National Library of Energy BETA

Sample records for lab cloud property

  1. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical PropertiesgovCampaignsCloudSP2

  2. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect (OSTI)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  3. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative 2011) ABSTRACT This study proposes a novel technique for computing cloud feedbacks using histograms integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud

  4. Storm Peak Lab Cloud Property Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared

  5. CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS , W. Paul Menzel

    E-Print Network [OSTI]

    Li, Jun

    6.4 CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS AND AIRS Jun Li * , W. Paul Menzel Observing System's (EOS) Aqua satellite enable global monitoring of the distribution of clouds. The MODIS is able to provide at high spatial resolution (1 ~ 5km) a cloud mask, surface and cloud types, cloud phase

  6. User:GregZiebold/Lab Cloud | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNew York: Energy ResourcesCalpakGateway testLab

  7. Property:Lab Test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDsc JumpLab Test Jump to:

  8. Clouds 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  9. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  10. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  11. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS Robin J. Hogan and Sarah F. Kew ˇ Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget

  12. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flexible hydropower: boosting energy December 16, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

  13. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  15. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  16. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth MARK D. ZELINKA Department of Atmospheric Sciences received 12 May 2011, in final form 15 November 2011) ABSTRACT Cloud radiative kernels and histograms

  17. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  18. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  19. The Structure of the Local Interstellar Medium IV: Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions

    E-Print Network [OSTI]

    Seth Redfield; Jeffrey L. Linsky

    2007-09-27

    We present an empirical dynamical model of the local interstellar medium based on 270 radial-velocity measurements for 157 sight lines toward nearby stars. Physical-parameter measurements (i.e., temperature, turbulent velocity, depletions) are available for 90 components, or one-third of the sample, enabling initial characterizations of the physical properties of LISM clouds. The model includes 15 warm clouds located within 15 pc of the Sun, each with a different velocity vector. We derive projected morphologies of all clouds and estimate the volume filling factor of warm partially ionized material in the LISM to be between ~5.5% and 19%. Relative velocities of potentially interacting clouds are often supersonic, consistent with heating, turbulent, and metal-depletion properties. Cloud-cloud collisions may be responsible for the filamentary morphologies found in ~1/3 of LISM clouds, the distribution of clouds along the boundaries of the two nearest clouds (LIC and G), the detailed shape and heating of the Mic Cloud, the location of nearby radio scintillation screens, and the location of a LISM cold cloud. Contrary to previous claims, the Sun appears to be located in the transition zone between the LIC and G Clouds.

  20. Properties of the Molecular Clouds in NGC 205

    E-Print Network [OSTI]

    L. M. Young

    2000-07-12

    The nearby dwarf elliptical galaxy NGC 205 offers a unique opportunity for high resolution studies of the interstellar medium in an elliptical galaxy. This paper investigates the distribution of molecular gas, molecular line ratios, and the relationships between atomic gas, molecular gas, and dust in NGC 205. The line ratios 12CO(2-1)/(1-0) and 12CO(1-0)/13CO(1-0) in one of the molecular clouds in NGC 205 are consistent with the ratios found in other elliptical galaxies and in Galactic giant molecular clouds; they suggest that the CO in this cloud is probably subthermally excited. Atomic gas, molecular gas, and dust are very closely associated on scales of 100 pc; the atomic gas can be understood as photodissociated envelopes around the molecular clouds. The atomic column densities in this galaxy are quite low (10^20 cm^-2) because the interstellar UV field is relatively low. The total gas-to-dust column density ratios are consistent with Galactic gas-to-dust ratios. In short, the molecular gas in NGC 205 seems to have very similar properties to the familiar molecular clouds in our own Galaxy, except for the low atomic column densities.

  1. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    Zhang (2004), Comparing clouds and their seasonal variationstropical greenhouse effect and cloud radiative forcing. J.thermodynamic components of cloud changes. Clim. Dyn. , 22,

  2. The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    The roles of cloud drop effective radius and LWP in determining rain properties in marine that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12­14 mm

  3. On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves 

    E-Print Network [OSTI]

    Cole, Benjamin

    2012-10-19

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  4. Study of cloud properties from single-scattering, radiative forcing, and retrieval perspectives 

    E-Print Network [OSTI]

    Lee, Yong-Keun

    2009-06-02

    This dissertation reports on three different yet related topics in light scattering computation, radiative transfer simulation, and remote sensing implementation, regarding the cloud properties and the retrieval of cloud ...

  5. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar 

    E-Print Network [OSTI]

    Runnels, R.C.

    1967-01-01

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud ...

  6. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical Properties ofgovCampaignsCirrus Clouds

  7. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxidesProductsCloud Properties

  8. Rheology in the Teaching Lab: Properties of Starch Suspensions

    E-Print Network [OSTI]

    Joel A. Groman; James G. Miller; Jonathan I. Katz

    2014-10-20

    In everyday life we encounter many complex fluids, from shear-thinning paint and toothpaste to shear-thickening starch suspensions. The study of their properties offers an opportunity for students to relate sophisticated physical concepts to their everyday experience. Modern rheology uses expensive equipment impractical for the teaching laboratory. Here we describe a rudimentary rheometer suitable for student laboratories that can demonstrate and quantify discontinuous shear thickening, the most dramatic property of complex fluids, and use it to measure the properties of starch suspensions.

  9. Lab 8

    E-Print Network [OSTI]

    Probability Lab. The Problem: Purdue Property and Casualty Co. (PP&C) sells, among other products, car insurance. Sue Purdue, a long standing customer, has

  10. Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties

    E-Print Network [OSTI]

    Shupe, Matthew

    distributions, temperature, mi- crophysical properties, thickness, and phase composition. Arctic cloud to derive estimates of cloud occurrence fraction, vertical distribution, persistence in time, diurnal cycle seasons for which the sun is above the horizon for at least part of the day. 1. Introduction Clouds play

  11. Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties 

    E-Print Network [OSTI]

    Axisa, Duncan

    2011-02-22

    This research focuses on aircraft observational studies of aerosol-cloud interactions in cumulus clouds. The data were collected in the summer of 2004, the spring of 2007 and the mid-winter and spring of 2008 in Texas, ...

  12. Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies 

    E-Print Network [OSTI]

    Yi, Bingqi

    2013-07-09

    This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

  13. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    E-Print Network [OSTI]

    Dong, Xiquan

    A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid- phase.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has

  14. Cloud properties and associated radiative heating rates in the tropical western Pacific

    E-Print Network [OSTI]

    Cloud properties and associated radiative heating rates in the tropical western Pacific James H radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper radiative heating rates in the tropical western Pacific, J. Geophys. Res., 112, D05201, doi:10.1029/2006JD

  15. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the radiative influence of mixed-phase clouds. Further, its impact on the development and evaluation of retrieval schemes from ground- and satellite-based remote sensors is...

  16. High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics

    E-Print Network [OSTI]

    Baum, Bryan A.

    High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics) ABSTRACT This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging

  17. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  18. Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN-YI LIU,* PING YANG, TIMOTHY J. SCHMIT,# HELI WEI,

    E-Print Network [OSTI]

    Li, Jun

    Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1­5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP

  19. Retrieving Properties of Thin Clouds from Solar Aureole Measurements

    E-Print Network [OSTI]

    Joss, Paul C.

    This paper describes a newly designed Sun and Aureole Measurement (SAM) aureolegraph and the first results obtained with this instrument. SAM measurements of solar aureoles produced by cirrus and cumulus clouds were taken ...

  20. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Properties of a Molecular Cloud in NGC 185

    E-Print Network [OSTI]

    L. M. Young

    2001-07-10

    The dwarf elliptical galaxy NGC 185- the closest early-type galaxy with detectable molecular gas- offers a unique opportunity for high angular resolution studies of the interstellar medium in early-type galaxies. I present interferometric images (17 pc $\\times$ 14 pc resolution) of CO emission from NGC 185. The majority of the molecular gas in NGC 185 is in one resolved cloud, closely associated with dust and an HI structure which may be a photodissociated envelope. The high spatial resolution also reveals a velocity gradient across the cloud, which allows a dynamical mass estimate independent of the H2/CO conversion factor or the virial theorem. The linear sizes, velocity gradients, and dynamical masses of the molecular clouds in NGC 185 and NGC 205, a similar dwarf elliptical, are comparable to those of the largest Galactic giant molecular clouds (GMCs). If the dynamical masses of the clouds are assumed to be good estimates of their true masses, the inferred H2/CO conversion factor in NGC 185 is at least eight times larger than a standard Galactic conversion factor, and the reasons for this difference are not yet understood. In any case, it seems clear that structures similar to Galactic GMCs can form in small elliptical or early type galaxies, even in the absence of spiral density waves.

  2. The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances

    E-Print Network [OSTI]

    Stephens, Graeme L.

    from infrared radiances Steven J. Cooper, Tristan S. L'Ecuyer, and Graeme L. Stephens Department inclusion of explicit cloud boundary information from complementary sensors as well as providing a suite of diagnostic tools for evaluating the dominant sources of uncertainty in all retrieved quantities. Errors

  3. CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES

    E-Print Network [OSTI]

    influence the earth's radiation balance and climate directly, by scanering shortwave (solar) radiation in the earth radiation budget over the industrial period. exerting a radiative forcing that is of comparable. Keywords - Climate. aerosols. clouds, radiation INTRODUcnON In recent years awareness has increased

  4. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    on computer models to understand the changes to cloudcloud properties with surface temperature from observations rather than from computer

  5. ARM - Publications: Science Team Meeting Documents: Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison

  6. Solar differential rotation and properties of magnetic clouds

    E-Print Network [OSTI]

    K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

    2005-11-09

    The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

  7. DOE/SC-ARM-10-021 STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HAB Packet HanfordDOE ProjectREMOTE-HANDLED TRU76 Idahoeprints0903 3891

  8. Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM

    E-Print Network [OSTI]

    Dong, Xiquan

    Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile from ARM ground-based observations were averaged over a 1h interval centered at the satellite overpass

  9. Study of Ice Cloud Properties from Synergetic Use of Satellite Observations and Modeling Capabilities 

    E-Print Network [OSTI]

    Xie, Yu

    2011-02-22

    Shaima Nasiri Gerald North Head of Department, Kenneth Bowman December 2010 Major Subject: Atmospheric Sciences iii ABSTRACT Study of Ice Cloud Properties from Synergetic Use of Satellite..., Shaima Nasiri, and Gerald North. Their detailed and constructive comments have been most helpful in shaping this dissertation. I also wish to acknowledge Drs. Patrick Minnis and Bryan Baum who gave me important guidance throughout this work...

  10. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  11. Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds

    E-Print Network [OSTI]

    Schmeits, Maurice

    , but the former shows a false-alarm ratio that is about 8% lower. Moreover, a big advantage of the newly developed, the energy supply industry, the construction industry, and farmers. The Cb and TCu clouds may pose a serious Society #12;wind shear, heavy precipitation, and lightning, that is associated with these clouds. Also

  12. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  13. Observed and Simulated Cirrus Cloud Properties at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeedingLightweightand Simulated Cirrus Cloud Properties

  14. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxidesProductsCloud Properties and

  15. Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols 

    E-Print Network [OSTI]

    Lee, Yong Seob

    2006-08-16

    that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction...

  16. Global ice cloud observations: radiative properties and statistics from moderate-resolution imaging spectroradiometer measurements 

    E-Print Network [OSTI]

    Meyer, Kerry Glynne

    2009-05-15

    Ice clouds occur quite frequently, yet so much about these clouds is unknown. In recent years, numerous investigations and field campaigns have been focused on the study of ice clouds, all with the ultimate goal of gaining a better understanding...

  17. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  18. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

    SciTech Connect (OSTI)

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

    2012-02-29

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  19. The Roles of Cloud Drop Effective Radius and LWP in Determining Rain Properties in Marine Stratocumulus

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.

    2012-07-04

    Numerical simulations described in previous studies showed that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open cells. Additional analyses of the same simulations show that the suppression of rain is well described in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12-14 um. Cloud water starts to get depleted when column-maximum rain intensity (Rmax) exceeds 0.1 mm h-1. This happens when cloud-top re reaches 14 um. Rmax is mostly less than 0.1 mm h-1 at re<14 um, regardless of the cloud water path, but increases rapidly when re exceeds 14 um. This is in agreement with recent aircraft observations and theoretical observations in convective clouds so that the mechanism is not limited to describing marine stratocumulus. These results support the hypothesis that the onset of significant precipitation is determined by the number of nucleated cloud drops and the height (H) above cloud base within the cloud that is required for cloud drops to reach re of 14 um. In turn, this can explain the conditions for initiation of significant drizzle and opening of closed cells providing the basis for a simple parameterization for GCMs that unifies the representation of both precipitating and non-precipitating clouds as well as the transition between them. Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization.

  20. 2015 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2015 Tue, 05192015 - 3:48pm Jefferson Lab's Annual Property Inventory Will Take Place June 1 - July 31 Tue, 05192015 - 3:01pm JLab Implements Process to Improve Public...

