI)

The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil, Caixa Postal 68528, 21941-972 (Brazil)

2009-03-10T23:59:59.000Z

318

MagneticsLab  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetics Laboratory Magnetics Laboratory Manufacturing Technologies The Magnetics Lab provides customers with design, prototyping, packaging solutions and production of unique magnetic and resistive components from millivolts to extremely high voltage (250KV) components. Capabilities * Design review of specification and requirements * Design and develop from sketches, verbal ideas, or circuit design parameters * Coil windings of any size or configuration * Coil diameter from 0.1 to 24 inches * Low temperature and high temperature coils * Precision resistors from 0.1 ohms to 2 megaohms (non-inductive) * Special high voltage transformers (2KV to 250KV) and high voltage loads (38K ohms to 100K ohms and 2KV to 250KV) Resources * Computer Aided Mechanical Design (Solid Works 3D CAD System) for mechanical

319

AMERICA'S NATIONAL LABS  

NLE Websites -- All DOE Office Websites (Extended Search)

AMERICA'S AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in

320

Berkeley Lab Nobel Laureates  

NLE Websites -- All DOE Office Websites (Extended Search)

George F. Smoot III George F. Smoot III 2006 Nobel Prize for Physics • October 3, 2006 Press Conference (Video) • Bibliography of Dr. Smoot's Works • October 3, 2006 Press Conference (Video) The October 3, 2006 press conference at Berkeley Lab introducing its newest Nobel Prize winner, George Smoot, to a throng of visiting media is available for viewing online. George F. Smoot III, Nobel Prize recipient, 2006 • Bibliography of Dr. Smoot's Works LBL-6468: Detection of anisotropy in the cosmic blackbody radiation LBL-6493: Radiometer system to map the cosmic background radiation LBL-7553: Abundances and spectra for cosmic ray nuclei from Li to Fe for 2-GeV/n to 150-GeV/n LBL-8266: Search for linear polarization of the cosmic background radiation LBL-9282: Southern hemisphere measurements of the anisotropy in the cosmic

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lawrence Livermore National Laboratory (LLNL):Livermore Lab Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Livermore Lab Report News Center Around the Lab Contacts For Reporters Livermore Lab Report News Archive News Releases Social Media & Multi Media Livermore Lab Report A weekly...

322

Lab transitions employee giving campaigns  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab transitions employee giving campaigns Lab transitions employee giving campaigns Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab transitions employee giving campaigns This year's theme: "I Give Because..." November 1, 2013 Employee Giving Logo The theme for this year's employee giving campaigns Contact Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email During the past seven years contributions to the Lab's annual employee giving campaign have risen by 370 percent and hopes to surpass the $3.1 million amount collected last year. As in past years, that amount includes a $1 million dollar match from the Lab's manager, Los Alamos National Security, LLC (LANS). The funds support nonprofits within the region and

323

BNL | Nd:YAG Laser  

NLE Websites -- All DOE Office Websites (Extended Search)

Nd:YAG Laser The Nd:YAG laser is located in a class 1000 clean room (the YAG Room) near the electron gun end of the ATF accelerator. The clean area also includes a separate laser...

324

Eight National Labs Offer Streamlined Partnership Agreements to Help  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eight National Labs Offer Streamlined Partnership Agreements to Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market February 23, 2012 - 12:38pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that eight of the Department's national laboratories will participate in a pilot initiative to make it easier for private companies to utilize the laboratories' research capabilities. The program will harness America's unique advantages in innovation to create jobs and accelerate the development of new clean energy technologies. "The Agreements for Commercializing Technology will cut red tape for businesses and startups interested in working with our nation's crown

325

PARTICLE ACCELERATOR  

DOE Patents (OSTI)

A fixed-field alternating gradient accelerator for simultaneous acceleration of two particle beams in opposite directions is described. (T.R.H.)

Ohkawa, T.

1959-06-01T23:59:59.000Z

326

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

national labs funded by DOE's Office of Science. Established in 1947, Brookhaven Lab is the only national lab located in the Northeast. It is also one of New York State's...

327

Accelerator Operators and Software Development  

SciTech Connect

At Thomas Jefferson National Accelerator Facility, accelerator operators perform tasks in their areas of specialization in addition to their machine operations duties. One crucial area in which operators contribute is software development. Operators with programming skills are uniquely qualified to develop certain controls applications because of their expertise in the day-to-day operation of the accelerator. Jefferson Lab is one of the few laboratories that utilizes the skills and knowledge of operators to create software that enhances machine operations. Through the programs written; by operators, Jefferson Lab has improved machine efficiency and beam availability. Because many of these applications involve automation of procedures and need graphical user interfaces, the scripting language Tcl and the Tk toolkit have been adopted. In addition to automation, some operator-developed applications are used for information distribution. For this purpose, several standard web development tools such as perl, VBScript, and ASP are used. Examples of applications written by operators include injector steering, spin angle changes, system status reports, magnet cycling routines, and quantum efficiency measurements. This paper summarizes how the unique knowledge of accelerator operators has contributed to the success of the Jefferson Lab control system. *This work was supported by the U.S. DOE contract No. DE-AC05-84-ER40150.

April Miller; Michele Joyce

2001-11-01T23:59:59.000Z

328

Tri-State Materials Testing Lab, LLC  

Science Conference Proceedings (OSTI)

Tri-State Materials Testing Lab, LLC. NVLAP Lab Code: 200010-0. Address and Contact Information: 160 S. Turnpike Road ...

2013-11-08T23:59:59.000Z

329

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab's "Draft" Sustainability Strategy (Title TBD) NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible, but may not be updated until...

330

SF6 Emissions Management at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

SF 6 Emissions Management at Jefferson Lab Kevin Jordan PE Jefferson Lab November 16, 2010 Emissions Management Overview * SF 6 Gas Usage * SF 6 Transfer System * Remote Cesiator *...

331

High School Research at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

As a Department of Energy National Lab, Jefferson Lab has a responsibility to help train the next generation of scientists. See the research projects students participating in the...

332

Wakefield Breakdown Test of a Diamond-Loaded Accelerating Structure  

NLE Websites -- All DOE Office Websites (Extended Search)

WAKEFIELD BREAKDOWN TEST OF A DIAMOND-LOADED ACCELERATING STRUCTURE S. Antipov, C. Jing, A. Kanareykin, P. Schoessow Euclid TechLabs LLC, Solon, OH, 44139 USA M. Conde, W. Gai, S....

333

Neutron Transversity at Jefferson Lab  

SciTech Connect

Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

2005-09-07T23:59:59.000Z

334

Acceleration Mechanisms  

E-Print Network (OSTI)

Glossary I. Background and context of the subject II. Stochastic acceleration III. Resonant scattering IV. Diffusive shock acceleration V. DSA at multiple shocks VI. Applications of DSA VII. Acceleration by parallel electric fields VIII. Other acceleration mechanisms IX. Future directions X. Appendix: Quasilinear equations XI. Bibliography

Melrose, D B

2009-01-01T23:59:59.000Z

335

CMS e-Lab Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

CMS e-Lab Overview     CMS e-Lab Overview &nbsp&nbsp&nbsp With the CMS e-Lab students can join a scientific collaboration in this series of studies of high-energy collisions from the Large Hadron Collider (LHC) at CERN. We are collaborating with the Compact Muon Solenoid (CMS) experiment to produce a student-led, teacher-guided project. At the present, we have test beam, Monte Carlo (simulated) data and run data. We expect more data through 2010 and 2011. By using the web, students are able to analyze and share these data with fellow students and other researchers. Students write a researchable question and analyze data in much the same way as professional scientists. e-Lab tools facilitate collaboration among students as they develop their investigations and report their results.

336

Princeton Plasma Physics Lab - STEM  

NLE Websites -- All DOE Office Websites (Extended Search)

used throughout the week, including a plasma globe and a half-coated fluorescent light bulb, and they have the rare opportunity to apply for a 2,000 grant for additional lab...

337

TA Orientation 2007 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 2 #12;TA Orientation 2007 Activity #3 Lab Preparation Activity 3 - Page 3 Warm-up Questions

Minnesota, University of

338

TA Orientation 2006 Activity #3 Lab Preparation  

E-Print Network (OSTI)

TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 1 Preparation for Teaching a Lab, based on the papers of these 6 students. #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 2 #12;TA Orientation 2006 Activity #3 Lab Preparation Activity 3 ­ Page 3 Warm-up Questions

Minnesota, University of

339

Aruna Ravinagarajan System Energy Efficiency Lab  

E-Print Network (OSTI)

Aruna Ravinagarajan System Energy Efficiency Lab Aruna Ravinagarajan Advisor : Prof. Tajana Simunic of monitoring a structure over time and identifying damage System Energy Efficiency Lab damage A wireless sensor Efficiency Lab #12;SHM ­ How is it done?SHM ­ How is it done? System Energy Efficiency Lab Stuart G Taylor

340

New Program Evaluates Labs for Emergency ...  

