Powered by Deep Web Technologies
Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Delivering Innovations That Create Jobs:National Lab Ignites Business for Entrepreneurs  

Energy.gov (U.S. Department of Energy (DOE))

Tapping the entrepreneurial spirit of its Silicon Valley surroundings, Lawrence Livermore National Lab has a legacy that includes the launch of hundreds of successful companies. During just the past 20 years, five entrepreneurs from the Lab have founded four companies with a current market capitalization of $8.4 billion.

2

Princeton Plasma Physics Lab - National Ignition Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

3

Berkeley Lab Small Business Office  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Do Business with LBNL > How We Buy How We Buy Sustainable Acquisitions eCommerce (eBuy) Contracts: Subcontractor Description Start End Options Alliance Gas Products Gases and gas-related supplies. Connection to Praxair website. 5/1/08 4/30/13 3 years Anacapa Micro Products Computers, peripherals, software, electronic equipment and supplies. Connection to Dell website. 1/15/08 1/14/13 3 years Government Scientific Source Scientific laboratory supplies, equipment, safety products, chemicals, reagents, primers, oligos. Connections to VWR, Sigma Aldrich, Lab Safety, Millipore, Invitrogen, Qiagen and Eurofins MWG Operon websites 7/15/07 7/14/12 3 years Government Scientific Source Photonic sciences equipment and supplies, industrial tools and supplies, and safety products and supplies. Connections to Thorlabs, MSC Industrial Supply, and Lab Safety Supply websites.

4

Delivering Innovations That Create Jobs: National Lab Ignites...  

Energy Savers (EERE)

agreements and license agreements. The program intends to accelerate the rate of technology transfer out of the Lab and into business. LLNL is partnering with the Keiretsu Forum,...

5

Berkeley Lab Small Business Office  

NLE Websites -- All DOE Office Websites (Extended Search)

General Information > Performance Performance The performance indicators on this page illustrate how we performed against our small business goals and objectives in the past three years. Category: Goal: FY11 Actuals: FY10 Actuals: FY09 Actuals: Small Business 50.2% 45.7% 52.3% 55.9% Small Disadvantaged Business 8.0% 7.4% 7.3% 5.41% Women-Owned Small Business 8.0% 5.65% 7.5% 4.7% HUBZone 3.0% 2.2% 1.9% 1.2% Veteran-Owned Business 3.0% 6.4% 5.5% 11.4% Service Disabled Veteran-Owned 3.0% 2.5% 2.3% 8.93% LBNL FY12 Small Business Subcontracting Goals: Category: Goal = > %: FY12 Actuals as of 2nd Quarter: Small Business 50.2% 50.6% Small Disadvantaged Business 8.0% 7.24% Women-Owned Small Business 8.0% 7.13% HUBZone 3.0% 1.51%

6

Laser turns 50 (Inside Business) | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

https:www.jlab.orgnewsarticleslaser-turns-50-inside-business Laser turns 50 Not yet beaming us up, lasers have still come a long way, Scotty By Michael Schwartz, Inside...

7

Doing Business with the National Labs  

Office of Energy Efficiency and Renewable Energy (EERE)

The purpose of this document is to guide those interested in taking advantage of the laboratory resources and to answer questions about how the laboratories and DOE do business.

8

Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible hydropower: boosting energy January 30, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

9

Sandia National Labs: PCNSC: Departments: Small Science Cluster Business  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Georgia Rivera-Gronager Georgia Rivera-Gronager Manager Beverly Eppinga Beverly Eppinga Sr. Mgt. Asst. Departments Small Science Cluster Business Office The Small Science Cluster Business Office provides administrative support to the Physical, Chemical, & Nano Sciences Center's organizational operations; the Materials and Process Sciences Center's organizational operations; the Biological & Energy Sciences Center's New Mexico organizational operations; and Sandia's Laboratory Directed Research & Development (LDRD) organizational operations. The department provides programmatic administrative support of the management of, and technical activities within, Sandia's Nanoscience

10

Doing Business with the National Labs: Executive Summary  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The expertise and equipment resources of the U.S. Department of Energy (DOE) laboratories and facilities are The expertise and equipment resources of the U.S. Department of Energy (DOE) laboratories and facilities are available to help industry transform manufacturing processes, improve energy efficiency and reduce waste through new technologies and DOE's Industries of the Future (IOF) program. Established in 1995, the Laboratory Coordinating Council networks these capabilities to help create highly effective partnerships with the Industries of the Future to (1) stimulate and foster collaborations, (2) simplify access to laboratories and facilities, and (3) help industries meet goals of reducing energy use and waste. The purpose of this document is to guide those interested in taking advantage of the laboratory resources and to answer questions about how the laboratories and DOE do business.

11

Los Alamos, Sandia National labs recognize New Mexico small businesses for  

NLE Websites -- All DOE Office Websites (Extended Search)

12th annual innovation celebration 12th annual innovation celebration Los Alamos, Sandia National labs recognize New Mexico small businesses for innovation The program was created in 2000 to bring national laboratory technology and expertise to small businesses in New Mexico and promote economic development with an emphasis on rural areas. April 3, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

12

Fast Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies...

13

New Lab-Corps program marries science and business to help move...  

NLE Websites -- All DOE Office Websites (Extended Search)

with people who have different knowledge sets." "The Lab-Corps program paves the way to commercialization of critical clean-energy technologies by connecting researchers to...

14

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable...

15

Business  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Business Business1354608000000BusinessSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Business Some of these resources are LANL-only and will require Remote Access. Key Resources Reference Organizations Journals Key Resources ABI/INFORM Research: Business periodicals Articles on business conditions, trends, management techniques, marketing, economics, human resources, finance, computers, and more; many with full-text Business.gov : the Business Gateway to Federal Resources Business collections, news National Technology Transfer Center Provides expert experience in a variety of areas, including: Intellectual Property Management, Engineering, Computer/Database Development, etc. RFE: Resources for Economists on the Internet

16

2008 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2008 Sun, 04132008 - 11:00pm Jefferson Lab finds its man Mont (Inside Business) Wed, 04022008 - 11:00pm New director of Jefferson Lab named (Daily Press) Wed, 04022008...

17

Laser ignition  

Science Journals Connector (OSTI)

Due to their thermodynamic benefits, second-generation spark-ignition engines with gasoline direct injection systems have ... combination of a spray-guided combustion process with laser-induced ignition allows th...

Bernhard Geringer; Dominikus Klawatsch; Josef Graf; Hans Peter Lenz

2004-03-01T23:59:59.000Z

18

2007 - 06 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2007 Sun, 06242007 - 11:00pm At science, he's a natural; Retiring J-Lab leader discusses red tape and the pursuit of knowledge (Inside Business...

19

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In two embodiments the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion

20

Ignition system  

SciTech Connect

This patent describes an ignition system of an internal combustion engine which consists of: a permanent magnet supported by a rotary member of the engine adapted to rotate in synchronism with a rotary shaft of the engine; a generating coil for generating an electromotive force to produce an electric current as the permanent magnet acts on the generating coil during the rotation of the rotary member; an ignition capacitor charged by the electric current generated by the generating coil; a thyristor caused to turn on by a counter electromotive force generated by the generating coil to thereby cause the ignition capacitor to begin to discharge; and an ignition coil generating a high voltage as the ignition capacitor begins to discharge, to cause a spark discharge to take place in an ignition plug of the internal combustion engine.

Kondo, T.; Ohno, S.

1986-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ignition Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or...

22

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

23

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

24

2011 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2011 Tue, 04262011 - 1:00pm Harris Power Earns Jefferson Lab's Top Small Business Award for 2010 Wed, 04202011 - 1:00pm Students Use JLab Website to Prep for Virginia...

25

GridLAB-D  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GridLAB-D GridLAB-D 2010 Peer Review Overview * What is GridLAB-D? * Why use GridLAB-D? * How does GridLAB-D work? * How has GridLAB-D been used so far? * What is it expected in the coming year? * Funding and management details GridLAB-D Simulates the Smart Grid Power system models Load models Market models GridLAB-D model unifies keys elements of a Smart Grid  Next generation tool  Integrates models  Smart Grid analysis  Projects  Technologies  Cost/benefits  Business cases  Multi-scale models  Seconds to decades  Links to existing tools  Open source  Contributions from  Government  Industry  Academic  Vendors  Drives need for high performance computers  Vendors can add/extract modules for their own uses 3 Why simulate the smart grid?

26

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

27

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2003-01-01T23:59:59.000Z

28

Enhanced Model for Fast Ignition  

SciTech Connect

Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, ??implicitness and fluid modeling,? can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

Dr. Rodney J. Mason

2010-10-12T23:59:59.000Z

29

Thermal ignition combustion system  

SciTech Connect

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

30

Working With Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with the Lab Working with the Lab A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Technology Transfer Patent Department Sponsored Projects Office Procurement: Doing Business with the Lab Visitor Information Scientififc Divisions and National User Facilities UC Campus-Labs Collaboration Programs Berkeley Lab stresses collaboration in everything we do. The Laboratory is involved in many research partnerships with private industry. Our mission also includes the transfer of Laboratory inventions to the private sector for rapid commercialization. The role of the Technology Transfer Office is to make technology and expertise developed here available to industry. Contact the Technology Transfer Office to pinpoint research areas of common interest, negotiate rights to Laboratory intellectual property, and to discuss current patent and copyright licensing opportunities.

31

Thermonuclear Ignition of Dark Galaxies  

E-Print Network (OSTI)

thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of

J. Marvin Herndon

2006-01-01T23:59:59.000Z

32

Laser preheat enhanced ignition  

DOE Patents (OSTI)

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

Early, James W. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

33

Laser preheat enhanced ignition  

DOE Patents (OSTI)

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

Early, J.W.

1999-03-02T23:59:59.000Z

34

Thermal ignition combustion system  

DOE Patents (OSTI)

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

35

Thermal ignition combustion system  

SciTech Connect

The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

Kamo, Roy (Columbus, IN); Kakwani, Ramesh M. (Columbus, IN); Valdmanis, Edgars (Columbus, IN); Woods, Melvins E. (Columbus, IN)

1988-01-01T23:59:59.000Z

36

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Smithsonian Features Early Recordings Enabled by Berkeley Lab Technology http:www.lbl.gov20150127smithsonian-features-early-recordings-enabled-by-berkeley-lab-technology...

37

Jefferson Lab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

News item slideshow News item slideshow Final Piece Final Piece Workers install a section of the pre-shower calorimeter, or PCAL, which is part of the CLAS12 detector package in Jefferson Lab's Experimental Hall B. The new equipment is being installed for the 12 GeV Upgrade project. <<< Installation of PCAL in Hall B. Upgraded Detector Upgraded Detector Work on the 12 GeV Upgrade project continues at Jefferson Lab. Shown here is the new CLAS12 detector in Experimental Hall B after the recent installation of the pre-shower calorimeter, or PCAL. <<< Installation work on Hall B detector. Neutron Stopper Neutron Stopper Jefferson Lab engineer Paul Brindza holds up samples of a new system of concrete products designed to stop neutrons and other particles from harming sensitive scientific computers and detectors. The new system was

38

Lab 12: Measurements Lab This lab introduces . . .  

E-Print Network (OSTI)

Lab 12: Measurements Lab Objectives This lab introduces . . . Materials 1) 2 Liter Bottle 2) Bicycle Pump 3) Rocket Fins 4) Water 5) Scale 6) Angle thingie Theory What is a Measurement? A measurement tells us about a quantity of something. For example, a measurement can inform us about how heavy

Wedeward, Kevin

39

NREL: Vehicles and Fuels Research - Fuel Combustion Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion Lab Fuel Combustion Lab NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict the fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the distributed Renewable Fuels and Lubricants (ReFUEL) Laboratory, and the Biofuels activity. Photo of assembled IQT. Ignition Quality Tester The central piece of equipment in the Fuel Combustion Laboratory is the Ignition Quality Tester (IQT(tm)). The IQT(tm) is a constant volume combustion vessel that is used to study ignition properties of liquid

40

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Steven Chu Steven Chu "Technology transfer is a superb opportunity to demonstrate the value of our discoveries and to benefit society. It is an area I would like to see grow." Steve Chu, Secretary, US Department of Energy, and Former Lab Director What You Need to Know and Do What you, as a Berkeley Lab researcher or guest, need to do to protect the intellectual property you create to meet Lab requirements and how publishing and pursuing a patent are fully compatible. The Tech Transfer Proces The steps to patent, market and commercialize an invention and the role of Technology Transfer and Intellectual Property Management (TTIPM). Business Development Services Resources available within TTIPM to help move your technology to market. Berkeley Lab LaunchPad Services available at the Lab and beyond to help launch your startup

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

COLUMBIA STARTUP LAB, THE IDEAS KEEP  

E-Print Network (OSTI)

alumni include John Stevens 1768KC, who pioneered the steam-engine locomotive; Edwin Armstrong 1913SEAS, Columbia Engineering, SIPA, and the business school cut the ribbon for the Columbia Startup Lab, a 5

Qian, Ning

42

Laser ignition studies  

SciTech Connect

The goal of this work is to study the details of laser induced ignition and combustion of high-temperature condensed-phase exothermic reactions. In this work high-speed photography (HSP) and real-time optical pyrometry have been combined to provide a diagnostic tool with a 1 ms temporal resolution for studying laser ignition and combustion wave propagation. Previous experiments have involved the use of HSP for studying combustion wave propagation (1) Real-time pyrometry studies of the ignition process have also been performed previously. The present paper describes how HSP has been expanded to include three-view split-frame photography to allow the ignition and combustion processes to be recorded and studied simultaneously. 2 refs., 3 figs.

Fredin, L.; Hansen, G.P.; Margrave, J.L.; Behrens, R.G.

1985-10-01T23:59:59.000Z

43

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

44

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab masthead U.S. Department of Energy logo Phone Book Jobs Search sun abstract Helios logo Overview Goals & Challenges Publications Research Highlights In the News SERC...

45

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to Laboratory budget cuts Berkeley Lab Learning Institute (BLI) no longer sponsors in-house training and workshops. This website is now a resource for supervisors and...

46

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Search 29 Breakthroughs Search 29 Breakthroughs At Berkeley Lab, we've: Discovered sixteen elements. The periodic table would be smaller without Berkeley Lab. Among the Lab's handiwork is an instrumental role in the discovery of technetium-99, which has revolutionized the field of medical imaging. There's also americium, which is widely used in smoke detectors. Identified good and bad cholesterol. The battle against heart disease received a boost in the 1960s when Lab research unveiled the good and bad sides of cholesterol. Today, diagnostic tests that detect both types of cholesterol save lives. Big Bang Confirmed the Big Bang, and discovered dark energy. Lab detectors aboard a NASA satellite revealed the birth of the galaxies in the echoes of the Big Bang. And dark energy - the mysterious something

47

Video Lab -NOAA Central Library NOAA Central Library  

E-Print Network (OSTI)

2014 Video Lab - NOAA Central Library NOAA Central Library 1315 East West Highway, SSMC3, 2nd Floor Silver Spring, MD 20910 www.lib.noaa.gov #12;NOAA Central Library Video Lab The NOAA Central Library Video Lab is available to all NOAA scientists for their business related media work, including digital

48

National Ignition Facility & Photon Science  

NLE Websites -- All DOE Office Websites (Extended Search)

5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition...

49

The Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

The Lab The Lab The Lab Photo Gallery Images of the Lab's world-class facilities and buildings. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. LANL buildings at Technical Area 3 LANL buildings at Technical Area 3 Technical Area 3 early morning Technical Area 3 early morning Aerial View of Neutron Science Center Aerial View of Neutron Science Center Aerial View of TA-15 - 1 Aerial View of TA-15 - 1 Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 3 Aerial View of Los Alamos National Laboratory - 3

50

The National Labs on Flickr | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flickr Flickr The National Labs on Flickr The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. EXPLORE THE NATIONAL LABS ON FLICKR Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory

51

Recap: Energy Efficiency at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recap: Energy Efficiency at the National Labs Recap: Energy Efficiency at the National Labs Recap: Energy Efficiency at the National Labs December 2, 2013 - 11:50am Addthis Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs Energy Efficiency at the National Labs During the month of November, we featured the National Labs and their work in energy efficiency on Energy.gov. Storified by Energy Department · Mon, Dec 02 2013 08:50:36 Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs This month on energy.gov, we're featuring the Energy Department's National Labs and their work in energy efficiency: the technologies the... The National Labs are fundamentally changing the way that consumers and businesses approach energy efficiency. The Labs are developing new

52

Two small businesses selected for work valued at $80 million  

NLE Websites -- All DOE Office Websites (Extended Search)

to completing our cleanup goals," said Michael Graham, the Lab's associate director for Environmental Programs. "And the fact that this work will go to local businesses is...

53

LANL selects two small businesses for water monitoring work  

NLE Websites -- All DOE Office Websites (Extended Search)

to completing our cleanup goals," said Michael Graham, the Lab's associate director for Environmental Programs. "And the fact that this work will go to local businesses is...

54

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Berkeley The Lab at a Glance 13 Nobel Prizes $700 million Annual contribution to local economy $1.6 billion Impact on U.S. economy 4,200 Employees, including: 1,685 Scientists, engineers, and faculty 475 Postdoctoral fellows 560 Undergraduate and graduate student employees Lab Budget FY 2011 $836 million $735 million + $101 million (ARRA) FY 2010 $811 million $707 million + $104 million (ARRA) FY 2009 $648 million $637 million + $ 11 million (ARRA) FY 2008 $590 million (ARRA = American Recovery and Reinvestment Act) Berkeley Lab hosts six major national user facilities that attract more than 7,000 visitors a year to conduct joint research, run experiments, and analyze sample materials: Advanced Light Source Energy Sciences Network Joint Genome Institute

55

BERKELEY LAB  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Science Solutions to the World Bringing Science Solutions to the World lbl.gov Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Understanding the Effects of the Gulf Oil Spill In the aftermath of the explosion of BP's Deepwater Horizon drilling rig in the Gulf of Mexico, a dispersed oil plume was formed at a depth between 3,600 and 4,000 feet, extending some 10 miles out from the wellhead. An intensive study by Berkeley Lab scientists, using a DNA-analytical tool they developed

56

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA JOHANNESBURG ERITREA Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Roll your mouse across the map to see how the Lab is making a difference. gulf-oil-spill_2 Understanding the Effects of the Gulf Oil Spill / Gulf of Mexico

57

Engines - Spark Ignition Engines  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Ignition Engines Spark Ignition Engines Thomas Wallner and omni engine Thomas Wallner and the omnivorous engine Background Today the United States import more than 60% of its crude oil and petroleum products. Transportation accounts for a major portion of these imports. Research in this field is focused on reducing the dependency on foreign oil by increasing the engine efficiency on the one hand and blending gasoline with renewable domestic fuels, such as ethanol, on the other. Argonne's Research The main focus of research is on evaluation of advanced combustion concepts and effects of fuel properties on engine efficiency, performance and emissions. The platforms used are a single-cylinder research engine as well as an automotive-size four-cylinder engine with direct fuel injection.

58

Burner ignition system  

DOE Patents (OSTI)

An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

Carignan, Forest J. (Bedford, MA)

1986-01-21T23:59:59.000Z

59

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

60

Business Diversity | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

In the News In the News Argonne and Fermilab start a business fair WBEZ Chicago Argonne, Fermi host fair to engage small contractors Federal Computing Weekly Forget about the mythical lone inventor in the garage: Real innovations happen in big, well-funded labs Slate Business Diversity Argonne is committed to expanding opportunities with local and small businesses, including veteran-, female- and minority-owned businesses. Diversity is integrated into Argonne's business model, both in the way in which we procure goods and services, as well as whom we partner with on the commercialization of our technology. Argonne works with small businesses, including veteran, female- and minority-owned businesses. As a U.S. Department of Energy run facility, Argonne is a conscientious neighbor and supporter of the local economy.

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Central ignition scenarios for TFTR  

SciTech Connect

The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs.

Zweben, S.J.; Redi, M.H.; Bateman, G.

1986-03-01T23:59:59.000Z

62

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8, 2013 February 8, 2013 Report spotlights Sandia's impact on New Mexico Sandia spent roughly $900 million on goods and services in fiscal year 2012 and New Mexico businesses were awarded more than $400 million, or 45 percent, of the total, according to the Labs' latest economic impact report. For more on Sandia's economic impact on the community, visit the Labs' Economic Impact website. by Nancy Salem Sandia spent roughly $900 million on goods and services in fiscal year 2012 and New Mexico businesses were awarded more than $400 million, or 45 percent, of the total, according to the Labs' latest economic impact report. US small businesses received $472.7 million in Sandia contracts, with the New Mexico share totaling $255.9 million, or 64 percent. "I am proud to say that fiscal year 2012 stood out as another consecutive

63

Ignition enhancement for scramjet combustion.  

E-Print Network (OSTI)

??The process of shock-induced ignition has been investigated both computa- tionally and experimentally, with particular emphasis on the concept of radical farming. The first component (more)

McGuire, Jeffrey Robert

2007-01-01T23:59:59.000Z

64

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radiator Labs Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

65

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

66

Radiator Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Competition » Radiator Labs Competition » Radiator Labs National Clean Energy Business Plan Competition Radiator Labs Columbia University More than 14 million housing units, or 10 percent of the national housing stock, is heated by steam and hot water. Steam heating, which represents the majority of this market, is particularly inefficient, and is characterized by a central source of steam generation with a convective distribution system via a network of pipes and radiators. There is no way to control heat transfer through this network, so building managers configure boiler systems to treat a building as a single zone keeping the coldest apartment above a minimum statutory temperature. This results in overheating of the other spaces in the building due to differences in exposure, level of insulation, distribution system heating,

67

Laser Ignition of Single Magnesium Particles  

Science Journals Connector (OSTI)

The minimum ignition temperature and minimum ignition energy of single magnesium particles was determined ... levitated ultrasonically and was ignited by a short laser pulse. The temperature transient of the part...

J. F. Zevenbergen; A. E. Dahoe

2000-01-01T23:59:59.000Z

68

Premix charge, compression ignition combustion system optimization...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Premix charge, compression ignition combustion system optimization Premix charge, compression ignition combustion system optimization Presentation given at DEER 2006, August 20-24,...

69

Fast Ignition Program Presented at  

E-Print Network (OSTI)

Laser drive Direct Laser drive #12;Fast Ignition may allow longer wavelength laser implosion systemsFast Ignition Program Presented at FESAC Development Path Panel General Atomics January 14, 2003 E. Michael Campbell ·Promise ·Status ·Challenges ·Implementation ·Plan #12;The original FI concept uses laser

70

Ignition distributor voltage generator  

SciTech Connect

This patent describes a voltage pulse generator and ignition distributor comprising, a base, a shaft rotatably supported by the base, a distributor cap supported by the base having a center electrode and circumferentially spaced outer electrodes. The pulse generator and ignition distribution also include a first rotor driven by the shaft formed of electrical insulating material having electrically conductive means connected to the center terminal and a portion that rotates past the outer electrodes. The portion of the electrically conductive means that rotates past the outer electrodes is spaced from the outer electrodes to form a gap therebetween. A voltage pulse generator comprises a second rotor driven by the shaft, at least one permanent magnet and an annular pickup coil supported by the base. The pickup coil has inner turns and outer turns, the beginning turn of the inner turns connected to a first lead and the last turn of the outer turns connected to a second lead, the outer turns enclosing the inner turns. The pickup coil also has a circuit connected directly between the second lead and ground which is operative to provide a direct conductive path to ground for high frequency energy capacitively coupled to the outer turns from the gap discharge between the electrically conductive means of the first rotor and an outer electrode, the outer turns forming a grounded shield for the inner turns.

Boyer, J.A.

1986-11-04T23:59:59.000Z

71

Plastic ablator ignition capsule design for the National Ignition Facility  

SciTech Connect

This paper describes current efforts to develop a plastic ablator capsule design for the first ignition attempt on the National Ignition Facility. The trade-offs in capsule scale and laser energy that must be made to achieve ignition probabilities comparable to those with other candidate ablators, beryllium and high-density carbon, are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are discussed.

Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R J

2009-10-06T23:59:59.000Z

72

Advanced ignition options for laser ICF  

E-Print Network (OSTI)

Advanced ignition options for laser ICF FPA Meeting, Washington DC, December 1-3, 2010 R. Betti shock) · Fast Ignition requires major hardware upgrades: 100kJ-class multi-PW laser [also talk by P explore high-gain shock ignition - Polar Shock Ignition (uses half the NIF beams to drive the implosion

73

The National Ignition Facility and the Ignition Campaign  

E-Print Network (OSTI)

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

74

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

75

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety for Users ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These...