  1. Retrieval of optical and microphysical properties of ice clouds using Atmospheric Radiation Measurement (ARM) data 

    E-Print Network [OSTI]

    Kinney, Jacqueline Anne

    2005-11-01

    The research presented here retrieves the cloud optical thickness and particle effective size of cirrus clouds using surface radiation measurements obtained during the Atmospheric Radiation Measurement (ARM) field campaign. ...

  2. ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING

    E-Print Network [OSTI]

    ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING Wuyin Lin1 , Yangang Liu Distinct cloud regimes can exist locally and globally. Such cloud regimes usually have close association, the classification of cloud regimes may be based on cloud properties and/or meteorological conditions. This study

  3. At this meeting: Oral presentation: Cloud Properties From (A)ATSR (Caroline Poulsen)

    E-Print Network [OSTI]

    Oxford, University of

    sensors including radars, an infrared and microwave sounder unit, and microwave radiometer integrated vertically over each layer separated by cloud base. This strategy makes it possible to evaluate. Recent progress in satellite sensor technology, exempli- fied by hyperspectral sounders and cloud

  4. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    SciTech Connect (OSTI)

    Feingold, Graham; McComiskey, Allison

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  5. CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks

    E-Print Network [OSTI]

    Gu, Guofei

    CloudWatcher: Network Security Monitoring Using OpenFlow in Dynamic Cloud Networks (or: How to Provide Security Monitoring as a Service in Clouds?) Seungwon Shin SUCCESS Lab Texas A&M University Email, basically, we can employ existing network security devices, but applying them to a cloud network requires

  6. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect (OSTI)

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  7. Clouds and Chemistry: Ultracool Dwarf Atmospheric Properties from Optical and Infrared Colors

    E-Print Network [OSTI]

    M. S. Marley; S. Seager; D. Saumon; K. Lodders; A. S. Ackerman; R. Freedman; X Fan

    2001-11-16

    The optical and infrared colors of L and T dwarfs are sensitive to cloud sedimentation and chemical equilibrium processes in their atmospheres. The i'-z' vs. J-K color-color diagram provides a window into diverse atmospheric processes mainly because different chemical processes govern each color, and cloud opacity largely affects J-K but not i'-z'. Using theoretical atmosphere models that include for the first time a self-consistent treatment of cloud formation, we present an interpretation of the i'-z' vs. J-K color trends of known L and T dwarfs. We find that the i'-z' color is extremely sensitive to chemical equilibrium assumptions: chemical equilibrium models accounting for cloud sedimentation predict redder i'-z' colors--by up to 2 magnitudes--than models that neglect sedimentation. We explore the previously known J-K color trends where objects first become redder, then bluer with decreasing effective temperature. Only models that include sedimentation of condensates are able to reproduce these trends. We find that the exact track of a cooling brown in J-K (and i'-z') is very sensitive to the details of clouds, in particular to the efficiency of sedimentation of condensates in its atmosphere. We also find that clouds still affect the strength of the J, H, and K band fluxes of even the coolest T dwarfs. In addition, we predict the locus in the i'-z' vs. J-K color-color diagram of brown dwarfs cooler than yet discovered.

  8. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment

    E-Print Network [OSTI]

    September 2007; published 20 December 2007. [1] Measurements from the US Department of Energy Atmospheric or activation through cloud-phase chemistry could provide alternative explanations for M-PACE observations in general cir- culation models, the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM

  9. IMPLICATIONS OF INFALLING Fe II-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES

    SciTech Connect (OSTI)

    Ferland, Gary J. [Department of Physics, University of Kentucky, Lexington, KY 40506 (United States); Hu Chen; Wang Jianmin [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Baldwin, Jack A. [Department of Physics and Astronomy, Michigan State University, Lansing, MI (United States); Porter, Ryan L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Van Hoof, Peter A. M. [Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels (Belgium); Williams, R. J. R. [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom)

    2009-12-10

    We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of 'Eigenvector 1', may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L {sub Edd} so that Fe II/Hbeta increases as L/L {sub Edd} increases. We show that the 'force multiplier', the ratio of gas opacity to electron scattering opacity, is approx10{sup 3}-10{sup 4} in Fe II-emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. As had previously been deduced, infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L {sub Edd}, establishing a link between Eigenvector 1 and the Fe II/Hbeta ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus solving several long-standing mysteries in quasar emission lines.

  10. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    SciTech Connect (OSTI)

    Kirk, J. M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); O'Halloran, B. [Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Madden, S. C.; Lebouteiller, V. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service, Paris, F-91190 Gif-sur-Yvette (France); Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boselli, A. [Laboratoire d'Astrophysique de Marseille, UMR 7326 CNRS, 38 rue F. Joliot-Curie, F-13388 Marseille (France); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ?} are identified; their cumulative mass distribution is found to be proportional to M {sup –2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon et al., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.°9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  11. Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    E-Print Network [OSTI]

    K. Omukai; T. Tsuribe; R. Schneider; A. Ferrara

    2005-03-01

    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \\~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.

  12. A five year global aerosol and cloud properties database from ATSR-2 data1 1 1 1 2 3

    E-Print Network [OSTI]

    Oxford, University of

    angle !Satellite zenith angle !Relative (satellite to Sun) azimuth angle !Value of the cost function !Cloud optical depth 1 !Cloud droplet effective radius 1 !Cloud top temperature 1 !Cloud top pressure 1 provides uncertainty estimates, and level 3 data provides variances, for all relevant parameters. Contact

  13. The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties 

    E-Print Network [OSTI]

    Xie, Yu

    2007-09-17

    ?µm). The discrete ordinates radiative transfer (DISORT) model is used to compute the radiances for a set of optical thicknesses, particle effective sizes, viewing and illumination angles, and cloud temperatures. A parameterization of cloud bi...

  14. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  15. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    E-Print Network [OSTI]

    Dong, Xiquan

    Comparison of CERES-MODIS stratus cloud properties with ground- based measurements at the DOE ARM are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data

  16. Development of Cloud Microphysical Property Retrievals Using the University of Wisconsin Arctic High Spectral Resolution Lidar

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    .6 2.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 October 9,2004 Time (UT) Altitude:50 21:55 22:00 22:05 22:10 22:15 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1- eterization and Modeling Workgroup to increase our ability to simu- late mixed-phase boundary layer clouds

  17. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  18. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  19. Challenge the future 1 Observations of aerosol-cloud-radiation

    E-Print Network [OSTI]

    Graaf, Martin de

    -road Industrial coal Residential solid fuel Biofuel cooking Biofuel heating Coal Open Burning Agricultural fields causes Differences in: · cloud properties · cloud fraction and location · aerosol properties · smoke

  20. The close binary properties of massive stars in the Milky Way and low-metallicity Magellanic Clouds

    SciTech Connect (OSTI)

    Moe, Maxwell; Di Stefano, Rosanne, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2013-12-01

    In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational wave sources, and gamma-ray bursts as a function of galactic environment and cosmic age, it is imperative that we measure how the close binary properties of O- and B-type stars vary with metallicity. We have studied eclipsing binaries with early B main-sequence primaries in three galaxies with different metallicities: the Large and Small Magellanic Clouds (LMC and SMC, respectively) and the Milky Way (MW). The observed fractions of early B stars that exhibit deep eclipses 0.25 < ?m (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW, LMC, and SMC span a narrow range of (0.7-1.0)%, which is a model-independent result. After correcting for geometrical selection effects and incompleteness toward low-mass companions, we find for early B stars in all three environments (1) a close binary fraction of (22 ± 5)% across orbital periods 2 < P (days) < 20 and mass ratios q = M {sub 2}/M {sub 1} > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties of massive stars do not vary across metallicities –0.7 < log(Z/Z {sub ?}) < 0.0 beyond the measured uncertainties.

  1. Inverse modelling of cloud-aerosol interactions - Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach

    E-Print Network [OSTI]

    Partridge, D. G; Vrugt, J. A; Tunved, P.; Ekman, A. M. L; Struthers, H.; Sorooshian, A.

    2012-01-01

    Seinfeld, J. H. : Aerosol, cloud drop concentration closureof aerosol composition on cloud droplet size distribution –aerosol properties on warm cloud droplet activation, At-

  2. Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT * LOWBenefits DOEBennoBerkeley Lab

  3. Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActTools toBadging, BadgeBecoming anBerkeley Lab

  4. Lab Astrophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps HeatTechnologies|Articles2012 2 spaceWebLab

  5. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    Van Weverberg K.; Vogelmann A.; van Lipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  6. Quality Assurance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Assurance Is A Key Focus At Jefferson Lab Quality assurance is a critical function at Jefferson Lab, protecting workers, lab facilities, the environment and the public. A D...

  7. Theory Center | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Jefferson Lab Theory Center Theoretical research at Jefferson Lab is critical to the lab's efforts to fulfill its scientific mission. A D D I T I O N A L L I N K S:...

  8. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  9. 2008 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2008 Fri, 10242008 - 3:00pm Jefferson Lab electron beam charges up Mon, 10062008 - 3:00pm Jefferson Lab, ODU team up for center...

  10. 2002 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Physicist Wins American Physical Society Award Thu, 04042002 - 1:00pm Commonwealth, High-Tech Leaders Recognize 14 Jefferson Lab Staff Members for Patent Work...

  11. 2002 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Physicist Wins American Physical Society Award Thu, 04042002 - 1:00pm Commonwealth, High-Tech Leaders Recognize 14 Jefferson Lab Staff Members for Patent Work...

  12. FEL Program | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lab's expertise in superconducting radiofrequency (SRF) accelerators. The FEL uses electrons to produce laser light. The electrons are energized using the lab's superconducting...

  13. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Construction Policymakers Construction at Jefferson Lab The Technology & Engineering Development Facility or TEDF is one of the new facilities being constructed at Jefferon Lab is...

  14. Construction | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policymakers Construction at Jefferson Lab The Technology & Engineering Development Facility or TEDF is one of the new facilities being constructed at Jefferon Lab is support of...

  15. Business Services | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    products and services that support the lab's overall mission. Managing the lab's vendor process is the Procurement & Services department. The department is dedicated to the...

  16. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's...

  17. Employees | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read more Emergency Information Employees Jefferson Lab Emergency Drill Jefferson Lab conducts regular exercises and drills to continually improve safety and emergency procedures...

  18. 2004 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2004 Tue, 09212004 - 2:00pm Catch Jefferson Lab's entertaining, educational Cryogenics Demonstration at the Virginia State Fair Fri, 09102004 - 2:00pm Jefferson Lab...

  19. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Media print version Public Affairs Links Home Journalists' Newsroom Media Photographic Archives What is Jefferson Lab? Community Outreach Jefferson Lab Graphic Identity...

  20. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Emeritus Program Approved by the JSA Compensation Committee Candidature Upon retirement from Jefferson Lab, a former employee may be considered for and appointed to,...

  1. Nuclear Imaging | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Jefferson Lab's Radiation Detector and Imaging Group Members of Jefferson Lab's Radiation Detector & Medical Imaging Group design and build unique imaging devices based on...

  2. 1997 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Scientific Motivation and Research Program (Nuclear Physics News) Mon, 03171997 - 12:00am Laboratory Profile: Jefferson Lab Introduction (Nuclear Physics News)...

  3. 2014 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awarded 2014 Prize to Support Research Work with Jefferson Lab Thu, 06052014 - 2:57pm Young Physicist from Syracuse University Receives Jefferson Lab's 2014 Thesis Prize...

  4. Careers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interesting and challenging jobs in pursuit of a greater understanding of the visible universe. Read more Job Openings Careers Jobs at Jefferson Lab Jefferson Lab offers many...

  5. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  6. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  7. Reply to Comments on ``Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast''

    E-Print Network [OSTI]

    Clouds off the California Coast'' WUYIN LIN* AND MINGHUA ZHANG School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York NORMAN G. LOEB NASA Langley Research Center, Hampton the Moderate Resolution Imaging Spectroradi- ometer­Clouds and the Earth's Radiant Energy System (MODIS

  8. 2000 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2000 Thu, 08312000 - 2:00pm Christoph Leeman becomes Jefferson Lab's first Deputy Director...

  9. Solid State Lighting ECE 198 Lab Manual

    E-Print Network [OSTI]

    Wasserman, Daniel M.

    not only the technical properties of the bulbs that you measure in lab, but also the cost of the lightbulb, the cost to operate the lightbulb, and if you are feeling especially ambitious, other important factors

  10. Investigation of the Dynamical, Macrophysical and Radiative Properties of High Clouds Combining Satellite Observations and Climate Model Simulations 

    E-Print Network [OSTI]

    Li, Yue

    2012-02-14

    of the physical mechanism governing the fixed anvil temperature (FAT) hypothesis and test of FAT hypothesis with CTT measurements; and 3) the intercomparison of cloud fraction and radiative effects between satellite-based observations and reanalysis product...