Science Conference Proceedings (OSTI)

New Program Evaluates Labs for Emergency Communications Tests. For Immediate Release: March 24, 2009. ...

2011-04-06T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Emergency Tests Focus on Lab Radioactivity Analyses  

Science Conference Proceedings (OSTI)

Emergency Tests Focus on Lab Radioactivity Analyses. For Immediate ... Berne. Radioanalytical emergency response exercise. Journal ...

2013-09-05T23:59:59.000Z

342

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Researchers at Berkeley Lab have been exploring the ways coherent synchrotron radiation (CSR) is generated in...

343

Laser Seeding Yields High-Power Coherent Terahertz Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Coherent Terahertz Radiation Laser Seeding Yields High-Power Coherent Terahertz Radiation Print Wednesday, 25 April 2007 00:00 Researchers at Berkeley Lab have been exploring...

344

BNL | Accelerators for Applied Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

345

Proton acceleration experiments with Z-Petawatt.  

Science Conference Proceedings (OSTI)

The outline of this presentation: (1) Proton acceleration with high-power lasers - Target Normal Sheath Acceleration concept; (2) Proton acceleration with mass-reduced targets - Breaking the 60 MeV threshold; (3) Proton beam divergence control - Novel focusing target geometry; and (4) New experimental capability development - Proton radiography on Z.

Arefiev, A. (University of Texas at Austin); Schaumann, G. (Technische Universitat Darmstadt, Germany); Deppert, O. (Technische Universitat Darmstadt, Germany); Rambo, Patrick K.; Roth, M. (Technische Universitat Darmstadt, Germany); Geissel, Matthias; Schwarz, Jens; Sefkow, Adam B.; Atherton, Briggs W.; Kimmel, Mark W.; Schollmeier, Marius; Breizman, B. (University of Texas at Austin)

2010-08-01T23:59:59.000Z

346

EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.  

SciTech Connect

Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

HOFF, L.T.

2005-10-10T23:59:59.000Z

347

Jefferson Lab Technology Transfer - JLab  

This control system must provide supervisory I/O, local feedback control, analysis capability, and operator interfaces for numerous accelerator ...

348

Brookhaven's Laser Electron Accelerator Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

system to study pulse radi- olysis in the country and one of the three fast- est in the world. LEAF is also the first such de- vice based on a new photocathode electron gun that...

349

Solar Labs | Open Energy Information  

Open Energy Info (EERE)

Solar Labs Solar Labs Name Solar Labs Address 1006 N Mary St Place Knoxville, Tennessee Zip 37914 Number of employees 1-10 Year founded 2005 Phone number 865-523-4313 Notes R&D, solar air heat and CPV Coordinates 35.997098°, -83.887505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.997098,"lon":-83.887505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiator Labs Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

351

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

352

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

353

Teacher Night at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Night at Jefferson Lab Night at Jefferson Lab Region II Physical Science Teacher Night for Elementary and Middle School Teachers April 2nd, 2014 6:30 pm - 8:00 pm Come for the FUN! You won't want to miss the annual Virginia Region II Teacher Night at Jefferson Lab! This year's focus is on physical science activities for upper elementary and middle school teachers. Format for the Evening Think of a Science Fair with enthusiactic students lined up at tables waiting to show you their projects... Teacher Night will be similar, except enthusiactic teachers will be waiting to share one of their favorite classroom activities with YOU! All teachers will have handouts and many will have starter supplies to accompany the handouts - that's right, FREE MATERIALS! Activity Topics Friction - Electrolysis - Water Cycle - Engineering Design Challenge -

354

Lab Spotlight: Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Spotlight: Argonne National Laboratory Lab Spotlight: Argonne National Laboratory ultrananocrystalline diamond (UNCD) technology Researchers John Carlisle (left) and Orlando Auciello (right) are developing an ultrathin biocompatible coating for the device. Creating Diamond Coatings for the Retinal Implant Argonne National Laboratory (ANL) plays a critical role in the success of the electrode implants used in the Artificial Retina Project. That's where researchers Orlando Auciello and colleague John Carlisle are using their patented ultrananocrystalline diamond (UNCD) technology to apply a revolutionary new coating to the retinal prosthetic device. The new packaging promises to provide a very thin, ultrasmooth film that will be far more compact and biocompatible than the bulky materials used to encase

355

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

356

Laser guiding at relativistic intensities and wakefield particle accleration in plasma channels  

E-Print Network (OSTI)

Laser Guiding at Relativistic Intensities and Wakefieldfirst time in a high gradient laser wakefield accelerator byguiding the drive laser pulse. Channels formed by

2004-01-01T23:59:59.000Z

357

Laser Rock Drilling Demo - The NE Multimedia Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Demo A high power pulsed Nd:YAG laser beam at Argonne's Laser Applications Lab is being shown in this movie to drill oil reservoir rock, a potential application in gas and oil well...

358

DOE Congratulates Under Secretary, National Lab Director and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor DOE Congratulates Under Secretary, National Lab...

359

#LabChat Recap: Solutions through Supercomputing | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy LabChat Recap: Innovations Driving More Efficient Vehicles...

360

PNNL Lab Homes Sarah Widder  

E-Print Network (OSTI)

2 mean radiant temperature sensors Water and Environment Controllable water flows at fixtures Solar insolation (pyronometer) inside home Weather station (Lab Home B only) Data collection via Campbell on weather -10% -5% 0% 5% 10% 15% 20% 25% DailyWholeHouseEnergySavings Clear Pa

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

By Lab, Major Site, or Technology Center | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

By Lab, Major Site, or Technology Center By Lab, Major Site, or Technology Center Print page Print page Email page Email page OSTI databases allow you to find research results and science information from the Manhattan Project to the present. Follow the 'Find STI..." links below to see technical reports from or related to DOE national laboratories, major sites, and technology centers. DOE National Laboratories Major Sites and Technology Centers DOE National Laboratories Argonne National Laboratory (ANL) Find STI from or about ANL Visit ANL Brookhaven National Laboratory (BNL) Find STI from or about BNL Visit BNL Fermi National Accelerator Laboratory (FERMI) Find STI from or about FERMI Visit FERMI Idaho National Laboratory (INL) Find STI from or about to INL Visit INL Lawrence Berkeley National Laboratory (LBNL) Find STI from or about LBNL Visit LBNL

362

Lab Breakthrough: Neutron Science for the Fusion Mission | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Neutron Science for the Fusion Mission Neutron Science for the Fusion Mission Lab Breakthrough: Neutron Science for the Fusion Mission May 16, 2012 - 9:52am Addthis An accelerator team lead by Robert McGreevy at Oak Ridge National Laboratory is testing material - a critical role in building an experimental fusion reactor for commercial use. As part of the international coalition, they expect to have an operational reactor by 2050. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What is the difference between fusion and fission? Fission pulls molecules apart. This type of reactor runs nuclear power plants. Fusion puts molecules together. This type of reaction powers the Sun. Oak Ridge National Laboratory scientist Robert McGreevy explains the

363

Accelerator Need  

NLE Websites -- All DOE Office Websites (Extended Search)

Need for Large Accelerators An Article Written Originally for Midlevel Teachers Back In order to study small particles, a high energy beam of particles must be generated. The...

364

Sun labs: the second fifty technical reports  

Science Conference Proceedings (OSTI)

Since the establishment of Sun Labs in 1991, Sun Labs researchers have been publishing technical reports on the technologies developed in their projects. The importance of these reports cannot be underestimated. This commemorative issue spans the years ...

Jeanie Treichel; Katie Chiu; Christopher Wu; Jeanne Wang

2009-01-01T23:59:59.000Z

365

Tough Times Ahead for Government Labs  

SciTech Connect

Lane, Monya Lawrence Livermore Natl Lab, Livermore, CA USA Whitlow, Woodrow, Jr NASA, Glenn Res Ctr, Cleveland, OH USA Studt, Tim Adv Business Media, Lab Equipment Magazine, Elk Grove Village, IL USA

Ban, Stephen [Argonne National Laboratory (ANL); Buchanan, Michelle V [ORNL; Cheeks, Nona [NASA Goddard Space Flight Center; Funsten, Herbert [National Renewable Energy Laboratory (NREL); Hawsey, Robert [National Renewable Energy Laboratory (NREL); Lane, Monya [Lawrence Livermore National Laboratory (LLNL); WhitlowJr, Woodrow [NASA-Glenn Research Center, Cleveland; Studt, Tim [Adv Business Media

2008-12-01T23:59:59.000Z

366

LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)  

E-Print Network (OSTI)

1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

McNeill, John A.

