Sample records for lab laser accelerator

  1. EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

    Broader source: Energy.gov [DOE]

    Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

  2. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  3. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    SciTech Connect (OSTI)

    Leemans, W.P.; Duarte, R.; Esarey, E.; Fournier, S.; Geddes, C.G.R.; Lockhart, D.; Schroeder, C.B.; Toth, C.; Vay, J.-L.; Zimmermann, S.

    2010-06-01T23:59:59.000Z

    An overview is presented of the design of a 10 GeV laser plasma accelerator (LPA) that will be driven by a PW-class laser system and of the BELLA Project, which has as its primary goal to build and install the required Ti:sapphire laser system for the acceleration experiments. The basic design of the 10 GeV stage aims at operation in the quasi-linear regime, where the laser excited wakes are largely sinusoidal and offer the possibility of accelerating both electrons and positrons. Simulations show that a 10 GeV electron beam can be generated in a meter scale plasma channel guided LPA operating at a density of about 1017 cm-3 and powered by laser pulses containing 30-40 J of energy in a 50- 200 fs duration pulse, focused to a spotsize of 50-100 micron. The lay-out of the facility and laser system will be presented as well as the progress on building the facility.

  4. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in

  5. Energy Department Announces New Lab Program to Accelerate Commercializ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Program to Accelerate Commercialization of Clean Energy Technologies Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies...

  6. SLAC All Access: Laser Labs

    SciTech Connect (OSTI)

    Minitti, Mike; Woods Mike

    2013-03-01T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  7. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03T23:59:59.000Z

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  8. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  9. Progress on laser plasma accelerators

    SciTech Connect (OSTI)

    Chen, P.

    1986-04-01T23:59:59.000Z

    Several laser plasma accelerator schemes are reviewed, with emphasis on the Plasma Beat Wave Accelerator (PBWA). Theory indicates that a very high acceleration gradient, of order 1 GeV/m, can exist in the plasma wave driven by the beating lasers. Experimental results obtained on the PBWA experiment at UCLA confirms this. Parameters related to the PBWA as an accelerator system are derived, among them issues concerning the efficiency and the laser power and energy requirements are discussed.

  10. Terahertz radiation from laser accelerated electron bunches

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    NUMBER 5 MAY 2004 Terahertz radiation from laser acceleratedand millimeter wave radiation from laser acceleratedNo. 5, May 2004 Terahertz radiation from laser accelerated

  11. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01T23:59:59.000Z

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  12. Overview Of Control System For Jefferson Lab`s High Power Free Electron Laser

    SciTech Connect (OSTI)

    Hofler, A. S.; Grippo, A. C.; Keesee, M. S.; Song, J.

    1997-12-31T23:59:59.000Z

    In this paper the current plans for the control system for Thomas Jefferson National Accelerator Facility`s (Jefferson Lab`s) Infrared Free Electron Laser (FEL) are presented. The goals for the FEL control system are fourfold: (1) to use EPICS and EPICS compatible tools, (2) to use VME and Industry Pack (IPs) interfaces for FEL specific devices such as controls and diagnostics for the drive laser, high power optics, photocathode gun and electron-beam diagnostics, (3) to migrate Continuous Electron Beam Accelerator Facility (CEBAF) technologies to VME when possible, and (4) to use CAMAC solutions for systems that duplicate CEBAF technologies such as RF linacs and DC magnets. This paper will describe the software developed for FEL specific devices and provide an overview of the FEL control system.

  13. Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator

    E-Print Network [OSTI]

    history of laser-plasma accelerators is reviewed. The excitation of plasma waves by ultra-short laser Tomography of a laser wakefield accelerator Tomography of a laser wakefield accelerator 692220024 #12; Tomography of a laser wakefield accelerator i #12; Tomography of a laser

  14. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    Nonlinear laser energydepletion in laser-plasma accelerators ? B. A. Shadwick,of intense, short-pulse lasers via excitation of plasma

  15. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  16. Status report on Jefferson Lab`s high-power infrared free-electron laser

    SciTech Connect (OSTI)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-10-01T23:59:59.000Z

    Jefferson Lab is building a free-electron laser to produce tunable, continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting accelerator will drive the laser, and a transport lattice will recirculate the beam back through the accelerator for energy recovery. Space charge in the injector and coherent synchrotron radiation in magnetic bends will be present, and the machine is instrumented to study these phenomena during commissioning. The wiggler and optical cavity are conventional; however, significant analysis and testing was needed to ensure mirror heating at 1 kW of outcoupled power would not impede performance. The FEL is being installed in its own facility, and installation will be finished in Fall 1997. This paper surveys the machine, the status of its construction, and plans for its commissioning.

  17. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare Color

  18. Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Colliding Laser Pulses for Laser-Plasma Accelerator Injection Control G. R. Plateau, , C. G. R acceleration is a key challenge to achieve compact, reliable, tunable laser-plasma accelerators (LPA) [1, 2]. In colliding pulse injection the beat between multiple laser pulses can be used to control energy, energy

  19. Jefferson Lab accelerator upgrade completed: Initial operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE to begin initial operations of the Continuous Electron Beam Accelerator Facility (CEBAF) as part of its ongoing 338 million upgrade. With the approval of Critical...

  20. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    plasma accelerator at the LBNL LOASIS facility”, in: Proc.electron laser driven by the LBNL laser-plasma-accelerator ?National Laboratory (LBNL) laser-plasma accelerator, whose

  1. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    E-Print Network [OSTI]

    Geddes, C.G.R.

    2011-01-01T23:59:59.000Z

    Design considerations for a laser-plasma linear collider,"E.Esarey, and W.P.Leemans, "Free-electron laser driven bythe LBNL laser-plasma accelerator," in Proc. Adv. Acc. Con.

  2. Jefferson Lab's Free-Electron Laser explores promise of carbon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the collaboration's FEL experiment (image not actual size). Jefferson Lab's Free-Electron Laser explores promise of carbon nanotubes By James Schultz January 27, 2003...

  3. Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources

    E-Print Network [OSTI]

    Geddes, Cameron G.R.

    2010-01-01T23:59:59.000Z

    of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

  4. STELLA-II Experiment Update on Monoenergetic Laser Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during Staged Electron Laser Acceleration (STELLA) Experiment* - Used inverse free electron laser (IFEL) as laser acceleration mechanism - IFEL buncher (IFEL1) creates...

  5. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  6. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  7. Tunable Laser Reaches Record Power Level | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Jefferson Lab) have produced record setting levels of laser power from their Free Electron Laser (FEL). Last summer when the FEL was first turned on, it produced 155 watts of...

  8. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumniComplex historianBenefits of BESBerkeley Lab Particle

  9. Improvement of classical accelerators by lasers

    E-Print Network [OSTI]

    Hora, Heinrich

    1991-01-01T23:59:59.000Z

    Of the unconventional accelerator techniques those including lasers are reported. After explaining the advances by lasers for classical accelerator techniques, as FELs and other methods for 100 GHz generation of GW pulses, a survey is given of far field and near field laser acceleration. Problems of the beat-wave accelerator are discussed and schemes for particle interaction in vacuum without plasma are elaborated. One scheme is the Boreham experiment and another is the acceleration of "standing" wave fields where charged particles are trapped in the intensity minima. Another scheme uses the relativistic acceleration by half waves where the now available petawatt-picosecond laser pulses should produce GeV electron pulses of high luminosity. Increase of these electron enrgies would need very large lasers in the future.

  10. Lab seeks ideas for Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration Fund ideas

  11. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration Fund

  12. Lab seeks venture acceleration initiative partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVenture Acceleration FundVenture

  13. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    generated. The ultra-short laser-plasma accelerated beamsbetween the short- pulse laser generating the electron beamscale laser-plasma accelerator that produces ultra-short (

  14. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    XPLOTGIN, Technical Report LBNL-49625, Lawrence BerkeleyLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY,” inelectron laser driven by the LBNL laser-plasma accelerator

  15. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust Nazim Ali Bharmal, Comparisons4-3BEGINBELLA:

  16. LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    LASER-PLASMA-ACCELERATOR-BASED COLLIDERS C. B. Schroeder , E. Esarey, Cs. T´oth, C. G. R. Geddes-generation linear col- lider based on laser-plasma-accelerators are discussed, and a laser-plasma-accelerator gamma-gamma () collider is considered. An example of the parameters for a 0.5 TeV laser-plasma-accelerator collider

  17. Photonic laser-driven accelerator for GALAXIE

    SciTech Connect (OSTI)

    Naranjo, B.; Ho, M.; Hoang, P.; Putterman, S.; Valloni, A.; Rosenzweig, J. B. [UCLA Dept. of Physics and Astronomy Los Angeles, CA 90095-1547 (United States)

    2012-12-21T23:59:59.000Z

    We report on the design and development of an all-dielectric laser-driven accelerator to be used in the GALAXIE (GV-per-meter Acce Lerator And X-ray-source Integrated Experiment) project's compact free-electron laser. The approach of our working design is to construct eigenmodes, borrowing from the field of photonics, which yield the appropriate, highly demanding dynamics in a high-field, short wavelength accelerator. Topics discussed include transverse focusing, power coupling, bunching, and fabrication.

  18. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01T23:59:59.000Z

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  19. Staging Laser Plasma Accelerators for Increased Beam Energy

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Staging Laser Plasma Accelerators for Increased Beam Energy D. Panasenko, A. J. Shu, C. B., Berkeley, California 94720, USA Abstract. Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies

  20. Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels C for the first time in a high gradient laser wakefield accelerator by guiding the drive laser pulse. Channels formed by hydrodynamic shock were used to guide acceleration relevant laser intensities of at least 1E18

  1. Polarization measurement of laser-accelerated protons

    SciTech Connect (OSTI)

    Raab, Natascha; Engels, Ralf; Engin, Ilhan; Greven, Patrick; Holler, Astrid; Lehrach, Andreas; Maier, Rudolf [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Büscher, Markus, E-mail: m.buescher@fz-juelich.de [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany) [Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, 52425 Jülich (Germany); Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Cerchez, Mirela; Swantusch, Marco; Toncian, Monika; Toncian, Toma; Willi, Oswald [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany)] [Institute for Laser- and Plasma Physics, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf (Germany); Gibbon, Paul; Karmakar, Anupam [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)] [Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich (Germany)

    2014-02-15T23:59:59.000Z

    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasmas.

  2. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect (OSTI)

    Cowan, B.; /SLAC

    2005-09-19T23:59:59.000Z

    We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We demonstrate guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode. We also discuss particle beam dynamics in the structure, presenting a novel method for focusing the beam. In addition we describe some potential coupling methods for the structure.

  3. Inverse free-electron laser accelerator

    SciTech Connect (OSTI)

    Pellegrini, C.; Campisi, R.

    1982-01-01T23:59:59.000Z

    We first describe the basic physical properties of an inverse free-electron laser and make an estimate of the order of magnitude of the accelerating field obtainable with such a system; then apply the general ideas to the design of an actual device and through this example we give a more accurate evaluation of the fundamental as well as the technical limitations that this acceleration scheme imposes.

  4. Current Filamentation Instability in Laser Wakefield Accelerators

    SciTech Connect (OSTI)

    Huntington, C. M.; Drake, R. P. [Atmospheric, Oceanic and Space Science, University of Michigan, Ann Arbor, Michigan, 48103 (United States); Thomas, A. G. R.; McGuffey, C.; Matsuoka, T.; Chvykov, V.; Kalintchenko, G.; Yanovsky, V.; Maksimchuk, A.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Kneip, S.; Najmudin, Z.; Palmer, C. [Blackett Laboratory, Imperial College London, London, SW7 2BZ (United Kingdom); Katsouleas, T. [Platt School of Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2011-03-11T23:59:59.000Z

    Experiments using an electron beam produced by laser-wakefield acceleration have shown that varying the overall beam-plasma interaction length results in current filamentation at lengths that exceed the laser depletion length in the plasma. Three-dimensional simulations show this to be a combination of hosing, beam erosion, and filamentation of the decelerated beam. This work suggests the ability to perform scaled experiments of astrophysical instabilities. Additionally, understanding the processes involved with electron beam propagation is essential to the development of wakefield accelerator applications.

  5. PRECISE CHARGE MEASUREMENT FOR LASER PLASMA ACCELERATORS

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Sokollik, Thomas; Shiraishi, Satomi; Tilborg, Jeroen van; Osterhoff, Jens; Donahue, Rich; Rodgers, David; Smith, Alan; Byrne, Warren; Leemans, Wim

    2011-07-19T23:59:59.000Z

    Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based measurement, and integrating current transformer. The diagnostics agreed within {+-}8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.

  6. Laser turns 50 (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaserSecurityLaser ray

  7. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    Investigation of laser-driven proton acceleration using ultra-short, ultra- intense laser pulses S;Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses S. Fourmaux,1,a metallic foils irradiated by ultra-intense ultra-short laser pulses.8­10 Laser-driven ion beams take

  8. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect (OSTI)

    Cowan, Benjamin M.

    2007-08-22T23:59:59.000Z

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  9. Online Model Server for the Jefferson Lab Accelerator

    SciTech Connect (OSTI)

    Yves R. Roblin; Theodore L. Larrieu

    2001-11-01T23:59:59.000Z

    A beam physics model server has been developed for the Jefferson Lab accelerator. This online model server is a redesign of the ARTEMIS model server [1]. The need arose from an impedance mismatch between the current requirements and ARTEMIS capabilities. The purpose of the model server is to grant access to both static (machine lattice parameters) and dynamic (actual machine settings) data using a single programming interface. A set of useful optics calculations (R-Matrix, orbit fit, etc.) has also been implemented and can be invoked by clients via the model interface. Clients may also register their own dynamic models in the server. The server interacts with clients using the CDEV protocol, and data integrity is guaranteed by a relational database (ORACLE) accessed through a persistence layer. By providing a centralized repository for both data and optics calculations,the following benefits were achieved: optimal use of network consumption, software reuse,and ease of maintenance. This work was supported by the U.S. DOE contract No. DE-AC05-84ER40150. Reference: The Use of ARTEMIS with High-Level Applications, ICALEPCS 95, Chicago, IL, Oct 29-Nov 3, 1995.

  10. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-01-01T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ([lambda] = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1[sub w1] = 1.43cm) and then absorbed ([approximately] 40%) in a second undulator, having a tapered period (1[sub w2] = 1.8 [minus] 2.25cm), which results in the acceleration of a subgroup ([approximately] 9%) of electrons to [approximately] 1MeV.

  11. An inverse free electron laser accelerator experiment

    SciTech Connect (OSTI)

    Wernick, I.; Marshall, T.C.

    1992-12-31T23:59:59.000Z

    A free electron laser was configured as an autoaccelerator to test the principle of accelerating electrons by stimulated absorption of radiation ({lambda} = 1.65mm) by an electron beam (750kV) traversing an undulator. Radiation is produced in the first section of a constant period undulator (1{sub w1} = 1.43cm) and then absorbed ({approximately} 40%) in a second undulator, having a tapered period (1{sub w2} = 1.8 {minus} 2.25cm), which results in the acceleration of a subgroup ({approximately} 9%) of electrons to {approximately} 1MeV.

  12. Laser diagnostics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowlandRevolutionizingLaserLaser

  13. Direct laser acceleration of electrons in free-space

    E-Print Network [OSTI]

    Carbajo, Sergio; Wong, Liang Jie; Miller, R J Dwayne; Kärtner, Franz X

    2015-01-01T23:59:59.000Z

    Compact laser-driven accelerators are versatile and powerful tools of unarguable relevance on societal grounds for the diverse purposes of science, health, security, and technology because they bring enormous practicality to state-of-the-art achievements of conventional radio-frequency accelerators. Current benchmarking laser-based technologies rely on a medium to assist the light-matter interaction, which impose material limitations or strongly inhomogeneous fields. The advent of few cycle ultra-intense radially polarized lasers has materialized an extensively studied novel accelerator that adopts the simplest form of laser acceleration and is unique in requiring no medium to achieve strong longitudinal energy transfer directly from laser to particle. Here we present the first observation of direct longitudinal laser acceleration of non-relativistic electrons that undergo highly-directional multi-GeV/m accelerating gradients. This demonstration opens a new frontier for direct laser-driven particle accelerati...

  14. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    kA are generated. The ultra-short laser-plasma acceleratedscale laser-plasma accelerator that produces ultra-short (

  15. Princeton Plasma Physics Lab - Laser diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.7 348,016.0 336,514.0laser-diagnostics The Multi-Point

  16. Laser wakefield simulations towards development of compact particle accelerators

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Laser wakefield simulations towards development of compact particle accelerators C.G.R. Geddes1, D understanding of accelerator physics to advance beam performance and stability, and particle simulations model, France; 9 Oxford University, UK E-mail: cgrgeddes@lbl.gov Abstract. Laser driven wakefield accelerators

  17. Laser induced electron acceleration in vacuum K. P. Singha)

    E-Print Network [OSTI]

    Singh, Kunwar Pal

    Laser induced electron acceleration in vacuum K. P. Singha) Department of Physics, Indian Institute acceleration by a plane polarized laser wave has been studied in vacuum. Relativistic equations of motion have been solved exactly for electron trajectory and energy as a function of laser intensity, phase

  18. LASER ACCELERATION IN VACUUM J.L. Hsu, T. Katsouleas

    E-Print Network [OSTI]

    Wurtele, Jonathan

    LASER ACCELERATION IN VACUUM J.L. Hsu, T. Katsouleas University of Southern California, Los Angeles electric fields of high-brightness lasers (e.g., up to order TV/cm) to accelerate particles. Unfortunately, as is well known, it is difficult to couple the vacuum field of the laser to particles so as to achieve a net

  19. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    by strongly focused ( 6 µm), high peak power (up to 10 TW), ultra-short ( 50 fs) laser pulses of a 10 Hz at the exit of the plasma accelerator. Keywords: ultrahigh-fields, ultra-short, laser-plasma, wakefieldPowerful, pulsed, THz radiation from laser accelerated relativistic electron bunches Cs. T´otha, J

  20. Boston University User Fee Structure for ICP-ES, ICP-MS and Laser Labs

    E-Print Network [OSTI]

    Hutyra, Lucy R.

    Cost per sample by laser ablation includes three spots on a sample plus an additional three spotsBoston University User Fee Structure for ICP-ES, ICP-MS and Laser Labs The Department of Earth come to BU and digest their samples in our labs with sufficient training. Laser-ICP-MS cost per sample

  1. Proof-of-principle experiments of laser Wakefield acceleration

    SciTech Connect (OSTI)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for Higher Energy Physics, Ibaraki (Japan)] [and others

    1994-04-01T23:59:59.000Z

    Recently there has been a great interest in laser-plasma accelerators as possible next-generation particle accelerators because of their potential for ultra high accelerating gradients and compact size compared with conventional accelerators. It is known that the laser pulse is capable of exciting a plasma wave propagating at a phase velocity close to the velocity of light by means of beating two-frequency lasers or an ultra short laser pulse. These schemes came to be known as the Beat Wave Accelerator (BWA) for beating lasers or as the Laser Wakefield Accelerator (LWFA) for a short pulse laser. In this paper, the principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred.

  2. Chirped pulse inverse free-electron laser vacuum accelerator

    DOE Patents [OSTI]

    Hartemann, Frederic V. (Dublin, CA); Baldis, Hector A. (Pleasanton, CA); Landahl, Eric C. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  3. Jefferson Lab accelerator upgrade completed: Initial operations set to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin while

  4. Automatic beam path analysis of laser wakefield particle acceleration data

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automatic beam path analysis of laser wakefield particle acceleration data Oliver Rübel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high-energy particle bunches undergoing acceleration

  5. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Knowles, David William

    Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data Oliver R¨ubel1 particle accelerators play a key role in the understanding of the complex acceleration process in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration

  6. Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect (OSTI)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P. [Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)

    2010-11-04T23:59:59.000Z

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/ps/mm{sup 2}, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within {+-}10%.

  7. PARAMETER OPTIMIZATIONS FOR VACUUM LASER ACCELERATION AT ATF...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 times the laser Rayleigh length. Its acceleration length can be defined with simple optics. In order to get the higher energy gain at ATFBNL, the laser parameters and related...

  8. Summary Report of Working Group 6: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Leemans, Wim P.; Downer, Michael; Siders, Craig

    2008-01-01T23:59:59.000Z

    be an important focus of laser-plasma acceleration researchfocus. In both cases, light regions of the image ionized and heated the plasma,

  9. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    kA are generated. The ultra-short laser-plasma acceleratedfree-electron laser (FEL), generating ultra-fast, high-For the ultra-high currents of the laser plasma accelerated

  10. DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL

    E-Print Network [OSTI]

    DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL D. Douglas, S. V, Newport News, VA23606, USA Abstract An upgrade of the Jefferson Lab IR FEL [1] is now un- der construction. It will provide 10 kW output light power in a wavelength range of 2­10 µm. The FEL will be driven by a modest

  11. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D07 High Intensity Circular Machines - Space Charge, Halos D08 High Intensity in Linear Accelerators - Space Charge, Halos D09 Emittance manipulation, Bunch Compression...

  12. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Accelerator Facility United States of America Gupta Lalit Institute for Plasma Research India Gupta Lipi Cornell University CLASSE Cornell Laboratory for...