  11. A survey on vehicular cloud computing Md Whaiduzzaman a,n

    E-Print Network [OSTI]

    Buyya, Rajkumar

    A survey on vehicular cloud computing Md Whaiduzzaman a,n , Mehdi Sookhak a , Abdullah Gani a , Rajkumar Buyya b a Mobile Cloud Computing Research Lab, Faculty of Computer Science & Information control Intelligent transportation systems Cloud computing Vehicular cloud computing a b s t r a c

  12. Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

    E-Print Network [OSTI]

    Melbourne, University of

    Cloud Computing and Distributed Systems Laboratory DEPT. OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING THE UNIVERSITY OF MELBOURNE, AUSTRALIA The Cloud Computing and Distributed Systems (CLOUDS in 2008 by the CLOUDS lab at the University of Melbourne, facilitates the realization of the above vision

  13. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  14. National Lab Day - Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is the work of a New York-based educational organization that seeks to improve science and math education nationally. The National Labs are participating in this...

  15. 2008 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2008 Fri, 10242008 - 12:00am Jefferson Lab electron beam charges up (Inside Business) Mon, 10062008 - 12:00am Jefferson Lab, ODU team up for center (Inside Business...

  16. 2015 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2015 Mon, 08312015 - 11:33am Jefferson Lab to Test Tornado Warning Siren at 10:30 a.m. on Friday, Sept. 4 Wed, 08262015 - 8:49am Celebrate Jefferson Lab Safety Milestone...

  17. IT Division | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology At Jefferson Lab High-performance computing is essential to the success of the experimental program at Jefferson Lab. A D D I T I O N A L L I N K S: IT Home...

  18. 2014 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2014 Wed, 04302014 - 4:43pm Jefferson Lab Weekly Briefs April 30, 2014 Wed, 04232014 - 5:50pm Jefferson Lab Weekly Briefs April 23, 2014 Wed, 04162014 - 7:05pm...

  19. 2014 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 Wed, 07302014 - 6:42pm Jefferson Lab Weekly Briefs July 30, 2014 Wed, 07232014 - 5:39pm Jefferson Lab Weekly Briefs July 23, 2014 Wed, 07162014 - 6:25pm Jefferson...

  20. SRF Institute | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Jefferson Lab's SRF Institute designs, manufactures, assembles and tests SRF technology, such as these niobium cavities, for facilities worldwide. A D D I T I O N A L...

  1. Emergency Information | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employees Jefferson Lab Emergency Drill Jefferson Lab conducts regular exercises and drills to continually improve safety and emergency procedures. A D D I T I O N A L L I N K S:...

  2. 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Jefferson Lab February 2008 Tue, 02262008 - 1:00pm Media Advisory: March 1 Middle School Science Bowl Tournament Mon, 02252008 - 2:15pm Jefferson Lab Hosts 20 Teams for...

  3. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote Control On April 14 Mon, 03022009 - 1:00pm Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 February 2009 Thu, 02192009 - 1:00pm Jefferson Lab...

  4. 2006 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    162006 - 1:00am Jefferson Lab attracts record numbers to Geant4 workshop (Cern Courier) Sun, 11122006 - 1:00am Jefferson Lab laser sets power record (Richmond Times-Dispatch)...

  5. 2004 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2004 Thu, 04152004 - 2:00pm Jefferson Lab recognizes its Outstanding Small Business Contractor for FY 2003 Mon, 04122004 - 2:00pm Jefferson Lab invites families, groups...

  6. 2015 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Wed, 04292015 - 4:37pm Jefferson Lab Weekly Briefs April 29, 2015 Wed, 04222015 - 2:02pm Jefferson Lab Weekly Briefs April 22, 2015 Wed, 04152015 - 5:37pm...

  7. 2015 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2015 Wed, 07292015 - 5:01pm Jefferson Lab Weekly Briefs July 29, 2015 Wed, 07222015 - 4:00pm Jefferson Lab Weekly Briefs July 22, 2015 Wed, 07152015 - 9:52pm Jefferson...

  8. 2005 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2:00pm Jefferson Lab announces two Fall Science Series events -- featuring magic and football Tue, 10042005 - 2:00pm Jefferson Lab News -Dept. of Energy co-sponsors Oct. 11th...

  9. Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser. A D D I T I O N A L L I N K S: Read more Nuclear Imaging Research Jefferson Lab's Radiation Detector and Imaging Group Members of Jefferson Lab's Radiation Detector &...

  10. 2013 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2013 Wed, 03272013 - 2:55pm Jefferson Lab Weekly Briefs March 27, 2013 Wed, 03202013 - 2:11pm Jefferson Lab Weekly Briefs March 20, 2013 Wed, 03132013 - 5:24pm...

  11. 2013 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Wed, 12182013 - 3:04pm Jefferson Lab Weekly Briefs December 18, 2013 Wed, 12112013 - 2:43pm Jefferson Lab Weekly Briefs December 11, 2013 Wed, 12042013 - 1:07pm Jefferson...

  12. 2014 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 Thu, 07312014 - 5:19pm Message from Mike Dallas: Lab's Top IT Division Position to Turn Over Thu, 07312014 - 9:08am Lab Community Mourns Death of Colleague, Alexander...

  13. 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Wed, 12172014 - 5:26pm Jefferson Lab Weekly Briefs December 17, 2014 Wed, 12102014 - 6:59pm Jefferson Lab Weekly Briefs December 10, 2014 Wed, 12032014 - 6:13pm Jefferson...

  14. 2001 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2001 Wed, 03212001 - 2:00pm Six NN High School Students Win Jefferson Lab Externships Wed, 03212001 - 2:00pm Jones O. & Associates of Hampton wins Jefferson Lab's...

  15. 2010 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab and Jefferson Science Associates Bring First School of Physics to Sub-Saharan Africa Mon, 07262010 - 2:00pm Media Advisory - Jefferson Lab Hosts Summer Intern Science...

  16. 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Thu, 10152015 - 8:38am Jefferson Lab Weekly Briefs October 15, 2015 Wed, 10072015 - 5:07pm Jefferson Lab Weekly Briefs October 7, 2015 Thu, 10012015 - 8:00am...

  17. 2000 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2000 Wed, 10112000 - 11:00pm Jefferson Lab: Cancer-seeking Camera Demystifies Research Lab (Daily Press) Sat, 10072000 - 11:00pm Breast Cancer Biopsies Could Be Things...

  18. 2009 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Sun, 07052009 - 11:00pm Jefferson Lab creates better way to discover breast cancer Sun, 07052009 - 11:00pm Jefferson Lab employee invents low-tech gizmo to protect...

  19. 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008 Thu, 10232008 - 11:00pm Jefferson Lab electron beam charges up (Inside Business) Sun, 10052008 - 11:00pm Jefferson Lab, ODU team up for center (Inside Business) September...

  20. 2011 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2011 Sun, 09252011 - 2:00pm Jefferson Lab Weekly Briefs September 28, 2011 Wed, 09212011 - 2:00pm Jefferson Lab Weekly Briefs September 21, 2011 Wed, 09142011 -...

  1. 2008 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2008 Sun, 04132008 - 11:00pm Jefferson Lab finds its man Mont (Inside Business) Wed, 04022008 - 11:00pm New director of Jefferson Lab named (Daily Press) Wed, 04022008...

  2. 2006 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006 - 12:00am Jefferson Lab attracts record numbers to Geant4 workshop (Cern Courier) Sun, 11122006 - 12:00am Jefferson Lab laser sets power record (Richmond Times-Dispatch)...

  3. 2011 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Mon, 05232011 - 1:00pm National labs offer computing time to Japanese physicists Wed, 05112011 - 1:00pm Two Jefferson Lab Scientists Win Prestigious Early Career...

  4. 2004 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2004 Sun, 10242004 - 12:00am efferson Lab Hopes to Bulk Up 'Strong Force' Theory (Daily Press) Mon, 10042004 - 12:00am Jefferson Lab a Worthy Investment (Roanoke.com...

  5. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lecture July 2009 Sun, 07052009 - 11:00pm Jefferson Lab creates better way to discover breast cancer Sun, 07052009 - 11:00pm Jefferson Lab employee invents low-tech gizmo to...

  6. Search | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Beam Accelerator SEARCH JEFFERSON LAB Phone Book A-Z Index Departments Search the JLab Web Site Loading...

  7. 2004 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2004 Tue, 06152004 - 2:00pm Jefferson Lab awards 7.3 million construction contract to Chesapeake firm...

  8. 2004 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2004 Wed, 08112004 - 2:00pm Jefferson Lab Detector Technology Aids Development of Cystic Fibrosis Therapy...

  9. 2001 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2001 Sat, 04212001 - 2:00pm "Science is Cool" at Jefferson Lab's Open House, Saturday, April 21...

  10. 2001 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2001 Fri, 02092001 - 2:00pm Jefferson Lab's Spring Science Series kicks off with Feb. 13 event...

  11. 2006 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2006 Sun, 03052006 - 12:00am Faces and Places: Fellowships for US lab directors (CERN Courier...

  12. 2011 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Wed, 05112011 - 10:31am Two Jefferson Lab Scientists Win Prestigious Early Career Awards...

  13. Scientists | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Committee (PAC) Experiments Proposals Research Highlights Publications Accelerator Science Experiment Research Free-Electron Laser Theory Center Jefferson Lab Library...

  14. A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

    E-Print Network [OSTI]

    Ward-Thompson, D; André, P; Saraceno, P; Didelon, P; Könyves, V; Schneider, N; Abergel, A; Baluteau, J -P; Bernard, J -Ph; Bontemps, S; Cambrésy, L; Cox, P; Di Francesco, J; Di Giorgio, A M; Griffin, M; Hargrave, P; Huang, M; Li, J Z; Martin, P; Men'shchikov, A; Minier, V; Molinari, S; Motte, F; Olofsson, G; Pezzuto, S; Russeil, D; Sauvage, M; Sibthorpe, B; Spinoglio, L; Testi, L; White, G; Wilson, C; Woodcraft, A; Zavagno, A

    2010-01-01

    The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potentialprestellar cores in the Polaris cloud region.

  15. Jefferson Lab awards upgrade contracts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an addition to Jeff Lab's massive Central Helium Liquefier building. From that building helium is pumped to keep the accelerator cool. Another 3.3 million went to a Japanese...

  16. 6 Enterprise information risk management: Dealing with cloud computing

    E-Print Network [OSTI]

    Pym, David J.

    6 Enterprise information risk management: Dealing with cloud computing Adrian Baldwin HP Labs for the enterprise risk and security management lifecycle. Specifically, the economies of scale that large providers federated assurance for the cloud. 6.1 Introduction Managing IT risks remains a significant challenge

  17. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  18. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to...

  19. 2009 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Local firms benefit from Jefferson Lab upgrade Mon, 02092009 - 1:00pm Thomas Jefferson High School for Science & Technology Snaps Up Virginia Science Bowl Championship; Virginia...

  20. Education | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Education Science Education staff support a range of educational programs. One popular program is the Physics Fest, seen here. K-12 classes take field trips to...

  1. 2000 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 2000 Thu, 09212000 - 2:00pm Federal Laboratory Multiplies Its Research Capacity August 2000 Thu, 08312000 - 2:00pm Christoph Leeman becomes Jefferson Lab's first...

  2. 1997 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics News) Mon, 03171997 - 12:00am Laboratory Profile: Jefferson Lab Scientific Motivation and Research Program (Nuclear Physics News) Mon, 03171997 - 12:00am Laboratory...

  3. Research | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are massive facilities that house sophisticated equipment as large as a house. A fourth experimental hall, Hall D, is under construction. RESEARCH AT JEFFERSON LAB As a...

  4. Jefferson Lab - Employees

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    >

    Jefferson Lab conducts regular exercises and drills to continually improve safety and emergency procedures.
  5. 1995 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1995 Sat, 11181995 - 1:00am Beam Up, Running at CEBAF (Daily Press) Wed, 11151995 - 1:00am Research Begins at Jefferson Lab...

  6. 2005 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2005 Wed, 05182005 - 5:50pm Jefferson Lab Builds First Single Crystal Single Cell Accelerating Cavity Mon, 05022005 - 2:00pm Governor's Distinguished CEBAF Professorship...

  7. 2005 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2005 Fri, 07292005 - 2:00pm News Media invited to interview Jefferson Lab summer science enrichment program participants; cover closing Poster Session Tue, 07262005 -...

  8. 2004 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2004 Wed, 05122004 - 2:00pm Theoretical physicist Evgeny Epelbaum joined Jefferson Lab late in 2003 as the inaugural Nathan Isgur Distinguished Postdoctoral Fellow...

  9. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Design Photography Video Portfolio print version Public Affairs Links Home Journalists' Newsroom Media Photographic Archives What is Jefferson Lab? Community Outreach Public...

  10. Jefferson Lab Public Affairs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Media print version Public Affairs Links Home Journalists' Newsroom Media Photographic Archives What is Jefferson Lab? Community Outreach Public Affairs Director's...

  11. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration International Services Training and Performance Office Workplace Harassment and Violence Policy forms HR Forms Employment Employment at the Lab Career Opportunities...

  12. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources The Human Resources team is fully integrated with Jefferson Lab's mission, committed to providing quality customer service based on expertise, innovation and...

  13. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Assistantship Sponsor Form Jefferson Science Associates MinorityFemale Undergraduate Research Assistantship Jefferson Lab is seeking candidates for a research...

  14. Collaboration | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its inception. In a previous Montage, I discussed visiting China and the plans for Chinese institutions to participate in experiments at Jefferson Lab. There were...