367

Secretary of Energy Advisory Board SLAC National Accelerator Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory Menlo Park, CA April 11, 2011 Agenda Open Plenary Meeting Session 8:00 AM - 8:15 AM Welcome and Overview Dr. William Perry 8:15 AM - 8:45 AM Key Issues for DOE Secretary Steven Chu 9:00 AM - 9:45 AM SLAC Overview Persis Drell 9:45 AM - 10:15 AM Breakthrough in Protein Structure Determination Enabled by LCLS Henry Chapman 10:15 AM - 11:00 AM Lab Overview - Progress and Path Forward George Miller 11:00 AM - 11:45 AM Stockpile Stewardship Overview Bruce Goodwin 11:45 AM - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30 PM Subcommittee Reports 2:30 PM - 3:30 PM Discussion of DOD-DOE MOU

368

PHYSiCS LAbORATORY  

Science Conference Proceedings (OSTI)

Page 1. PHYSiCS LAbORATORY Supporting US Industry, Government, and the Scientific Community by Providing Measurement ...

2010-09-08T23:59:59.000Z

369

Technology Commercialization and Partnerships | Brookhaven Lab ...  

Agreement to Commercialize Technology (ACT) Will Reduce Barriers for Intellectual Property Rights, Lab-Business Partnerships. ... Media & Communications Office.

370

Lab Director's Diversity & Inclusion Message | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity Message from the Lab Director Diversity & Inclusion Advisory Council Workforce Pipeline Mentoring Leadership Development Policies & Practices Business Diversity Outreach...

371

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Eureka! - Inventing and what happens next? Speakers share what makes a commercially successful invention and what happens on the pathway from invention to the marketplace. Click here for the webcast (60 min) or just hear Paul Avlivisatos' talk here (9 min). Speakers: Steve Chu, LBNL Lab Director Paul Alivisatos, Associate Lab Director and Founder of Nanosys Cheryl Fragiadakis, Technology Transfer Department Head Patenting - The ins and outs of this mysterious process Better understand why patent and copyright protection is so important, how the process works, and what role the inventor plays. Click here for the webcast (60 min). Speakers: Tim Lithgow, Patent Department Head Michael Fuller, Partner, Knobbe Martens Olson & Bear, L.L.P.

372

Accelerating the transfer in Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerating the transfer in Technology Transfer Accelerating the transfer in Technology Transfer Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its partners, one of the first improvements the Lab's Technology Transfer Division (TT) has made is through its new Express Licensing initiative. Standardized license agreements and fee structures will remove long and complicated negotiations and decrease the time required to get patented Lab technology and software into the hands of

373

A dynamically polarized hydrogen and deuterium target at Jefferson Lab  

DOE Green Energy (OSTI)

Polarized electron beams have been successfully used at Jefferson Lab for over a year. The authors now report the successful achievement of polarized targets for nuclear and particle physics experiments using the dynamic nuclear polarization (DNP)technique. The technique involves initial irradiation of frozen ammonia crystals (NH{sub 3} and ND{sub 3}) using the electron beam from the new Free Electron Laser (FEL) facility at Jefferson Lab, and transferring the crystals to a special target holder for use in Experimental Halls. By subjecting the still ionized and frozen ammonia crystals to a strong magnetic field and suitably tuned RF, the high electron polarization is transmitted to the nucleus thus achieving target polarization. Details of the irradiation facility, the target holder, irradiation times, ionized crystal shelf life, and achieved polarization are discussed.

Boyce, J.R.; Keith, C.; Mitchell, J.; Seely, M.

1998-07-01T23:59:59.000Z

374

Lab Breakthrough: Exploring Matter at the Dawn of Time | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Exploring Matter at the Dawn of Time Lab Breakthrough: Exploring Matter at the Dawn of Time Lab Breakthrough: Exploring Matter at the Dawn of Time May 9, 2012 - 2:55pm Addthis Physicist Paul Sorensen describes discoveries made at the Relativistic Heavy Ion Collider (RHIC), a particle accelerator at Brookhaven National Laboratory. At RHIC, scientists from around the world study what the universe may have looked like in the first microseconds after its birth, helping us to understand more about why the physical world works the way it does - from the smallest particles to the largest stars. See the other Lab Breakthrough videos on the YouTube playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs "To me, it's like the first steps on the moon."

375

Element Labs | Open Energy Information  

Open Energy Info (EERE)

Element Labs Element Labs Address 3350 Scott Blvd Place Santa Clara, California Zip 95054 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 37.380364°, -121.9823779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.380364,"lon":-121.9823779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Berkeley Lab Small Business Office  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Do Business with LBNL > How We Buy How We Buy Sustainable Acquisitions eCommerce (eBuy) Contracts: Subcontractor Description Start End Options Alliance Gas Products Gases and gas-related supplies. Connection to Praxair website. 5/1/08 4/30/13 3 years Anacapa Micro Products Computers, peripherals, software, electronic equipment and supplies. Connection to Dell website. 1/15/08 1/14/13 3 years Government Scientific Source Scientific laboratory supplies, equipment, safety products, chemicals, reagents, primers, oligos. Connections to VWR, Sigma Aldrich, Lab Safety, Millipore, Invitrogen, Qiagen and Eurofins MWG Operon websites 7/15/07 7/14/12 3 years Government Scientific Source Photonic sciences equipment and supplies, industrial tools and supplies, and safety products and supplies. Connections to Thorlabs, MSC Industrial Supply, and Lab Safety Supply websites.

377

Galleries | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Research Education Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Organization Contact Us Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Galleries Subscribe to RSS - Galleries 2013 Young Women's Conference 2013 Young Women's Conference63 images 2013 Plasma Camp 2013 Plasma Camp7 images 2013 Science on Saturday Lecture Series 2013 Science on Saturday Lecture Series7 images 2013 Summer's End Poster Session 2013 Summer's End Poster Session19 images 2013 Science Bowl 2013 Science Bowl12 images 2013 Pathways to Science Summit 2013 Pathways to Science Summit17 images 2012-2013 PathSci Kick-Off Event

378

SLAC National Accelerator Laboratory - Scientists Create First...  

NLE Websites -- All DOE Office Websites (Extended Search)

First Atomic X-ray Laser January 25, 2012 Menlo Park, Calif. - Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the...

379

SLAC National Accelerator Laboratory - SLAC Physicist Receives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Receives Free-electron Laser Award By Glenn Roberts Jr. September 10, 2013 Dao Xiang, a SLAC accelerator physicist, has received an international award for his work on a technique...

380

Brookhaven National Laboratory | Accelerator Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

for medical applications (Figure 1-49). Figure 1-49. Replacing gantry- type ion beam manipulator with a compact laser driven ion accelerator may enable compact and inexpensive...

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Growing tissue in the lab  

NLE Websites -- All DOE Office Websites (Extended Search)

tissue in the lab tissue in the lab Name: mike s Location: N/A Country: N/A Date: N/A Question: How do Scientists grow new tissue cells in the lab? Replies: I'm not quite sure what you mean by "new" cells. Several kinds of cell growing are done. One way is to break an organ or tissue apart into its individual cells and grow them in a medium of nutrients, controlled temperature, humidity, and carbon dioxide/oxygen. This is called "primary culture" because the cells come right out of an organism. Another method is to create an "immortal cell line". This is a type of cell isolated from a cancerous tumor, or a non-tumor cell which is infected with a cancer gene after it's isolated. Being cancerous, these cells grow forever in a dish, with the appropriate nutrients etc as long as you remove cells from time to time to prevent overcrowding. These cells can be frozen at about -100F forever and rethawed when needed. There is a library of frozen cells, thousands of types, and a catalog. Scientists can order what they need any time! Finally, you can make specific mutant cell lines by starting as above with an immortal cell, and inserting a specific gene (or deleting one) permanently from the DNA of the cell to change almost any property you want. So there it is.

382

Berkeley Lab A to Z Index: M  

NLE Websites -- All DOE Office Websites (Extended Search)

Macintosh Computer Backups Macintosh Computer Backups Macintosh User Group (LBNL-MUG) Mac support/MPSG (formerly known as the workstation group) Macromolecular Crystallography Facility (MCF) Mailing Addresses for Lab Mail (electronic); Email Support, Documentation, etc. Mail Services (Facilities Dep't.) malware (computer virus) protection and "How to Handle Suspected Malware" Mammary: Human Mammary Epithelial Cell (HMEC) Map: Berkeley Lab Global Talent Map Maps: Directions and Maps on How to Get to the Lab Maps: Berkeley Lab Interactive Site Map Maps: Berkeley Lab Printable Site Map Maps: Offsite Lab Shuttle Bus Map Maps: Onsite Lab Shuttle Bus Map Massage, Onsite Chair Mass Storage System (MSS) Material Safety Data Sheets: MSDS Materials Sciences Division (MSD) Materials Science: Technology Transfer

383

SLAC National Accelerator Laboratory - Accelerators and Society  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Society PHOTO: An accelerator at SLAC. SLAC has been developing, running and studying the basic physics of particle accelerators for half a century. Thousands of...

384

SLAC National Accelerator Laboratory - Accelerator Directorate  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Today, the Accelerator Directorate operates and maintains SLAC's existing accelerators to provide the highest possible level of performance. Accelerator employees improve...

385

ION ACCELERATOR  

DOE Patents (OSTI)

An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

Bell, J.S.