76

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

77

TOWARD A STANDARD IGNITION SOURCE  

E-Print Network (OSTI)

and ignited with a small propane torch. The top center ofhead is supplied with propane. In these experiments allin the pre-mixed mode with propane alone to simulate trash

Volkingburg, David R. Van

2011-01-01T23:59:59.000Z

78

Lab Leadership | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources...

79

Careers | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Accessibility Careers Jobs at Jefferson Lab Jefferson Lab offers many interesting and challenging jobs in pursuit of a greater understanding of the visible universe. Read more Job...

80

Lab celebrates Earth Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab celebrates Earth Day Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015 All Issues submit Lab...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

About the Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab newsroomassetsimageslegacy-icon-short.jpg About the Lab Our stories, videos, and features embrace complex issues around our science, technologies, and mission that provide...

82

Lab announces security changes  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab announces security changes Lab announces security changes The Laboratory is implementing several changes to its security procedures as the result of a recent security...

83

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

84

National Ignition Campaign Hohlraum Energetics  

SciTech Connect

The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

2009-11-16T23:59:59.000Z

85

Lab receives an additional $19 million for environmental cleanup  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab receives an additional $19 million for environmental cleanup Lab receives an additional $19 million for environmental cleanup Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab receives an additional $19 million for environmental cleanup Lab also selects local businesses for five-year contracts June 1, 2013 Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Governor Susana Martinez visited the Lab in May to urge additional funding for cleanup Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Thanks to support from New Mexico Senators Tom Udall and Martin Heinrich, Representatives Ben Ray Lujan and Steve Pearce and Governor Susana Martinez, the Lab has received an additional $19 million for environmental

86

Berkeley Lab Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab social media guidelines Berkeley Lab social media guidelines Read this before you tweet! These guidelines, developed by Berkeley Lab's Public Affairs Department, are intended to help Lab employees who use social media in an official capacity on behalf of Berkeley Lab. Social media is a great way to engage a large audience, but there are ways to do it well-and not so well-so please read on. These guidelines are for Lab staff interested in establishing a social media presence for a department, division, or user facility. They're also for Lab staff using social media as an individual but representing the Lab in some way. For Berkeley Lab's policies on basic computing and communications, which pertain to all Lab employees, read RPM 9.01 Computing and Communication and RPM 9.02 Operational Procedures for Computing and

87

Ignition problems in scramjet testing  

SciTech Connect

Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

Mitani, Tohru [National Aerospace Lab., Miyagi (Japan)] [National Aerospace Lab., Miyagi (Japan)

1995-05-01T23:59:59.000Z

88

A Business Process Explorer: Recovering Business Processes from Business Applications  

E-Print Network (OSTI)

1 A Business Process Explorer: Recovering Business Processes from Business Applications Jin Guo and software developers. We present a business process explorer tool which automatically recovers business of business applications, we developed a business process explorer tool which recovers as-implemented business

Zou, Ying

89

Laser Ignition of Alternative Liquid Fuels  

Science Journals Connector (OSTI)

Within a research project at the TU Vienna, the potential and mechanism of laser-induced ignition with respect to mixture inflammation and combustion were investigated compared to conventional spark ignition. A s...

Dr. Josef Graf; Dr. Thomas Lauer; Univ.-Prof. Dr. Bernhard Geringer

2012-05-01T23:59:59.000Z

90

National Ignition Facility & Photon Science What  

NLE Websites -- All DOE Office Websites (Extended Search)

What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and highest energy laser system. NIF is an...

91

State of Development of Laser Ignition  

Science Journals Connector (OSTI)

A holistic optimization of combustion engines with the aim of conserving resources has to include an improvement of the ignition mechanism as well. In the field of spark-ignition combustion engines the developmen...

Prof. Dr.-Ing. Dieter Brggeman; Dipl.-Ing. Christian Httl

2009-03-01T23:59:59.000Z

92

Thermonuclear Ignition of Dark Galaxies  

E-Print Network (OSTI)

Dark matter is thought to be at least an order of magnitude more abundant than luminous matter in the Universe, but there has yet to be an unambiguous identification of a wholly dark, galactic-scale structure. There is, however, increasing evidence that VIRGOHI 21 may be a dark galaxy. If VIRGOHI 21 turns out to be composed of dark stars, having approximately the same mass of stars found in luminous galaxies, it will pose an enigma within the framework of current astrophysical models, but will provide strong support for my concept, published in 1994 in the Proceedings of the Royal Society of London, of the thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of galactic thermonuclear ignition is discussed from that framework and leads to my suggestion that the distribution of luminous stars in a galaxy may simply be a reflection of the galactic distribution of the heavy elements.

J. Marvin Herndon

2006-04-13T23:59:59.000Z

93

Business Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of...

94

June 11, 1999: National Ignition Facility  

Energy.gov (U.S. Department of Energy (DOE))

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

95

Heating National Ignition Facility, Realistic Financial Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

96

Laser ablation based fuel ignition  

DOE Patents (OSTI)

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

1998-01-01T23:59:59.000Z

97

Laser ablation based fuel ignition  

DOE Patents (OSTI)

There is provided a method of fuel/oxidizer ignition comprising: (a) application of laser light to a material surface which is absorptive to the laser radiation; (b) heating of the material surface with the laser light to produce a high temperature ablation plume which emanates from the heated surface as an intensely hot cloud of vaporized surface material; and (c) contacting the fuel/oxidizer mixture with the hot ablation cloud at or near the surface of the material in order to heat the fuel to a temperature sufficient to initiate fuel ignition. 3 figs.

Early, J.W.; Lester, C.S.

1998-06-23T23:59:59.000Z

98

Confinement of ignition and yield on the National Ignition Facility  

SciTech Connect

The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

1996-06-14T23:59:59.000Z

99

2010 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Wed, 12222010 - 2:00pm Jefferson Lab Weekly Briefs December 22, 2010 Wed, 12152010 - 2:00pm Jefferson Lab Weekly Briefs December 15, 2010 Wed, 12082010 - 2:00pm Jefferson...

100

2009 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Wed, 12162009 - 2:00pm Jefferson Lab Weekly Briefs December 16, 2009 Wed, 12092009 - 2:00pm Jefferson Lab Weekly Briefs December 9, 2009 Wed, 12022009 - 2:00pm Jefferson...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2007 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2007 Wed, 12192007 - 2:00pm Jefferson Lab Weekly Briefs December 19, 2007 Wed, 12122007 - 2:00pm Jefferson Lab Weekly Briefs December 12, 2007 Wed, 12052007 - 2:00pm...

102

2008 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Wed, 12172008 - 2:00pm Jefferson Lab Weekly Briefs December 17, 2008 Wed, 12102008 - 2:00pm Jefferson Lab Weekly Briefs December 10, 2008 Wed, 12032008 - 2:00pm Jefferson...

103

2012 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Wed, 12192012 - 2:00pm Jefferson Lab Weekly Briefs December 19, 2012 Wed, 12122012 - 12:00pm Jefferson Lab Weekly Briefs December 12, 2012 Wed, 12052012 - 2:00pm Jefferson...

104

2011 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Wed, 12212011 - 2:00pm Jefferson Lab Weekly Briefs December 21, 2011 Wed, 12142011 - 2:00pm Jefferson Lab Weekly Briefs December 14, 2011 Wed, 12072011 - 2:00pm Jefferson...

105

Accessibility | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Careers Jobs at Jefferson Lab Jefferson Lab offers many interesting and challenging jobs in pursuit of a greater understanding of the visible universe. A D D I T I O N A L L I N K...

106

2014 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

4 Wed, 12172014 - 4:26pm Jefferson Lab Weekly Briefs December 17, 2014 Wed, 12102014 - 5:59pm Jefferson Lab Weekly Briefs December 10, 2014 Wed, 12032014 - 5:13pm Jefferson...

107

2007 - 12 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Tue, 12112007 - 2:00pm Property Accountability Tue, 12112007 - 12:00am JLab Cybersecurity Warning: DOE Labs Hacked Through E-mail Fri, 12072007 - 2:00pm 122107 - Lab...

108

2002 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Summer Externships Mon, 04222002 - 1:00pm Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords Mon, 04222002 - 1:00pm Jefferson...

109

Economic Impact | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab's Hall A Jefferson Lab generates many economic benefits for the nation and Virginia, providing many well-paying jobs for highly skilled and well-educated workers. A D...

110

2011 - 09 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2011 Sun, 09252011 - 2:00pm Jefferson Lab Weekly Briefs September 28, 2011 Wed, 09212011 - 2:00pm Jefferson Lab Weekly Briefs September 21, 2011 Wed, 09142011 -...

111

2009 - 07 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2009 Sun, 07052009 - 11:00pm Jefferson Lab creates better way to discover breast cancer Sun, 07052009 - 11:00pm Jefferson Lab employee invents low-tech gizmo to protect...

112

2006 - 03 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2006 Sun, 03052006 - 12:00am Faces and Places: Fellowships for US lab directors (CERN Courier...

113

A polar-drive shock-ignition design for the National Ignition Facility  

SciTech Connect

Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

114

Technology Transfer at Berkeley Lab: Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Start-Up Companies Based on Berkeley Lab Technology Start-Up Companies Based on Berkeley Lab Technology Since 1990, Berkeley Lab technology has formed the basis for over 30 start-ups, creating over 2,000 new jobs in these companies alone. These technologies include solar cells, genomics-related software, nanotechnology, drug development, x-ray imaging, materials sciences processing, biomolecular tagging, and energy-efficiency home improvements. The majority of these companies are located in California (see map on the right). Company Business Year* FTE** Exogen heliotrope logo Next generation technologies to monitor individual DNA damage for personalized and preventative health care 2013 N/A Heliotrope heliotrope logo New materials and manufacturing processes for electrochomic devices including energy-saving, smart windows 2013 N/A

115

Berkeley Lab: Nearby Short-Term Accommodations  

NLE Websites -- All DOE Office Websites (Extended Search)

Accommodations Accommodations Visitor Information Maps and Directions to the Lab Offsite Shuttle Bus Service Bay Area Mass Transit Information Site Access Parking Permits and Gate Passes UC Berkeley Campus Map Nearby Short-Term Accommodations Guest House Berkeley Lab Guest House - The Berkeley Lab guest house is conveniently located on the Lawrence Berkeley National Laboratory campus and features 57 tastefully appointed guest rooms, many with spectacular views of the San Francisco bay, skyline, and City of Berkeley. The guest house is only a few minutes away from the University of California Berkeley Campus and the dynamic Berkeley community itself. It is available to visiting researchers and those conducting business with the University. The Faculty Club * U.C. Campus

116

New Mexico Scientists Help Local Businesses | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientists Help Local Businesses Scientists Help Local Businesses New Mexico Scientists Help Local Businesses May 24, 2012 - 12:00pm Addthis Application Engineer Eric Biedermann of Vibrant supervises an automated nondestructive testing system. | Photo courtesy of Sandia National Lab. Application Engineer Eric Biedermann of Vibrant supervises an automated nondestructive testing system. | Photo courtesy of Sandia National Lab. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov What are the key facts? Get free technical assistance from Sandia and Los Alamos National Labs. Applications are due by June 8. Are you a small business in New Mexico that needs technical assistance from local researchers and scientists? If so, we've got just the program for you. The New Mexico Small Business Association (NMSBA) Program is looking for

117

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

118

Science Education Lab | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Science Education Laboratory Overview Gallery: (Photo by Remote Control Glow Discharge) (Photo by DC Glow Discharges for Undergraduate Laboratories) (Photo by Atmospheric Plasma Laboratory) (Photo by 3D Printing Laboratory) (Photo by Remote Control Glow Discharge) (Photo by Plasma Speaker with 200 Hz input) (Photo by Dusty Plasma Laboratory) The Science Education Laboratory is a fusion (pun intended) of research between education and plasma science. This unique facility includes a teaching laboratory/classroom, two research labs, and student offices/storage/prep room. The research performed in the Science Education Laboratory is currently centered upon dusty plasmas, plasma speakers, remote control of plasmas for educational purposes, atmospheric plasmas and

119

Diagnostics for Fast Ignition Science  

SciTech Connect

The concept for Electron Fast Ignition Inertial Confinement Fusion demands sufficient laser energy be transferred from the ignitor pulse to the assembled fuel core via {approx}MeV electrons. We have assembled a suite of diagnostics to characterize such transfer. Recent experiments have simultaneously fielded absolutely calibrated extreme ultraviolet multilayer imagers at 68 and 256eV; spherically bent crystal imagers at 4 and 8keV; multi-keV crystal spectrometers; MeV x-ray bremmstrahlung and electron and proton spectrometers (along the same line of sight); nuclear activation samples and a picosecond optical probe based interferometer. These diagnostics allow careful measurement of energy transport and deposition during and following laser-plasma interactions at extremely high intensities in both planar and conical targets. Augmented with accurate on-shot laser focal spot and pre-pulse characterization, these measurements are yielding new insight into energy coupling and are providing critical data for validating numerical PIC and hybrid PIC simulation codes in an area that is crucial for many applications, particularly fast ignition. Novel aspects of these diagnostics and how they are combined to extract quantitative data on ultra high intensity laser plasma interactions are discussed, together with implications for full-scale fast ignition experiments.

MacPhee, A; Akli, K; Beg, F; Chen, C; Chen, H; Clarke, R; Hey, D; Freeman, R; Kemp, A; Key, M; King, J; LePape, S; Link, A; Ma, T; Nakamura, N; Offermann, D; Ovchinnikov, V; Patel, P; Phillips, T; Stephens, R; Town, R; Wei, M; VanWoerkom, L; Mackinnon, A

2008-05-06T23:59:59.000Z

120

Berkeley Lab Hosts 5 Emerging Leaders During TechWomen 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Business School. While at the Lab she worked with LIGTT, focusing on ways to bridge the electricity gap in developing Asia and sub-Saharan Africa. As part of TechWomen 2013,...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fast ignition of inertial confinement fusion targets  

SciTech Connect

Results of studies on fast ignition of inertial confinement fusion (ICF) targets are reviewed. The aspects of the fast ignition concept, which consists in the separation of the processes of target ignition and compression due to the synchronized action of different energy drivers, are considered. Criteria for the compression ratio and heating rate of a fast ignition target, the energy balance, and the thermonuclear gain are discussed. The results of experimental and theoretical studies of the heating of a compressed target by various types of igniting drivers, namely, beams of fast electrons and light ions produced under the action of a petawatt laser pulse on the target, a heavy-ion beam generated in the accelerator, an X-ray pulse, and a hydrodynamic flow of laser-accelerated matter, are analyzed. Requirements to the igniting-driver parameters that depend on the fast ignition criteria under the conditions of specific target heating mechanisms, as well as possibilities of practical implementation of these requirements, are discussed. The experimental programs of various laboratories and the prospects of practical implementation of fast ignition of ICF targets are reviewed. To date, fast ignition is the most promising method for decreasing the ignition energy and increasing the thermonuclear gain of an ICF plasma. A large number of publications have been devoted to investigations of this method and adjacent problems of the physics of igniting drivers and their interaction with plasma. This review presents results of only some of these studies that, in the author's opinion, allow one to discuss in detail the main physical aspects of the fast ignition concept and understand the current state and prospects of studies in this direction.

Gus'kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2013-01-15T23:59:59.000Z

122

First Hot Electron Measurements in Near-ignition Scale Hohlraums on the National Ignition Facility  

SciTech Connect

On the National Ignition Facility (NIF), the hot electrons generated in laser heated hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to meet requirements for ignition and to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E L; Suter, L J; Thomas, C; Hunter, S; Meeker, D; Meezan, N; Glenzer, S H; Bond, E; Kauffman, R L; Kilkenny, J; Landen, O

2009-10-08T23:59:59.000Z

123

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network (OSTI)

#12;The National Ignition Facility National Ignition Campaign Short Pulse Lasers High hole shields SSD, Polarization smoothing Improvements in ignition point designs have reduced laser Campaign NIF-0905-11310 09EIM/dj 1997 1.7 MJ ignition point design 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 Laser

124

Berkeley Lab Data Center Energy Efficiency Research : Technologies : From  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Data Center Energy Efficiency Research Lab Data Center Energy Efficiency Research From the Lab to the Marketplace Ten Years Later, Energy Efficient Technologies from Research at the Lawrence Berkeley National Laboratory Berkeley Lab logo (left) with six rows of gray dots transitioning to a line art drawing of a cityscape and residential houses. Berkeley Lab Data Center Energy Efficiency Research Data center energy consumption over the past decade has sparked increasing attention from data center facility managers, utility companies, policy makers, energy analysts, and businesses attuned to decreasing costs and achieving sustainability goals. In 2000, U.S. data centers used less than 0.12 percent of the nation's energy; by 2010, that figure had grown to about 2 percent. As more data centers spring up to accommodate the growing

125

Argonne TTRDC - Engines - Home - combustion, compression ignition,  

NLE Websites -- All DOE Office Websites (Extended Search)

* Combustion Visualization * Combustion Visualization * Compression-Ignition * Emissions Control * Fuel Injection and Sprays * Idling * Multi-Dimensional Modeling * Particulate Matter * Spark Ignition Green Racing GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Engines Omnivorous engine tested by Thomas Wallner Thomas Wallner tests the omnivorous engine, a type of spark-ignition engine. Argonne's engine research is contributing to advances in technology that will impact the use of conventional and alternative fuels and the design of advanced technology vehicles. Compression Ignition

126

Laser Spark Distribution and Ignition System  

NLE Websites -- All DOE Office Websites (Extended Search)

partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser...

127

Stoichiometric Compression Ignition (SCI) Engine Concept | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications An Experimental Investigation of the Origin of Increased NOx Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with...

128

Physics Guidelines for the Compact Ignition Tokamak  

Science Journals Connector (OSTI)

The Compact Ignition Tokamak Program / Proceedings of the Seveth Topical Meeting on the Technology of Fusion Energy (Reno, Nevada, June 1519, 1986)

J. Sheffield; R. A. Dory; W. A. Houlberg; N. A. Uckan; M. Bell; P. Colestock; J. Hosea; S. Kaye; M. Petravic; D. Post; S. D. Scott; K. M. Young; K. H. Burrell; N. Ohyabu; R. Stambaugh; M. Greenwald; P. Liewer; D. Ross; C. Singer; H. Weitzner

129

Achieving laser ignition using zero index metamaterials  

Science Journals Connector (OSTI)

The possibility of laser ignition using zero index metamaterials (ZIM) is investigated theoretically. Using this method, multiple laser beams can be focused automatically regardless of...

Zhai, Tianrui; Shi, Jinwei; Chen, Shujing; Liu, Dahe; Zhang, Xinping

2011-01-01T23:59:59.000Z

130

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

131

National Ignition Facility | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

132

Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX"  

E-Print Network (OSTI)

1 Fast Ignition Program in Japan "Progress of Fast Ignition Project; FIREX" Fast Ignition.4 Fusion , Laser Astrophysics, EUV, and so on are main projects Laser Spectroscopy NIFS, Okayama Univ., High Pressure EOS AIST Tokyo Inst. Tech Laser Acceleration, Terahertz Coherent X-Ray JAEA KPRI Fusion

133

Berkeley Lab Nobel Laureates  

NLE Websites -- All DOE Office Websites (Extended Search)

Since Berkeley Lab's founding, 13 Lab researchers have been awarded the Since Berkeley Lab's founding, 13 Lab researchers have been awarded the Nobel Prize. The links below take you to the laureates' acceptance speeches and their biographies. Ernest Orlando Lawrence 1939: Ernest Orlando Lawrence Ernest Orlando Lawrence, founder of the Berkeley Lab, for "the invention and development of the cyclotron, and for the results thereby attained, especially with regard to artificial radioelements." blue spacer image Glenn T. Seaborg 1951: Glenn T. Seaborg Glenn T. Seaborg, with Edwin M. McMillan for "their discoveries in the chemistry of the transuranic elements." blue spacer image Edwin M. McMillan 1951: Edwin M. McMillan Edwin M. McMillan, former Director of the Berkeley Lab, with Glenn T. Seaborg for "their discoveries in the chemistry of the transuranic elements."

134

Friends of Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Friends of Berkeley Lab masthead Friends of Berkeley Lab masthead About Friends of Berkeley Lab Join Friends of Berkeley Lab Event/Video Archive Newsletter Archive Laboratory Tours Learn About the Geology of Berkeley Lab Email: friendsofberkeleylab@lbl.gov Public Affairs State Government and Community Relations Center for Science and Engineering Education (CSEE) Facebook icon Visit Our Facebook Page and Become a Fan YouTube icon Watch Our Videos on YouTube Twitter icon Follow Us on Twitter Twitter icon View our Photo Stream on Flickr Web feed icon Read Our Latest Science News Video Glossary icon See Berkeley Lab Scientists Define Scientific Terms in Lay Language at Our Video Glossary 29 Breakthroughs SCIENCE AT THE THEATER, OCTOBER 28, 2013 Poster Google Maps Speakers include: Peter Nugent -- Supercomputing and the search for supernovae

135

Assessment of Potential for Ion Driven Fast Ignition  

E-Print Network (OSTI)

mm radius ion beams Fast Ignition (laser or fast ion pulse)deg half cone angle Fast Ignition (laser or fast ion pulse)ion beam pulses for fast ignition, laser generated ion beams

2005-01-01T23:59:59.000Z

136

2007 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

dentistry solves modern crimes, unravels mysteries of Salem Witch Trials, ancient Egypt Mon, 10152007 - 12:49pm Energy Savings Deeply Rooted At Jefferson Lab Mon, 1001...

137

2007 - 10 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

dentistry solves modern crimes, unravels mysteries of Salem Witch Trials, ancient Egypt Mon, 10152007 - 12:49pm Energy Savings Deeply Rooted At Jefferson Lab Mon, 1001...

138

News Media | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Media Kit News Media Input Windows for Niobium Cavities Jefferson Lab is a world leader in SRF technologies, fabricating many of the parts essential to particle accelerators, such...

139

2007 - 06 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2007 Tue, 06122007 - 2:00pm Innovative Energy-Saving Process Earns Jefferson Lab Team a 2007 White House Award...

140

Berkeley Lab News Releases  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab's Joe Gray for Improved Breast Cancer Screening (10107) Bay Areas Joint BioEnergy Institute Gets Financial Kick-Start from DOE (92807) Good Vibrations: Using...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Jefferson Lab - Careers  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab offers many interesting and challenging jobs in pursuit of a greater understanding of the visible universe.

...

142

About Accelerators | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Brochure top-right bottom-left-corner bottom-right-corner About Accelerators Jefferson Lab is home to two superconducting radiofrequency accelerators: the...

143

Resources | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

144

Resources | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to...

145

1997 - 03 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Mon, 03171997 - 12:00am Laboratory Profile: Jefferson Lab Scientific Motivation and Research Program (Nuclear Physics News) Mon, 03171997 - 12:00am Laboratory Profile:...

146

1997 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Mon, 03171997 - 12:00am Laboratory Profile: Jefferson Lab Scientific Motivation and Research Program (Nuclear Physics News) Mon, 03171997 - 12:00am Laboratory Profile:...

147

2008 - 12 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Badge Change Out Thu, 12182008 - 3:00pm Lab Cybersecurity Update: Critical Patch for Microsoft Internet Explorer - Requires Reboot Thu, 12182008 - 3:00pm Employee...

148

2008 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation Badge Change Out Thu, 12182008 - 3:00pm Lab Cybersecurity Update: Critical Patch for Microsoft Internet Explorer - Requires Reboot Thu, 12182008 - 3:00pm Employee...

149

High-Efficiency Clean Combustion Design for Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Clean Combustion Design for Compression Ignition Engines High-Efficiency Clean Combustion Design for Compression Ignition Engines Presentation given at DEER 2006,...

150

Improving the Efficiency of Spark Ignited, Stoichiometric Natural...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Spark Ignited, Stoichiometric Natural Gas Engines Improving the Efficiency of Spark Ignited, Stoichiometric Natural Gas Engines This work focused on using camless engine technology...

151

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines Presentation given at DEER 2006, August 20-24,...

152

small business  

National Nuclear Security Administration (NNSA)

2%2A en Small Business http:nnsa.energy.govaboutusouroperationsapmsmallbusiness

Page...

153

DOE Issues Final RFP for Hanford Site Lab Services  

Energy.gov (U.S. Department of Energy (DOE))

Cincinnati -- The U.S. Department of Energy (DOE) today issued the final Request for Proposal (RFP), 100 percent set-aside for small businesses, for the operation and performance of analytical and testing services at the DOE Hanford 222-S Lab. A Draft RFP was previously released on February 28, 2014, requesting comments from industry.