  15. Jefferson Lab Directorate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Lab stakeholders. Director's Office Leadership Council Public Affairs Office Science Education Office Staff Services 12000 Jefferson Avenue, Newport News, VA 23606 Phone:...

  16. Weak Interaction | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weak Interaction February 22, 2011 Jefferson Lab has an accelerator designed to do incisive medium energy physics. This program is dominated by experiments aimed at developing our...

  17. Jefferson Lab - Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    570 en Accessibility https:www.jlab.orgaccessibility

    Lab" src"sitesdefaultfiles...

  18. Jefferson Lab - Policymakers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    900 en Construction https:www.jlab.orgconstruction

    Lab" src"sitesdefault...

  19. 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out Thu, 12182008 - 2:00pm Lab Cybersecurity Update: Critical Patch for Microsoft Internet Explorer - Requires Reboot Thu, 12182008 - 2:00pm Employee Timesheet Deadline for...

  20. 2008 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Out Thu, 12182008 - 2:00pm Lab Cybersecurity Update: Critical Patch for Microsoft Internet Explorer - Requires Reboot Thu, 12182008 - 2:00pm Employee Timesheet Deadline for...

  1. 2007 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2007 Sun, 06242007 - 11:00pm At science, he's a natural; Retiring J-Lab leader discusses red tape and the pursuit of knowledge (Inside Business...

  2. Education - Students | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Students Pulse Laser Deposit Hadware Research at Jefferson Lab leads to the development of technology that has practical applications, such as pulse laser deposit hardware...

  3. Jefferson Lab Employee Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The party was a huge success because of your help Photos With Santa Party Pictures (Login Required) This year, Jefferson Lab participated in the Wes' Wish 2015: Piles...

  4. 2007 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dentistry solves modern crimes, unravels mysteries of Salem Witch Trials, ancient Egypt Mon, 10152007 - 12:49pm Energy Savings Deeply Rooted At Jefferson Lab Mon, 1001...

  5. 2007 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dentistry solves modern crimes, unravels mysteries of Salem Witch Trials, ancient Egypt Mon, 10152007 - 12:49pm Energy Savings Deeply Rooted At Jefferson Lab Mon, 1001...

  6. Org Charts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    orgANIZATION Charts Jefferson Lab Organizational Chart 12 GeV Project Organization Accelerator Operations, Research & Development Division Chief Operating Officer Chief Financial...

  7. 2007 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2007 Tue, 06122007 - 2:00pm Innovative Energy-Saving Process Earns Jefferson Lab Team a 2007 White House Award...

  8. 2013 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical to Visa Renewal Process Wed, 05222013 - 10:53am Lab Sets Oct. 16 Dedication Date for Technology & Engineering Development Facility Mon, 05202013 - 10:46am...

  9. Preface: Crowds and Clouds

    E-Print Network [OSTI]

    2012-01-01

    crowdsourcing, cloud computing, big data, and Internetdata include “cloud computing,” “algorithms,” “filters,” “cloud of claims about cloud computing and big data settle

  10. LabVIEW Core 2 Course | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LabVIEW Core 2 Course The Lab is advertising a LabVIEW Core 2 course coming to Newport News. Date: Next Thursday and Friday (716, 717) from 8 to 5 at the Canon facility location,...

  11. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  12. Labs Race to Stop Iran"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New York Times covers "National Labs Race to Stop Iran" May 15, 2015 National labs race to stop Iran Given the stakes in the sensitive negotiations with Iran, the labs would...

  13. Proof of Concept: Cloud Condensation Nucleus Counter

    E-Print Network [OSTI]

    Delene, David J.

    North Dakota project. The solid circle is the mean value, the horizontal line is the 50th percentile Price High Price #12;Research Applications · One commercially available cloud condensation nuclei (CCN) counter. · Available since 2002 · Sold over 100 Units, Mostly Labs · Price is Approximately $70

  14. Lab Leadership | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps HeatTechnologies|Articles2012 2 spaceWebLabLab

  15. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee of

  16. Ames Lab 101: Single Crystal Growth

    ScienceCinema (OSTI)

    Schlagel, Deborah

    2014-06-04

    Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

  17. 2011 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Adopts Event Policy to Avoid Scheduling Conflicts Tue, 09132011 - 3:00pm CS Parking Lot Closed During Test Lab Exterior Painting Thu, 09012011 - 3:00pm United Way Annual...

  18. 1999 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1999 Tue, 11161999 - 1:00am At the Frontier Lab's Electron Beam Also Aimed at Industrial Uses (Washington Bureau) Tue, 11161999 - 1:00am At the Frontier The Quirks...

  19. 1998 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guy' features Jeff Labs (Daily Press) Wed, 05061998 - 11:00pm ARC Takes College High-Tech (William & Mary News) Mon, 05041998 - 11:00pm 18 Million Research Center is...

  20. 2001 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Host Teachers' Course (Daily Press) Thu, 03152001 - 12:00am State Should Invest More in High-Tech Economy (Daily Press) Mon, 03122001 - 12:00am Lab's Laser Key to Strong...

  1. 2011 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Science Activities Night at Jefferson Lab Tue, 02082011 - 1:00pm Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia Science Bowl; Warwick High Wins...

  2. 2009 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 2009 Mon, 06292009 - 3:00pm JLab Theory Center Director search Thu, 06252009 - 3:00pm Jefferson Lab Jackets for Staff Members Wed, 06242009 - 3:00pm JLab Personnel...

  3. 2000 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2000 Thu, 03302000 - 1:00am Jefferson Lab Gets New Funds (Washington BureauDaily Press) Mon, 03272000 - 1:00am Practically Perfect, Prof. (Daily Press) Sat, 03182000 -...

  4. 2007 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division Tue, 03062007 - 1:00pm Record 18 teams prepare for Virginia Regional Middle School Science Bowl on March 10 at Jefferson Lab Tue, 03062007 - 1:00pm Record 18 teams...

  5. 2006 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards of Learning Tests Fri, 03172006 - 1:00pm Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 Fri, 03172006 - 1:00pm...

  6. 2009 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Jefferson Lab Mon, 03022009 - 1:00pm Media Advisory: March 7 Virginia Middle School Science Bowl Tournament Mon, 03022009 - 1:00pm JLab Guest Lecturer Discusses...

  7. 2005 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bloggers Tue, 03082005 - 6:41pm Maryland team wins VirginiaMaryland Regional Middle School Science Bowl; moves on to Nationals Mon, 03072005 - 6:44pm Jefferson Lab hosts two...

  8. 2006 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards of Learning Tests Fri, 03172006 - 1:00pm Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 Fri, 03172006 - 1:00pm...

  9. 2008 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2008 Tue, 02262008 - 1:00pm Media Advisory: March 1 Middle School Science Bowl Tournament Mon, 02252008 - 2:15pm Jefferson Lab Hosts 20 Teams for Middle School Science...

  10. News Links | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy (March 16, 2011, A Message from Dr. Timothy Hallman, DOE) Jefferson Lab: Laser gun to eventually shoot down missiles (February 21, 2011, Daily Press) Navy Breaks World...

  11. 2011 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dr. Timothy Hallman, DOE) February 2011 Mon, 02212011 - 12:00am Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) Sun, 02202011 - 12:00am Navy Breaks...

  12. 2011 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2011 Mon, 02212011 - 12:00am Jefferson Lab: Laser gun to eventually shoot down missiles (Daily Press) Sun, 02202011 - 12:00am Navy Breaks World Record With Futuristic...

  13. 1995 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1995 Sat, 11181995 - 1:00am Beam Up, Running at CEBAF (Daily Press) Wed, 11151995 - 1:00am Research Begins at Jefferson Lab June 1995 Thu, 06221995 - 12:00am...

  14. 2005 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2005 Mon, 03212005 - 1:00am Hampton Roads to hop on high speed data network (The Virginian-Pilot) Sun, 03132005 - 1:00am Jefferson Lab Device Helps Breast Imaging...

  15. 2005 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2005 Wed, 10122005 - 12:00am Egad, Einstein: Jefferson Lab lecture offers a rare look at the great man (Daily Press) Wed, 10052005 - 12:00am Investigating the Proton's...

  16. 2015 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ESH&Q Building Project Update Mon, 11232015 - 10:38am Jefferson Lab Stormwater Pollution Prevention Reminder Tue, 11102015 - 4:08pm CEBAF Center Loading Dock Area Closed...

  17. 1999 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Lasers (William & Mary News) Tue, 07201999 - 12:00am Tunable Laser Reaches Record Power Level Sun, 07181999 - 12:00am Experts at Newport News Lab Develop Powerful New...

  18. 2004 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2004 Tue, 04272004 - 12:00am A Region Better Than Advertised (Virginian-Pilot) Tue, 04202004 - 12:00am Jefferson Lab vies for expansion (Daily Press) Tue, 04202004 -...

  19. 2004 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2004 Sat, 07312004 - 12:00am Supported Free Electron Laser Most Powerful Tunable Laser in World (Office of Naval Research) Sat, 07312004 - 12:00am Jefferson Lab beats...

  20. 2004 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2004 Fri, 12032004 - 2:00pm Anthony Thomas accepts position of Chief Scientist and Theory Group Leader at Jefferson Lab Fri, 12032004 - 2:00pm Zooming in on a proton...

  1. 2004 - 02 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 2004 Tue, 02242004 - 2:00pm JLab Nuclear Theorist earns Virginia Outstanding Scientist of 2004 Award Wed, 02112004 - 2:00pm Lab Hosts 22 teams for Virginia Science...

  2. Jefferson Lab Virtual Tour

    SciTech Connect (OSTI)

    None

    2013-07-13

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  3. 2010 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 12:00am May 3 Abstract for ColloquiumPublic Lecture on May 11 at Jefferson Lab titled: Accelerator Driven System (ADS) in Support of Sustainable Nuclear Power Program in India....

  4. 2010 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 12:00am May 3 Abstract for ColloquiumPublic Lecture on May 11 at Jefferson Lab titled: Accelerator Driven System (ADS) in Support of Sustainable Nuclear Power Program in India....

  5. 2012 - 05 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Celebrates 6 GeV End of an Era on June 6 Thu, 05312012 - 3:00pm Cigarette Butt Causes Fire Outside of CEBAF Center Wed, 05232012 - 3:00pm Jefferson Lab Unveils New...

  6. 2001 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2001 Sat, 11172001 - 1:00am Jefferson Lab Gets New Chief: Leemann takes top post (Times-Dispatch) Sat, 11172001 - 1:00am Leemann Officially Takes Over Peninsula's...

  7. 2001 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2001 Fri, 11162001 - 2:00pm Christoph W. Leemann Named Jefferson Lab Director August 2001 Tue, 08142001 - 2:00pm DOE Announces First Awards in Scientific Discovery...

  8. Policymakers | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab's 25th Anniversary celebration. A D D I T I O N A L L I N K S: Brochures Information Sheets At A Glance 12 GeV Upgrade Strategic Plan Economic Impact top-right...

  9. 2009 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Status After Severe Weather Thu, 12172009 - 3:00pm End-of-Year Dosimeter (Radiation Badge) Change-Out Wed, 12162009 - 3:00pm 2009 Holiday Shutdown Schedule...

  10. 2009 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Status After Severe Weather Thu, 12172009 - 3:00pm End-of-Year Dosimeter (Radiation Badge) Change-Out Wed, 12162009 - 3:00pm 2009 Holiday Shutdown Schedule...

  11. Open House | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map and Tour Stops map OHapp Scan or download the Jefferson Lab Open House App (Android Only) and have event information on hand ready to go. Driving and Parking Directions...

  12. 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2015 Thu, 10152015 - 7:53pm Nuclear Science Advisory Committee Issues Plan for U.S. Nuclear Physics Research September 2015 Wed, 09302015 - 8:28am Jefferson Lab to Test...

  13. 2010 - 12 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, Bldg.59 CLOSED For Holiday Shutdown Tue, 12212010 - 3:00pm Information on DOE Salary Freeze Tue, 12212010 - 3:00pm JLab Power Outage, Main Entrance Closed Over Shutdown...

  14. 2010 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab, Bldg.59 CLOSED For Holiday Shutdown Tue, 12212010 - 3:00pm Information on DOE Salary Freeze Tue, 12212010 - 3:00pm JLab Power Outage, Main Entrance Closed Over Shutdown...

  15. Jefferson Lab Virtual Tour

    ScienceCinema (OSTI)

    None

    2014-05-22

    Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

  16. 2012 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2012 Thu, 04262012 - 1:00pm Boron-Nitride Nanotubes Show Potential in Cancer Treatment Fri, 04202012 - 1:00pm Jefferson Lab Plans Open House for May 19...

  17. 2001 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 2001 Wed, 08292001 - 11:00pm Learning to Teach Physics (Daily Press) Sun, 08192001 - 11:00pm Navy-Funded Lab Develops Powerful Laser for Missile Defense (Navy News) Sun,...

  18. 2001 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2001 Sun, 07222001 - 11:00pm Lab is Part of Project to Build Neutron Generator (The Virginian-Pilot) Sat, 07142001 - 11:00pm Interests and Advantages: High School, College...