1959-09-15T23:59:59.000Z

386

LINEAR ACCELERATOR  

DOE Patents (OSTI)

Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

Christofilos, N.C.; Polk, I.J.

1959-02-17T23:59:59.000Z

387

Undergraduate Research at Jefferson Lab - Determining Electron Beam Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Pretzelosity Distribution Pretzelosity Distribution Previous Project (Pretzelosity Distribution) Undergraduate Research Main Index Next Project (Buffered Chemical Polishing) Buffered Chemical Polishing Determining Electron Beam Energy through Spin Precession Methods Student: Gina Mayonado School: McDaniel College Mentored By: Douglas Higinbotham Nuclear physics experiments at Jefferson Lab require that the beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) accelerator be known to 0.01%. The g-2 spin precession of the electrons as they circulate in the machine can be used to determine the beam energy without relying on the absolute calibration of magnets and devices required for other methods. The precision of this approach needed to be fully investigated. Spin precession methods were investigated by writing an Apple application to

388

USDOE Technology Transfer, Working with Department of Energy Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Cutting Edge Research Cutting Edge Research DOE National Laboratories and facilities have expertise in many areas that support key national missions and are also critical to major high-technology industries and services. Technology collaborations between industry and DOE laboratories mutually leverage each partner's resources to meet common or compatible objectives. Find laboratories and investigators doing cutting edge research in specific scientific and technological areas of interest. To pick resource(s) or to search by field(s), see Advanced Search Get the Science Accelerator widget at Widgetbox! Not seeing a widget? (More info) Science Accelerator is a gateway to science, including R&D results, project descriptions, accomplishments, DOE and Lab patents and more Resources made available by the Office of Scientific and Technical

389

Magnetic instabilities in accelerating plasma surfaces  

SciTech Connect

The existence of an interchange instability strictly associated with electron inertia is demonstrated. This is characterized by a growth rate significantly larger than the usual ion-inertial Rayleigh-Taylor rate and by self-generated magnetic fields localized around the accelerating plasma surface. This novel instability may be partially responsible for the observed magnetic fields in ablatively accelerated laser plasmas.

Amendt, P.; Rahman, H.U.; Strauss, M.

1984-09-24T23:59:59.000Z

390

Labs at-a-Glance: Oak Ridge National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Oak Ridge Oak Ridge National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Oak Ridge National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Oak Ridge National Laboratory Logo Visit the Oak Ridge National Laboratory

391

Labs at-a-Glance: Pacific Northwest National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Pacific Pacific Northwest National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Pacific Northwest National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Pacific Northwest National Laboratory Logo Visit the Pacific Northwest National

392

Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Brookhaven Brookhaven National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Brookhaven National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Brookhaven National Laboratory Logo Visit the Brookhaven National Laboratory

393

Labs at-a-Glance: Princeton Plasma Physics Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Princeton Plasma Princeton Plasma Physics Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Princeton Plasma Physics Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Princeton Plasma Physics Laboratory Logo Visit the Princeton Plasma Physics

394

Labs at-a-Glance: Argonne National Laboratory | U.S. DOE Office of Science  

Office of Science (SC) Website

Argonne National Argonne National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Argonne National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Argonne National Laboratory Logo Visit the Argonne National Laboratory

395

Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Lawrence Lawrence Berkeley National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Lawrence Berkeley National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Lawrence Berkeley National Laboratory Logo Visit the Lawrence Berkeley National

396

Labs at-a-Glance: Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames Laboratory Ames Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Ames Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Ames Laboratory Logo Visit the Ames Laboratory website External link Ames Laboratory Quick Facts

397

Accelerator Technology Division progress report, FY 1993  

Science Conference Proceedings (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

398

Particle beam dynamics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Particle beam dynamics Particle beam dynamics Subscribe to RSS - Particle beam dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Quest Magazine Summer 2013 Welcome to the premiere issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Read more about Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science Ronald C Davidson Ronald Davidson heads PPPL research on charged particle beam dynamics and

399

Princeton Plasma Physics Lab - Particle beam dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

particle-beam-dynamics The study of particle-beam-dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

400

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

This report provides results from performance tests of a Laser Tech Group (LTG) Lightwise tunable diode laser (TDL) monitor at the University of CaliforniaRiverside's laboratory test facility. More stringent nitrogen oxide(s) (NOx)-control mandates for coal-fired boilers have engendered broad-based deployment of post-combustion NOx control systems. It is possible to increase NOx reductions early in the catalyst life cycle through increased reagent injection, with a concomitant increase in ammonia (NH3) ...

2009-07-13T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The increasing use of post combustion NOx control systems such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) has heightened the need for reliable continuous monitoring of ammonia slip. This report describes laboratory tests conducted to assess the ability of the Norsk Elektro Optik's (NEO) LaserGas II tunable diode laser monitor to measure ammonia under highly controlled conditions over a typical range of process conditions.

2007-08-14T23:59:59.000Z

402

Top ECMs for Labs and Data Centers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top ECMs for Labs and Top ECMs for Labs and Data Centers FUPWG Otto Van Geet, PE October 10, 2012 2 Labs are Energy Hogs! * 3 to 8 times as energy intensive as office buildings Total Site Energy Use Intensity BTU/sf-yr for various laboratories in the Labs21 Benchmarking Database Typical Office Building 3 * Core information resources - Design Guide - Case Studies - Energy Benchmarking - Best Practice Guides - Technical Bulletins * Design process tools - Env. Performance Criteria - Labs21 Process Manual Labs21 Toolkit 4 Six BIG HITS 1. Scrutinize the air changes: Optimize ventilation rates 2. Tame the hoods: Compare exhaust device options 3. Get real with loads: Right-size HVAC systems 4. Just say no to re-heat: Minimize simultaneous heating and cooling 5. Drop the pressure drop:

403

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Lasers, Electron Beams and New Years Resolutions The electron beam that powers Jefferson Lab's Free-Electron Laser pumped out a record power input of 500 kilvolts using an innovative energy-recovery system that amplifies energy with far less power. March 2, 2011 Backstage Footage from the ARPA-E Summit See what Secretary Chu, Governor Schwarzenegger and ARPA-E Director Arun Majumdar had to say to the gathering of talented graduate students during their surprise visit. March 1, 2011 William Mouat explains the PolyPlus battery technology. | Energy Department photo, credit Ken Shipp. ARPA-E Technology Showcase: Project Spotlight We checked in with ten outstanding technologies on display at the 2011 ARPA-E Energy Innovation Summit to find out how the transformational

404

Application Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

405

Microbial Community Systems Lab Personnel | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Microbial Community Systems > Lab Personnel BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About...

406

Nuclear safety | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

to prevent nuclear and radiation accidents or to limit their consequences. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

407

Fusion reactor design | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

used magnetic confinement device is the tokamak, followed by the stellarator. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

408

Plasma diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

of superheated and electrically charged gases known as plasmas. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

409

National Renewable Energy Lab November 6, 2007  

National Renewable Energy Lab November 6, 2007. 2. KPCB. 500+ investments in 35 years $100B+ in annual revenue 300,000 jobs ... Public Policy. ...

410

The design principles of PlanetLab  

E-Print Network (OSTI)

PlanetLab is a geographically distributed platform for deploying, evaluating, and accessing planetary-scale network services. PlanetLab is a shared community effort by a large international group of researchers, each of whom gets access to one or more isolated slices of PlanetLabs global resources. Because we deployed Planet-Lab and started supporting users before we fully understood what its architecture would be, being able to evolve the system became a requirement. This paper examines the set of design principles that guided this evolution. Some of these principles were explicit at the project outset, and others have become crystallized as the platform has developed. 1.

Larry Peterson; Timothy Roscoe

2006-01-01T23:59:59.000Z

411

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

and university students, such as the Lab's annual summer courses on nuclear non-proliferation and nuclear chemistry. * Each year, about 100 high school students participate...

412

Berkeley Lab A to Z Index: W  

NLE Websites -- All DOE Office Websites (Extended Search)

Wage Works Commuter Benefits Program Warehouse: Offsite Storage Facilities Washington, DC Projects Office for Berkeley Lab Washington, DC Projects Office for Environmental Energy...

413

Technology Commercialization and Partnerships | Brookhaven Lab ...  

'Agreements for Commercializing Technology' (ACT) Now Available. Lab and DOE staff who worked on the ACT project include, ... Media & Communications Office.

414

Berkeley Lab A to Z Index: D  

NLE Websites -- All DOE Office Websites (Extended Search)

Darfur Cookstoves research Data Center Energy Management Data Management Research and Development Group Daughters and Sons to Work Day at the Lab Daylighting the New York Times...

415

Berkeley Lab Scientific Programs: Computing Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

data-intensive, international scientific collaborations. National Energy Research Scientific Computing Center (NERSC) Located at Berkeley Lab, NERSC is the flagship...

416

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Inc., located in Schenectady. Collaborative Efforts Addressing Major National Needs Brookhaven Lab is also working with public agencies and industry partners in a variety of...

