Sample records for lab ignites business

  1. Busy Week | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPractices SignBusy Week

  2. LANL, Sandia National Lab recognize New Mexico small businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL, Sandia National Lab recognize New Mexico small businesses for innovation LANL, Sandia recognized New Mexico small businesses for innovation Businesses include the Pueblo of...

  3. 2014 Doing Business with Argonne & FermiLab | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Doing Business with Argonne & FermiLab 2014 Doing Business with Argonne and Fermi National Laboratories 1 of 17 2014 Doing Business with Argonne and Fermi National Laboratories...

  4. Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business Award for 2013 Prestige award Prestige Maintenance staff (left to right) Sandra Coltrain, Operations Managers John...

  5. Jefferson Lab Work Officially Begins (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab

  6. Jefferson Lab awards upgrade contracts (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin

  7. Delivering Innovations That Create Jobs: National Lab Ignites Business for

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure you want toworldPowerHome | Department of EnergySolar2Entrepreneurs

  8. Delivering Innovations That Create Jobs: National Lab Ignites Business for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department ofDepartment9-92JanuaryProgramDecemberDefenseEntrepreneurs |

  9. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

  10. New National Labs Pilot Opens Doors to Small Businesses | Department...

    Office of Environmental Management (EM)

    Business Vouchers Pilot will connect clean energy innovators across the country with the top-notch scientists, engineers, and world-class facilities at National Laboratories. Goal...

  11. Jefferson Lab Recognizes Top Small Business Subcontractor for 2008 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab

  12. Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJefferson LabBusiness

  13. Small business given start by Jefferson Lab now $40 million company...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildflower International, Ltd. business owner and manager Kimberly deCastro accepts SURAJLab Small Disadvantaged Business Award Danny Lloyd, (left to right) JLab's purchasing and...

  14. Recap: Energy Efficiency at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's National Labs are helping consumers and businesses save energy and money.

  15. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2002-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  16. Sandia Energy - The CRF's Turbulent Combustion Lab (TCL) Captures...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CRF's Turbulent Combustion Lab (TCL) Captures the Moment of Hydrogen Ignition Home Energy Transportation Energy CRF Facilities News News & Events Research & Capabilities The CRF's...

  17. Laser ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    2003-01-01T23:59:59.000Z

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  18. Business Services | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries Batteries AnVirtualcapture8.1Most PopularHuman

  19. "Doing Business with Argonne and Fermi National Laboratories...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hosted their second annual business fair aimed at small businesses and start-ups. Pictured is Argonne Lab Director Peter Littlewood (left) talking with a small business...

  20. Laser ignition

    DOE Patents [OSTI]

    Early, James W.; Lester, Charles S.

    2004-01-13T23:59:59.000Z

    Sequenced pulses of light from an excitation laser with at least two resonator cavities with separate output couplers are directed through a light modulator and a first polarzing analyzer. A portion of the light not rejected by the first polarizing analyzer is transported through a first optical fiber into a first ignitor laser rod in an ignitor laser. Another portion of the light is rejected by the first polarizing analyzer and directed through a halfwave plate into a second polarization analyzer. A first portion of the output of the second polarization analyzer passes through the second polarization analyzer to a second, oscillator, laser rod in the ignitor laser. A second portion of the output of the second polarization analyzer is redirected by the second polarization analyzer to a second optical fiber which delays the beam before the beam is combined with output of the first ignitor laser rod. Output of the second laser rod in the ignitor laser is directed into the first ignitor laser rod which was energized by light passing through the first polarizing analyzer. Combined output of the first ignitor laser rod and output of the second optical fiber is focused into a combustible fuel where the first short duration, high peak power pulse from the ignitor laser ignites the fuel and the second long duration, low peak power pulse directly from the excitation laser sustains the combustion.

  1. Thermonuclear Ignition of Dark Galaxies

    E-Print Network [OSTI]

    J. Marvin Herndon

    2006-01-01T23:59:59.000Z

    thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of

  2. Laser preheat enhanced ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

  3. National Ignition Facility | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNRELTechnologies-National

  4. Princeton Plasma Physics Lab - National Ignition Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNet electricitylab-leadership

  5. NATIONAL IGNITION FACILITY | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174MoreMuseum| JeffersonNASCAR

  6. Dissertation Lab Dissertation Lab (D-Lab)

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Dissertation Lab TLB 5/1/2012 Dissertation Lab (D-Lab) May 29-May 31, 2012 Carlisle Suite, 2nd Floor University Center What is Dissertation Lab (D-Lab)? The Office of Graduate Studies Student Services offers D-Lab to help students progress through the difficult process of writing their dissertation

  7. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19T23:59:59.000Z

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  8. NYC MEDIA LAB 2 Metrotech Center, 10

    E-Print Network [OSTI]

    Aronov, Boris

    Justin Hendrix Named Executive Director of NYC Media Lab NEW YORK, New York ­ NYC Media Lab is pleased, testing, and commercializing new digital media business concepts. Prior to this role, Hendrix directed ! About NYC Media Lab NYC Media Lab connects companies seeking to advance new media technologies

  9. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1991-03-05T23:59:59.000Z

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  10. JLab Recognizes Security Firm as Top Small Business Subcontractor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recognizes Security Firm as Top Small Business Subcontractor for 2009 Small Business Mike Dallas, Jefferson Lab's chief operating officer, presents Nicole Stuart, Top Guard...

  11. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect (OSTI)

    Dr. Paul D. Ronney

    2003-09-12T23:59:59.000Z

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  12. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists ignite aluminum water mix Scientists ignite aluminum water mix Don't worry, that beer can you're holding is not going to spontaneously burst into flames. June 30, 2014...

  13. On thermonuclear ignition criterion at the National Ignition Facility

    SciTech Connect (OSTI)

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Batha, Steven H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-10-15T23:59:59.000Z

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirements of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.

  14. Equilibrium ignition for ICF capsules

    SciTech Connect (OSTI)

    Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.

    1993-12-31T23:59:59.000Z

    There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative.

  15. Burner ignition system

    DOE Patents [OSTI]

    Carignan, Forest J. (Bedford, MA)

    1986-01-21T23:59:59.000Z

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  16. Program of Study Lab Facilities

    E-Print Network [OSTI]

    Thomas, Andrew

    Program of Study Lab Facilities Financial Aid Applying Individuals in all areas of private of commercial, on- profit and government settings. While the market-place demand for students with graduate courses taught within Business, Computer Science, Education, Electrical and Computer Engineering

  17. Premix charge, compression ignition combustion system optimization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

  18. Plasma jet ignition device

    DOE Patents [OSTI]

    McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

    1985-01-15T23:59:59.000Z

    An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

  19. School of Business Administration

    E-Print Network [OSTI]

    /370 BA) 725-8003 Glen Pullen, Faculty/Staff Network Administrator 725-5748 Glen's pager 921-0660 Corey Tigner, Computer Lab Network Administrator 725-3724 Corey's cell phone 799-7341 SBA Help Line 725School of Business Administration Faculty Handbook #12;Message From the Dean Dear Colleague

  20. Small Business Program Extends Hand to Vendors, Entrepreneurs...

    Office of Environmental Management (EM)

    explain the national laboratory's needs for achieving its research missions. Nearly 50 people participated in the lab's Small Business Forum Nov. 13 at INL's new gateway research...

  1. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07T23:59:59.000Z

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  2. Investigation of spark discharge processes and ignition systems for spark-ignited internal combustion engines

    E-Print Network [OSTI]

    Khare, Yogesh Jayant

    2000-01-01T23:59:59.000Z

    includes an evaluation of the various types of conventional as well as high-energy ignition systems for lean burn engines. An experimental ignition system was constructed to determine the effect of ignition energy, spark plug electrode geometry and gas...

  3. TOWARD A STANDARD IGNITION SOURCE

    E-Print Network [OSTI]

    Volkingburg, David R. Van

    2011-01-01T23:59:59.000Z

    and ignited with a small propane torch. The top center ofhead is supplied with propane. In these experiments allin the pre-mixed mode with propane alone to simulate trash

  4. Exceptions to ignition source controls

    SciTech Connect (OSTI)

    SCHLOSSER, R.L.

    2003-03-01T23:59:59.000Z

    This document provides a basis for acceptance of risks associated with equipment that does not fully comply with the ignition source control requirements as they will be applied by the Technical Safety Requirements prepared to implement the documented safety analysis.

  5. Delivering Innovations That Create Jobs: National Lab Ignites...

    Broader source: Energy.gov (indexed) [DOE]

    DEP Shape Memory Therapeutics, Inc. is working to treat aneurysms with exclusively licensed LLNL-developed polymer materials that "remember" their shape. LLNL is a leader in the...

  6. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TechLab Inside the Museum Exhibitions Norris Bradbury Museum Lobby Defense Gallery Research Gallery History Gallery TechLab Virtual Exhibits invisible utility element TechLab...

  7. National Ignition Campaign Hohlraum Energetics

    SciTech Connect (OSTI)

    Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

    2009-11-16T23:59:59.000Z

    The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

  8. IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY

    SciTech Connect (OSTI)

    Moses, E

    2009-06-22T23:59:59.000Z

    The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

  9. SCB thermite igniter studies

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.; Wackerbarth, D.E. [Sandia National Labs., Albuquerque, NM (United States); Mohler, J.H. [Energetic Materials Associates, Inc., Vero Beach, FL (United States)

    1996-12-31T23:59:59.000Z

    The authors report on recent studies comparing the ignition threshold of temperature cycled, SCB thermite devices with units that were not submitted to temperature cycling. Aluminum/copper-oxide thermite was pressed into units at two densities, 45% of theoretical maximum density (TMD) or 47% of TMD. Half of each of the density sets underwent three thermal cycles; each cycle consisted of 2 hours at 74 C and 2 hours at {minus}54 C, with a 5 minute maximum transfer time between temperatures. The temperature cycled units were brought to ambient temperature before the threshold testing. Both the density and the thermal cycling affected the all-fire voltage. Using a 5.34 {micro}F CDU (capacitor discharge unit) firing set, the all-fire voltage for the units that were not temperature cycled increased with density from 32.99 V (45% TMD) to 39.32 V (47% TMD). The all-fire voltages for the thermally cycled units were 34.42 V (45% TMD) and 58.1 V (47% TMD). They also report on no-fire levels at ambient temperature for two component designs; the 5 minute no-fire levels were greater than 1.2 A. Units were also subjected to tests in which 1 W of RF power was injected into the bridges at 10 MHz for 5 minutes. The units survived and fired normally afterwards. Finally, units were subjected to pin-to-pin electrostatic discharge (ESD) tests. None of the units fired upon application of the ESD pulse, and all of the tested units fired normally afterwards.

  10. Jefferson Lab electron beam charges up (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12

  11. Jefferson Lab finds its man Mont (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges up Michael Schwartz Inside|

  12. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    (SSP) through three strategic objectives: · Achieve thermonuclear ignition in the laboratory experiments to include access to thermonuclear burn conditions in the laboratory, a unique and unprecedented to demonstrate thermonuclear ignition in the laboratory. The NIF is a 192-bea

  13. IGNITE Leadership Fellows 2012--2013 Application

    E-Print Network [OSTI]

    Blanco, Philip R.

    IGNITE Leadership Fellows 2012--2013 Application Instructions: Please complete the form below in its entirety. Applicants for the IGNITE Leadership Fellows cohort are expected to participate fully, and be committed to their own personal and leadership development. Name

  14. Thermonuclear Ignition of Dark Galaxies

    E-Print Network [OSTI]

    J. Marvin Herndon

    2006-04-13T23:59:59.000Z

    Dark matter is thought to be at least an order of magnitude more abundant than luminous matter in the Universe, but there has yet to be an unambiguous identification of a wholly dark, galactic-scale structure. There is, however, increasing evidence that VIRGOHI 21 may be a dark galaxy. If VIRGOHI 21 turns out to be composed of dark stars, having approximately the same mass of stars found in luminous galaxies, it will pose an enigma within the framework of current astrophysical models, but will provide strong support for my concept, published in 1994 in the Proceedings of the Royal Society of London, of the thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of galactic thermonuclear ignition is discussed from that framework and leads to my suggestion that the distribution of luminous stars in a galaxy may simply be a reflection of the galactic distribution of the heavy elements.

  15. A Business Process Explorer: Recovering Business Processes from Business Applications

    E-Print Network [OSTI]

    Zou, Ying

    processes, and visualizing business processes using commercial business process modeling tools, such as IBM WebSphere Business Modeler (WBM) [4]. Traceability between business processes and business1 A Business Process Explorer: Recovering Business Processes from Business Applications Jin Guo

  16. Method for reducing ignition delay of fuels

    SciTech Connect (OSTI)

    Hoppie, L.O.

    1984-05-15T23:59:59.000Z

    A method of reducing ignition delay /tau/, of fuels to negligible values and negligible differences is disclosed. Fuels conditioned to have such negligible values and differences are readily used in multiple fuel engines, such fuels self-ignite substantially instantaneously when injected into an oxidant, require substantially no heat transfer from the oxidant to effect the self-ignition, and the self-ignition is sufficient to sustain continued combustion.

  17. Integral magnetic ignition pickup trigger

    SciTech Connect (OSTI)

    King, R.

    1992-10-27T23:59:59.000Z

    This patent describes a trigger system for the ignition system of an internal combustion engine having a crankcase with a rotatable crankshaft therein, and a flywheel on one end of the crankcase connected to an end of the crankshaft. It comprises: a nonferromagnetic disk-shaped hub for connection to the crankshaft and rotatable therewith on the end opposite the flywheel; and a stationary sensor mounted adjacent the hub for detecting impulses from the magnetically responsive elements as the hub rotates and utilizing the impulses to trigger the ignition system.

  18. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

    1998-01-01T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

  19. Laser ablation based fuel ignition

    DOE Patents [OSTI]

    Early, J.W.; Lester, C.S.

    1998-06-23T23:59:59.000Z

    There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

  20. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, A.; Haws, L.D.; Mohler, J.H.

    1983-05-13T23:59:59.000Z

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  1. Integral low-energy thermite igniter

    DOE Patents [OSTI]

    Gibson, Albert (Dayton, OH); Haws, Lowell D. (Springboro, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1984-08-14T23:59:59.000Z

    In a thermite igniter/heat source comprising a container holding an internal igniter load, there is provided the improvement wherein the container consists essentially of consumable consolidated thermite having a low gas output upon combustion, whereby upon ignition, substantially all of the container and said load is consumed with low gas production.

  2. Maintenance FUSION IGNITION RESEARCH EXPERIMENT

    E-Print Network [OSTI]

    Insulation Enclosure Remote Maintenance Module FUSION IGNITION RESEARCH EXPERIMENT SYSTEM coils. The magnets are liquid nitrogen cooled and the entire device is surrounded by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape that maximizes shielding of ex

  3. EXCEPTIONS TO IGNITION SOURCE CONTROLS

    SciTech Connect (OSTI)

    SCHLOSSER, R.L.

    2003-09-25T23:59:59.000Z

    This document provides a basis for acceptance of risks associated with equipment and materials that do not fully comply with the ignition source controls as they are applied by the Technical Safety Requirements prepared to implement the controls required by the documented safety analysis for tank farms facilities.

  4. Laser turns 50 (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sandLaserLaserSecurityLaser ray

  5. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLab

  6. The Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2Dand WaterThe Future isThe IronThe Lab The

  7. Piezoelectric Ignition of Nanocomposite Energetic Materials

    SciTech Connect (OSTI)

    Eric Collins; Michelle Pantoya; Andreas A. Neuber; Michael Daniels; Daniel Prentice

    2014-01-01T23:59:59.000Z

    Piezoelectric initiators are a unique form of ignition for energetic material because the current and voltage are tied together by impact loading on the crystal. This study examines the ignition response of an energetic composite composed of aluminum and molybdenum trioxide nanopowders to the arc generated from a lead zirconate and lead titanate piezocrystal. The mechanical stimuli used to activate the piezocrystal varied to assess ignition voltage, power, and delay time of aluminum–molybdenum trioxide for a range of bulk powder densities. Results show a high dielectric strength leads to faster ignition times because of the higher voltage delivered to the energetic. Ignition delay is under 0.4 ms, which is faster than observed with thermal or shock ignition. Electric ignition of composite energetic materials is a strong function of interparticle connectivity, and thus the role of bulk density on electrostatic discharge ignition sensitivity is a focus of this study. Results show that the ignition delay times are dependent on the powder bulk density with an optimum bulk density of 50%. Packing fractions and electrical conductivity were analyzed and aid in explaining the resulting ignition behavior as a function of bulk density.

  8. 143Business Administration BUSINESS ADMINISTRATION

    E-Print Network [OSTI]

    Dresden, Gregory

    143Business Administration BUSINESS ADMINISTRATION (BUS) PROFESSORS CLINE, DEAN, KESTER VISITING ASSOCIATE PROFESSOR GIBBS ASSISTANT PROFESSOR REITER MAJOR A major in business administration leading at least 24 credits in business administration and 26 credits not in business administration, as follows: 1

  9. Investigation of ignition of thermoplastics through the Hot Wire Ignition Test

    E-Print Network [OSTI]

    De Araujo, Luiz Claudio Bonilla

    1998-01-01T23:59:59.000Z

    The purpose of this research was to investigate the ignition phenomena of selected polymeric materials using the Hot Wire Ignition Test. This test is prescribed by Underwriters Laboratories as one of various requirements for polymeric materials used...

  10. Fast ignition of inertial confinement fusion targets

    SciTech Connect (OSTI)

    Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-01-15T23:59:59.000Z

    Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

  11. Modelling piloted ignition of wood and plastics

    SciTech Connect (OSTI)

    Blijderveen, Maarten van [TNO, Schoemakerstraat 97, 2628 VK Delft (Netherlands); University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Bramer, Eddy A. [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands); Brem, Gerrit, E-mail: g.brem@utwente.nl [University of Twente, Department of Thermal Engineering, Drienerlolaan 5, 7522 NB Enschede (Netherlands)

    2012-09-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  12. Heating National Ignition Facility, Realistic Financial Planning...