  19. 2009 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2009 Sun, 04192009 - 11:00pm Painting firm honored by Jefferson Lab (Daily Press) Sun, 04192009 - 11:00pm Hampton University awarded 1.3 million for breast cancer...

  20. 1998 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 1998 Sun, 11011998 - 12:00pm Draayer Elected as New SURA President October 1998 Thu, 10011998 - 12:00pm Jefferson Lab invites public to free lecture by author of...

  1. 2006 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2006 Sun, 04232006 - 1:00pm Jefferson Lab News - HAPPEx II reveals proton isn't very strange Mon, 04102006 - 1:00pm Free-Electron Laser Targets Fat Wed, 04052006 -...

  2. 2011 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 2011 Wed, 05112011 - 10:31am Two Jefferson Lab Scientists Win Prestigious Early Career Awards April 2011 Fri, 04082011 - 10:07am Superconductivity Centennial Wed, 0406...

  3. 2003 - 10 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 2003 Wed, 10082003 - 12:00am Russian and 2 Americans Win Nobel Prize Physics Honors (The New York Times) Tue, 10072003 - 12:00am Jefferson Lab announces Oct. 7 Fall...

  4. 2011 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time to Japanese physicists Wed, 05112011 - 2:00pm Two Jefferson Lab Scientists Win Prestigious Early Career Awards April 2011 Tue, 04262011 - 2:00pm Harris Power Earns...

  5. Busy Week | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a few weeks ago, we went with a tour. We visited the Test Lab Addition, Hall A and the FEL. He was very interested and voiced his praise for what we do. Short but sweet, and I am...

  6. 2001 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2001 Sun, 04222001 - 12:00am Doors to Discovery (Daily Press) Thu, 04192001 - 12:00am Peek in Jefferson Lab (Daily Press) Tue, 04172001 - 12:00am Electron Accelerator...

  7. 1999 - 06 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1999 Sun, 06271999 - 12:00am Gizmos, Gadgets & Devices - Oh, My (Daily Press) Fri, 06251999 - 12:00am Exhibit: High-Energy Lab Tours for Kids (Daily Press) Tue, 06221999...

  8. 2014 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center A Wing Restrooms to Open on Thursday, Sept. 4; C Wing Restrooms to Close for Refurbishment Wed, 09032014 - 10:46pm Lab Employee Survey - Assistance Requested Tue, 0902...

  9. 2013 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2013 Mon, 12092013 - 10:15am Newly Invented Shielding For Stopping Neutrons Cold Thu, 12052013 - 3:59pm Jefferson Lab to Conduct Test of its Tornado Warning Siren at...

  10. 2002 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002 Fri, 11152002 - 12:00am Illuminating idea: Lab's T-light work may have uses in medicine, security (Daily Press) Thu, 11142002 - 12:00am Power from Terahertz Beams...

  11. Facilities | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

  12. 1999 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Museum (Daily Press) Thu, 09091999 - 12:00am Success at Jefferson Lab Spurs Need for More Space (Burrelle's) Wed, 09011999 - 12:00am BIG FEL Grows in Power (Laser Focus World...

  13. Ultraviolet | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States. For some years, the Jefferson Lab FEL has been a world leader in free-electron laser power. Strongly supported by funding from the Office of Naval Research, it achieved...

  14. Jefferson Lab: Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heats Up Is It or Isn't It? Pentaquark Debate Heats Up Jefferson Lab Medical Imager Spots Breast Cancer Effective Model of the Atom Gets More Realistic JLab Completes 100th...

  15. 2000 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cancer-seeking Camera Demystifies Research Lab (Daily Press) Sat, 10072000 - 11:00pm Breast Cancer Biopsies Could Be Things of Past (Daily Press) Sat, 10072000 - 11:00pm...

  16. 2013 - 09 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cleanup Sept. 30 - Oct. 4 Wed, 09112013 - 11:14am Lab Community Invited to Oct. 16 Dedication of Technology & Engineering Development Facility Fri, 09062013 - 1:00pm TIAA-CREF...

  17. Chemical and Petroleum Engineering Key and Lab Space Agreement

    E-Print Network [OSTI]

    Chemical and Petroleum Engineering Key and Lab Space Agreement Key Holder Information Last Name and Petroleum Engineering remain the property of the Department. I agree to pay a deposit for the keys

  18. Injection Molding at the MIT Artificial Intelligence Lab

    E-Print Network [OSTI]

    Binnard, Michael

    1995-02-23

    This paper describes the injection molding equipment at the MIT Artificial Intelligence Lab and how to use it. Topic covered include mold design, insert molding, safety, and material properties.

  19. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  20. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    SciTech Connect (OSTI)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Jameson, Katherine; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Indebetouw, Remy; Israel, Frank P.; Kawamura, Akiko; and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 ?m. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 ?m. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 ?m submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ?} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  1. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  2. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  3. Energy Savings Deeply Rooted At Jefferson Lab | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab has given a new meaning to dirt cheap. The lab uses a geothermal well system to control heating and cooling on two floors of one wing of its main administrative...

  4. The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    E-Print Network [OSTI]

    Olmi, Luca; Angles-Alcazar, Daniel; Bock, James J; Chapin, Edward L; De Luca, Massimo; Devlin, Mark J; Dicker, Simon; Elia, Davide; Fazio, Giovanni G; Giannini, Teresa; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Lorenzetti, Dario; Marengo, Massimo; Marsden, Gaelen; Martin, Peter G; Massi, Fabrizio; Mauskopf, Philip; Netterfield, Calvin B; Patanchon, Guillaume; Rex, Marie; Salama, Alberto; Scott, Douglas; Semisch, Christopher; Smith, Howard A; Strafella, Francesco; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2009-01-01

    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest, dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appe...

  5. TechLab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable UserTeacherTechLab TechLab

  6. Lab celebrates Earth Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures five SocietyLab

  7. Lab grants Decision Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures fiveLab

  8. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, Joăo

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  9. Earth Week 2008 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab has given new meaning to dirt cheap. The lab uses a geothermal well system to control heating and cooling on two floors of one wing of its main administrative...

  10. Public Reading Room | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Seven-Cell Niobium Cavity At the heart of Jefferson Lab's accelerator are cavities made of niobium. New seven-cell cavities are being installed in the accelerator as the lab...

  11. Safety Comes First | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Test Lab, the Free-Electron Laser and within the Facilities Management and Logistics group. The inspection identified four findings the lab needs to address and one...

  12. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  13. MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results

    E-Print Network [OSTI]

    Baum, Bryan A.

    MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results W. PAUL measurements for deriving global and regional cloud properties. MODIS has spectral coverage combined the capability for global cloud property retrievals. MODIS operational cloud products are derived globally

  14. Ames Lab 101: Magnetic Refrigeration

    SciTech Connect (OSTI)

    Pecharsky, Vitalij

    2011-01-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  15. Ames Lab 101: Magnetic Refrigeration

    ScienceCinema (OSTI)

    Pecharsky, Vitalij

    2013-03-01

    Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

  16. 2010 - 08 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab App for iPhone Mon, 08232010 - 3:00pm Mandatory Reset by 1 p.m. EDT, Aug. 25 2010 Sun, 08222010 - 3:00pm Latest Phishing Attack Thu, 08192010 - 3:00pm JLab Power Outage...

  17. Name _____________________ Lab 4. Energy

    E-Print Network [OSTI]

    Perfect, Ed

    1 Name _____________________ Lab 4. Energy INTRODUCTION Energy resources are classified into two categories. Renewable energy sources are continually replenished. These include energy from water, wind, the sun, geothermal sources, and biomass sources such as energy crops. Renewable sources of energy vary

  18. Rendering Adaptation to Address Communication and Computation Constraints in Cloud Mobile Gaming

    E-Print Network [OSTI]

    California at San Diego, University of

    Rendering Adaptation to Address Communication and Computation Constraints in Cloud Mobile Gaming by the available server computing resource for each client, considering cloud server hosts numerous clients Shaoxuan Wang, Sujit Dey Mobile System Design Lab, Dept. of Electrical and Computer Engineering University

  19. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect (OSTI)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [Institut d'Astrophysique de Paris, 98 bis, Boulevard Arago, Paris 75014 (France); Kemper, F.; Woods, Paul M. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Speck, A. K. [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Matsuura, M. [Institute of Origins, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Bernard, J.-Ph. [Centre d'Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4 (France); Hony, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot DAPNIA/Service d'Astrophysique Bat. 709, CEA-Saclay F-91191 Gif-sur-Yvette Cedex (France); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Marengo, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C., E-mail: sargent@stsci.ed [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

  20. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  1. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  2. Modelling the local and global cloud formation on HD 189733b

    E-Print Network [OSTI]

    Lee, G; Dobbs-Dixon, I; Juncher, D

    2015-01-01

    Context. Observations suggest that exoplanets such as HD 189733b form clouds in their atmospheres which have a strong feedback onto their thermodynamical and chemical structure, and overall appearance. Aims. Inspired by mineral cloud modelling efforts for Brown Dwarf atmospheres, we present the first spatially varying kinetic cloud model structures for HD 189733b. Methods. We apply a 2-model approach using results from a 3D global radiation-hydrodynamic simulation of the atmosphere as input for a detailed, kinetic cloud formation model. Sampling the 3D global atmosphere structure with 1D trajectories allows us to model the spatially varying cloud structure on HD 189733b. The resulting cloud properties enable the calculation of the scattering and absorption properties of the clouds. Results. We present local and global cloud structure and property maps for HD 189733b. The calculated cloud properties show variations in composition, size and number density of cloud particles which are strongest between the daysi...

  3. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    Router Cloud Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless-Features-1GHz-Tegra-2-HigherRes-Screen/ #12;Router Router Router Router Mini Computer Mini Computer Mini Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud

  4. Jefferson Lab Laser Twinkles in Rare Color | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on the Jefferson Lab Ultraviolet Demonstration FEL, we delivered vacuum ultraviolet harmonic light to a calibrated VUV photodiode and measured five nanojoules of fully coherent...

  5. Jefferson Lab Weekly Briefs November 25, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Shutdown Days, Jefferson Lab closed Environment, Safety, Health & Quality Safe Turkey Tips from the CDC The Centers for Disease Control and Prevention offer food safety...

  6. Jefferson Lab Weekly Briefs September 16, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Science Jefferson Lab volunteers are needed to help students with a range of classroom activities and as mentors for role model visits as part of the Becoming...

  7. CLOuDS: 2012 Workshop | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L OBransenBusinessInitialRadiological Surveys

  8. 2011 CLOuDS Campaign | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONe β+-DecayUpgrade P. May, G.J.1 All

  9. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  12. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 Radar-based Retrievals of Cloud Properties in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 1 Radar Radiation Measurement (ARM) program Cloud and Radiation Testbed (CART) sites, all techniques discussed here can be applied to measurements taken at the different ARM sites. Briefly summarized here

  13. A Bigger Chill | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webb Space Telescope An artist's rendering of the James Webb Space Telescope. Image: NASA Ultracold refrigeration helps Jefferson Lab scientists peer into the innermost spaces...

  14. National Lab Day Fact Sheets

    Broader source: Energy.gov [DOE]

    These fact sheets highlight the important work of the 17 National Labs in five key mission areas: discovery science, energy & the environment, national security, manufacturing, and supercomputing.

  15. Civil War Unplugged | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil War Unplugged Featured In Jefferson Lab Spring Science Series Lecture NEWPORT NEWS, Va., Feb.12, 2008 - Discover how sounds affected the outcome of battles during the Civil...

  16. Fermilab at Work | Lab Life

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Life Abri Benefits Office Car and Vanpool Program Chez Leon Conference Office Cultural Events DASTOW Diversity Graduate Student Association (GSA) GSA's Guide to Life Housing...

  17. Materials Man (Release) | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnerships form the foundation of the ARC. He emphasizes the importance of alliances that have been forged among Jefferson Lab, NASA Langley Research Center and ARC's...

  18. Berkeley Lab Shares

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab | Shares SHARES 2014

  19. Berkeley Lab Shower Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab | Shares SHARES

  20. Berkeley Lab Space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab | Shares SHARESSpace

  1. Berkeley Lab Strategic Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab | SharesDirectorate

  2. Berkeley Lab Tour Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab |

  3. Berkeley Lab Welcomes NUG

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab

  4. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E DALSALS Chemistry Lab

  5. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^560AMERICA'S NATIONAL LABS by 50 50

  6. Berkeley Lab Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara2.0.1BenBerkeley Lab ParticleSiteAbout

  7. CloudTransport: Using Cloud Storage for

    E-Print Network [OSTI]

    Houmansadr, Amir

    users' network traffic by tunneling it through a cloud storage ser- vice such as Amazon S3. The goal the bridge or identify other connections. CloudTransport can be used as a standalone service, a gateway

  8. TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E. Luke

    E-Print Network [OSTI]

    TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E.bnl.gov ABSTRACT The profile of cloud microphysical properties and how the clouds are overlapped within a vertical simulations. We will present how cloud microphysical properties and overlap structure retrieved at the ARM

  9. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  10. Jefferson Lab Project Management & Integrated Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nuclear physics research. Our focus is to provide project management and integrated planning support across the Lab that is aligned with Lab goals, objectives and guidance....