417

Radiation Inspection System Lab (RISL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Inspection System Lab May 30, 2013 This team has the background and experience to test and optimize radiation detection systems from handheld background survey meters to...

418

Virtual Office Community & Computer Lab (VOCC) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Virtual Office Community and Computer Lab May 30, 2013 CASL's contributing scientist Jin Yan from Westinghouse explains assembly design to DOE Under Secretary for Science, Steven...

419

Element Labs Inc | Open Energy Information  

Open Energy Info (EERE)

Inc. Place Santa Clara, California Zip 95054 Product Element Labs is a developer of LED video technology for entertainment, architectural, and signage. References Element...

420

Brookhaven National Lab Economic Impact Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Lab spans a wide range of basic and applied research in fundamental physics, basic energy sciences and energy technology, the life sciences, nanoscience and...

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sandia National Laboratories - Sandia Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Home navigation panel Sandia Lab News Vol. 53, No. 2 January 26, 2001 Sandia National Laboratories Albuquerque, New Mexico 87185-0165 || Livermore, California...

422

Technology Transfer at Berkeley Lab: Ombuds  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Contact Us See Also Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Licensing Interest Form Receive New Tech Alerts Ombudsman Complaint...

423

For Researchers: Berkeley Lab Innovation Grants 2013  

Berkeley Lab Innovation Grants 2014 Call for Proposals. September 9, 2013. FROM: Horst Simon, Deputy Director. I am pleased to announce a funding opportunity for ...

424

For Researchers: Berkeley Lab Innovation Grants 2013  

Berkeley Lab Innovation Grants 2013 Call for Proposals. August 31, 2012. FROM: Horst Simon, Deputy Director. I am pleased to announce two funding opportunities for ...

425

Renewable Energy Powers Renewable Energy Lab, Employees  

NLE Websites -- All DOE Office Websites (Extended Search)

Powers Renewable Energy Lab, Employees The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) does more than just research renewable energy. It runs on...

426

Electroweak Physics at Jefferson Lab  

SciTech Connect

The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

R. D. McKeown

2012-03-01T23:59:59.000Z

427

EE443L: Intermediate Control Lab Lab2: Modeling a DC motor  

E-Print Network (OSTI)

will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric, Mini-series, Minertia of a permanent magnet DC motor, the field current is constant (i.e. a constant magnetic field). It can be shownEE443L: Intermediate Control Lab Lab2: Modeling a DC motor Introduction: In this lab we

Wedeward, Kevin

428

Pulse - Accelerator Science in Medicine  

NLE Websites -- All DOE Office Websites (Extended Search)

t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. t he future of accelerator physics isn’t just for physicists. As in the past, tomorrow’s discoveries in particle accelerator science may lead to unexpected applications for medical diagnosis, healing and the understanding of human biology. Breakthroughs in the technology of superconducting magnets, nanometer beams, laser instrumentation and information technology will give high-energy physicists new accelerators to explore the deepest secrets of the universe: the ultimate structure of matter and the nature of space and time. But breakthroughs in accelerator science may do more than advance the exploration of particles and forces. No field of science is an island. Physics, astronomy, chemistry, biology, medicine— all interact in the continuing human endeavor to explore and understand our world and ourselves. Research at high-energy physics laboratories will lead to the next generation of particle accelerators—and perhaps to new tools for medical science.

429

Educational Programs Learning Lab Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne offers a variety of field trips for middle school and high school students. Bring your students to Argonne and let them experience the excitement of science first-hand, with activities that will cement basic science and engineering concepts, and introduce them to new and exciting aspects of laboratory research! During the field trip, students rotate through various hands-on science experiments and learning lab activities to learn what Argonne scientists do. About Field Trips Field trips are free. Groups must arrange their own transportation. Group size: 40-60 students. Larger groups can be accommodated with additional planning time. Field trips start at 9:45 a.m. and end at 1:00 p.m. All participants MUST wear long pants and closed-toed shoes, regardless of the weather.

430

Berkeley Lab Site Construction Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Old Town Demolition Old Town Demolition The demolition of Old Town Area Buildings 25A, 40, 41, 44, 44A, 44B, 52 and 52A has been completed to make way for the construction of the Solar Energy Research Center (SERC) and a General Purpose Laboratory (GPL). A phased plan has been developed to abate and demolish the remaining buildings within the Old Town Area, namely Buildings 4, 5, 7, 7C, 14, 16 and 16A. Subsurface remediation is subsequently planned to take place to address existing subsurface contamination. The demolition of the subject buildings is part of an overall plan to remediate and redevelop the Old Town area of the Lab. Critical Decision 1 (CD-1, Selection of Alternatives) was approved in October 2013 and $19.4M of funding has been approved for the characterization, deactivation, abatement, demolition and soil remediation

431

Proposed research on advanced accelerator concepts  

Science Conference Proceedings (OSTI)

This report summarizes technical progress and accomplishments during the proposed three-year research on advanced accelerator concepts supported by the Department of Energy under Contract No. DE-FG02-88ER40465. A vigorous theoretical program has been pursued in critical problem areas related to advanced accelerator concepts and the basic equilibrium, stability, and radiation properties of intense charged particle beams. Broadly speaking, our research has made significant contributions in the following three major areas: Investigations of physics issues related to particle acceleration including two-beam accelerators and cyclotron resonance laser (CRL) accelerators; Investigations of RF sources including the free- electron lasers, cyclotron resonance masers, and relativistic magnetrons; Studies of coherent structures in electron plasmas and beams ranging from a low-density, nonrelativistic, pure electron plasma column to high-density, relativistic, non-neutral electron flow in a high-voltage diode. The remainder of this report presents theoretical and computational advances in these areas.

Davidson, R.C.; Wurtele, J.S.

1991-09-01T23:59:59.000Z

432

Opening criteria for accelerated paving techniques  

E-Print Network (OSTI)

Fast track paving or accelerated pavement design is the rapid replacement of portland cement concrete pavement, allowing for the reopening to traffic under specific time requirements. The purpose of this research is to develop opening criteria for accelerated paving and implementing these criteria into a set of guidelines for fast track paving. This report is broken into three specific sections; review of practice, an analysis of field and lab research, and finally design guidelines for the opening criteria for accelerated paving techniques. A review of practice was developed to update the reader on the current "state of the art". This review outlines contruction techniques, fast track mix design, pavement design, and joint design. The analysis of field and lab research provides a synopsis of the experimentation used to develop design guidelines for opening criteria. This section includes crack surveys, coring tests, FWD testing, maturity testing, penetration testing and consistency testing. The design guidelines for early opening criteria provides guidelines for use in intersection design. The guideline outlines requirements for design, design of concrete pavement materials, mixture design, construction considerations, and requirements for opening criteria. This document will update the reader on the subject of fast track paving and the methods used to research it. Finally, with a design guidelines the reader will be able to apply the methods of analysis described in the field and lab testing section to create better pavements more efficiently.

Johnson, Jason Leonard

1993-01-01T23:59:59.000Z

433

CURRENT RESEARCH ACTIVITIES Media Contents Lab.  

E-Print Network (OSTI)

Laboratory ............................. 78 System Electronics Lab. Shibata & Mita Laboratory ............................. 186 Energy Systems and Control Lab. Yamaji Laboratory ............................. 191 Hori-Camera System) , Vol.J91-D,No.8 pp.2029-2031( 2008) [6] : 3Dc , , Vol.62, No.9, pp.1427-1434(2008) [7] : Food

Fujimoto, Hiroshi

434

CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION  

E-Print Network (OSTI)

CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs using chemicals are required by Cal-OSHA to have a written safety plan (CHP) in place for chemical

Bigelow, Stephen

435

Office of Educational Programs Solar Energy Lab  

E-Print Network (OSTI)

Office of Educational Programs Solar Energy Lab Overview Kaitlin Thomassen Target student audience: High School Regents Physics High School AP Physics #12;Solar Energy Lab: Goals Highlight research Solar Farm & Northeast Solar Energy Research Center (NSERC) Scientists and engineers will research

Homes, Christopher C.

436

BELLA  

NLE Websites -- All DOE Office Websites (Extended Search)

BELLA, the Berkeley Lab Laser Accelerator BELLA artist's conception PROJECT DESCRIPTION BELLA, the Berkeley Laboratory Laser Accelerator will create an experimental facility for...

437

Trapping and dark current in plasma-based accelerators  

SciTech Connect

The trapping of thermal electrons in a nonlinear plasma wave of arbitrary phase velocity is investigated. The threshold plasma wave amplitude for trapping plasma electrons is calculated, thereby determining the fraction trapped and the expected dark current in a plasma-based accelerator. It is shown that the presence of a laser field (e.g., trapping in the self-modulated regime of the laser wakefield accelerator) increases the trapping threshold. Implications for experimental and numerical laser-plasma studies are discussed.

Schroder, C.B.; Esarey, E.; Shadwick, B.A.; Leemans, W.P.