  13. Sailing Before the Light: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Columbia University

    at focus Andrea Macchi CNR/INO Sailing Before the Light: Laser-Plasma AccelerationDriven by RadiationSailing Before the Light: Laser-Plasma Acceleration Driven by Radiation Pressure Andrea Macchi 1 "Enrico Fermi", University of Pisa, Italy Plasma Physics Colloquium, Dept. of Applied Physics and Applied

  14. Summary Report of Working Group 1: Laser-Plasma Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    structure providing a linear mechanism with potential to harness low-energy laser systems [11 orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them and diagnostics. This includes laser wakefield acceleration [1], where acceleration by a plasma wave excited

  15. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL K. Nakamura , A. J (LBNL) [5, 6]. In this scheme, intense laser pulses were guided over a distance 10 times the Rayleigh facility at LBNL. The laser was focused onto the entrance of a capillary discharge waveguide by an f/25 off

  16. Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring

    SciTech Connect (OSTI)

    Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

    2011-07-15T23:59:59.000Z

    Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

  17. Sub-femtosecond electron bunches created by direct laser acceleration in a laser wakefield accelerator with ionization injection

    E-Print Network [OSTI]

    Lemos, N; Marsh, K A; Joshi, C

    2015-01-01T23:59:59.000Z

    In this work, we will show through three-dimensional particle-in-cell simulations that direct laser acceleration in laser a wakefield accelerator can generate sub-femtosecond electron bunches. Two simulations were done with two laser pulse durations, such that the shortest laser pulse occupies only a fraction of the first bubble, whereas the longer pulse fills the entire first bubble. In the latter case, as the trapped electrons moved forward and interacted with the high intensity region of the laser pulse, micro-bunching occurred naturally, producing 0.5 fs electron bunches. This is not observed in the short pulse simulation.

  18. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUWVoluntaryLabVenture

  19. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive inVenture

  20. Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL

    E-Print Network [OSTI]

    Nakamura, Kei; Advanced Light Source

    2009-01-01T23:59:59.000Z

    Accelerator Experiments at LBNL K. Nakamura ?,† , A. J.National Labo- ratory (LBNL) [5, 6]. In this scheme, intenseof the LOASIS facility at LBNL. The laser beam was focused

  1. Title of Document: EMITTANCE MEASUREMENTS OF THE JEFFERSON LAB FREE ELECTRON LASER

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Document: EMITTANCE MEASUREMENTS OF THE JEFFERSON LAB FREE ELECTRON LASER USING, such as the ones that power Free Electron Lasers (FEL), require high quality (low emittance) beams for efficient to Free Electron Lasers............................................ 4 1.2.1 Basic Principles of an FEL

  2. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect (OSTI)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquée, ENSTA ParisTech—CNRS UMR7639—École Polytechnique ParisTech, Chemin de la Hunière, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M. S.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2013-06-15T23:59:59.000Z

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  3. Stable laser–plasma accelerators at low densities

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Ge, Xulei; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-07-28T23:59:59.000Z

    We report stable laser wakefield acceleration using 17–50 TW laser pulses interacting with 4?mm-long helium gas jet. The initial laser spot size was relatively large (28??m) and the plasma densities were 0.48–2.0?×?10{sup 19?}cm{sup ?3}. High-quality 100–MeV electron beams were generated at the plasma density of 7.5?×?10{sup 18?}cm{sup ?3}, at which the beam parameters (pointing angle, energy spectrum, charge, and divergence angle) were measured and stabilized. At higher densities, filamentation instability of the laser-plasma interaction was observed and it has led to multiple wakefield accelerated electron beams. The experimental results are supported by 2D particle-in-cell simulations. The achievement presented here is an important step toward the use of laser-driven accelerators in real applications.

  4. Jefferson Lab plans ‘Science is Cool’ Open House...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enter one of the Lab's experimental halls, the accelerator control center, and Free-Electron Laser Facility. A variety of displays will be set up in the accelerator assembly...

  5. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Sessler, Andrew M.

    2008-01-01T23:59:59.000Z

    the 11th International Free-Electron Laser Conference, Nuc!.A Standing-Wave Free-Electron Laser Two-Beam Accelerator30418 Standing-Wave Free-Electron Laser Two-Beam Accelerator

  6. A NEW VERSION OF A FREE ELECTRON LASER TWO BEAM ACCELERATOR

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Radiation in Free Electron Laser Two-Beam Accelerator",Power 35 GHz Testing of a Free-Electron Laser and Two-BeamA New Version of a Free Electron Laser Two-Beam Accelerator

  7. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01T23:59:59.000Z

    P. Higginson, et al. , Ultra-High-Contrast Laser Rise-TimeTHE DISSERTATION Ultra-High-Contrast Laser Acceleration ofCALIFORNIA, SAN DIEGO Ultra-High-Contrast Laser Acceleration

  8. Nonlinear laser energy depletion in laser-plasma accelerators

    E-Print Network [OSTI]

    Shadwick, B.A.

    2009-01-01T23:59:59.000Z

    k p k 0 and assume a short laser pulse, k p L ? 2. WithE 0 = mc? p /q. For a short laser pulse, ? ? ? short-pulse lasers via excitation of

  9. Stern-Gerlach surfing in laser wakefield accelerators

    E-Print Network [OSTI]

    Flood, Stephen P

    2015-01-01T23:59:59.000Z

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that surf along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  10. Effect of the laser wavefront in a laser-plasma accelerator

    E-Print Network [OSTI]

    Beaurepaire, B; Bocoum, M; Böhle, F; Jullien, A; Rousseau, J-P; Lefrou, T; Douillet, D; Iaquaniello, G; Lopez-Martens, R; Lifschitz, A; Faure, J

    2015-01-01T23:59:59.000Z

    A high repetition rate electron source was generated by tightly focusing kHz, few-mJ laser pulses into an underdense plasma. This high intensity laser-plasma interaction led to stable electron beams over several hours but with strikingly complex transverse distributions even for good quality laser focal spots. Analysis of the experimental data, along with results of PIC simulations demonstrate the role of the laser wavefront on the acceleration of electrons. Distortions of the laser wavefront cause spatial inhomogeneities in the out-of-focus laser distribution and consequently, the laser pulse drives an inhomogenous transverse wakefield whose focusing/defocusing properties affect the electron distribution. These findings explain the experimental results and suggest the possibility of controlling the electron spatial distribution in laser-plasma accelerators by tailoring the laser wavefront.

  11. Free-Electron Laser Targets Fat | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Targets Fat April 10, 2006 Free-Electron Laser Scientists Rox Anderson, right, and Free-Electron Laser Scientist Steve Benson, left, discuss laser beam...

  12. New Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center (NERSC). Traditional accelerators, like the Large Hadron Collider where the Higgs boson was recently discovered, rely on high-power radio-frequency waves to energize...

  13. GeV electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration

    E-Print Network [OSTI]

    P. E. Masson-Laborde; M. Z. Mo; A. Ali; S. Fourmaux; P. Lassonde; J. C. Kieffer; W. Rozmus; D. Teychenne; R. Fedosejevs

    2014-08-06T23:59:59.000Z

    We show through experiments that a transition from laser wakefield acceleration (LWFA) regime to a plasma wakefield acceleration (PWFA) regime can drive electrons up to energies close to the GeV level. Initially, the acceleration mechanism is dominated by the bubble created by the laser in the nonlinear regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, leading to a depletion of the laser pulse, whose transverse ponderomotive force is not able to sustain the bubble anymore, the high energy dense bunch of electrons propagating inside bubble will drive its own wakefield by a PWFA regime. This wakefield will be able to trap and accelerate a population of electrons up to the GeV level during this second stage. Three dimensional (3D) particle-in-cell (PIC) simulations support this analysis, and confirm the scenario.

  14. First Demonstration of Staged Laser Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * STELLA-LW can utilize similar laser beam transport design used by ATF Channeling and Compton Scattering experiments - Transport designs are proven and effective - Should be...

  15. PAPER www.rsc.org/loc | Lab on a Chip Laser-induced cavitation based micropump

    E-Print Network [OSTI]

    Ohl, Claus-Dieter

    PAPER www.rsc.org/loc | Lab on a Chip Laser-induced cavitation based micropump Rory Dijkinka as versatile and robust pumping techniques. Here, we present a cavitation based technique, which is able cavitation event is created by focusing a laser pulse in a conventional PDMS microfluidic chip close

  16. Desired Improvements in Laser-Plasma Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface polaritons in thin SiC films to sub-wavelength lithography and compact particle acceleration Gennady Shvets, University of Texas at Austin Alan Feinerman (UIC) Chris Zorman...

  17. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

  18. Free electron laser using Rf coupled accelerating and decelerating structures

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A free electron laser and free electron laser amplifier using beam transport devices for guiding an electron beam to a wiggler of a free electron laser and returning the electron beam to decelerating cavities disposed adjacent to the accelerating cavities of the free electron laser. Rf energy is generated from the energy depleted electron beam after it emerges from the wiggler by means of the decelerating cavities which are closely coupled to the accelerating cavities, or by means of a second bore within a single set of cavities. Rf energy generated from the decelerated electron beam is used to supplement energy provided by an external source, such as a klystron, to thereby enhance overall efficiency of the system.

  19. Vacuum electron acceleration by using two variable frequency laser pulses

    SciTech Connect (OSTI)

    Saberi, H.; Maraghechi, B. [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)] [Department of Physics, Amirkabir University of Technology, 15875-4413 Tehran (Iran, Islamic Republic of)

    2013-12-15T23:59:59.000Z

    A method is proposed for producing a relativistic electron bunch in vacuum via direct acceleration by using two frequency-chirped laser pulses. We consider the linearly polarized frequency-chiped Hermit-Gaussian 0, 0 mode lasers with linear chirp in which the local frequency varies linearly in time and space. Electron motion is investigated through a numerical simulation using a three-dimensional particle trajectory code in which the relativistic Newton's equations of motion with corresponding Lorentz force are solved. Two oblique laser pulses with proper chirp parameters and propagation angles are used for the electron acceleration along the z-axis. In this way, an electron initially at rest located at the origin could achieve high energy, ?=319 with the scattering angle of 1.02{sup ?} with respect to the z-axis. Moreover, the acceleration of an electron in different initial positions on each coordinate axis is investigated. It was found that this mechanism has the capability of producing high energy electron microbunches with low scattering angles. The energy gain of an electron initially located at some regions on each axis could be greatly enhanced compared to the single pulse acceleration. Furthermore, the scattering angle will be lowered compared to the acceleration by using laser pulses propagating along the z-axis.

  20. Energy limitation of laser-plasma electron accelerators

    E-Print Network [OSTI]

    Cardenas, D E; Xu, J; Hofmann, L; Buck, A; Schmid, K; Sears, C M S; Rivas, D E; Shen, B; Veisz, L

    2015-01-01T23:59:59.000Z

    We report on systematic and high-precision measurements of dephasing, an effect that fundamentally limits the performance of laser wakefield accelerators. Utilizing shock-front injection, a technique providing stable, tunable and high-quality electron bunches, acceleration and deceleration of few-MeV quasi-monoenergetic beams were measured with sub-5-fs and 8-fs laser pulses. Typical density dependent electron energy evolution with 65-300 micrometers dephasing length and 6-20 MeV peak energy was observed and is well described with a simple model.

  1. C. R. Physique 10 (2009) 188196 Laser acceleration of particles in plasmas / Acclration laser de particules dans les plasmas

    E-Print Network [OSTI]

    Strathclyde, University of

    2009-01-01T23:59:59.000Z

    the properties of beams of protons accelerated in ultra-intense laser irradiation of planar foil targets accélérés par l'interaction d'une impulsion laser ultra intense avec une cible solide est discuté. PlusC. R. Physique 10 (2009) 188­196 Laser acceleration of particles in plasmas / Accélération laser de

  2. The BErkeley Lab Laser Accelerator (BELLA): A 10 GeV Laser Plasma Accelerator

    E-Print Network [OSTI]

    Leemans, W.P.

    2011-01-01T23:59:59.000Z

    of the plasma target will be the vacuum focus location ofFinal Focus Diagnostic (High Power),' a meter-scale plasma

  3. Production and acceleration of ion beams by laser ablation

    SciTech Connect (OSTI)

    Velardi, L.; Siciliano, M. V.; Delle Side, D.; Nassisi, V. [Department of Physics and I.N.F.N., LEAS Laboratory, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce (Italy)

    2012-02-15T23:59:59.000Z

    In this work, we present a new pulsed laser ablation technique to obtain energetic ion beams. The accelerator we made is a compact device able to extract and accelerate the ionic components of plasma up to 160 keV per charge state. It is composed by a generating chamber containing an expansion chamber used like first electrode. Next, a second electrode connected to ground and a third electrode connected to negative voltage are used. The third electrode is used also as Faraday cup. By the analysis of the ion signals we studied the plume parameters such as TOF accelerated signals, charge state, and divergence.

  4. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-06-01T23:59:59.000Z

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore »close proximity.« less

  5. A cascaded laser acceleration scheme for the generation of spectrally controlled proton beams

    E-Print Network [OSTI]

    Pfotenhauer, Sebastian Michael

    We present a novel, cascaded acceleration scheme for the generation of spectrally controlled ion beams using a laser-based accelerator in a 'double-stage' setup. An MeV proton beam produced during a relativistic laser–plasma ...

  6. Integration of photonic and passive microfluidic devices into lab-on-chip with femtosecond laser materials processing

    E-Print Network [OSTI]

    Gu, Yu, Ph.D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    Femtosecond laser materials processing is a powerful method for the integration of high resolution, 3D structures into Lab-On-Chip (LOC) systems. One major application of femtosecond laser materials processing is waveguide ...

  7. APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Tests of Gravity with Lunar Laser Ranging

    E-Print Network [OSTI]

    APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Tests of Gravity with Lunar Laser Ranging;APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 LLR Outline · What LLR measures · What LLR tests · LLR and the equivalence principle #12;APOLLO + UW Eot-Wash Group, AAPT GR Labs Workshop, 2007 Lunar

  8. Investigation of laser-driven proton acceleration using ultra-short, ultra-intense laser pulses

    SciTech Connect (OSTI)

    Fourmaux, S.; Gnedyuk, S.; Lassonde, P.; Payeur, S.; Pepin, H.; Kieffer, J. C. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); Buffechoux, S.; Albertazzi, B. [INRS-EMT, Universite du Quebec, 1650 Lionel Boulet, Varennes, Quebec J3X 1S2 (Canada); LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Capelli, D.; Antici, P. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Dipartimento SBAI, Sapienza, Universita di Roma, Via Scarpa 16, 00161 Roma (Italy); Levy, A.; Fuchs, J. [LULI, UMR 7605, CNRS - CEA - Universite Paris 6 - Ecole Polytechnique, 91128 Palaiseau (France); Lecherbourg, L.; Marjoribanks, R. S. [Department of Physics and Institute for Optical Sciences, University of Toronto, Toronto, Ontario M5S 1A7 (Canada)

    2013-01-15T23:59:59.000Z

    We report optimization of laser-driven proton acceleration, for a range of experimental parameters available from a single ultrafast Ti:sapphire laser system. We have characterized laser-generated protons produced at the rear and front target surfaces of thin solid targets (15 nm to 90 {mu}m thicknesses) irradiated with an ultra-intense laser pulse (up to 10{sup 20} W Dot-Operator cm{sup -2}, pulse duration 30 to 500 fs, and pulse energy 0.1 to 1.8 J). We find an almost symmetric behaviour for protons accelerated from rear and front sides, and a linear scaling of proton energy cut-off with increasing pulse energy. At constant laser intensity, we observe that the proton cut-off energy increases with increasing laser pulse duration, then roughly constant for pulses longer than 300 fs. Finally, we demonstrate that there is an optimum target thickness and pulse duration.

  9. Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams C. B. Schroeder, E of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator-charge force of a charged particle beam. Laser-driven plasma accelerators (LPAs) were first proposed in 1979

  10. Inverse free electron laser accelerator for advanced light sources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duris, J. P.; Musumeci, P.; Li, R. K.

    2012-06-01T23:59:59.000Z

    We discuss the inverse free electron laser (IFEL) scheme as a compact high gradient accelerator solution for driving advanced light sources such as a soft x-ray free electron laser amplifier or an inverse Compton scattering based gamma-ray source. In particular, we present a series of new developments aimed at improving the design of future IFEL accelerators. These include a new procedure to optimize the choice of the undulator tapering, a new concept for prebunching which greatly improves the fraction of trapped particles and the final energy spread, and a self-consistent study of beam loading effects which leads to an energy-efficient high laser-to-beam power conversion.

  11. Development of an accelerator-based BNCT facility at the Berkeley Lab

    SciTech Connect (OSTI)

    Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

    1998-03-01T23:59:59.000Z

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals.

  12. GeV electron beams from a laser-plasma accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    synchronized to the short-pulse laser driver, making such aa laser-plasma accelerator have naturally short durations onsapphire laser system (? = 810 nm) delivering as short as 38

  13. Macroparticle Theory of a Standing Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Takayama, K.

    2008-01-01T23:59:59.000Z

    Motz, Undulators and Free-Electron Laser (Clarendon Press,of a Standing Wave Free-Electron Laser Two-Beam Acceleratorof a Standing Wave Free-Electron Laser Two-Beam Accelerator

  14. Laser Wakefield Particle Accelerators Project at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratoryRowlandRevolutionizingLaser

  15. Researchers' Hottest New Laser Beams 14.2 kW | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    press release The linear accelerator portion of the FEL. On Thursday, Oct. 26, Free-Electron Laser (FEL) team members knew they were within reach of a goal they'd pursued for two...

  16. Jefferson Lab's Free-Electron Laser Joins With Others in New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser Joins With Others in New Research Venture NEWPORT NEWS, VA, April 29, 2009 - The U.S. Department of Energy's Thomas Jefferson National Accelerator Facility will...

  17. Jefferson Lab's upgraded Free-Electron Laser produces first ligh...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Navy's goals and expectations and we expect no less from the upgraded FEL." The Free-Electron Laser upgrade project is funded by the Department of Defense's Office of...

  18. Computational accelerator science needs towards laser-plasma accelerators for future colliders

    E-Print Network [OSTI]

    Geddes, C G R; Schroeder, C B; Esarey, E; Leemans, W P

    2013-01-01T23:59:59.000Z

    Laser plasma accelerators have the potential to reduce the size of future linacs for high energy physics by more than an order of magnitude, due to their high gradient. Research is in progress at current facilities, including the BELLA PetaWatt laser at LBNL, towards high quality 10 GeV beams and staging of multiple modules, as well as control of injection and beam quality. The path towards high-energy physics applications will likely involve hundreds of such stages, with beam transport, conditioning and focusing. Current research focuses on addressing physics and R&D challenges required for a detailed conceptual design of a future collider. Here, the tools used to model these accelerators and their resource requirements are summarized, both for current work and to support R&D addressing issues related to collider concepts.

  19. Jefferson Lab Laser Twinkles in Rare Color (PhysOrg) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman

  20. Theoretical Examination of Transfer Cavities in a Standing-wave Free-electron Laser Two-beam Accelerator

    E-Print Network [OSTI]

    Govil, R.

    2008-01-01T23:59:59.000Z

    Standing-Wave Free-Electron Laser Two-Beam Accelerator",the Standing-Wave Free-Electron Laser Two-Beam Accelerator",A.M. Sessler, "The Free-Electron Laser as a Power Source for

  1. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    E-Print Network [OSTI]

    Grinner, F. J.

    2009-01-01T23:59:59.000Z

    regime of laser-plasma-accelerated ultra-compact electronin ultra-high current electron bunches generated by laser-by laser-plasma accelerators due to their ultra-high peak

  2. Laser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system

    E-Print Network [OSTI]

    Marjoribanks, Robin S.

    of electromagnetic fields in plasma, isotopes production or hadron therapy. The 100 TW class laser systemLaser-based proton acceleration on ultra-thin foil with a 100 TW class high intensity laser system. To characterize the plasma expansion, we monitor it with an imaging technique using a femtosecond laser probe

  3. Jefferson Lab plans Open House for Saturday, April 16 | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enter two of the Lab's experimental halls, the accelerator control center, Free-Electron Laser Facility and Computer Center. A variety of displays will be set up in the...

  4. Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and secondBenchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations K Técnico, Lisboa, Portugal Abstract. Three-dimensional laser wakefield acceleration (LWFA) simulations have

  5. Laser Tricks: Making a New Color (Discovery News) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser SeedingVehicles

  6. Laser Twinkles in Rare Color (Science Daily) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaser

  7. Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental

    E-Print Network [OSTI]

    Huennekens, John

    1 Laser safety information for the Atomic, Molecular and Optical (AMO) Physics Labs at Lehigh University modified from the laser safety program developed by the office of Environmental Health and Safety using the following reference materials: I. American National Standards for Safe Use of Lasers - ANSI Z

  8. LASER SAFETY SELF-INSPECTION CHECKLIST Lab Supervisor _________________________ Inspected By: __________________________

    E-Print Network [OSTI]

    Bolch, Tobias

    users and training dates listed in SOP? yes no 2. Are written standard operating, maintenance, and alignment procedures kept with laser equipment? yes no 3. Have all commercially produced Class 3b and 4 to operate the device? yes no 5. Protective housing intact and interlocks tested or alternative controls

  9. Two-color-laser-driven direct electron acceleration in infinite vacuum

    E-Print Network [OSTI]

    Wong, Liang Jie

    We propose a direct electron acceleration scheme that uses a two-color pulsed radially polarized laser beam. The two-color scheme achieves electron acceleration exceeding 90% of the theoretical energy gain limit, over twice ...

  10. Radiation from laser accelerated electron bunches: Coherent terahertz and femtosecond X-rays

    E-Print Network [OSTI]

    2004-01-01T23:59:59.000Z

    of coherent transition radiation generated at a plasma-and G. Fubiani, “Terahertz radiation from laser acceleratedW. P. Leemans, “Synchrotron radiation from electron beams in

  11. Recent Progress at LBNL on Characterization of Laser Wakefield Accelerated Electron Bunches using Coherent Transition Radiation

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASERBerkeley National Laboratory (LBNL), Berkeley, CA 94720,USA Abstract At LBNL, laser wake?eld accelerators (LWFA) can

  12. Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P. Leemans

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Physics of laser-driven plasma-based electron accelerators E. Esarey, C. B. Schroeder, and W. P Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self

  13. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility

    E-Print Network [OSTI]

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-01-01T23:59:59.000Z

    laser system to focus ultra-short (?30 fs) laser pulses ofLASER-PLASMA ACCELERATOR The LOASIS Laboratory at LBNL presently produces ultra-short (short-pulse laser driver, making such a source ideal for ultra-

  14. A Laser Safety (SAF 113O) training | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1 Q2youKINETIC S'FUDY OFAA Laser

  15. Design for a GeV per meter, laser--driven electron accelerator Y.c. Huang, and R.L. Byer

    E-Print Network [OSTI]

    Byer, Robert L.

    optics, high power laser, laser-driven accelerator, ultra-fast laser, crossed-laser-beam acceleratorDesign for a GeV per meter, laser--driven electron accelerator Y.c. Huang, and R.L. Byer Stanford-based. multistaged, laser-driven electron linear accelerator microstructure operating in a vacuum that is capable

  16. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01T23:59:59.000Z

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW`s) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  17. Acceleration of electrons using an inverse free electron laser auto- accelerator

    SciTech Connect (OSTI)

    Wernick, I.K.; Marshall, T.C.