154

Computer Lab Information Location  

E-Print Network (OSTI)

M340 Computer Lab Information · Location: The computer labs accessible to you are Weber 205 it is recommended that you save your files on a floppy when you are finished. · There is another directory, g:\\m340 to the saved files you have to add the directory to the Matlab path. To do this type addpath g:\\m340

Dangelmayr, Gerhard

155

Millikelvin Lab Machine Shop  

E-Print Network (OSTI)

Millikelvin Lab OP105­112 Machine Shop OP132 Resistive Magnet Shop CICC Winding Area Transformers This building is home to the Millikelvin lab, the control room, the resistive magnet and machine shops, the CICC@magnet.fsu.edu (850) 644-4378 (850) 644-0534 2 MACHINE SHOP OP132 Vaughan Williams (A114*) williams

McQuade, D. Tyler

156

Berkeley Lab Social Media  

NLE Websites -- All DOE Office Websites (Extended Search)

can get your Berkeley Lab any way you like it. Many of our user can get your Berkeley Lab any way you like it. Many of our user facilities, scientific divisions, and other groups want to connect with you on Facebook, Twitter, YouTube, and other sites. Join the conversation! Berkeley Lab's Primary Social Media Channels FB Twitter Google+ youtube Flickr Other Berkeley Lab Facebook Pages fb icon Joint Genome Institute (JGI) fb icon Energy Sciences Network fb icon Environmental Energy Technologies Division fb icon Advanced Light Source (ALS) National Energy Research Scientific Computing (NERSC) Joint Bio Energy Institute (JBEI) Computing Sciences LBNL Research Library Life Sciences Division Earth Sciences Division Berkeley Lab Recruiters Information Technology Division Engineering Division Home Energy Saver Home Energy Saver Pro

157

More than 140 attend first Argonne-Fermilab small business fair | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Congressmen Randy Hultgren (14th District), Daniel Lipinski (3rd District) and Bill Foster (11th District) at "Doing Business with Argonne and Fermi National Laboratories." Congressmen Randy Hultgren (14th District), Daniel Lipinski (3rd District) and Bill Foster (11th District) at "Doing Business with Argonne and Fermi National Laboratories." Congressmen Randy Hultgren (14th District), Daniel Lipinski (3rd District) and Bill Foster (11th District) at "Doing Business with Argonne and Fermi National Laboratories." Argonne Lab Director Erics Isaacs speaks to the attendees. "We want to connect the dots between the work the labs do and the businesses that can partner with us to bring discoveries and technologies to the marketplace," he said. Argonne Lab Director Erics Isaacs speaks to the attendees. "We want to connect the dots between the work the labs do and the businesses that can partner with us to bring discoveries and technologies to the marketplace,"

158

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

159

Radiator Labs | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

of steam buildings. Radiator Labs developed a mechanism that allows heating systems to control heat transfer at each radiator. The Radiator Labs design utilizes an...

160

Initiating Business with INL  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiating Business with INL The INL Small Business Program Office (SBPO) serves as the advocate and point of contact for businesses seeking contracting opportunities. We ask you...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL Business Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Opportunities Business Forms Contacts NETL offers many business opportunities, using a variety of contract and funding vehicles. Solicitations and Funding Opportunities...

162

Living Labs of Electric Vehicle Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Living Labs of Electric Vehicle Integration Living Labs of Electric Vehicle Integration Speaker(s): Johan Driesen Date: May 11, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Chris Marnay Electric vehicles and plug-in hybrid vehicles are key to making transportation sustainable and climate change neutral. This talk will focus on the electricity grid integration aspects of wide-scale charging infrastructure: the impact on generation capacity, transmission and distribution are dealt with through measurements, modeling and scenario simulations. The advantages and problems of the possible business models to pay for the charging are discussed. Alternative charging and grid-coupling technology (e.g. wireless inductive charging) is considered. The relationship with the transition towards "smart cities" is discussed. In

163

Lab Status via Twitter | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Status via Twitter Lab Status via Twitter Employees can be notified of changes to the laboratory's operations - for example, a delayed opening due to a heavy overnight snowfall - via the "Argonnestatus" account on Twitter. The account can be set to automatically send text messages to most mobile phones and PDAs. In addition to a short description of any changes in laboratory operations, messages may contain links to additional, detailed information. Only messages about changes in laboratory business hours will be sent. Most mobile communication devices can receive Twitter updates; instructions for receiving Argonne Status updates by phone are below. Any applicable text messaging charges from your provider are your responsibility. The Twitter Web site has basic information about the free online service.

164

LabUPDATE ISSUE 7 JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national laboratories,  

E-Print Network (OSTI)

: The National Ignition Facility at Lawrence Livermore National Laboratory has produced a record energy levelLabUPDATE ISSUE 7 ­ JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national technical goals. "Full NIF equivalent" performance (extrapolating the single beam output to the 192 beams

Knowles, David William

165

MatLab Introductory Lab Performed: Monday January 20th  

E-Print Network (OSTI)

. These tutorials taught us many different skills such as; variable creation, matrix multiplication, graphing in 2ELEC 1908 MatLab Introductory Lab Performed: Monday January 20th 2014 Submitted: Monday January 27;Introduction Purpose The purpose of this lab is to familiarize the students with MatLab software. Using

Smy, Tom

166

NNSA labs, sites receive DOE Sustainability Awards | National Nuclear  

National Nuclear Security Administration (NNSA)

labs, sites receive DOE Sustainability Awards | National Nuclear labs, sites receive DOE Sustainability Awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA labs, sites receive DOE Sustainability Awards NNSA labs, sites receive DOE Sustainability Awards Posted By Office of Public Affairs In keeping with NNSA's commitment to improving the way it does business,

167

Sandia National Laboratories: News: Publications: Lab News: Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

News News 2011-1998 Browse selected articles from past Lab News issues (since 1998) Articles are listed in reverse chronological order, with most recent listed first. Also, Lab News issues published since Dec. 2000 are archived here as Adobe Acrobat-compatible PDF files. 2012 February 24, 2012 Lab News - Sandia working to improve nervous system control of prosthetics; Initial geothermal investment comes full circle in new project; Making an impact in the economy: New Mexico companies did $400 million in business with Sandia; and more. February 10, 2012 Lab News - Sandia one of 'greatest research institutions in the world,' visiting Energy Secretary Steven Chu says; Sandia tool determines value of solar photovoltaic power systems; Prestigious Asian American event comes to Albuquerque; and more.

168

Princeton Plasma Physics Lab - Lab Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

lab-leadership en Adam Cohen lab-leadership en Adam Cohen http://www.pppl.gov/people/adam-cohen

From Hot Cells to Hot PlasmasCohen approaches science challenges with practicalityBy John GreenwaldAdam Cohen grew up as the family handyman. "I was the kid who tacked down the carpet, repaired the roof, fixed the toilet and worked on the car," he said of his youth in northern New Jersey. "I would pull apart batteries and tear apart things and try to make them work again."That Mr. Fixit

169

Berkeley Lab Community Relations  

NLE Websites -- All DOE Office Websites (Extended Search)

Bay Campus Environmental/ Bay Campus Environmental/ Construction Info Long-Range Development Plan Laboratory Tours Friends of Berkeley Lab Community Activities Community News LBL LBL LBL LBL Twitter Eureka twitter Facebook Berkeley Rep facebook browercenter address UPDATES Check out Berkeley Lab on: Flickr logo Twitter logo Facebook logo YouTube logo Proposed Richmond Bay Campus: Visit our Richmond Bay Campus website for information and updates. Capital Projects Website: Berkeley Lab is in the process of upgrading existing buildings and facilities and is proceeding with the planning and construction of new buildings. The work will enable the Lab to address some of the most urgent scientific challenges of our time, such as climate change and energy security. Go here for more information on the projects.

170

Lab celebrates Earth Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab celebrates Earth Day Lab celebrates Earth Day Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab celebrates Earth Day Multiple activities focus on environmental protection. May 1, 2013 A team from Industrial Hygiene and Safety during the Great Garbage Grab A team from Industrial Hygiene and Safety during the Great Garbage Grab. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Great Garbage Grab From April 1 - 12 employees were encouraged to don work gloves and very attractive orange vests to pick up litter around their workplace-both on and off Lab property. This year's winner of the coveted Traveling Trash Trophy (for picking up the most litter) went to the Worker Safety and

171

Berkeley Lab - ARRA - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Lab Berkeley Lab Projects infrastructure Advanced Light Source User Support Building Total Project Cost: $35.1 million ARRA funding: $14.7 million The Advanced Light Source (ALS) User Support Building is a three-story, 30,928 gross-square-foot building that will house user-support operations at the ALS. It will include office and lab space for some 80 researchers. The $35-million project is funded by the DOE Office of Science. It will house experiment assembly spaces, conference rooms, and labs. The project is scheduled to be completed in 2011. Go here for more information. Bevatron demolition Total Project Cost: $50 million ARRA funding: $14.3 million Building 51, which houses the Bevatron, is an approximately 125,000 gross-square-foot, steel-frame structure built in the early 1950s. The

172

Berkeley Lab Energy Breakthroughs  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver 11 Lab Breakthroughs that Improved Energy Efficiency Energy Saving Tips Home Energy Saver It all started during the 1973 energy crisis, when scientists from Lawrence Berkeley National Laboratory, a U.S. Department of Energy laboratory managed by the University of California, began to explore ways to improve energy efficiency in buildings and industry. Since then, Berkeley Lab has become a world leader in developing technologies and standards that have slashed energy costs by billions of dollars and helped bring energy-efficient products to your home. That same drive to bring energy efficiency to all facets of our lives continues today. AT BERKELEY LAB WE'VE: windows Turned windows into energy savers. Americans save billions of dollars in energy bills each year thanks to a

173

2012 - 08 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Training Rescheduled for Tuesday and Wednesday Mon, 08272012 - 2:00pm Jefferson Lab Safety Culture Survey Underway Sun, 08262012 - 2:00pm Experimental Hall Off Limits After...

174

2003 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

December 2003 Wed, 12242003 - 1:00pm Jefferson Lab research into the pentaquark is ranked among the top science stories of 2003 November 2003 Wed, 11262003 - 1:00pm Former...

175

2011 - 02 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

February 2011 Mon, 02212011 - 12:00am Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) Sun, 02202011 - 12:00am Navy Breaks World Record With Futuristic...

176

News Links | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy (March 16, 2011, A Message from Dr. Timothy Hallman, DOE) Jefferson Lab: Laser gun to eventually shoot down missiles (February 21, 2011, Daily Press) Navy Breaks World...

177

2010 - 11 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 - 12:00am Jefferson Lab leads the way toward clean cavities (Cryogenic Society of America, Inc.) Wed, 11102010 - 12:00am Navy's Superlaser Is More Than a Weapon (Wired.com...

178

2005 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

- 1:00pm Jefferson Lab's Detector Group builds small-animal imaging device for the German Cancer Research Center Wed, 04202005 - 1:00pm JLab, College of W&M researchers...

179

Visiting JLab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Situated between Norfolk and Williamsburg, Newport News is easily accessible by air, automobile and train. Jefferson Lab is one of 17 national laboratories funded by the U.S....

180

2012 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 Thu, 04262012 - 1:00pm Boron-Nitride Nanotubes Show Potential in Cancer Treatment Fri, 04202012 - 1:00pm Jefferson Lab Plans Open House for May 19...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photos | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

installation in Jefferson Lab's accelerator. A D D I T I O N A L L I N K S: Brochures Posters Flickr Public Affairs Fact Sheet Science at JLab top-right bottom-left-corner...

182

2010 - 05 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

2:00pm Jefferson Lab Pager Change Out Deadline Today Wed, 05122010 - 2:00pm JLab Cybersecurity Alert: E-mail Phishing Attack Underway Wed, 05122010 - 2:00pm EEL Parking Lot...

183

LABS Foundational Technology  

SciTech Connect

They are the inventors of our generation dedicated to exceptional science, advancing the technologies of tomorrow. CO-LABS honors the outstanding achievements of researchers and their impact on the world.

None

2012-01-01T23:59:59.000Z

184

2012 - 05 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Sat, 05052012 - 12:00am Jefferson Lab Hosts 2012 SPAFOA Members Meeting (Meyer Cryogenic, Vacuum and Pressure Technologies) Sat, 05052012 - 12:00am Cold Facts staff tour...

185

2003 - 09 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

08312003 - 11:00pm Four Experiments Give Evidence of an Exotic Baryon With Five Quarks 9Physics Today) Sun, 08312003 - 11:00pm Four labs find five-quark particle (CERN Courier...

186

1998 - 09 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

High Technology Firms, Jefferson Lab and Research Universities in Applied Research Center Mon, 08311998 - 11:00pm Jefferson First Light from New Free-Electron Laser (CERN Courier...

187

2005 - 10 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

- 11:00pm Egad, Einstein: Jefferson Lab lecture offers a rare look at the great man (Daily Press) Tue, 10042005 - 11:00pm Investigating the Proton's Strange Sea (Cern Courier...

188

2002 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

to Save 12-Year-Old Boy Mon, 04222002 - 1:00pm Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords Mon, 04222002 - 1:00pm Six Local...

189

Research | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Free-Electron Laser Research Inspecting an injector assembly at Jefferson Lab's Free-Electron Laser. A D D I T I O N A L L I N K S: Read more Nuclear Imaging Research Jefferson...

190

FEL Program | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Conducting An Experiment at the Free-Electron Laser A broad range of experiments are conducted at Jefferson Lab's Free-Electron Laser facility. A D D I T I O N A L L I N K...

191

2006 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2006 Sun, 04232006 - 1:00pm Jefferson Lab News - HAPPEx II reveals proton isn't very strange Mon, 04102006 - 1:00pm Free-Electron Laser Targets Fat Wed, 04052006 -...

192

1998 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

November 1998 Sun, 11011998 - 12:00pm Draayer Elected as New SURA President October 1998 Thu, 10011998 - 12:00pm Jefferson Lab invites public to free lecture by author of...

193

2001 - 07 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2001 Sun, 07222001 - 11:00pm Lab is Part of Project to Build Neutron Generator (The Virginian-Pilot) Sat, 07142001 - 11:00pm Interests and Advantages: High School, College...

194

2009 - 04 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2009 Sun, 04192009 - 11:00pm Painting firm honored by Jefferson Lab (Daily Press) Sun, 04192009 - 11:00pm Hampton University awarded 1.3 million for breast cancer...

195

Jefferson Lab Virtual Tour  

ScienceCinema (OSTI)

Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

None

2014-05-22T23:59:59.000Z

196

Facilities | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

197

Sustainability | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainability At Jefferson Lab Common sources of federal greenhouse gas emissions, according to the U.S. Department of Energy. A D D I T I O N A L L I N K S: Sustainability Home...

198

Inertial Confinement Fusion: steady progressInertial Confinement Fusion: steady progress towards ignition and high gaintowards ignition and high gain  

E-Print Network (OSTI)

, Vilamoura, Portugal. #12;Main route to ignition: indirect laser drive with central hot-spot ignition and ignition implosion DT capsule hohlraum case ~ 30 m of Au (or Pb)µ laser beams 5.5 mm 9.5 mm ablator DT ice constantly accumulated on currently operating non- ignition-scale lasers at Rochester, LANL, ILE, UK

199

Fast Ignition: Nuclear Fusion with UltraFast Ignition: Nuclear Fusion with Ultra--intenseintense LASERsLASERs  

E-Print Network (OSTI)

pellet composed of deuterium and tritium. In the fast ignition regime a secondy p g g p p g g laser, nearly limitless, fuel source. Fusion via Fast Ignition MethodUltra-Intense Laser Research atFusion via Direct Drive Method U Strathclyde IgnitionCompression IgnitionCompression · Very intense lasers (shown

Strathclyde, University of

200

Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility  

SciTech Connect

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E. L.; Thomas, C.; Hunter, S.; Divol, L.; Meezan, N.; Glenzer, S. H.; Suter, L. J.; Bond, E.; Celeste, J.; Bradley, D.; Bell, P.; Kauffman, R. L.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2012 June 15, 2012 Follow the sun: Sandia solar-tracking technology fuels global business WEATHERWISE - Tim Leonard, right, owner of Precision Solar Technologies Corp., and the company's project engineer, Tony Louderbough, do final adjustments on the instrumentation of a trailer-mounted solar weather station, called the Prospector Mule, at Sandia Labs. Precision Solar uses a tracking technology developed at Sandia. (Photo by Randy Montoya) View large image. by Nancy Salem In the 1980s Tim Leonard was busy programming computers at Sandia, unaware that just down the hall work was going on that would change his life. Tim was in the wind energy group, steps away from the people in solar energy. One of them was Alex Maish, starting his pet project, a low-cost, high-precision tracking technology to continuously move solar panels into

202

China Business Development  

E-Print Network (OSTI)

China Business Development Postgraduate Programme #12;Programme: China Business Development with China: Intercultural Management 3 1 Daily life and business behaviour explained from a cultural perspective Chinese strategic thinking China's political constellation and its impact on business life Human

Einmahl, Uwe

203

A Boost for Small Business | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Boost for Small Business A Boost for Small Business A Boost for Small Business September 15, 2010 - 3:24pm Addthis Dr. Kristina Johnson Today is a first for the Department of Energy, as $57 million, including nearly $11 million under the American Recovery and Reinvestment Act, is being awarded as part of our new Phase III Xlerator awards. This grant program builds off the Small Business Innovation Research Program (SBIR) and the Small Business Technology Transfer Program (STTR), and gives qualified small businesses around the country the staying power they need to bring their clean energy technology projects to commercialization. With these Phase III Xlerator awards, 33 small businesses in 16 states will lead projects that received SBIR or STTR funding, teaming up with universities, national labs and industry to bring their work to the

204

Inertial-confinement fusion with fast ignition  

Science Journals Connector (OSTI)

...achieve ignition and thermonuclear burn. For a fusion power plant, gains...the ratio of the thermonuclear energy to the initial...released by the thermonuclear burn in unit mass...compressed spherical fusion fuel. Higher gain...

1999-01-01T23:59:59.000Z

205

History of the approach to ignition  

Science Journals Connector (OSTI)

...International Thermonuclear Experimental Reactor...recommended. plasma|fusion|tokamak|ignition...density plasma to thermonuclear temperatures...in the quest for fusion power. Such an...temperatures of thermonuclear interest, this...for an acceptable fusion reactor. By a...

1999-01-01T23:59:59.000Z

206

Effects of temperature on laser diode ignition  

Science Journals Connector (OSTI)

In this paper, the effects of temperature on laser diode ignition and the resulting consequences were discussed in detail through theoretical analysis, experiments and numerical calculations. The results indicated that the output power of laser diode decreases and the wavelength of laser redshifts with elevated working temperature under a certain condition. The threshold conditions of ignition for powders are easily satisfied with increase in ambient temperature. While the temperature reaches a high enough level, ignition can occur and also the self-combustion or thermal induced explosion can do, even if laser power is very low. Therefore, it is of great importance to carefully control the working temperature of laser diode and the ambient temperature of powder system, and in the meanwhile, to install necessary insurance apparatus in order to ensure the normal and safe operation of the ignition system.

Shi-Biao Xiang; Xu Xiang; Chang-Gen Feng

2009-01-01T23:59:59.000Z

207

Laser-induced ignition by optical breakdown  

Science Journals Connector (OSTI)

This paper is an experimental work of the applied methodical character in which as an attempt to optimize a laser ignition system a systematic study of the best incoupling geometry for the employed Nd:YAG laser w...

E. Schwarz; I. Muri; J. Tauer; H. Kofler; E. Wintner

2010-06-01T23:59:59.000Z

208

Ignition with Laser Break-Down  

Science Journals Connector (OSTI)

It is considered that ignition with laser break-down is one of the applications of solid-state lasers. This paper shows basic experimental results indicating the advantages of laser...

Furutani, Hirohide; Saito, Takeshi

209

Focus issue introduction: Laser Ignition Conference  

Science Journals Connector (OSTI)

The purpose of this feature issue is to share information on laser ignition and related sciences and technologies. This feature offers five papers in the field that cover aspects of...

Taira, Takunori; Furutani, Hirohide; Guo, Chunlei; Wintner, Ernst; Akamatsu, Fumiteru; Lucht, Robert; Washio, Kunihiko

2014-01-01T23:59:59.000Z

210

Laser Spark Distribution and Ignition System  

NLE Websites -- All DOE Office Websites (Extended Search)

Spark Distribution and Ignition System Spark Distribution and Ignition System Opportunity The Department of Energy's National Energy Technology Laboratory (NETL) is seeking licensing partners interested in implement- ing United States Patent Number 7,421,166 entitled "Laser Spark Distribution and Ignition System." Disclosed in this patent is NETL's laser spark distribution and ignition system, which reduces the high-power optical requirements normally needed for such a system by using optical fibers to deliver low-peak-energy pumping pulses to a laser amplifier or laser oscillator. Laser spark generators then produce a high-peak-power laser spark from a single low power pulse. The system has ap- plications in natural gas fueled reciprocating engines, turbine combustors, explosives, and laser induced breakdown spectroscopy diagnostic sensors.

211

Subject Course Course Title 13-14 Lab Fee AGR 4911 Sr Honors Res Lab $100  

E-Print Network (OSTI)

Lab $100 AGED 4821 Adv Ed App Micro Lab $100 AGED 6011 Instr Methods Lab $100 AGED 6251 Teach Ag Mech Lab $150 AGED 6801 Digital Classrm Lab $100 AGED 6821 Adv Ed App Micro Lab $100 AGED 7361 Internshp Drain Irrig Lab $100 AGM 4051 Env Control Lab $100 AGM 4061 Mech & Hydro Sys Lab $100 AGM 4101 Precision

Duchowski, Andrew T.

212

Confinement scaling and ignition in tokamaks  

SciTech Connect

A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10/sup 15/ cm/sup -3/, high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition.

Perkins, F.W.; Sun, Y.C.

1985-10-01T23:59:59.000Z

213

The National Ignition Facility: Status of Construction  

E-Print Network (OSTI)

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

214

Laser Ignition in Internal Combustion Engines- a Novel Approach Based on Advanced Lasers  

Science Journals Connector (OSTI)

Laser ignition with its many potential advantages in comparison to conventional spark plug ignition has been investigated in detail. As ignition source several, to a certain extent...

Weinrotter, Martin; Kopecek, Herbert; Graf, Josef; Klausner, Johann; Herdin, Gnther; Wintner, Ernst

215

Transonic Combustion ?- Injection Strategy Development for Supercritical Gasoline Injection-Ignition in a Light Duty Engine  

Energy.gov (U.S. Department of Energy (DOE))

Novel fuel injection equipment enables knock-free ignition with low noise and smoke in compression-ignition engines and low-particulates in spark-ignition engines.

216

Energy Efficiency: Helping Home Owners and Businesses Understand Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency: Helping Home Owners and Businesses Understand Efficiency: Helping Home Owners and Businesses Understand Energy Usage Energy Efficiency: Helping Home Owners and Businesses Understand Energy Usage November 7, 2013 - 3:55pm Addthis Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of Berkeley Lab. Building 90, an 89,000-square foot office building at Berkeley Lab, served as the commercial setting for the miscellaneous and electronic loads (MELs) study. 460 meters were placed throughout the building to serve as a representative sample of a wide range of device types. | Photo courtesy of

217

Tri-Lab Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Tri-Lab Resources Tri-Lab Resources Tri-Lab Computing Resources Computing resources available to Alliance users as of January 2012. Computing resources available Los Alamos Moonlight - 294 compute nodes, 4,704 cores, 488 TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors with two NVIDIA Tesla GPUs per node, w/ InfiniBand. Mustang - 1,600 compute nodes, 38,400 cores, 353 TF system. 24-core AMD Opteron w/ InfiniBand. Mapache - 592 compute nodes, 4,736 cores, 50.4 TF system. SGI XE1300 dual-socket, quad-core Intel Nehalem processors w/ InfiniBand. Pinto - 154 compute nodes, 2,464 cores, 51.3 TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors w/ Infiniband. Lawrence Livermore Cab - 1,296 nodes, 20,736 cores, 333-TF system. Dual 8-core Intel Xeon (Sandy Bridge) processors w/ InfiniBand. Additional information at Cab

218

About Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Laboratory Organization Chart Divisional/Departmental Organization Charts Interactive Laboratory Map History of the Laboratory Nobel Laureates Image of A. Paul Alivisatos spacer DIRECTOR OF BERKELEY LAB A. Paul Alivisatos spacer Image of Horst D. Simon spacer DEPUTY LABORATORY DIRECTOR Horst Simon spacer Image of Glenn D. Kubiak spacer CHIEF OPERATING OFFICER Glenn D. Kubiak Image of Jay D. Keasling spacer ASSOCIATE LABORATORY DIRECTOR FOR BIOSCIENCES Jay D. Keasling spacer Image of Katherine Yelick spacer ASSOCIATE LABORATORY DIRECTOR FOR COMPUTING SCIENCES Katherine Yelick spacer Image of Don DePaolo spacer ASSOCIATE LABORATORY DIRECTOR FOR ENERGY AND ENVIRON-MENTAL SCIENCES Don DePaolo Image of James Symons spacer ASSOCIATE LABORATORY DIRECTOR

219

2009 - 12 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Mon, 12142009 - 12:00am Big Hopes for Little Tubes: Local Collaboration Produces Nanotubes That Could Work as Heat Shields (Inside Business) Mon, 12142009 - 12:00am Big...