2004-06-01T23:59:59.000Z

438

The Digital Geography Lab at Salem State University: The Evolution of One of the Oldest Educational Digital Geospatial Labs  

Science Conference Proceedings (OSTI)

Established in 1983, the Digital Geography Lab (DGL) at Salem State University (SSU) is one of the oldest higher-education digital spatial labs. This paper details the evolution of the DGL as well as its current status as one of the best computer labs ... Keywords: Computer Lab, Digital Geography Lab (DGL), GIS, Geography, Higher Education

Stephen S. Young; Kym Pappathanasi

2012-07-01T23:59:59.000Z

439

Storm Peak Lab Cloud Property Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Storm Peak Lab Cloud Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Operated by the Atmospheric Radiation Measurement (ARM) Climate Research Facility for the U.S. Department of Energy, the second ARM Mobile Facility (AMF2) begins its inaugural deployment November 2010 in Steamboat Springs, Colorado, for the Storm Peak Lab Cloud Property Validation Experiment, or STORMVEX. For six months, the comprehensive suite of AMF2 instruments will obtain measurements of cloud and aerosol properties at various sites below the heavily instrumented Storm Peak Lab, located on Mount Werner at an elevation of 3220 meters. The correlative data sets that will be created from AMF2 and Storm Peak Lab will equate to between 200 and 300 in situ aircraft flight hours in liquid, mixed phase, and precipitating

440

Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Results can aid in the determination of fluid source regions and circulation pathways, and assist in determining the degree of mixing between different hydrothermal fluids. Thermal: Certain elements exhibit high spatial correlation with high-temperature geothermal systems; Isotopic ratios can be used to characterize and locate subsurface thermal anomalies.

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Definition: Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Lab Analysis Techniques Jump to: navigation, search Dictionary.png Lab Analysis Techniques Lab Analysis Techniques encompass a broad array of analytical methods that can be used to characterize the chemical and physical properties of rock and fluid samples. The reliability of laboratory analyses depends strongly on both adherence to standard sampling procedures in the field when collecting materials for examination and on the application of appropriate sample preparation techniques in the lab. Ret Like Like You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Lab_Analysis_Techniques&oldid=688298" Category:

442

Math and Science Activities from Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAMS is a program in which classes of 6th, 7th and 8th grade students are exposed to the scientific environment of Jefferson Lab. For five consecutive days during school hours, classes of 6th grade students and their teachers participate in science and math activities conducted with Jefferson Lab staff. The students return to the lab in the 7th and 8th grades for additional activities which reinforce their 6th grade experience. Feel free to copy and alter these activities for use in your class. 6th Grade Background Materials Vocabulary List What is Matter? What is Jefferson Lab? Careers at Jefferson Lab Periodic Table of Elements Puzzles and Games BEAMS Word Search Element Word Search Geometry Word Search BEAMS Bingo Element Bingo BEAMS Crossword Puzzle BEAMS Cryptograph

443

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

The broad-based deployment of post-combustion NOx control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. The Electric Power Research Institute (EPRI) has been investigating the potential that tunable diode laser spectroscopy (TDLS) can have ...

2012-08-29T23:59:59.000Z

444

Searching for Cosmic Accelerators via IceCube  

NLE Websites -- All DOE Office Websites (Extended Search)

Searching for Cosmic Searching for Cosmic Accelerators via IceCube Searching for Cosmic Accelerators via IceCube Berkeley Lab Researchers Part of an International Hunt November 21, 2013 Lynn Yarris, lcyarris@lbl.gov, 510.486.5375 Bert.jpg This event display shows "Bert," one of two neutrino events discovered at IceCube whose energies exceeded one petaelectronvolt (PeV). The colors show when the light arrived, with reds being the earliest, succeeded by yellows, greens and blues. The size of the circle indicates the number of photons observed. (Courtesy of IceCube Lab) In our universe there are particle accelerators 40 million times more powerful than the Large Hadron Collider (LHC) at CERN. Scientists don't know what these cosmic accelerators are or where they are located, but new

445

Compact accelerator  

DOE Patents (OSTI)

A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

2007-02-06T23:59:59.000Z

446

Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jefferson Lab Contract to be Awarded to Jefferson Science Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory April 12, 2006 - 10:17am Addthis OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility. The contract, which has a potential value of $2 billion, becomes effective on April 17, 2006. "We have selected the team that we believe is best equipped to lead this important Office of Science laboratory for the department, and we look

447

A123 Systems Moves From the Lab to the Assembly Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A123 Systems Moves From the Lab to the Assembly Line A123 Systems Moves From the Lab to the Assembly Line A123 Systems Moves From the Lab to the Assembly Line August 15, 2011 - 6:18pm Addthis Investing in Detroit is paying off for A123 systems, a Boston based battery technology company. With the help of Recovery Act funding through the Department of Energy, they've been able to open two new factories, employ and retrain over 1000 area residents and propel the commercialization of next generation electric vehicles. John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Last week, Secretary Chu announced $175 million in funding for 40 projects that promise to accelerate the development and deployment of next-generation vehicle technologies. The innovations being fostered through these projects often begin at a small scale, being tweaked and

448

MUON ACCELERATION  

Science Conference Proceedings (OSTI)

One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

BERG,S.J.

2003-11-18T23:59:59.000Z

449

Solid-State Lighting: Guided Tour of Testing Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Guided Tour of Testing Lab to someone by E-mail Share Solid-State Lighting: Guided Tour of Testing Lab on Facebook Tweet about Solid-State Lighting: Guided Tour of Testing Lab on...

450

Argonne National Lab Cleanup schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Steps to Complete Clean-Up of Argonne by 2003; Takes Steps to Complete Clean-Up of Argonne by 2003; Schedule for Shipping Waste to WIPP is 'Good News' for Illinois CARLSBAD, N.M., May 15, 2000 - The U.S. Department of Energy (DOE) reinforced plans to complete the clean-up of its Argonne National Laboratory-East site in Illinois by 2003 by accelerating its schedule for shipping transuranic waste to DOE's permanent disposal site in New Mexico. Previously, the shipments were not expected to begin before 2003. Under the accelerated schedule, shipments to DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, are expected to begin in Spring 2001 and be completed by the end of the calendar year. Characterization of the waste currently stored at Argonne will begin this October. This agreement is a major step in honoring Argonne and DOE's commitment to the community to

451

What is an accelerator?  

NLE Websites -- All DOE Office Websites (Extended Search)

world of physics though, 'accelerator' means something a little more specific. Our accelerators are a whole class of machines that accelerate atoms, or more often, pieces of...

452

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Accelerator Institute: Mission The mission of the Argonne Accelerator Institute is centered upon the following related goals: Locate next generation accelerator facilities...

453

Ensuring Safety in Academic and Industrial Lab Settings  

Science Conference Proceedings (OSTI)

Ensuring Safety in Academic and Industrial Lab Settings: Ensuring Safety in Academic and Industrial Lab Settings Program Organizers: Jim Davis, Owens...

454

New Energy Dept., Berkeley Lab Report on Energy Service Company...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Dept., Berkeley Lab Report on Energy Service Company Industry Growth New Energy Dept., Berkeley Lab Report on Energy Service Company Industry Growth September 25, 2013 -...

455

Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows  

NLE Websites -- All DOE Office Websites (Extended Search)

Six Berkeley Lab (Three ALS) Scientists Are 2012 APS Fellows Print This year's American Physical Society (APS) Fellows include six scientists from Berkeley Lab, three of whom are...

456

ASC at the Labs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

& Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > ASC at the Labs ASC at the Labs The problems that ASC solves for...

457

#LabChat: Extreme Circumstances, Unique Solutions, June 28 at...  

NLE Websites -- All DOE Office Websites (Extended Search)

a concentrated photovoltaic unit that when commercialized will revolutionize the way solar energy is collected. | Photo courtesy of Sandia National Lab LabChat: Science of...

458

Leidos Accredited Testing & Evaluation (AT&E) Labs(formerly ...  

Science Conference Proceedings (OSTI)

Leidos Accredited Testing & Evaluation (AT&E) Labs(formerly SAIC). NVLAP Lab Code: 200427-0. Address and Contact Information: ...

2013-11-08T23:59:59.000Z

459

SLAC National Accelerator Laboratory - Accelerator Research  

NLE Websites -- All DOE Office Websites (Extended Search)

An image of the FACET equipment and a man examining it. ACCELERATOR PHYSICS Accelerators form the backbone of SLAC's on-site experimental program. They are complicated...

460

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of postcombustion nitrogen oxide (NOx) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOx control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have yi...

2006-12-21T23:59:59.000Z

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ammonia Monitor Lab Test Verification  

Science Conference Proceedings (OSTI)

Broad-based deployment of post-combustion nitrogen oxide (NOX) control systems, such as selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR), in response to more stringent NOX control mandates has highlighted the need for continuous ammonia monitoring capabilities. EPRI has investigated the potential that tunable diode laser (TDL) spectroscopy can have in the continuous monitoring of ammonia slip. Field measurement programs for validation of TDL-based monitors, however, have y...