    1992-07-01T23:59:59.000Z

    We present data from our study of a device known as the inverse free electron laser. First, numerical simulations were performed to optimize the design parameters for an experiment that accelerates electrons in the presence of an undulator by stimulated absorption of radiation. The Columbia free electron laser (FEL) was configured as an auto-accelerator (IFELA) system; high power (MW's) FEL radiation at {approximately}1.65 mm is developed along the first section of an undulator inside a quasi-optical resonator. The electron beam then traverses a second section of undulator where a fraction of the electrons is accelerated by stimulated absorption of the 1.65 mm wavelength power developed in the first undulator section. The second undulator section has very low gain and does not generate power on its own. We have found that as much as 60% of the power generated in the first section can be absorbed in the second section, providing that the initial electron energy is chosen correctly with respect to the parameters chosen for the first and second undulators. An electron momentum spectrometer is used to monitor the distribution of electron energies as the electrons exit the IFELA. We have found; using our experimental parameters, that roughly 10% of the electrons are accelerated to energies as high as 1100 keV, in accordance with predictions from the numerical model. The appearance of high energy electrons is correlated with the abrupt absorption of millimeter power. The autoaccelerator configuration is used because there is no intense source of coherent power at the 1.65 mm design wavelength other than the FEL.

  18. Recirculating accelerator driver for a high-power free-electron laser: A design overview

    SciTech Connect (OSTI)

    Bohn, C.L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    1997-06-01T23:59:59.000Z

    Jefferson Lab is building a free-electron laser (FEL) to produce continuous-wave (cw), kW-level light at 3-6 {mu}m wavelength. A superconducting linac will drive the laser, generating a 5 mA average current, 42 MeV energy electron beam. A transport lattice will recirculate the beam back to the linac for deceleration and conversion of about 75% of its power into rf power. Bunch charge will range up to 135 pC, and bunch lengths will range down to 1 ps in parts of the transport lattice. Accordingly, space charge in the injector and coherent synchrotron radiation in magnetic bends come into play. The machine will thus enable studying these phenomena as a precursor to designing compact accelerators of high-brightness beams. The FEL is scheduled to be installed in its own facility by 1 October 1997. Given the short schedule, the machine design is conservative, based on modifications of the CEBAF cryomodule and MIT-Bates transport lattice. This paper surveys the machine design.

  19. Automatic Beam Path Analysis of Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Wu, Kesheng; Prabhat,; Weber, Gunther H.; Ushizima, Daniela M.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2009-10-19T23:59:59.000Z

    Numerical simulations of laser wakefield particle accelerators play a key role in the understanding of the complex acceleration process and in the design of expensive experimental facilities. As the size and complexity of simulation output grows, an increasingly acute challenge is the practical need for computational techniques that aid in scientific knowledge discovery. To that end, we present a set of data-understanding algorithms that work in concert in a pipeline fashion to automatically locate and analyze high energy particle bunches undergoing acceleration in very large simulation datasets. These techniques work cooperatively by first identifying features of interest in individual timesteps, then integrating features across timesteps, and based on the information derived perform analysis of temporally dynamic features. This combination of techniques supports accurate detection of particle beams enabling a deeper level of scientific understanding of physical phenomena than hasbeen possible before. By combining efficient data analysis algorithms and state-of-the-art data management we enable high-performance analysis of extremely large particle datasets in 3D. We demonstrate the usefulness of our methods for a variety of 2D and 3D datasets and discuss the performance of our analysis pipeline.

  20. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    E-Print Network [OSTI]

    Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration, time- varying laser wakefield particle accelerator simulation data. We ex- tend histogramBit, a state-of-the-art index/query technology, to acceler- ate data mining and multi-dimensional histogram

  1. RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASER WAKEFIELD ACCELERATED ELECTRON BUNCHES USING

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    RECENT PROGRESS AT LBNL ON CHARACTERIZATION OF LASER WAKEFIELD ACCELERATED ELECTRON BUNCHES USING. Schroeder, J. van Tilborg, Cs. T´oth Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA 94720, USA Abstract At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches

  2. Plasmonic Meta-Surface for Efficient Ultra-Short Pulse Laser-Driven Particle Acceleration

    E-Print Network [OSTI]

    Bar-Lev, Doron

    2014-01-01T23:59:59.000Z

    A laser-driven particle accelerator based on plasmonic nano-antennas is proposed and analyzed. The concept utilizes the enhancement and localization of the electric field by nano-antennas to maximize the acceleration gradient and to overcome potential metallic losses. The structure is optimized for accelerating relativistic particles using a femto-second laser source operating at 800nm, and is shown to support the bandwidth of ultra-short laser pulses (up to 16fsec) while providing a high acceleration gradient potentially reaching 11.6GV/m.

  3. Blast Wave Formation by Laser-Sustained Nonequilibrium Plasma in the Laser-Driven In-Tube Accelerator Operation

    SciTech Connect (OSTI)

    Ogino, Yousuke; Ohnishi, Naofumi; Sawada, Keisuke [Department of Aeronautics and Space Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasoh, Akihiro [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)

    2006-05-02T23:59:59.000Z

    Understanding the dynamics of laser-produced plasma is essentially important for increasing available thrust force in a gas-driven laser propulsion system such as laser-driven in-tube accelerator. A computer code is developed to explore the formation of expanding nonequilibrium plasma produced by laser irradiation. Various properties of the blast wave driven by the nonequilibrium plasma are examined. It is found that the blast wave propagation is substantially affected by radiative cooling effect for lower density case.

  4. Accurate Modeling of Laser-Plasma Accelerators with Particle-In-Cell Codes

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Accurate Modeling of Laser-Plasma Accelerators with Particle-In-Cell Codes Estelle Michel , B. A-plasma accelerators. Here we investigate the numerical heating and macro-particle trajectory errors in 2D PIC wake and be accelerated to high energies [4]. In a particle-grid approach such as PIC, finite

  5. Effect of polarization and focusing on laser pulse driven auto-resonant particle acceleration

    SciTech Connect (OSTI)

    Sagar, Vikram; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar-382428 (India)

    2014-04-15T23:59:59.000Z

    The effect of laser polarization and focusing is theoretically studied on the final energy gain of a particle in the Auto-resonant acceleration scheme using a finite duration laser pulse with Gaussian shaped temporal envelope. The exact expressions for dynamical variables viz. position, momentum, and energy are obtained by analytically solving the relativistic equation of motion describing particle dynamics in the combined field of an elliptically polarized finite duration pulse and homogeneous static axial magnetic field. From the solutions, it is shown that for a given set of laser parameters viz. intensity and pulse length along with static magnetic field, the energy gain by a positively charged particle is maximum for a right circularly polarized laser pulse. Further, a new scheme is proposed for particle acceleration by subjecting it to the combined field of a focused finite duration laser pulse and static axial magnetic field. In this scheme, the particle is initially accelerated by the focused laser field, which drives the non-resonant particle to second stage of acceleration by cyclotron Auto-resonance. The new scheme is found to be efficient over two individual schemes, i.e., auto-resonant acceleration and direct acceleration by focused laser field, as significant particle acceleration can be achieved at one order lesser values of static axial magnetic field and laser intensity.

  6. Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators Estelle Cormier-Michel,1,2

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Unphysical kinetic effects in particle-in-cell modeling of laser wakefield accelerators Estelle of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should

  7. Proposed few-optical cycle laser-driven particle accelerator structure T. Plettner, P. P. Lu, and R. L. Byer

    E-Print Network [OSTI]

    Byer, Robert L.

    Proposed few-optical cycle laser-driven particle accelerator structure T. Plettner, P. P. Lu, and R importance for future laser-driven particle accelerators. Application of such short pulses for laser-driven particle accelerators appears especially appealing from a gradient and an efficiency point of view

  8. Electron Beam Charge Diagnostics for Laser Plasma Accelerators

    SciTech Connect (OSTI)

    Nakamura, Kei; Gonsalves, Anthony; Lin, Chen; Smith, Alan; Rodgers, David; Donahue, Rich; Byrne, Warren; Leemans, Wim

    2011-06-27T23:59:59.000Z

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160 pC/mm{sup 2} and 0.4 pC/(ps mm{sup 2}), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within {+-}8%, showing that they all can provide accurate charge measurements for LPAs.

  9. Automated detection and analysis of particle beams in laser-plasma accelerator simulations 367 Automated detection and analysis

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    Automated detection and analysis of particle beams in laser-plasma accelerator simulations 367 0 Automated detection and analysis of particle beams in laser-plasma accelerator simulations Daniela M (particle) accelerators [Geddes et al. (2009); Tajima & Dawson (1979)] model the acceleration of electrons

  10. Spot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a)

    E-Print Network [OSTI]

    polarized laser beam irradiates an ultra-thin foil and accelerates nearly the whole foil by the radiationSpot size dependence of laser accelerated protons in thin multi-ion foils Tung-Chang Liu,1,a) Xi of the effect of the laser spot size of a circularly polarized laser beam on the energy of quasi

  11. Common Analysis of the Relativistic Klystron and the Standing-Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Wurtele, Jonathan S.

    2008-01-01T23:59:59.000Z

    of the standing-wave free-electron laser on the same footingSessler, A.M. , "The Free Electron Laser as a Power SourceNew Version of a Free Electron Laser Two-Beam Accelerator",

  12. Two-Dimensional Simulation Analysis of the Standing-wave Free-electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Wang, C.

    2008-01-01T23:59:59.000Z

    Standing-wave free-electron laser two-beam accelerator,"of a standing-wave free-electron laser," Lawrence Berkeleyof a standing-wave free-electron laser," Lawrence Berkeley

  13. High energy conversion efficiency in laser-proton acceleration by controlling laser-energy deposition onto thin foil targets

    SciTech Connect (OSTI)

    Brenner, C. M. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Robinson, A. P. L.; Markey, K.; Scott, R. H. H.; Lancaster, K. L.; Musgrave, I. O.; Spindloe, C.; Winstone, T.; Wyatt, D.; Neely, D. [Central Laser Facility, STFC, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX (United Kingdom); Gray, R. J.; McKenna, P. [Department of Physics, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Rosinski, M.; Badziak, J.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw (Poland); Deppert, O. [Institut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Batani, D. [Dipartimento di Fisica G. Occhialini, Universita di Milano Bicocca, 20126 Milan (Italy); Davies, J. R. [Laboratory for Laser Energetics, Fusion Science Center for Extreme States of Matter, University of Rochester, Rochester, New York 14623 (United States); Hassan, S. M.; Tatarakis, M. [Department of Electronics Engineering, Centre for Plasma Physics and Lasers, 73133 Chania, 74100 Rethymno, Crete (Greece); and others

    2014-02-24T23:59:59.000Z

    An all-optical approach to laser-proton acceleration enhancement is investigated using the simplest of target designs to demonstrate application-relevant levels of energy conversion efficiency between laser and protons. Controlled deposition of laser energy, in the form of a double-pulse temporal envelope, is investigated in combination with thin foil targets in which recirculation of laser-accelerated electrons can lead to optimal conditions for coupling laser drive energy into the proton beam. This approach is shown to deliver a substantial enhancement in the coupling of laser energy to 5–30?MeV protons, compared to single pulse irradiation, reaching a record high 15% conversion efficiency with a temporal separation of 1 ps between the two pulses and a 5??m-thick Au foil. A 1D simulation code is used to support and explain the origin of the observation of an optimum pulse separation of ?1 ps.

  14. A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439

    E-Print Network [OSTI]

    Harilal, S. S.

    A LASER STRAIN GAUGE FOR ACCELERATOR TARGETS A. Hassanein, J. Norem, ANL, Argonne, IL 60439 tests using the Brookhaven AGS and the Argonne CHM linac. 1 INTRODUCTION The next generation of particle

  15. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    SciTech Connect (OSTI)

    Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

    2010-06-01T23:59:59.000Z

    The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

  16. All-optical measurement of the hot electron sheath driving laser ion acceleration from thin foils

    E-Print Network [OSTI]

    Jackel, O.

    We present experimental results from an all-optical diagnostic method to directly measure the evolution of the hot-electron distribution driving the acceleration of ions from thin foils using high-intensity lasers. Central ...

  17. Multi-MeV electron acceleration by sub-terawatt laser pulses

    E-Print Network [OSTI]

    Goers, A J; Feder, L; Miao, B; Salehi, F; Milchberg, H M

    2015-01-01T23:59:59.000Z

    We demonstrate laser-plasma acceleration of high charge electron beams to the ~10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet. Total charge up to ~0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of a relativistically self-focused laser filament accompanied by an intense coherent broadband light flash, associated with wavebreaking, which can radiate more than ~3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production.

  18. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect (OSTI)

    Lin, M.-W.; Jovanovic, I. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2012-11-15T23:59:59.000Z

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  19. Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators

    E-Print Network [OSTI]

    Rittershofer, W.

    2010-01-01T23:59:59.000Z

    P/P c ultra-intense laser pulses, such that a 2 ?laser-plasma accel- erators are actively being investigated as ultra-

  20. Free-electron laser driven by the LBNL laser-plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01T23:59:59.000Z

    Free-electron laser driven by the LBNL laser-plasmaA design of a compact free-electron laser (FEL), generatingare considered. Keywords: Free-electron laser, laser-plasma

  1. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    SciTech Connect (OSTI)

    Byer, Robert L.

    2013-11-07T23:59:59.000Z

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  2. Design of a subnanometer resolution beam position monitor for dielectric laser accelerators

    E-Print Network [OSTI]

    Byer, Robert L.

    of the first laser-powered particle accel- erators "on a chip" [1,2]. These devices are specifically designed present a new concept for a beam position monitor with the unique ability to map particle beam position, this device is ideal for future x-ray sources and laser-driven particle accelerators "on a chip." © 2012

  3. Injection and acceleration of electron bunch in a plasma wakefield produced by a chirped laser pulse

    SciTech Connect (OSTI)

    Afhami, Saeedeh; Eslami, Esmaeil, E-mail: eeslami@iust.ac.ir [Department of Physics, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114 (Iran, Islamic Republic of)

    2014-06-15T23:59:59.000Z

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wakefield which can trap and accelerate charged particles up to GeV. One-dimensional analysis of electron injection, trapping, and acceleration by different chirped pulses propagating in plasma is investigated numerically. In this paper, we inject electron bunches in front of the chirped pulses. It is indicated that periodical chirped laser pulse can trap electrons earlier than other pulses. It is shown that periodical chirped laser pulses lead to decrease the minimum momentum necessary to trap the electrons. This is due to the fact that periodical chirped laser pulses are globally much efficient than nonchirped pulses in the wakefield generation. It is found that chirped laser pulses could lead to much larger electron energy than that of nonchirped pulses. Relative energy spread has a lower value in the case of periodical chirped laser pulses.

  4. Increased efficiency of ion acceleration by using femtosecond laser pulses at higher harmonic frequency

    SciTech Connect (OSTI)

    Psikal, J., E-mail: jan.psikal@fjfi.cvut.cz [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); Klimo, O. [FNSPE, Czech Technical University in Prague, 11519 Prague (Czech Republic); ELI-Beamlines Project, Institute of Physics of the ASCR, 18221 Prague (Czech Republic); Weber, S.; Margarone, D. [ELI-Beamlines Project, Institute of Physics of the ASCR, 18221 Prague (Czech Republic)

    2014-07-15T23:59:59.000Z

    The influence of laser frequency on laser-driven ion acceleration is investigated by means of two-dimensional particle-in-cell simulations. When ultrashort intense laser pulse at higher harmonic frequency irradiates a thin solid foil, the target may become re lativistically transparent for significantly lower laser pulse intensity compared with irradiation at fundamental laser frequency. The relativistically induced transparency results in an enhanced heating of hot electrons as well as increased maximum energies of accelerated ions and their numbers. Our simulation results have shown the increase in maximum proton energy and increase in the number of high-energy protons by a factor of 2 after the interaction of an ultrashort laser pulse of maximum intensity 7?×?10{sup 21?}W/cm{sup 2} with a fully ionized plastic foil of realistic density and of optimal thickness between 100?nm and 200?nm when switching from the fundamental frequency to the third harmonics.

  5. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect (OSTI)

    Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)

    2014-11-15T23:59:59.000Z

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  6. UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC

    E-Print Network [OSTI]

    Bakeman, M.S.

    2010-01-01T23:59:59.000Z

    ultra-short, high-peak- current, electron beams are ideal for driving a compact XUV free electron laser (

  7. Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube

    SciTech Connect (OSTI)

    Paradkar, B. S.; Cros, B.; Maynard, G. [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France)] [Laboratoire de Physique des Gaz et des Plasmas, University Paris Sud 11-CNRS, Orsay (France); Mora, P. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)] [Centre de Physique Theorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2013-08-15T23:59:59.000Z

    Numerical modeling of laser wakefield electron acceleration inside a gas filled dielectric capillary tube is presented. Guiding of a short pulse laser inside a dielectric capillary tube over a long distance (?1 m) and acceleration of an externally injected electron bunch to ultra-relativistic energies (?5-10 GeV) are demonstrated in the quasi-linear regime of laser wakefield acceleration. Two dimensional axisymmetric simulations were performed with the code WAKE-EP (Extended Performances), which allows computationally efficient simulations of such long scale plasma. The code is an upgrade of the quasi-static particle code, WAKE [P. Mora and T. M. Antonsen, Jr., Phys. Plasmas 4, 217 (1997)], to simulate the acceleration of an externally injected electron bunch (including beam loading effect) and propagation of the laser beam inside a dielectric capillary. The influence of the transverse electric field of the plasma wake on the radial loss of the accelerated electrons to the dielectric wall is investigated. The stable acceleration of electrons to multi-GeV energy with a non-resonant laser pulse with a large spot-size is demonstrated.

  8. Design of a free-electron laser driven by the LBNLlaser-plasma-accelerator

    SciTech Connect (OSTI)

    Schroeder, C.B.; Fawley, W.M.; Montgomery, A.L.; Robinson, K.E.; Gruner, F.; Bakeman, M.; Leemans, W.P.

    2007-09-10T23:59:59.000Z

    We discuss the design and current status of a compactfree-electron laser (FEL), generating ultra-fast, high-peak flux, VUVpulses driven by a high-current, GeV electron beam from the existingLawrence Berkeley National Laboratory (LBNL) laser-plasma accelerator,whose active acceleration length is only a few cm. The proposedultra-fast source would be intrinsically temporally synchronized to thedrive laser pulse, enabling pump-probe studies in ultra-fast science withpulse lengths of tens of fs. Owing to the high current (&10 kA) ofthe laser-plasma-accelerated electron beams, saturated output fluxes arepotentially greater than 1013 photons/pulse. Devices based both on SASEand high-harmonic generated input seeds, to reduce undulator length andfluctuations, are considered.

  9. First Experiments on Laser Acceleration of Protons in Overdense Gas Jets

    SciTech Connect (OSTI)

    Palmer, Charlotte A. J.; Dover, Nicholas; Najmudin, Zulfikar [Blackett Laboratory, Imperial College London, SW7 2BW (United Kingdom); Pogorelsky, Igor; Babzien, Marcus; Polyanskiy, Michael; Yakimenko, Vitaly [Accelerator Test Facility, Brookhaven National Laboratory, NY 11973 (United States); Dudnikova, Galina [University of Maryland, College Park, MD 20742 (United States); Ispiriyan, Mikael; Shkolnikov, Peter [Stony Brook University, Stony Brook, NY 11794 (United States); Schreiber, Jeorg [Blackett Laboratory, Imperial College London, SW7 2BW (United Kingdom); Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen, D-85748 Garching (Germany); Max-Planck-Institut fur Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2010-11-04T23:59:59.000Z

    We report the first, to our knowledge, experimental investigation of proton acceleration by a laser in an overdense gas jet, in particular first direct experimental observations of quasi-monoenergetic spectra of ions accelerated by radiation pressure of relativistically intense circularly polarized laser radiation. CO{sub 2} laser radiation with the wavelength {lambda}{approx_equal}10 {mu}m, focused to the intensities of up to 10{sup 16} W cm{sup -2} into a hydrogen gas jet with densities of 3-5x10{sup 19} cm{sup -3}, generates proton beams with energy in a narrow range around 1.2 MeV, in a reasonable agreement with Radiation Pressure Acceleration theory. We also observed slow-moving, quasi-stable bubble-like structures in laser plasma, which we interpret as post-solitons.

  10. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    of the visible free- electron laser oscillator experiment”,based VUV and X-ray free electron lasers”, Appl. Phys. BDesign of a free-electron laser driven by the LBNL laser-

  11. XTREME OPTICS: the behavior of cavity optics for the Jefferson Lab free-electron laser

    SciTech Connect (OSTI)

    Michelle D. Shinn; Christopher Behre; Stephen Benson; David Douglas; Fred Dylla; Christopher Gould; Joseph Gubeli; David Hardy; Kevin Jordan; George Neil; and Shukui Zhanga

    2006-09-25T23:59:59.000Z

    The cavity optics within high power free-electron lasers based on energy-recovering accelerators are subjected to extreme conditions associated with illumination from a broad spectrum of radiation, often at high irradiances. This is especially true for the output coupler, where absorption of radiation by both the mirror substrate and coating places significant design restrictions to properly manage heat load and prevent mirror distortion. Besides the fundamental lasing wavelength, the mirrors are irradiated with light at harmonics of the fundamental, THz radiation generated by the bending magnets downstream of the wiggler, and x-rays produced when the electron beam strikes accelerator diagnostic components (e.g., wire scanners and view screens) or from inadvertent beam loss. The optics must reside within high vacuum at ~ 10-8 Torr and this requirement introduces its own set of complications. This talk discusses the performance of numerous high reflector and output coupler optics assemblies and provides a detailed list of lessons learned gleaned from years of experience operating the Upgrade IR FEL, a 10 kW-class, sub-ps laser with output wavelength from 1 to 6 microns.