220

2009 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Mon, 12142009 - 12:00am Big Hopes for Little Tubes: Local Collaboration Produces Nanotubes That Could Work as Heat Shields (Inside Business) Mon, 12142009 - 12:00am Big...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

2007 - 03 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

March 2007 Sun, 03252007 - 11:00pm TIAA-CREF Retirement Counceling Session Tue, 03202007 - 11:00pm CFO and Business Manager Wed, 03142007 - 11:00pm Message from Christoph...

222

2012 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 Sun, 08192012 - 11:00pm Conversations and Connections - The Expertise of our Small Business Program Managers (Energy.gov) Sun, 08052012 - 11:00pm Duke University...

223

2012 - 08 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 Sun, 08192012 - 11:00pm Conversations and Connections - The Expertise of our Small Business Program Managers (Energy.gov) Sun, 08052012 - 11:00pm Duke University...

224

2004 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

(CERN Courier) November 2004 Mon, 11292004 - 12:00am Quantum Delights (Daily Press) Sun, 11282004 - 12:00am Ten to watch: These area women have excelled in local businesses...

225

1998 - 06 | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1998 Sun, 06281998 - 11:00pm FEL Shines Bright in Debut (Virginia Business Observer) Sat, 06201998 - 11:00pm Laser Breaks Record (Richmond Times-Dispatch) Thu, 06181998...

226

Small Business Program Extends Hand to Vendors, Entrepreneurs Throughout Idaho  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energys Idaho National Laboratory reached out to small business owners throughout the state recently by meeting individually and in groups to explain the national laboratorys needs for achieving its research missions. Nearly 50 people participated in the labs Small Business Forum Nov. 13 at INLs new gateway research center, the Energy Innovation Laboratory. The forum was hosted by the Department of Energy-Idaho Operations Office, Idaho National Laboratory, Idaho Cleanup Project and the Idaho Treatment Group.

227

From Lab to Market: DOE's America's Next Top Energy Innovator Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Lab to Market: DOE's America's Next Top Energy Innovator From Lab to Market: DOE's America's Next Top Energy Innovator Program From Lab to Market: DOE's America's Next Top Energy Innovator Program April 5, 2013 - 3:08pm Addthis Testing materials in the lab at Vorbeck Materials Corp. | Photo courtesy of Vorbeck Materials Corp. Testing materials in the lab at Vorbeck Materials Corp. | Photo courtesy of Vorbeck Materials Corp. Erica Pincus Student Volunteer at OSTP Doug Rand Senior Policy Advisor at OSTP How does it work? If your startup company qualifies, find a technology by searching the Energy Innovation Portal to can see most of the technologies available for licensing. Once you've found a technology you'd like to license, submit an inquiry to the relevant lab indicating interest in the technology. The final step in the process is the submission of a business plan

228

Berkeley Lab: Educational Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Sites Educational Sites The Center for Science & Engineering Education (CSEE) Berkeley Lab's Center for Science & Engineering Education (CSEE) carries out the Department of Energy's education mission to train the next generation of scientists, as well as helping them to gain an understanding of the relationships among frontier science, technology, and society. CSEE supports science literacy in the community and nationally through a broad range of programs from elementary school to undergraduate and graduate education, including internships, mentoring, school workshops and summer research programs for teachers. Through its broad range of programs, CSEE serves as the center for Berkeley Lab's science education efforts, developing partnerships with schools, government agencies, and non-profit

229

Small Business Innovation Research (SBIR) and Small Business...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An...

230

113 Lab Learning Objectives Week 5: synthetic lab #4  

E-Print Network (OSTI)

113 Lab Learning Objectives Week 5: synthetic lab #4 Learning Objectives for Promoter Discovery the information contained within promoters. · Use protocols for molecular biology to clone DNA. · Interpret

Campbell, A. Malcolm

231

113 Lab Learning Objectives Week 8: synthetic lab #7  

E-Print Network (OSTI)

113 Lab Learning Objectives Week 8: synthetic lab #7 Learning Objectives for Promoter Discovery Selection Skills · Read DNA sequence and search for SNPs using ApE software. · Determine your PTC tasting

Campbell, A. Malcolm

232

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

233

Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems  

SciTech Connect

Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

Westbrook, C.K.

2000-07-07T23:59:59.000Z

234

Analytical model for fast-shock ignition  

SciTech Connect

A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ?4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ?0.3??micron and the shock ignitor energy weight factor about 0.25.

Ghasemi, S. A., E-mail: abo.ghasemi@yahoo.com; Farahbod, A. H. [Plasma Physics Research School, NSTRI, North Kargar Avenue, Tehran (Iran, Islamic Republic of); Sobhanian, S. [Department of Physics, Tabriz University, Tabriz (Iran, Islamic Republic of)

2014-07-15T23:59:59.000Z

235

Thermonuclear supernova simulations with stochastic ignition  

E-Print Network (OSTI)

We apply an ad hoc model for dynamical ignition in three-dimensional numerical simulations of thermonuclear supernovae assuming pure deflagrations. The model makes use of the statistical description of temperature fluctuations in the pre-supernova core proposed by Wunsch & Woosley (2004). Randomness in time is implemented by means of a Poisson process. We are able to vary the explosion energy and nucleosynthesis depending on the free parameter of the model which controls the rapidity of the ignition process. However, beyond a certain threshold, the strength of the explosion saturates and the outcome appears to be robust with respect to number of ignitions. In the most energetic explosions, we find about 0.75 solar masses of iron group elements. Other than in simulations with simultaneous multi-spot ignition, the amount of unburned carbon and oxygen at radial velocities of a few 1000 km/s tends to be reduced for an ever increasing number of ignition events and, accordingly, more pronounced layering results.

W. Schmidt; J. C. Niemeyer

2005-10-14T23:59:59.000Z

236

Roadmap: Business Management Technology Business Administration Associate of Applied Business  

E-Print Network (OSTI)

Roadmap: Business Management Technology ­ Business Administration ­ Associate of Applied Business This roadmap is a recommended semester-by-semester plan of study for this major. However, courses Credit Hours] ACTT 11001 Accounting II-Managerial 4 BMRT 11009 Introduction to Management Technology 3

Sheridan, Scott

237

Extracellular Enzymes Lab Biochemistry  

E-Print Network (OSTI)

Extracellular Enzymes Lab Biochemistry · All organisms convert small organic compounds shown here: All of these reactions, of which there are more than 1000, are catalyzed by enzymes. Glucose Phosphate PathwayEMP Pathway #12;Amino Acids #12;More Complete Metabolic Network TOP #12;#12;Enzymes

Vallino, Joseph J.

238

Extracellular Enzymes Lab Biochemistry  

E-Print Network (OSTI)

Extracellular Enzymes Lab Biochemistry · All organisms convert small organic compounds by enzymes. Glucose (C6) Pentose (C5) Triose (C3) Pyruvate (C3) AcetylCoA (C2) Citrate (C6) Oxoglutarate (C5 Cycle Pentose Phosphate PathwayEMP Pathway #12;More Complete Metabolic Network TOP #12;#12;Enzymes

Vallino, Joseph J.

239

Employee Relations | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

a cryomodule in Jefferson Lab's accelerator. A D D I T I O N A L L I N K S: Brochures Posters Strategic Plan 12 GeV TEDF Photos top-right bottom-left-corner bottom-right-corner...

240

Videos | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

video, Exploring the Nature of Matter. A D D I T I O N A L L I N K S: Brochures Posters Tours 12 GeV TEDF Visiting the Lab top-right bottom-left-corner bottom-right-corner...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Berkeley Lab Welcomes NUG  

NLE Websites -- All DOE Office Websites (Extended Search)

User Facilities Underpin Today's Berkeley Lab Over 7 ,000 v isi.ng s cien.sts ( 23 f rom u niversi.es) u se B erkeley L ab r esearch f acili.es e ach year --- 3 --- BIOSCIENCES...

242

Lab Breakthroughs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthroughs Lab Breakthroughs Lab Breakthroughs The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Energy Department's 17 National Labs are world-class scientific

243

MagLab Feature Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

problem-solve in a world-class laboratory. Read more. 2013 Feature Stories Date Subject December 17 MagLab Mentors Middle-Schoolers November 26 MagLab User Awarded the 2014...

244

Directory | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Division Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources Environment, Safety & Health Procurement...

245

Fuel effects in homogeneous charge compression ignition (HCCI) engines  

E-Print Network (OSTI)

Homogenous-charge, compression-ignition (HCCI) combustion is a new method of burning fuel in internal combustion (IC) engines. In an HCCI engine, the fuel and air are premixed prior to combustion, like in a spark-ignition ...

Angelos, John P. (John Phillip)

2009-01-01T23:59:59.000Z

246

Laser ignition of a heterogeneous nickel-aluminum system  

Science Journals Connector (OSTI)

The ignition of a heterogeneous nickelaluminum system by laser radiation is investigated experimentally. The ignition characteristics are investigated as a function of ... the samples. It is established that the...

Yu. S. Naiborodenko; V. M. Filatov

247

National Ignition Facility & Photon Science NIF AT A GLANCe  

NLE Websites -- All DOE Office Websites (Extended Search)

& Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building...

248

Numerical simulation of laser ignition of a liquid fuel film  

Science Journals Connector (OSTI)

Numerical simulations were used to examine a set of interrelated physicochemical processes involved in the ignition of a liquid fuel film by a low-power laser beam. The delay time of ignition of a liquid fuel fil...

G. V. Kuznetsov; P. A. Strizhak

2010-08-01T23:59:59.000Z

249

Laser ignition in internal-combustion engines: Sparkless initiation  

Science Journals Connector (OSTI)

Laser ignition has been implemented in a single-cylinder ... pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pu...

A. A. Andronov; V. A. Gurin; A. V. Marugin; A. P. Savikin

2014-08-01T23:59:59.000Z

250

National Ignition Facility & Photon Science NIF Fun Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

7 National Ignition Facility & Photon Science NIF Fun Facts niF Fun Facts The National Ignition Facility (NIF), became operational in march 2009. Planning began in the early 1990s,...

251

Target Visualization at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

252

The velocity campaign for ignition on NIF  

SciTech Connect

Achieving inertial confinement fusion ignition requires a symmetric, high velocity implosion. Experiments show that we can reach 95 {+-} 5% of the required velocity by using a 420 TW, 1.6 MJ laser pulse. In addition, experiments with a depleted uranium hohlraum show an increase in capsule performance which suggests an additional 18 {+-} 5 {mu}m/ns of velocity with uranium hohlraums over gold hohlraums. Combining these two would give 99 {+-} 5% of the ignition velocity. Experiments show that we have the ability to tune symmetry using crossbeam transfer. We can control the second Legendre mode (P2) by changing the wavelength separation between the inner and outer cones of laser beams. We can control the azimuthal m = 4 asymmetry by changing the wavelength separation between the 23.5 and 30 degree beams on NIF. This paper describes our 'first pass' tuning the implosion velocity and shape on the National Ignition Facility laser [Moses et al., Phys. Plasmas, 16, 041006 (2009)].

Callahan, D. A.; Meezan, N. B.; Glenzer, S. H.; MacKinnon, A. J.; Benedetti, L. R.; Bradley, D. K.; Celeste, J. R.; Celliers, P. M.; Dixit, S. N.; Doeppner, T.; Dzentitis, E. G.; Glenn, S.; Haan, S. W.; Haynam, C. A.; Hicks, D. G.; Hinkel, D. E.; Jones, O. S.; Landen, O. L.; London, R. A.; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

253

Ignition of deuterium-tritium fuel targets  

DOE Patents (OSTI)

Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

Musinski, D.L.; Mruzek, M.T.

1991-08-27T23:59:59.000Z

254

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Energy Savers (EERE)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

255

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120250??MJ may be possible with laser drive energies of 11.6MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

256

Scaling laws for ignition at the National Ignition Facility from first principles  

Science Journals Connector (OSTI)

We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.

Baolian Cheng; Thomas J. T. Kwan; Yi-Ming Wang; Steven H. Batha

2013-10-07T23:59:59.000Z

257

A comparative study of laser ignition and spark ignition with gasolineair mixtures  

Science Journals Connector (OSTI)

Abstract The ignition probability and minimum ignition energy (MIE) of premixed gasolineair mixture for different equivalence ratio was experimentally studied using a nanosecond pulse at 532nm and 1064nm from a Q-switched Nd:YAG laser in a constant-volume combustion chamber (CVCC) The result was compared with the spark ignition. The initial pressure and temperature of the mixture was 0.1MP and 363K, respectively. The research indicates that within the flammable range, the probability increases when the ignition energy increases and the distribution of MIE with the equivalence ratios is U-shape for both laser and spark ignition. For laser ignition with 532nm, when the incident energy is higher than 110mJ or the absorbed energy is high than 31mJ, 100% of ignition could be obtained within equivalence ratios of 0.81.6. For 1064nm it is 235mJ and 30mJ. To get the same ignition probability of mixture with identical equivalence ratio, the incident energy of 1064nm is twice more than the incident energy of 532nm, while the absorbed energy values are virtually the same. It indicates that significant wavelength dependence is expected for the initial free electrons but irrelevant for the process of absorbing energy. The initial free electrons are produced from impurities in gasolineair mixture because the intensity in the focus (1012W/cm2) is too low to ionize gas molecules via the multi-photon ionization process, which requires higher irradiance (?1014W/cm2). The MIE obtained with a laser-spark ignition is greater than that measured by electrical sparks. The MIE for laser ignition was obtained at equivalence ratio of 1.0 both of 532nm and 1064nm, and it was 13.5mJ and 9.5mJ, respectively. But for spark ignition, the MIE is 3.76mJ with equivalence ratio of 1.6. What?s more, laser ignition extends the lean flammability limit from 0.8 to 0.6.

Cangsu Xu; Donghua Fang; Qiyuan Luo; Jian Ma; Yang Xie

2014-01-01T23:59:59.000Z

258

Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility  

SciTech Connect

A series of laser plasma interaction experiments at OMEGA (LLE, Rochester) using gas-filled hohlraums shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. We present detailed experimental results that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter. We show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for forthcoming experiments on National Ignition Facility.

Froula, D H; Divol, L; London, R A; Berger, R L; Doeppner, T; Meezan, N B; Ralph, J; Ross, J S; Suter, L J; Glenzer, S H

2009-11-12T23:59:59.000Z

259

Eight National Labs Offer Streamlined Partnership Agreements to Help  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eight National Labs Offer Streamlined Partnership Agreements to Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market February 23, 2012 - 12:38pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that eight of the Department's national laboratories will participate in a pilot initiative to make it easier for private companies to utilize the laboratories' research capabilities. The program will harness America's unique advantages in innovation to create jobs and accelerate the development of new clean energy technologies. "The Agreements for Commercializing Technology will cut red tape for businesses and startups interested in working with our nation's crown

260

Laser-Plasma Coupling with Ignition-Scale Targets: New Regimes and Frontiers on the National Ignition Facility  

Science Journals Connector (OSTI)

It is very exciting that the National Ignition Facility (NIF) is now operational and being used to irradiate ignition-scale hohlraums. As discussed in the last ... Summer School in Physics on the topic of laser-p...

William L. Kruer

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ignition and Flame Quenching of Quiescent Fuel Mists  

Science Journals Connector (OSTI)

...Ignition and Flame Quenching of Quiescent Fuel Mists D. R. Ballal A. H. Lefebvre A...the ignition of quiescent multidroplet fuel mists which assumes that chemical reaction...spark, of an adequate concentration of fuel vapour in the ignition zone. From analysis...

1978-01-01T23:59:59.000Z

262

Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby  

E-Print Network (OSTI)

, there is a considerable motivation to develop practical means to ignite pure thermites. Laser beams were found effectiveThermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering 2012 Keywords: Thermite Microwave heating Hotspots Thermal runaway Ignition a b s t r a c t This paper

Jerby, Eli

263

Status of the National Ignition Campaign Prof. R. Paul Drake  

E-Print Network (OSTI)

Ignition Campaign has the goal of producing net en- ergy gain in a laser-fusion system. I have been keeping Status of the National Ignition Campaign Prof. R. Paul Drake Joint Seminar with Atmospheric progress on the National Ignition Campaign, from a recent conference. This includes a discussion

Shyy, Wei

264

Planning for the National Ignition Campaign on NIF Presentation to  

E-Print Network (OSTI)

yields>1 MJ (an ignition margin >1) with the expected precision of target experiments, laser performance by melting with the first shock ·We predict an ignition margin >1 at the point design laser energy #12;A CH that roll up to set the ignition conditions ~150 lower parameters 1D quantities, e.g: Peak Laser Power Foot

265

Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby  

E-Print Network (OSTI)

, there is a considerable motivation to develop practical means to ignite pure thermites. Laser beams were found effectiveThermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering Keywords: Thermite Microwave heating Hotspots Thermal runaway Ignition a b s t r a c t This paper presents

Jerby, Eli

266

Inertial Confinement Fusion Ignition and High Yield Campaign  

E-Print Network (OSTI)

to redirect High Average Power Lasers to be synergistic with NIF ignition and other defense missions #12 · Predicted gains (fusion energy produced/laser energy input) have increased · Direct drive ignition shows) Project has begun · Will add two high-energy petawatt lasers for OMEGA for advanced backlighting and fast-ignition

267

Status of Experiments on National Ignition Facility Presented to  

E-Print Network (OSTI)

into the hohlraum temperature range for ignition experiments at 280-300 eV · The laser, diagnostic, targetStatus of Experiments on National Ignition Facility Presented to 31st Annual Meeting and Symposium Associates 4NIF­1110-20542.ppt #12;National Ignition Campaign goals Moses - 31st Annual Meeting and Symposium

268

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification of Pending Public Announcement of Selection of Applications for Negotiation of Financial Assistance Awards Dear Chairmen Rogers, Inouye, Frelinghuysen and Feinstein: In accordance with Section 311 of P.L. 111-85, no earlier than three full business days from the date of this notification, the Department of Energy intends to announce publicly one or more selections for negotiation of financial assistance award(s) over $1,000,000. This information is market sensitive, predecisional and not public at this time. Accordingly,

269

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

013) 013) The Honorable Harold Rogers The Honorable Barbara A. Mikulski Chairman, Committee on Appropriations Chairwoman, Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 The Honorable Rodney P. Frelinghuysen The Honorable Dianne Feinstein Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification to Make a Non-competitive Financial Assistance Award Dear Chairmen Rogers, Mikulski, Frelinghuysen and Feinstein: No earlier than three full business days from the date of this notification, the Department of

270

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

013) 013) The Honorable Harold Rogers The Honorable Barbara A. Mikulski Chairman, Committee on Appropriations Chairwoman, Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 The Honorable Rodney P. Frelinghuysen The Honorable Dianne Feinstein Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification to Make a Non-competitive Financial Assistance Award Dear Chairmen Rogers, Mikulski, Frelinghuysen and Feinstein: No earlier than three full business days from the date of this notification, the Department of

271

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification to Make a Non-competitive Financial Assistance Award Dear Chairmen Rogers, Inouye, Frelinghuysen and Feinstein: No earlier than three full business days from the date of this notification, the Department of Energy intends to award an action over $1,000,000 in accordance with Section 311 of P.L. 111-85. This information is market sensitive, predecisional and not public at this time. Accordingly, we request that you do not further disseminate this information. If you are considering

272

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification of Pending Public Announcement of Selection of Applications for Negotiation of Financial Assistance Awards Dear Chairmen Rogers, Mikulski, Simpson and Feinstein: In accordance with Section 311 of P.L. 112-74 and as continued in P.L. 113-6, no earlier than three full business days from the date of this notification, the Department of Energy intends to announce publicly one or more selections for negotiation of financial assistance award(s) over

273

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2014) 10, 2014) The Honorable Harold Rogers The Honorable Barbara A. Mikulski Chairman, Committee on Appropriations Chairwoman, Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 The Honorable Mike Simpson The Honorable Dianne Feinstein Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification to Make a Non-competitive Financial Assistance Award Dear Chairmen Rogers, Mikulski, Simpson and Feinstein: No earlier than three full business days from the date of this notification, the Department of

274

BUSINESS SENSITIVE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

013) 013) The Honorable Harold Rogers The Honorable Barbara A. Mikulski Chairman, Committee on Appropriations Chairwoman, Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 The Honorable Rodney P. Frelinghuysen The Honorable Dianne Feinstein Chairman, Subcommittee on Energy Chairman, Subcommittee on Energy and Water Development and Water Development Committee on Appropriations Committee on Appropriations U.S. House of Representatives U.S. Senate Washington, DC 20515 Washington, DC 20510 Subject: Section 311 Notification to Make a Non-competitive Financial Assistance Award Dear Chairmen Rogers, Mikulski, Frelinghuysen and Feinstein: No earlier than three full business days from the date of this notification, the Department of

275

College of Business College of Business  

E-Print Network (OSTI)

and Innovation Management Organization and Innovation Management--Business Education Real Estate UNDERGRADUATE, finance, marketing, organization and innovation management, and real estate to undergraduates. The skills orientation, technology, business processes, and corporate social responsibility. Lower-division work provides

Stephens, Graeme L.

276

Small Business - Hanford Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Prime Contracts Current Solicitations Small Business Other Sources DOE RL Contracting Officers DOE RL Contracting Officer Representatives Small Business Email Email Page...

277

Laboratory awards subcontracts to small businesses  

NLE Websites -- All DOE Office Websites (Extended Search)

Subcontracts awarded to small businesses Subcontracts awarded to small businesses Laboratory awards subcontracts to small businesses A company owned and operated by Ohkay Owingeh Pueblo will soon be providing custodial support services to the Lab. October 15, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Contact Steve Sandoval

278

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

279

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

280

Scientific Labs | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Labs Scientific Labs SHARE SNS Scientific Labs Meilleur-lab-students-300.jpg Students in the SNS chemistry lab practice pipetting water. A new complex of laboratories is now open at SNS, providing a flexible, mobile environment where users can work efficiently. The labs, on the second floor of the SNS Central Laboratory and Office Building, are built with "green" operations in mind, as well as to optimize the available space for researchers' ever-changing scientific needs. With overhead utilities and mobile furniture, the complex's 13 labs allow staff to easily reconfigure the layout of equipment and quickly change an experiment's setup as needed. "We surveyed more than 900 users on what they needed, and they gave us a wish list," says Chrissi Schnell, the Neutron Scattering Science Division

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electron Microscopy Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Electron Microscopy Lab Electron Microscopy Lab Focusing on the study of microstructures with electron and ion beam instruments, including crystallographic and chemical techniques. April 12, 2012 Transmission electron microscope Rob Dickerson examines a multiphase oxide scale using the FEI Titan 80-300 transmission electron microscope. Contact Rob Dickerson (505) 667-6337 Email Rod McCabe (505) 606-1649 Email Pat Dickerson (505) 665-3036 Email Tom Wynn (505) 665-6861 Email Dedicated to the characterization of materials through imaging, chemical, and crystallographic analyses of material microstructures in support of Basic Energy Science, Laboratory Directed Research and Development, DoD, DOE, Work for Others, nuclear energy, and weapons programs. Go to full website »

282

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

283

Comparative studies of methane and propane as fuels for spark ignition and compression ignition engines  

SciTech Connect

The paper reviews the combustion characteristics of the two fuels and sets out to consider their respective performance in both spark ignition and compression ignition engines. Results of comparative tests involving spark ignition engines over a wide range of operating conditions are presented and discussed. Some of the performance characteristics considered are those relating to power output, efficiency, tendency to knock, cyclic variations, optimum spark requirements and exhaust emissions. Similarly, some of the performance characteristics in compression ignition engines considered include power output, efficiency, tendency towards knock and autoignition, exhaust emissions and low operational temperature problems. Finally, the relative operational safety aspects of the two fuels are evaluated. It is then suggested that in this regard, methane has some excellent physical, chemical and combustion characteristics that makes it a particularly safe fuel.