2007-02-19T23:59:59.000Z

462

Accelerators and the Accelerator Community  

Science Conference Proceedings (OSTI)

In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

Malamud, Ernest; Sessler, Andrew

2008-06-01T23:59:59.000Z

463

2012 SG Peer Review - GridLAB-D and Integrated T&D Control - David Chassin, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GridLAB-D Analysis of Smart Grids David P. Chassin, PI Pacific Northwest National Laboratory June 7, 2012 !& =;;A & 5 " /'' # !&( &' Objective Life-cycle Funding Summary ($K) Prior to FY12 FY12 authorized FY13 requested *Out-year(s) $4,500 $1,425 $1,330 GridLAB-D Base $400 $400/yr NRECA $150 Micro-Grid Controls $240 Camp Smith Modeling $240 Integrated T&D Control $300 *Out-year(s) funding does not include new starts beyond FY13. Technical Scope Use GridLAB-D to quantify the impact of smart grid technologies, such as microgrids, distributed renewables, and new advanced load control strategies. GridLAB-D can simulation these different technologies in an accelerated time-frame to help

464

Berkeley Lab 2006 Long Range Development Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Planned Growth Berkeley Planning Commission February 14, 2007 Jim Krupnick Laboratory Project Management Officer Topics * Background * Motivation * LRDP Summary * Impacts Lawrence Berkeley National Laboratory Berkeley Lab 202-acre main site UC Berkeley Only multi-program Lab sited next to a university campus - Collaboration - Partnerships - Support of UC education mission Berkeley Lab Staff (2006) 3,359 staff plus visiting researchers = 4,515 adjusted daily population Technical Staff Scientists and Engineers Post docs Graduate Students Undergraduate Students 649 305 326 191 568 1346 274 Faculty Support Staff FY 2006 Funding: $517M (approximately 80% Department of Energy) Biological & Environmental Computing Physics & Fusion NIH Basic Energy Sciences Other Work for Others Other DOE

465

New Advances - Jefferson Lab Technology Transfer  

New Advances Commercial Spin-offs Abound For New Free Electron Laser. The world of laser technology took a giant leap forward recently as researchers ...

466

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g2 and g1 and spin observable A2 and A1 of the proton over Q2 region from 2.5 to 6.5 GeV2/c2 and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH3 target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g2 and g1. Physics motivations with the experimental methods will be presented with an overvew of the current status of the data analysis.

Seonho Choi

2011-10-01T23:59:59.000Z

467

Spin Asymmetries on Nucleon Experiment at Jefferson Lab  

SciTech Connect

The Spin Asymmetries of the Nucleon Experiment (SANE) of Jefferson Lab is a comprehensive measurement of double spin asymmetries of the proton for both parallel and almost perpendicular spin configurations of the proton spin and the electron beam polarization directions. The experiment will provide both spin structure functions, g{sub 2} and g{sub 1} and spin observable A{sub 2} and A{sub 1} of the proton over Q{sup 2} region from 2.5 to 6.5 GeV{sup 2}/c{sup 2} and Bjorken x region of 0.3 to 0.8. Using the polarized electron beam of Thomas Jefferson National Accelerator Facility and the polarized frozen NH{sub 3} target, the data were taken early 2009 in Hall C of Jefferson Lab. Scattered electrons from the inclusive reaction were detected by the Big Electron Telescope Array (BETA), a new non-magnetic detector with a large acceptance of 194 msr. The current analysis effort is focused on the proton spin structure functions g{sub 2} and g{sub 1}. Physics motivations with the experimental methods will be presented with an overview of the current status of the data analysis.

Choi, Seonho [Department of Physics, Seoul National University, Seoul 151-747 (Korea, Republic of)

2011-10-21T23:59:59.000Z

468

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2012 January 13, 2012 A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet another) Nobel Prize." January 12, 2012 Snowflakes always have six sides, their form and shape depend on temperature and moisture -- and they may have also inspired a pathway to a new alternative source of energy. | Image courtesy of SnowCrystals.com. Snowflake Science Physicists at the Princeton Plasma Physics Laboratory are using a device called a "snowflake divertor" to solve one of the grand challenges of magnetic fusion. December 30, 2011 Researchers at Brookhaven National Lab (BNL) are studying how radiation affects DNA, specifically a tumor-suppressor protein called p53, which deploys cell repair efforts. | Photo courtesy of National Institute of Health.

469

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 7, 2011 October 7, 2011 SunShot Initiative Researcher Wins National Medal of Technology and Innovation Last week, President Obama recognized Dr. Rakesh Agrawal, who is currently a researcher with the Department's SunShot Initiative, with the National Medal of Technology and Innovation. October 6, 2011 Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. National Lab Scientists Win Nobel Recognition This week, Secretary Chu congratulated two scientists for their trailblazing work: Dr. Saul Perlmutter in the Energy Department's Lawrence Berkeley National Laboratory, who was recently named the winner of

470

Lab celebrates 50 years in space  

NLE Websites -- All DOE Office Websites (Extended Search)

celebrates 50 years in space celebrates 50 years in space Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab celebrates 50 years in space National security missions and pure research December 1, 2013 Lab celebrates 50 years in space Lab's instruments have helped detect possible nuclear weapon detonations and led to fundamental scientific discoveries. Contacts Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email Not only does 2013 mark the Lab's 70th anniversary, it also marks the 50th anniversary of its first mission into space. During those five decades, it's been involved in 206 launches-only a few other organizations in the world can claim more-that began with the goal of helping monitor compliance with the 1963 Partial Test Ban Treaty through

471

Berkeley Lab Community Relations: Construction Information  

NLE Websites -- All DOE Office Websites (Extended Search)

LRDP Frequently Asked Questions LRDP Frequently Asked Questions Long-Range Development Plan Berkeley Lab Plans for Next 20 Years Aerial view of Berkeley Lab and San Francisco Bay The Laboratory has prepared its first Long Range Development Plan (LRDP) in 20 years. As outlined in the LRDP, the Lab will develop a safe, efficient, cost effective and operationally flexible infrastructure capable of long-term support of evolving scientific missions. Science drives the Lab's development. LRDPs establish a framework of land-use principles and policies to guide future growth and change through 2025. The plan identifies projections in population, building space, and land uses. This 2006 LRDP also includes an accompanying analysis of environmental impacts, pursuant to the California Environmental Quality Act, and a Final Environmental Impact

472

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

About Berkeley Lab Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory that conducts a wide variety of unclassified scientific research for DOE's Office of Science. Located in Berkeley, California, Berkeley Lab is managed by the University of California, and the director is Dr. Paul Alivisatos. Bringing Science Solutions to the World Berkeley Lab is an incubator for ideas, innovations and products that help society and explain how the universe works: n renewable energy sources such as biofuels and artificial photosynthesis n energy efficiency at home, at work, and around the world n the ability to observe, probe, and assemble materials atom by atom n climate change research, environmental science, and the growing connections between them

473

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90 percent less electricity and up to 80 percent less total energy than traditional air conditioning. This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings. View the entire Lab Breakthrough playlist. What are the key facts? Recent materials advances and liquid desiccant advances to design the compact and cost-effective DEVAP system.

474

NETL: NewsRoom - LabNotes  

NLE Websites -- All DOE Office Websites (Extended Search)

LabNotes LabNotes NewsRoom LabNotes January 2014 Chemical Looping 101: The Basics NETL's Chemical Looping Research Facilities Oxygen Carriers in Chemical Looping Combustion Chemical Looping Modeling and Simulation Research at NETL December 2013 Foamed Cement Can Seal Tricky Oil and Gas Wells November 2013 High-Performance Rechargeable Batteries May Help Keep the Lights On Rocks Demystified in Geomechanical Properties Lab October 2013 NETL's Morgantown Supercomputer Sets a High Bar for Energy Efficiency September 2013 NETL's Energy Data Exchange (EDX): Providing Access to Quality Energy Data Sorbents Capturing CO2 Will Make Power Plants Cleaner August 2013 Collaborative Technology Demonstrates Potential in Diabetes Testing Quantifying Uncertainty in Computer Model Predictions

475

Princeton Plasma Physics Lab - Power system design  

NLE Websites -- All DOE Office Websites (Extended Search)

fusion energy into heat to create steam that would generate electricity. en PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

476

Definition: Fluid Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Lab Analysis Fluid Lab Analysis Jump to: navigation, search Dictionary.png Fluid Lab Analysis Fluid lab analysis encompasses a broad array of techniques used for the analysis of water and gas samples. These analyses are used in a variety of disciplines to quantify the chemical components and properties of groundwater systems. In geothermal exploration and development, fluid analyses often provide a first look into the characteristics of a hydrothermal system, and are routinely used in ongoing monitoring of geothermal reservoirs.[1] View on Wikipedia Wikipedia Definition Water chemistry analyses are carried out to identify and quantify the chemical components and properties of a certain water. This include pH, major cations and anions, trace elements and isotopes. Water chemistry