  12. High Gradient Inverse Free Electron Laser (IFEL) Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gradient High energy gain Inverse Free Electron Laser P. Musumeci UCLA Department of Physics and Astronomy On Behalf of the RUBICON collaboration ATF user meeting, BNL, October 6...

  13. Fission-Fusion: A new reaction mechanism for nuclear astrophysics based on laser-ion acceleration

    SciTech Connect (OSTI)

    Thirolf, P. G.; Gross, M.; Allinger, K.; Bin, J.; Henig, A.; Kiefer, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Habs, D. [Fakultaet fuer Physik, Ludwig-Maximilians Universitaet Muenchen, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Ma, W.; Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

    2011-10-28T23:59:59.000Z

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N = 126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH{sub 2} layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of {sup 232}Th with solid-state density can be generated from a Th target and a deuterated CD{sub 2} foil, both forming the production target assembly. Laser-accelerated Th ions with about 7 MeV/u will pass through a thin CH{sub 2} layer placed in front of a thicker second Th foil (both forming the reaction target) closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD{sub 2} layer of the production target will be accelerated as well, inducing the fission process of {sup 232}Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10{sup 14} times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. The high ion beam density may lead to a strong collective modification of the stopping power, leading to significant range and thus yield enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), order-of-magnitude estimates promise a fusion yield of about 10{sup 3} ions per laser pulse in the mass range of A = 180-190, thus enabling to approach the r-process waiting point at N = 126.

  14. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility

    E-Print Network [OSTI]

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-01-01T23:59:59.000Z

    Ti:Sapphire laser system to focus ultra-short (?30 fs) laserLASER-PLASMA ACCELERATOR The LOASIS Laboratory at LBNL presently produces ultra-short (laser-plasma inter- action lengths. These LWFA-produced electron beams are high current (?10 kA) and ultra-short (

  15. Laser acceleration of protons using multi-ion plasma gaseous targets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng; Eliasson, Bengt; Hill, W T; Wang, Jyhpyng; Chen, Shih-Hung

    2015-02-01T23:59:59.000Z

    We present a theoretical and numerical study of a novel acceleration scheme by applying a combination of laser radiation pressure and shielded Coulomb repulsion in laser acceleration of protons in multi-species gaseous targets. By using a circularly polarized CO2 laser pulse with a wavelength of 10 ?m—much greater than that of a Ti: Sapphire laser—the critical density is significantly reduced, and a high-pressure gaseous target can be used to achieve an overdense plasma. This gives us a larger degree of freedom in selecting the target compounds or mixtures, as well as their density and thickness profiles. By impinging such amore »laser beam on a carbon–hydrogen target, the gaseous target is first compressed and accelerated by radiation pressure until the electron layer disrupts, after which the protons are further accelerated by the electron-shielded carbon ion layer. An 80 MeV quasi-monoenergetic proton beam can be generated using a half-sine shaped laser beam with a peak power of 70 TW and a pulse duration of 150 wave periods.« less

  16. The analytic model of a laser-accelerated plasma target and its stability

    SciTech Connect (OSTI)

    Khudik, V., E-mail: vkhudik@physics.utexas.edu; Yi, S. A.; Siemon, C.; Shvets, G. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)] [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2014-01-15T23:59:59.000Z

    A self-consistent kinetic theory of a laser-accelerated plasma target with distributed electron/ion densities is developed. The simplified model assumes that after an initial transition period the bulk of cold ions are uniformly accelerated by the self-consistent electric field generated by hot electrons trapped in combined ponderomotive and electrostatic potentials. Several distinct target regions (non-neutral ion tail, non-neutral electron sheath, and neutral plasma bulk) are identified and analytically described. It is shown analytically that such laser-accelerated finite-thickness target is susceptible to Rayleigh-Taylor (RT) instability. Particle-in-cell simulations of the seeded perturbations of the plasma target reveal that, for ultra-relativistic laser intensities, the growth rate of the RT instability is depressed from the analytic estimates.

  17. CO2 LASER TECHNOLOGY FOR ADVANCED PARTICLE ACCELERATORS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actually, in this case, we talk about evanescent EM fields vanishing within a l -thick layer above the surface. In the third group of methods, particles are accelerated not by EM...

  18. Laser polishing of niobium for superconducting radio-frequency accelerator applications

    SciTech Connect (OSTI)

    Zhao, Liang [William and Mary College; Klopf, John M. [William and Mary College; Reece, Charles E. [JLAB; Kelley, Michael J. [JLAB

    2014-08-01T23:59:59.000Z

    Interior surfaces of niobium cavities used in superconducting radio frequency accelerators are now obtained by buffered chemical polish and/or electropolish. Laser polishing is a potential alternative, having advantages of speed, freedom from noxious chemistry and availability of in-process inspection. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damage. Computational modeling was used to estimate the surface temperature and gain insight into the mechanism of laser polishing. Power spectral density analysis of surface topography measurements shows that laser polishing can produce smooth topography similar to that obtained by electropolish. This is a necessary first step toward introducing laser polishing as an alternative to the currently practiced chemical polishing.

  19. Design of a free-electron laser driven by the LBNL laser-plasma-accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    free-electron laser (FEL), generating ultra-fast, high-drive laser pulse, enabling pump-probe studies in ultra-fastto the laser driver, making such a source ideal for ultra-

  20. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    E-Print Network [OSTI]

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01T23:59:59.000Z

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  1. Accelerating into the Future Zero to 1GeV in a Few Centimeters

    ScienceCinema (OSTI)

    LBNL

    2009-09-01T23:59:59.000Z

    July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  2. Space Charge Compensation in Laser Particle Accelerators L.C...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shown in Fig. 1, is composed of an energy modulator (e.g. an inverse free-electron laser) followed by a drift section. A macrobunch with little energy spread enters the...

  3. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of experiments on new lasers such as BELLA. Principal Investigator: Cameron Geddes, LBNL More Information: See J.-L. Vay, C. G. R. Geddes, E. Cormier-Michel, and D. P. Grote,...

  4. Electron acceleration in cavitated laser produced ion channels

    SciTech Connect (OSTI)

    Naseri, N. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Tech-X Corporation, Boulder, Colorado 80303 (United States); Pesme, D. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada) [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Centre de Physique Théorique, CNRS, Ecole Polytechnique, 91128 Palaiseau Cedex (France); Rozmus, W. [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)] [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada)

    2013-10-15T23:59:59.000Z

    This paper is concerned with the channeling of a relativistic laser pulse in an underdense plasma and with the subsequent generation of fast electrons in the cavitated ion channel. The laser pulse has a duration of several hundreds of femtoseconds and its power P{sub L} exceeds the critical power for laser channeling P{sub ch}, with P{sub ch}?1.1P{sub c}, P{sub c} denoting the critical power for relativistic self-focusing. The laser pulse is focused in a plasma of electron density n{sub 0} such that the ratio n{sub 0}/n{sub c} lies in the interval [10{sup ?3},10{sup ?1}], n{sub c} denoting the critical density. The laser-plasma interaction under such conditions is investigated by means of three dimensional Particle-In-Cell (PIC) simulations. It is observed that the steep laser front gives rise to the excitation of a surface wave which propagates along the sharp radial boundaries of the electron free channel created by the laser pulse. The mechanism responsible for the generation of relativistic electrons observed in the PIC simulations is also analyzed by means of a test particles code. The fast electrons are found to be generated by the combination of a surface wave and of the betatron resonance. The maximum electron energy observed in the simulations is scaled as a function of P{sub L}/P{sub c}; it reaches 350–600 MeV for P{sub L}/P{sub c} = 70–140.

  5. Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954

    SciTech Connect (OSTI)

    Downer, Michael C.

    2014-12-19T23:59:59.000Z

    Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-d

  6. ULTRAINTENSE AND ULTRASHORT LASER PULSES FROM RAMAN AMPLIFICATION IN PLASMA FOR LASER-PLASMA ACCELERATORS

    E-Print Network [OSTI]

    Wurtele, Jonathan

    to be a promising alternative for obtaining ultra-powerful peta-watt laser pulses. Issues in the system are the kiULTRAINTENSE AND ULTRASHORT LASER PULSES FROM RAMAN AMPLIFICATION IN PLASMA FOR LASER trapping effect in the Raman pulse amplification in plasma. An ultraintense and ultrashort laser pulse

  7. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect (OSTI)

    Li, Song; Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Tao, Mengze; Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-08-15T23:59:59.000Z

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120?MeV and up to ?430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  8. Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a)

    E-Print Network [OSTI]

    Charged-particle acceleration and energy loss in laser-produced plasmas D. G. Hicks,a) C. K. Li, F, particle energy shifts were dominated by acceleration effects. Using a simple model for the accelerating T. R. Boehly et al., Opt. Commun. 133, 495 1997 . Comparing the energy shifts of four particle types

  9. Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations

    E-Print Network [OSTI]

    hydrogen flames under different levels of turbulence ­ Lean combustion reduces emissions Important hydrogen flames] #12;Visual Exploration of Turbulent Combustion and Laser-Wakefield Accelerator Simulations 12 Tracking Graph Extraction Pipeline 1. Concatenate to obtain 4D mesh 2. Extract isotherm in 4D 3

  10. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    SciTech Connect (OSTI)

    Vaccarezza, C.; Chiadroni, E.; Ferrario, M.; Giannessi, L.; Quattromini, M.; Ronsivalle, C.; Venturini, C.; Migliorati, M.; Dattoli, G.

    2010-05-23T23:59:59.000Z

    The effects of microbunching instability for the SPARX accelerator have been analyzed by means of numerical simulations. The laser heater counteracting action has been addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

  11. Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum K. P. Singh*

    E-Print Network [OSTI]

    Roy, Subrata

    Electron acceleration by an intense short pulse laser in a static magnetic field in vacuum K. P by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied in a static to be the same as that of the magnetic field of the laser pulse. The electron gains considerable energy

  12. Remediation of the Melton Valley Watershed at Oak Ridge National Lab: An Accelerated Closure Success Story

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Skinner, R. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States); Adams, V. [U.S. DOE, Office of Groundwater and Soil Remediation, Washington, DC (United States)

    2008-07-01T23:59:59.000Z

    The Melton Valley (MV) Watershed at the U. S. Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) encompasses approximately 430 hectares (1062 acres). Historic operations at ORNL produced a diverse legacy of contaminated facilities and waste disposal areas in the valley. In addition, from 1955 to 1963, ORNL served as a major disposal site for wastes from over 50 off-site government-sponsored installations, research institutions, and other isotope users. Contaminated areas in the watershed included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pits/trenches, hydro-fracture wells, leak and spill sites, inactive surface structures, and contaminated soil and sediment. Remediation of the watershed in accordance with the requirements specified in the Melton Valley Record of Decision (ROD) for Interim Actions in Melton Valley, which estimated that remedial actions specified in the ROD would occur over a period of 14 years, with completion by FY 2014. Under the terms of the Accelerated Closure Contract between DOE and its contractor, Bechtel Jacobs Company, LLC, the work was subdivided into 14 separate sub-projects which were completed between August 2001 and September 2006, 8 years ahead of the original schedule. (authors)

  13. Driving laser pulse evolution in a hollow channel laser wakefield accelerator

    E-Print Network [OSTI]

    Wurtele, Jonathan

    of different methods for laser accel- eration and summaries of experimental and theoretical progress can particle in the LWFA to about one Rayleigh range. Laser guiding in plasma channels has been proposed

  14. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    SciTech Connect (OSTI)

    Sharma, B. S., E-mail: bs-phy@yahoo.com; Jain, Archana [Government College Kota, Kota 324001 (India)] [Government College Kota, Kota 324001 (India); Jaiman, N. K. [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India)] [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India); Gupta, D. N. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)] [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jang, D. G.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)] [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kulagin, V. V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)] [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2014-02-15T23:59:59.000Z

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (?10{sup 19}?W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  15. Two Dimensional Simulation Analysis of the First Sections of a Standing-Wave Free-Electron Laser Two-Beam Accelerator

    E-Print Network [OSTI]

    Wang, C.

    2008-01-01T23:59:59.000Z

    Standing-wave free-electron laser two-beam accelerator,"of a standing-wave free electron laser," Nucl. Instr. anda standing-wave free-electron laser," Proc. SPIE Conference

  16. Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTION A.Model Verification andModeling Laser

  17. Strong Field Physics: Probing Critical Acceleration and Inertia with Laser Pulses and Quark-Gluon Plasma

    E-Print Network [OSTI]

    Lance Labun; Jan Rafelski

    2010-10-10T23:59:59.000Z

    Understanding physics in domains of critical (quantum unstable) fields requires investigating the classical and quantum particle dynamics at the critical acceleration, $\\dot u \\to 1$ [natural units]. This regime of physics remains today experimentally practically untested. Particle and light collision experiments reaching critical acceleration are becoming feasible, in particular applying available high intensity laser technology. Ultra-relativistic heavy ion collisions breach the critical domain but are complicated by the presence of much other physics. The infamous problem of radiation reaction and the challenging environment of quantum vacuum instability arising in the high field domain signal the need for a thorough redress of the present theoretical framework.

  18. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect (OSTI)

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Litzenberg, D. W. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2013-09-30T23:59:59.000Z

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup ?15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1?m) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  19. Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators

    SciTech Connect (OSTI)

    Osterhoff, Jens; Sokollik, Thomas; Nakamura, Kei; Bakeman, Michael; Weingartner, R; Gonsalves, Anthony; Shiraishi, Satomi; Lin, Chen; vanTilborg, Jeroen; Geddes, Cameron; Schroeder, Carl; Esarey, Eric; Toth, Csaba; DeSantis, Stefano; Byrd, John; Gruner, F; Leemans, Wim

    2011-07-20T23:59:59.000Z

    The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.

  20. Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators

    SciTech Connect (OSTI)

    Brijesh, P.; Thaury, C.; Phuoc, K. T.; Corde, S.; Lambert, G.; Malka, V. [Laboratoire d'Optique Appliquee, ENSTA ParisTech, CNRS UMR7639, Ecole Polytechnique, 91761 Palaiseau (France); Mangles, S. P. D.; Bloom, M.; Kneip, S. [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2012-06-15T23:59:59.000Z

    A density perturbation in an underdense plasma was used to improve the quality of electron bunches produced in the laser-plasma wakefield acceleration scheme. Quasi-monoenergetic electrons were generated by controlled injection in the longitudinal density gradients of the density perturbation. By tuning the position of the density perturbation along the laser propagation axis, a fine control of the electron energy from a mean value of 60 MeV to 120 MeV has been demonstrated with a relative energy-spread of 15 {+-} 3.6%, divergence of 4 {+-} 0.8 mrad, and charge of 6 {+-} 1.8 pC.

  1. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOE Patents [OSTI]

    Zhang, Shukui; Wilson, Guy

    2014-09-23T23:59:59.000Z

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  2. Approach towards quasi-monoenergetic laser ion acceleration with doped target

    E-Print Network [OSTI]

    Morita, Toshimasa

    2014-01-01T23:59:59.000Z

    Ion acceleration by using a laser pulse irradiating a disk target which includes hydrogen and carbon is examined using three-dimensional particle-in-cell simulations. It is shown that over $200$ MeV protons can be generated by using a $620$TW, $5\\times10^{21}$ W/cm$^2$ laser pulse. In a polyethylene (CH$_2$) target, protons and carbon ions separate and form two layers by radiation pressure acceleration. A strong Coulomb explosion in this situation and Coulomb repulsion between each layer generates high energy protons. A doped target, low density hydrogen within a carbon disk, becomes a double layer target which is comprised of a thin and low density hydrogen disk on the surface of a high-$Z$ atom layer. This then generates a quasi-monoenergetic proton beam.

  3. Laser-driven plasma-based accelerators: Wakefield excitation, channel guiding, and laser triggered particle injection*

    E-Print Network [OSTI]

    Wurtele, Jonathan

    particle injection* W. P. Leemans,,a) P. Volfbeyn, K. Z. Guo, and S. Chattopadhyay Ernest Orlando Lawrence-based injection of particles into a plasma wake, are presented. Details of the experimental program at Lawrence for the accel- erating fields as well as guiding for the laser, and a suitable laser driver. The most

  4. Effects of radiation reaction in relativistic laser acceleration

    SciTech Connect (OSTI)

    Hadad, Y.; Labun, L.; Rafelski, J.; Elkina, N.; Klier, C.; Ruhl, H. [Departments of Physics and Mathematics, University of Arizona, Tucson, Arizona, 85721 (United States); Department fuer Physik der Ludwig-Maximillians-Universitaet, Theresienstrasse 37A, 80333 Muenchen (Germany)

    2010-11-01T23:59:59.000Z

    The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction-dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counterpropagating electromagnetic wave is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.

  5. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility

    E-Print Network [OSTI]

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-01-01T23:59:59.000Z

    A445 (2000) 59. [13] W. M. Fawley, LBNL Technical Report No.LBNL-49625 (2002); see also paper MOPPH073, theseLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY ? C. B.

  6. #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you wantJoin us for|IdahotheWhat is the FOIARenewable Energy1pm EST |

  7. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect (OSTI)

    Luo, W. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China) [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Zhuo, H. B.; Yu, T. P. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China) [College of Science, National University of Defense Technology, Changsha 410073 (China); Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Song, Y. M.; Zhu, Z. C. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China)] [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, M. Y. [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2013-10-21T23:59:59.000Z

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ?200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ?160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ?5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  8. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas emissions associated with current solar thermal energy heating and cooling methods. According to ThermaSun President Larry Mapes, about 50 prototype units are...

  9. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduce need for animalCENTERAboutA

  10. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome Financial OpportunitiesResearch

  11. Detailed dynamics of electron beams self-trapped and accelerated in a self-modulated laser wakefield

    E-Print Network [OSTI]

    Umstadter, Donald

    . These features are explained by analysis and test particle simulations of electron dynamics during acceleration wave,1 such as the plasma wakefield accel- erator, the plasma beat-wave accelerator, the Laser Wake the linear dephasing limit, and explained it, using Particle-In-Cell PIC simulations, as a result

  12. Ion acceleration with ultra-thin foils using elliptically polarized laser pulses This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ion acceleration with ultra-thin foils using elliptically polarized laser pulses This article has of Physics Ion acceleration with ultra-thin foils using elliptically polarized laser pulses S G Rykovanov1 of ions with ultra-high intensity laser pulses has attracted broad interest over the last decade. The high

  13. Passive tailoring of laser-accelerated ion beam cut-off energy by using double foil assembly

    SciTech Connect (OSTI)

    Chen, S. N., E-mail: sophia.chen@polytechnique.edu; Brambrink, E.; Mancic, A.; Romagnani, L.; Audebert, P.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Robinson, A. P. L. [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)] [Central Laser Facility, STFC Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Antici, P. [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France) [Laboratoire pour l'Utilisation des Lasers Intenses, UMR 7605 CNRS-CEA-École Polytechnique-Université Paris VI, Palaiseau (France); Dipartimento SBAI, Università di Roma « La Sapienza », Via Scarpa 14-16, 00165 Roma (Italy); INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada); D'Humières, E. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States) [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); University of Bordeaux—CNRS—CEA, CELIA, UMR5107, 33405 Talence (France); Gaillard, S. [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States)] [Physics Department, MS-220, University of Nevada, Reno, Nevada 89557 (United States); Grismayer, T.; Mora, P. [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France)] [Centre de Physique Théorique, CNRS-Ecole Polytechnique, 91128 Palaiseau (France); Pépin, H. [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)] [INRS-Énergie et Matériaux, 1650 bd. L. Boulet, Varennes, J3X1S2 Québec (Canada)

    2014-02-15T23:59:59.000Z

    A double foil assembly is shown to be effective in tailoring the maximum energy produced by a laser-accelerated proton beam. The measurements compare favorably with adiabatic expansion simulations, and particle-in-cell simulations. The arrangement proposed here offers for some applications a simple and passive way to utilize simultaneously highest irradiance lasers that have best laser-to-ion conversion efficiency while avoiding the production of undesired high-energy ions.

  14. Automated detection and analysis of particle beams in laser-plasma accelerator simulations

    SciTech Connect (OSTI)

    Ushizima, Daniela Mayumi; Geddes, C.G.; Cormier-Michel, E.; Bethel, E. Wes; Jacobsen, J.; Prabhat, ,; R.ubel, O.; Weber, G,; Hamann, B.