Karim, G.A.; Wierzba, I.

1983-08-01T23:59:59.000Z

284

Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility  

SciTech Connect

Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes 'day one' NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

Terry, Matthew R.; Perkins, L. John; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2012-11-15T23:59:59.000Z

285

National Ignition Facility Title II Design Plan  

SciTech Connect

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

286

Impacts assessment for the National Ignition Facility  

SciTech Connect

This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

Bay Area Economics

1996-12-01T23:59:59.000Z

287

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network (OSTI)

a safe, secure, and reliable nuclear weapons stockpile without underground testing. Science-based weapons and certify the stockpile without nuclear testing. The National Ignition Facility (NIF) extends HEDP under extreme conditions that approach the high energy density (HED) environments found in a nuclear

288

Weapons Activities/ Inertial Confinement Fusion Ignition  

E-Print Network (OSTI)

, and reliability of the Nation's nuclear weapons without nuclear testing. The program provides this capability models that are used to assess and certify the stockpile without nuclear testing. The National Ignition that approach the high-energy density (HED) environments found in a nuclear explosion. Virtually all

289

Advanced aircraft ignition CRADA final report  

SciTech Connect

Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

Early, J.W.

1997-03-01T23:59:59.000Z

290

UCRL-PRES-225531 National ignition facility  

E-Print Network (OSTI)

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12;Target chamber #12;Target chamber national geographic #12;Target chamber inside #12;Warehouse of laser

291

Groundbreaking at National Ignition Facility | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

292

Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition  

SciTech Connect

Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

Azer Yalin; Bryan Willson

2008-06-30T23:59:59.000Z

293

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility  

SciTech Connect

Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focuses on implosion performance data in the rocket curve plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 ?m-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remainingbelow the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 ?m thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V?350 km/s with ablator mass remaining above the ignition goal.

Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.; Dewald, E. L.; Tommasini, R.; Le Pape, S.; Dppner, T.; Ma, T.; Farley, D. R.; Kalantar, D. H.; Di Nicola, P.; Callahan, D. A.; Robey, H. F.; Thomas, C. A.; Prisbrey, S. T.; Jones, O. S.; Milovich, J. L.; Clark, D. S.; Eder, D. C.; Schneider, M. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2013-05-15T23:59:59.000Z

294

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility  

SciTech Connect

Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and sensitivity of the margin to characteristics of the experiment. The formalism is used to estimate probability of ignition. The ignition experiment will be preceded with an experimental campaign that determines features of the design that cannot be defined with simulations alone. The requirements for this campaign are summarized. Requirements are summarized for the laser and target fabrication.

Haan, S. W.; Lindl, J. D.; Callahan, D. A.; Clark, D. S.; Salmonson, J. D.; Hammel, B. A.; Atherton, L. J.; Cook, R. C.; Edwards, M. J.; Glenzer, S.; Hamza, A. V.; Hatchett, S. P.; Hinkel, D. E.; Ho, D. D.; Jones, O. S.; Landen, O. L.; MacGowan, B. J.; Marinak, M. M.; Milovich, J. L.; Moses, E. I. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-05-15T23:59:59.000Z

295

Business-Driven Management of Hybrid IT Infrastructures  

E-Print Network (OSTI)

Business-Driven Management of Hybrid IT Infrastructures Paulo Ditarso Maciel Jr.a , Marcus in this hybrid infrastructure are characterised by a utility function: the utility yielded by the completion Grande - PB, Brasil b Automated Infrastructure Lab Hewlett-Packard Laboratories Bristol Long Down Avenue

Cirne, Walfredo

296

A study of ignition of oil shale and char  

SciTech Connect

The ignition characteristics of Fushun, Maoming and Jordan oil shale samples have been determined experimentally by using thermogravimetric analyzer (TGA) and CO/CO{sub 2} analyzer. Their chars have been investigated, too. Two ignition mechanisms for oil shale and shale char are suggested. One is called heterogeneous, according to which, the ignition takes place on the surface of the oil shale and/or shale char sample. Another is called homogeneous, the ignition occurring in the gas phase surrounding the particles. The ignition mechanism occurred mainly depends on the condition of the combustion, physical properties of samples and the rate of volatile release. The experimental equations of ignition for three kinds of oil shale and their char particles (Fushun, Maoming and Jordan) are given. The difference of ignition temperatures for these oil shale and their char particles are compared in terms of chemical compositions and physical properties.

Min, L.; Changshan, L. (Fushun Research Institute of Petroleum and Petrochemicals, Sinopec (CN))

1989-01-01T23:59:59.000Z

297

A Concept Exploration Program in Fast Ignition Inertial Fusion Final Report  

SciTech Connect

The Fast Ignition (FI) approach to Inertial Confinement Fusion (ICF) holds particular promise for fusion energy because the independently generated compression and ignition pulses allow ignition with less compression, resulting in (potentially) higher gain. Exploiting this concept effectively requires an understanding of the transport of electrons in prototypical geometries and at relevant densities and temperatures. Our consortium, which included General Atomics (GA), The Ohio State University (OSU), the University of California, San Diego (UCSD), University of California, Davis (UC-Davis), and Princeton University under this grant (~$850K/yr) and Lawrence Livermore National Laboratory (LLNL) under a companion grant, won awards in 2000, renewed in 2005, to investigate the physics of electron injection and transport relevant to the FI concept, which is crucial to understand electron transport in integral FI targets. In the last two years we have also been preparing diagnostics and starting to extend the work to electron transport into hot targets. A complementary effort, the Advanced Concept Exploration (ACE) program for Fast Ignition, was funded starting in 2006 to integrate this understanding into ignition schemes specifically suitable for the initial fast ignition attempts on OMEGA and National Ignition Facility (NIF), and during that time these two programs have been managed as a coordinated effort. This result of our 7+ years of effort has been substantial. Utilizing collaborations to access the most capable laser facilities around the world, we have developed an understanding that was summarized in a Fusion Science & Technology 2006, Special Issue on Fast Ignition. The author lists in the 20 articles in that issue are dominated by our group (we are first authors in four of them). Our group has published, or submitted 67 articles, including 1 in Nature, 2 Nature Physics, 10 Physical Review Letters, 8 Review of Scientific Instruments, and has been invited to give numerous talks at national and international conferences (including APS-DPP, IAEA, FIW). The advent of PW capabilities at Rutherford Appleton Lab (UK) and then at Titan (LLNL) (2005 and 2006, respectively), was a major step toward experiments in ultra-high intensity high-energy FI relevant regime. The next step comes with the activation of OMEGA EP at LLE, followed shortly by NIF-ARC at LLNL. These capabilities allow production of hot dense material for electron transport studies. In this transitional period, considerable effort has been spent in developing the necessary tools and experiments for electron transport in hot and dense plasmas. In addition, substantial new data on electron generation and transport in metallic targets has been produced and analyzed. Progress in FI detailed in 2 is related to the Concept Exploration Program (CEP) objectives; this section is a summary of the publications and presentations listed in 5. This work has benefited from the synergy with work on related Department of Energy (DOE) grants, the Fusion Science Center and the Fast Ignition Advanced Concept Exploration grant, and from our interactions with overseas colleagues, primarily at Rutherford Appleton Laboratory in the UK, and the Institute for Laser Engineering in Japan.

Stephens, Richarad Burnite [General Atomics] [General Atomics; Freeman, Richard R. [The Ohio State University] [The Ohio State University; Van Woekom, L. D. [The Ohio State University] [The Ohio State University; Key, M. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; MacKinnon, Andrew J. [Lawrence Livermore National Laboratory] [Lawrence Livermore National Laboratory; Wei, Mingsheng [General Atomics] [General Atomics

2014-02-27T23:59:59.000Z

298

Current Projects | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Projects Current Projects In Situ Production of Radionuclide Technetium-99m Researchers at Princeton Plasma Physics Laboratory have developed a new process for the production of Molybdenum 99 (Mo-99), a man made radionuclide which decays (T 1/2 = 66 hours) to Technetium-99m (Tc-99m). Tc-99 m is a radioactive tracer isotope, used in the nuclear medical field for diagnostic imaging, for 2/3 of all diagnostic medical isotope procedures In the United States. Tc-99m has a relatively short half life of 6 hours, which makes it ideal in medical diagnostic tests where the patient only retains a minimal amount of radiation from the examination. (See PPPL Digest) Plasma Treatment of Electrodes for Intelligent Materials Ras Labs, LLC, a woman-owned small business, committed to producing

299

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

300

Better Buildings Neighborhood Program Business Models Guide:...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guide: HVAC Contractor Business Model Better Buildings Neighborhood Program Business Models Guide: HVAC Contractor Business Model HVAC contractor business model...

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MagLab - MagLab Dictionary: Megawatt (Transcript)  

NLE Websites -- All DOE Office Websites (Extended Search)

Megawatt As explained by Bryon Dalton, Magnet Operations director. Substation This substation furnishes the MagLab with its 56 megawatts of electricity. Our magnets here at the...

302

LabWindows/CVI" LabWindows/CVI National  

E-Print Network (OSTI)

) ANSI C, , : 1. ­ , , , , . (User Interface Library). 2. (VISA Library. ­ , , (Analysis Library, Advanced Analysis Library). 5. ANSI C. DDE, ActiveX, , .NET, . Lab

303

MagLab - MagLab Dictionary: Hybrid Magnet (Transcript)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrid Magnet As explained by Scott Hannahs, DC Facilities & Instrumentation director. Hybrid magnet The lab's world-record 45 tesla hybrid magnet. The premier magnet system at the...

304

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

305

Business plan proposal  

E-Print Network (OSTI)

about you and your business. The following guideline has been provided to ensure that important points are included in the executive summary. Your business may believe that other information may be pertinent to the completion of the agribusiness plan..., partnership, corporation), if it is a merchandising, processing, or service related business. Is it a new business? an expansion? or a relocation? If it is a relocation, where are you currently located? Trace the history of your business: when was it formed...

Kucera, Carolyn

1991-01-01T23:59:59.000Z

306

Scientific Labs | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

New Nanomaterials-Handling Laboratory opens at SNS New Nanomaterials-Handling Laboratory opens at SNS Rhonda Moody (far right) shows visitors the new nanomaterials lab in the SNS Central Laboratory and Office Building. Rhonda Moody (far right) trains scientific associates in the new nanomaterials lab. The associates provide support for users and staff at the instrument beam lines. (Click for larger image.) The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. The nanomaterials lab on the second floor (near the users area) of the SNS CLO provides researchers with new equipment, as well as additional space. (Click for larger image.) A new nanomaterials-handling lab recently opened in the second floor lab suites (G-202A) of the SNS Central Laboratory and Office Building (CLO).

307

Currents, Berkeley Lab's Biweekly Newspaper  

NLE Websites -- All DOE Office Websites (Extended Search)

Currents Index A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Search Currents Back Issues (1994 to present) Search Lab science articles...

308

Organization | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources Environment, Safety...

309

Physics of Dance | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

scheduled Spring Science Series lectures http:education.jlab.orgscienceseriesindex.php Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of...

310

Education | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Science Education Welcome to the Science Education Department at the Princeton Plasma Physics Laboratory (PPPL), where we combine the lab's core research activities with...

311

Sandia National Laboratories: Optics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

312

NREL: Business Opportunities - Small Business Commitment  

NLE Websites -- All DOE Office Websites (Extended Search)

Commitment Commitment Central to NREL's mission is our commitment to small business through a comprehensive and mature outreach program that combines proven techniques with the latest technology and best business practices. NREL's focus on small, small-disadvantaged, women-owned, HUBZone, veteran-owned, and disabled veteran-owned businesses extends far beyond the purchasing and subcontracting dollars which is an integral part of the high performance standards set forth in all areas of the laboratory. For example, prompt payment is a critical factor in the success of every small business. NREL's Finance Office works with Contracts and Business Services Office (CBS) to establish payment terms that accommodate small business needs. Payment and deliverables tracking has been automated and placed on

313

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuteriumtritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 162634, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusionfission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

314

Laser-plasma interactions for fast ignition  

E-Print Network (OSTI)

In the electron-driven fast-ignition approach to inertial confinement fusion, petawatt laser pulses are required to generate MeV electrons that deposit several tens of kilojoules in the compressed core of an imploded DT shell. We review recent progress in the understanding of intense laser plasma interactions (LPI) relevant to fast ignition. Increases in computational and modeling capabilities, as well as algorithmic developments have led to enhancement in our ability to perform multi-dimensional particle-in-cell (PIC) simulations of LPI at relevant scales. We discuss the physics of the interaction in terms of laser absorption fraction, the laser-generated electron spectra, divergence, and their temporal evolution. Scaling with irradiation conditions such as laser intensity are considered, as well as the dependence on plasma parameters. Different numerical modeling approaches and configurations are addressed, providing an overview of the modeling capabilities and limitations. In addition, we discuss the compa...

Kemp, A J; Debayle, A; Johzaki, T; Mori, W B; Patel, P K; Sentoku, Y; Silva, L O

2013-01-01T23:59:59.000Z

315

Conceptual Design - Polar Drive Ignition Campaign  

SciTech Connect

The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

Hansen, R

2012-04-05T23:59:59.000Z

316

Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website  

E-Print Network (OSTI)

Guidelines for Vocal Tract Development Lab (VT Lab) team members to access the VT Lab WebSpace via the VT Lab website The VTLab WebSpace is a new and improved mechanism for VT lab team members to share files. We are replacing the former Member Login section of our website with MyWeb Space (developed by Do

Vorperian, Houri K.

317

IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES  

SciTech Connect

This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

Jason M. Keith

2005-02-01T23:59:59.000Z

318

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures. 18 figs.

Early, J.W.

1998-05-26T23:59:59.000Z

319

Multiple laser pulse ignition method and apparatus  

DOE Patents (OSTI)

Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

Early, James W. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

320

The National Ignition Campaign: status and progress  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and a variety of experiments have been completed and many more are planned in support of NIF's mission areas: national security, fundamental science, and fusion energy. NIF capabilities and infrastructure are in place to support all of its missions with nearly 60 x-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. The NIF has also been qualified for the use of tritium and other special materials as well as to perform high-yield experiments and classified experiments. Implosions with record indirect-drive neutron yield of 7.5?1014 neutrons have been achieved. NIF, a Nd?:?Glass laser facility, is routinely operating at 1.6MJ of ultraviolet (3?) light on target with very high reliability. It recently reached its design goal of 1.8MJ and 500TW of 3? light on target, and has performed target experiments with 1.9MJ at peak powers of 410TW. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress towards achieving ignition. Other experiments have been completed in support of high-energy science, materials equation of state, and materials strength. In all cases, records of extreme temperatures and pressures, highest neutron yield and highest energy densities have been achieved. This paper describes the unprecedented experimental capabilities of the NIF and the results achieved so far on the path towards ignition.

E.I. Moses; the NIC Collaborators

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laser spark distribution and ignition system  

DOE Patents (OSTI)

A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

Woodruff, Steven (Morgantown, WV); McIntyre, Dustin L. (Morgantown, WV)

2008-09-02T23:59:59.000Z

322

Laser-induced ignition modeling of HMX  

Science Journals Connector (OSTI)

Abstract The laser-induced ignition response of HMX has been investigated using a detailed numerical model. The model is one-dimensional, fully transient, and solves the conservation equations for both the condensed and gas phases. The condensed phase representation includes radiation absorption, solid-phase transitions, melting, evaporation, and distributed semi-global decomposition kinetics. The gas phase utilizes a detailed kinetic mechanism to predict species formation and destruction. Ignition occurs in the gas phase and the flame propagates back toward the surface of the HMX in what is known as the snap-back effect. The model then transitions to steady-state combustion. Calculations were performed in which the solid HMX is irradiated with heat fluxes ranging from 50 to 1600W/cm2. Results are compared to empirical data for the laser-induced ignition of HMX. Good agreement with these data and other steady-state data (burning rate, surface temperature, melt thickness) provide the necessary validation of the developed model.

Karl V. Meredith; Matthew L. Gross; Merrill W. Beckstead

2014-01-01T23:59:59.000Z

323

Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures  

Science Journals Connector (OSTI)

Abstract Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532nm wavelength and 4ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

J. Griffiths; M.J.W. Riley; A. Borman; C. Dowding; A. Kirk; R. Bickerton

2015-01-01T23:59:59.000Z

324

Large Business Development Program (Illinois)  

Energy.gov (U.S. Department of Energy (DOE))

The Large Business Development Program, administered by the Illinois Department of Commerce and Economic Opportunity, provides grants to large businesses for bondable business activities, including...

325

Student, Business & Professional Studies "The Strategic Leadership  

E-Print Network (OSTI)

Foundations of Business Process Management (BPM) 232 Organizational Aspects of Business Process Management (BPM) 232 Tools & Techniques of Business Process Management (BPM) 232 Business Strategy 232 Business

Toronto, University of

326

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 The Truth about Clean Energy Jobs Director of Public Affairs Dan Leistikow details how the Loan Program will support 60K American jobs and save 300 million gallons of gasoline a year. September 14, 2011 Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs To accelerate high-growth entrepreneurship across the nation and move cutting-edge clean energy technologies from the lab to the marketplace, a year ago the Energy Department launched the Innovation Ecosystem Initiative. 

 September 12, 2011 A view of a cryogenically cooled National Ignition Facility (NIF) target as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory.

327

Ignitor with stable low-energy thermite igniting system  

DOE Patents (OSTI)

A stable compact low-energy igniting system in an ignitor utilizes two components, an initiating charge and an output charge. The initiating charge is a thermite in ultra-fine powder form compacted to 50-70% of theoretical maximum density and disposed in a cavity of a header of the ignitor adjacent to an electrical ignition device, or bridgewire, mounted in the header cavity. The initiating charge is ignitable by operation of the ignition device in a hot-wire mode. The output charge is a thermite in high-density consoladated form compacted to 90-99% of theoretical maximum density and disposed adjacent to the initiating charge on an opposite end thereof from the electrical ignition device and ignitable by the initiating charge. A sleeve is provided for mounting the output charge to the ignitor header with the initiating charge confined therebetween in the cavity.

Kelly, Michael D. (West Alexandria, OH); Munger, Alan C. (Miamisburg, OH)

1991-02-05T23:59:59.000Z

328

Capsule performance optimization in the National Ignition Campaign  

SciTech Connect

A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2010-05-15T23:59:59.000Z

329

Capsule Performance Optimization in the National Ignition Campaign  

SciTech Connect

A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

2009-10-13T23:59:59.000Z

330

High resolution simulations of ignition capsule designs for the National Ignition Facility  

SciTech Connect

Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and - most recently - experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as two thousand, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to two hundred on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode twelve hundred have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

Clark, D S; Haan, S W; Cook, A W; Edwards, M J; Hammel, B A; Koning, J M; Marinak, M M

2011-02-17T23:59:59.000Z

331

Lab transitions employee giving campaigns  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab transitions employee giving campaigns Lab transitions employee giving campaigns Community Connections: Our link to Northern New Mexico Communities Latest Issue:Dec. 2013 - Jan. 2014 All Issues » submit Lab transitions employee giving campaigns This year's theme: "I Give Because..." November 1, 2013 Employee Giving Logo The theme for this year's employee giving campaigns Contact Community Programs Office Director Kurt Steinhaus Email Editor Linda Anderman Email During the past seven years contributions to the Lab's annual employee giving campaign have risen by 370 percent and hopes to surpass the $3.1 million amount collected last year. As in past years, that amount includes a $1 million dollar match from the Lab's manager, Los Alamos National Security, LLC (LANS). The funds support nonprofits within the region and

332

MagneticsLab  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetics Laboratory Magnetics Laboratory Manufacturing Technologies The Magnetics Lab provides customers with design, prototyping, packaging solutions and production of unique magnetic and resistive components from millivolts to extremely high voltage (250KV) components. Capabilities * Design review of specification and requirements * Design and develop from sketches, verbal ideas, or circuit design parameters * Coil windings of any size or configuration * Coil diameter from 0.1 to 24 inches * Low temperature and high temperature coils * Precision resistors from 0.1 ohms to 2 megaohms (non-inductive) * Special high voltage transformers (2KV to 250KV) and high voltage loads (38K ohms to 100K ohms and 2KV to 250KV) Resources * Computer Aided Mechanical Design (Solid Works 3D CAD System) for mechanical

333

AMERICA'S NATIONAL LABS  

NLE Websites -- All DOE Office Websites (Extended Search)

AMERICA'S AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in

334

Berkeley Lab Nobel Laureates  

NLE Websites -- All DOE Office Websites (Extended Search)

George F. Smoot III George F. Smoot III 2006 Nobel Prize for Physics • October 3, 2006 Press Conference (Video) • Bibliography of Dr. Smoot's Works • October 3, 2006 Press Conference (Video) The October 3, 2006 press conference at Berkeley Lab introducing its newest Nobel Prize winner, George Smoot, to a throng of visiting media is available for viewing online. George F. Smoot III, Nobel Prize recipient, 2006 • Bibliography of Dr. Smoot's Works LBL-6468: Detection of anisotropy in the cosmic blackbody radiation LBL-6493: Radiometer system to map the cosmic background radiation LBL-7553: Abundances and spectra for cosmic ray nuclei from Li to Fe for 2-GeV/n to 150-GeV/n LBL-8266: Search for linear polarization of the cosmic background radiation LBL-9282: Southern hemisphere measurements of the anisotropy in the cosmic

335

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Joshua D. Taylor - National Renewable Energy Laboratory Stuart Neill, Hailin Li - National Research Council Canada...

336

Review of the National Ignition Campaign 2009-2012  

SciTech Connect

The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

Lindl, John; Landen, Otto; Edwards, John; Moses, Ed [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Collaboration: NIC Team

2014-02-15T23:59:59.000Z

337

HEC-DPSSL 2012 Workshop, Directions: National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Keep left at the fork Destination will be on the right Directions to Lawrence Livermore National Laboratory and the National Ignition Facility can be found on the...

338

Modeling the Number of Ignitions Following an Earthquake: Developing...  

Office of Environmental Management (EM)

Developing Prediction Limits for Overdispersed Count Data Authors: Elizabeth J. Kelly and Raymond N. Tell Modeling the Number of Ignitions Following an Earthquake:...

339

Advanced CFD Models for High Efficiency Compression Ignition Engines  

Energy.gov (U.S. Department of Energy (DOE))

Advanced CFD models for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion.

340

Simulation of Landfill Gas Performance in a Spark Ignited Engine.  

E-Print Network (OSTI)

?? Computer simulations were performed using KIVA-4 code to determine performance of a spark ignited engine fueled by methane diluted with carbon dioxide to approximate (more)

Swain, Daniel P.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Synthesizing aluminum particles towards controlling electrostatic discharge ignition sensitivity  

SciTech Connect

Aluminum particles were synthesized with shell thicknesses ranging from 2.7 to 8.3 nm and a constant diameter of 95 nm. These fuel particles were combined with molybdenum trioxide particles and the electrostatic discharge (ESD) sensitivity of the mixture was measured. Results show ignition delay increased as the alumina shell thickness increased. These results correlated with electrical resistivity measurements of the mixture which increased with alumina concentration. A model was developed using COMSOL for ignition of a single Al particle. The ignition delay in the model was consistent with the experimental results suggesting that the primary ESD ignition mechanism is joule heating.

Eric S. Collins; Jeffery P. Gesner; Michelle L. Pantoya; Michael A. Daniels

2014-02-01T23:59:59.000Z

342

Pulsed Laser Ignition Thresholds of Energetic Multilayer Foils  

Science Journals Connector (OSTI)

Ignition thresholds for energetic multilayer foils comprised of aluminum (Al) and platinum (Pt) layers are presented as a function of foil properties for laser pulse durations of 100...

McDonald, Joel P; Picard, Yoosuf N; Yalisove, Steven M; Adams, David P

343

HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource a unique experimental facility...

344

Effects of Ignition Quality and Fuel Composition on Critical...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multi-cylinder, turbocharged, common rail, direct injection study in which high ignition quality fuel was found avoid NO X , PM, THC and CO emissions while maintaining...

345

High power fiber delivery for laser ignition applications  

Science Journals Connector (OSTI)

The present contribution provides a concise review of high power fiber delivery research for laser ignition applications. The fiber delivery requirements are discussed in terms of exit...

Yalin, Azer P

2013-01-01T23:59:59.000Z

346

Advanced CFD Models for High Efficiency Compression Ignition...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for high efficiency compression-ignition engines can be used to show how turbulence-chemistry interactions influence autoignition and combustion. p-19raja.pdf More Documents &...