477

Bio Architecture Lab | Open Energy Information  

Open Energy Info (EERE)

Architecture Lab Architecture Lab Jump to: navigation, search Name Bio Architecture Lab Address 454 North 34th Street Place Seattle, Washington Zip 98103 Sector Biofuels Product Designing enzymes for new sources of biofuels Website http://www.ba-lab.com/ Coordinates 47.6502637°, -122.3536534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6502637,"lon":-122.3536534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

About the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Labs the National Labs About the National Labs DOE National Laboratories Founded during the immense investment in scientific research in the period preceding World War II, the National Laboratories have served as the leading institutions for scientific innovation in the United States for more than sixty years. The Energy Department's National Labs tackle the critical scientific challenges of our time -- from combating climate change to discovering the origins of our universe -- and possess unique instruments and facilities, many of which are found nowhere else in the world. They address large scale, complex research and development challenges with a multidisciplinary approach that places an emphasis on translating basic science to innovation. Specifically, the National Laboratories:

479

Zilker Labs Inc | Open Energy Information  

Open Energy Info (EERE)

Zilker Labs Inc Zilker Labs Inc Jump to: navigation, search Name Zilker Labs, Inc. Place Austin, Texas Zip TX 78746 Product Zilker Labs, Inc., is a manufacturer of digital DC power management & conversion integrated circuits. Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Berkeley Lab A to Z Index: T  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Isotopes Table of Isotopes Table of Isotopes: Exploring Taleo Tax Services Technology Transfer Opportunities and Approaches at the Lab Telecommuting Telemetry Database Telephone Service Center: Audio/Web Conferencing, Cellular, Rates, etc. Telephone Services: How To Request Telephone Service and Equipment Termination Termination Process Guide Termination Notification System (TNS) TeX, LaTeX Information Thermostats and Comfort Controls Time Reporting Today at Berkeley Lab To Know Ourselves: The U.S. Department of Energy and the Human Genome Project Total Rewards at Berkeley Lab Tours: Joint Genome Institution Educational Tours of Berkeley Lab for the Public Traffic Safety Training (EH&S) Training (OCFO) Training Resources Transit Passes TEAM (Transmission Electron Aberration-Corrected Microscope)

Note: This page contains sample records for the topic "lab laser accelerator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

(1384) places an acoustical sensor at a small lake Sandia built several years ago to do LNG fire tests on water. He has worked on numerous tests at the Labs in his 27-year career....

482

Renewable Energy Powers Renewable Energy Lab, Employees  

E-Print Network (OSTI)

and the lab's new entrance sign. An experimental 12-kilowatt rooftop solar system also feeds electricity back. NREL is also using solar energy for auxiliary purposes such as powering streetlights, water pumps

483

Lab experiences for teaching undergraduate dynamics  

E-Print Network (OSTI)

This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab ...

Lilienkamp, Katherine A. (Katherine Ann), 1969-

2003-01-01T23:59:59.000Z

484

Michael D Williams | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

PPPL was nearing a new era when Williams joined the Lab in 1976 as a Rutgers-trained electrical engineer. Just ahead lay construction of the TFTR, which was completed in 1982...

485

Microgrid Lab at the Hangzhou Dianzi University  

NLE Websites -- All DOE Office Websites (Extended Search)

Microgrid Lab at the Hangzhou Dianzi University Speaker(s): Jianmin Zhang Qianzhi Zhang Date: August 6, 2012 - 4:00pm Location: 90-3122 Seminar HostPoint of Contact: Chris Marnay...

486

Page 1 of 2 FEMTO Lab Information  

E-Print Network (OSTI)

each one once completed) _____ 1. Provide certification of completion for the UCSB Lab Safety Training on the measurement computers or group website. Signature (FEMTO CHP Acknowledgment) Print Name Date PI

Liebling, Michael

487

Page 1 of 2 THERMO Lab Information  

E-Print Network (OSTI)

each one once completed) _____ 1. Provide certification of completion for the UCSB Lab Safety Training or group website. Signature (THERMO CHP Acknowledgment) Print Name Date PI/Employer Information: _

Liebling, Michael

488

Disclosures | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosures Disclosures No. Title Inventors M-864 "Display of Tournament Bracket" Inventors Eliot Feibush, Michael Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. M-863 "Fueling method for small, steady-state, aneutronic FRC fusion reactors" Inventors Samuel A. Cohen, Daren Stotler, Michael Buttolph M-862 " A Heterodyne Laser-induced Fluorescence Technique to Determine Simultaneously the Bulk and Time Varying Molecule Velocity Distribution." Inventors Ahmed Diallo, Stephane Mazouffre.The method's primary goal is to determine simultaneously the bulk a M-861 "Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks

489

High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .  

Science Conference Proceedings (OSTI)

Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

Sefkow, Adam B.; Bennett, Guy R.

2010-09-01T23:59:59.000Z

490

Argonne Labs Breakthrough Cathode Technology Powers Electric Vehicles of Today  

Energy.gov (U.S. Department of Energy (DOE))

Jeff Chamberlain, who leads Argonne's Energy Storage Initiative, explains what goes into taking advanced battery technologies from the lab to the marketplace.

491

Berkeley Lab - 75 Years of World-Class Science: Other Lab Historical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Lab Historical Websites Lawrence and His Laboratory: A Historian's View of the Lawrence Years (Research Review Magazine - 1981) Youth and Early Career of Ernest Lawrence and...

492

Circular free-electron laser  

DOE Patents (OSTI)

A high efficiency, free electron laser is described utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

Brau, C.A.; Kurnit, N.A.; Cooper, R.K.

1982-01-26T23:59:59.000Z

493

Circular free-electron laser  

DOE Patents (OSTI)

A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

494

Accelerating Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Solutions From vehicles on the road to the energy that powers them, Oak Ridge National Laboratory innovations are advancing American transportation. Oak Ridge National Laboratory is making an impact on everyday America by enhancing transportation choices and quality of life. Through strong collaborative partnerships with industry, ORNL research and development efforts are helping accelerate the deployment of a new generation of energy efficient vehicles powered by domestic, renewable, clean energy. EPA ultra-low sulfur diesel fuel rule ORNL and the National Renewable Energy Laboratory co-led a comprehensive research and test program to determine the effects of diesel fuel sulfur on emissions and emission control (catalyst) technology. In the course of this program, involving

495

Jefferson Lab Science Videos on YouTube  

DOE Data Explorer (OSTI)

Jefferson Lab, a DOE physics research lab located in Virgina, has approximately 100 lab-produced videos on YouTube. These include selected presentations from the Jefferson Lab Science Series, short clips of simple experiments for educational purposes, clips from Frostbite Theater, and clips from the Physics Out Loud series.

496

Catalac free electron laser  

DOE Patents (OSTI)

A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac is described. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator, or as an amplifier in conjunction with a master oscillator laser.

Brau, C.A.; Swenson, D.A.; Boyd, T.J. Jr.

1979-12-12T23:59:59.000Z

497

Catalac free electron laser  

DOE Patents (OSTI)

A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

498

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 16, 2013 December 16, 2013 Arapaima gigas is an air-breathing fresh water fish in the Amazon Basin that swims with impunity through piranha-infested waters. | Photo courtesy of Jeff Kubina, National Geographic. Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. December 13, 2013 Los Alamos National Laboratory scientist Roger Wiens removes the laser safety plug on the ChemCam Mast Unit, selected for the Mars Science Laboratory rover, Curiosity. Wiens removes the plug (left), while scientist Bruce Barraclough sits at the command console (right). | Photo courtesy of LeRoy Sanchez, Los Alamos National Laboratory. Top 10 Things You Didn't Know About Los Alamos National Laboratory

499

Simulations Identify Requirements for LANL's High Intensity Laser...  

NLE Websites -- All DOE Office Websites (Extended Search)

Identify Requirements for LANL's High Intensity Laser Lab cielo equip Fig. 1. Cielo is a 1.37 petaflops capability-class supercomputer installed at LANL, funded by the US DOE NNSA...

500

Status of the BNL IFEL accelerator  

Science Conference Proceedings (OSTI)

A 40 MeV electron beam, using the inverse free-electron laser interaction, has been accelerated by {Delta}E/E = 2.5% over a distance of 0.47 m. The electrons interact with a 1--2 GW CO{sub 2} laser beam bounded by a 2.8 mm ID sapphire circular waveguide in the presence of a tapered wiggler with Bmax {approx} 1 T and a period 2.89 cm {le} {lambda}{sub w} {le} 3.14 cm. The experimental results of {Delta}E/E as a function of electron energy E, peak magnetic field Bw and laser power W{sub 1} compare well with analytical and 1-D numerical simulations and permit scaling to higher laser power and electron energy. The present status of the IFEL accelerator and planned near term development are indicated.

Steenbergen, A. van; Gallardo, J. [Brookhaven National Lab., Upton, NY (United States); Sandweiss, J. [Yale Univ., New Haven, CT (United States). Physics Dept.] [and others

1996-10-01T23:59:59.000Z