    2010-05-21T23:59:59.000Z

    Numerical simulations of laser-plasma wakefield (particle) accelerators model the acceleration of electrons trapped in plasma oscillations (wakes) left behind when an intense laser pulse propagates through the plasma. The goal of these simulations is to better understand the process involved in plasma wake generation and how electrons are trapped and accelerated by the wake. Understanding of such accelerators, and their development, offer high accelerating gradients, potentially reducing size and cost of new accelerators. One operating regime of interest is where a trapped subset of electrons loads the wake and forms an isolated group of accelerated particles with low spread in momentum and position, desirable characteristics for many applications. The electrons trapped in the wake may be accelerated to high energies, the plasma gradient in the wake reaching up to a gigaelectronvolt per centimeter. High-energy electron accelerators power intense X-ray radiation to terahertz sources, and are used in many applications including medical radiotherapy and imaging. To extract information from the simulation about the quality of the beam, a typical approach is to examine plots of the entire dataset, visually determining the adequate parameters necessary to select a subset of particles, which is then further analyzed. This procedure requires laborious examination of massive data sets over many time steps using several plots, a routine that is unfeasible for large data collections. Demand for automated analysis is growing along with the volume and size of simulations. Current 2D LWFA simulation datasets are typically between 1GB and 100GB in size, but simulations in 3D are of the order of TBs. The increase in the number of datasets and dataset sizes leads to a need for automatic routines to recognize particle patterns as particle bunches (beam of electrons) for subsequent analysis. Because of the growth in dataset size, the application of machine learning techniques for scientific data mining is increasingly considered. In plasma simulations, Bagherjeiran et al. presented a comprehensive report on applying graph-based techniques for orbit classification. They used the KAM classifier to label points and components in single and multiple orbits. Love et al. conducted an image space analysis of coherent structures in plasma simulations. They used a number of segmentation and region-growing techniques to isolate regions of interest in orbit plots. Both approaches analyzed particle accelerator data, targeting the system dynamics in terms of particle orbits. However, they did not address particle dynamics as a function of time or inspected the behavior of bunches of particles. Ruebel et al. addressed the visual analysis of massive laser wakefield acceleration (LWFA) simulation data using interactive procedures to query the data. Sophisticated visualization tools were provided to inspect the data manually. Ruebel et al. have integrated these tools to the visualization and analysis system VisIt, in addition to utilizing efficient data management based on HDF5, H5Part, and the index/query tool FastBit. In Ruebel et al. proposed automatic beam path analysis using a suite of methods to classify particles in simulation data and to analyze their temporal evolution. To enable researchers to accurately define particle beams, the method computes a set of measures based on the path of particles relative to the distance of the particles to a beam. To achieve good performance, this framework uses an analysis pipeline designed to quickly reduce the amount of data that needs to be considered in the actual path distance computation. As part of this process, region-growing methods are utilized to detect particle bunches at single time steps. Efficient data reduction is essential to enable automated analysis of large data sets as described in the next section, where data reduction methods are steered to the particular requirements of our clustering analysis. Previously, we have described the application of a set of algorithms to automate the data analys

  15. Quasimonoenergetic collimated electron beams from a laser wakefield acceleration in low density pure nitrogen

    SciTech Connect (OSTI)

    Tao, Mengze [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Hafz, Nasr A. M., E-mail: nasr@sjtu.edu.cn; Li, Song; Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Sheng, Zhengming; Zhang, Jie, E-mail: jzhang1@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Liming [Bejing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15T23:59:59.000Z

    A laser wakefield acceleration (LWFA) experiment is performed using 30 TW, 30 fs, and 800?nm laser pulses, focused onto pure nitrogen plasma having relatively low densities in the range of 0.8×10{sup 18}?cm{sup ?3} to 2.7×10{sup 18}?cm{sup ?3}. Electron beams having a low divergence of ?3??mrad (full-width at half-maximum) and quasi-monoenergetic peak energies of ?105??MeV are achieved over 4-mm interaction length. The total electron beam charge reached to 2 nC, however, only 1%–2% of this (tens of pC) had energies >35?MeV. We tried different conditions to optimize the electron beam acceleration; our experiment verifies that lower nitrogen plasma densities are generating electron beams with high quality in terms of divergence, charge, pointing stability, and maximum energy. In addition, if LWFA is to be widely used as a basis for compact particle accelerators in the future, therefore, from the economic and safety points of view we propose the use of nitrogen gas rather than helium or hydrogen.

  16. Accelerating Protons to Therapeutic Energies with Ultra-Intense Ultra-Clean and Ultra-Short Laser Pulses

    E-Print Network [OSTI]

    Bulanov, Stepan S; Bychenkov, Valery Yu; Chvykov, Vladimir; Kalinchenko, Galina; Matsuoka, Takeshi; Rousseau, Pascal; Reed, Stephen; Yanovsky, Victor; Krushelnick, Karl; Litzenberg, Dale William; Maksimchuk, Anatoly

    2008-01-01T23:59:59.000Z

    Proton acceleration by high-intensity laser pulses from ultra-thin foils for hadron therapy is discussed. With the improvement of the laser intensity contrast ratio to 10-11 achieved on Hercules laser at the University of Michigan, it became possible to attain laser-solid interactions at intensities up to 1022 W/cm2 that allows an efficient regime of laser-driven ion acceleration from submicron foils. Particle-In-Cell (PIC) computer simulations of proton acceleration in the Directed Coulomb explosion regime from ultra-thin double-layer (heavy ions / light ions) foils of different thicknesses were performed under the anticipated experimental conditions for Hercules laser with pulse energies from 3 to 15 J, pulse duration of 30 fs at full width half maximum (FWHM), focused to a spot size of 0.8 microns (FWHM). In this regime heavy ions expand predominantly in the direction of laser pulse propagation enhancing the longitudinal charge separation electric field that accelerates light ions. The dependence of the ma...

  17. 1.1 Simulations of a Free-Electron Laser Oscillator at Jefferson Lab Lasing in the Vacuum Ultraviolet

    SciTech Connect (OSTI)

    Shinn, Michelle D. [JLAB; Benson, Stephen V. [JLAB

    2013-04-01T23:59:59.000Z

    The UVFEL at Jefferson Lab has provided a 10 eV photon beam for users by outcoupling the coherent third harmonic of the UVFEL operated at 372 nm. This can provide up to tens of milliwatts of power in the VUV. Operation of the FEL at the fundamental might enhance this power by up to a factor of 1000. With minor upgrades to the accelerator now underway and a new undulator proposed by Calabazas Creek Research, Inc. we show that we can lase in the fundamental at 124 nm. The predicted output is higher by four orders of magnitude on an average power basis and six orders of magnitude on a peak fluence basis than the Advanced Light Source at Lawrence Berkeley National Laboratory.

  18. Backward-Propagating MeV Electrons in Ultra-Intense Laser Interactions: Standing Wave Acceleration and Coupling to the Reflected Laser Pulse

    E-Print Network [OSTI]

    Orban, Chris; Chowdhury, Enam D; Nees, John A; Frische, Kyle; Roquemore, W Melvyn

    2014-01-01T23:59:59.000Z

    Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense ($\\sim10^{18}$ W/cm$^2$), 30 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-In-Cell (PIC) simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave "injects" electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standing wave acceleration: a highly relativistic case ($a_0~\\geq~1$), and a moderately relativistic case ($a_0~\\sim~0.5$) which operates over a larger fraction of the laser period. Previous work by other groups investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this ...

  19. Application of High-performance Visual Analysis Methods to Laser Wakefield Particle Acceleration Data

    SciTech Connect (OSTI)

    Rubel, Oliver; Prabhat, Mr.; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

    2008-08-28T23:59:59.000Z

    Our work combines and extends techniques from high-performance scientific data management and visualization to enable scientific researchers to gain insight from extremely large, complex, time-varying laser wakefield particle accelerator simulation data. We extend histogram-based parallel coordinates for use in visual information display as well as an interface for guiding and performing data mining operations, which are based upon multi-dimensional and temporal thresholding and data subsetting operations. To achieve very high performance on parallel computing platforms, we leverage FastBit, a state-of-the-art index/query technology, to accelerate data mining and multi-dimensional histogram computation. We show how these techniques are used in practice by scientific researchers to identify, visualize and analyze a particle beam in a large, time-varying dataset.

  20. Standing-Wave Free-Electron Laser Two-Beam Accelerator

    SciTech Connect (OSTI)

    Sessler, Andrew M.; Whittum, D.H.; Wurtele, Jonathan S.; Sharp, W.M.; Makowski, M.A.

    1991-02-01T23:59:59.000Z

    A free-electron laser (FEL) two-beam accelerator (TBA) is proposed, in which the FEL interaction takes place in a series of drive cavities, rather than in a waveguide. Each drive cavity is 'beat-coupled' to a section of the accelerating structure. This standing-wave TBA is investigated theoretically and numerically, with analyses included of microwave extraction, growth of the FEL signal through saturation, equilibrium longitudinal beam dynamics following saturation, and sensitivity of the microwave amplitude and phase to errors in current and energy. It is found that phase errors due to current jitter are substantially reduced from previous versions of the TBA. Analytic scalings and numerical simulations are used to obtain an illustrative TBA parameter set.

  1. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    SciTech Connect (OSTI)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30T23:59:59.000Z

    Narrow band undulator radiation tuneable over the wavelength range of 150–260?nm has been produced by short electron bunches from a 2?mm long laser plasma wakefield accelerator based on a 20?TW femtosecond laser system. The number of photons measured is up to 9?×?10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1?×?10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130?MeV with the radiation pulse duration in the range of 50–100 fs.

  2. The slingshot effect: a possible new laser-driven high energy acceleration mechanism for electrons

    E-Print Network [OSTI]

    Gaetano Fiore; Renato Fedele; Umberto de Angelis

    2014-11-14T23:59:59.000Z

    We show that under appropriate conditions the impact of a very short and intense laser pulse onto a plasma causes the expulsion of surface electrons with high energy in the direction opposite to the one of propagation of the pulse. This is due to the combined effects of the ponderomotive force and the huge longitudinal field arising from charge separation ("slingshot effect"). The effect should also be present with other states of matter, provided the pulse is sufficiently intense to locally cause complete ionization. An experimental test seems to be feasible and, if confirmed, would provide a new extraction and acceleration mechanism for electrons, alternative to traditional radio-frequency-based or Laser-Wake-Field ones.

  3. Measurements of the critical power for self-injection of electrons in a laser wakefield accelerator

    SciTech Connect (OSTI)

    Froula, D H; Clayton, C E; Doppner, T; Fonseca, R A; Marsh, K A; Barty, C J; Divol, L; Glenzer, S H; Joshi, C; Lu, W; Martins, S F; Michel, P; Mori, W; Palastro, J P; Pollock, B B; Pak, A; Ralph, J E; Ross, J S; Siders, C; Silva, L O; Wang, T

    2009-06-02T23:59:59.000Z

    A laser wakefield acceleration study has been performed in the matched, self-guided, blow-out regime where a 10 J, 60 fs laser produced 720 {+-} 50 MeV quasi-monoenergetic electrons with a divergence of {Delta}{theta} = 2.85 {+-} 0.15 mRad. While maintaining a nearly constant plasma density (3 x 10{sup 18} cm{sup -3}), a linear electron energy gain was measured from 100 MeV to 700 MeV when the plasma length was scaled from 3 mm to 8 mm. Absolute charge measurements indicate that self-injection occurs when P/P{sub cr} > 4 and saturates around 100 pC for P/P{sub cr} > 12. The results are compared with both analytical scalings and full 3D particle-in-cell simulations.

  4. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect (OSTI)

    Jin, Q. Y.; Li, Zh. M.; Liu, W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-07-15T23:59:59.000Z

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  5. Lasers Used to Make First Boron-Nitride Nanotube Yarn | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaserSecurityLaserofLasers

  6. Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6|Lab,

  7. Control of Laser Plasma Based Accelerators up to 1 GeV

    SciTech Connect (OSTI)

    Nakamura, Kei

    2007-12-03T23:59:59.000Z

    This dissertation documents the development of a broadband electron spectrometer (ESM) for GeV class Laser Wakefield Accelerators (LWFA), the production of high quality GeV electron beams (e-beams) for the first time in a LWFA by using a capillary discharge guide (CDG), and a statistical analysis of CDG-LWFAs. An ESM specialized for CDG-LWFAs with an unprecedented wide momentum acceptance, from 0.01 to 1.1 GeV in a single shot, has been developed. Simultaneous measurement of e-beam spectra and output laser properties as well as a large angular acceptance (> {+-} 10 mrad) were realized by employing a slitless scheme. A scintillating screen (LANEX Fast back, LANEX-FB)--camera system allowed faster than 1 Hz operation and evaluation of the spatial properties of e-beams. The design provided sufficient resolution for the whole range of the ESM (below 5% for beams with 2 mrad divergence). The calibration between light yield from LANEX-FB and total charge, and a study on the electron energy dependence (0.071 to 1.23 GeV) of LANEX-FB were performed at the Advanced light source (ALS), Lawrence Berkeley National Laboratory (LBNL). Using this calibration data, the developed ESM provided a charge measurement as well. The production of high quality electron beams up to 1 GeV from a centimeter-scale accelerator was demonstrated. The experiment used a 310 {micro}m diameter gas-filled capillary discharge waveguide that channeled relativistically-intense laser pulses (42 TW, 4.5 x 10{sup 18} W/cm{sup 2}) over 3.3 centimeters of sufficiently low density ({approx_equal} 4.3 x 10{sup 18}/cm{sup 3}) plasma. Also demonstrated was stable self-injection and acceleration at a beam energy of {approx_equal} 0.5 GeV by using a 225 {micro}m diameter capillary. Relativistically-intense laser pulses (12 TW, 1.3 x 10{sup 18}W/cm{sup 2}) were guided over 3.3 centimeters of low density ({approx_equal} 3.5 x 10{sup 18}/cm{sup 3}) plasma in this experiment. A statistical analysis of the CDG-LWFAs performance was carried out. By taking advantage of the high repetition rate experimental system, several thousands of shots were taken in a broad range of the laser and plasma parameters. An analysis program was developed to sort and select the data by specified parameters, and then to evaluate performance statistically. The analysis suggested that the generation of GeV-level beams comes from a highly unstable and regime. By having the plasma density slightly above the threshold density for self injection, (1) the longest dephasing length possible was provided, which led to the generation of high energy e-beams, and (2) the number of electrons injected into the wakefield was kept small, which led to the generation of high quality (low energy spread) e-beams by minimizing the beam loading effect on the wake. The analysis of the stable half-GeV beam regime showed the requirements for stable self injection and acceleration. A small change of discharge delay t{sub dsc}, and input energy E{sub in}, significantly affected performance. The statistical analysis provided information for future optimization, and suggested possible schemes for improvement of the stability and higher quality beam generation. A CDG-LWFA is envisioned as a construction block for the next generation accelerator, enabling significant cost and size reductions.

  8. Monoenergetic acceleration of a target foil by circularly polarized laser pulse in RPA regime without thermal heating

    SciTech Connect (OSTI)

    Khudik, V.; Yi, S. A.; Siemon, C.; Shvets, G. [Department of Physics and Institute for Fusion Studies, University of Texas at Austin, One University Station C1500, Austin, Texas 78712 (United States)

    2012-12-21T23:59:59.000Z

    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationary: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.

  9. Single-Shot Femtosecond Electron Diffraction with Laser-Accelerated Electrons: Experimental Demonstration of Electron Pulse Compression

    SciTech Connect (OSTI)

    Tokita, Shigeki; Hashida, Masaki; Inoue, Shunsuke; Nishoji, Toshihiko; Otani, Kazuto; Sakabe, Shuji [Advanced Research Center for Beam Science, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan and Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-7501 (Japan)

    2010-11-19T23:59:59.000Z

    We report the first experimental demonstration of longitudinal compression of laser-accelerated electron pulses. Accelerated by a femtosecond laser pulse with an intensity of 10{sup 18} W/cm{sup 2}, an electron pulse with an energy of around 350 keV and a relative momentum spread of about 10{sup -2} was compressed to a 500-fs pulse at a distance of about 50 cm from the electron source by using a magnetic pulse compressor. This pulse was used to generate a clear diffraction pattern of a gold crystal in a single shot. This method solves the space-charge problem in ultrafast electron diffraction.

  10. Dissertation Lab Dissertation Lab (D-Lab)

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab TLB 5/1/2012 Dissertation Lab (D-Lab) May 29-May 31, 2012 Carlisle Suite, 2nd Floor University Center What is Dissertation Lab (D-Lab)? The Office of Graduate Studies Student Services offers D-Lab to help students progress through the difficult process of writing their dissertation

  11. Ultra-high-contrast laser acceleration of relativistic electrons in solid targets

    E-Print Network [OSTI]

    Higginson, Drew Pitney

    2013-01-01T23:59:59.000Z

    Intensities with Short-Pulse Lasers 1.2 Inertial Confinementhigh-power, short laser pulse, D. . . . . . . . . . Figurea high-intensity short-pulse laser to produce relativistic

  12. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    SciTech Connect (OSTI)

    van Tilborg, Jeroen; Schroeder, Carl; Filip, Catalin; Toth, Csaba; Geddes, Cameron; Fubiani, Gwenael; Esarey, Eric; Leemans, Wim

    2011-06-17T23:59:59.000Z

    Experimental results are reported from two measurement techniques (semiconductor switching and electro-optic sampling) that allow temporal characterization of electron bunches produced by a laser-driven plasma-based accelerator. As femtosecond electron bunches exit the plasma-vacuum interface, coherent transition radiation (at THz frequencies) is emitted. Measuring the properties of this radiation allows characterization of the electron bunches. Theoretical work on the emission mechanism is presented, including a model that calculates the THz wave form from a given bunch profile. It is found that the spectrum of the THz pulse is coherent up to the 200 {micro}m thick crystal (ZnTe) detection limit of 4 THz, which corresponds to the production of sub-50 fs (rms) electron bunch structure. The measurements demonstrate both the shot-to-shot stability of bunch parameters that are critical to THz emission (such as total charge and bunch length), as well as femtosecond synchronization among bunch, THz pulse, and laser beam.

  13. STABLE, MONOENERGETIC 50-400 MeV ELECTRON BEAMS WITH A MATCHED LASER WAKEFIELD ACCELERATOR

    E-Print Network [OSTI]

    Umstadter, Donald

    progress in laser-based particle accelera- tors [1]. Early breakthroughs in laser-based electron accel

  14. Control of Laser Plasma Based Accelerators up to 1 GeV

    E-Print Network [OSTI]

    Nakamura, Kei

    2008-01-01T23:59:59.000Z

    Ultrashort laser pulses and ultra- short electron bunchesinteraction of an intense ultra-short laser pulse with a gas

  15. A Wire Position Monitor System for the 1.3 FHZ Tesla-Style Cryomodule at the Fermilab New-Muon-Lab Accelerator

    SciTech Connect (OSTI)

    Eddy, N.; Fellenz, B.; Prieto, P.; Semenov, A.; Voy, D.C.; Wendt, M.; /Fermilab

    2011-08-17T23:59:59.000Z

    The first cryomodule for the beam test facility at the Fermilab New-Muon-Lab building is currently under RF commissioning. Among other diagnostics systems, the transverse position of the helium gas return pipe with the connected 1.3 GHz SRF accelerating cavities is measured along the {approx}15 m long module using a stretched-wire position monitoring system. An overview of the wire position monitor system technology is given, along with preliminary results taken at the initial module cooldown, and during further testing. As the measurement system offers a high resolution, we also discuss options for use as a vibration detector. An electron beam test facility, based on superconducting RF (SRF) TESLA-style cryomodules is currently under construction at the Fermilab New-Muon-Lab (NML) building. The first, so-called type III+, cryomodule (CM-1), equipped with eight 1.3 GHz nine-cell accelerating cavities was recently cooled down to 2 K, and is currently under RF conditioning. The transverse alignment of the cavity string within the cryomodule is crucial for minimizing transverse kick and beam break-up effects, generated by the high-order dipole modes of misaligned accelerating structures. An optimum alignment can only be guaranteed during the assembly of the cavity string, i.e. at room temperatures. The final position of the cavities after cooldown is uncontrollable, and therefore unknown. A wire position monitoring system (WPM) can help to understand the transverse motion of the cavities during cooldown, their final location and the long term position stability after cryo-temperatures are settled, as well as the position reproducibility for several cold-warm cycles. It also may serve as vibration sensor, as the wire acts as a high-Q resonant detector for mechanical vibrations in the low-audio frequency range. The WPM system consists out of a stretched-wire position detection system, provided with help of INFN-Milano and DESY Hamburg, and RF generation and read-out electronics, developed at Fermilab.

  16. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    SciTech Connect (OSTI)

    Sahai, Aakash A., E-mail: aakash.sahai@gmail.com [Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-15T23:59:59.000Z

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-? traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  17. Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  18. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    E-Print Network [OSTI]

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01T23:59:59.000Z

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  19. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser TwinklesAccelerator

  20. Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate

    SciTech Connect (OSTI)

    He, Z.-H.; Thomas, A. G. R.; Nees, J. A.; Hou, B.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48106-2099 (United States); Beaurepaire, B.; Malka, V.; Faure, J. [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)] [Laboratoire d'Optique Appliquee, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2013-02-11T23:59:59.000Z

    We show that electron bunches in the 50-100 keV range can be produced from a laser wakefield accelerator using 10 mJ, 35 fs laser pulses operating at 0.5 kHz. It is shown that using a solenoid magnetic lens, the electron bunch distribution can be shaped. The resulting transverse and longitudinal coherence is suitable for producing diffraction images from a polycrystalline 10 nm aluminum foil. The high repetition rate, the stability of the electron source, and the fact that its uncorrelated bunch duration is below 100 fs make this approach promising for the development of sub-100 fs ultrafast electron diffraction experiments.

  1. Efficient Modeling of Laser-Plasma Accelerators with INF&RNO

    E-Print Network [OSTI]

    Benedetti, C.

    2011-01-01T23:59:59.000Z

    the interaction of a short laser pulse with an underdensethe fact that the (short) laser pulse is not monochromatic.LPA) [1,2], where a short and intense laser pulse interacts

  2. Shock Wave Acceleration of Monoenergetic Protons using a Multi-Terawatt CO2 Laser

    E-Print Network [OSTI]

    Haberberger, Dan

    2012-01-01T23:59:59.000Z

    by an ultra intense and short- pulsed laser in under-denseatoms in strong short-pulse laser ?elds,” Nature, vol. 461,techniques for high-power short-pulse laser- produced heavy-

  3. Control of Laser Plasma Based Accelerators up to 1 GeV

    E-Print Network [OSTI]

    Nakamura, Kei

    2008-01-01T23:59:59.000Z

    self-modulated intense short laser pulse. Phys. Rev. Lett. ,eld generated by a short laser pulse in an underdenseof an intense ultra-short laser pulse with a gas jet.