    Broader source: Energy.gov (indexed) [DOE]

    628 National Ignition Facility Realistic Financial Planning Rapid Modification are Essential Lessons Learned Report Apr 2010.pdf More Documents & Publications EIS-0236: Record of...

  13. Igniter containing titanium hydride and potassium perchlorate

    DOE Patents [OSTI]

    Dietzel, Russel W. (Albuquerque, NM); Leslie, William B. (Albuquerque, NM)

    1976-01-01T23:59:59.000Z

    An explosive device is described which employs a particular titanium hydride-potassium perchlorate composition directly ignitible by an electrical bridgewire.

  14. Control of Thermal Ignition in Gasoline Engines C. J. Chiang and A. G. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    (HCCI) en- gine, is fundamentally different from the spark ignition (SI) and the compression ignition

  15. High-Efficiency Clean Combustion Design for Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

  16. Effects of Ignition Quality and Fuel Composition on Critical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Effects of Ignition Quality and Fuel Composition on Critical Equivalence Ratio Our research shows...

  17. Advanced CFD Models for High Efficiency Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CFD Models for High Efficiency Compression Ignition Engines Advanced CFD Models for High Efficiency Compression Ignition Engines Advanced CFD models for high efficiency...

  18. Improving the Efficiency of Spark Ignited, Stoichiometric Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spark Ignited, Stoichiometric Natural Gas Engines Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines This work focused on using camless engine technology...

  19. High Fidelity Modeling of Premixed Charge Compression Ignition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fidelity Modeling of Premixed Charge Compression Ignition Engines High Fidelity Modeling of Premixed Charge Compression Ignition Engines Most accurate and detailed chemical kinetic...

  20. Fuel Effects on Ignition and Their Impact on Advanced Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

  1. alcohol ignition interlock: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering 58 The National Ignition Campaign Presentation to Plasma Physics and...

  2. High Efficiency GDI Engine Research, with Emphasis on Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    High Efficiency GDI Engine Research, with Emphasis on Ignition Systems High Efficiency GDI Engine Research, with Emphasis on Ignition Systems 2013 DOE Hydrogen and Fuel Cells...

  3. ENHANCED IGNITION FOR I.C. ENGINES WITH PREMIXED CHARGE

    E-Print Network [OSTI]

    Dale, J.D.

    2013-01-01T23:59:59.000Z

    Igniter for Internal Combustion Engines," SAE Paper 760764.Emissions from an Internal Combustion Engine,'' Combusti and11 Laser Ignited Internal Combustion Engine -An Experimental

  4. Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel...

  5. Mutual colliding impact fast ignition

    SciTech Connect (OSTI)

    Winterberg, Friedwardt, E-mail: winterbe@unr.edu [Department of Physics, College of Science, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0220 (United States)

    2014-09-15T23:59:59.000Z

    It is proposed to apply the well established colliding beam technology of high energy physics to the fast hot spot ignition of a highly compressed DT (deuterium-tritium) target igniting a larger D (deuterium) burn, by accelerating a small amount of solid deuterium, and likewise a small amount of tritium, making a head-on collision in the center of the target, projecting them through conical ducts situated at the opposite side of the target and converging in its center. In their head-on collision, the relative collision velocity is 5/3 times larger compared to the collision velocity of a stationary target. The two pieces have for this reason to be accelerated to a smaller velocity than would otherwise be needed to reach upon impact the same temperature. Since the velocity distribution of the two head-on colliding projectiles is with its two velocity peaks non-Maxwellian, the maximum cross section velocity product turns out to be substantially larger than the maximum if averaged over a Maxwellian. The D and T projectiles would have to be accelerated with two sabots driven by powerful particle or laser beams, permitting a rather large acceleration length. With the substantially larger cross section-velocity product by virtue of the non-Maxwellian velocity distribution, a further advantage is that the head-on collision produces a large magnetic field by the thermomagnetic Nernst effect, enhancing propagating burn. With this concept, the ignition of the neutron-less hydrogen-boron (HB{sup 11}) reaction might even be possible in a heterogeneous assembly of the hydrogen and the boron to reduce the bremsstrahlung-losses, resembling the heterogeneous assembly in a graphite-natural uranium reactor, there to reduce the neutron losses.

  6. Copyright 2004 Auto-ID Labs, All Rights Reserved The Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    Reserved Several Types of Webs · The Web of Information HTML and the World Wide Web · The Web of Things-ID Labs, All Rights Reserved A Special Word of Thanks to my Colleagues · Stuart J. Allen - Professor Reserved A Special Word of Thanks to my Colleagues (continued) · Nhat-So Lam ­ Family Retail Business

  7. Scientists ignite aluminum water mix

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter PrincipalfuelTorus ExperimentScientists ignite aluminum

  8. Fusion Ignition Research Experiment Engineering Status Report

    E-Print Network [OSTI]

    of the world. The FIRE web site has been chosen as a selection for the Scout Report for Science and EngineeringFusion Ignition Research Experiment -FIRE- Engineering Status Report For Fiscal Year 2000 Issued on the Fusion Ignition Research Experiment (FIRE), a tokamak designed for burning plasma research. Engineering

  9. Weapons Activities/ Inertial Confinement Fusion Ignition

    E-Print Network [OSTI]

    Facility (NIF) will extend HEDP experiments to include access to thermonuclear burn conditions's Stockpile Stewardship Program (SSP) through three strategic objectives: Achieve thermonuclear ignition thermonuclear ignition to the national nuclear weapons program was one of the earliest motivations of the ICF

  10. Managing transient behaviors of a dual mode spark ignition-- controlled auto ignition engine with a variable valve timing system

    E-Print Network [OSTI]

    Santoso, Halim G. (Halim Gustiono), 1975-

    2005-01-01T23:59:59.000Z

    Gasoline Homogeneous Charge Compression Ignition (HCCI) engine has the potential of providing better fuel economy and emissions characteristics than current spark ignition engines. One implementation of this technology ...

  11. LANL selects two small businesses for water monitoring work

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    today announced it has selected two small businesses to compete for up to 80 million in well drilling and groundwater monitoring work. The work will strengthen the Lab's ability...

  12. Argonne, Fermi national laboratories to welcome local businesses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than 140 people will be in attendance representing 84 local small businesses and start-ups. "The labs have not fully tapped their potential to galvanize their local economies,"...

  13. Business Name:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Name: AECOM Technology Services, Inc. Business Size: Large Point of Contact: Frank Coffman Email: frank.coffman@aecom.com Phone Number: 714-504-0400 Business Name: AppleOne...

  14. Instrument Development Lab | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fabrication Circuit boards Component integration Custom enclosures Microfabrication 3D Printing Facilities and equipment Fully equipped electronics development lab Equipment...

  15. Business Administratio

    E-Print Network [OSTI]

    Collins, Gary S.

    #12;#12;#12;Business Administratio n 579 MBA Capstone A Catalog Description: V 1 (1-3) May be repeated for credit. Letter grading. Prereq: Admission to the MBA, Master of Accounting, or Business PhD programs. Analyze, evaluate, and recommend management actions for a specific strategic business project

  16. FINANCIAL & BUSINESS SERVICES Financial & Business Services

    E-Print Network [OSTI]

    FINANCIAL & BUSINESS SERVICES Financial & Business Services Presidential Briefing #12;FINANCIAL & BUSINESS SERVICES Financial & Business Services (FBS) · FBS currently has approx. 140 employees · We) ­ Financial Solutions (6) ­ Travel, Training & Policy Development (6) #12;FINANCIAL & BUSINESS SERVICES Our

  17. Laser ignition of aluminum nanoparticles in air

    SciTech Connect (OSTI)

    Sandstrom, M. M. (Mary M.); Oschwald, D. M. (David M); Son, S. F. (Steven F.)

    2004-01-01T23:59:59.000Z

    This paper reports on recent experiments of the ignition of nanoaluminum in air by CO{sub 2} laser heating. Ignition time and temperature were measured as a function of Al particle size and laser power. The ignition time was determined by high-speed digital images and frrst light as determined by a photodiode. The ignition delay increases with increasing particle size, and the decreasing laser power. Two stage burning is observed. The first reaction takes place on the surface of the powder sample and moves from the center to the edges followed by the second reaction, which takes place within the bulk of the sample. As the particles size increases the material is less likely to burn through out, leaving behind unreacted Al powder.

  18. National Ignition Facility Management Descriptions Revision 9

    SciTech Connect (OSTI)

    Moses, E I

    2004-01-01T23:59:59.000Z

    The purpose of this document is to describe the National Ignition Facility (NIF) Project Organization and the top-level roles and responsibilities of the managers charged with executing the Project.

  19. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards upgrade

  20. Ignition methods and apparatus using microwave energy

    DOE Patents [OSTI]

    DeFreitas, Dennis M. (Oxford, NY); Darling, Timothy W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM); Rees, Daniel E. (Los Alamos, NM)

    1997-01-01T23:59:59.000Z

    An ignition apparatus for a combustor includes a microwave energy source that emits microwave energy into the combustor at a frequency within a resonant response of the combustor, the combustor functioning as a resonant cavity for the microwave energy so that a plasma is produced that ignites a combustible mixture therein. The plasma preferably is a non-contact plasma produced in free space within the resonant cavity spaced away from with the cavity wall structure and spaced from the microwave emitter.

  1. BUSINESS SENSITIVE

    Energy Savers [EERE]

    that this action supports), is as follows: (State the following in bullet format BUSINESS SENSITIVE Funding is being provided for Notice Number (fill-in), entitled ("provide...

  2. BUSINESS SENSITIVE

    Broader source: Energy.gov (indexed) [DOE]

    for sample table.) Provide a short description of financial assistance effort. BUSINESS SENSITIVE The grant number is (fill-in). The selectee is (name of the selectee), located...

  3. BUSINESS SENSITIVE

    Broader source: Energy.gov (indexed) [DOE]

    appropriated funds dollar value of this award is ( dollar amount to the nearest BUSINESS SENSITIVE dollar to include cost share if it applies; list cost share separately) from...

  4. BUSINESS SENSITIVE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that this action supports), is as follows: (State the following in bullet format BUSINESS SENSITIVE Funding is being provided for Notice Number (fill-in), entitled "provide...

  5. National Ignition Facility and Managing Location, Component, and State

    SciTech Connect (OSTI)

    Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

    2011-07-25T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

  6. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    SciTech Connect (OSTI)

    Westbrook, C.K.

    2000-07-07T23:59:59.000Z

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  7. Analytical model for fast-shock ignition

    SciTech Connect (OSTI)

    Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

    2014-07-15T23:59:59.000Z

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

  8. Thermonuclear supernova simulations with stochastic ignition

    E-Print Network [OSTI]

    W. Schmidt; J. C. Niemeyer

    2005-10-14T23:59:59.000Z

    We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.

  9. Fuel effects in homogeneous charge compression ignition (HCCI) engines

    E-Print Network [OSTI]

    Angelos, John P. (John Phillip)

    2009-01-01T23:59:59.000Z

    Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

  10. National Ignition Facility project acquisition plan revision 1

    SciTech Connect (OSTI)

    Clobes, A.R.

    1996-10-01T23:59:59.000Z

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

  11. College of Business College of Business

    E-Print Network [OSTI]

    Stephens, Graeme L.

    College of Business _______________ 2.7 Page 1 College of Business Office in Rockwell Hall, Room, Associate Dean, Graduate Programs MAJOR IN BUSINESS ADMINISTRATION WITH CONCENTRATIONS IN Accounting Accounting--Business Education Finance Information Systems Marketing Marketing Education Organization

  12. Low current extended duration spark ignition system

    DOE Patents [OSTI]

    Waters, Stephen Howard; Chan, Anthony Kok-Fai

    2005-08-30T23:59:59.000Z

    A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.

  13. Ignition of deuterium-tritium fuel targets

    DOE Patents [OSTI]

    Musinski, D.L.; Mruzek, M.T.

    1991-08-27T23:59:59.000Z

    Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

  14. Ignition of deuterium-trtium fuel targets

    DOE Patents [OSTI]

    Musinski, Donald L. (Saline, MI); Mruzek, Michael T. (Britton, MI)

    1991-01-01T23:59:59.000Z

    A method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom.

  15. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab News

  16. LAB #8 Numerical Methods

    E-Print Network [OSTI]

    2005-10-20T23:59:59.000Z

    Page 1. LAB #8. Numerical Methods. Goal: The purpose of this lab is to explain how computers numerically ... Also you will examine what .... (7) Now consider the differential equation ... 3-exp(2*y)+sqrt(t)/y; (Don't forget the “;” at the end.).

  17. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

  18. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01T23:59:59.000Z

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  19. Chaotic Combustion in Spark Ignition Engines

    E-Print Network [OSTI]

    M. Wendeker; J. Czarnigowski; G. Litak; K. Szabelski

    2002-12-27T23:59:59.000Z

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process.

  20. Lab Breakthrough: Microelectronic Photovoltaics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Lab Breakthrough: Microelectronic Photovoltaics Lab Breakthrough: Microelectronic Photovoltaics June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV)...

  1. National Labs | Department of Energy

    Office of Environmental Management (EM)

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  2. Business Services Business Casual Dress Policy

    E-Print Network [OSTI]

    Holland, Jeffrey

    Business Services Business Casual Dress Policy A business casual dress policy calls for everyone general parameters for proper business casual dress within Business Services and to help you make appropriate dress decisions. Keep in mind that business casual does not mean weekend or sport casual

  3. Business Application Instructions Section 2: Business Information

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Business Application Instructions Section 2: Business Information New (or "Eligible") business: means a business that satisfies all of the following tests: a) the business must not be operating; b) the business must not be moving existing jobs into the Tax-Free NY Area from another area

  4. Lubar School of Business MBAMaster of Business

    E-Print Network [OSTI]

    Saldin, Dilano

    business foundation based on traditional theories with current models and applications in businessLubar School of Business MBAMaster of Business Administration #12;AACSB Accreditation The Lubar School of Business is accredited by the Association to Advance Collegiate Schools of Business (AACSB

  5. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30T23:59:59.000Z

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables such as internal dilution level and charge temperature. As a result, HCCI combustion has limited robustness when variables exceed the required narrow ranges determined in this program. HCCI combustion is also not available for the entire range of production engine speeds and loads, (i.e., the dynamic range is limited). Thus, regular SI combustion must be employed for a majority of the full dynamic range of the engine. This degrades the potential fuel economy impact of HCCI combustion. Currently-available combustion control actuators for the simple valve train system engine do not have the authority for continuous air - fuel or torque control for managing the combustion mode transitions between SI and HCCI and thus, require further refinement to meet customer refinement expectations. HCCI combustion control sensors require further development to enable robust long-term HCCI combustion control. Finally, the added technologies required to effectively manage HCCI combustion such as electric cam phasers, central direct fuel injection, cylinder pressure sensing, high-flow exhaust gas recirculation system, etc. add excessive on-engine cost and complexity that erodes the production-viability business

  6. BUSINESS SENSITIVE

    Broader source: Energy.gov (indexed) [DOE]

    short description of financial assistance effort. The grant number is (fill-in). BUSINESS SENSITIVE The selectee is (name of the selectee), located in (name city and state). Note:...

  7. Roadmap: Business Management Technology Business Administration Associate of Applied Business

    E-Print Network [OSTI]

    Sheridan, Scott

    Roadmap: Business Management Technology ­ Business Administration ­ Associate of Applied Business Credit Hours] ACTT 11000 Accounting I-Financial 4 BMRT 11000 Introduction to Business 3 COMT 11000 21000 Business Law and Ethics I 3 BMRT 21011 Fundamentals of Financial Management 3 BMRT 21050

  8. National Ignition Facility Title II Design Plan

    SciTech Connect (OSTI)

    Kumpan, S

    1997-03-01T23:59:59.000Z

    This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

  9. FUSION IGNITION RESEARCH EXPERIMENT SYSTEM INTEGRATION *

    E-Print Network [OSTI]

    FUSION IGNITION RESEARCH EXPERIMENT SYSTEM INTEGRATION * T. Brown Princeton Plasma Physics-- This paper describes the current status of the FIRE configuration and the integration of the major subsystem vessel integrates cooling and shielding in a shape that maximizes shielding of ex-vessel components

  10. FUSION IGNITION RESEARCH EXPERIMENT SYSTEM INTEGRATION *

    E-Print Network [OSTI]

    FUSION IGNITION RESEARCH EXPERIMENT SYSTEM INTEGRATION * T. Brown Princeton Plasma Physics of the FIRE configuration and the integration of the major subsystem components. FIRE has a major by a thermal enclosure. The double wall vacuum vessel integrates cooling and shielding in a shape

  11. Impacts assessment for the National Ignition Facility

    SciTech Connect (OSTI)

    Bay Area Economics

    1996-12-01T23:59:59.000Z

    This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

  12. Dark matter ignition of type Ia supernovae

    E-Print Network [OSTI]

    Bramante, Joseph

    2015-01-01T23:59:59.000Z

    Recent studies of low redshift type Ia supernovae (SNIa) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SNIa progenitors. We show that $0.1-10$ PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SNIa. We combine data on SNIa masses with data on the ages of SNIa-adjacent stars. This combination reveals a $ 3 \\sigma$ inverse correlation between SNIa masses and ignition ages, which could result from increased capture of dark matter in 1.4 versus 1.1 solar mass white dwarfs. Future studies of SNIa in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SNI...

  13. Jefferson Lab Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  14. Jefferson Lab Visitor's Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  15. Berkeley Lab - ARRA - Home

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility August 18, 2011 Tools and Toys for Builders: New Test Center for Low-Energy Buildings July 19, 2011 Moving Data at the Speed of Science: Berkeley Lab Lays Foundation...