347

SMALL BUSINESS ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22 Federal Register 22 Federal Register / Vol. 76, No. 29 / Friday, February 11, 2011 / Rules and Regulations SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121 and 124 RIN 3245-AF53 Small Business Size Regulations; 8(a) Business Development/Small Disadvantaged Business Status Determinations AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: This rule makes changes to the regulations governing the section 8(a) Business Development (8(a) BD) program, the U.S. Small Business Administration's (SBA or Agency) size regulations, and the regulations affecting Small Disadvantaged Businesses (SDBs). It is the first comprehensive revision to the 8(a) BD program in more than ten years. Some of the changes involve technical issues such as changing the term ''SIC code'' to

348

Small Business Research  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energy participates in DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. SBIR and STTR are U.S. government programs in...

349

Writing Effective Business Rules  

Science Journals Connector (OSTI)

Writing Effective Business Rules moves beyond the fundamental dilemma of system design: defining business rules either in natural language, intelligible but often ambiguous, or program code (or rule engine instructions), unambiguous but unintelligible ...

Graham Witt

2012-03-01T23:59:59.000Z

350

Modeling the Fuel Spray and Combustion Process of the Ignition Quality Tester with KIVA-3V  

SciTech Connect

Discusses the use of KIVA-3V to develop a model that reproduces ignition behavior inside the Ignition Quality Tester, which measures the ignition delay of low-volatility fuels.

Bogin, G. E. Jr.; DeFilippo, A.; Chen, J. Y.; Chin, G.; Luecke, J.; Ratcliff, M. A.; Zigler, B. T.; Dean, A. M.

2010-05-01T23:59:59.000Z

351

Investigation of proton focusing and conversion efficiency for proton fast ignition  

E-Print Network (OSTI)

as a step towards laser fusion ignition, nature, vol. 412,laser in order for the ignition laser to be absorbed in areason being that the ignition laser energy would otherwise

Bartal, Teresa Jean

2012-01-01T23:59:59.000Z

352

Electron generation and transport in intense relativistic laser-plasma interactions relevant to fast ignition ICF  

E-Print Network (OSTI)

as a step towards laser fusion ignition, Nature, 412 (2001),tip. Full scale fast ignition laser systems are envisionedmodified. Full scale fast ignition laser systems of 100 kJ

Ma, Tammy Yee Wing

2010-01-01T23:59:59.000Z

353

BUSINESS OPPORTUNITY FORUM ATTENDEES  

Office of Environmental Management (EM)

Tetra Tech Inc. Operations Manager 11 Ryan Overton GEM Technologies, Inc. Director, Engineering and Technical Services 12 Jim Weltz Criterion Labs, Inc. President 13 Willie...

354

Meet with Large Businesses  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meet with Large Businesses Meet with Large Businesses and learn about upcoming acquisitions! * Federal Energy Management Program (FEMP) * National Renewable Energy Laboratory (NREL) * Small Business Administration (SBA) * U.S. Department of Energy / Energy, Efficiency, and Renewable Energy (EERE) * U.S. Department of Energy / Golden Field Office (GFO) * Western Area Power Administration (WAPA) * Colorado Procurement Technical Assistance Center (PTAC)

355

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2012 24, 2012 Lab Breakthrough: Lead-free Solder Iver Anderson, Ames National Laboratory materials scientist, discusses the impact of a lead-free solder he invented 15 years ago, the road to commercialization and the lab resources that made it possible. May 24, 2012 After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national competition for a chance at the cash grand prize. | Energy Department file graphic. America's Best Student Start-Up Companies Pitch for Your Vote Voting opened on May 24 for voters to review company summaries online, view their 3-minute video pitches, and then 'like' the companies they think will most positively impact America's energy future. May 23, 2012 Unlocking the Power of Energy Data

356

Inertial confinement fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

357

Laser diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

358

DOE Awards Small Business Contract for Site Characterization and Erosion  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Small Business Contract for Site Characterization and DOE Awards Small Business Contract for Site Characterization and Erosion Control Work in Los Alamos, New Mexico DOE Awards Small Business Contract for Site Characterization and Erosion Control Work in Los Alamos, New Mexico September 30, 2013 - 12:00pm Addthis Media Contact Lynette Chafin, 513-246-0461 Lynette.Chafin@emcbc.doe.gov Cincinnati - The Department of Energy (DOE) today awarded a new contract to CTI & Associates, of Wixom, MI. CTI is a small business. The Department will issue a time and material type contract with a three year period of performance and a not-to-exceed value of $2,249,264. Work performed under this contract will be performed at the contractor's facilities and at the Los Alamos National Lab in Los Alamos, NM. The work performed under this contract includes site characterization and

359

DOE Lab Receives Award for Work on Drilling Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology June 13, 2013 - 11:52am Addthis DOE Lab Receives Award for Work on Drilling Technology Directional drilling - the drilling of non-vertical wells that helped make the development of shale gas possible -- will continue to play a key role in energy development, and so will the technologies that make it possible. The benefits of directional drilling are tremendous. Think cleaner, cheaper electricity; local economy booms; and decreased dependence on foreign energy. The unconventional oil and gas resources that can be tapped through directional drilling benefit consumers, businesses, and even the transportation sector. So being recognized as an innovator in this area is

360

Recent progress on the Compact Ignition Tokamak (CIT)  

SciTech Connect

This report describes work done on the Compact Ignition Tokamak (CIT), both at the Princeton Plasma Physics Laboratory (PPPL) and at other fusion laboratories in the United States. The goal of CIT is to reach ignition in a tokamak fusion device in the mid-1990's. Scientific and engineering features of the design are described, as well as projected cost and schedule.

Ignat, D.W.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF) Research Image Gallery (3,698 KB PDF) Surface Imaging Laboratory Technology - Metals for tomorrow Tina Nenoff Departments Surface and Interface Sciences The Surface and Interface Sciences Department is engaged in a diverse portfolio of leading-edge research projects related to the understanding

362

CMS e-Lab Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

CMS e-Lab Overview     CMS e-Lab Overview &nbsp&nbsp&nbsp With the CMS e-Lab students can join a scientific collaboration in this series of studies of high-energy collisions from the Large Hadron Collider (LHC) at CERN. We are collaborating with the Compact Muon Solenoid (CMS) experiment to produce a student-led, teacher-guided project. At the present, we have test beam, Monte Carlo (simulated) data and run data. We expect more data through 2010 and 2011. By using the web, students are able to analyze and share these data with fellow students and other researchers. Students write a researchable question and analyze data in much the same way as professional scientists. e-Lab tools facilitate collaboration among students as they develop their investigations and report their results.

363

State of the Lab 2012  

ScienceCinema (OSTI)

Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

King, Alex

2013-03-01T23:59:59.000Z

364

State of the Lab 2012  

SciTech Connect

Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

King, Alex

2012-01-01T23:59:59.000Z

365

MagLab - User Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Users Hub Arrow User Awards Scientists who do research at the MagLab are often honored for their excellent work. Christopher Reddy 2014 C.C. Patterson Award (December 2013) Chris...

366

MagLab - Magnet Milestones  

NLE Websites -- All DOE Office Websites (Extended Search)

Arrow Magnet Milestones MagLab U logo Find out about some of the key events in magnet history. We are adding to this list over time, so check back again soon for new entries....

367

Using MyMathLab  

E-Print Network (OSTI)

... that have used MyMathLab (CourseCompass) previously, there is a 'new look' to ... These videos correspond to a disk that you may have purchased with your...

368

Status of the National Ignition Facility project  

SciTech Connect

The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility(NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL), for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35-um laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. Franceand the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents thestatus of the laser design and development of its principal components and optical elements.

Paisner, J.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.S.; Soures, J.M.

1997-04-01T23:59:59.000Z

369

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

370

Lab One 01-26 & 01-28 Introduction to the GIS Lab  

E-Print Network (OSTI)

Lab One 01-26 & 01-28 Introduction to the GIS Lab Introduction to the lab: 1) There are three GIS) GIS lab etiquette: DO NOT enter the instruction lab when another class is in session; move to another if using sound. 4) Operating system: Windows XP. 5) GIS software: ESRI ArcGIS 9.2 6) Printing: Get

Hung, I-Kuai

371

Business System Management Review  

NLE Websites -- All DOE Office Websites (Extended Search)

P-004 Business System Management Review Process 11_0304Page 1 of 7 P-004 Business System Management Review Process 11_0304Page 1 of 7 EOTA - Business Process Document Title: Business System Management Review Process Document Number: P-004 Rev 11_0304 Document Owner: Elizabeth Sousa Backup Owner: Melissa Otero Approver(s): Melissa Otero Parent Document: Q-001, Quality Manual Notify of Changes: EOTA Employees Referenced Document(s): F-009, Business System Management Review Template P-004 Business System Management Review Process 11_0304Page 2 of 7 Revision History: Rev. Description of Change A Initial Release 08_0414 Corrective Actions, Preventive Actions, and Improvement Opportunity 09_1124 Edited document for clarity and to better fit the process in use. Added requirement to provide management with

372

Energy Efficiency Market Sustainable Business Planning | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning Energy Efficiency Market Sustainable Business Planning, a presentation...

373

Catalytic igniters and their use to ignite lean hydrogen-air mixtures  

DOE Patents (OSTI)

A catalytic igniter which can ignite a hydrogen-air mixture as lean as 5.5% hydrogen with induction times ranging from 20 s to 400 s, under conditions which may be present during a loss-of-liquid-coolant accident at a light water nuclear reactor comprises (a) a perforate catalytically active substrate, such as a platinum coated ceramic honeycomb or wire mesh screen, through which heated gases produced by oxidation of the mixture can freely flow and (b) a plurality of thin platinum wires mounted in a thermally conductive manner on the substrate and positioned thereon so as to be able to receive heat from the substrate and the heated gases while also in contact with unoxidized gases.

McLean, William J. (Oakland, CA); Thorne, Lawrence R. (Livermore, CA); Volponi, Joanne V. (Livermore, CA)

1988-01-01T23:59:59.000Z

374

Business Operations Contacts  

Office of Energy Efficiency and Renewable Energy (EERE)

If you have a question for the Office of Business Operations, you can use this contact information to reach the office you're interested in:

375

US ITER | Doing Business  

NLE Websites -- All DOE Office Websites (Extended Search)

US ITER > Business Opportunties > For Vendors > Tokamak Cooling Water System Opportunities Tokamak Cooling Water System (TCWS) Opportunities US ITER has contracted with AREVA...

376

Photovoltaics Business Models  

SciTech Connect

This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

2008-02-01T23:59:59.000Z

377

Investigation of ignition of thermoplastics through the Hot Wire Ignition Test  

E-Print Network (OSTI)

. . . . , . . . . , . Ignition Temperature Ranges of PMMA, PE, Nylon and PC ' . . . Plot of Temperature Measurements for Plexiglas 1/16". . . . . . . . . . . . . Plot of Temperature Measurements for Plexiglas 1/8". . . . . . . . . . . . . . . Plot of Temperature Measurements... and Quintiere Materials PMMA Nylon Polyethylene Polypropylene Description Polycast, black, polymethylmeth acr ylate, 2. 5 cm Polypenco, extruded, unfilled, type 6/6, 2. 5 cm Allied Resinous products, Inc. , type tO', 2. 5 cm Poly-Hi, clear, high...

De Araujo, Luiz Claudio Bonilla

1998-01-01T23:59:59.000Z

378

Catalytic ignition of fuel/oxygen/nitrogen mixtures over platinum  

SciTech Connect

Ignition of fuel/oxygen/nitrogen mixtures over platinum wire is experimentally studied by using microcalorimetry and by restricting the flow to the low Reynolds number range so that axisymmetry prevails. The fuels studied are propane, butane, propylene, ethylene, carbon monoxide, and hydrogen. Parameters investigated include flow velocity, fuel type and concentration, and oxygen concentration. The catalytic ignition temperatures of the various fuels are accurately determined over extensive ranges of fuel/oxygen/nitrogen concentrations. Results show two distinctly opposite ignition trends depending on the nature of the fuel. That is, the ignition temperature of lean propane/air and butane/air mixtures decreases as their fuel concentration is increased, while the reverse trend is observed for lean mixtures of propylene, ethylene, carbon monoxide, and hydrogen with air. Furthermore, the ignition of propane depends primarily on fuel concentration, while the ignition of carbon monoxide depends on fuel and oxygen concentrations to a comparable extent. These results are explained on the basis of hierarchical surface adsorption strengths of the different reactants in effecting catalytic ignition. Additional phenomena of interest are observed and discussed.

Cho, P.; Law, C.K.

1986-11-01T23:59:59.000Z

379

Pre-ignition laser ablation of nanocomposite energetic materials  

SciTech Connect

Laser ignition of energetic material composites was studied for initiation with heating rates from 9.5 Multiplication-Sign 10{sup 4} to 1.7 Multiplication-Sign 10{sup 7} K/s. This is a unique heating rate regime for laser ignition studies because most studies employ either continuous wave CO{sub 2} lasers to provide thermal ignition or pulsed Nd:YAG lasers to provide shock ignition. In this study, aluminum (Al) and molybdenum trioxide (MoO{sub 3}) nanoparticle powders were pressed into consolidated pellets and ignited using a Nd:YAG laser (1064 nm wavelength) with varied pulse energy. Results show reduced ignition delay times corresponding to laser powers at the ablation threshold for the sample. Heating rate and absorption coefficient were determined from an axisymmetric heat transfer model. The model estimates absorption coefficients from 0.1 to 0.15 for consolidated pellets of Al + MoO{sub 3} at 1064 nm wavelength. Ablation resulted from fracturing caused by a rapid increase in thermal stress and slowed ignition of the pellet.

Stacy, S. C.; Massad, R. A.; Pantoya, M. L. [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)] [Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409 (United States)

2013-06-07T23:59:59.000Z

380

Laser-induced spark ignition fundamental and applications  

Science Journals Connector (OSTI)

Laser ignition has become an active research topic in recent years because it has the potential to replace the conventional electric spark plugs in engines that are required to operate under much higher compression ratios, faster compression rates, and much leaner fuel-to-air ratios than gas engines today. It is anticipated that the igniter in these engines will face with pressures as high as 50MPa and temperatures as high as 4000K. Using the conventional ignition system, the required voltage and energy must be greatly increased (voltages in excess of 40kV) to reliably ignite the air and fuel mixture under these conditions. Increasing the voltage and energy does not always improve ignitability but it does create greater reliability problem. The objective of this paper is to review past work to identify some fundamental issues underlying the physics of the laser spark ignition process and research needs in order to bring the laser ignition concept into the realm of reality.

Tran X. Phuoc

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

EFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA Jianbang Liu1,2  

E-Print Network (OSTI)

to electrical energy consumed to produce the discharge.) Consequently, ignition by laser sources has beenEFFECT OF FUEL TYPE ON FLAME IGNITION BY TRANSIENT PLASMA DISCHARGES Jianbang Liu1,2 , Fei Wang1 with air ignited by transient plasma discharge were investigated and compared with spark discharge ignition

382

Laser ignition of dust clouds INERIS, BP. 2, F-60550 Vemeuil-en-Halatte  

E-Print Network (OSTI)

Laser ignition of dust clouds Ch. PROUST INERIS, BP. 2, F-60550 Vemeuil-en-Halatte ineris-00961863.1051/jp4:20020269 #12;Abstract. In a previous paper [1], the possibility of igniting a combustible dust the scope of the investigated ignition phenomena. In particular a relationship between the standard ignition

Paris-Sud XI, Université de

383

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

2011-03-18T23:59:59.000Z

384

On the mechanism of aluminum ignition in steam explosions  

Science Journals Connector (OSTI)

An available theory [Epstein, M., Fauske, H.K., 1994. A crystallization theory of underwater aluminum ignition. Nucl. Eng. Des. 146, 147164] of the ignition of aluminum melt drops under water, which is based on the assumption that the aluminum oxide (Al2O3) drop-surface skin first appears in a metastable molten state, is compared with existing experimental data on the ignition of aluminum drops behind shock waves in water [Theofanous, T.G., Chen, X., DiPiazza, P., Epstein, M., Fauske, H.K., 1994. Ignition of aluminum droplets behind shock waves in water, Phys. Fluids 6, 35133515]. The predicted and measured ignition temperature of about 1770 K coincides approximately with the spontaneous nucleation temperature of supercooled liquid Al2O3 (1760 K). This suggests that the crystallization of the oxide layer represents a strong barrier to aluminum drop ignition under water. Apparently a similar interpretation is applicable to aluminum drop ignition in gaseous oxidizing atmospheres. We conclude from the theory that the low-temperature aluminum ignitions (in the range 11001600 K) that have been observed during steam explosions are a consequence of the short aluminum drop oxidation times in this environment relative to the characteristic time for Al2O3 crystallization. Several aspects of the aluminum drop/shock interaction experiments besides ignition are discussed in the paper. In particular, the experiments provide strong evidence that during the course of a vapor explosion metal fragmentation occurs via a thermal mechanism at low pressure and precedes the development of a high-pressure shock.

M Epstein; H.K Fauske; T.G Theofanous

2000-01-01T23:59:59.000Z

385

Instrumentation and controls of an ignited tokamak  

SciTech Connect

The instrumentation and controls (I and C) of an ignited plasma magnetically confined in a tokamak configuration needs increased emphasis in the following areas: (1) physics implications for control; (2) plasma shaping/position control; and (3) control to prevent disruptive instabilities. This document reports on the FY 1979 efforts in these and other areas. Also presented are discusssions in the areas of: (1) diagnostics suitable for the Engineering Test Facility (ETF); and (2) future research and development (R and D) needs. The appendices focus attention on some preliminary ideas about the measurement of the deuteron-triton (D-T) ratio in the plasma, synchrotron radiation, and divertor control. Finally, an appendix documenting the thermal consequences to the first wall of a MPD is presented.

Becraft, W.R.; Golzy, J.; Houlberg, W.A.; Kukielka, C.A.; Onega R.J.; Raju, G.V.S.; Stone, R.S.

1980-10-01T23:59:59.000Z

386

Berkeley Lab A to Z Index: L  

NLE Websites -- All DOE Office Websites (Extended Search)

LabAlert - LabAlert Emergency Alerting Service LabAlert - LabAlert Emergency Alerting Service Lab Advisory Board Lab Population Table Lab Property Review Lab Wiki Laboratory Counsel Laboratory Directed Research & Development Program (LDRD) Laboratory Research Computing Laboratory Support Services Labor Employee Relations Lactation Accommodation Program Lactation / Nursing Moms Laser Ablation: Advanced Laser Technologies Lab Laser Management System (Laser Inventory) Laser Safety Web Page Lasers, Optical Accelerator Systems Integrated Studies (L'OASIS) Group LaTeX (& TeX) information Lawrence Berkeley National Laboratory 75th Anniversary Website LBLnet Service at LBL (Ethernet, IP, VPN, etc.) LBNL Corrective Action Tracking System (CATS) LBNL Incident Notification/Contact x6999 LBNL Merchandise, Food and Drink for Sale 24/7 at the Guest House

387

Business Owners: Prepare a Business Recovery Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Business Recovery Plan a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Business Owners: Prepare a Business Recovery Plan Smart business owners develop and test a written business recovery plan to support them through disasters and help them stay in operation. Planning ahead will help your company get back to business more quickly. Consider your risks-How might a disaster affect your business operations? What natural disasters are most likely where you operate? Identify your critical business functions-What resources and personnel will you need to restore or reproduce these functions during a recovery? Assign disaster response duties to your employees. Identify critical suppliers-Identify suppliers, providers, shippers, resources, and other businesses you typically interact with and

388

Small Business Innovation Research and Small Business Technology Transfer  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs are highly competitive opportunities that encourage U.S.-based small businesses to engage in...

389

Director of the National Ignition Facility, Lawrence Livermore National  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

390

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

391

Teacher Night at Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Night at Jefferson Lab Night at Jefferson Lab Region II Physical Science Teacher Night for Elementary and Middle School Teachers April 2nd, 2014 6:30 pm - 8:00 pm Come for the FUN! You won't want to miss the annual Virginia Region II Teacher Night at Jefferson Lab! This year's focus is on physical science activities for upper elementary and middle school teachers. Format for the Evening Think of a Science Fair with enthusiactic students lined up at tables waiting to show you their projects... Teacher Night will be similar, except enthusiactic teachers will be waiting to share one of their favorite classroom activities with YOU! All teachers will have handouts and many will have starter supplies to accompany the handouts - that's right, FREE MATERIALS! Activity Topics Friction - Electrolysis - Water Cycle - Engineering Design Challenge -

392

Solar Labs | Open Energy Information  

Open Energy Info (EERE)

Solar Labs Solar Labs Name Solar Labs Address 1006 N Mary St Place Knoxville, Tennessee Zip 37914 Number of employees 1-10 Year founded 2005 Phone number 865-523-4313 Notes R&D, solar air heat and CPV Coordinates 35.997098°, -83.887505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.997098,"lon":-83.887505,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

In The News | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 Sun, 08192012 - 11:00pm Conversations and Connections - The Expertise of our Small Business Program Managers (Energy.gov) Sun, 08052012 - 11:00pm Duke University...

394

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

395

Lab Spotlight: Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Spotlight: Argonne National Laboratory Lab Spotlight: Argonne National Laboratory ultrananocrystalline diamond (UNCD) technology Researchers John Carlisle (left) and Orlando Auciello (right) are developing an ultrathin biocompatible coating for the device. Creating Diamond Coatings for the Retinal Implant Argonne National Laboratory (ANL) plays a critical role in the success of the electrode implants used in the Artificial Retina Project. That's where researchers Orlando Auciello and colleague John Carlisle are using their patented ultrananocrystalline diamond (UNCD) technology to apply a revolutionary new coating to the retinal prosthetic device. The new packaging promises to provide a very thin, ultrasmooth film that will be far more compact and biocompatible than the bulky materials used to encase

396

MagLab - Pioneers in Electricity and Magnetism: Georg Bednorz  

NLE Websites -- All DOE Office Websites (Extended Search)

Zrich Magnet Lab Title Header Magnet Lab Title Florida State University Los Alamos National Laboratory University of Florida Magnet Lab Logo SEARCH Search People | Search Pubs...

397

Business Acumen | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis for Credit Decisions 0.20 Business Law Basic Concepts 1.00 Business Law and Ethics 1.00 Business Law and the Manager's Responsibilities 1.00 Organizational Budgeting...

398

Small Business Loan Program (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

The Small Business Loan Program provides low-interest and no-interest direct loans for small businesses. The statewide program is open to all small businesses that employ 15 or fewer employees and...

399

Small Business Status  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact of Teaming Arrangements on Impact of Teaming Arrangements on Small Business Status The Department of Energy is planning to set aside for small businesses a number of acquisitions of a very complex nature, requiring a myriad of capabilities on the part of offerors, which might result in teaming arrangements or joint ventures being formed. Given this, the Department believes that potential offerors should be aware of the Small Business Administration's regulations regarding affiliation. As such, DOE will include the following provision in solicitations where it expects teaming or joint ventures to propose. GUIDANCE FOR PROSPECTIVE OFFERORS - IMPACT OF TEAMING ARRANGEMENTS ON SMALL BUSINESS STATUS (a) This procurement has been set aside for small business. In order to ensure that award

400

Small Business Solicitation Provision  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solicitation Provision Solicitation Provision The Department of Energy has many exceptionally complex projects and programs involving the environmental remediation of its sites, and because of this complexity, are beyond the capabilities of small business in terms of a small business acting as the prime contractor. However, there are many opportunities within these projects in which small businesses can take part. It is the Department of Energy's policy to promote the participation of small business in all of its programs and projects. As such, the following solicitation provision, and evaluation criteria, will be included by the Department of Energy in environmental remediation acquisitions which are not set aside for small business. In addition, a contract clause will also be included in the resulting contract, providing

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Frictionally induced ignition processes in drop and skid tests  

SciTech Connect

The standard LANL/Pantex drop and skid tests rely on subjective assessment of reaction violence to quantify the response of the charge, and completely miss nonpropagating hot-spot ignition sites. Additionally, large variations in test results have been observed, which we propose is due to a misunderstanding of the basic physical processes that lead to threshold ignition in these tests. The tests have been redesigned to provide control of these mechanisms and to permit direct observation of hot spots at the impact site, allowing us to follow the progression of the outcome as the drop height and ignition source density are varied. The results confirm that frictional interactions between high-melting-point solids are the dominant ignition mechanism, not just at the threshold, but in fact at all realistic drop heights.