  4. THE FREE ELECTRON LASER AS A POWER SOURCE FOR A HIGH-GRADIENT ACCELERATING STRUCTURE

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    18-23, 1982 THE FREE ELECTRON LASER AS A POWER SOURCE FOR AAC03-76SF00098 THE FREE ELECTRON LASER AS A POWER SOURCE FORVariable Parameter Free Electron Laser", to be pub 1 i shed

  5. Shock Wave Acceleration of Monoenergetic Protons using a Multi-Terawatt CO2 Laser

    E-Print Network [OSTI]

    Haberberger, Dan

    2012-01-01T23:59:59.000Z

    fusion implosions at ultra-high laser energies,” Science,of ultrashort, ultra-intense laser light by solids andby an ultra intense and short- pulsed laser in under-dense

  6. Control of Laser Plasma Based Accelerators up to 1 GeV

    E-Print Network [OSTI]

    Nakamura, Kei

    2008-01-01T23:59:59.000Z

    phenomena generated by ultra-intense lasers. Science, 300:interaction of an intense ultra-short laser pulse with a gasbe needed for such ultra-intense laser pulses to propagate a

  7. GeV electron beams from a laser-plasma accelerator

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    beams [5]–[7] using an ultra-intense laser pulse focused on5]–[7], an ultra-intense ?10 19 W/cm 2 laser pulse focusedpulse laser driver, making such a source ideal for ultra-

  8. Control of Laser Plasma Based Accelerators up to 1 GeV

    E-Print Network [OSTI]

    Nakamura, Kei

    2008-01-01T23:59:59.000Z

    interaction of an intense ultra-short laser pulse with a gasUltrashort laser pulses and ultra- short electron bunches

  9. THz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    the vacuum chamber by an ultra-intense laser pulse. A secondEO) crystal. An ultra-short NIR laser beam was used to probe

  10. Efficient proton acceleration and focusing by an ultraintense laser interacting with a parabolic double concave target with an extended rear

    SciTech Connect (OSTI)

    Bake, Muhammad Ali; Xie, Bai-Song; Aimidula, Aimierding [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China)] [Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Wang, Hong-Yu [Department of Physics, Anshan Normal University, Anshan 114005 (China) [Department of Physics, Anshan Normal University, Anshan 114005 (China); Shanghai Bright-Tech Information Technology Co. Ltd., Shanghai 200136 (China)

    2013-07-15T23:59:59.000Z

    A new scheme for acceleration and focusing of protons via an improved parabolic double concave target irradiated by an ultraintense laser pulse is proposed. When an intense laser pulse illuminates a concave target, the hot electrons are concentrated on the focal region of the rear cavity and they form a strong space-charge-separation field, which accelerates the protons. For a simple concave target, the proton energy spectrum becomes very broad outside the rear cavity because of transverse divergence of the electromagnetic fields. However, particle-in-cell simulations show that, when the concave target has an extended rear, the hot electrons along the wall surface induce a transverse focusing sheath field, resulting in a clear enhancement of proton focusing, which makes the lower proton energy spread, while, leads to a little reduction of the proton bunch peak energy.

  11. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    SciTech Connect (OSTI)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01T23:59:59.000Z

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  12. Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams

    SciTech Connect (OSTI)

    Schollmeier, M.; Geissel, M.; Sefkow, A. B. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15T23:59:59.000Z

    An improved method to unfold the space-resolved proton energy distribution function of laser-accelerated proton beams using a layered, radiochromic film (RCF) detector stack has been developed. The method takes into account the reduced RCF response near the Bragg peak due to a high linear energy transfer (LET). This LET dependence of the active RCF layer has been measured, and published data have been re-interpreted to find a nonlinear saturation scaling of the RCF response with stopping power. Accounting for the LET effect increased the integrated particle yield by 25% after data unfolding. An iterative, analytical, space-resolved deconvolution of the RCF response functions from the measured dose was developed that does not rely on fitting. After the particle number unfold, three-dimensional interpolation is performed to determine the spatial proton beam distribution for proton energies in-between the RCF data points. Here, image morphing has been implemented as a novel interpolation method that takes into account the energy-dependent, changing beam topology.

  13. Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets

    SciTech Connect (OSTI)

    Vargas, M.; Schumaker, W.; He, Z.-H.; Zhao, Z.; Behm, K.; Chvykov, V.; Hou, B.; Krushelnick, K.; Maksimchuk, A.; Yanovsky, V.; Thomas, A. G. R., E-mail: agrt@umich.edu [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-04-28T23:59:59.000Z

    High intensity, short pulse lasers can be used to accelerate electrons to ultra-relativistic energies via laser wakefield acceleration (LWFA) [T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979)]. Recently, it was shown that separating the injection and acceleration processes into two distinct stages could prove beneficial in obtaining stable, high energy electron beams [Gonsalves et al., Nat. Phys. 7, 862 (2011); Liu et al., Phys. Rev. Lett. 107, 035001 (2011); Pollock et al., Phys. Rev. Lett. 107, 045001 (2011)]. Here, we use a stereolithography based 3D printer to produce two-stage gas targets for LWFA experiments on the HERCULES laser system at the University of Michigan. We demonstrate substantial improvements to the divergence, pointing stability, and energy spread of a laser wakefield accelerated electron beam compared with a single-stage gas cell or gas jet target.

  14. Quasi-monoenergetic ion generation by hole-boring radiation pressure acceleration in inhomogeneous plasmas using tailored laser pulses

    SciTech Connect (OSTI)

    Weng, S. M., E-mail: weng-sm@ile.osaka-u.ac.jp; Murakami, M.; Azechi, H.; Wang, J. W.; Tasoko, N. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)] [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan); Chen, M. [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 20040 (China)] [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and Department of Mathematics, Institute of Natural Sciences, and MOE-LSC, Shanghai Jiao Tong University, Shanghai 20040 (China); Sheng, Z. M. [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)] [Key Laboratory for Laser Plasmas, Department of Physics and Astronomy, Shanghai Jiaotong University, Shanghai 200240, China and SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Mulser, P. [Theoretical Quantum Electronics (TQE), Technische Universität Darmstadt, D-64289 Darmstadt (Germany)] [Theoretical Quantum Electronics (TQE), Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Yu, W.; Shen, B. F. [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)] [Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2014-01-15T23:59:59.000Z

    It is proposed that laser hole-boring at a steady speed in inhomogeneous overdense plasma can be realized by the use of temporally tailored intense laser pulses, producing high-fluence quasi-monoenergetic ion beams. A general temporal profile of such laser pulses is formulated for arbitrary plasma density distribution. As an example, for a precompressed deuterium-tritium fusion target with an exponentially increasing density profile, its matched laser profile for steady hole-boring is given theoretically and verified numerically by particle-in-cell simulations. Furthermore, we propose to achieve fast ignition by the in-situ hole-boring accelerated ions using a tailored laser pulse. Simulations show that the effective energy fluence, conversion efficiency, energy spread, and collimation of the resulting ion beam can be significantly improved as compared to those found with un-tailored laser profiles. For the fusion fuel with an areal density of 1.5?g cm{sup –2}, simulation indicates that it is promising to realize fast ion ignition by using a tailored driver pulse with energy about 65?kJ.

  15. A threshold for laser-driven linear particle acceleration in unbounded vacuum

    E-Print Network [OSTI]

    Wong, Liang Jie

    2011-01-01T23:59:59.000Z

    We hypothesize that a charged particle in unbounded vacuum can be substantially accelerated by a force linear in the electric field of a propagating electromagnetic wave only if the accelerating field is capable of bringing ...

  16. accelerator driven radioactive: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. Sasa; K. Tsujimoto; H. Takano 3 Developments in laser-driven plasma accelerators CERN Preprints Summary: Laser-driven plasma accelerators provide acceleration gradients...

  17. Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator

    E-Print Network [OSTI]

    Vaccarezza, C.

    2010-01-01T23:59:59.000Z

    OPTIMIZATION FOR THE SPARX FEL ACCELERATOR * C. Vaccarezza,and possibly enhance the FEL performance. delivered to theinstability effect for the SPARX FEL. Table 1: Electron beam

  18. Wavefront-sensor-based electron density measurements for laser-plasma accelerators

    E-Print Network [OSTI]

    Plateau, Guillaume

    2010-01-01T23:59:59.000Z

    After imaging the plasma to a primary focus shortly afterfocus was 1 mm above the nozzle. The laser pulse excited a plasma

  19. Proton and Ion Acceleration by BNL Terewatt Picosecond CO2 Laser: New Horizons

    SciTech Connect (OSTI)

    Shkolnikov, Peter

    2014-09-30T23:59:59.000Z

    The report covers pioneering research on proton and ion generation in gas jets by the world's first picosecond TW CO2 laser developed at Brookhaven National Laboratory

  20. Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic

    E-Print Network [OSTI]

    Bakeman, M.S.

    2011-01-01T23:59:59.000Z

    ultra-short, high- peak-current, electron beams are ideal for driving a compact X U V free electron laser (

  1. Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator

    SciTech Connect (OSTI)

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-04-17T23:59:59.000Z

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  2. Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL

    E-Print Network [OSTI]

    Geddes, Cameron GR

    2010-01-01T23:59:59.000Z

    detection applications at LBNL Cameron G.R. Geddes 1 , DavidLeemans 1,4 LOASIS Program, LBNL, 1 Cyclotron Rd MS 71-259,accelerator experiments at LBNL demonstrated narrow energy

  3. Electron energy boosting in laser-wake-field acceleration with external magnetic field Bapprox1 T and laser prepulses

    SciTech Connect (OSTI)

    Hosokai, Tomonao [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Zhidkov, Alexei [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Yamazaki, Atsushi [Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Mizuta, Yoshio [Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Uesaka, Mitsuru [Graduate School of Engineering, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan) and Japan Science and Technology Agency (JST), CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2010-03-22T23:59:59.000Z

    Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in the electron energy distribution.

  4. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator

  5. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The acceleratorWeb

  6. Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction

    SciTech Connect (OSTI)

    Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory

    2012-06-19T23:59:59.000Z

    Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

  7. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    and Experiment”, Free Electron Laser Conference, FEL06,from Shot-Noise, Free Electron Laser Conference FEL08for FERMI@elettra, Free Electron Laser Conference FEL07

  8. Accelerated alpha-decay of 232U isotope achieved by exposure of its aqueous solution with gold nanoparticles to laser radiation

    E-Print Network [OSTI]

    A. V. Simakin; G. A. Shafeev

    2011-12-29T23:59:59.000Z

    Experimental results are presented on laser-induced accelerated alpha-decay of Uranium-232 nuclei under laser exposure of Au nanoparticles in aqueous solutions of its salt. It is demonstrated that the decrease of alpha-activity strongly depends on the peak intensity of the laser radiation in the liquid and is highest at several terawatt per square centimeter. The decrease of alpha-activity of the exposed solutions is accompanied by the deviation of gamma-activities of daughter nuclides of Uranium-232 from their equilibrium values. Possible mechanisms of the laser influence on the alpha-activity are discussed on the basis of the amplification of the electric field of laser wave on metallic nanoparticles.

  9. Electron acceleration by a circularly polarized laser pulse in a plasma K. P. Singha)

    E-Print Network [OSTI]

    Roy, Subrata

    of Physics, Indian Institute of Technology, New Delhi-110016, India Received 12 January 2004; accepted 4 May fields, and the electrons gain much higher energies. The resonance is stronger at higher values and plasma density, and initial electron energy. At higher plasma density, the group velocity of the laser

  10. Laser Micromachining: Advantages of Liquid Environments

    E-Print Network [OSTI]

    Petta, Jason

    Laser Micromachining: Advantages of Liquid Environments Marc J. Palmeri Princeton University Arnold Lab #12;Outline · Motivation ­ Applications of laser micromachining ­ Problems with laser micromachining · How do lasers work? · What is laser micromachining? · Micromachining assembly · Methods

  11. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility

    E-Print Network [OSTI]

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-01-01T23:59:59.000Z

    laser system to focus ultra-short (?30 fs) laser pulses ofdrive laser pulse, enabling pump- probe studies in ultra-used an ultra- intense ?10 19 W/cm 2 laser pulse focused on

  12. Recent Work on Short Pulse Laser-Plasma Accelerators* T. Katsoul~&), W. B. Mor-ic2),C. Decker(2), T. C. Chiou(l), J. S. Wtu-tele(3j, G. Shve&)

    E-Print Network [OSTI]

    Wurtele, Jonathan

    Recent Work on Short Pulse Laser-Plasma Accelerators* T. Katsoul~&), W. B. Mor-ic2),C. Decker(2), TSlKZCf Theory and simulation of short-pulse laser plasma accclcrators is presented. The plasma beat wave advancement of laser technology point to a promising future for short pulse lusor-plasma accclcr

  13. Signatures of the Unruh effect from electrons accelerated by ultra-strong laser fields

    E-Print Network [OSTI]

    Ralf Schützhold; Gernot Schaller; Dietrich Habs

    2006-04-10T23:59:59.000Z

    We calculate the radiation resulting from the Unruh effect for strongly accelerated electrons and show that the photons are created in pairs whose polarizations are maximally entangled. Apart from the photon statistics, this quantum radiation can further be discriminated from the classical (Larmor) radiation via the different spectral and angular distributions. The signatures of the Unruh effect become significant if the external electromagnetic field accelerating the electrons is not too far below the Schwinger limit and might be observable with future facilities. Finally, the corrections due to the birefringent nature of the QED vacuum at such ultra-high fields are discussed. PACS: 04.62.+v, 12.20.Fv, 41.60.-m, 42.25.Lc.

  14. The affect of erbium hydride on the conversion efficience to accelerated protons from ultra-shsort pulse laser irradiated foils

    SciTech Connect (OSTI)

    Offermann, D

    2008-09-04T23:59:59.000Z

    This thesis work explores, experimentally, the potential gains in the conversion efficiency from ultra-intense laser light to proton beams using erbium hydride coatings. For years, it has been known that contaminants at the rear surface of an ultra-intense laser irradiated thin foil will be accelerated to multi-MeV. Inertial Confinement Fusion fast ignition using proton beams as the igniter source requires of about 10{sup 16} protons with an average energy of about 3MeV. This is far more than the 10{sup 12} protons available in the contaminant layer. Target designs must include some form of a hydrogen rich coating that can be made thick enough to support the beam requirements of fast ignition. Work with computer simulations of thin foils suggest the atomic mass of the non-hydrogen atoms in the surface layer has a strong affect on the conversion efficiency to protons. For example, the 167amu erbium atoms will take less energy away from the proton beam than a coating using carbon with a mass of 12amu. A pure hydrogen coating would be ideal, but technologically is not feasible at this time. In the experiments performed for my thesis, ErH{sub 3} coatings on 5 {micro}m gold foils are compared with typical contaminants which are approximately equivalent to CH{sub 1.7}. It will be shown that there was a factor of 1.25 {+-} 0.19 improvement in the conversion efficiency for protons above 3MeV using erbium hydride using the Callisto laser. Callisto is a 10J per pulse, 800nm wavelength laser with a pulse duration of 200fs and can be focused to a peak intensity of about 5 x 10{sup 19}W/cm{sup 2}. The total number of protons from either target type was on the order of 10{sup 10}. Furthermore, the same experiment was performed on the Titan laser, which has a 500fs pulse duration, 150J of energy and can be focused to about 3 x 10{sup 20} W/cm{sup 2}. In this experiment 10{sup 12} protons were seen from both erbium hydride and contaminants on 14 {micro} m gold foils. Significant improvements were also observed but possibly because of the depletion of hydrogen in the contaminant layer case.

  15. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode

    E-Print Network [OSTI]

    C. Abellan; W. Amaya; M. Jofre; M. Curty; A. Acin; J. Capmany; V. Pruneri; M. W. Mitchell

    2014-01-22T23:59:59.000Z

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  16. Ultra-low emittance beam generation using two-color ionization injection in a CO2 laser-driven plasma accelerator

    E-Print Network [OSTI]

    Schroeder, C B; Bulanov, S S; Chen, M; Esarey, E; Geddes, C G R; Vay, J -L; Yu, L -L; Leemans, W P

    2015-01-01T23:59:59.000Z

    Ultra-low emittance (tens of nm) beams can be generated in a plasma accelerator using ionization injection of electrons into a wakefield. An all-optical method of beam generation uses two laser pulses of different colors. A long-wavelength drive laser pulse (with a large ponderomotive force and small peak electric field) is used to excite a large wakefield without fully ionizing a gas, and a short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the pump laser, to ionize a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wake. The trapping condition, the ionized electron distribution, and the trapped bunch dynamics are discussed. Expressions for the beam transverse emittance, parallel and orthogonal to the ionization laser polarization, are presented. An example is shown using a 10-micron CO2 laser to drive the wake and a frequency-doubled Ti:Al2...

  17. Jefferson Lab technology, capabilities take center stage in constructi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    semi for its road test. Jefferson Lab technology, capabilities take center stage in construction of portion of DOE's Spallation Neutron Source accelerator By James Schultz January...

  18. Governor to Join Jefferson Lab in Celebrating Completion of Accelerato...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Governor to Join Jefferson Lab in Celebrating Completion of Accelerator Upgrade Construction CEBAF Race Track This aerial photo shows the outline of the racetrack-shaped CEBAF...

  19. Young Physicist from Syracuse University Receives Jefferson Lab...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    designs for two experiments planned to run in the upgraded Continuous Electron Beam Accelerator Facility at Jefferson Lab. The Thesis Prize was established in 1999 by the...

  20. JLab Awarded Vice President's Hammer Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awarded Vice President's Hammer Award The Directives Review Team at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) has been awarded the Vice President's Hammer...

  1. Argonne National Laboratory Partners with Advanced Magnet Lab...

    Energy Savers [EERE]

    next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States. ANL will work with Magnet Lab, Emerson Electric...

  2. Multistage ion acceleration in finite overdense target with a relativistic laser pulse

    SciTech Connect (OSTI)

    Sinha, Ujjwal [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-07-15T23:59:59.000Z

    “Multistage ion acceleration” has been analytically and computationally studied in the relativistic regime. For non-relativistic piston velocities, this phenomenon has been described before. But, as we go to relativistic piston velocities, the non-relativistic results hold no more. We have presented a fully relativistic calculation for second stage ion velocities and energies. To verify our calculations, we performed a fully relativistic 1D3V particle in cell simulations using the code LPIC++. It has been found that the relativistic calculations matched very well with the simulation results. Also, it has been seen that at relativistic piston velocities, the non-relativistic results differed by a significant margin. The feasibility of this process has been further established by three dimensional particle in cell simulations.

  3. Jefferson Lab Contract to be Awarded to Jefferson Science Associates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accelerator technologies. User facilities include the Continuous Electron Beam Accelerator Facility and the Free Electron Laser. Over 2,000 researchers from around...

  4. BEAMS Lab at MIT: Status report

    E-Print Network [OSTI]

    Liberman, Rosa G.

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively ...

  5. Dominant deuteron acceleration with a high-intensity laser for isotope production and neutron generation

    SciTech Connect (OSTI)

    Maksimchuk, A.; Raymond, A.; Yu, F.; Dollar, F.; Willingale, L.; Zulick, C.; Krushelnick, K. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)] [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petrov, G. M.; Davis, J. [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)] [Naval Research Laboratory, Plasma Physics Division, Washington, DC 20375 (United States)

    2013-05-13T23:59:59.000Z

    Experiments on the interaction of an ultra-short pulse laser with heavy-water, ice-covered copper targets, at an intensity of 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, were performed demonstrating the generation of a 'pure' deuteron beam with a divergence of 20 Degree-Sign , maximum energy of 8 MeV, and a total of 3 Multiplication-Sign 10{sup 11} deuterons with energy above 1 MeV-equivalent to a conversion efficiency of 1.5%{+-} 0.2%. Subsequent experiments on irradiation of a {sup 10}B sample with deuterons and neutron generation from d-d reactions in a pitcher-catcher geometry, resulted in the production of {approx}10{sup 6} atoms of the positron emitter {sup 11}C and a neutron flux of (4{+-}1) Multiplication-Sign 10{sup 5} neutrons/sterad, respectively.

  6. A new method of measuring the poloidal magnetic and radial electric fields in a tokamak using a laser-accelerated ion-beam trace probe

    SciTech Connect (OSTI)

    Yang, X. Y.; Chen, Y. H.; Lin, C.; Wang, X. G.; Xiao, C. J., E-mail: cjxiao@pku.edu.cn [State Key Labaratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041 (China)

    2014-11-15T23:59:59.000Z

    Both the poloidal magnetic field (B{sub p}) and radial electric field (E{sub r}) are significant in magnetic confinement devices. In this paper, a new method was proposed to diagnose both B{sub p} and E{sub r} at the same time, which was named Laser-accelerated Ion-beam Trace Probe (LITP). This method based on the laser-accelerated ion beam, which has three properties: large energy spread, short pulse lengths, and multiple charge states. LITP can provide the 1D profiles, or 2D images of both B{sub p} and E{sub r}. In this paper, we present the basic principle and some preliminary theoretical results.

  7. Review Talk on QCD Processes in Nuclear Matter at Jefferson Lab

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    Matter at Jefferson Lab 2 #12;The Continuous Electron Beam Accelerator Facility at JLab View of site in Newport News, Va. Schematic of accelerator and components. Superconducting Electron Accelerator (338 Collaboration University of Richmond · Introduction · Jefferson Lab: Accelerator and End Stations. · Overview

  8. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30T23:59:59.000Z

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  9. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  10. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  11. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechLab Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element TechLab...