  16. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  17. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22T23:59:59.000Z

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  18. A Concept Exploration Program in Fast Ignition Inertial Fusion — Final Report

    SciTech Connect (OSTI)

    Stephens, Richarad Burnite [General Atomics] [General Atomics; Freeman, Richard R. [The Ohio State University] [The Ohio State University; Van Woekom, L. D. [The Ohio State University] [The Ohio State University; Key, M. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; MacKinnon, Andrew J. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics] [General Atomics

    2014-02-27T23:59:59.000Z

    The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities – at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in §2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in §5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

  19. HPI Future SOC Lab: Call for Projects Next generation technology, such as multicore CPUs as well as increasing

    E-Print Network [OSTI]

    Weske, Mathias

    - Memory Computing Technology (SAP HANA). The SAP Business ByDesign systemHPI Future SOC Lab: Call for Projects Next generation technology, such as multicore, developers of service-oriented computing systems have to understand

  20. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  1. business.rutgers.edu Rutgers Business School

    E-Print Network [OSTI]

    Lin, Xiaodong

    business.rutgers.edu Rutgers Business School #12;The mission of Rutgers Business School - Newark economy by integrating science and technology into business education and research. Talented students to make positive contributions to the economy of New Jersey and the world. Rutgers Business School

  2. Business Honors Program A Bright Business Future

    E-Print Network [OSTI]

    de Lijser, Peter

    Business Honors Program Achieve! #12;2page A Bright Business Future If you are a talented no further. The Business Honors Program at Mihaylo College of Business and Economics provides a socially and professionally stimulating academic environment to a select group of business administration students. As you

  3. College of Business College of Business

    E-Print Network [OSTI]

    College of Business _______________ 2.6 Page 1 College of Business Office in Rockwell Hall, Room Associate Dean Professor John Hoxmeier, Associate Dean MAJOR IN BUSINESS ADMINISTRATION WITH CONCENTRATIONS UNDERGRADUATE MINOR Business Administration UNDERGRADUATE PROGRAMS The College of Business is accredited

  4. NETL Business Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Opportunities Business Forms Contacts NETL offers many business opportunities, using a variety of contract and funding vehicles. Solicitations and Funding Opportunities...

  5. Initiating Business with INL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Initiating Business with INL The INL Small Business Program Office (SBPO) serves as the advocate and point of contact for businesses seeking contracting opportunities. We ask you...

  6. Fast Ignition Experimental and Theoretical Studies

    SciTech Connect (OSTI)

    Akli, K

    2006-10-20T23:59:59.000Z

    We are becoming dependent on energy more today than we were a century ago, and with increasing world population and booming economies, sooner or later our energy sources will be exhausted. Moreover, our economy and welfare strongly depends on foreign oil and in the shadow of political uncertainties, there is an urgent need for a reliable, safe, and cheap energy source. Thermonuclear fusion, if achieved, is that source of energy which not only will satisfy our demand for today but also for centuries to come. Today, there are two major approaches to achieve fusion: magnetic confinement fusion (MFE) and inertial confinement fusion (ICF). This dissertation explores the inertial confinement fusion using the fast ignition concept. Unlike the conventional approach where the same laser is used for compression and ignition, in fast ignition separate laser beams are used. This dissertation addresses three very important topics to fast ignition inertial confinement fusion. These are laser-to-electron coupling efficiency, laser-generated electron beam transport, and the associated isochoric heating. First, an integrated fast ignition experiment is carried out with 0.9 kJ of energy in the compression beam and 70 J in the ignition beam. Measurements of absolute K{sub {alpha}} yield from the imploded core revealed that about 17% of the laser energy is coupled to the suprathermal electrons. Modeling of the transport of these electrons and the associated isochoric heating, with the previously determined laser-to-electron conversion efficiency, showed a maximum target temperature of 166 eV at the front where the electron flux is higher and the density is lower. The contribution of the potential, induced by charge separation, in opposing the motion of the electrons was moderate. Second, temperature sensitivity of Cu K{sub {alpha}} imaging efficiency using a spherical Bragg reflecting crystal is investigated. It was found that due to the shifting and broadening of the K{sub {alpha}} line, with increasing temperature, both the brightness and the pattern of K{sub {alpha}} intensity are affected. Finally, x-ray spectroscopy of a 500 J 0.7 ps laser-solid interactions showed the formation of a hot surface layer({approx} 1 {micro}m) at the front of the target. PIC simulations confirm surface heating.

  7. Business Operations Calendar: FY 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJefferson LabBusiness7A2-479193 (5/8

  8. Business Operations Calendar: FY 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJefferson LabBusiness7A2-479193 (5/84

  9. More than 150 attend second joint Argonne-Fermilab small business...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A small business owner has the floor during a breakout session on Procurement (i.e, services and products the labs purchase and how that process works). Click to enlarge. A small...

  10. Radiological assessments for the National Ignition Facility

    SciTech Connect (OSTI)

    Hong, Kou-John; Lazaro, M.A.

    1996-08-01T23:59:59.000Z

    The potential radiological impacts of the National Ignition Facility (NIF), a proposed facility for fusion ignition and high energy density experiments, were assessed for five candidate sites to assist in site selection. The GENII computer program was used to model releases of radionuclides during normal NIF operations and a postulated accident and to calculate radiation doses to the public. Health risks were estimated by converting the estimated doses into health effects using a standard cancer fatality risk factor. The greatest calculated radiation dose was less than one thousandth of a percent of the dose received from natural background radiation; no cancer fatalities would be expected to occur in the public as the result of normal operations. The highest dose conservatively estimated to result from a postulated accident could lead to one in one million risk of cancer.

  11. Transport Simulations for Fast Ignition on NIF

    SciTech Connect (OSTI)

    Strozzi, D J; Tabak, M; Grote, D P; Cohen, B I; Shay, H D; Town, R J; Kemp, A J; Key, M

    2009-10-26T23:59:59.000Z

    We are designing a full hydro-scale cone-guided, indirect-drive FI coupling experiment, for NIF, with the ARC-FIDO short-pulse laser. Current rad-hydro designs with limited fuel jetting into cone tip are not yet adequate for ignition. Designs are improving. Electron beam transport simulations (implicit-PIC LSP) show: (1) Magnetic fields and smaller angular spreads increase coupling to ignition-relevant 'hot spot' (20 um radius); (2) Plastic CD (for a warm target) produces somewhat better coupling than pure D (cryogenic target) due to enhanced resistive B fields; and (3) The optimal T{sub hot} for this target is {approx} 1 MeV; coupling falls by 3x as T{sub hot} rises to 4 MeV.

  12. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect (OSTI)

    Hansen, R

    2012-04-05T23:59:59.000Z

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

  13. Stable transport in proton driven Fast Ignition

    E-Print Network [OSTI]

    Bret, A

    2009-01-01T23:59:59.000Z

    Proton beam transport in the context of proton driven Fast Ignition is usually assumed to be stable due to protons high inertia, but an analytical analysis of the process is still lacking. The stability of a charge and current neutralized proton beam passing through a plasma is therefore conducted here, for typical proton driven Fast Ignition parameters. In the cold regime, two fast growing Buneman-like modes are found, with an inverse growth-rate much smaller than the beam time-of-flight to the target core. The stability issue is thus not so obvious, and Kinetic effects are investigated. One unstable mode is found stabilized by the background plasma protons and electrons temperatures. The second mode is also damped, providing the proton beam thermal spread is larger than $\\sim$ 10 keV. In Fusion conditions, the beam propagation should therefore be stable.

  14. Ignition quality determination of marine diesel fuels

    SciTech Connect (OSTI)

    Gulder, O.L.; Glavincevski, B.; Kassinger, R.

    1987-01-01T23:59:59.000Z

    Ignition quality of heavy marine diesel fuels is considered to be an important parameter. The standard procedures used to quantify this parameter for distillate fuels are not applicable to residual fuels. Proton NMR Spectroscopy was demonstrated to be an effective tool to characterize the ''global'' fuel composition of commercially available fuels covering a wide range of ignition quality. Proton NMR data from these fuels were used to determine a cetane number (CNp) for the heavy fuels using procedures previously reported for distillate fuels. The validity of this instrumental technique for determining CNp was corroborated by actual ASTM D 613 engine tests on a number of commercially available fuels, run as blends with secondary reference fuels. Viscosity and density values of the analyzed heavy fuels were regressed against predicted cetane numbers to obtain a correlation expression.

  15. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  16. SPINTHIR: An ignition model for gas turbines

    E-Print Network [OSTI]

    Neophytou, A; Mastorakos, E

    2012-08-28T23:59:59.000Z

    that the spark characteristics and location used in the experiments, developed over a number of years by trial-and-error methods, are indeed close to optimum. 1. Introduction Aircraft engines must satisfy high-altitude relight capability. Inexpensive models... and shape of the spark, for the same spark energy, that lead to the best ignition behaviour are explored. Firstly, we introduce the mathematical model and the combustor investigated. Then we present the results computed with the model. The paper concludes...

  17. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01T23:59:59.000Z

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  18. Business communications

    SciTech Connect (OSTI)

    Bratten, W.A.; Emrich, M.L.

    1989-01-01T23:59:59.000Z

    Over the last few years, the need to communicate worldwide has produced positive results among standards bodies. This enabled differing factions to resolve conflicts among higher layer protocols. The European communities regulatory bodies will gain considerable flexibility with a uniform standard. At present X.400 stands ready to provide global business communication. 9 refs., 1 fig.

  19. China Business Development

    E-Print Network [OSTI]

    Einmahl, Uwe

    China Business Development Postgraduate Programme #12;Programme: China Business Development with China: Intercultural Management 3 1 Daily life and business behaviour explained from a cultural perspective Chinese strategic thinking China's political constellation and its impact on business life Human

  20. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

    2008-09-02T23:59:59.000Z

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  1. NREL: Business Opportunities - Small Business Commitment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Commitment USDOE'14 Tampa, Florida, June 10-12, 2014 Central to NREL's mission is our commitment to small business through a comprehensive and mature outreach...

  2. Science Education Lab | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter Principalfuel cells" Find Science DMZ CaseScienceLab

  3. Ignitor with stable low-energy thermite igniting system

    DOE Patents [OSTI]

    Kelly, Michael D. (West Alexandria, OH); Munger, Alan C. (Miamisburg, OH)

    1991-02-05T23:59:59.000Z

    A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

  4. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The accelerator

  5. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The acceleratorWeb

  6. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab The

  7. Jefferson Lab Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLab TheElectronic

  8. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab SubcontractoractiveLab

  9. High Efficiency GDI Engine Research, with Emphasis on Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    confidential, or otherwise restricted information Overview High Efficiency GDI Engine Research with Emphasis on Ignition Systems 2 Timeline Project start: Sept. 2012...

  10. Laser spark distribution and ignition system - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced...

  11. Status and Prospects of the Fast Ignition Inertial Fusion Concept

    SciTech Connect (OSTI)

    Key, M H

    2006-11-15T23:59:59.000Z

    Fast ignition is an alternate concept in inertial confinement fusion, which has the potential for easier ignition and greater energy multiplication. If realized it could improve the prospects for inertial fusion energy. It poses stimulating challenges in science and technology and the research is approaching a key stage in which the feasibility of fast ignition will be determined. This review covers the concepts, the state of the science and technology, the near term prospects and the challenges and risks involved in demonstrating high gain fast ignition.

  12. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    J. B. (1988) Internal Combustion Engine Fundamentals.novel microwave internal combustion engine ignition source,in the Internal Combustion Engine." SAE Technical Paper

  13. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    E-Print Network [OSTI]

    DeFilippo, Anthony Cesar

    2013-01-01T23:59:59.000Z

    Modeling of Emissions from HCCI Engines using a ConsistentMechanism for Iso-Octane HCCI Combustion With TargetedCharge Compression Ignition (HCCI) Engine: Experimental and

  14. Review of the National Ignition Campaign 2009-2012

    SciTech Connect (OSTI)

    Lindl, John; Landen, Otto; Edwards, John; Moses, Ed [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Collaboration: NIC Team

    2014-02-15T23:59:59.000Z

    The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

  15. LES of an ignition sequence in a gas turbine M. Boileau a,, G. Staffelbach a

    E-Print Network [OSTI]

    injection. Finally, a variability of the combustor sectors and quadrants ignition times is highlighted combustion in a 18-burner combustor. · II - Flame ignition: the hot gases produced by the igniter must

  16. Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V

    SciTech Connect (OSTI)

    Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

    2010-05-01T23:59:59.000Z

    Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

  17. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  18. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01T23:59:59.000Z

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  19. BUSINESS APPLICATION SECTION 1: BUSINESS CONTACT INFORMATION

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Location: (street, building, city, State) Number of Employees in NYS prior to moving out of state: Cert ID Limited Liability Company SECTION 2: BUSINESS INFORMATION New Business Existing NYS Business Expanding Previous NYS Business relocating to NYS NYS Incubator Graduate FEIN #: Website: Indicate the Primary North

  20. College of Business College of Business

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    College of Business College of Business Office in Rockwell Hall, Room 178 (970) 491-6471 biz, Associate Dean MAJOR IN BUSINESS ADMINISTRATION WITH CONCENTRATIONS IN Accounting Finance Human Resource Management UNDERGRADUATE MINOR Business Administration Real Estate UNDERGRADUATE PROGRAMS The College

  1. Modeling Business Objectives for Business Process Management

    E-Print Network [OSTI]

    Ulm, Universität

    Modeling Business Objectives for Business Process Management Matthias Lohrmann and Manfred Reichert quality, business objective models assume the role of formal requirements definitions as in software engi a refined business objective modeling approach. Our approach builds on use case-based effectiveness criteria

  2. An ignition and combustion model based on the level-set method for spark ignition engine multidimensional modeling

    SciTech Connect (OSTI)

    Tan, Zhichao; Reitz, Rolf D. [Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 (United States)

    2006-04-15T23:59:59.000Z

    To improve the prediction accuracy of the spark ignition and combustion processes in spark ignition engines, improved ignition and flame propagation models have been developed and implemented in the CFD code, KIVA-3V. An equation to calculate the spark ignition kernel growth rate is derived that considers the effects of the spark ignition discharge energy and flow turbulence on the ignition kernel growth. In addition, a flamelet combustion model based on the G equation combustion model was developed and implemented. To test the ignition and combustion models, they were applied to a homogeneous charge pancake-shaped-combustion-chamber engine, in which experimental heat flux data from probes in the engine head and cylinder liner were available. By comparing the flame arrival timings with the simulation predictions, the ignition and combustion models were validated. In addition, the models were also applied to a homogeneous charge propane-fueled SI engine. Good agreement with experimental cylinder pressures and NO{sub x} data was obtained as a function of ignition timing, engine speed, and EGR levels. (author)

  3. MECHANICAL TEST LAB CAPABILITIES

    E-Print Network [OSTI]

    MECHANICAL TEST LAB CAPABILITIES · Static and cyclic testing (ASTM and non-standard) · Impact drop testing · Slow-cycle fatigue testing · High temperature testing to 2500°F · ASTM/ Boeing/ SACMA standard testing · Ability to design and fabricate non-standard test fixtures and perform non-standard tests

  4. Ignition of hydrogen/air mixing layer in turbulent flows

    SciTech Connect (OSTI)

    Im, H.G.; Chen, J.H. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Law, C.K. [Princeton Univ., NJ (United States). Dept. of Mechanical and Aerospace Engineering

    1998-03-01T23:59:59.000Z

    Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

  5. Tennessee Veterans Business Association 3rd Annual Business and...

    Broader source: Energy.gov (indexed) [DOE]

    Tennessee Veterans Business Association 3rd Annual Business and Education Showcase Tennessee Veterans Business Association 3rd Annual Business and Education Showcase January 28,...

  6. Low emissions compression ignited engine technology

    DOE Patents [OSTI]

    Coleman, Gerald N. (Dunlap, IL); Kilkenny, Jonathan P. (Peoria, IL); Fluga, Eric C. (Dunlap, IL); Duffy, Kevin P. (East Peoria, IL)

    2007-04-03T23:59:59.000Z

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  7. Ignite High Tech Startups | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas:ITCSolidIdaho‎ |Idylwood, Virginia: EnergyIgnite

  8. Recent progress on the Compact Ignition Tokamak (CIT)

    SciTech Connect (OSTI)

    Ignat, D.W.

    1987-01-01T23:59:59.000Z

    This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

  9. Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Homogeneous Charge Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion Potential of Olefin Impact in a Diesel Base Fuel D. Alseda1,2, X. Montagne1 and P. Dagaut2 1 Compression Ignition: Formulation Effect of a Diesel Fuel on the Initiation and the Combustion - Potential

  10. Business Practices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPractices Sign In About |

  11. Business Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJeffersonBusinessPractices Sign In About

  12. Business Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY 2009422Business Opportunities

  13. Business Stories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY 2009422Business

  14. Variable valve timing in a homogenous charge compression ignition engine

    DOE Patents [OSTI]

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03T23:59:59.000Z

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  15. FINANCIAL & BUSINESS SERVICES Procurement &

    E-Print Network [OSTI]

    Tipple, Brett

    FINANCIAL & BUSINESS SERVICES Procurement & Payment Summary Accounts Payable Perry H. Hull #12;FINANCIAL & BUSINESS SERVICES Agenda · Accounts Payable: Who we are...what we do... · Accounts Payable;FINANCIAL & BUSINESS SERVICES Financial & Business Services #12;FINANCIAL & BUSINESS SERVICES Accounts

  16. National Ignition Facility project acquisition plan

    SciTech Connect (OSTI)

    Callaghan, R.W.