  11. Eight National Labs Offer Streamlined Partnership Agreements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help...

  12. Cirrus cloud formation and the role of heterogeneous ice nuclei

    E-Print Network [OSTI]

    Froyd, Karl D.

    2013-01-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic ...

  13. Characterization of Tri-lab Tantalum Plate.

    SciTech Connect (OSTI)

    Buchheit, Thomas E.; Cerreta, Ellen K.; Deibler, Lisa Anne; Chen, Shu-Rong; Michael, Joseph R.

    2014-09-01

    This report provides a detailed characterization Tri-lab Tantalum (Ta) plate jointly purchased from HCStark Inc. by Sandia, Los Alamos and Lawrence Livermore National Laboratories. Data in this report was compiled from series of material and properties characterization experiments carried out at Sandia (SNL) and Los Alamos (LANL) Laboratories through a leveraged effort funded by the C2 campaign. Results include microstructure characterization detailing the crystallographic texture of the material and an increase in grain size near the end of the rolled plate. Mechanical properties evaluations include, compression cylinder, sub-scale tension specimen, micohardness and instrumented indentation testing. The plate was found to have vastly superior uniformity when compare with previously characterized wrought Ta material. Small but measurable variations in microstructure and properties were noted at the end, and at the top and bottom edges of the plate.

  14. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    1.2 Cloud computing to Vehicular CloudM. Gerla. Vehicular Cloud Computing, VCA 2012 Proceedings,single vehicle cannot. Cloud computing to Vehicular Cloud

  15. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service, performance SECaaS - Cloud hosted security measures Certifications - measurements for cloud security. #12;Cloud Questions If you have $0 security budget, could cloud be a security improvement? Who owns the data

  16. Jefferson Lab Weekly Briefs July 29, 2015 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Weekly Briefs July 29, 2015 12 GeV Upgrade The last civil construction task for the 12 GeV CEBAF Upgrade, accelerator tunnel air conditioning, is scheduled to be...

  17. Lab recognized for charitable giving

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures fiveLabLab

  18. Lab transitions employee giving campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab capturesLabTeam makes uniqueLab

  19. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.ACM workshop on Cloud computing security workshop, CCSW ’11,aspects of cloud computing, including security, performance

  20. Recap: Energy Efficiency at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the Energy Department's National Labs are helping consumers and businesses save energy and money.

  1. MEM Lab Archived News: September 03, 2013

    E-Print Network [OSTI]

    MEM Lab Archived News: September 03, 2013 The MEM Lab is happy to welcome Lauren Costello, Natalie, and the MEM Lab is enthusiastic to have Paul Hill join us this fall! Look for Paul under the "People" page this week. Thanks for all your hard work and good luck this year Stephanie! June 01, 2013 The MEM Lab

  2. Aruna Ravinagarajan System Energy Efficiency Lab

    E-Print Network [OSTI]

    Zhou, Yuanyuan

    Aruna Ravinagarajan System Energy Efficiency Lab Aruna Ravinagarajan Advisor : Prof. Tajana Simunic of monitoring a structure over time and identifying damage System Energy Efficiency Lab damage A wireless sensor Efficiency Lab #12;SHM ­ How is it done?SHM ­ How is it done? System Energy Efficiency Lab Stuart G Taylor

  3. National Labs | Department of Energy

    Office of Environmental Management (EM)

    all week as we explore the people, places and science of the National Labs. Read more Biofuels Biofuels Teams of scientists are working on replacements for gasoline, diesel and jet...

  4. Experimental Hall D | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top-right bottom-left-corner bottom-right-corner Experimental Hall D Jefferson Lab's fourth experimental hall, known as Hall D, began receiving beam for calibration and...

  5. Precision mechatronics lab robot development 

    E-Print Network [OSTI]

    Rogers, Adam Gregory

    2009-05-15

    based mobile robot. The principal goal of this work was the demonstration of the Precision Mechatronics Lab (PML) robot. This robot should be capable of traversing any known distance while maintaining a minimal position error. An optical correction...

  6. State of the Lab 2012

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    Ames Laboratory Director Alex King delivers the annual State of the Lab address on Thursday, May 17, 2012, the 65th Anniversary of the founding of The Ames Laboratory. This video contains highlights from the address.

  7. Lab Breakthroughs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting in Minority Banks InvestingLab Breakthroughs Lab

  8. Characterizing synoptic and cloud variability in the Northern Atlantic using self-organizing maps

    E-Print Network [OSTI]

    Fish, Carly Sue

    2014-08-31

    Low ? level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast ...

  9. 2010 - 04 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2010 Thu, 04292010 - 3:00pm JLab Road, Parking Closures ThurFri: Open House Volunteer Parking; Housekeeping Thu, 04152010 - 3:00pm Staff Must Validate Property, Take...

  10. 2011 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2011 Fri, 03042011 - 3:00pm Lane Expansion Begins March 7 at South End of Lawrence Drive Wed, 03022011 - 3:00pm Annual Property and Key Validation Begins March 15; Start...

  11. 2015 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 2015 Mon, 03302015 - 4:52pm TIAA-CREF INDIVIDUAL COUNSELING - June - December 2015 Thu, 03262015 - 3:02pm Annual Property Training & Validations Must be Completed Between...

  12. 2008 - 03 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    progress Fri, 03072008 - 3:00pm Validation of JLab Personal Property Now Through April 15, 2008 Tue, 03042008 - 3:00pm Reminder: Automatic Installation of Microsoft Office 2007...

  13. PC Windows Adobe Creative Cloud PC Windows Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Windows Adobe Creative Cloud 1 PC Windows Adobe Creative Cloud 2015-05-25 1 Web Windows Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller(Windows )() http://www.officesoft.gsic.titech.ac

  14. 660 VOLUME 21J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently

  15. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  16. Hyperscale Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Hyperscale Cloud Technical White Paper Published: May 2015 Applies to: SQL Server 2016 CTP2, SQL in the cloud with greater scale and flexibility. Microsoft SQL Server is built for cloud integration--your organization can easily deploy SQL Server in a private cloud, hybrid cloud, or public cloud, and can use

  17. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Chen, Tsuhan

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  18. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  19. Lab hosts multi-lab cyber security games

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22BackgroundLab hosts multi-lab cyber

  20. Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung*

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung* , Po-Chi Shih}@cs.nthu.edu.tw Abstract--This paper introduces a prototype of Taiwan UniCloud, a community-driven hybrid cloud platform for academics in Taiwan. The goal is to leverage resources in multiple clouds among different organizations

  1. JUNE 2002 835F R I S C H E T A L . The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars

    E-Print Network [OSTI]

    Shupe, Matthew

    . (1999). Another retrieval for stratocumulus cloud properties using solar radiation, microwave ra obtained from a microwave radiometer; the second uses the radar reflectivity and an assumption

  2. Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet Effective Radius

    E-Print Network [OSTI]

    Delene, David J.

    ` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN

  3. Community Cloud Computing

    E-Print Network [OSTI]

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  4. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDevice UWRecord-Setting CavitiesLabLab

  5. Lab supports multiethnic science careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab capturesLab

  6. Lab's Employee Giving Campaign underway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab capturesLabTeam

  7. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  8. Detection of Cb and TCu clouds Master Thesis

    E-Print Network [OSTI]

    Schmeits, Maurice

    : Meteosat HRV satellite image (edited) taken on 16 September 2009 at 18.00 UTC. c 2009 by lutz reflectances in the Visible (HRV) as well as weather radar data are used to de- velop a new Cb/TCu cloud regression model. Predictors for the mo- del have been derived from the cloud physical properties, HRV

  9. CLouds and Aerosol Radiative Interaction and Forcing Investigation

    E-Print Network [OSTI]

    Graaf, Martin de

    Radiative Interaction and Forcing Investigation Version 1.0 Date March 2012 Status Final #12;#12;CLARIFI, by absorbing and scattering solar radiation, and more importantly, by modifying cloud propertiesCLARIFI CLouds and Aerosol Radiative Interaction and Forcing Investigation M. de Graaf, L

  10. LDRD, investing in ourselves | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program at Jefferson Lab really started to germinate when we asked Bob McKeown to work on strategic planning for the lab. Given the nature of our funding, with the majority coming...

  11. LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP)

    E-Print Network [OSTI]

    McNeill, John A.

    1 LIGHT EMITTING DIODE CHARACTERISTICS (SAMPLE LAB WRITEUP) John A. McNeill ECE Box 000 January 19, 1997 ABSTRACT This lab investigates the V-I characteristic of a light-emitting diode (LED

  12. Jefferson Lab | Exploring the Nature of Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model and Activity Volunteers Needed to Help with BEAMS - Jefferson Lab's Science and Math Outreach Program for Students Mon, 08312015 - 11:33am Jefferson Lab to Test Tornado...

  13. Federated Cloud Security Architecture for Secure and Agile Clouds

    E-Print Network [OSTI]

    Xu, Shouhuai

    Federated Cloud Security Architecture for Secure and Agile Clouds Weiliang Luo, Li Xu, Zhenxin Zhan. This chapter introduces the novel federated cloud security architecture that includes proactive cloud defense technologies for secure and agile cloud development. The federated security architecture consists of a set

  14. The proposed connection between clouds and cosmic rays: Cloud

    E-Print Network [OSTI]

    The proposed connection between clouds and cosmic rays: Cloud behaviour during the past 50 of cloud factors using both satellite and ground­based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud­cosmic ray flux

  15. COLLEGE OF BUSINESS RESEARCH LAB POLICIES AND PROCEDURES Behavioral Research Lab

    E-Print Network [OSTI]

    , and operations. The Lab has a focus group room, central research studio, control room, and five small teamCOLLEGE OF BUSINESS RESEARCH LAB ­ POLICIES AND PROCEDURES Behavioral Research Lab The Behavioral Research Lab (see Figure One) is a multiuse research space designed to support a wide variety

  16. Copyright 2004 Auto-ID Labs, All Rights Reserved Auto-ID Labs

    E-Print Network [OSTI]

    Brock, David

    E. Grosvenor Plowman Award given by the Council of Logistics Management for the "paper judged©Copyright 2004 Auto-ID Labs, All Rights Reserved Auto-ID Labs Massachusetts Institute-ID Labs Massachusetts Institute of Technology #12;©Copyright 2004 Auto-ID Labs, All Rights Reserved

  17. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  18. EES 1001 Lab 9 Groundwater

    E-Print Network [OSTI]

    Li, X. Rong

    is groundwater. The water table is the top of the saturated zone, and is the target for well drillers that want, specifically if the water table is below the potentiometric surface. Manmade wells and natural springs flowingEES 1001 ­ Lab 9 Groundwater Water that seeps into the ground, and is pulled down by gravity

  19. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  20. State of the Lab Address

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  1. State of the Lab Address

    SciTech Connect (OSTI)

    King, Alex

    2010-01-01

    In his third-annual State of the Lab address, Ames Laboratory Director Alex King called the past year one of "quiet but strong progress" and called for Ames Laboratory to continue to build on its strengths while responding to changing expectations for energy research.

  2. Lab VIII 1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII ­ 1 LABORATORY VIII MECHANICAL OSCILLATIONS In most of the laboratory problems constant. In this set of laboratory problems the force on an object, and thus its acceleration, will change this laboratory, you should be able to: · provide a qualitative explanation of the behavior of oscillating systems

  3. Lab VIII -1 LABORATORY VIII

    E-Print Network [OSTI]

    Minnesota, University of

    Lab VIII - 1 LABORATORY VIII MECHANICAL OSCILLATIONS Most of the laboratory problems so far have was constant. In this set of laboratory problems, the total force acting on an object, and thus its's oscillation frequency. OBJECTIVES: After successfully completing this laboratory, you should be able to

  4. Plant Microbiology Lab SYLLABUS 2014

    E-Print Network [OSTI]

    Brown, Sally

    of beneficial microorganisms on plants. Assays will include colonization of the plants, N stress alleviation for sequencing Mon Mar 3 Measure seedlings (5 wk data). Other plant phys expts? Early in the week: your sequencing results will be emailed to you Fri Mar 7 Lab write-up #2 on Strai

  5. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  6. 36-220 Lab #11 Multiple Regression

    E-Print Network [OSTI]

    Spirtes, Peter

    36-220 Lab #11 Multiple Regression Please write your name below, tear off this front page and give;36-220 Lab #11 Multiple Regression First let's download the dataset we will need for the lab. Download gas Simple Regression Analysis 1. Fit the least squares regression line to describe the relationship between

  7. Advances in Chromatography, Mass Spectrometry & Lab Automation

    E-Print Network [OSTI]

    Vertes, Akos

    #12;Advances in Chromatography, Mass Spectrometry & Lab Automation 2 Publisher's Note Kevin Davies&EN Media Group 4 Top Ten Chromatography, Mass Spectrometry, and Lab Automation Papers APPLICATION NOTES 10&EN Supplement of 2015: "Advances in Chromatography, Mass Spectrometry, and Lab Automation." This supplement

  8. AN ARSCL-BASED CLOUD TYPE CLIMATOLOGY FROM RETRIEVALS AND IT'S USE IN MODEL EVALUATION STUDIES

    E-Print Network [OSTI]

    AN ARSCL-BASED CLOUD TYPE CLIMATOLOGY FROM RETRIEVALS AND IT'S USE IN MODEL EVALUATION STUDIES Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT A climatology of cloud types is developed using long in tandem with satellite observations for model cloud layering and property evaluation. Therefore, satellite

  9. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  10. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  11. Fig 2 -Cloud energy collect infrastructure Energy Efficient (Green) Cloud !