  12. Jefferson Lab Leadership Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare

  13. X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator

    SciTech Connect (OSTI)

    Kneip, S. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom); Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); McGuffey, C.; Dollar, F.; Chvykov, V.; Kalintchenko, G.; Krushelnick, K.; Maksimchuk, A.; Mangles, S. P. D.; Matsuoka, T.; Schumaker, W.; Thomas, A. G. R.; Yanovsky, V. [Center for Ultrafast Optical Science, University of Michigan, Ann Arbor 48109 (United States); Bloom, M. S.; Najmudin, Z.; Palmer, C. A. J.; Schreiber, J. [Blackett Laboratory, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-08-29T23:59:59.000Z

    We show that x-rays from a recently demonstrated table top source of bright, ultrafast, coherent synchrotron radiation [Kneip et al., Nat. Phys. 6, 980 (2010)] can be applied to phase contrast imaging of biological specimens. Our scheme is based on focusing a high power short pulse laser in a tenuous gas jet, setting up a plasma wakefield accelerator that accelerates and wiggles electrons analogously to a conventional synchrotron, but on the centimeter rather than tens of meter scale. We use the scheme to record absorption and phase contrast images of a tetra fish, damselfly and yellow jacket, in particular highlighting the contrast enhancement achievable with the simple propagation technique of phase contrast imaging. Coherence and ultrafast pulse duration will allow for the study of various aspects of biomechanics.

  14. Design of a superconducting linear accelerator for an Infrared Free Electron Laser of the proposed Chemical Dynamics Research Laboratory at LBL

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Byrns, R.; Donahue, R.; Edighoffer, J.; Gough, R.; Hoyer, E.; Kim, K.J.; Leemans, W.; Staples, J.; Taylor, B.; Xie, M.

    1992-08-01T23:59:59.000Z

    An accelerator complex has recently been designed at LBL as part of an Infrared Free Electron Laser facility in support of a proposed Chemical Dynamics Research Laboratory. We will outline the choice of parameters and design philosophy, which are strongly driven by the demand of reliable and spectrally stable operation of the FEL for very special scientific experiments. The design is based on a 500 MHz recirculating superconducting electron linac with highest energy reach of about 60 MeV. The accelerator is injected with beams prepared by a specially designed gun-buncher system and incorporates a near-isochronous and achromatic recirculation line tunable over a wide range of beam energies. The stability issues considered to arrive at the specific design will be outlined.

  15. Plasma-based accelerator structures

    SciTech Connect (OSTI)

    Schroeder, Carl B.

    1999-12-01T23:59:59.000Z

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

  16. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  18. Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Sessler, Andy

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.

  19. FREE-ELECTRON LASERS

    E-Print Network [OSTI]

    Sessler, A.M.

    2008-01-01T23:59:59.000Z

    Variable-Wiggler Free-Electron-Laser Oscillat.ion. Phys. :_.The Los Alamos Free Electron Laser: Accelerator Perfoemance.First Operation of a Free-Electron Laser. Phys . __ Rev~.

  20. CEBAF accelerator achievements

    SciTech Connect (OSTI)

    Y.C. Chao, M. Drury, C. Hovater, A. Hutton, G.A. Krafft, M. Poelker, C. Reece, M. Tiefenback

    2011-06-01T23:59:59.000Z

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  1. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16T23:59:59.000Z

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  2. BNL | Accelerator Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and new approaches to particle acceleration and x-ray generation. A next-generation ultra-fast CO2 laser based on chirped pulse amplification in isotopic gas mixtures is...

  3. Infrastructure iThemba LABS' infrastructure is based at two sites, namely

    E-Print Network [OSTI]

    Wagner, Stephan

    for Accelerator-Based Sciences. ·are the only producer in South Africa of accelerator- based radionuclides-MV Tandem Accelerator. Particle beams delivered by the accelerator are used for low energy nuclear an accelerator mass spectrometry (AMS) facility at iThemba LABS-Gauteng, the second in Africa, ·establishing

  4. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLab

  5. The Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThe IronThe Lab The

  6. Accelerator Design Study for a Soft X-Ray Free Electron Laser at the Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    Kur, E.

    2010-01-01T23:59:59.000Z

    and Phase Diagnostics, SLAC Report LCLS-TN-00-12. Emma P.al. 2009, First Results of the LCLS Laser-Heater System, PACLinac Coherent Light Source (LCLS) Conceptual Design Report,

  7. Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility

    E-Print Network [OSTI]

    Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

    2006-01-01T23:59:59.000Z

    Table 2 shows the expected FEL performance employing a 31-nmDESIGN OF AN XUV FEL DRIVEN BY THE LASER-PLASMA ACCELERATORa design for a compact FEL source of ultra- fast, high-

  8. Phase Stable Net Acceleration of Electrons From a Two-Stage Optical Accelerator

    SciTech Connect (OSTI)

    Sears, Christopher M.S.; /SLAC /Munich, Max Planck Inst. Quantenopt.; Colby, Eric; England, R.J.; Ischebeck, Rasmus; McGuinness, Christopher; Nelson, Janice; Noble, Robert; Siemann, Robert H.; Spencer, James; Walz, Dieter; /SLAC; Plettner, Tomas; Byer, Robert L.; /Stanford U., Phys. Dept.

    2011-11-11T23:59:59.000Z

    In this article we demonstrate the net acceleration of relativistic electrons using a direct, in-vacuum interaction with a laser. In the experiment, an electron beam from a conventional accelerator is first energy modulated at optical frequencies in an inverse-free-electron-laser and bunched in a chicane. This is followed by a second stage optical accelerator to obtain net acceleration. The optical phase between accelerator stages is monitored and controlled in order to scan the accelerating phase and observe net acceleration and deceleration. Phase jitter measurements indicate control of the phase to {approx}13{sup o} allowing for stable net acceleration of electrons with lasers.

  9. Energy Department appoints new director for Jefferson accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articlesenergy-department-appoints-new-director-jefferson-accelerator-newport-news-virginian-... Jefferson Lab to get new director By Gregory Richards, The Virginian-Pilot April...

  10. Test Facility Daniil Stolyarov, Accelerator Test Facility User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

  11. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    greenhouse gas emissions associated with current solar thermal energy heating and cooling methods. According to ThermaSun President Larry Mapes, about 50 prototype units are...

  12. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUW MadisonNRELVenture

  13. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L. (Los Alamos, NM); Carlsten, Bruce E. (Los Alamos, NM); Young, Lloyd M. (Los Alamos, NM)

    1994-01-01T23:59:59.000Z

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  14. Beam-Dynamics Studies and Advanced Accelerator Research at CTF-3 Compact Final Focus, Laser Compton Scattering, Plasmas, etc.

    E-Print Network [OSTI]

    Assmann, R W; Burkhardt, H; Corsini, R; Faus-Golfe, A; Gronberg, J; Redaelli, S; Schulte, Daniel; Velasco, M; Zimmermann, Frank

    2002-01-01T23:59:59.000Z

    Preliminary investigations are summarized on the possible use of the CTF3 facility for extended beam-dynamics studies and advanced accelerator R&D, which would exploit its unique properties and beam availability. The key element of these considerations is the possible addition of a test beam-delivery system comprising a compact final focus and advanced collimation concepts, scaled from 3 TeV down to low energy and having a short total length. Operational experience, verification of critical questions (octupole tail folding, beam halo transport, etc.), diagnostics (e.g., rf BPMs) and stabilization could all be explored in such a facility, which would benefit not only the CLIC study, but all linear collider projects. Another interesting application would be the study of plasma-beam interaction, which may include plasma focusing, plasma acceleration, ion-channel radiation, and plasma wigglers.

  15. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    SciTech Connect (OSTI)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-08-31T23:59:59.000Z

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  16. "Science is Cool" at Jefferson Lab's Open House, Saturday...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to share with visitors: the electron accelerator, an experimental hall, the Free Electron Laser, a variety of hands-on exhibits & learning activities, and liquid nitrogen...

  17. Introducing the Fission-Fusion Reaction Process: Using a Laser-Accelerated Th Beam to produce Neutron-Rich Nuclei towards the N=126 Waiting Point of the r Process

    E-Print Network [OSTI]

    D. Habs; P. G. Thirolf; M. Gross; K. Allinger; J. Bin; A. Henig; D. Kiefer; W. Ma; J. Schreiber

    2010-09-10T23:59:59.000Z

    We propose to produce neutron-rich nuclei in the range of the astrophysical r-process around the waiting point N=126 by fissioning a dense laser-accelerated thorium ion bunch in a thorium target (covered by a CH2 layer), where the light fission fragments of the beam fuse with the light fission fragments of the target. Via the 'hole-boring' mode of laser Radiation Pressure Acceleration using a high-intensity, short pulse laser, very efficiently bunches of 232Th with solid-state density can be generated from a Th layer, placed beneath a deuterated polyethylene foil, both forming the production target. Th ions laser-accelerated to about 7 MeV/u will pass through a thin CH2 layer placed in front of a thicker second Th foil closely behind the production target and disintegrate into light and heavy fission fragments. In addition, light ions (d,C) from the CD2 production target will be accelerated as well to about 7 MeV/u, inducing the fission process of 232Th also in the second Th layer. The laser-accelerated ion bunches with solid-state density, which are about 10^14 times more dense than classically accelerated ion bunches, allow for a high probability that generated fission products can fuse again. In contrast to classical radioactive beam facilities, where intense but low-density radioactive beams are merged with stable targets, the novel fission-fusion process draws on the fusion between neutron-rich, short-lived, light fission fragments both from beam and target. The high ion beam density may lead to a strong collective modification of the stopping power in the target, leading to significant range enhancement. Using a high-intensity laser as envisaged for the ELI-Nuclear Physics project in Bucharest (ELI-NP), estimates promise a fusion yield of about 10^3 ions per laser pulse in the mass range of A=180-190, thus enabling to approach the r-process waiting point at N=126.

  18. BNL | Nd:YAG Laser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nd:YAG Laser The Nd:YAG laser is located in a class 1000 clean room (the YAG Room) near the electron gun end of the ATF accelerator. The clean area also includes a separate laser...

  19. SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    SUNY Technology Accelerator Fund PROGRAM: Complete Guidelines can be found at SUNY Technology Accelerator Fund 2014 OBJECTIVES: The SUNY Technology Accelerator Fund ("TAF") provides funding to support the advancement of SUNY technologies from the lab to the marketplace. In many cases, SUNY technology developed

  20. Seventy Five Years of Particle Accelerators

    ScienceCinema (OSTI)

    Andy Sessler

    2013-06-11T23:59:59.000Z

    Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe. His talk was presented July 26, 2006.

  1. 9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 1 Accelerator-based Particle Physics

    E-Print Network [OSTI]

    Wechsler, Risa H.

    9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 1 Accelerator, 2009 #12;9/16/2009 Andy Haas Stanford Student Orientation: Accelerator based Particle Physics 2 Stanford Student Orientation: Accelerator based Particle Physics 5 Super B (to be built near Frascati lab

  2. Jefferson Lab Names Chief Technology Officer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChiefChief

  3. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    None

    2014-06-30T23:59:59.000Z

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  4. D-Cluster Converter Foil for Laser-Accelerated Deuteron Beams: Towards Deuteron-Beam-Driven Fast Ignition

    SciTech Connect (OSTI)

    Miley, George H.

    2012-10-24T23:59:59.000Z

    Fast Ignition (FI) uses Petawatt laser generated particle beam pulse to ignite a small volume called a pre-compressed Inertial Confinement Fusion (ICF) target, and is the favored method to achieve the high energy gain per target burn needed for an attractive ICF power plant. Ion beams such as protons, deuterons or heavier carbon ions are especially appealing for FI as they have relative straight trajectory, and easier to focus on the fuel capsule. But current experiments have encountered problems with the 'converter-foil' which is irradiated by the Petawatt laser to produce the ion beams. The problems include depletion of the available ions in the convertor foils, and poor energy efficiency (ion beam energy/ input laser energy). We proposed to develop a volumetrically-loaded ultra-high-density deuteron deuterium cluster material as the basis for converter-foil for deuteron beam generation. The deuterons will fuse with the ICF DT while they slow down, providing an extra 'bonus' energy gain in addition to heating the hot spot. Also, due to the volumetric loading, the foil will provide sufficient energetic deuteron beam flux for 'hot spot' ignition, while avoiding the depletion problem encountered by current proton-driven FI foils. After extensive comparative studies, in Phase I, high purity PdO/Pd/PdO foils were selected for the high packing fraction D-Cluster converter foils. An optimized loading process has been developed to increase the cluster packing fraction in this type of foil. As a result, the packing fraction has been increased from 0.1% to 10% - meeting the original Phase I goal and representing a significant progress towards the beam intensities needed for both FI and pulsed neutron applications. Fast Ignition provides a promising approach to achieve high energy gain target performance needed for commercial Inertial Confinement Fusion (ICF). This is now a realistic goal for near term in view of the anticipated ICF target burn at the National Ignition Facility (NIF) in CA within a year. This will usher in the technology development Phase of ICF after years of research aimed at achieving breakeven experiment. Methods to achieve the high energy gain needed for a competitive power plant will then be a key developmental issue, and our D-cluster target for Fast Ignition (FI) is expected to meet that need.

  5. Accelerator Research Department B Dept. of Applied Physics

    E-Print Network [OSTI]

    Wechsler, Risa H.

    1 Accelerator Research Department B Dept. of Applied Physics E163: Laser Acceleration at the NLCTA March 11, 2002 * Spokesman. #12;2 Accelerator Research Department B Dept. of Applied PhysicsTechnical Roadmap LEAPLEAP 1. Demonstrate the physics of laser acceleration in dielectric structures 2. Develop

  6. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09T23:59:59.000Z

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  7. Design of a Superconducting Linear Accelerator for an Infrared Free Electron Laser of the Proposed Chemical Dynamics Research Laboratory at LBL

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2011-01-01T23:59:59.000Z

    see "An Infrared Free-Electron Laser for CDRL," LBL Pub-FOR AN INFRARED FREE ELECTRON LASER OF 1HE PROPOSED CHEMICALFOR AN INFRARED FREE ELECTRON LASER OF THE PROPOSED CHEMICAL

  8. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01T23:59:59.000Z

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  9. Instrument Development Lab | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication Circuit boards Component integration Custom enclosures Microfabrication 3D Printing Facilities and equipment Fully equipped electronics development lab Equipment...

  10. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards upgrade

  11. Overview of Nuclear Physics at Jefferson Lab

    SciTech Connect (OSTI)

    McKeown, Robert D. [JLAB

    2013-08-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  12. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    R. D. McKeown

    2014-12-03T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  13. Jefferson Lab Science, Past and Future

    E-Print Network [OSTI]

    McKeown, R D

    2014-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  14. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    R. D. McKeown

    2013-03-26T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  15. Overview of Nuclear Physics at Jefferson Lab

    E-Print Network [OSTI]

    McKeown, R D

    2013-01-01T23:59:59.000Z

    The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. This facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.

  16. Neutron Structure — New Results with CLAS at Jefferson Lab

    SciTech Connect (OSTI)

    Sebastian Kuhn

    2006-11-01T23:59:59.000Z

    New measurements using the 6 GeV continuous electron beam and the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab have collected information on the form factors and the unpolarized structure functions of the neutron, with minimal uncertainty from nuclear binding effects. One experiment has also tried to measure these binding effects more directly, using the method of ''spectator tagging''. These experiments are forerunners for an extensive program with the energy-upgraded 12 GeV accelerator at Jefferson Lab.

  17. Laser Worker Registration Form (LWRF) Surname: Forenames

    E-Print Network [OSTI]

    Martin, Ralph R.

    ABCDEFGHI Laser Worker Registration Form (LWRF) Surname: Forenames: School of: Ext No.: Email YY Class of Laser to be Used 1 1M 1E 2 2M 3R 3B 4 Work Location(s) Lab No. Laser Work Currently Undertaken Elsewhere Are you currently engaged in work elsewhere involving laser radiation? YES

  18. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01T23:59:59.000Z

    for a PhD in accelerator physics was by E.O. Lawrence.of Beams) organizes accelerator physics sessions at APSstudents specializing in accelerator physics are not being “

  19. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab News

  20. LAB #8 Numerical Methods

    E-Print Network [OSTI]

    2005-10-20T23:59:59.000Z

    Page 1. LAB #8. Numerical Methods. Goal: The purpose of this lab is to explain how computers numerically ... Also you will examine what .... (7) Now consider the differential equation ... 3-exp(2*y)+sqrt(t)/y; (Don't forget the “;” at the end.).

  1. Jefferson Lab's Trim Card II

    SciTech Connect (OSTI)

    Trent Allison; Sarin Philip; C. Higgins; Edward Martin; William Merz

    2005-05-01T23:59:59.000Z

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) uses Trim Card I power supplies to drive approximately 1900 correction magnets. These trim cards have had a long and illustrious service record. However, some of the employed technology is now obsolete, making it difficult to maintain the system and retain adequate spares. The Trim Card II is being developed to act as a transparent replacement for its aging predecessor. A modular approach has been taken in its development to facilitate the substitution of sections for future improvements and maintenance. The resulting design has been divided into a motherboard and 7 daughter cards which has also allowed for parallel development. The Trim Card II utilizes modern technologies such as a Field Programmable Gate Array (FPGA) and a microprocessor to embed trim card controls and diagnostics. These reprogrammable devices also provide the versatility to incorporate future requirements.

  2. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  3. National Labs | Department of Energy

    Office of Environmental Management (EM)

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  4. Exact and variational solutions of 3D Eigenmodes in high gain Free Electron Lasers

    E-Print Network [OSTI]

    Xie, M.

    2011-01-01T23:59:59.000Z

    Motz, Undulators and Free-Electron Lasers, (Clarendon Press,in High . Gain Free Electron Lasers MingXie Accelerator andin High Gain Free Electron Lasers Ming Xie Accelerator and

  5. Jefferson Lab Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  6. Jefferson Lab Visitor's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  7. OPTI 511L, Lasers & Solid State Devices Class lectures Mondays, 2-2:50 pm

    E-Print Network [OSTI]

    Arizona, University of

    Quantum Electronics, Amnon Yariv, Laser Electronics, Joseph T. Verdeyen, Lasers, A. Siegman, Lasers Notebooks: 30% Lab Reports: 30% Grading policy: A: 90-100 % , B: 80-90%, C: 70-80% - Participation in each

  8. Berkeley Lab - ARRA - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility August 18, 2011 Tools and Toys for Builders: New Test Center for Low-Energy Buildings July 19, 2011 Moving Data at the Speed of Science: Berkeley Lab Lays Foundation...

  9. Recent Advances in Plasma Acceleration

    SciTech Connect (OSTI)

    Hogan, Mark

    2007-03-19T23:59:59.000Z

    The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

  10. Jefferson Lab News - JLab FEL Wins R&D 100 Award | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    award. The 2005 award goes to: The Tunable Energy Recovered High Power Infrared Free-Electron Laser, lead by a team of nine Jefferson Lab scientists and engineers. The...

  11. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  12. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, Research Inspecting an injector

  13. Design of a Superconducting Linear Accelerator for an Infrared Free Electron Laser of the Proposed Chemical Dynamics Research Laboratory at LBL

    E-Print Network [OSTI]

    Chattopadhyay, S.

    2011-01-01T23:59:59.000Z

    500 MHz buncher is a 4-cell SCRF cavity in which the beam issection consists of two SCRF accelerating modules in whichoperating temperature for the SCRF cavities. A standard, 600

  14. Materials Technology for Energy Efficiency: Wide Bandgap Nanophotonics Lab

    E-Print Network [OSTI]

    University of Technology, Sydney

    28/3/2013 Materials Technology for Energy Efficiency: Wide Bandgap Nanophotonics Lab Honours such as low power lasers, molecular sensors and high efficiency light emitters. Several projects are currently of Technology Sydney is one of the leading technological universities in Australia and located in the heart

  15. Science Education Lab | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find Science DMZ CaseScienceLab

  16. The 6 GeV TMD Program at Jefferson Lab

    SciTech Connect (OSTI)

    Puckett, Andrew J. [University of Connecticut, JLAB

    2015-01-01T23:59:59.000Z

    The study of the transverse momentum dependent parton distributions (TMDs) of the nucleon in semi-inclusive deep-inelastic scattering (SIDIS) has emerged as one of the major physics motivations driving the experimental program using the upgraded 11 GeV electron beam at Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF). The accelerator construction phase of the CEBAF upgrade is essentially complete and commissioning of the accelerator has begun as of April, 2014. As the new era of CEBAF operations begins, it is appropriate to review the body of published and forthcoming results on TMDs from the 6 GeV era of CEBAF operations, discuss what has been learned, and discuss the key challenges and opportunities for the 11 GeV SIDIS program of CEBAF.

  17. QCD in Nuclear Processes at Jefferson Lab G.P.Gilfoyle

    E-Print Network [OSTI]

    Gilfoyle, Jerry

    scientific instrument at JLab is the Continuous Electron Beam Accelerator Facility (CEBAF) which can produce remains elusive. The primary mission of the Thomas Jefferson National Accelerator Facility (Jefferson Lab electrons of energy up to 6 GeV by recirculating the beam five times through two, superconducting linacs

  18. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The

  19. Jefferson Lab Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic

  20. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLab

  1. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    None

    2014-04-15T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  2. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25T23:59:59.000Z

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  3. Free-Electron Laser Generation of VUV and X-Ray Radiation using a Conditioned Beam and Ion-Channel Focusing

    E-Print Network [OSTI]

    Yu, L.-H.