    1996-04-01T23:59:59.000Z

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

  17. Stockpile Stewardship and the National Ignition Facility

    SciTech Connect (OSTI)

    Moses, E

    2012-01-04T23:59:59.000Z

    The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

  18. Eastport Customs Brokers Win Small Business Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11Computational Earth SciencePipeline,EastEastport

  19. LANL, Sandia National Lab recognize New Mexico small businesses for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home as ReadyAppointedKyungmin2010Sciences (EES)

  20. Local firms benefit from Jefferson Lab upgrade (Inside Business) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let usNucleartearing mode flowsLocalJefferson

  1. STEM summit challenges employers (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR E Q U E

  2. Doing Business with the National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T ADRAFTJanuary 2004April279MicrosoftEnergy

  3. Maintenance & Cleaning Firm Earns Jefferson Lab's Small Business Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9November 6,Bradbury Science Museum Januaryfor

  4. Sandia National Labs: PCNSC: Departments: Small Science Cluster Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche HomeCybernetics:TableTableTableTableTable

  5. (Business/Store Name) (Business/Store Address)

    E-Print Network [OSTI]

    Maroncelli, Mark

    (Business/Store Name) (Business/Store Address) (City) (State) (Zip Code) (Business/Store Phone Number) (Business/Store Fax Number) (Business Description) (Business/Store Primary Contact) (Primary Contact E-mail address) (Business/Store Secondary Contact) (Secondary Contact E-mail Address) (Business

  6. New Mexico Small Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access cutting-edge technologies, solve technical issues, and gain knowledge from technical experts...

  7. Small Business - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE - RL ContractsProcurements > Small Business DOE - RL ContractsProcurements RL Contracts & Procurements Home Prime Contracts Current Solicitations Small Business Other Sources...

  8. INL Small Business Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Business Program The Idaho National Laboratory Idaho National Laboratory (INL) Small Business Program is a fundamental component of the Supply Chain Management organization....

  9. Catalytic igniters and their use to ignite lean hydrogen-air mixtures

    DOE Patents [OSTI]

    McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

    1988-01-01T23:59:59.000Z

    A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

  10. Pre-ignition laser ablation of nanocomposite energetic materials

    SciTech Connect (OSTI)

    Stacy, S. C.; Massad, R. A.; Pantoya, M. L. [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

    2013-06-07T23:59:59.000Z

    Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

  11. Dynamic Modeling of Combustion and Gas Exchange Processes for Controlled Auto-Ignition Engines

    E-Print Network [OSTI]

    Cambridge, University of

    ), also known as Homo- geneous Charge Compression Ignition (HCCI) has been receiving increased attention

  12. Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids V. V. Osipov,1,a

    E-Print Network [OSTI]

    Muratov, Cyrill

    Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids V. V. Osipov,1,a C. B. Muratov,2 E-ignite in the process of their sudden mixing. Here, we propose a cavitation-induced self-ignition mechanism that may a cavitation-induced self- ignition mechanism of cryogenic H2/Ox fluids. Cavitation is the formation

  13. Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility

    SciTech Connect (OSTI)

    Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

    2011-07-25T23:59:59.000Z

    The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

  14. 1 School of Business SCHOOL OF BUSINESS

    E-Print Network [OSTI]

    Vertes, Akos

    1 School of Business SCHOOL OF BUSINESS Dean D.C. Kayes (Interim) / L.A. Livingstone (as of August. Jabbour, V. Perry (Interim) First organized as the School of Government in 1928, the School of Business development of individuals assuming leadership roles in society. The School has eight departments

  15. Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

    SciTech Connect (OSTI)

    Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

    2011-03-18T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

  16. Fuel quantity modulation in pilot ignited engines

    DOE Patents [OSTI]

    May, Andrew

    2006-05-16T23:59:59.000Z

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  17. Cooldown of the Compact Ignition Tokamak

    SciTech Connect (OSTI)

    Keeton, D.C.

    1987-08-01T23:59:59.000Z

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  18. Fast Camera Imaging of Hall Thruster Ignition

    SciTech Connect (OSTI)

    C.L. Ellison, Y. Raitses and N.J. Fisch

    2011-02-24T23:59:59.000Z

    Hall thrusters provide efficient space propulsion by electrostatic acceleration of ions. Rotating electron clouds in the thruster overcome the space charge limitations of other methods. Images of the thruster startup, taken with a fast camera, reveal a bright ionization period which settles into steady state operation over 50 ?s. The cathode introduces azimuthal asymmetry, which persists for about 30 ?s into the ignition. Plasma thrusters are used on satellites for repositioning, orbit correction and drag compensation. The advantage of plasma thrusters over conventional chemical thrusters is that the exhaust energies are not limited by chemical energy to about an electron volt. For xenon Hall thrusters, the ion exhaust velocity can be 15-20 km/s, compared to 5 km/s for a typical chemical thruster

  19. Distributed ignition method and apparatus for a combustion engine

    DOE Patents [OSTI]

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07T23:59:59.000Z

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  20. Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website

    E-Print Network [OSTI]

    Vorperian, Houri K.

    Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

  1. Jefferson Lab gets $75M in stimulus funds (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges up Michael

  2. Jefferson Lab, ODU team up for center (Inside Business) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6|

  3. Tri-Lab Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z Site MapTrends, Discovery, &Tri-Lab

  4. Lab announces security changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUWVoluntaryLab

  5. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman Resources

  6. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHuman

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisal

  8. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10JeffersonHumanAppraisalHR

  9. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets

  10. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council Emeritus

  11. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity Council

  12. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow we're

  13. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHow

  14. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity CouncilHowJLab

  15. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversity

  16. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions about

  17. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestions

  18. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group GetsDiversityQuestionsEmployee

  19. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  1. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human Resources

  2. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  3. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human print

  4. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources Human

  5. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources HumanAppraisal

  6. Jefferson Lab Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHuman Resources

  7. Jefferson Lab Leadership Council

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare

  8. About the Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENA could reduceCustomerEIA's RSS,UsAboutLab

  9. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractoractive in

  10. Archaeology on Lab Land

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management » History »DeptArchaeology on Lab

  11. Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTest and Evaluation |quasicrystals65 (9/12)Jefferson Lab

  12. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding accessPeptoidLabPhysicsPits |Regulations Policy andConstruction

  13. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  14. Friends of Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE)Frequently AskedofFriends of Berekeley Lab

  15. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesis of 2D AlloysTrails News Home | ORNL |TechLab

  16. The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2011-03-25T23:59:59.000Z

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

  17. Aboriginal Business Administration

    E-Print Network [OSTI]

    Saskatchewan, University of

    Aboriginal Business Administration Certificate #12;What is the Aboriginal Business Administra on Cer ficate (ABAC) Program? The Aboriginal Business Administra on Cer ficate (ABAC) is designed a cer ficate in business but do not want to study in a four year degree program. ABAC allows Aboriginal

  18. Business Analyst Certificate Program

    E-Print Network [OSTI]

    Rose, Michael R.

    Business Analyst Certificate Program BusinessandManagement extension.uci.edu/ba #12;Business Analyst Certificate Program Business Analysts Capture Requirements to Build What the Customer Wants. The Business Analyst serves as the key liaison between the client, stakeholders, and the solutions team

  19. BUSINESS MINORS Courses Credits

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    BUSINESS MINORS ACCOUNTING Courses Credits BMIS 211 ­ Intro to Business Decision Support 3 ACTG 201 courses (9cr.): BFIN 322 ­ Business Finance 3 ACTG 328 ­ Intermediate Fin Acct & Reporting II 3 ACTG 401 students with the exception of students pursuing a business degree with an accounting option

  20. Better Buildings Neighborhood Program Business Models Guide:...

    Broader source: Energy.gov (indexed) [DOE]

    Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model HVAC contractor business model...

  1. Frictionally induced ignition processes in drop and skid tests

    SciTech Connect (OSTI)

    Dickson, Peter [Los Alamos National Laboratory; Parker, Gary [Los Alamos National Laboratory; Novak, Alan [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    The standard LANL/Pantex drop and skid tests rely on subjective assessment of reaction violence to quantify the response of the charge, and completely miss nonpropagating hot-spot ignition sites. Additionally, large variations in test results have been observed, which we propose is due to a misunderstanding of the basic physical processes that lead to threshold ignition in these tests. The tests have been redesigned to provide control of these mechanisms and to permit direct observation of hot spots at the impact site, allowing us to follow the progression of the outcome as the drop height and ignition source density are varied. The results confirm that frictional interactions between high-melting-point solids are the dominant ignition mechanism, not just at the threshold, but in fact at all realistic drop heights.

  2. High Efficiency GDI Engine Research, with Emphasis on Ignition...

    Broader source: Energy.gov (indexed) [DOE]

    Funding in FY13: 400k Funding in FY14: 350k Overview High Efficiency GDI Engine Research with Emphasis on Ignition Systems 2 Timeline Project start: FY 2013 ...

  3. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    Roepke, F K; Niemeyer, J C; Woosley, S E

    2005-01-01T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  4. Multi-spot ignition in type Ia supernova models

    E-Print Network [OSTI]

    F. K. Roepke; W. Hillebrandt; J. C. Niemeyer; S. E. Woosley

    2005-10-17T23:59:59.000Z

    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.

  5. Relativistic electron beam transport for fast ignition relevant scenarios

    E-Print Network [OSTI]

    Cottrill, Larissa A

    2009-01-01T23:59:59.000Z

    A crucial issue surrounding the feasibility of fast ignition, an alternative inertial confinement fusion scheme, is the ability to efficiently couple energy from an incident short-pulse laser to a high-density, pre-compressed ...

  6. Ignition sequence of an annular multi-injector combustor

    E-Print Network [OSTI]

    Philip, Maxime; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01T23:59:59.000Z

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  7. Ignition technique for an in situ oil shale retort

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO)

    1983-01-01T23:59:59.000Z

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  8. Name: ____________________ Stream Profile Lab 1

    E-Print Network [OSTI]

    Name: ____________________ Stream Profile Lab 1 LAB 4. Stream Profiles and Mass Balance: Supply vs hillslope diffusion experiments. We will now examine a slightly more complicated profile-evolution model on longitudinal channel profile shapes. The Questions: I. Why do streams generally have concave profiles

  9. E ngineering& S ystems Lab

    E-Print Network [OSTI]

    Corporation,Motorola,andincooperationwith Siemens Automotive and Detroit Diesel Corporation. S oftware E ngineering& N etwork S ystems Lab-time systems ­ fault tolerance and security ­ formal methods, code generation ­ compilation Transformations ·Test Case generation 6 S oftware E ngineering& N etwork S ystems Lab OutlineOutline Introduction

  10. Lab Validation Workload Performance Analysis

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................15 All trademark names are property of their respective companies. Information contained

  11. business.cardiff.ac.uk Cardiff Business sChool

    E-Print Network [OSTI]

    Davies, Christopher

    business.cardiff.ac.uk Cardiff Business sChool MBa PrograMMes #12;01 business.cardiff.ac.ukWhy Cardiff Business School?01 Why Cardiff Business sChool? We are accredited by the Association to Advance Collegiate Schools of Business (AACSB International), a leading hallmark of business school excellence. We

  12. Berkeley Lab Compact Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab Particle Accelerator Sets World Record Berkeley Lab Particle Accelerator Sets World Record Simulations at NERSC Help Validate Experimental Laser-Plasma Design December...

  13. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums

    SciTech Connect (OSTI)

    Amendt, Peter; Cerjan, C.; Hamza, A.; Hinkel, D. E.; Milovich, J. L.; Robey, H. F. [Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States)

    2007-05-15T23:59:59.000Z

    The goal of demonstrating ignition on the National Ignition Facility [J. D. Lindl et al., Phys. Plasmas 11, 339 (2003)] has motivated a revisit of double-shell (DS) targets as a complementary path to the cryogenic baseline approach. Expected benefits of DS ignition targets include noncryogenic deuterium-tritium (DT) fuel preparation, minimal hohlraum-plasma-mediated laser backscatter, low threshold-ignition temperatures ({approx_equal}4 keV) for relaxed hohlraum x-ray flux asymmetry tolerances, and minimal (two-) shock timing requirements. On the other hand, DS ignition presents several formidable challenges, encompassing room-temperature containment of high-pressure DT ({approx_equal}790 atm) in the inner shell, strict concentricity requirements on the two shells (<3 {mu}m), development of nanoporous (<100 nm cell size) low-density (<100 mg/cc) metallic foams for structural support of the inner shell and hydrodynamic instability mitigation, and effective control of hydrodynamic instabilities on the high-Atwood-number interface between the DT fuel and the high-Z inner shell. Recent progress in DS ignition designs and required materials science advances at the nanoscale are described herein. Two new ignition designs that use rugby-shaped vacuum hohlraums are presented that utilize either 1 or 2 MJ of laser energy at 3{omega}. The capability of the National Ignition Facility to generate the requested 2 MJ reverse-ramp pulse shape for DS ignition is expected to be comparable to the planned high-contrast ({approx_equal}100) pulse shape at 1.8 MJ for the baseline cryogenic target. Nanocrystalline, high-strength, Au-Cu alloy inner shells are under development using electrochemical deposition over a glass mandrel, exhibiting tensile strengths well in excess of 790 atm. Novel, low-density (85 mg/cc) copper foams have recently been demonstrated using 10 mg/cc SiO{sub 2} nanoporous aerogels with suspended Cu particles. A prototype demonstration of an ignition DS is planned for 2008, incorporating the needed novel nanomaterials science developments and the required fabrication tolerances for a realistic ignition attempt after 2010.

  14. Small Business Innovation Research (SBIR) and Small Business...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the...

  15. Planning your business: The Business Plan A business plan is like a road map for your business. Careful

    E-Print Network [OSTI]

    Planning your business: The Business Plan A business plan is like a road map for your business. Careful planning is key to any successful business. A business plan ensures that resources are available, including (time, money, and opportunities). It helps you decide where you want to go with the business

  16. Working Together | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1:

  17. Working With Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abigpresented in theWorkBusiness1:Working with

  18. Jefferson Lab Scientist Wins 2011 Lawrence Award | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew SafetyLabJefferson LabWins

  19. Jefferson Lab Weekly Briefs - July 15, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab ToTravel|Jefferson

  20. Jefferson Lab awards several contracts (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbegin whilePhysics

  1. Jefferson Lab begins $310 million upgrade (Daily Press) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLabbeginawards

  2. LabVIEW Core 2 Course | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makesLab'sLabVIEW

  3. Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility

    SciTech Connect (OSTI)

    Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

    2014-05-15T23:59:59.000Z

    The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

  4. The National Ignition Facility (NIF) A Path to Fusion Energy

    SciTech Connect (OSTI)

    Moses, E

    2006-11-27T23:59:59.000Z

    Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

  5. Student, Business & Professional Studies "The Strategic Leadership

    E-Print Network [OSTI]

    Toronto, University of

    Foundations of Business Process Management (BPM) 232 Organizational Aspects of Business Process Management (BPM) 232 Tools & Techniques of Business Process Management (BPM) 232 Business Strategy 232 Business

  6. Using indium tin oxide material to implement the imaging of microwave plasma ignition process

    SciTech Connect (OSTI)

    Wang, Qiang; Hou, Lingyun; Zhang, Guixin, E-mail: guixin@mail.tsinghua.edu.cn; Zhang, Boya; Liu, Cheng [Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China); Wang, Zhi; Huang, Jian [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2014-02-17T23:59:59.000Z

    In this paper, a method is introduced to get global observation of microwave plasma ignition process at high pressure. A microwave resonator was designed with an indium tin oxide coated glass at bottom. Microwave plasma ignition was implemented in methane and air mixture at 10 bars by a 2?ms-3?kW-2.45?GHz microwave pulse, and the high speed images of the ignition process were obtained. The images visually proved that microwave plasma ignition could lead to a multi-point ignition. The system may also be applied to obtain Schlieren images, which is commonly used to observe the development of flame kernel in an ignition process.

  7. Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives

    SciTech Connect (OSTI)

    Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

    2014-10-01T23:59:59.000Z

    Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

  8. Jefferson Lab Weekly Briefs March 25, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was planned for the months of March and April. Physics Jefferson Lab Published Journal Articles March 16-20 S. Pisano et al. (CLAS Collaboration). "Single and double spin...

  9. Neutron Transversity at Jefferson Lab

    SciTech Connect (OSTI)

    Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu

    2005-09-07T23:59:59.000Z

    Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.

  10. Jefferson Lab Users Group News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNewLabLab To ReceiveUser

  11. NNSA Small Business Week 2012: Small businesses play vital role...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog NNSA Small Business Week 2012: Small businesses ... NNSA Small Business Week 2012: Small businesses play...

  12. 3Building a Business Building a Business

    E-Print Network [OSTI]

    Arnold, Jonathan

    15 3Building a Business Building a Business This section provides direction on the kinds. If you contemplate building a "garage- based" company to sell a product into a niche market, you should-ups conjure up images of future wealth, of building the next Amgen or Microsoft, of launching what will become

  13. Overview of Business Planning and Business Models, Opening Plenary

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Better Buildings Neighborhood Program: Overview of Business Planning and Business Models, October 25, 2011

  14. Business, management and finance

    E-Print Network [OSTI]

    Sussex, University of

    Business, management and finance Essentials Taught degrees Masters in Business Administration (MBA) MSc in Banking and Finance MSc in Corporate and Financial Risk Management MSc in Financial Mathematics MSc in International Accounting and Corporate Governance MSc in International Finance MSc

  15. Small Business Status

    Broader source: Energy.gov (indexed) [DOE]

    Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a...

  16. SURA Rewards Inventors | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Johns Hopkins University, helped develop three inventions during his summer internship at Jefferson Lab. A ceremony was held at 1 p.m. October 30, 1997, in the CEBAF...