Dickson, Peter [Los Alamos National Laboratory; Parker, Gary [Los Alamos National Laboratory; Novak, Alan [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

402

Ignition of gas mixtures containing natural gas and oxygen  

Science Journals Connector (OSTI)

Gases released during the thermal treatment of a coal-gas suspension exhibit a strong inhibiting effect on the self-ignition of natural gas but have a minor influence on the...

N. M. Rubtsov; B. S. Seplyarskii; G. I. Tsvetkov

2010-01-01T23:59:59.000Z

403

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

404

National Ignition Facility & Photon Science HOW NIF WORKS  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a...

405

Laser ignition of hypersonic airhydrogen flow  

Science Journals Connector (OSTI)

An experimental investigation of the behaviour of laser-induced ignition in a hypersonic airhydrogen flow is ... /s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates ...

S. Brieschenk; H. Kleine; S. OByrne

2013-09-01T23:59:59.000Z

406

Detonation along laser generated micropinch for fast ignition  

E-Print Network (OSTI)

The proposed fast ignition of highly compressed deuterium-tritium (DT) targets by petawatt lasers requires energy of about 100kJ. To lower the power of the laser, it is proposed to accomplish fast ignition with two lasers, one with lower power in the infrared, and a second one with high power in the visible to ultraviolet region. The infrared laser of lower power shall by its radiation pressure drive a large current in a less than solid density plasma placed inside a capillary, while the second high power-shorter wave length-laser shall ignite at one end of the capillary a magnetic field supported thermonuclear detonation wave in a blanket made from solid DT along the outer surface of the capillary. The other end of the capillary, together with its DT blanket, is stuck in the DT target, where following the compression of the target the detonation wave ignites the target.

Winterberg, F

2008-01-01T23:59:59.000Z

407

Laser-Matter Interaction Above the Plasma Ignition Threshold Intensity  

Science Journals Connector (OSTI)

In this chapter we present the process of laser-matter interaction above the plasma ignition threshold intensity. The physics of the pulsed laser ablation process at high intensities is very complex since it invo...

Mihai Stafe; Aurelian Marcu; Niculae N. Puscas

2014-01-01T23:59:59.000Z

408

Relativistic electron beam transport for fast ignition relevant scenarios  

E-Print Network (OSTI)

A crucial issue surrounding the feasibility of fast ignition, an alternative inertial confinement fusion scheme, is the ability to efficiently couple energy from an incident short-pulse laser to a high-density, pre-compressed ...

Cottrill, Larissa A

2009-01-01T23:59:59.000Z

409

Application of laser ignition on laminar flame front investigation  

Science Journals Connector (OSTI)

The first stages of laser-induced spark ignition were investigated as a function of time....4/air burner. Laser-induced breakdown was achieved by focusing a ... nanosecond pulse from a Q-switched Nd:YAG laser. An...

J.-L. Beduneau; Y. Ikeda

2004-01-01T23:59:59.000Z

410

Fast ignition of fusion targets by laser-driven electrons  

E-Print Network (OSTI)

We present hybrid PIC simulations of fast electron transport and energy deposition in pre-compressed fusion targets, taking full account of collective magnetic effects and the hydrodynamic response of the background plasma. Results on actual ignition of an imploded fast ignition configuration are shown accounting for the increased beam divergence found in recent experiments [J.S. Green et al., Phys. Rev. Lett. 100, 015003 (2008)] and the reduction of the electron kinetic energy due to profile steepening predicted by advanced PIC simulations [B. Chrisman et al. Phys. Plasmas 15, 056309 (2008)]. Target ignition is studied as a function of injected electron energy, distance of cone-tip to dense core, initial divergence and kinetic energy of the relativistic electron beam. We found that beam collimation reduces substantially the ignition energies of the cone-guided fuel configuration assumed here.

Honrubia, J J

2008-01-01T23:59:59.000Z

411

Laser-Matter Interaction Below the Plasma Ignition Threshold Intensity  

Science Journals Connector (OSTI)

In this chapter we present the process of laser-matter interaction below the plasma ignition threshold intensity. When the high power laser radiation characterized by electric field intensities around ...

Mihai Stafe; Aurelian Marcu; Niculae N. Puscas

2014-01-01T23:59:59.000Z

412

High Fidelity Modeling of Premixed Charge Compression Ignition Engines  

Energy.gov (U.S. Department of Energy (DOE))

Most accurate and detailed chemical kinetic models for fuels of practical interest to engine manufacturers and fuels developers are applied for high fidelity engine analysis of premixed charge compression ignition engines.

413

Plasma-assisted ignition and deflagration-to-detonation transition  

Science Journals Connector (OSTI)

...Forman A. Williams Plasma-assisted ignition...correspondence ( astariko@princeton.edu ). 1 Mechanical...Aerospace Engineering, Princeton University, , Princeton, NJ-08544, USA...Non-equilibrium plasma demonstrates great...

2012-01-01T23:59:59.000Z

414

Theory of Fast Electron Transport for Fast Ignition  

E-Print Network (OSTI)

Fast Ignition Inertial Confinement Fusion is a variant of inertial fusion in which DT fuel is first compressed to high density and then ignited by a relativistic electron beam generated by a fast (laser pulse, which is usually brought in to the dense plasma via the inclusion of a re-entrant cone. The transport of this beam from the cone apex into the dense fuel is a critical part of this scheme, as it can strongly influence the overall energetics. Here we review progress in the theory and numerical simulation of fast electron transport in the context of Fast Ignition. Important aspects of the basic plasma physics, descriptions of the numerical methods used, a review of ignition-scale simulations, and a survey of schemes for controlling the propagation of fast electrons are included. Considerable progress has taken place in this area, but the development of a robust, high-gain FI `point design' is still an ongoing challenge.

Robinson, A P L; Davies, J R; Gremillet, L; Honrubia, J J; Johzaki, T; Kingham, R J; Sherlock, M; Solodov, A A

2013-01-01T23:59:59.000Z

415

National Veterans Small Business Engagement  

Energy.gov (U.S. Department of Energy (DOE))

The National Veterans Small Business Engagement (NVSBE) is a three-day event designed to support and promote Veteran-Owned Small Businesses (VOSBs).

416

Ignition technique for an in situ oil shale retort  

DOE Patents (OSTI)

A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

Cha, Chang Y. (Golden, CO)

1983-01-01T23:59:59.000Z

417

Lab 2: Blinkie Lab This lab introduces the Arduino Uno as students will need to use the Arduino to control  

E-Print Network (OSTI)

Lab 2: Blinkie Lab Objectives This lab introduces the Arduino Uno as students will need to use the Arduino to control their final robot. Students will build a basic circuit on their prototyping board and wire the board to the Arduino. Students will learn the basic programming structure for the Arduino

Wedeward, Kevin

418

Fraud strikes top genome lab  

SciTech Connect

Francis Collins, head of NIH`s Human Genome Project has informed colleagues that a junior researcher in his lab facke data in five papers co-authored by Collins. This article describes the whole scenario, how it was discovered, and what the reprocussions are.

Marshall, E.

1996-11-08T23:59:59.000Z

419

W. FIFTH AVE. RADIATION LAB  

E-Print Network (OSTI)

W. FIFTH AVE. NASA SPACE RADIATION LAB 958 ENERGY EFFICIENCY & CONSERVATION DIVISION THOMSON RD. E Development & Technology Transfer 490 H7 Energy Efficiency and Conservation Division 526 L5 Energy Sciences CAD Installation Complex 933 K2 Carpentry/Signs Shops 422 F6 Cavendish House 153 G7 Center

Ohta, Shigemi

420

OIL ANALYSIS LAB TRIVECTOR ANALYSIS  

E-Print Network (OSTI)

OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Target Diagnostics Supports NIF's Path to Ignition  

SciTech Connect

The physics requirements derived from the National Ignition Facility (NIF) experimental campaigns are leading to a wide variety of target diagnostics. Software development for the control and analysis of these diagnostics is included in the NIF Integrated Computer Control System, Diagnostic Control System and Data Visualization. These projects implement the configuration, controls, data analysis and visual representation of most of these diagnostics. To date, over 40 target diagnostics have been developed to support NIF experiments. In 2011 diagnostics were developed or enhanced to measure Ignition performance in a high neutron yield environment. Performance is optimized around four key variables: Adiabat (a) which is the strength and timing of four shocks delivered to the target, Velocity (V) of the imploding target, Mix (M) is the uniformity of the burn, and the Shape (S) of the imploding Deuterium Tritium (DT) hot spot. The diagnostics used to measure each of these parameters is shown in figure 1. Adiabat is measured using the Velocity Interferometer System for Any Reflector (VISAR) diagnostic consisting of three streak cameras. To provide for more accurate adiabat measurements the VISAR streak cameras were enhanced in FY11 with a ten comb fiducial signal controller to allow for post shot correction of the streak camera sweep non-linearity. Mix is measured by the Neutron Time of Flight (NTOF) and Radiochemical Analysis of Gaseous Samples (RAGS) diagnostics. To accommodate high neutron yield shots, NTOF diagnostic controls are being modified to use Mach Zehnder interferometer signals to allow the digitizers to be moved from near the target chamber to the neutron shielded diagnostic mezzanine. In December 2011 the first phase of RAGS diagnostic commissioning will be completed. This diagnostic will analyze the tracers that are added to NIF target capsules that undergo nuclear reactions during the shot. These gases are collected and purified for nuclear counting by the RAGS system. Three new instrument controllers were developed and commissioned to support this diagnostic. A residual-gas analyzer (RGA) instrument measures the gas content at various points in the system. The Digital Gamma Spectrometer instrument measures the radiological spectrum of the decaying gas isotopes. A final instrument controller was developed to interface to a PLC based Gas collection system. In order to support the implosion velocity measurements an additional Gated X-ray Detector (GXD) diagnostic was tested and commissioned. This third GXD views the target through a slit contained in its snout and allows the other GXD diagnostics to be used for measuring the shape on the same shot. In order to measure the implosion shape in a high neutron environment, Actide Readout In A Neutron Environment (ARIANE) and Neutron Imaging (NI) diagnostics were commissioned. The controls for ARIANE, a fixed port gated x-ray imager, contain a neutron shielded camera and micro channel plate pulser with its neutron sensitive electronics located in the diagnostic mezzanine. The NI diagnostic is composed of two Spectral Instruments SI-1000 cameras located 20M from the target and provides neutron images of the DT hot spot for high yield shots. The development and commissioning of these new or enhanced diagnostics in FY11 have provided meaningful insight that facilitates the optimization of the four key Ignition variables. In FY12 they will be adding three new diagnostics and enhancing four existing diagnostics in support of the continuing optimization series of campaigns.

Shelton, R

2011-12-07T23:59:59.000Z

422

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Delay for Ignition Delay for Gas Turbine Fuel Flexibility 15 μm * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including H2 containing fuels) may generate auto-ignition damage * Existing theories vary in predicting propensity for auto-ignition damage * Theory A vs Theory B shows factor of 100 difference-which is right? * UC Irvine improved and validated design tools for ignition delay allow designers to evaluate the risk for auto-ignition in advanced combustion systems with future fuels * Models are available to engine OEM's to shorten design cycle time and save $$ UC Irvine Scott Samuelsen / Vince McDonell #112 1000/T (1/K) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 τ [O 2 ] 0.5 [F] 0.25 (sec(mol/cm 3 ) 0.75 ) 10 -10 10 -9 10 -8 10 -7 10 -6 10 -5

423

Optoelectronics Lab #0 Saftey Laser Safety  

E-Print Network (OSTI)

Optoelectronics Lab #0 Saftey Laser Safety 7.0 Laser Hazard Analysis Before appropriate controls directly for an extended period (greater than 1000 seconds). Page 1 #12;Optoelectronics Lab #0 Saftey 3

Collins, Gary S.

424

Quarks in the looking glass | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Quarks in the looking glass Jefferson Lab's Experimental Hall A The electron-quark scattering experiment was carried out in Jefferson Lab's Experimental Hall A. In this view from...

425

Laser Spark Ignition of Premixed Methane-Air Mixtures: Parameter Measurements and Determination of Key Factors for Ultimate Ignition Results  

Science Journals Connector (OSTI)

In this study, we present an experimental investigation of the parameters of the laser spark ignition of premixed methane-air mixtures and the determination of the key factors for the...

Li, Xiaohui; Smith, Benjamin W; Omenetto, Nicol

2014-01-01T23:59:59.000Z

426

Deputy Secretary Poneman to Make Announcement on Connecting DOE Labs With  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Make Announcement on Connecting DOE Make Announcement on Connecting DOE Labs With U.S Businesses at Council on Competitiveness Event Deputy Secretary Poneman to Make Announcement on Connecting DOE Labs With U.S Businesses at Council on Competitiveness Event December 8, 2011 - 9:04am Addthis Washington, D.C. - Energy Deputy Secretary Daniel Poneman will make an important announcement today about a new Department of Energy initiative to accelerate partnerships between innovative companies and our national laboratories to bring job-creating technologies to the market. The announcement will occur during a speech at a Council on Competitiveness event on how the United States can lead the world in 21st century advanced manufacturing. The event is open press. WHAT: Energy Department Deputy Secretary Daniel Poneman to Make DOE Announcement at Council on Competitiveness Event

427

Current Job Openings | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Employment Opportunities Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human...

428

Careers/ Human Resources | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Employment Opportunities Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human...

429

Procurement Division | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Division Introduction Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources Environment, Safety & Health...

430

Transportation Business Plan  

SciTech Connect

The Transportation Business Plan is a step in the process of procuring the transportation system. It sets the context for business strategy decisions by providing pertinent background information, describing the legislation and policies governing transportation under the NWPA, and describing requirements of the transportation system. Included in the document are strategies for procuring shipping casks and transportation support services. In the spirit of the NWPA directive to utilize the private sector to the maximum extent possible, opportunities for business ventures are obvious throughout the system development cycle.

Not Available

1986-01-01T23:59:59.000Z

431

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab  

E-Print Network (OSTI)

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab Berkeley Lab is a U.S. Department and energy research. Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who of Energy (DOE) national laboratory that conducts a wide variety of unclassified scientific research for DOE

Eisen, Michael

432

RECENT TRENDS IN FEDERAL LAB TECHNOLOGY  

E-Print Network (OSTI)

Budget Resources for Federal Lab R&D Spending, Ranked by Budget Level Table 2.2 Distribution of Active#12;RECENT TRENDS IN FEDERAL LAB TECHNOLOGY TRANSFER: FY 1999­2000 BIENNIAL REPORT Report Administration U.S. Department of Commerce May 2002 #12;RECENT TRENDS IN FEDERAL LAB TECHNOLOGY TRANSFER: FY

Perkins, Richard A.

433

e-Business W@tch European Commission, DG Enterprise & Industry  

E-Print Network (OSTI)

: Retail and wholesalers Most significant market area: Americas, Europe Main e-business applications (www.ebusiness-watch.org). CASE STUDY: NORDIC PAPER, NORWAY Abstract Nordic Paper in Greåker, Norway their products and orders. In 2004, Nordic Paper linked the lab analysis-tool Mikon LIMS with Semtracker in order

434

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility  

SciTech Connect

The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2014-05-15T23:59:59.000Z

435

National Ignition Facility Project Site Safety Program  

SciTech Connect

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

436

Technology Transfer at Berkeley Lab: For Berkeley Lab Researchers  

NLE Websites -- All DOE Office Websites (Extended Search)

Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Webcasts from Transferring Technology to the Marketplace Spring 2006 Series Eureka! - Inventing and what happens next? Speakers share what makes a commercially successful invention and what happens on the pathway from invention to the marketplace. Click here for the webcast (60 min) or just hear Paul Avlivisatos' talk here (9 min). Speakers: Steve Chu, LBNL Lab Director Paul Alivisatos, Associate Lab Director and Founder of Nanosys Cheryl Fragiadakis, Technology Transfer Department Head Patenting - The ins and outs of this mysterious process Better understand why patent and copyright protection is so important, how the process works, and what role the inventor plays. Click here for the webcast (60 min). Speakers: Tim Lithgow, Patent Department Head Michael Fuller, Partner, Knobbe Martens Olson & Bear, L.L.P.

437

Lab receives $25,000 for Math and Science Academy from Chevron Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab receives $25,000 for Math and Science Academy Lab receives $25,000 for Math and Science Academy Lab receives $25,000 for Math and Science Academy from Chevron Energy Technology Company The program is conducted by LANL in cooperation with its regional education, business, and government partners. November 30, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

438

Small Business Internet Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE) - (DOE) - http://www.energy.gov DOE OSDBU -- DOE Small Business Forecast, DOE's Special Emphasis Programs: Mentor-Protégé, 8(a) Pilot, Women-owned Small Business Program, List of SB Program Managers, and other Web Links. http://smallbusiness.energy.gov or http://www.hr.doe.gov/ED/OSDBU/Osdbu.html DOE's Annual Small Business Procurement Conference - http://www.smallbusiness-outreach.doe.gov/ Office of Economic Impact and Diversity --Parent Organization to the OSDBU - http://www.hr.doe.gov/ED/index.html Forecast of Prime and Subcontracting Business Opportunities -- http://hqlnc.doe.gov/support/smallbusutil.nsf/Index?openform DOE Phone Directory - http://phonebook.doe.gov/callup.html DOE's Linked Organizational Chart -- Link to any DOE program element offices --

439

Small Business First Policy  

Directives, Delegations, and Requirements

The Department of Energy (DOE) is committed to maximizing opportunities for small business contracts, including prime contracts and subcontracts, while driving towards operational excellence and efficiency across the enterprise. Does not cancel other directives.

2012-12-14T23:59:59.000Z

440

The Business Case  

Science Journals Connector (OSTI)

Currently I work for Green Mountain Coffee Roasters, Inc., in the direct-to-consumer division of the specialty coffee business, selling single-serve Keurig K-Cup packs online at ww...

Tom Funk

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Green Business and Entrepreneurship  

Science Journals Connector (OSTI)

At the institutional level, the context for the development of the green business is also increasingly becoming more favorable thanks ... the increase and volatility of raw materials and energy prices; the instal...

Abdelillah Hamdouch Ph.D.

2013-01-01T23:59:59.000Z

442

Alternative Farm Business Models  

E-Print Network (OSTI)

During economic downturns, producers need to consider alternative ways of doing business. This publication looks at such possibilities as sharing services and personnel and forming marketing co-ops and other joint entities....

Klinefelter, Danny A.

2009-03-26T23:59:59.000Z

443

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

444

A polar-drive-ignition design for the National Ignition Facility  

SciTech Connect

Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during the low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.

Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.; Craxton, R. S.; Delettrez, J. A.; Goncharov, V. N.; Harding, D. R.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Radha, P. B.; Shvydky, A.; Skupsky, S.; Zuegel, J. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2012-05-15T23:59:59.000Z

445

Controlling the Electrostatic Discharge Ignition Sensitivity of Composite Energetic Materials Using Carbon Nanotube Additives  

SciTech Connect

Powder energetic materials are highly sensitive to electrostatic discharge (ESD) ignition. This study shows that small concentrations of carbon nanotubes (CNT) added to the highly reactive mixture of aluminum and copper oxide (Al + CuO) significantly reduces ESD ignition sensitivity. CNT act as a conduit for electric energy, bypassing energy buildup and desensitizing the mixture to ESD ignition. The lowest CNT concentration needed to desensitize ignition is 3.8 vol.% corresponding to percolation corresponding to an electrical conductivity of 0.04 S/cm. Conversely, added CNT increased Al + CuO thermal ignition sensitivity to a hot wire igniter.

Kade H. Poper; Eric S. Collins; Michelle L. Pantoya; Michael Daniels

2014-10-01T23:59:59.000Z

446

December 15, 2014 LAB COMMISSION MEETING MINUTES  

Energy.gov (U.S. Department of Energy (DOE))

The Commission to Review the Effectiveness of the National Energy Laboratories (Commission) was convened for its fifth meeting at 10:00 AM on December 15, 2014. Commission Co-Chair Jared Cohon led the meeting. The meeting included two panels: (1) authors of recent reports about the DOE National Labs and (2) a national lab contractor panel. The report authors summarized their respective reports, highlighting concerns related to the relationship between DOE and the labs, research funding and strategy stove-piping, weak links between the labs and market, an inconsistent economic development mission, the difficulty small firms have in accessing labs, the labs lack of regional engagement, and DOE and congressional micromanagement of the labs. The lab contractor representatives responded to questions posed by the commissioners related to lab management and the relationship with DOE. Additionally, Patricia Falcone spoke of the important role of the labs in the science and technology enterprise and Alan Leshner talked about the labs and their relationship with the scientific community. Christopher Paine presented his views on transforming the weapons complex. The next meeting will be held February 24 at the Hilton at Mark Center in VA.

447

Berkeley Lab A to Z Index: M  

NLE Websites -- All DOE Office Websites (Extended Search)

Macintosh Computer Backups Macintosh Computer Backups Macintosh User Group (LBNL-MUG) Mac support/MPSG (formerly known as the workstation group) Macromolecular Crystallography Facility (MCF) Mailing Addresses for Lab Mail (electronic); Email Support, Documentation, etc. Mail Services (Facilities Dep't.) malware (computer virus) protection and "How to Handle Suspected Malware" Mammary: Human Mammary Epithelial Cell (HMEC) Map: Berkeley Lab Global Talent Map Maps: Directions and Maps on How to Get to the Lab Maps: Berkeley Lab Interactive Site Map Maps: Berkeley Lab Printable Site Map Maps: Offsite Lab Shuttle Bus Map Maps: Onsite Lab Shuttle Bus Map Massage, Onsite Chair Mass Storage System (MSS) Material Safety Data Sheets: MSDS Materials Sciences Division (MSD) Materials Science: Technology Transfer

448

Berkeley Lab View -- March 28, 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

March 28th, 2008 Search the View Archive March 28th, 2008 Search the View Archive State of the Lab: New Initiatives, Construction Daniel Chemla (1940-2008): A Remembrance of His Career The View is Going Green DOE Excellence Award to Foundry Project Team Berkeley Lab View Here Comes BELLA: The BErkeley Lab Laser Acceleration Project Berkeley Lab Science Roundup State of the Lab: New Initiatives, Construction By Lynn Yarris image Photo by Roy Kaltschmidt, CSO Free electron lasers with attosecond capabilities, a high-energy electron accelerator less than a meter in length, the arrival of NERSC-6 and the departure of GELCO-4 were some of the highlights of Berkeley Lab Director Steve Chu's State-of-the-Lab address, which he delivered at the Building 50 Auditorium during the noon hour on March 10, with simulcast to the

449

Element Labs | Open Energy Information  

Open Energy Info (EERE)

Element Labs Element Labs Address 3350 Scott Blvd Place Santa Clara, California Zip 95054 Sector Efficiency Product LED Producer Website http://www.elementlabs.com/ Coordinates 37.380364°, -121.9823779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.380364,"lon":-121.9823779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

Institutions Related to Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Institutions Related to Berkeley Laboratory Institutions Related to Berkeley Laboratory DOE logo Office of Science logo UC seal Berkeley Lab logo University of California Department of Energy (DOE) and DOE National Laboratories NERSC (National Energy Research Scientific Computing Center) ESnet Stanford Linear Accelerator Center (SLAC) Lawrence Livermore National Laboratory Los Alamos National Laboratory High Energy Physics Information Center U.S. Government University of California UC Berkeley UC Berkeley colleges, schools, and teaching units The Daily Cal independent student newspaper at UC Berkeley. University of California campuses and labs UC Office of the President UC National Laboratories provides news and information on UC's management of three DOE laboratories -- Lawrence Berkeley National Laboratory, Lawrence Livermore National Laboratory, and Los Alamos National

451

Galleries | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Research Education Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Organization Contact Us Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Galleries Subscribe to RSS - Galleries 2013 Young Women's Conference 2013 Young Women's Conference63 images 2013 Plasma Camp 2013 Plasma Camp7 images 2013 Science on Saturday Lecture Series 2013 Science on Saturday Lecture Series7 images 2013 Summer's End Poster Session 2013 Summer's End Poster Session19 images 2013 Science Bowl 2013 Science Bowl12 images 2013 Pathways to Science Summit 2013 Pathways to Science Summit17 images 2012-2013 PathSci Kick-Off Event

452

Yeast Metabolism Lab Mrs. Zimmerman  

E-Print Network (OSTI)

+ C6H12O6 6 CO2 + ethanol + energy #12;Back to the lab... Yeast + C6H12O6 6 CO2 + ethanol + energy Energy from sunlight #12;Respiration #12;Cellular Respiration C6H12O6 + 6 O2 6 CO2 + 6 H2O + energy Oxygen Glucose Carbon Dioxide Water Energy #12;Yeast · Unicellular · Eukaryotic (like us) · Kingdom Fungi

Rose, Michael R.