    2008-01-01T23:59:59.000Z

    a) Accelerator Conditioner Free-Electron Laser L ---~>~ . Free Electron Laser Conference, Santain the Proceedings Free-Electron Laser Generation of VUV and

  4. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in RareAmber

  5. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in

  6. Jefferson Lab Leadership Council - Claus Rode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles inDrew

  7. Jefferson Lab Leadership Council - Dr. Allison Lung

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles

  8. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser

  9. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R. Pennington

  10. Jefferson Lab Leadership Council - Hugh E. Montgomery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.

  11. Jefferson Lab Leadership Council - Joe Scarcello

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael R.Council

  12. Jefferson Lab Leadership Council - Mary Logue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichael

  13. Jefferson Lab Leadership Council - Michael Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChief Operating

  14. Laser and Spectroscopy Facility Center For Microanalysis of Materials

    E-Print Network [OSTI]

    Braun, Paul

    Laser and Spectroscopy Facility Center For Microanalysis of Materials Frederick Seitz Materials Research Laboratory Form revised 03 November 2009 Precautions for the safe use of lasers 1. NEVER LOOK DIRECTLY INTO ANY LASER BEAM, REGARDLESS OF POWER. 2. The lab door safety lamp "LASER in USE" must

  15. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  16. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  17. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  18. Jefferson Lab Project Team Receives Department of Energy Award | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator crew

  19. Jefferson Lab Project Team Receives Department of Energy Award | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator

  20. Accelerator Technology Division progress report, FY 1993

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-12-31T23:59:59.000Z

    This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

  1. Scattering parameters of the 3.9 GHz accelerating module in a free-electron laser linac: A rigorous comparison between simulations and measurements

    E-Print Network [OSTI]

    Flisgen, T; Zhang, P; Shinton, I R R; Baboi, N; Jones, R M; van Rienen, U

    2014-01-01T23:59:59.000Z

    This article presents a comparison between measured and simulated scattering parameters in a wide frequency interval for the third harmonic accelerating module ACC39 in the linear accelerator FLASH, located at DESY in Hamburg/Germany. ACC39 is a cryomodule housing four superconducting 3.9? GHz accelerating cavities. Due to the special shape of the cavities (in particular its end cells and the beam pipes) in ACC39, the electromagnetic field in the module is, in many frequency ranges, coupled from one cavity to the next. Therefore, the scattering parameters are determined by the entire string and not solely by the individual cavities. This makes the determination of the scattering properties demanding. As far as the authors can determine, this paper shows for the first time a direct comparison between state-of-the-art simulations and measurements of rf properties of long, complex, and asymmetric structures over a wide frequency band. Taking into account the complexity of the system and various geometrical unk...

  2. New Laser's "First Light" Shatters Record | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson National Accelerator Facility have delivered first light from their Free Electron Laser (FEL). Only 2 years after ground was broken for the FEL, infrared light of more...

  3. Accelerate Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerate Energy Productivity 2030 Over the next year, the U.S. Department of Energy, the Council on Competitiveness and the Alliance to Save Energy will join forces to undertake...

  4. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    SciTech Connect (OSTI)

    Racz, Peter; Dombi, Peter [Wigner Research Centre for Physics, Konkoly-Thege M. ut 29-33, H-1121 Budapest (Hungary)

    2011-12-15T23:59:59.000Z

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  5. Circular free-electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Kurnit, Norman A. (Santa Fe, NM); Cooper, Richard K. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  6. Catalac free electron laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Swenson, Donald A. (Los Alamos, NM); Boyd, Jr., Thomas J. (Los Alamos, NM)

    1982-01-01T23:59:59.000Z

    A catalac free electron laser using a rf linac (catalac) which acts as a catalyst to accelerate an electron beam in an initial pass through the catalac and decelerate the electron beam during a second pass through the catalac. During the second pass through the catalac, energy is extracted from the electron beam and transformed to energy of the accelerating fields of the catalac to increase efficiency of the device. Various embodiments disclose the use of post linacs to add electron beam energy extracted by the wiggler and the use of supplementary catalacs to extract energy at various energy peaks produced by the free electron laser wiggler to further enhance efficiency of the catalac free electron laser. The catalac free electron laser can be used in conjunction with a simple resonator, a ring resonator or as an amplifier in conjunction with a master oscillator laser.

  7. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Dudek, Jozef; Essig, Rouven; Kumar, Krishna; Meyer, Curtis; McKeown, Robert; Meziani, Zein Eddine; Miller, Gerald A; Pennington, Michael; Richards, David; Weinstein, Larry; Young, Glenn

    2012-01-01T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Physics Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  8. Physics Opportunities with the 12 GeV Upgrade at Jefferson Lab

    E-Print Network [OSTI]

    Jozef Dudek; Rolf Ent; Rouven Essig; Krishna Kumar; Curtis Meyer; Robert McKeown; Zein Eddine Meziani; Gerald A. Miller; Michael Pennington; David Richards; Larry Weinstein; Glenn Young

    2012-08-07T23:59:59.000Z

    This white paper summarizes the scientific opportunities for utilization of the upgraded 12 GeV Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab. It is based on the 52 proposals recommended for approval by the Jefferson Lab Program Advisory Committee.The upgraded facility will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics.

  9. Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

  10. Jefferson Lab: New opportunities in hadronic physics

    SciTech Connect (OSTI)

    Rossi, Patrizia [JLAB

    2014-11-01T23:59:59.000Z

    Jefferson Lab (JLab) is a fundamental research laboratory located in Newport News (Virginia-USA) whose primary mission is to explore the fundamental nature of confined states of quarks and gluons. It consists of a high-intensity electron accelerator based on continuous wave superconducting radio frequency technology and a sophisticated array of particle detectors. The design features and excellent performance of the accelerator made it possible to plan an upgrade in energy from 6 to 12 GeV without substantially altering the construction scheme of the accelerator. The program includes the construction of major new experimental facilities for the existing three Halls, A, B, C and the construction of the new experimental Hall D. The research program that motivated the upgrade in energy includes: the study of the nucleon "tomography" through the study of generalized parton distribution functions (GPDs) and transverse momentum dependent parton distribution functions (TMDs), the study of exotics and hybrid mesons to explore the nature of the quarks confinement, precision test of the Standard Model through parity-violating electron scattering experiments. Major highlights of the program at 6 GeV will be presented as well as an overview of the 12 GeV physics program.

  11. EXPERIENCE WITH COLLABORATIVE DEVELOPMENT FOR THE SPALLATION NEUTRON SOURCE FROM A PARTNER LAB PERSPECTIVE.

    SciTech Connect (OSTI)

    HOFF, L.T.

    2005-10-10T23:59:59.000Z

    Collaborative development and operation of large physics experiments is fairly common. Less common is the collaborative development or operation of accelerators. A current example of the latter is the Spallation Neutron Source (SNS). The SNS project was conceived as a collaborative effort between six DOE facilities. In the SNS case, the control system was also developed collaboratively. The SNS project has now moved beyond the collaborative development phase and into the phase where Oak Ridge National Lab (ORNL) is integrating contributions from collaborating ''partner labs'' and is beginning accelerator operations. In this paper, the author reflects on the benefits and drawbacks of the collaborative development of an accelerator control system as implemented for the SNS project from the perspective of a partner lab.

  12. Combination free electron and gaseous laser

    DOE Patents [OSTI]

    Brau, Charles A. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM); Stein, William E. (Los Alamos, NM)

    1980-01-01T23:59:59.000Z

    A multiple laser having one or more gaseous laser stages and one or more free electron stages. Each of the free electron laser stages is sequentially pumped by a microwave linear accelerator. Subsequently, the electron beam is directed through a gaseous laser, in the preferred embodiment, and in an alternative embodiment, through a microwave accelerator to lower the energy level of the electron beam to pump one or more gaseous lasers. The combination laser provides high pulse repetition frequencies, on the order of 1 kHz or greater, high power capability, high efficiency, and tunability in the synchronous production of multiple beams of coherent optical radiation.

  13. Tri-Lab Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site MapTrends, Discovery, &Tri-Lab

  14. Lab announces security changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUWVoluntaryLab

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman Resources

  16. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman

  17. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisal

  18. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisalHR

  19. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council Emeritus

  1. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council

  2. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow we're

  3. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow

  4. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHowJLab

  5. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity

  6. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions about

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions

  8. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestionsEmployee

  9. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group

  10. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  11. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  12. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  13. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human print

  14. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisal

  16. Jefferson Lab Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources

  17. About the Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's RSS,UsAboutLab

  18. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »DeptArchaeology on Lab

  19. Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65 (9/12)Jefferson Lab

  20. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPits |Regulations Policy andConstruction

  1. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  2. Friends of Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently AskedofFriends of Berekeley Lab

  3. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL |TechLab

  4. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP) VAP7-0973 1 Introduction In theACME - AcceleratedAccelerating

  5. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such submissions. Authors are advised to download the appropriate JACoW template (the index on the left under Templates provides templates for MS Word, LaTeX and OpenDocument)...

  6. Reaching New Heights in Accelerator Technology | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articulating arm that swivels to place pieces on the cavity. "It's essentially using tooling to your advantage to connect the components with the least amount of particulate...

  7. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Gonsalves (LBNL) Anna Grassellino (Fermilab) Lars Groening (GSI) John R. Haines (ESS) Christopher Hall (CSU) Yue Hao (BNL) Peter Hommelhoff (University of...

  8. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    List (Before you go...) Kayaking on the James River The James River passes through the heart of Richmond and offers both restful flatwater as well as heart-pumping class IV rapids...

  9. Jefferson Lab Builds First Single Crystal Single Cell Accelerating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Single Cell Cavity This single cell cavity was made from a single crystal of niobium. Made in the same shape as the low-loss design proposed as an improvement to the baseline for...

  10. Energy Department Announces New Lab Program to Accelerate Commercialization

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'Kane TauscherProjectof Clean Energy

  11. IPAC15 Jefferson Lab - International Particle Accelerator Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LLC Booth 314 Metal Technology (MTI) Booth 110 Metrolab Technology Booth 206 Meyer Tool & MFG Booth 402 Microwave Amplifiers Ltd. Booth 408 Mitsubishi Electric Corp....

  12. ODU establishes a Center for Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal RegisterImplementation3DPhotostatLBL -OCPR|From

  13. Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON...January 2015H8/0UpgradeJefferson

  14. Jefferson Lab Fall Lecture: Exploring Our World With Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation PeerNOON...JanuaryAstronomyEngineerB|

  15. Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 16,3/14SecurityLead-free Solder|

  16. First Director Named for Center for Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancing OpportunitiesDirect EvidenceDirectFirst

  17. Energy Department Announces New Lab Program to Accelerate Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | DepartmentDepartmentDepartment of EnergyProtectof

  18. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3 Table 3. SummaryAncientAndrea

  19. Governor to Join Jefferson Lab in Celebrating Completion of Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtl anta,GovernmentUpgrade

  20. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui (Los Alamos, NM); Barnes, Cris W. (Santa Fe, NM)

    2002-01-01T23:59:59.000Z

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  1. Name: ____________________ Stream Profile Lab 1

    E-Print Network [OSTI]

    Name: ____________________ Stream Profile Lab 1 LAB 4. Stream Profiles and Mass Balance: Supply vs hillslope diffusion experiments. We will now examine a slightly more complicated profile-evolution model on longitudinal channel profile shapes. The Questions: I. Why do streams generally have concave profiles

  2. E ngineering& S ystems Lab

    E-Print Network [OSTI]

    Corporation,Motorola,andincooperationwith Siemens Automotive and Detroit Diesel Corporation. S oftware E ngineering& N etwork S ystems Lab-time systems ­ fault tolerance and security ­ formal methods, code generation ­ compilation Transformations ·Test Case generation 6 S oftware E ngineering& N etwork S ystems Lab OutlineOutline Introduction

  3. Lab Validation Workload Performance Analysis

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................15 All trademark names are property of their respective companies. Information contained

  4. A HIGH REPETITION PLASMA MIRROR FOR STAGED ELECTRON ACCELERATION

    SciTech Connect (OSTI)

    Sokollik, Thomas; Shiraishi, Satomi; Osterhoff, Jens; Evans, Eugene; Gonsalves, Anthony; Nakamura, Kei; vanTilborg, Jeroen; Lin, Chen; Toth, Csaba; Leemans, Wim

    2011-07-22T23:59:59.000Z

    In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.

  5. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  6. Jefferson Lab Weekly Briefs - July 15, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel|Jefferson

  7. Jefferson Lab Work Officially Begins (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab

  8. Jefferson Lab awards several contracts (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin whilePhysics

  9. Jefferson Lab awards upgrade contracts (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin

  10. Jefferson Lab begins $310 million upgrade (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards

  11. LabVIEW Core 2 Course | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab'sLabVIEW

  12. MUON ACCELERATION

    SciTech Connect (OSTI)

    BERG,S.J.

    2003-11-18T23:59:59.000Z

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  13. Growth of novel micro-structured carbon thin films by using ultrashort-pulse laser deposition

    E-Print Network [OSTI]

    ;! ! )! 1.1 pulsed-laser deposition PLD PLD ultra-short pulse laser deposition uPLD PLD [1] figure 1 seed electron PLD PLD nano-second ns Lab 325 femto-second fs ultra-short pulse laser deposition uPLD) u! ! "! Growth of novel micro-structured carbon thin films by using ultrashort-pulse laser

  14. Laser wakefield simulation using a speed-of-light frame envelope model

    E-Print Network [OSTI]

    Cowan, B.

    2010-01-01T23:59:59.000Z

    Laser wake?eld simulation using a speed-of-light frameAbstract. Simulation of laser wake?eld accelerator (LWFA)extend hundreds of laser wave- lengths transversely and many

  15. Phase stability of a standing-wave free-electron laser

    E-Print Network [OSTI]

    Sharp, W.M.

    2008-01-01T23:59:59.000Z

    of a Standing-Wave Free-Electron Laser", proceeding of theCoupled-Cavity Free- Electron Laser Two-Beam Accelerator",of a Standing-Wave Free-Electron Laser W. M. Sharp Lawrence

  16. Jefferson Lab Weekly Briefs March 25, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was planned for the months of March and April. Physics Jefferson Lab Published Journal Articles March 16-20 S. Pisano et al. (CLAS Collaboration). "Single and double spin...

  17. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  18. Jefferson Lab Users Group News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  19. Application accelerator system having bunch control

    DOE Patents [OSTI]

    Wang, Dunxiong (Newport News, VA); Krafft, Geoffrey Arthur (Newport News, VA)

    1999-01-01T23:59:59.000Z

    An application accelerator system for monitoring the gain of a free electron laser. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control.

  20. Application accelerator system having bunch control

    DOE Patents [OSTI]

    Wang, D.; Krafft, G.A.

    1999-06-22T23:59:59.000Z

    An application accelerator system for monitoring the gain of a free electron laser is disclosed. Coherent Synchrotron Radiation (CSR) detection techniques are used with a bunch length monitor for ultra short, picosec to several tens of femtosec, electron bunches. The monitor employs an application accelerator, a coherent radiation production device, an optical or beam chopping device, an infrared radiation collection device, a narrow-banding filter, an infrared detection device, and a control. 1 fig.

  1. Enhanced dielectric-wall linear accelerator

    DOE Patents [OSTI]

    Sampayan, S.E.; Caporaso, G.J.; Kirbie, H.C.

    1998-09-22T23:59:59.000Z

    A dielectric-wall linear accelerator is enhanced by a high-voltage, fast e-time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators. A high voltage is placed between the electrodes sufficient to stress the voltage breakdown of the insulator on command. A light trigger, such as a laser, is focused along at least one line along the edge surface of the laminated alternating layers of isolated conductors and insulators extending between the electrodes. The laser is energized to initiate a surface breakdown by a fluence of photons, thus causing the electrical switch to close very promptly. Such insulators and lasers are incorporated in a dielectric wall linear accelerator with Blumlein modules, and phasing is controlled by adjusting the length of fiber optic cables that carry the laser light to the insulator surface. 6 figs.

  2. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01T23:59:59.000Z

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  3. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator Public Interest Nuclear

  4. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator Public Interest

  5. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator Public InterestDigital

  6. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator Public

  7. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator PublicMedical Imaging

  8. Jefferson Lab: Student Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as Ready for SummerAccelerator PublicMedical

  9. User Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSite MapScience Accelerator Magnets Magnets ready

  10. NYC MEDIA LAB 2 Metrotech Center, 10

    E-Print Network [OSTI]

    Aronov, Boris

    Justin Hendrix Named Executive Director of NYC Media Lab NEW YORK, New York ­ NYC Media Lab is pleased, testing, and commercializing new digital media business concepts. Prior to this role, Hendrix directed ! About NYC Media Lab NYC Media Lab connects companies seeking to advance new media technologies

  11. Recap: Energy Efficiency at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's National Labs are helping consumers and businesses save energy and money.

  12. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08T23:59:59.000Z

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  13. ACCELERATE ENERGY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThistheSummaryACCELERATE ENERGY

  14. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenter (LMI-EFRC) -Choices toLeeLinear Accelerator

  15. SURA Rewards Inventors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Johns Hopkins University, helped develop three inventions during his summer internship at Jefferson Lab. A ceremony was held at 1 p.m. October 30, 1997, in the CEBAF...

  16. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  17. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2008-10-10T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  18. State of the Lab 2012

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  19. Staff Memos | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebookScholarshipSpiraling Laser Pulses Could Video Newsletters- UWJuly

  20. Take a quick trip around the experimental floor of the Lab's new light source

    SciTech Connect (OSTI)

    None

    2012-04-30T23:59:59.000Z

    Take a quick trip around the experimental floor of Brookhaven Lab's new light source -- the $912-million National Synchrotron Light Source II. Construction of the facility is now over 70 percent completed. With much of the conventional construction done, accelerator and experimental components are being installed.

  1. Commnity Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2008-07-01T23:59:59.000Z

    The design and performance optimization of particle accelerators is essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC1 Accelerator Science and Technology project, the SciDAC2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modeling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multi-physics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  2. Commnity Petascale Project for Accelerator Science And Simulation: Advancing Computational Science for Future Accelerators And Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, Panagiotis; /Fermilab; Cary, John; /Tech-X, Boulder; Mcinnes, Lois Curfman; /Argonne; Mori, Warren; /UCLA; Ng, Cho; /SLAC; Ng, Esmond; Ryne, Robert; /LBL, Berkeley

    2011-10-21T23:59:59.000Z

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors.

  3. Lab 9 LabVIEW and GPIB LabVIEW (National Instruments)

    E-Print Network [OSTI]

    Glashausser, Charles

    Automatic data acquisition DAC 01010 Actuator, Heater... control Power amplifiers LabVIEW GPIB GPIB #12 Toolbar Retain Wire Values Button Step Function Buttons #12;Block Diagram Window Front Panel Window

  4. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  5. High-power, high-intensity laser propagation and interactions

    SciTech Connect (OSTI)

    Sprangle, Phillip [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States); Electrical and Computer Engineering and Physics, University of Maryland, College Park, Maryland 20740 (United States); Hafizi, Bahman [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-05-15T23:59:59.000Z

    This paper presents overviews of a number of processes and applications associated with high-power, high-intensity lasers, and their interactions. These processes and applications include: free electron lasers, backward Raman amplification, atmospheric propagation of laser pulses, laser driven acceleration, atmospheric lasing, and remote detection of radioactivity. The interrelated physical mechanisms in the various processes are discussed.

  6. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    SciTech Connect (OSTI)

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14T23:59:59.000Z

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

  7. Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond pulses with high repetition rate

    E-Print Network [OSTI]

    Reilly, Anne

    Pulsed laser deposition with a high average power free electron laser: Benefits of subpicosecond average power Thomas Jefferson National Accelerator Facility Free Electron Laser. The combination of the free electron laser leads to very different plasma emission and produces films with high quality

  8. Surface plasmon assisted electron acceleration in photoemission from gold nanopillars

    E-Print Network [OSTI]

    Neumark, Daniel M.

    Surface plasmon assisted electron acceleration in photoemission from gold nanopillars Phillip M emission Plasmon field enhancement Electron acceleration Few-cycle pulses a b s t r a c t Electron 25 and 39 times greater than the experimentally used laser fields. Implications for plasmon

  9. The BNL Accelerator Test Facility control system

    SciTech Connect (OSTI)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01T23:59:59.000Z

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

  10. #LabChat Recap: Solutions through Supercomputing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy LabChat Recap: Innovations Driving More Efficient Vehicles...

  11. for sequence accelerators

    E-Print Network [OSTI]

    Zakharov, Vladimir

    Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona Wynn's -algorithm for sequence accelerators using high precision arithmetic Rachel Baumann University of Arizona April 17, 2012 #12;Wynn's -algorithm for sequence accelerators using high

  12. Lab Breakthroughs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab

  13. Lab transitions employee giving campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makes uniqueLab

  14. Multiorbit induction accelerators

    SciTech Connect (OSTI)

    Zvontsov, A.A.; Kas'yanov, V.A.; Chakhlov, V.L.

    1985-09-01T23:59:59.000Z

    Large numbers of particles accelerated per cycle are made possible by accelerating simultaneously in several equilibrium orbits in a single betatron structure. (AIP)

  15. ACCELERATOR TEST FACILITY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY PHYSICS DEPARTMENT Effective: 04012004 Page 1 of 2 Subject: Accelerator Test Facility - Linear Accelerator General Systems Guide Prepared by: Michael Zarcone...

  16. Desired Improvements in Laser-Plasma Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for single- interface SWABSiC Si Prism + SiC Film Fabrication *Step 1: cutting Si discs (D5cm, t5mm) into 22x12x5 mm "bricks" *Step 2: growth of 1.7 m SiC in Lyon, France...

  17. New Lasers Pave Way for Tabletop Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeas Spring from|New

  18. Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Leemans, Wim [LOASIS Program, AFRD

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.

  19. Jefferson Lab Leadership Council - Robert D. McKeown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChief

  20. A facility for accelerator research and education at Fermilab

    SciTech Connect (OSTI)

    Church, Mike; Nagaitsev, Sergei; /Fermilab

    2009-01-01T23:59:59.000Z

    Fermilab is currently constructing the 'SRF Test Accelerator at the New Muon Lab' (NML). NML consists of a photo-emitted RF electron gun, followed by a bunch compressor, low energy test beamlines, SCRF accelerating structures, and high energy test beamlines. The initial primary purpose of NML will be to test superconducting RF accelerating modules for the ILC and for Fermilab's 'Project X' - a proposal for a high intensity proton source. The unique capability of NML will be to test these modules under conditions of high intensity electron beams with ILC-like beam parameters. In addition NML incorporates a photoinjector which offers significant tunability and especially the possibility to generate a bright electron beam with brightness comparable to state-of-the-art accelerators. This opens the exciting possibility of also using NML for fundamental beams research and tests of new concepts in beam manipulations and acceleration, instrumentation, and the applications of beams.