    E-Print Network [OSTI]

    Lefčvre, Laurent

    Fig 2 - Cloud energy collect infrastructure Energy Efficient (Green) Cloud ! The Compatible software components Energy Monitoring of physical and virtual resources Energy usage exposing for users and clouds managers Energy monitoring streams for upper layers software Design Energy aware software

  12. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  13. Lab suppliers receive Department of Energy awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab capturesLab scientistsLabLabLab

  14. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  15. December 15, 2014 LAB COMMISSION MEETING MINUTES

    Broader source: Energy.gov [DOE]

    The Commission to Review the Effectiveness of the National Energy Laboratories (Commission) was convened for its fifth meeting at 10:00 AM on December 15, 2014. Commission Co-Chair Jared Cohon led the meeting. The meeting included two panels: (1) authors of recent reports about the DOE National Labs and (2) a national lab contractor panel. The report authors summarized their respective reports, highlighting concerns related to the relationship between DOE and the labs, research funding and strategy stove-piping, weak links between the labs and market, an inconsistent economic development mission, the difficulty small firms have in accessing labs, the labs’ lack of regional engagement, and DOE and congressional micromanagement of the labs. The lab contractor representatives responded to questions posed by the commissioners related to lab management and the relationship with DOE. Additionally, Patricia Falcone spoke of the important role of the labs in the science and technology enterprise and Alan Leshner talked about the labs and their relationship with the scientific community. Christopher Paine presented his views on transforming the weapons complex. The next meeting will be held February 24 at the Hilton at Mark Center in VA.

  16. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.and M. Walfish. “Depot: Cloud storage with minimal trust. ”the 3rd ACM workshop on Cloud computing security workshop,

  17. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  18. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing Services Cloud...

  19. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    as well as data processing and data storage. We show that energy consumption in transport and switching | Cloud computing; core networks; data centers; energy consumption I. INTRODUCTION The increasing to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  20. RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL-MODELING-THEORETICAL INVESTIGATION

    E-Print Network [OSTI]

    RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL of Energy Office of Science ABSTRACT Cloud fraction and cloud albedo have long occupied the central stage as key cloud quantities in studying cloud-climate interaction; however their quantitative relationship

  1. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  2. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  3. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more »the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less

  4. Detector development for Jefferson Lab's 12GeV Upgrade

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qiang, Yi [JLAB] (ORCID:0000000170267841)

    2015-05-01

    Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers, the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.

  5. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  6. Free-Electron Laser | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vacuum ultraviolet light, and is also a source of Terahertz light. The FEL uses electrons to produce laser light. The electrons are energized using the lab's superconducting...

  7. Jefferson Lab | Exploring the Nature of Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Shutdown Days, Jefferson Lab closed Environment, Safety, Health & Quality Safe Turkey Tips from the CDC The Centers for Disease Control and Prevention offer food safety...

  8. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to express," Blake says. The lab also possesses engineering and modeling tools as well as the ability to build high-throughput custom enzyme assays, significant...

  9. Back to School at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how one Energy Department internship program is providing students with hands-on experience performing cutting edge research at the National Labs.

  10. Meet the National Labs | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    how many National Labs you can name in 60 seconds. Energy MEET the National Renewable Energy Laboratory (NREL), the nation's home for renewable energy and energy efficiency...

  11. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    detector for the military, the MicroChemLab. Ever since, Sandia has improved such microfluidics- and microelectromechanical (MEMS) systems-based instruments that identify...

  12. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holinka Following the earthquake and devastating tsunami last year that damaged the nuclear power complex at Fukushima, Japan, Sandia experts were asked to apply the Labs'...

  13. On Target June 2013 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for information about the lab's Environmental Management System which include pollution prevention and spill protection activities and efforts. He would also like to be...

  14. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the MicroChemLab. Ever since, Sandia has improved such microfluidics- and microelectromechanical (MEMS) systems-based instruments that identify chemicals based on gas...

  15. Lab school supply drive starts July 15

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures fiveLabLabLab school

  16. Lab scientist says 'The Martian' mostly accurate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures fiveLabLabLabThe

  17. Lab supercomputer finds new home at UNM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab capturesLab scientistsLabLab

  18. Jefferson Lab phenomenology: selected highlights

    SciTech Connect (OSTI)

    Wolodymyr Melnitchouk

    2005-07-07

    An overview of recent experimental highlights from Jefferson Lab is presented. We review the status of baryon spectroscopy, including the search for pentaquarks, as well as measurements of electromagnetic form factors of the nucleon, featuring the proton G{sub E}/G{sub M} ratio and the determination of the strangeness form factors. In inclusive scattering, we describe recent studies of quark-hadron duality in structure functions in the resonance-scaling transition region, and outline future physics plans at an energy upgraded 12 GeV facility.

  19. Berkeley Lab Trafficking Victims Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERT *Berkeley Lab |Trafficking Victims

  20. Sustainability | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1:Physics Lab April 23,Sustainability

  1. Berkeley Lab Site Construction Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections AuditsBarbara2.0.1BenBerkeley Lab ParticleSite

  2. Supervisor Responsibilities at Berkeley Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National Lab onSupercriticalVehicles and

  3. Element Labs | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc Jump to:ElectraLinkofProfilingLabs Jump to:

  4. LANL, Sandia National Lab recognize

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource and Job Event InLANLRecovery Act JobNational Lab

  5. Lab Subcontractor Consortium provides grants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDevice UWRecord-SettingLab Subcontractor

  6. Labs | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and masthead BerkeleySiteSeason ofLabs |

  7. I. Cooperative Problem Solving Labs in Operation 57 II. Grading the Labs 75

    E-Print Network [OSTI]

    Minnesota, University of

    Chapter 3 Teaching a Laboratory Section Page I. Cooperative Problem Solving Labs in Operation 57 II. Cooperative Problem Solving Labs in Operation The Cooperative Problem Solving (CPS) labs at the University courses follow the traditional structure of learning physics through solving problems, the goal

  8. EE443L: Intermediate Control Lab Lab2: Modeling a DC motor

    E-Print Network [OSTI]

    Wedeward, Kevin

    EE443L: Intermediate Control Lab Lab2: Modeling a DC motor Introduction: In this lab we will develop and validate a basic model of a permanent magnet DC motor (Yaskawa Electric, Mini-series, Minertia motor). The specific input/output relationship, which we are interested in determining, is the manner

  9. Labs

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia NationalSecurityNuclearH-canyon |I 14/%2A1/%2A en

  10. Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDevice UW MadisonofFlexible hydropower:

  11. 5. Problem-Solving Labs This chapter contains some materials that describe our cooperative-group problem solving labs. This

    E-Print Network [OSTI]

    Minnesota, University of

    Page 117 5. Problem-Solving Labs This chapter contains some materials that describe our cooperative-group problem solving labs. This material is described below. Page Frequently Asked Questions About Our Problem-solving compares our problem-solving labs with traditional verification labs and inquiry labs. 125 General Lesson

  12. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect (OSTI)

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  13. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmore »driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning – afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base, and thereby reduces decoupling and helps maintain LWP. The cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged CRE. However, the sensitivity of the diurnally averaged CRE to wind speed decreases with increasing wind speed.« less

  14. System Dynamics and Vibration Lab Dept. of Mechanical Engineering

    E-Print Network [OSTI]

    Shaw, Steven W.

    System Dynamics and Vibration Lab Dept. of Mechanical Engineering Finite-Element-Based Modal Response --Recent Results · Conclusions #12;System Dynamics and Vibration Lab Dept. of Mechanical and Vibration Lab Dept. of Mechanical Engineering Motivation · Motivation --Flexible Structure, Complex Geometry

  15. System Dynamics and Vibration Lab Dept. of Mechanical Engineering

    E-Print Network [OSTI]

    Shaw, Steven W.

    System Dynamics and Vibration Lab Dept. of Mechanical Engineering Component Mode Synthesis Using #12;System Dynamics and Vibration Lab Dept. of Mechanical Engineering Outline · Motivation · Conclusions #12;System Dynamics and Vibration Lab Dept. of Mechanical Engineering Complex Structures

  16. Solar Cooker Lab--Instructor's Guide Motivation

    E-Print Network [OSTI]

    Anderson, Betty Lise

    and questions instead of step by step instructions of how to build a solar cooker paints, etc.) and ask the students to build their own solar cooker using: Pre-lab ­ 20-30 minutes Lab Procedure Build a solar cooker ­ 30 minutes

  17. The DVCS program at Jefferson Lab

    SciTech Connect (OSTI)

    Niccolai, Silvia

    2014-06-01

    Recent promising results, obtained at Jefferson Lab, on cross sections and asymmetries for DVCS and their link to the Generalized Parton Distributions are the focus of this paper. The extensive experimental program to measure DVCS with the 12-GeV-upgraded CEBAF in three experimental Halls (A, B, C) of Jefferson Lab, will also be presented.

  18. Lab Four: 5 Jan. 2012 Computational Physics

    E-Print Network [OSTI]

    Feldman, David P.

    than three people on a lab report. Be sure to complete all the matlab calculations in lab today matlab code, but be sure you understand what it is that matlab 1. For the infinite square well, calculate's Method. I have prepared a short matlab function that will calculate and make plots of approximate

  19. BSL-3 Lab Provides New Opportunities

    E-Print Network [OSTI]

    Rock, Chris

    BSL-3 Lab Provides New Opportunities :: Texas Tech Today http://today.ttu.edu/2014/01/bsl-3-lab-provides-new-opportunities-for-texas-tech to biological pathogens and toxins. Written by Sally Logue Post 10Like Texas Tech University has dedicated a new contacted Texas Tech. "Texas Tech was able to utilize existing laboratory equipment and resources in the new

  20. Berkeley Lab 2nd Grader Outreach

    ScienceCinema (OSTI)

    Scoggins, Jackie; Louie, Virginia

    2013-05-29

    The Berkeley Lab IT Department sponsored a community outreach program aimed at teaching young children about computers and networks. Second graders from LeConte Elementary School joined Lab IT Staff for a day of in-depth exercises and fun.

  1. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  2. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    their research efforts in cloud security. Experiences andinvolving cloud resources and security guidance is thedynamic nature of cloud systems, the security controls must

  3. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    outsourcing to the cloud and data security. Depending onconcerned about data security in the cloud. Data stored inrun in the cloud, while protecting data security guarantees.

  4. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  5. Towards a Data-centric View of Cloud Security Wenchao Zhou Micah Sherr William R. Marczak Zhuoyao Zhang

    E-Print Network [OSTI]

    Ives, Zachary G.

    Towards a Data-centric View of Cloud Security Wenchao Zhou Micah Sherr William R. Marczak Zhuoyao@berkeley.edu ABSTRACT Cloud security issues have recently gained traction in the research community, with much of cloud security. In particular, we explore the secu- rity properties of secure data sharing between

  6. What Goes Up Must Come Down: The Lifecycle of Convective Clouds (492nd Brookhaven Lecture)

    SciTech Connect (OSTI)

    Jensen, Michael [BNL Environmental Sciences

    2014-02-19

    Some clouds look like cotton balls and others like anvils. Some bring rain, some snow and sleet, and others, just shade. But, whether big and billowy or dark and stormy, clouds affect far more than the weather each day. Armed with measurements of clouds’ updrafts and downdrafts—which resemble airflow in a convection oven—and many other atmospheric interactions, scientists from Brookhaven Lab and other institutions around the world are developing models that are crucial for understanding Earth’s climate and forecasting future climate change. During his lecture, Dr. Jensen provides an overview of the importance of clouds in the Earth’s climate system before explaining how convective clouds form, grow, and dissipate. His discussion includes findings from the Midlatitude Continental Convective Clouds Experiment (MC3E), a major collaborative experiment between U.S. Department of Energy (DOE) and NASA scientists to document precipitation, clouds, winds, and moisture in 3-D for a holistic view of convective clouds and their environment.

  7. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  8. Cloud Properties Working Group Break Out Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee of thePresence

  9. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38

  10. Posters Cloud Microphysical and Radiative Properties Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters Posters513911

  11. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamed Electrochemical Society

  12. Lovelock black hole thermodynamics in a string cloud model

    E-Print Network [OSTI]

    Lee, Tae-Hun; Maharaj, Sunil D; Baboolal, Dharmanand

    2015-01-01

    The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/or background string cloud completely changes the black hole thermodynamics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud, but has a correction term due to Lovelock gravity.

  13. Is the Sun Embedded in a Typical Interstellar Cloud?

    E-Print Network [OSTI]

    P. C. Frisch

    2008-06-17

    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.