  17. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  18. Precision mechatronics lab robot development

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2008-10-10T23:59:59.000Z

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  19. State of the Lab 2012

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  20. SUGGESTED BUSINESS ELECTIVES For College of Business Administration Students

    E-Print Network [OSTI]

    Kulp, Mark

    SUGGESTED BUSINESS ELECTIVES For College of Business Administration Students Business electives consist of any business course taught in the college of Business Administration (ACCT, BA, ECON, FIN, HRT: Business Students are NOT eligible to take any 4400 or 4401 courses (i.e.: BA 4400, MANG 4400, MKT 4400

  1. darla moore school of business darla moore school of business

    E-Print Network [OSTI]

    Almor, Amit

    darla moore school of business #12;darla moore school of business "All of us at the Moore School communities, relevant and cutting-edge business and management knowledge for our corporate partners, International Business #12;the promise to business: education and support "Business, more than any other

  2. BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING

    E-Print Network [OSTI]

    BUSINESS PROCESSES EXTENSIONS TO UML PROFILE FOR BUSINESS MODELING Pedro Sinogas, André Vasconcelos@ceo.inesc.pt, jneves@ieee.org, rmendes@ceo.inesc.pt, jmt@inesc.pt Key words: Business Modeling, Business Process modeling business processes. This paper proposes an extension to UML Profile for Business Modeling

  3. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  4. Mathematics Business Office

    E-Print Network [OSTI]

    Mathematics Business Office. Welcome to new faculty · Moving Procedures · Forms · Travel; Research. Pre-Award Center · Vice President for Research ...

  5. FACULTYFACULTYFACULTY BUSINESS ANDBUSINESS AND

    E-Print Network [OSTI]

    Tam, Vincent W. L.

    (Acc&Fin) curriculum. DEGREES OFFERED Website: http://www.fbe.hku.hk BUSINESS AND ECONOMICS k BUSINESSANDECONOMICS #12

  6. Business Agreements Printing & Mail Services

    E-Print Network [OSTI]

    Business Agreements Storehouse Printing & Mail Services Receiving Equipment Management Director Planning/ Resource Planning Space ManagementAccounting Services Student Business Services Education Administration Finance and Business Operations Organization Risk Management Finance & Business Operations

  7. Business Services Strategic Plan

    E-Print Network [OSTI]

    Holland, Jeffrey

    Business Services Strategic Plan Updated September 2008 New Synergies: Launching Tomorrow's Leaders Discovery with Delivery Meeting Global Challenges Excellence in Business and Support Services #12;Introduction The mission of Business Services at Purdue University is to enable, serve, and support others

  8. Corporate and Business Plan

    E-Print Network [OSTI]

    Corporate and Business Plan 2010-2011 #12;Main addresses Forest Research Alice Holt Lodge Farnham Research's Business Plan 2010-2011 ..........................12 Table Contents Table 1 - Income This Corporate and Business Plan sets out FR's aims and strategic objectives. It describes the Key Performance

  9. Doing Business Presented at

    E-Print Network [OSTI]

    Doing Business with B&W Y-12 Presented at Oak Ridge National Laboratory By Gloria D. Mencer charities and education #12;B&W Y-12 Company Policy B&W Y-12's continued support of the small business community is an important business strength and each employee is encouraged to actively seek ways

  10. Digital Business RESEARCH BRIEF

    E-Print Network [OSTI]

    Center for Digital Business RESEARCH BRIEF Volume XIII Number 2 May 2011 2011 MIT Center for Digital Business, E. Brynjolfsson The 4 Ways IT is Driving Innovation Erik Brynjolfsson, Director, MIT Center for Digital Business and Schussel Professor, MIT Sloan School of Management Reprinted from Sloan

  11. Lab 9 LabVIEW and GPIB LabVIEW (National Instruments)

    E-Print Network [OSTI]

    Glashausser, Charles

    Automatic data acquisition DAC 01010 Actuator, Heater... control Power amplifiers LabVIEW GPIB GPIB #12 Toolbar Retain Wire Values Button Step Function Buttons #12;Block Diagram Window Front Panel Window

  12. Volume Ignition via Time-like Detonation in Pellet Fusion

    E-Print Network [OSTI]

    Csernai, L P

    2015-01-01T23:59:59.000Z

    Relativistic fluid dynamics and the theory of relativistic detonation fronts are used to estimate the space-time dynamics of the burning of the D-T fuel in Laser driven pellet fusion experiments. The initial "High foot" heating of the fuel makes the compressed target transparent to radiation, and then a rapid ignition pulse can penetrate and heat up the whole target to supercritical temperatures in a short time, so that most of the interior of the target ignites almost simultaneously and instabilities will have no time to develop. In these relativistic, radiation dominated processes both the interior, time-like burning front and the surrounding space-like part of the front will be stable against Rayleigh-Taylor instabilities. To achieve this rapid, volume ignition the pulse heating up the target to supercritical temperature should provide the required energy in less than ~ 10 ps.

  13. WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT

    SciTech Connect (OSTI)

    Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

    2012-10-10T23:59:59.000Z

    This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

  14. The ignition of thermonuclear flames in Type Ia supernovae

    E-Print Network [OSTI]

    L. Iapichino; M. Brüggen; W. Hillebrandt; J. C. Niemeyer

    2005-12-12T23:59:59.000Z

    In the framework of the Chandrasekhar-mass deflagration model for Type Ia supernovae (SNe Ia), a persisting free parameter is the initial morphology of the flame front, which is linked to the ignition process in the progenitor white dwarf. Previous analytical models indicate that the thermal runaway is driven by temperature perturbations (''bubbles'') that develop in the white dwarf's convective core. In order to probe the conditions at ignition (diameters, temperatures and evolutionary timescales), we have performed hydrodynamical 2D simulations of buoyant bubbles in white dwarf interiors. Our results show that fragmentation occurring during the bubble rise affects the outcome of the bubble evolution. Possible implications for the ignition process of SNe Ia are discussed.

  15. The ignition of thermonuclear flames in Type Ia supernovae

    E-Print Network [OSTI]

    Iapichino, L; Hillebrandt, W; Niemeyer, J C

    2005-01-01T23:59:59.000Z

    In the framework of the Chandrasekhar-mass deflagration model for Type Ia supernovae (SNe Ia), a persisting free parameter is the initial morphology of the flame front, which is linked to the ignition process in the progenitor white dwarf. Previous analytical models indicate that the thermal runaway is driven by temperature perturbations (''bubbles'') that develop in the white dwarf's convective core. In order to probe the conditions at ignition (diameters, temperatures and evolutionary timescales), we have performed hydrodynamical 2D simulations of buoyant bubbles in white dwarf interiors. Our results show that fragmentation occurring during the bubble rise affects the outcome of the bubble evolution. Possible implications for the ignition process of SNe Ia are discussed.

  16. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Doppner, T.; Edgell, D.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S.R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-01T23:59:59.000Z

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2! higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  17. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; Friedrich, S.; Bionta, R.; Olson, R.; Atherton, J.; Barrios, M.; Bell, P.; Benedetti, R.; Berzak Hopkins, L.; Betti, R.; Bradley, D.; Callahan, D.; Casey, D.; Collins, G.; Dixit, S.; Doppner, T.; Edgell, D.; Edwards, M. J.; Gatu Johnson, M.; Glenn, S.; Glenzer, S.; Grim, G.; Hatchett, S.; Jones, O.; Khan, S.; Kilkenny, J.; Kline, J.; Knauer, J.; Kritcher, A.; Kyrala, G.; Landen, O.; LePape, S.; Li, C. K.; Lindl, J.; Ma, T.; Mackinnon, A.; Macphee, A.; Manuel, M. J.-E.; Meyerhofer, D.; Moody, J.; Moses, E.; Nagel, S.R.; Nikroo, A.; Pak, A.; Parham, T.; Petrasso, R. D.; Prasad, R.; Ralph, J.; Rosen, M.; Ross, J. S.; Sangster, T. C.; Sepke, S.; Sinenian, N.; Sio, H. W.; Spears, B.; Springer, P.; Tommasini, R.; Town, R.; Weber, S.; Wilson, D.; Zacharias, R.

    2014-11-01T23:59:59.000Z

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2! higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.

  18. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    SciTech Connect (OSTI)

    Zylstra, A. B., E-mail: zylstra@mit.edu; Frenje, J. A.; Séguin, F. H.; Rosenberg, M. J.; Rinderknecht, H. G.; Gatu Johnson, M.; Li, C. K.; Manuel, M. J.-E.; Petrasso, R. D.; Sinenian, N.; Sio, H. W. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Friedrich, S.; Bionta, R.; Atherton, J.; Barrios, M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15T23:59:59.000Z

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D{sup 3}He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D{sup 3}He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2× higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infer the areal density (?R) and the shell center-of-mass radius (R{sub cm}) from the downshift of the shock-produced D{sup 3}He protons. The observed ?R at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time (“short-coast”), while longer-coasting implosions have lower ?R. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (?800 ps) than in the short-coast (?400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel ?R.

  19. The effect of shock dynamics on compressibility of ignition-scale National Ignition Facility implosions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Hicks, D. G.; Dewald, E. L.; Robey, H. F.; Rygg, J. R.; Meezan, N. B.; Rosenberg, M. J.; Rinderknecht, H. G.; et al

    2014-11-01T23:59:59.000Z

    The effects of shock dynamics on compressibility of indirect-drive ignition-scale surrogate implosions, CH shells filled with D3He gas, have been studied using charged-particle spectroscopy. Spectral measurements of D3He protons produced at the shock-bang time probe the shock dynamics and in-flight characteristics of an implosion. The proton shock yield is found to vary by over an order of magnitude. A simple model relates the observed yield to incipient hot-spot adiabat, suggesting that implosions with rapid radiation-power increase during the main drive pulse may have a 2! higher hot-spot adiabat, potentially reducing compressibility. A self-consistent 1-D implosion model was used to infermore »the areal density (pR) and the shell center-of-mass radius (Rcm) from the downshift of the shock-produced D3He protons. The observed pR at shock-bang time is substantially higher for implosions, where the laser drive is on until near the compression bang time ('short-coast'), while longer-coasting implosions have lower pR. This corresponds to a much larger temporal difference between the shock- and compression-bang time in the long-coast implosions (~800 ps) than in the short-coast (~400 ps); this will be verified with a future direct bang-time diagnostic. This model-inferred differential bang time contradicts radiation-hydrodynamic simulations, which predict constant 700–800 ps differential independent of coasting time; this result is potentially explained by uncertainties in modeling late-time ablation drive on the capsule. In an ignition experiment, an earlier shock-bang time resulting in an earlier onset of shell deceleration, potentially reducing compression and, thus, fuel pR.« less

  20. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

    2008-05-27T23:59:59.000Z

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  1. Features of a point design for fast ignition

    SciTech Connect (OSTI)

    Tabak, M; Clark, D; Town, R J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

    2009-10-26T23:59:59.000Z

    Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

  2. Ignition feedback regenerative free electron laser (FEL) amplifier

    DOE Patents [OSTI]

    Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

    2001-01-01T23:59:59.000Z

    An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

  3. http://www.bizjournals.com/pacific/blog/morning_call/2012/11/fuel-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST

    E-Print Network [OSTI]

    system costs, Scott Seu, vice president for energy resources at Hawaiian Electric, a subsidiary-cell-test-lab-renamed-hawaii.html?s=print Nov 30, 2012, 6:56am HST Fuel cell test lab renamed Hawaii Sustainable Energy Research Facility Staff Pacific Business News The Hawaii Fuel Cell Test Facility, a 10-year-old research project sponsored

  4. Analysis of combustion in a small homogeneous charge compression assisted ignition engine

    E-Print Network [OSTI]

    237 Analysis of combustion in a small homogeneous charge compression assisted ignition engine H Ma1 characteristics to homogeneous charge compression ignition (HCCI) engines. Difficulties such as unknown ignition timing and the polytropic index have been addressed by combining both heat release and mass fraction burn

  5. Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application

    E-Print Network [OSTI]

    Pitsch, Heinz

    Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI National Laboratories, Livermore, CA 94551, USA Abstract Homogeneous-charge compression ignition (HCCI ignition engines. However, HCCI engines expe- rience very large heat release rates which can cause too

  6. Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel

    E-Print Network [OSTI]

    Pacheco, Jose Rafael

    Increased Hot-Plate Ignition Probability for Nanoparticle-Laden Diesel Fuel Himanshu Tyagi, Patrick April 2, 2008 ABSTRACT The present study attempts to improve the ignition properties of diesel fuel, droplet ignition experiments were carried out atop a heated hot plate. Different types of fuel mixtures

  7. ICDERS July 2429, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle

    E-Print Network [OSTI]

    23rd ICDERS July 24­29, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend

  8. #LabChat Recap: Solutions through Supercomputing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Addthis Related Articles LabChat Recap: The Future of Biofuels LabChat Recap: What is Dark Energy LabChat Recap: Innovations Driving More Efficient Vehicles...

  9. Business Membership Program Institute for Ethical Leadership

    E-Print Network [OSTI]

    Lin, Xiaodong

    Business Membership Program Institute for Ethical Leadership at Rutgers Business School business businesses are being scrutinized from every angle. The Institute for Ethical Leadership at Rutgers Business identification, leadership development, ethical leadership, decision-making skills, business best practices

  10. Inertial Confinement Fusion Ignition and High Yield Campaign

    E-Print Network [OSTI]

    : Provide mission need report for the proposed OMEGA Extended Performance project. · October 2002: NNSA November 21, 2003 #12;2 Statements to FESAC IFE panel 10/28/03 · Ignition is a major goal for NNSA supports OFES's mission and OFES use of NNSA's ICF facilities is accepted · Defense Programs reserves right

  11. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Magdalena Pelc; Radoslaw Osuch

    2009-03-31T23:59:59.000Z

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  12. Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby

    E-Print Network [OSTI]

    Jerby, Eli

    - propagating high-temperature synthesis (SHS) for sintering of ceramic composites [14]. The magnetic (H, the microwave energy is supplied locally to the powder. It creates a confined hotspot, and initiates a self-propagating the powder prior to its ignition is simulated theoretically, taking into account the powder's temperature

  13. Railplug Ignition System for Enhanced Engine Performance and Reduced Maintenance

    SciTech Connect (OSTI)

    DK Ezekoye; Matt Hall; Ron Matthews

    2005-08-01T23:59:59.000Z

    This Final Technical Report discusses the progress that was made on the experimental and numerical tasks over the duration of this project. The primary objectives of the project were to (1) develop an improved understanding of the spark ignition process, and (2) develop the railplug as an improved ignitor for large bore stationary natural gas engines. We performed fundamental experiments on the physical processes occurring during spark ignition and used the results from these experiments to aid our development of the most complete model of the spark ignition process ever devised. The elements in this model include (1) the dynamic response of the ignition circuit, (2) a chemical kinetics mechanism that is suitable for the reactions that occur in the plasma, (3) conventional flame propagation kinetics, and (4) a multi-dimensional formulation so that bulk flow through the spark gap can be incorporated. This model (i.e., a Fortran code that can be used as a subroutine within an engine modeling code such as KIVA) can be obtained from Prof. Ron Matthews at rdmatt{at}mail.utexas.edu or Prof. DK Ezekoye at dezekoye{at}mail.utexas.edu. Fundamental experiments, engine experiments, and modeling tasks were used to help develop the railplug as a new ignitor for large bore natural gas engines. As the result of these studies, we developed a railplug that could extend the Lean Stability Limit (LSL) of an engine operating at full load on natural gas from {phi} = 0.59 for operation on spark plugs down to {phi} = 0.53 using railplugs with the same delivered energy (0.7 J). However, this delivered energy would rapidly wear out the spark plug. For a conventional delivered energy (<0.05 J), the LSL is {phi} = 0.63 for a spark plug. Further, using a permanent magnet to aid the plasma movement, the LSL was extended to {phi} = 0.54 for a railplug with a delivered energy of only 0.15 J/shot, a typical discharge energy for commercial capacitive discharge ignition systems. Here, it should be noted that railplugs and the associated ignition circuit should not cost much more than a conventional spark ignition system. Additionally, it is believed that the railplug performance can be further improved via continued research and development.

  14. BELK COLLEGE OF BUSINESS 75 Belk College of Business

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    BELK COLLEGE OF BUSINESS 75 Belk College of Business belkcollege.uncc.edu Dean, The John Crosland VISION The vision of the Belk College of Business is to become a leader in 21st Century business research and intellectual growth as well as dedication to service. We engage in research that fosters innovative business

  15. College of Business and Behavioral Science BUSINESS AND

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Business and Behavioral Science 77 COLLEGE OF BUSINESS AND BEhAvIOrAL SCIENCE Students in the College of Business and Behavioral Science seek to understand and organize human behavior in a business, Military Leadership, Political Science, Psychology, and Sociology and Anthropology. All College of Business

  16. College of Business and Behavioral Science BUSINESS AND

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Business and Behavioral Science 79 COLLEGE OF BUSINESS AND BEhAvIOrAL SCIENCE Students in the College of Business and Behavioral Science seek to understand and organize human behavior in a business Leadership, Political Sci- ence, Psychology, and Sociology and Anthropology. All College of Business

  17. College of Business and Behavioral Science BUSINESS AND

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Business and Behavioral Science 75 COLLEGE OF BUSINESS AND BEhAvIOrAL SCIENCE Students in the College of Business and Behavioral Science seek to understand and organize human behavior in a business, Military Leadership, Political Science, Psychology, and Sociology. All College of Business and Behavioral

  18. College of Business and Behavioral Science BUSINESS AND

    E-Print Network [OSTI]

    Stuart, Steven J.

    College of Business and Behavioral Science 73 COLLEGE OF BUSINESS AND BEHAVIORAL SCIENCE Students in the College of Business and Behavioral Science seek to understand and organize human behavior in a business- tary Leadership, Political Science, Psychology, and Sociology. BUSINESS AND PROFESSIONAL PROGRAMS

  19. Lab Breakthroughs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured Videos >> spaceTutorialsLabLab

  20. Lab transitions employee giving campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab team makes uniqueLab

  1. Business Opportunities Session Office of Environmental Management...

    Broader source: Energy.gov (indexed) [DOE]

    Business Opportunities Session Office of Environmental Management Business Opportunities Session Office of Environmental Management Environmental Clean up Business Opportunities...

  2. Small Business Administration Recovery Act Implementation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small Business Administration Recovery Act Implementation Small...

  3. PIA - Environmental Management Consolidated Business Center ...

    Office of Environmental Management (EM)

    Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center...