453

Growing tissue in the lab  

NLE Websites -- All DOE Office Websites (Extended Search)

tissue in the lab tissue in the lab Name: mike s Location: N/A Country: N/A Date: N/A Question: How do Scientists grow new tissue cells in the lab? Replies: I'm not quite sure what you mean by "new" cells. Several kinds of cell growing are done. One way is to break an organ or tissue apart into its individual cells and grow them in a medium of nutrients, controlled temperature, humidity, and carbon dioxide/oxygen. This is called "primary culture" because the cells come right out of an organism. Another method is to create an "immortal cell line". This is a type of cell isolated from a cancerous tumor, or a non-tumor cell which is infected with a cancer gene after it's isolated. Being cancerous, these cells grow forever in a dish, with the appropriate nutrients etc as long as you remove cells from time to time to prevent overcrowding. These cells can be frozen at about -100F forever and rethawed when needed. There is a library of frozen cells, thousands of types, and a catalog. Scientists can order what they need any time! Finally, you can make specific mutant cell lines by starting as above with an immortal cell, and inserting a specific gene (or deleting one) permanently from the DNA of the cell to change almost any property you want. So there it is.

454

Tennessee Veterans Business Association 3rd Annual Business and Education  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tennessee Veterans Business Association 3rd Annual Business and Tennessee Veterans Business Association 3rd Annual Business and Education Showcase Tennessee Veterans Business Association 3rd Annual Business and Education Showcase January 28, 2013 9:45AM EST to January 29, 2013 5:00PM EST Knoxville Convention Center The Tennessee Veterans Business Association is hosting their 3rd Annual Business and Education Showcase. It will be held Jan. 28 and 29 at the Knoxville Convention Center. The theme is "Celebration of Diversity within the East Tennessee Business Community." This one-of-a-kind, high-energy event that connects government and non-government entities under one roof. This event is both a trade show and hiring expo. There will be informative breakout sessions. The keynote speaker on Jan. 28 is Jim Haslam, founder of Pilot Corporation and an

455

Evaluating the ignition sensitivity of thermal battery heat pellets  

SciTech Connect

Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

Thomas, E.V.

1993-09-01T23:59:59.000Z

456

THE AUTOIGNITION OF CYCLOPENTANE IN AN IGNITION QUALITY TESTER  

SciTech Connect

Cyclopentane, a flammable hydrocarbon, is being considered as a working fluid for waste heat recovery applications using Organic Rankine Cycles with Direct Evaporators. A postulated failure mode consisting of a pinhole leak in a heat exchanger tube raises safety concerns due to autoignition of the working fluid. The ignition delay time (IDT) of cyclopentane was measured using an Ignition Quality Test (IQT) device. Hot, vitiated air was used to simulate turbine exhaust gas (TEG). Experiments were conducted in accordance with ASTM D6890 (with exception to charge pressure and temperature) to determine ignition delay of the fuel at atmospheric pressure for vitiated air (13.3% oxygen). The test matrixencompassed equivalence ratios from 0.5 to 5.0 and chamber temperatures ranging from 673 to 823 K to establish a set of ignition delay curves. IDT was observed to decrease with increasing temperature and equivalence ratio. For the cases tested, no ignition was observed at temperatures at or below 723 K or at an equivalence ratio of 0.5.

Donna Post Guillen

2012-08-01T23:59:59.000Z

457

Symmetry tuning for ignition capsules via the symcap technique  

SciTech Connect

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.

Kyrala, G. A.; Kline, J. L. [Los Alamos National Laboratory, P.O. Box 1663, MS E-526, Los Alamos, New Mexico 87544 (United States); Dixit, S.; Glenzer, S.; Kalantar, D.; Bradley, D.; Izumi, N.; Meezan, N.; Landen, O.; Callahan, D.; Weber, S. V.; Holder, J. P.; Glenn, S.; Edwards, M. J.; Koch, J.; Suter, L. J.; Haan, S. W.; Town, R. P. J.; Michel, P.; Jones, O. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2011-05-15T23:59:59.000Z

458

Ignition characteristics of methane/air premixed mixture by microwave-enhanced laser-induced breakdown plasma  

Science Journals Connector (OSTI)

A microwave-enhanced plasma generation technique was combined with laser-induced ignition to improve ignition characteristics. A locally intensified microwave field was formed near the...

Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji; Hayashi, Jun; Akamatsu, Fumiteru

2013-01-01T23:59:59.000Z

459

Business Operations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Operations Business Operations Business Operations The Office of Business Operations is the central organization for all Office of Energy Efficiency and Renewable Energy (EERE) business products, processes, and systems. The three main offices of Business Operations - Office of Budget, Office of Business Services, and Office of Information and Business Management - and their managers are outlined in the Business Operations organization chart. Offices Image of the Department of Energy Forrestal building in DC. Office of Budget The Office of Budget provides information that informs policy development and program planning, including basic market and economic data relevant to EERE's programs, market and economic analysis, estimation of the public benefits of EERE's programs, evaluation of past program performance and

460

Planetary and Protostellar Nuclear Fission: Implications for Planetary Change, Stellar Ignition and Dark Matter  

Science Journals Connector (OSTI)

...changes in the geomagnetic field. The concept that thermonuclear fusion reactions in stars are ignited by nuclear fission...protostellar nuclear fission reactors failed to ignite thermonuclear fusion reactions. The Royal Society is collaborating...

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Closed-loop, variable-valve-timing control of a controlled-auto-ignition engine  

E-Print Network (OSTI)

The objective of this study was to develop a closed-loop controller for use on a Controlled-Auto- Ignition (CAI) / Spark-Ignition (SI) mixed mode engine equipped with a variable-valve-timing (VVT) mechanism. The controller ...

Matthews, Jeffrey A., 1970-

2004-01-01T23:59:59.000Z

462

The effects of EGR and ignition timing on emissions of GDI engine  

Science Journals Connector (OSTI)

The effects of EGR and ignition timing on engine emissions and combustion were studied through an experiment carried out on an air-guided GDI engine. The test results showed that the ignition timing significantly...

LiFeng Zhao; XiuMin Yu; DingChao Qian; Wei Dong

2013-12-01T23:59:59.000Z

463

Laser induced spark ignition of coaxial methane/oxygen/nitrogen diffusion flames  

Science Journals Connector (OSTI)

We report the laser induced spark ignition (LSI) of coaxial methane/oxygen/nitrogen diffusion flames using the 1064 nm output of a Q-switched Nd:YAG laser. The minimum ignition energy...

Li, Xiaohui; Yu, Yang; Yu, Xin; Liu, Chang; Fan, Rongwei; Chen, Deying

2014-01-01T23:59:59.000Z

464

Laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target  

Science Journals Connector (OSTI)

We report the laser ablation ignition of premixed methane and oxygen-enriched air mixtures using a tantalum target. The minimum laser pulse energy (MPE) of the ablation ignition was...

Li, Xiaohui; Yu, Xin; Fan, Rongwei; Yu, Yang; Liu, Chang; Chen, Deying

2014-01-01T23:59:59.000Z

465

Ignition of a combustible gas mixture by a laser spark excited in the reactor volume  

Science Journals Connector (OSTI)

Ignition of a stoichiometric CH4: O2 mixture by a laser spark excited in the reactor volume is ... which indicates fast (involving branching chain reactions) ignition of the gas mixture. A conclusion is ... regar...

S. Yu. Kazantsev; I. G. Kononov; I. A. Kossyi; N. M. Tarasova

2009-03-01T23:59:59.000Z

466

The National Ignition Facility: A New Era in High Energy Density Science  

SciTech Connect

The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

Moses, E

2009-06-10T23:59:59.000Z

467

Laser-induced ignition and combustion in a SI engine with direct injection  

Science Journals Connector (OSTI)

Laser-induced ignition has shown huge advantages for the combustion ... (KIT) to investigate the potential of the laser-induced ignition. The emphasis was on improving combustion initiation...

Dipl.-Ing. Volker Gross; Dr.-Ing. Heiko Kubach

2010-07-01T23:59:59.000Z

468

Laser ignition of flammable mixtures via a solid core optical fiber  

Science Journals Connector (OSTI)

To date no commercial fiber coupled laser systems have reached the irradiance and pulse energy required for flammable mixtures ignition. In this work we report preliminary results on the ignition of two-phase mix...

H. El-Rabii; G. Gaborel

2007-03-01T23:59:59.000Z

469

Engines - Spark Ignition Engines - Direct Injection - Omnivorous Engine  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Injection, Spark-Ignited Engines Direct Injection, Spark-Ignited Engines Omnivorous Engine Omnivorous Engine Setup Omnivorous Engine Setup New engine technology has made possible engines that will operate on a wide variety of fuel inputs, from gasoline to naptha to ethanol to methanol, without driver intervention. Although flexible fuel vehicles have been produced in the millions, their engines have always been optimized for gasoline operation while accepting significant performance and efficiency degradations when using the alternative fuel. This project seeks to combine in-cylinder measurement technology, and advanced controls to optimize spark timing, the quantity and timing of injected fuel, to produce an "omnivorous engine"--one that will be able to run on any liquid spark ignition fuel with optimal efficiency and low

470

Diagnosing and controlling mix in National Ignition Facility implosion experiments  

SciTech Connect

High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [University of Rochester, Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Kyrala, G. A.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Peterson, K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-05-15T23:59:59.000Z

471

WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT  

SciTech Connect

This report describes the development of a software tool, entitled WildFire Ignition Resistance Estimator Wizard (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their homes vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

2012-10-10T23:59:59.000Z

472

Ignition Delay Times of Kerosene(Jet-A)/Air Mixtures  

E-Print Network (OSTI)

Ignition of Jet-A/air mixtures was studied behind reflected shock waves. Heating of shock tube at temperature of 150 C was used to prepare a homogeneous fuel mixture. Ignition delay times were measured from OH emission at 309 nm and from absorption of He-Ne laser radiation at 3.3922 micrometers. The conditions behind shock waves were calculated by one-dimensional shock wave theory from initial conditions T1, P1, mixture composition and incident shock wave velocity. The ignition delay times were obtained at two fixed pressures 10, 20 atm for lean, stoichiometric and rich mixtures (ER=0.5, 1, 2) at an overall temperature range of 1040-1380 K.

Zhukov, V P; Starikovskii, A Yu

2012-01-01T23:59:59.000Z

473

Shock timing on the National Ignition Facility: First Experiments  

SciTech Connect

An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

2011-10-24T23:59:59.000Z

474

Ion beam requirements for fast ignition of inertial fusion targets  

E-Print Network (OSTI)

Ion beam requirements for fast ignition are investigated by numerical simulation taking into account new effects such as ion beam divergence not included before. We assume that ions are generated by the TNSA scheme in a curved foil placed inside a re-entrant cone and focused on the cone apex or beyond. From the focusing point to the compressed core ions propagate with a given divergence angle. Ignition energies are obtained for two compressed fuel configurations heated by proton and carbon ion beams. The dependence of the ignition energies on the beam divergence angle and on the position of the ion beam focusing point have been analysed. Comparison between TNSA and quasi-monoenergetic ions is also shown.

Honrubia, J J

2015-01-01T23:59:59.000Z

475

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2011 17, 2011 An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image courtesy of General Motors. From the Lab to the Showroom: How the Electric Car Came to Life In the U.S., businesses tend to invest in research that will pay off in the short term. National laboratories are filling a gap by conducting the essential research that will change the game 10 to 20 years down the road. Learn more about how years of conducting advanced research in both the private and public sectors led to battery technology that made electric cars possible. October 17, 2011 Steps to Commercialization: Nickel Metal Hydride Batteries The Energy Department funds cutting-edge research on a broad range of

476

Los Alamos National Lab awards $753 million in contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL awards $753 million in contracts LANL awards $753 million in contracts Los Alamos National Lab awards $753 million in contracts These subcontract awards for products and professional services demonstrate the Laboratory's continued investment in New Mexico small businesses. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

477

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 20, 2013 June 20, 2013 The Energy Systems Integration Facility at the National Renewable Energy Laboratory in Golden, Colorado. | Photo by Dennis Schroeder, NREL. SLIDESHOW: Tour the National Renewable Energy Lab's Latest Research Center Browse through our slideshow featuring unique elements of a new research center focused on boosting clean energy technologies. June 19, 2013 Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Submit Your Ideas for the NY Energy Data Jam The Energy Data Jam travels to New York City next week, and we want to hear your ideas for the next breakthrough technology built on open energy data. June 14, 2013 Earlier this week, the Energy Department hosted the second annual National Clean Energy Business Plan Competition. From Northwestern University, SiNode Systems took home the top honors | Photo courtesy of Ken Shipp, Department of Energy.

478

A TUTORIAL ON IGNITION AND GAIN FOR SMALL FUSION TARGETS  

SciTech Connect

Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriate to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.

Kirkpatrick, R. C. [Los Alamos National Laboratory, Los Alamos, NM 087545 (United States)

2009-07-26T23:59:59.000Z

479

A Numerical Study of Transient Ignition in a Counter ow Nonpremixed Methane-Air Flame using  

E-Print Network (OSTI)

of hydrocarbon fuels, for example in diesel engines or in knocking of spark-ignition engines. Such processes

Petzold, Linda R.

480

Ignition and combustion drive by powerful laser radiation acting on a water surface  

Science Journals Connector (OSTI)

The ignition and combustion effects in water vapor generated...2-laser radiation on a water surface are investigated...

G. I. Kozlov; V. A. Kuznetsov

Note: This page contains sample records for the topic "lab ignites business" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NUG 2013 Business Day  

NLE Websites -- All DOE Office Websites (Extended Search)

» » Business Day NUG 2013 Business Day NUG Business Meeting Agenda Tuesday, February 12, 2013 NERSC Oakland Scientific Facility 8:30 - Working Breakfast: Welcome and Introductions -- Stephane Ethier 9:00 - NERSC Accomplishments and Plans -- Francesca Verdier 9:30 - Department of Energy Update -- Dave Goodwin 9:45 - NERSC's New Building Update -- Brent Draney 10:00 - Edison Update -- Richard Gerber, Tina DeClerck, Zhengji Zhao 10:30 - Break 10:45 - The NERSC 8 Procurement -- Katie Antypas 11:15 - NERSC Initiative: Preparing Applications for Exascale, Nick Wright 11:45 - NERSC Parallel Database Evaluation - Yushu Yao 12:00 - Working Lunch: The role of NUGEX; Announcement of NUGEX election results; General discussion - Stephane Ethier & Frank Tsung 13:30 - Requirements Reviews Update - Richard Gerber & Harvey Wasserman

482

PNNL: About - Business Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

Business Facts, Fiscal Year 2013 Business Facts, Fiscal Year 2013 Proudly operated by Battelle since 1965 Business Volume, Employment, and Customers Economic Devolpment Chart $936 million at the end of our 2013 fiscal year in September 4,300+ scientists, engineers and non-technical staff Customers include the U.S. Department of Energy; other federal, state and local agencies; universities; and industry sponsors. Patents 36 U.S. (FY2013) 49 foreign (FY2013) Since 1965, combined total of 2,235 U.S. and foreign Peer-Reviewed Publications Peer-reviewed publications 1,168 peer-reviewed, published articles (FY2013) According to Essential Science Indicators rankings among top 1% of research institutions in publications and citations in (FY2013): Biology and Biochemistry Chemistry Clinical Medicine Engineering

483

Small Business Innovation Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs enacted under the Small Business Innovation Development Act of...

484

Technology Commercialization and Business Innovation | Department...  

Energy Savers (EERE)

commercialization and business innovation funding programs: SunShot Incubator Program Small Business Innovation Research and Small Business Technology Transfer (SBIRSTTR)....

485

Features of a point design for fast ignition  

SciTech Connect

Fast Ignition is an inertial fusion scheme in which fuel is first assembled and then heated to the ignition temperature with an external heating source. In this note we consider cone and shell implosions where the energy supplied by short pulse lasers is transported to the fuel by electrons. We describe possible failure modes for this scheme and how to overcome them. In particular, we describe two sources of cone tip failure, an axis jet driven from the compressed fuel mass and hard photon preheat leaking through the implosion shell, and laser prepulse that can change the position of laser absorption and the angular distribution of the emitted electrons.

Tabak, M; Clark, D; Town, R J; Key, M H; Amendt, P; Ho, D; Meeker, D J; Shay, H D; Lasinski, B F; Kemp, A; Divol, L; Mackinnon, A J; Patel, P; Strozzi, D; Grote, D P

2009-10-26T23:59:59.000Z

486

Progress toward Ignition with Noncryogenic Double-Shell Capsules  

SciTech Connect

Inertial confinement fusion implosions using capsules with two concentric shells separated by a low density region (double shells) are reported which closely follow one dimensional (1D) radiatively driven hydrodynamics simulations. Capsule designs which mitigate Au M -band radiation asymmetries appear to correspond more closely to 1D simulations than targets lacking mitigation of hohlraum drive M -band nonuniformities. One capsule design achieves over 50% of the unperturbed 1D calculated yield at a convergence ratio of 25.5, comparable to that of a double-shell design for an ignition capsule at the National Ignition Facility. (c) 2000 The American Physical Society.

Varnum, W. S.; Delamater, N. D.; Evans, S. C.; Gobby, P. L.; Moore, J. E.; Wallace, J. M.; Watt, R. G.; Colvin, J. D.; Turner, R.; Glebov, V. (and others) [and others

2000-05-29T23:59:59.000Z

487

High Performance Imaging Streak Camera for the National Ignition Facility  

SciTech Connect

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

Opachich, Y. P. [LLNL; Kalantar, D. [LLNL; MacPhee, A. [LLNL; Holder, J. [LLNL; Kimbrough, J. [LLNL; Bell, P. M. [LLNL; Bradley, D. [LLNL; Hatch, B. [LLNL; Brown, C. [LLNL; Landen, O. [LLNL; Perfect, B. H. [LLNL, HMC; Guidry, B. [LLNL; Mead, A. [NSTec; Charest, M. [NSTec; Palmer, N. [LLNL; Homoelle, D. [LLNL; Browning, D. [LLNL; Silbernagel, C. [NSTec; Brienza-Larsen, G. [NSTec; Griffin, M. [NSTec; Lee, J. J. [NSTec; Haugh, M. J. [NSTec

2012-12-01T23:59:59.000Z

488

Exhaust gas recirculation in a homogeneous charge compression ignition engine  

DOE Patents (OSTI)

A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

Duffy, Kevin P. (Metamora, IL); Kieser, Andrew J. (Morton, IL); Rodman, Anthony (Chillicothe, IL); Liechty, Michael P. (Chillicothe, IL); Hergart, Carl-Anders (Peoria, IL); Hardy, William L. (Peoria, IL)

2008-05-27T23:59:59.000Z

489

Ignition feedback regenerative free electron laser (FEL) amplifier  

DOE Patents (OSTI)

An ignition feedback regenerative amplifier consists of an injector, a linear accelerator with energy recovery, and a high-gain free electron laser amplifier. A fraction of the free electron laser output is coupled to the input to operate the free electron laser in the regenerative mode. A mode filter in this loop prevents run away instability. Another fraction of the output, after suitable frequency up conversion, is used to drive the photocathode. An external laser is provided to start up both the amplifier and the injector, thus igniting the system.

Kim, Kwang-Je (Burr Ridge, IL); Zholents, Alexander (Walnut Creek, CA); Zolotorev, Max (Oakland, CA)

2001-01-01T23:59:59.000Z

490

Top ECMs for Labs and Data Centers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top ECMs for Labs and Top ECMs for Labs and Data Centers FUPWG Otto Van Geet, PE October 10, 2012 2 Labs are Energy Hogs! * 3 to 8 times as energy intensive as office buildings Total Site Energy Use Intensity BTU/sf-yr for various laboratories in the Labs21 Benchmarking Database Typical Office Building 3 * Core information resources - Design Guide - Case Studies - Energy Benchmarking - Best Practice Guides - Technical Bulletins * Design process tools - Env. Performance Criteria - Labs21 Process Manual Labs21 Toolkit 4 Six BIG HITS 1. Scrutinize the air changes: Optimize ventilation rates 2. Tame the hoods: Compare exhaust device options 3. Get real with loads: Right-size HVAC systems 4. Just say no to re-heat: Minimize simultaneous heating and cooling 5. Drop the pressure drop:

491

ICDERS July 2429, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle  

E-Print Network (OSTI)

23rd ICDERS July 24­29, 2011 Irvine, USA An Empirical Model for the Ignition of Aluminum Particle of aluminum particle clouds is developed and applied to the study of particle ignition and combustion behavior as cloud concentration effects on ignition. The total mass of aluminum that burns is found to depend

492

Review and recent developments of laser ignition for internal combustion engines applications  

Science Journals Connector (OSTI)

Performance of future ignition system for internal combustion engines should be reliable and efficient to enhance and sustain combustion stability, since ignition not only initiates combustion but also influences subsequent combustion. Lean burn systems have been regarded as an advanced combustion approach that could improve thermal efficiency while reducing exhaust gas emissions. However, current engines cannot be operated sufficiently lean due to ignition related problems such as the sluggish flame initiation and propagation along with potential misfiring. A high exhaust gas recirculation engines also has similar potential for emissions improvement, but could also experience similar ignition problems, particularly at idle operation. Similarly, ignition is an important design factor in gas turbine and rocket combustor. Recently, non-conventional ignition techniques such as laser-induced ignition methods have become an attractive field of research in order to replace the conventional spark ignition systems. The fundamentals of conventional laser-induced spark ignition have been previously reviewed. Therefore, the objective of this article is to review progress on the use of such innovative techniques of laser-induced ignition including laser-induced cavity ignition and laser-induced multi-point ignition. In addition, emphasis is given to recent work to explore the feasibility of this interesting technology for practical applications concerning internal combustion engines.

Mohamed H. Morsy

2012-01-01T23:59:59.000Z

493

Time-dependent laser ignition of a combustible stagnant boundary layer  

Science Journals Connector (OSTI)

......research-article Articles Time-dependent laser ignition of a combustible stagnant boundary...55,257-268 Time-dependent laser ignition of a combustible stagnant boundary...examines the conditions for laser ignition of a number of industrial gases......

J. ADLER

1995-12-01T23:59:59.000Z

494

Initial experiments on the shock-ignition inertial confinement fusion concepta...  

E-Print Network (OSTI)

ignition is a concept for direct-drive laser inertial confinement fusion ICF Refs. 1­3 that was recently for conven- tional ignition to occur. Then a strong shock wave launched at the end of the laser pulseInitial experiments on the shock-ignition inertial confinement fusion concepta... W. Theobald,1,b R

495

Plasma channel from EP beam Direct-drive ignition is the main thrust in LLE  

E-Print Network (OSTI)

ignition and radiography I2094 The OMEGA laser at the University of Rochester's Laboratory for LaserPlasma channel from EP beam #12;Direct-drive ignition is the main thrust in LLE fusion research activities I2092 · FusionresearchatLLEisfocusedonbuildingthefoundations for a direct-drive­ignition

496

Capsule implosion optimization during the indirect-drive National Ignition Campaign  

E-Print Network (OSTI)

and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement. INTRODUCTION A. Indirect-drive design The National Ignition Facility (NIF)1 is a 192 beam, 1.8 MJ 0.35 lm laserCapsule implosion optimization during the indirect-drive National Ignition Campaign O. L. Landen,1

497

Large Eddy Simulation of spark ignition in a turbulent methane jet  

E-Print Network (OSTI)

and propagation and (4) stabilization. In the context of laser and electrical spark ignition (which is the scope applications of laser ignition and comparison with standard spark plug devices. Phuoc et al. [5] presentLarge Eddy Simulation of spark ignition in a turbulent methane jet G. Lacaze a , E. Richardson b

Paris-Sud XI, Université de

498

A metamodeling approach for studying ignition target robustness in a highly dimensional parameter space  

E-Print Network (OSTI)

-up, kinetic energy ignition margin, laser-plasma instabilities, etc. As there are several design parametersA metamodeling approach for studying ignition target robustness in a highly dimensional parameter designed to ignite their central hot spots and burn. Changes in the optimal implosion could reduce

Garnier, Josselin

499

Guidance to Small Businesses on How to Do Business with the Department of Energy  

Energy.gov (U.S. Department of Energy (DOE))

Helpful tips to prepare small businesses interested in doing business with the Department of Energy.

500

MagLab - MagLab U: Learning about Electricity and Magnetism  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Arrow MagLab U: Learning about Electricity and Magnetism MagLab U logo This is one-stop shopping for nearly anything you might want to know about electricity and magnetism....