  4. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S. [Department of Chemical Engineering, Indian Institute of Technology - Madras, Chennai 600 036 (India)

    2010-11-15T23:59:59.000Z

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  5. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01T23:59:59.000Z

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  6. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Center Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director Station Chief Financial O cer & Vice President for Administration and Finance (Clark) Interim Assistant

  7. Mathematics Business Office

    E-Print Network [OSTI]

    The Department Business Office will contact the University Purchasing Department with your name, address, phone number, and the company you wish to use.

  8. Supervisory Business Analyst

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will... Serve as the Berkeley Site Office (BSO) Contracts and Business Division Director; a senior, line management, supervisory position.

  9. Financial Business Analyst

    Broader source: Energy.gov [DOE]

    The incumbent in this position will serve as a Financial Business Analyst in the Financial Information Systems organization of Finance. The incumbent is responsible for performing analytical and...

  10. Small Business Services | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Services Small Business Services Welcome to the Office of Small and Disadvantaged Business Utilization (OSDBU) The OSDBU advocates putting small business first in...

  11. Business Model Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Run a Program Getting Started Business Model Resources Business Model Resources Business Models Guide Business Model Planning Resources - Working with Partners Sample Program...

  12. BUSINESS PLAN SCHOLARSHIP COMPETITION ANNOUNCEMENT

    E-Print Network [OSTI]

    California at Davis, University of

    BUSINESS PLAN SCHOLARSHIP COMPETITION ANNOUNCEMENT Established in late 2001, My Sister's House Sister's House is offering a business plan competition to local college and graduate students to identify. The business plan which should be conducted under the approval of a business or business related professor

  13. Small Business Innovation Research and Small Business Technology Transfer

    Broader source: Energy.gov [DOE]

    The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

  14. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  15. ABBGroup-1-High voltage lab

    E-Print Network [OSTI]

    Basse, Nils Plesner

    oscillations are due to travelling waves in the heating volume. #12;©ABBGroup-9- 3-Sep-07 2. High voltage phase interrupts the injected current, it is stressed by the transient recovery voltage (TRV) oscillating©ABBGroup-1- 3-Sep-07 High voltage lab Research on high voltage gas circuit breakers Nils P. Basse

  16. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research University of California at Santa Barbara Spectroscopy Department Chemical Hygiene Plan NMR and EPR

  17. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Sideris, Thomas C.

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs____________________19 #12;3 Introduction 12/4/2013 This is the Chemical Hygiene Plan (CHP) for the Materials Research Hygiene Plan NMR and EPR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  18. CHEMICAL HYGIENE LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    1 CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs______________________19 #12;3 Introduction 10/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Department Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information

  19. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  20. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    EES 1001 ­ Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want to pump out the groundwater. *About those voids... Porosity is the volume of void space in a sediment

  1. W. FIFTH AVE. RADIATION LAB

    E-Print Network [OSTI]

    Ohta, Shigemi

    W. FIFTH AVE. NASA SPACE RADIATION LAB 958 ENERGY EFFICIENCY & CONSERVATION DIVISION THOMSON RD. E WASTE MANAGEMENT FACILITY INSTRUMENTATION 901906 750 801 701 703 815 933 912 923 925 911 938 939 902 197 Matter Physics & Materials Science Dept. 480 J5 Medical Research Center 490 H7 National Synchrotron Light

  2. An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions

    SciTech Connect (OSTI)

    He, X.; Donovan, M.T.; Zigler, B.T.; Palmer, T.R.; Walton, S.M.; Wooldridge, M.S.; Atreya, A. [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109-2125 (United States)

    2005-08-01T23:59:59.000Z

    Autoignition of iso-octane was examined using a rapid compression facility (RCF) with iso-octane, oxygen, nitrogen, and argon mixtures. The effects of typical homogeneous charge compression ignition (HCCI) conditions on the iso-octane ignition characteristics were studied. Experimental results for ignition delay times, t{sub ign}, were obtained from pressure time-histories. The experiments were conducted over a range of equivalence ratios (f=0.25-1.0), pressures (P=5.12-23 atm), temperatures (T=943-1027 K), and oxygen mole fractions ({chi}{sub O{sub 2}}=9-21%), and with the addition of trace amounts of combustion product gases (CO{sub 2} and H{sub 2}O). It was found that the ignition delay times were well represented by the expression t{sub ign}=1.3x10{sup -4}P{sup -1.05}f{sup -0.77}{chi}{sub O{sub 2}}{sup -1.41}exp(33,700/R{sub (c} {sub al/mol/K)}T), where P is pressure (atm), T is temperature (K), f is the equivalence ratio (based on iso-octane to O{sub 2} molar ratios), {chi}{sub O{sub 2}} is the oxygen mole percent (%), and t{sub ign} is the ignition delay time (ms). Carbon dioxide was found to have no chemical effect on t{sub ign}. Water was found to systematically decrease t{sub ign} by a small amount (less than 14% for the range of conditions studied). The maximum uncertainty in the measured t{sub ign} is +/-12% with an average uncertainty of +/-6%. The performance of several proposed chemical reaction mechanisms (including detailed, reduced, and skeletal mechanisms) was evaluated in the context of the current experimental results.

  3. H CANYON PROCESSING IN CORRELATION WITH FH ANALYTICAL LABS

    SciTech Connect (OSTI)

    Weinheimer, E.

    2012-08-06T23:59:59.000Z

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial number of samples being sent to F/H Labs. All analyses of these samples are imperative to safe and efficient processing. The important campaigns to occur would be impossible without feedback from analyses such as chemical makeup of solutions, concentrations of dissolution acids and nuclear material, as well as nuclear isotopic data. The necessity of analysis for radiochemical processing is evident. Processing devoid of F/H Lab's feedback would go against the ideals of a safety-conscious and highly accomplished processing facility such as H Canyon.

  4. evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES

    E-Print Network [OSTI]

    Arnold, Jonathan

    evolution genetics lab GENE 4230L: MECHANISMSAND INFERENCES OFEVOLUTIONARYPROCESSES Fall2006, 12 Selection 1. Aug. 28 Lab 4. Measuring Natural Selection 2. Aug. 30 LABOR DAY Sep. 4 Lab 5. Evolution. 30 Lab 20. Phylogenetics part 2 Nov. 1 Lab 21. Evolution of Development Nov. 6 Lab 22. Catch

  5. INTERNATIONAL RELATIONSINTERNATIONAL RELATIONSINTERNATIONAL RELATIONS (GLOBAL BUSINESS)(GLOBAL BUSINESS)(GLOBAL BUSINESS)

    E-Print Network [OSTI]

    Krylov, Anna I.

    INTERNATIONAL RELATIONSINTERNATIONAL RELATIONSINTERNATIONAL RELATIONS (GLOBAL BUSINESS)(GLOBAL BUSINESS)(GLOBAL BUSINESS) Future leaders in business, government, and law need to understand how global, and internship opportunities, it is an ideal major for those interested in entering the realms of business

  6. A Decentralized Broker Architecture for Collaborative Business Process Modelling and Enactment

    E-Print Network [OSTI]

    Bauer, Bernhard

    of Computer Science, University of Augsburg, D-86135 Augsburg, [bauer|roser]@ds-lab.org 2 Siemens AG Corporate Technology, CT IC 6, D-81730 München, joerg.p.mueller@siemens.com Keywords: Business process modelling, model model transformations and refinements. The main objective of our research is to develop architectures

  7. Using Business Scenarios to Surface Requirements for COTS Products WenQian Liu

    E-Print Network [OSTI]

    Easterbrook, Steve

    . lymer@ca.ibm.com Steve Easterbrook Dept. of Computer Science University of Toronto sme Science University of Toronto wl@cs.utoronto.ca Sharon Lymer IBM Toronto Software Lab IBM Canada LtdUsing Business Scenarios to Surface Requirements for COTS Products WenQian Liu Dept. of Computer

  8. Business, management and finance

    E-Print Network [OSTI]

    Sussex, University of

    Business, management and finance Essentials Taught degrees Masters in Business Administration (MBA) MSc in Banking and Finance MSc in Corporate and Financial Risk Management MSc in Financial Mathematics in International Accounting and Corporate Governance MSc in International Finance MSc in International Management

  9. Introduction Business Administration

    E-Print Network [OSTI]

    Banbara, Mutsunori

    spectacularly in Japan after Osaka University of Commerce was established as the third Higher Commercial School. The School of Business Administration, Kobe University has developed into a leading institution of business administration, accounting, and commercial science, and has been leading these areas of research and education

  10. Administrative Business Assistant

    E-Print Network [OSTI]

    Rock, Chris

    Marketing Raider Welcome Tech Activities Board Town & Gown BUSINESS OFFICE Associate Director for Business Legal Services University ID Center University Police SUB Station Interim Chief Financial O cer & Vice IT Student Assistant (2) Interim Chief Financial O cer & Vice President for Administration and Finance (Sloan

  11. Digital Business RESEARCH BRIEF

    E-Print Network [OSTI]

    of social software, and a July 2009 Prescient digital media survey revealed that 47% of respondents wereCenter for Digital Business RESEARCH BRIEF Volume XIII Number 1 May 2011 2011 MIT Center for Digital Business, A. McAfee Shattering the Myths About Enterprise 2.0 Andrew P. McAfee, Associate Director

  12. Santee Cooper- Business Custom Rebates

    Broader source: Energy.gov [DOE]

    Santee Cooper has developed a Business Custom Rebate as part of their Reduce the Use: Business Prescriptive Rebate Program, which was designed to reduce a business's overall electricity use.

  13. Lab suppliers receive Department of Energy awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLabLab

  14. Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.

    SciTech Connect (OSTI)

    Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

    2010-11-01T23:59:59.000Z

    Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

  15. Mexico Small Business Assistance fest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrate success at New Mexico Small Business Assistance fest April 4, 2011 LOS ALAMOS, New Mexico, April 4, 2011-The New Mexico Small Business Assistance (NMSBA) program is...

  16. Michigan Business Development Program (Michigan)

    Broader source: Energy.gov [DOE]

    The Michigan Business Development Program provides grants, loans, and other economic assistance to businesses for highly competitive projects that create jobs and/or provide investment. A minimum...

  17. December 15, 2014 LAB COMMISSION MEETING MINUTES

    Broader source: Energy.gov [DOE]

    The Commission to Review the Effectiveness of the National Energy Laboratories (Commission) was convened for its fifth meeting at 10:00 AM on December 15, 2014. Commission Co-Chair Jared Cohon led the meeting. The meeting included two panels: (1) authors of recent reports about the DOE National Labs and (2) a national lab contractor panel. The report authors summarized their respective reports, highlighting concerns related to the relationship between DOE and the labs, research funding and strategy stove-piping, weak links between the labs and market, an inconsistent economic development mission, the difficulty small firms have in accessing labs, the labs’ lack of regional engagement, and DOE and congressional micromanagement of the labs. The lab contractor representatives responded to questions posed by the commissioners related to lab management and the relationship with DOE. Additionally, Patricia Falcone spoke of the important role of the labs in the science and technology enterprise and Alan Leshner talked about the labs and their relationship with the scientific community. Christopher Paine presented his views on transforming the weapons complex. The next meeting will be held February 24 at the Hilton at Mark Center in VA.

  18. Inertial Confinement Fusion and the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Ross, P.

    2012-08-29T23:59:59.000Z

    Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

  19. Hydrodynamic instabilities in beryllium targets for the National Ignition Facility

    SciTech Connect (OSTI)

    Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-09-15T23:59:59.000Z

    Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

  20. High load operation in a homogeneous charge compression ignition engine

    DOE Patents [OSTI]

    Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Liechty, Michael P. (Chillicothe, IL); Hardy, William L. (Peoria, IL); Rodman, Anthony (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL)

    2008-12-23T23:59:59.000Z

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  1. BUSINESS ANALYTICS CONCENTRATION FOR UNDERGRADUATES The business analytics concentration, like a major, focuses on using information to develop business

    E-Print Network [OSTI]

    Salama, Khaled

    their business models. Possible Job Titles Data scientist, business analytics specialist, customer relationshipBUSINESS ANALYTICS CONCENTRATION FOR UNDERGRADUATES The business analytics concentration, like a major, focuses on using information to develop business insights and influence decision

  2. National Ignition Facility Project Completion and Control System Status

    SciTech Connect (OSTI)

    Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

    2009-10-02T23:59:59.000Z

    The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

  3. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect (OSTI)

    Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  4. National Ignition Facility Quality Assurance Program Plan. Revision 1

    SciTech Connect (OSTI)

    Wolfe, C.R.; Yatabe, J.

    1996-09-01T23:59:59.000Z

    The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

  5. Radiator Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: TheCompetition » Radiator Labs

  6. Scientific Labs | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearch BriefsTenney,ScienceScientificScientific Labs SHARE

  7. College of Business and Behavioral Science BUSINESS AND

    E-Print Network [OSTI]

    Bolding, M. Chad

    76 College of Business and Behavioral Science 76 COLLEGE OF BUSINESS AND BEhAvIOrAL SCIENCE Students in the College of Business and Behavioral Science seek to understand and organize human behavior in a business, economic, and social context. The College promotes scholarship with broad aware- ness

  8. 76 BELK COLLEGE OF BUSINESS Belk College of Business

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    76 BELK COLLEGE OF BUSINESS Belk College of Business http://belkcollege.uncc.edu Dean: Joseph B Associate Dean for Undergraduate Programs: Daryl L. Kerr Vision. The vision of the Belk College of Business is to become a leader in 21st Century business research and education. Mission. We are committed to creating

  9. Business Management Analyst Business Manager Director of Communication Contracts Manager

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    · Business Management Analyst · Business Manager · Director of Communication · Contracts Manager of Sales · President/Owner · Instructor of Business · Senior Buyer · North American Sales Manager · Talent graduation. You will have the skills & knowledge to manage and grow a successful business. You will be able

  10. Ignition and extinction in the catalytic oxidation of hydrocarbons over platinum

    SciTech Connect (OSTI)

    Veser, G.; Schmidt, L.D. [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science] [Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Chemical Engineering and Materials Science

    1996-04-01T23:59:59.000Z

    The ignition-extinction behavior in the oxidation of methane, ethane, propane and isobutane, as well as of ethylene and propylene over a platinum-foil catalyst was studied over the entire range of fuel/air ratios at atmospheric pressure. Ignition and extinction of the heterogeneous surface reaction, homogeneous ignition and the autothermal behavior of these fuel-air mixtures were investigated. The results show a common trend in the ignition extinction behavior of the alkanes and a different trend for the olefins. This is discussed in terms of a simple model, which correctly predicts the composition dependence of the surface ignition curve for reasonable values of parameters, indicating a mainly oxygen-covered surface during ignition of the alkanes and a mainly hydrocarbon-covered surface in the case of the olefins. Different branches of the complete bifurcation diagrams are discussed separately, allowing qualitative conclusions about the catalytic activity of Pt for the oxidation reactions of different fuels.

  11. Ignition probabilities of wildland fuels based on simulated lightning discharges. Forest Service research paper

    SciTech Connect (OSTI)

    Latham, D.J.; Schlieter, J.A.

    1989-09-01T23:59:59.000Z

    Ignition of wildland fine fuels by lightning was simulated with an electric arc discharge in the laboratory. The results showed that fuel parameters such as depth, moisture content, bulk density, and mineral content can be combined with the duration of the simulated continuing current to give ignition probabilities. The fuel state parameters of importance and the ignition probabilities were determined using logistic regression. Graphs, tables, formulas, and a FORTRAN computer program are given for field use.

  12. National Ignition Facility Cryogenic Target Systems Interim Management Plan

    SciTech Connect (OSTI)

    Warner, B

    2002-04-25T23:59:59.000Z

    Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety & Health (ES&H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for delivering this system will be decided at the national level, based on experiment campaign requirement dates that will be derived through this process. The current milestone date for achieving indirect-drive ignition on the NIF is December 2010. Maintaining this milestone requires that the cryogenic systems be complete and available for fielding experiments early enough that the planned experimental campaigns leading up to ignition can be carried out. The capability of performing non-ignition cryogenic experiments is currently required by March 2006, when the NIF's first cluster of beams is operational. Plans for cryogenic and non-cryogenic experiments on the NIF are contained in NNSA's Campaign 10 Program Plans for Ignition (MTE 10.1) and High Energy Density Sciences (MTE 10.2). As described in this document, the NCTS Program Manager is responsible for managing NIF Cryogenic Target Systems development, engineering, and deployment. Through the NIF Director, the NCTS Program Manager will put in place an appropriate Program Execution Plan (draft attached) at a later time consistent with the maturing and funding these efforts. The PEP will describe management methods for carrying out these activities.

  13. Small Business Program

    Broader source: Energy.gov [DOE]

    Focus on Energy offers a free energy assessment and free or discounted energy savings items to small businesses with a peak monthly electric demand of less than 100 kilowatts. After the initial...

  14. Business Affairs Environmental Health

    E-Print Network [OSTI]

    Wu, Dapeng Oliver

    Business Affairs Environmental Health & Safety Dive Safety Facility/Fire Safety/ Building Codes Radiation Control & Radiological Services Occupational Safety/ Industrial Hygiene Risk Management IFAS Facility Safety Indoor Air Quality Industrial Hygiene Hearing Conservation OSHA Safety Underground

  15. Small Business First Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-14T23:59:59.000Z

    The Department of Energy (DOE) is committed to maximizing opportunities for small business contracts, including prime contracts and subcontracts, while driving towards operational excellence and efficiency across the enterprise. Does not cancel other directives.

  16. Small Business Resources

    Office of Environmental Management (EM)

    terms) * Monitor invoices. * Pay early when you can get a discount. * Always keep an eye on your cash. * Prepare cash flow statements. 20 Top 10 Small Business Best Practices...

  17. Mathematics Business Office

    E-Print Network [OSTI]

    On behalf of the entire Business Office staff of the Departments of Mathematics I would like to express how happy we are that you will be joining our faculty and ...

  18. BUSINESS AND LEADERSHIP COURSES

    E-Print Network [OSTI]

    California at Davis, University of

    cover) New! Management and Leadership Certificate Program New! Professional Concentration in Public ............................................................................... 33 NEW! Professional Concentration in Public Administration Management Improve your ability to think and Business Communications Leadership Development (Supervisory, Management, Executive, Public Administration

  19. Micronotes, LLC : business plan

    E-Print Network [OSTI]

    Kinkead, Devon Andrew

    2008-01-01T23:59:59.000Z

    The primary goal of this research was to determine if Micronotes, a start-up company based on an electronic bill-pay service that enables customers to prepay and discount their bills, is a viable business proposition. Here ...

  20. New Mexico Small Business Assistance

    E-Print Network [OSTI]

    New Mexico Small Business Assistance Program (NMSBA) helps small businesses in New Mexico access counties solve their technical challenges through NMSBA. Economic Impact of the Small Businesses related to NMSBA Small Business Jobs Created/Retained 2,874 Average Salary $38,647 Increased Revenue $145.2M

  1. Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2013-01-01T23:59:59.000Z

    Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

  2. Investigation of proton focusing and conversion efficiency for proton fast ignition

    E-Print Network [OSTI]

    Bartal, Teresa Jean

    2012-01-01T23:59:59.000Z

    After ignition, a thermonuclear burn wave spreads radiallythe shell to create the thermonuclear burn wave. At 10 keV,heating the plasma to thermonuclear temperatures. Protons

  3. Group ignition and combustion of a cloud of char particles under transient conditions

    E-Print Network [OSTI]

    Ramalingam, Suresh Chander

    1988-01-01T23:59:59.000Z

    Correction Factor M/Mrpc. 6. 8 Results with CO Oxidation in the Gas Phase. 6. 8. 1 Ignition 6. 8. 2 Effect of Particle Size on Ignition Times 6. 8. 3 Effect of Ambient Temperature on Ignition 6. 8. 4 CO Ignition 6. 8. 5 Combustion with the Thin Flame... has its own euvelope flame (Figure 2. 1a). If another burning drop is brought near the droplet, then a common flame is formed for the two droplets (Figure 2. 1b). Thus the simplest example of group combustion is the combustion of two single drops...

  4. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    SciTech Connect (OSTI)

    Biswas, Kaushik [ORNL; Werth, David [Savannah River National Laboratory, Aiken, SC; Gupta, Narendra [Savannah River National Laboratory, Aiken, SC

    2013-01-01T23:59:59.000Z

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known as the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.

  5. Lab hosts multi-lab cyber security games

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFive R&D awards formuonLab hosts

  6. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10 MillionJefferson45July

  7. Jefferson Lab Hosts Science Poster Session | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab Group Gets 10

  8. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaser Twinkles in Rare Color

  9. Jefferson Lab Names Chief Technology Officer | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLab GroupHumanLaserMichaelChiefChief

  10. Jefferson Lab Names New Safety Director | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS, Va.,

  11. Jefferson Lab News - Jefferson Lab Achieves Critical Milestone Toward

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety Director NEWPORT NEWS,

  12. Jefferson Lab Plans Open House for May 19 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 InvestigationLabNew Safety

  13. Jefferson Lab, ODU team up for center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges upJeffersonFridayMarch 6|Lab, ODU team

  14. Grad. Students Sought for Lab Tour Program | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heat PumpJorgeAtlGrad. Students Sought for Lab

  15. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  16. Back to School at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how one Energy Department internship program is providing students with hands-on experience performing cutting edge research at the National Labs.

  17. Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    Desiccant Enhanced Evaporative Air Conditioning Lab Breakthrough: Desiccant Enhanced Evaporative Air Conditioning May 29, 2012 - 5:22pm Addthis This breakthrough combines desiccant...

  18. Page 1 of 2 THERMO Lab Information

    E-Print Network [OSTI]

    Liebling, Michael

    Plan update. (http://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics://optoelectronics.ece.ucsb.edu/thermoelectrics-and-high-efficiency-photovoltaics-lab By signing below, you

  19. Lab supercomputer finds new home at UNM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Labgrants DecisionLabLabLabLab

  20. National Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScienceScientistsNational Labs

  1. Lab Write-Up: Rubric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15Trade |VesselLPOD Name: Lab

  2. Lab Subcontractor Consortium provides grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -Lab Subcontractor Consortium

  3. National Labs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNational Labs Commission

  4. Solar Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlas (PACADecker MackSolar Labs

  5. At A Glance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWPAlumni AlumniFederalAshley BoyleAn overhead view of Jefferson Lab.

  6. Element Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| OpenElectromagnetic Profiling TechniquesLabs Jump

  7. Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Green Labs and EH&S, Nov. 2013 ___________________ Lab Recycling Guide Non-contaminated, clean lab plastic containers and conical tubes may be recycled. To be accepted, containers must be clean, triple. Recycling bin located: PSB Loading Dock Alcohol cans and metal shipping containers may be recycled

  8. TEAM MEMBERS INSPECTED LAB Oct 2014 Suhare Adam Greg Silverberg Cruft Lab

    E-Print Network [OSTI]

    INSPECTION TEAM TEAM CHAIR MEMBER TEAM MEMBERS INSPECTED LAB LOCATIONS LAB SAFETY OFFICERS TEAM 1 Oct 2014 Suhare Adam Greg Silverberg Cruft Lab Hau (Eric Brandin) Electronics Shop (Al Takeda) TEAM 2/Tamas Szalay) Capasso (Alan She) Stubbs (Peter Doherty) TEAM 3 Nov 2014 Mike Gerhardt Zach Gault Paul Loschak

  9. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s - 16,3/14

  10. The ePLAS Code for Ignition Studies

    SciTech Connect (OSTI)

    Mason, Rodney J

    2012-09-20T23:59:59.000Z

    Inertial Confinement Fusion (ICF) presents unique opportunities for the extraction of clean energy from Fusion. Intense lasers and particle beams can create and interact with such plasmas, potentially yielding sufficient energy to satisfy all our national needs. However, few models are available to help aid the scientific community in the study and optimization of such interactions. This project enhanced and disseminated the computer code ePLAS for the early understanding and control of Ignition in ICF. ePLAS is a unique simulation code that tracks the transport of laser light to a target, the absorption of that light resulting in the generation and transport of hot electrons, and the heating and flow dynamics of the background plasma. It uses an implicit electromagnetic field-solving method to greatly reduce computing demands, so that useful target interaction studies can often be completed in 15 minutes on a portable 2.1 GHz PC. The code permits the rapid scoping of calculations for the optimization of laser target interactions aimed at fusion. Recent efforts have initiated the use of analytic equations of state (EOS), K-alpha image rendering graphics, allocatable memory for source-free usage, and adaption to the latest Mac and Linux Operating Systems. The speed and utility of ePLAS are unequaled in the ICF simulation community. This project evaluated the effects of its new EOSs on target heating, compared fluid and particle models for the ions, initiated the simultaneous use of both ion models in the code, and studied long time scale 500 ps hot electron deposition for shock ignition. ePLAS has been granted EAR99 export control status, permitting export without a license to most foreign countries. Beta-test versions of ePLAS have been granted to several Universities and Commercial users. The net Project was aimed at achieving early success in the laboratory ignition of thermonuclear targets and the mastery of controlled fusion power for the nation.

  11. Sandia National Laboratories participation in the National Ignition Facility project

    SciTech Connect (OSTI)

    Boyes, J.; Boyer, W.; Chael, J.; Cook, D.; Cook, W.; Downey, T.; Hands, J.; Harjes, C.; Leeper, R.; McKay, P.; Micano, P.; Olson, R.; Porter, J.; Quintenz, J.; Roberts, V.; Savage, M.; Simpson, W.; Seth, A.; Smith, R.; Wavrik, M.; Wilson, M.

    1996-08-01T23:59:59.000Z

    The National Ignition Facility is a $1.1B DOE Defense Programs Inertial Confinement Fusion facility supporting the Science Based Stockpile Stewardship Program. The goal of the facility is to achieve fusion ignition and modest gain in the laboratory. The NIF project is responsible for the design and construction of the 192 beam, 1.8 MJ laser necessary to meet that goal. - The project is a National project with participation by Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester Laboratory for Laser Energetics (URLLE) and numerous industrial partners. The project is centered at LLNL which has extensive expertise in large solid state lasers. The other partners in the project have negotiated their participation based on the specific expertise they can bring to the project. In some cases, this negotiation resulted in the overall responsibility for a WBS element; in other cases, the participating laboratories have placed individuals in the project in areas that need their individual expertise. The main areas of Sandia`s participation are in the management of the conventional facility design and construction, the design of the power conditioning system, the target chamber system, target diagnostic instruments, data acquisition system and several smaller efforts in the areas of system integration and engineering analysis. Sandia is also contributing to the technology development necessary to support the project by developing the power conditioning system and several target diagnostics, exploring alternate target designs, and by conducting target experiments involving the ``foot`` region of the NIF power pulse. The project has just passed the mid-point of the Title I (preliminary) design phase. This paper will summarize Sandia`s role in supporting the National Ignition Facility and discuss the areas in which Sandia is contributing. 3 figs.

  12. Gasoline Engine Economy as Affected by the Time of Ignition

    E-Print Network [OSTI]

    Hopkins, George Jay

    1907-01-01T23:59:59.000Z

    of Ignition. A Thesis Sutaitted to the faculty of the University of Kansas hy George Jay Hopkins, Eor the Degree of B.S. in MeohanioaX Engineering. Lawrenoe 1907 The author desires to make grateful acknowledg­ ment of the friendly aid and advice...­ ment in this line Is not only possible, but in most cas­ es profitable* Considering the almost infinite variety of uses to which the internal combustion engine is put, it is manifestly impossible to set any one angle of advance, at which the maximum...

  13. A Kirkpatrick-Baez microscope for the National Ignition Facility

    SciTech Connect (OSTI)

    Pickworth, L. A., E-mail: pickworth1@llnl.gov; McCarville, T.; Decker, T.; Pardini, T.; Ayers, J.; Bell, P.; Bradley, D.; Brejnholt, N. F.; Izumi, N.; Mirkarimi, P.; Pivovaroff, M.; Smalyuk, V.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

    2014-11-15T23:59:59.000Z

    Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10–25 ?m) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 ?m resolution over a 300 ?m field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 ?m field of view.

  14. Simulation of turbulent flames relevant to spark-ignition engines

    E-Print Network [OSTI]

    Ahmed, Irufan

    2014-04-29T23:59:59.000Z

    -premixed. In premixed flames, fuel and oxidiser are mixed homo- geneously before combustion. Lean-burn gas turbines for power generation and spark-ignition (SI) IC engines are typical examples of this type of combustion. In non-premixed or ‘diffusion flames’, the fuel... and oxidiser are transported sep- arately into the reaction zones by diffusion. Aero-engine gas turbines and diesel engines are typical examples of non-premixed combustion. It is often the case in practical systems that fuel and air is not completely mixed...

  15. Gated x-ray detector for the National Ignition Facility

    SciTech Connect (OSTI)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); VI Control Systems Ltd., Los Alamos, New Mexico 87544 (United States)

    2006-10-15T23:59:59.000Z

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.

  16. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOE Patents [OSTI]

    Flowers, Daniel L. (San Leandro, CA)

    2005-08-02T23:59:59.000Z

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  17. Create Facebook applications with CodeIgniter Integrating the Facebook SDK

    E-Print Network [OSTI]

    Create Facebook applications with CodeIgniter Integrating the Facebook SDK Skill Level to incorporate the Facebook SDK into the CodeIgniter framework, using the available functions to create applications. This article shows you how to get the sample Facebook application working with the Code

  18. A comparison of various models in predicting ignition delay in single-particle coal combustion

    E-Print Network [OSTI]

    A comparison of various models in predicting ignition delay in single-particle coal combustion November 2013 Accepted 7 January 2014 Available online xxxx Keywords: Coal Devolatilization Ignition delay a b s t r a c t In this paper, individual coal particle combustion under laminar conditions

  19. Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere

    E-Print Network [OSTI]

    Heil, Matthias

    Ignition and Combustion of Fuel Pockets Moving in an Oxidizing Atmosphere JOEL DAOU Dpto, Spain. E-mail: daou@tupi.dmt.upm.es Ignition and combustion of an initially spherical pocket of fuel, the results provide a good appreciation of the dynamics of the combustion process. For example, it is found

  20. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13T23:59:59.000Z

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  1. EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2

    E-Print Network [OSTI]

    ABSTRACT Rise and delay times of mixtures of methane, propane, n-butane, iso-butane and iso- octane mixed performance of various fuels including methane, propane, iso-butane, n-butane and iso-octane mixed with air with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

  2. Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi, Manikanda Rajagopal, Razi Nalim

    E-Print Network [OSTI]

    Zhou, Yaoqi

    Jet Ignition Research for Clean Efficient Combustion Engines Prasanna Chinnathambi, Abdullah Karimi University Indianapolis Abstract Ignition by a jet of hot gas has application in lean-burn pre-chamber internal combustion engines and in innovative pressure-gain combustors for gas turbine engines. Jet

  3. Dynamics of Homogeneous Charge Compression Ignition (HCCI) Engines with High Dilution

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    Dynamics of Homogeneous Charge Compression Ignition (HCCI) Engines with High Dilution C. J. Chiang (HCCI) engines in light of the cycle-to-cycle thermal feedback due to the high percentage of exhaust temperature is the primary mechanism for con- trolling ignition timing in an HCCI engine, especially when

  4. EFFECTS OF MIXTURE INHOMOGENEITY ON THE AUTO-IGNITION OF REACTANTS UNDER HCCI ENVIRONMENT

    E-Print Network [OSTI]

    Im, Hong G.

    EFFECTS OF MIXTURE INHOMOGENEITY ON THE AUTO-IGNITION OF REACTANTS UNDER HCCI ENVIRONMENT Ramanan ABSTRACT As an attempt at providing insight to develop bet- ter modeling strategies for HCCI engines in multi-dimensional simulation of HCCI engines. INTRODUCTION The homogenous charge compression ignition

  5. Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition

    E-Print Network [OSTI]

    Low Frequency Architecture for Multi-Lamp CCFL Systemswith Capacitive Ignition Monm Doshi (I-0425 regan.zane@colorado.edu Absfruci-This paper presents a low frequency architecture for driving parallel to the architecture is a proposed capacitive coupling approach for ac lamp ignition. The system consists of a single

  6. Plasma channel from EP beam Direct-drive ignition is the main thrust in LLE

    E-Print Network [OSTI]

    -drive ignition; this is not an optimal configuration fordirectdrivethatrequiressphericalillumination I2093 for direct-drive experiments; it is coupled to a high-power, short-pulse laser (OMEGA EP) to explore advanced 26 kJ Scale 1:70 in energy Scale 1:1 Scale 1:1 #12;Hydro-equivalentignitiononOMEGA #12;Ignition

  7. Is your small business eligible? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Is your small business eligible? Is your small business eligible? Is your small business eligible? Get Started Here Is your small business eligible? Is your small business...

  8. Resources for Small Businesses | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources for Small Businesses System for Award Management: Enables small business owners to register to do business with the federal government and self-certify as a small...

  9. Medion:The "Orchestrator" Business Model

    E-Print Network [OSTI]

    Ordanini, Andrea; Dedrick, Jason; Kraemer, Kenneth L

    2006-01-01T23:59:59.000Z

    The “Orchestrator” Business Model November 2006 ANDREAThe “Orchestrator” Business Model Medion is not a producta strongly atypical business model in the PC value chain. It

  10. Innovative Corridors Initiative: Business Model Analysis

    E-Print Network [OSTI]

    Shaheen, Susan; Lingham, Viginia; Finson, Rachel S.

    2007-01-01T23:59:59.000Z

    Wenger, Joyce. Business Models for Vehicle InfrastructureCorridors Initiative: Business Model Analysis Rachel S.Corridors Initiative: Business Model Analysis Task Order

  11. Better Buildings Neighborhood Program Business Models Guide:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Utility Program Administrator Business Model Better Buildings Neighborhood Program Business Models Guide: Non-Utility Program Administrator Business Model Non-utility program...

  12. Access Business Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Systems Dash provides access to select Argonne business systems without VPN. Dash is a secure platform, based on Citrix, for accessing Argonne business systems. Dash is...

  13. advanced lab frame: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  14. astd field lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  15. advances lab astrophysics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  16. acid bacteria lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  17. animal diagnostic lab: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: , David Wessel, and Kathy Yelick UC Berkeley Par Lab End-of-Project Party May 30, 2013 12;BERKELEY PAR LAB Par Lab Timeline 2 Initial Meetings...

  18. NREL: Business Opportunities Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Renewable Energy Laboratory (NREL) offers numerous procurement opportunities to help commercialize renewable energy technologies and to supply the lab with essential...

  19. DATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING

    E-Print Network [OSTI]

    Short Title ADMIXTURES _____ 02/A35 ASTM C233 Testing Air-Entraining Admixtures for Concrete _____ 02/A MATERIALS TESTING APPLICATION (REV. 2014-08-25) PAGE 2 OF 10 #12;DATE : NVLAP LAB CODE: CONCRETE _____ 02/ADATE : NVLAP LAB CODE: CONSTRUCTION MATERIALS TESTING TEST METHOD SELECTION LIST Instructions

  20. Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan

    E-Print Network [OSTI]

    Nolan, Deborah

    Multimedia Statistical Labs & Toolkit (TILE) Deborah Nolan University of California, Department@research.bell-labs.com 1. Introduction The potential for multimedia to enhance the statistics curriculum is clear, but how to develop instructional materials that take advantage of the riches that multimedia has to offer

  1. Electronics I 4 cr with Lab

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    ECE 332 Electronics I 4 cr with Lab ECE 370 Signals & Systems 3 cr co ECE 225 Electric Circuits 3 106 - 4 cr General Physics with Calculus CS 116 - 1 cr Intro to Comp. Program. Lab co MATH 227 4 cr cr Department of Electrical and Computer Engineering -- Department of Physics and Astromony

  2. The DVCS program at Jefferson Lab

    SciTech Connect (OSTI)

    Niccolai, Silvia [Institut de Physique Nucleaire, Orsay, France

    2014-06-01T23:59:59.000Z

    Recent promising results, obtained at Jefferson Lab, on cross sections and asymmetries for DVCS and their link to the Generalized Parton Distributions are the focus of this paper. The extensive experimental program to measure DVCS with the 12-GeV-upgraded CEBAF in three experimental Halls (A, B, C) of Jefferson Lab, will also be presented.

  3. Wireshark Lab: SSL Version: 2.0

    E-Print Network [OSTI]

    Lu, Enyue "Annie"

    Wireshark Lab: SSL Version: 2.0 © 2007 J.F. Kurose, K.W. Ross. All Rights Reserved Computer Networking: A Top- down Approach, 4 th edition. In this lab, we'll investigate the Secure Sockets Layer (SSL) protocol, focusing on the SSL records sent over a TCP connection. We'll do so by analyzing a trace

  4. CHEMICAL HYGIENE PLAN LAB SPECIFIC INFORMATION

    E-Print Network [OSTI]

    Bigelow, Stephen

    CHEMICAL HYGIENE PLAN (CHP) LAB SPECIFIC INFORMATION & STANDARD OPERATING PROCEDURES (SOPs/23/09 This is the Chemical Hygiene Plan (CHP) for the Materials Research Laboratory (MRL) Spectroscopy Facility. All labs Chemical Hygiene Plan NMR Laboratory Form Version 8/6/98 1. General Laboratory Information Laboratory Name

  5. Office of Educational Programs Solar Energy Lab

    E-Print Network [OSTI]

    Homes, Christopher C.

    Office of Educational Programs Solar Energy Lab Overview Kaitlin Thomassen Target student audience: High School Regents Physics High School AP Physics #12;Solar Energy Lab: Goals Highlight research Solar Farm & Northeast Solar Energy Research Center (NSERC) Scientists and engineers will research

  6. 2014 PMEL Lab Review 1 Background

    E-Print Network [OSTI]

    integrated into ESGF software stack to provide discovery, exploration and download of subsets #12;2014 PMEL submission in development for version 4 #12;2014 PMEL Lab Review 17 Isn't this the PMEL lab lifecycle ·minimizes effort required by researchers ·Greatly improves access for users Do it in a wa

  7. n CAPABILITY STATEMENT Intelligent Transport Systems Lab

    E-Print Network [OSTI]

    Liley, David

    collaborative research programs with the following institutions and organisations: VicRoads ARRB ITSL is open Lab (ITSL) isVictoria's first dedicated traffic analysis research Lab established in April 2012 and Australia facilitate and foster excellent, industry relevant and cross-disciplinary research in Australia

  8. Lab Validation Microsoft Windows Server 2012

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................22 All trademark names are property of their respective companies. Information contained

  9. Lab Validation Microsoft Windows Server 2012 with

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    data center technology products for companies of all types and sizes. ESG Lab reports are not meant areas needing improvement. ESG Lab's expert third-party perspective is based on our own hands-on testing.....................................................................................................................................................16 All trademark names are property of their respective companies. Information contained

  10. Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model Introduction.

  11. Guidance to Small Businesses on How to Do Business with the Department of Energy

    Broader source: Energy.gov [DOE]

    Helpful tips to prepare small businesses interested in doing business with the Department of Energy.

  12. Business Case for Compressed Natural Gas in Municipal Fleets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced MaterialsEnergy,EnvelopeJefferson LabBusiness7A2-47919 June

  13. KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    KINETIC MODELING OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES R OF A SURROGATE DIESEL FUEL APPLIED TO 3D AUTO-IGNITION IN HCCI ENGINES INTRODUCTION Engines running on HCCI combustion mode (Homogeneous Charge Compression Ignition) have the potential to provide both diesel

  14. Financing a Farm Business.

    E-Print Network [OSTI]

    Love, Harry M.

    1958-01-01T23:59:59.000Z

    . $ticiness. Modern farming requires the wise use of credit. It will be more , -f~ 111 the future. tfest road to the profitable use of credit winds through the records is going on now in your business and is spotlighted by new gy. Practice will improve...Far m-Business SOUTHERN FARM MANAGEMENT EXTENSION PUBLICATION No. 8 I L FOREWORD i Scientific discoveries and the new technology growing out of them create a nec for constant adjustments in farming. Most of these changes call for capital...

  15. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasolineStaffBusinessUS: Business

  16. US ITER | Doing Business

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasolineStaffBusinessUS: BusinessUS

  17. Jefferson Lab electron beam charges up | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron beam charges up Michael Schwartz Inside Business,

  18. Multi-timescale modeling of ignition and flame regimes of n-heptane-air mixtures near spark assisted homogeneous charge compression ignition conditions

    SciTech Connect (OSTI)

    Ju, Yiguang; Sun, Wenting; Burke, M. P.; Gou, Xiaolong; Chen, Zheng

    2011-01-01T23:59:59.000Z

    The flame regimes of ignition and flame propagation as well as transitions between different flame regimes of n-heptane-air mixtures in a one-dimensional, cylindrical, spark assisted homogeneously charged compression ignition (HCCI) reactor are numerically modeled using a multi-timescale method with reduced kinetic mechanism. It is found that the initial mixture temperature and pressure have a dramatic impact on flame dynamics. Depending on the initial temperature gradient, there exist at least six different combustion regimes, an initial single flame front propagation regime, a coupled low temperature and high temperature double-flame regime, a decoupled low temperature and high temperature double-flame regime, a low temperature ignition regime, a single high temperature flame regime, and a hot ignition regime. The results show that the low temperature and high temperature flames have distinct kinetic and transport properties as well as flame speeds, and are strongly influenced by the low temperature chemistry. The pressure and heat release rates are affected by the appearance of different flame regimes and the transitions between them. Furthermore, it is found that the critical temperature gradient for ignition and acoustic wave coupling becomes singular at the negative temperature coefficient (NTC) region. The results show that both the NTC effect and the acoustic wave propagation in a closed reactor have a dramatic impact on the ignition front and acoustic interaction.

  19. The Business Role Focus Area From a business

    E-Print Network [OSTI]

    Coopers, Sony, Teijin, Umicore and Weyerhaeuser. The Business Role Focus Area aims to engage, equip and mobilize

  20. The Neutron Imaging System Fielded at the National Ignition Facility

    SciTech Connect (OSTI)

    Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

    2012-08-01T23:59:59.000Z

    A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

  1. Ignition and extinction phenomena in helium micro hollow cathode discharges

    SciTech Connect (OSTI)

    Kulsreshath, M. K.; Schwaederle, L.; Dufour, T.; Lefaucheux, P.; Dussart, R. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); Sadeghi, N. [LIPhy, CNRS and Universite Joseph Fourier (UMR5588), Grenoble (France); Overzet, L. J. [GREMI, CNRS/Université d'Orléans (UMR7344), Orléans (France); PSAL, UTDallas, Richardson, Texas 75080-3021 (United States)

    2013-12-28T23:59:59.000Z

    Micro hollow cathode discharges (MHCD) were produced using 250??m thick dielectric layer of alumina sandwiched between two nickel electrodes of 8??m thickness. A through cavity at the center of the chip was formed by laser drilling technique. MHCD with a diameter of few hundreds of micrometers allowed us to generate direct current discharges in helium at up to atmospheric pressure. A slowly varying ramped voltage generator was used to study the ignition and the extinction periods of the microdischarges. The analysis was performed by using electrical characterisation of the V-I behaviour and the measurement of He*({sup 3}S{sub 1}) metastable atoms density by tunable diode laser spectroscopy. At the ignition of the microdischarges, 2??s long current peak as high as 24?mA was observed, sometimes followed by low amplitude damped oscillations. At helium pressure above 400?Torr, an oscillatory behaviour of the discharge current was observed just before the extinction of the microdischarges. The same type of instability in the extinction period at high pressure also appeared on the density of He*({sup 3}S{sub 1}) metastable atoms, but delayed by a few ?s relative to the current oscillations. Metastable atoms thus cannot be at the origin of the generation of the observed instabilities.

  2. National Ignition Facility Control and Information System Operational Tools

    SciTech Connect (OSTI)

    Marshall, C D; Beeler, R G; Bowers, G A; Carey, R W; Fisher, J M; Foxworthy, C B; Frazier, T M; Mathisen, D G; Lagin, L J; Rhodes, J J; Shaw, M J

    2009-10-08T23:59:59.000Z

    The National Ignition Facility (NIF) in Livermore, California, is the world's highest-energy laser fusion system and one of the premier large scale scientific projects in the United States. The system is designed to setup and fire a laser shot to a fusion ignition or high energy density target at rates up to a shot every 4 hours. NIF has 192 laser beams delivering up to 1.8 MJ of energy to a {approx}2 mm target that is planned to produce >100 billion atm of pressure and temperatures of >100 million degrees centigrade. NIF is housed in a ten-story building footprint the size of three football fields as shown in Fig. 1. Commissioning was recently completed and NIF will be formally dedicated at Lawrence Livermore National Laboratory on May 29, 2009. The control system has 60,000 hardware controls points and employs 2 million lines of control system code. The control room has highly automated equipment setup prior to firing laser system shots. This automation has a data driven implementation that is conducive to dynamic modification and optimization depending on the shot goals defined by the end user experimenters. NIF has extensive facility machine history and infrastructure maintenance workflow tools both under development and deployed. An extensive operational tools suite has been developed to support facility operations including experimental shot setup, machine readiness, machine health and safety, and machine history. The following paragraphs discuss the current state and future upgrades to these four categories of operational tools.

  3. IMPLODING IGNITION WAVES. I. ONE-DIMENSIONAL ANALYSIS

    SciTech Connect (OSTI)

    Kushnir, Doron; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

    2012-06-20T23:59:59.000Z

    We show that converging spherical and cylindrical shock waves may ignite a detonation wave in a combustible medium, provided the radius at which the shocks become strong exceeds a critical radius, R{sub crit}. An approximate analytic expression for R{sub crit} is derived for an ideal gas equation of state and a simple (power-law-Arrhenius) reaction law, and shown to reproduce the results of numerical solutions. For typical acetylene-air experiments we find R{sub crit} {approx} 100 {mu}m (spherical) and R{sub crit} {approx} 1 mm (cylindrical). We suggest that the deflagration to detonation transition (DDT) observed in these systems may be due to converging shocks produced by the turbulent deflagration flow, which reaches sub- (but near) sonic velocities on scales >>R{sub crit}. Our suggested mechanism differs from that proposed by Zel'dovich et al., in which a fine-tuned spatial gradient in the chemical induction time is required to be maintained within the turbulent deflagration flow. Our analysis may be readily extended to more complicated equations of state and reaction laws. An order of magnitude estimate of R{sub crit} within a white dwarf at the pre-detonation conditions believed to lead to Type Ia supernova explosions is 0.1 km, suggesting that our proposed mechanism may be relevant for DDT initiation in these systems. The relevance of our proposed ignition mechanism to DDT initiation may be tested by both experiments and numerical simulations.

  4. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    SciTech Connect (OSTI)

    Anderson, Carl L

    2006-09-25T23:59:59.000Z

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  5. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect (OSTI)

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H. [Propulsion Research Center, NASA Marshall Space Flight Center XD22, Huntsville, AL 35812 (United States); Fimognari, Peter J. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)

    2006-01-20T23:59:59.000Z

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  6. Target diagnostic system for the National Ignition Facility (NIF)

    SciTech Connect (OSTI)

    Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S. [and others

    1996-07-01T23:59:59.000Z

    A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

  7. Characterization of in situ oil shale retorts prior to ignition

    DOE Patents [OSTI]

    Turner, Thomas F. (Laramie, WY); Moore, Dennis F. (Laramie, WY)

    1984-01-01T23:59:59.000Z

    Method and system for characterizing a vertical modified in situ oil shale retort prior to ignition of the retort. The retort is formed by mining a void at the bottom of a proposed retort in an oil shale deposit. The deposit is then sequentially blasted into the void to form a plurality of layers of rubble. A plurality of units each including a tracer gas cannister are installed at the upper level of each rubble layer prior to blasting to form the next layer. Each of the units includes a receiver that is responsive to a coded electromagnetic (EM) signal to release gas from the associated cannister into the rubble. Coded EM signals are transmitted to the receivers to selectively release gas from the cannisters. The released gas flows through the retort to an outlet line connected to the floor of the retort. The time of arrival of the gas at a detector unit in the outlet line relative to the time of release of gas from the cannisters is monitored. This information enables the retort to be characterized prior to ignition.

  8. Visualization of Target Inspection data at the National Ignition Facility

    SciTech Connect (OSTI)

    Potter, D; Antipa, N

    2012-02-16T23:59:59.000Z

    As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

  9. Advanced Concept Exploration for Fast Ignition Science Program, Final Report

    SciTech Connect (OSTI)

    Stephens, Richard Burnite [General Atomics; McLean, Harry M. [Lawrence Livermore National Laboratory; Theobald, Wolfgang [Laboratory for Laser Energetics; Akli, Kramer U. [The Ohio State University; Beg, Farhat N. [University of California, San Diego; Sentoku, Yasuhiko [University of Nevada, Reno; Schumacher, Douglass W. [The Ohio State University; Wei, Mingsheng [General Atomics

    2013-09-04T23:59:59.000Z

    The Fast Ignition (FI) Concept for Inertial Confinement Fusion (ICF) has the potential to provide a significant advance in the technical attractiveness of Inertial Fusion Energy reactors. FI differs from conventional “central hot spot” (CHS) target ignition by decoupling compression from heating: using a laser (or heavy ion beam or Z pinch) drive pulse (10’s of nanoseconds) to create a dense fuel and a second, much shorter (~10 picoseconds) high intensity pulse to ignite a small volume within the dense fuel. The physics of fast ignition process was the focus of our Advanced Concept Exploration (ACE) program. Ignition depends critically on two major issues involving Relativistic High Energy Density (RHED) physics: The laser-induced creation of fast electrons and their propagation in high-density plasmas. Our program has developed new experimental platforms, diagnostic packages, computer modeling analyses, and taken advantage of the increasing energy available at laser facilities to advance understanding of the fundamental physics underlying these issues. Our program had three thrust areas: • Understand the production and characteristics of fast electrons resulting from FI relevant laser-plasma interactions and their dependence on laser prepulse and laser pulse length. • Investigate the subsequent fast electron transport in solid and through hot (FI-relevant) plasmas. • Conduct and understand integrated core-heating experiments by comparison to simulations. Over the whole period of this project (three years for this contract), we have greatly advanced our fundamental understanding of the underlying properties in all three areas: • Comprehensive studies on fast electron source characteristics have shown that they are controlled by the laser intensity distribution and the topology and plasma density gradient. Laser pre-pulse induced pre-plasma in front of a solid surface results in increased stand-off distances from the electron origin to the high density target as well as large and erratic spread of the electron beam with increasing short pulse duration. We have demonstrated, using newly available higher contrast lasers, an improved energy coupling, painting a promising picture for FI feasibility. • Our detailed experiments and analyses of fast electron transport dependence on target material have shown that it is feasible to collimate fast electron beam by self-generated resistive magnetic fields in engineered targets with a rather simple geometry. Stable and collimated electron beam with spot size as small as 50-?m after >100-?m propagation distance (an angular divergence angle of 20°!) in solid density plasma targets has been demonstrated with FI-relevant (10-ps, >1-kJ) laser pulses Such collimated beam would meet the required heating beam size for FI. • Our new experimental platforms developed for the OMEGA laser (i.e., i) high resolution 8 keV backlighter platform for cone-in-shell implosion and ii) the 8 keV imaging with Cu-doped shell targets for detailed transport characterization) have enabled us to experimentally confirm fuel assembly from cone-in-shell implosion with record-high areal density. We have also made the first direct measurement of fast electron transport and spatial energy deposition in integrated FI experiments enabling the first experiment-based benchmarking of integrated simulation codes. Executing this program required a large team. It was managed as a collaboration between General Atomics (GA), Lawrence Livermore National Laboratory (LLNL), and the Laboratory for Laser Energetics (LLE). GA fulfills its responsibilities jointly with the University of California, San Diego (UCSD), The Ohio State University (OSU) and the University of Nevada at Reno (UNR). The division of responsibility was as follows: (1) LLE had primary leadership for channeling studies and the integrated energy transfer, (2) LLNL led the development of measurement methods, analysis, and deployment of diagnostics, and (3) GA together with UCSD, OSU and UNR studied the detailed energy-transfer physics. Th

  10. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  11. Jefferson Lab's Science Education Website Helps Students Prepare...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's Science Education Website Helps Students Prepare for Upcoming Standards of Learning Tests April 12, 2004 Usage of Jefferson Lab's Science Education website is...

  12. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  13. Jefferson Lab Contract to be Awarded to Jefferson Science Associates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory Jefferson Lab Contract to be...

  14. ASC at the Labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Our Programs Defense Programs Future Science & Technology Programs Advanced Simulation and Computing and Institutional R&D Programs ASC at the Labs ASC at the Labs The...

  15. President Obama Visits the Argonne National Research Lab to Talk...

    Energy Savers [EERE]

    President Obama Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American...

  16. National Lab Day Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

  17. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

  18. Energy Department Announces New Lab Program to Accelerate Commercializ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Program to Accelerate Commercialization of Clean Energy Technologies Energy Department Announces New Lab Program to Accelerate Commercialization of Clean Energy Technologies...

  19. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Environmental Management (EM)

    Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind...

  20. Particle Measurement Methodology: Comparison of On-road and Lab...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size Distributions Particle Measurement Methodology: Comparison of On-road and Lab Diesel Particle Size...