  14. Commonwealth, High-Tech Leaders Recognize 14 Jefferson Lab Staff...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commonwealth, High-Tech Leaders Recognize 14 Jefferson Lab Staff Members for Patent Work April 4, 2002 Fourteen current and former Jefferson Lab employees were recognized on April...

  15. Sandia Energy - Sandia Labs to Share Expertise with Navajo Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy Surety Energy Grid Integration News Wind Energy News & Events Solar Energy Assurance Sandia Labs to Share Expertise with Navajo Nation Previous Next Sandia Labs...

  16. EERE's Technologist in Residence Program: National Lab-Industry...

    Energy Savers [EERE]

    TIR call for proposals and submission instructions can be found at EERE's solicitation portal. Submissions will be made by National Lab partners for each Lab-Industry...

  17. Jefferson Lab: Laser gun to eventually shoot down missiles (Daily...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    articles.dailypress.com2011-02-21newsdp-nws-jefferson-lab-201102211jefferson-lab-researchers-free-electron-l... Submitted: Monday, February 21, 2011...

  18. Secretary Chu Congratulates the National Renewable Energy Lab...

    Energy Savers [EERE]

    Secretary Chu Congratulates the National Renewable Energy Lab on 2011 GreenGov Presidential Award Secretary Chu Congratulates the National Renewable Energy Lab on 2011 GreenGov...

  19. Berkeley Lab's Bill Collins talks about Modeling the Changing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's Bill Collins talks about Modeling the Changing Earth System: Prospects and Challenges. From the 2014 NERSC User's Group Meeting Berkeley Lab's Bill Collins talks...

  20. Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Integrated Virtual Lab in Supporting Heavy Duty Engine and Vehicle Emission Rulemaking Presentation...

  1. Berkeley Lab Answers Your Home Energy Efficiency Questions (Other...

    Office of Scientific and Technical Information (OSTI)

    Other: Berkeley Lab Answers Your Home Energy Efficiency Questions Citation Details In-Document Search Title: Berkeley Lab Answers Your Home Energy Efficiency Questions In this...

  2. Jefferson Lab gets $75M in stimulus funds (Inside Business) ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesjefferson-lab-gets-75m-stimulus-funds-inside-business Jefferson Lab gets 75M in stimulus funds MICHAEL SCHWARTZ - Staff Writer Inside...

  3. New director of Jefferson Lab named (Daily Press) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesnew-director-jefferson-lab-named-daily-press New director of Jefferson Lab named Hugh Montgomery Hugh Montgomery has been named president of...

  4. Jefferson Lab finds its man Mont (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsarticlesjefferson-lab-finds-its-man-mont-inside-business Jefferson Lab finds its man Mont Hugh Montgomery Hugh Montgomery, a British nuclear physicist...

  5. DOE's Idaho National Lab Issues Request for Proposals for Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP...

  6. Berkeley Lab's New Computing Sciences Facility Features First...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Berkeley Lab's New Computing Sciences Facility Features First-of-Its-Kind Seismic Floor Berkeley Lab's New Computing Sciences Facility Features First-of-Its-Kind Seismic Floor...

  7. CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud

    E-Print Network [OSTI]

    Ryder, Barbara G.

    CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud large-scale cloud applications. Index Terms--cloud security, outsourced computation, side- channel, newly discovered vulnerabilities in cloud virtualization envi- ronment have threatened the security

  8. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  9. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  10. CloudMan: A Platform for Portable Cloud Manufacturing Services

    E-Print Network [OSTI]

    Dustdar, Schahram

    CloudMan: A Platform for Portable Cloud Manufacturing Services Soheil Qanbari, Samira Mahdi Zadeh Education (BIHE), Iran soroush.vedaeei@bihe.org Abstract--Cloud manufacturing refers to "as a Service" pro- duction model that exploits an on-demand access to a distributed pool of diversified manufacturing

  11. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  12. Software-Defined Mobile Cloud

    E-Print Network [OSTI]

    Ku, Ian

    2014-01-01

    M. Gerla. “Towards Software- Defined VANETs: ArchitectureI. Ku, Y. Lu, and M. Gerla. “Software-Defined Mobile Cloud:C. Peylo, “CloudMAC: towards software defined WLANs,” ACM

  13. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  14. Lab joins in global Earth Day celebrations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResource andfirstDeviceLab captures fiveLabLab has a

  15. Cite this: Lab Chip, 2013, 13, 4109 Rapid dielectrophoretic characterization of single cells

    E-Print Network [OSTI]

    Voldman, Joel

    Cite this: Lab Chip, 2013, 13, 4109 Rapid dielectrophoretic characterization of single cells using.rsc.org/loc Hao-Wei Su, Javier L. Prieto and Joel Voldman* Dielectrophoresis-based cell separation has significant promise for separation of cells from heterogeneous mixtures based on their electrical properties

  16. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    been working to understand that drawback and determine just how much clouds can affect solar power plant output. Typically, sunlight is measured using a single irradiance point...

  17. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel Ray inspect the Falling Particle Receiver during a cloud delay atop the National Solar Thermal Test Facility at Sandia National Laboratories. (Photo by Randy Montoya) by...

  18. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  19. CLOUD CHEMISTRY STEPHEN E. SCHWARTZ

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    is considered bere to comprise both cloud composition and reactions that take place in clouds. Clouds are a very special subset of tbe atmosphere because they present substantial amounts of condensed-phase water (liquid, the examples developed bere focus on these chemical systems. However, much of the resulting undetstanding

  20. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  1. Recap: Advancing Scientific Innovation at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the National Labs are advancing scientific innovation through user facilities and industry partnerships.

  2. IBM Haifa Research Lab 2010 IBM Corporation Query Performance Prediction

    E-Print Network [OSTI]

    Kurland, Oren

    IBM Haifa Research Lab © 2010 IBM Corporation Query Performance Prediction for IR David Carmel, IBM Haifa Research Lab Oren Kurland, Technion SIGIR Tutorial Portland Oregon, August 12, 2012 IBM Labs. David Carmel Research Staff Member at the Information Retrieval group at IBM Haifa Research Lab Ph

  3. Jefferson Lab electron beam charges up (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsreleasesjefferson-lab-electron-beam-charges Submitted: Friday, October 24, 2008...

  4. Jefferson Lab awards upgrade contracts (Inside Business) | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgnewsreleasesjefferson-lab-awards-upgrade-contracts Submitted: Friday, January 9...

  5. RISK ASSESSMENT CLOUD COMPUTING

    E-Print Network [OSTI]

    Columbia University

    SECURITY RESEARCH PRIVACY RISK ASSESSMENT AMC DATA FISMA CLOUD COMPUTING MOBILE DEVICES OPERATIONS PRACTICES TRENDS AUDITS policies #12;2 Privacy & Information Security Annual Update Thursday, June 20, 2013 of Breach statistics Plan to comply with requirements · Training and Education Information Security · Risk

  6. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or 45 percent, of the total, according to the Labs' latest economic impact report. US small businesses received 472.7 million in Sandia contracts, with the New Mexico share...

  7. Lab 3a: Distribution functions Histogram

    E-Print Network [OSTI]

    Gustafsson, Torgny

    Lab 3a: Distribution functions Outline · Histogram · Basic concepts · Gaussian (normal) distribution ­Limiting distribution · Poisson distribution ­Counting measurements #12;Histogram and bin A histogram is a graphical representation of the distribution of data. It is a representation of tabulated

  8. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the group works equally with New Mexico organizations. The lab has teamed with the solid mechanics staff of the Engineering Sciences Center (1500) for many years. "We have formed...

  9. The Jefferson Lab Trigger Supervisor System

    SciTech Connect (OSTI)

    Ed Jastrzembsi; David Abbott; Graham Heyes; R.W. MacLeod; Carl Timmer; Elliott Wolin

    2000-04-01

    We discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. We also discuss the enhanced features of a new Trigger Supervisor Module now under construction.

  10. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aimed high, attending the best schools she could. At Sandia, Julie first worked in microfluidics on MicroChemLab, a handheld device to bring benchtop laboratory analysis methods...

  11. CIVIL ENGINEERING LAB ACCESS REQUEST FORM Instructions

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    CIVIL ENGINEERING LAB ACCESS REQUEST FORM Instructions: 1) Fill out request 2) A request may Estimated Key Return Date/When does job terminate? Section C: Approval Signatures (for Civil Engineering use

  12. Security Lab Series Introduction to Cryptography

    E-Print Network [OSTI]

    Tao, Lixin

    ......................................................................................7 4.2 Symmetric Key Encryption/Decryption with GPG/Decryption .....................................................11 4.3.1 Basic Concepts of PGP (GPG) Digital Certificates and Public Key Ciphers...............11 4.3.2 A Detailed Lab Guide for GPG

  13. Jefferson Lab Leadership Council - Dr. Andrew Hutton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEORGE NEIL Associate Director for FEL Division George Neil is Senior Team Lead for the LCLS-II Project at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), a...

  14. Ames Lab 101: Rare-Earth Magnets

    ScienceCinema (OSTI)

    McCallum, Bill

    2012-08-29

    Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

  15. Jefferson Lab - Detector Support Group (DSG) Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Halls Hall A Hall B Hall C Hall D Additional Links Info Jefferson Lab Home Page Detector Support Group (DSG) Home The Detector Support Group (DSG) under the direction of Dr....

  16. Security Lab Series Introduction to Web Technologies

    E-Print Network [OSTI]

    Tao, Lixin

    Security Lab Series Introduction to Web Technologies Prof. Lixin Tao Pace University http...........................................................................................................................................1 1.1 Web ArchitectureScript..................................................................................16 4.6 Creating Your First JavaServer Page Web Application

  17. DATE: __________________ NVLAP LAB CODE: _________________ Test Method

    E-Print Network [OSTI]

    DATE: __________________ NVLAP LAB CODE: _________________ Test Method Designation Short Title _____ 30/DISC00A ANSI/INCITS 423.1 (2008) Information Technology - Conformance Testing Methodology Standard for Biometric Data Interchange Format Standards - Part 1: Generalized Conformance Testing Methodology _____ 30

  18. Spin in the Neutron | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Neutron NEWPORT NEWS, Va. - Puzzling out the source of proton and neutron spin is part of the ongoing experimental effort at Jefferson Lab to understand their structure and...

  19. Sandia National Laboratories: News: Publications: Lab News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I tell people, that's what the national labs are all about." -- Sue Major Holmes Back to top of page Experiments may force revision of astrophysical models of universe ICE GIANT...

  20. Lab experiences for teaching undergraduate dynamics

    E-Print Network [OSTI]

    Lilienkamp, Katherine A. (Katherine Ann), 1969-

    2003-01-01

    This thesis describes several projects developed to teach undergraduate dynamics and controls. The materials were developed primarily for the class 2.003 Modeling Dynamics and Control I. These include (1) a set of ActivLab ...

  1. Jefferson Lab is a world-leading ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the study of the building blocks of matter that make up 98 percent of our visible universe. Scientists from across the nation and around the world use the lab's facilities to...

  2. Berkeley Lab Creates Superfast Search Engine

    Broader source: Energy.gov [DOE]

    Scientists at the Energy Department's Berkeley Lab developed a new approach to searching massive databases that can increase speeds by 10 to 100 times that of large commercial database software.

  3. #LabSpotlight - People of the National Labs | Department of Energy

    Office of Environmental Management (EM)

    Dawson, an award-winning theoretical physicist seeking to better understand the Higgs boson particle and our latest LabSpotlight. Through the Looking Glass: The Art and...

  4. Jefferson Lab's Distributed Data Acquisition

    SciTech Connect (OSTI)

    Trent Allison; Thomas Powers

    2006-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist.

  5. PLC Support Software at Jefferson Lab

    SciTech Connect (OSTI)

    P. Chevtsov; S. Higgins; S. Schaffner; D. Seidman

    2002-10-01

    Several Automation Direct (DirectNet) Programmable Logic Controllers (PLCs) have been integrated into the accelerator control system at Jefferson Lab. The integration is based on new software that consists of three main parts: a PLC driver with a state machine control block, a device support module, and a common serial driver. The components of new software and experience gained with the use of this software for beam dump systems at Jefferson Lab are presented.

  6. M-Lab: The Mobile and Ubiquitous Computing Lab Matthias Lampe, ETH Zurich, lampe@inf.ethz.ch

    E-Print Network [OSTI]

    Roussos, George

    for Moveable Asset Management 12.10.2003 Page 2 © M-Lab Overview About the M-Lab RFID and Moveable Asset Management Smart Solution for Aircraft Maintenance Summary #12;The Potential of RFID for Moveable Asset of RFID for Moveable Asset Management 12.10.2003 Page 4 © M-Lab Overview About the M-Lab RFID and Moveable

  7. Scaling in stratocumulus fields: an emergent property

    E-Print Network [OSTI]

    Yuan, Tianle

    2015-01-01

    Marine stratocumulus clouds play a critical role in the Earth's climate system. They display an amazing array of complex behaviors at many different spatiotemporal scales. Precipitation in these clouds is in general very light, but it is vital for clouds' systematic evolution and organization. Here we identify areas of high liquid water path within these clouds as potentially precipitating, or pouches. They are breeding grounds for stratocumuli to change their organization form. We show, using different satellite data sets, that the size distribution of these pouches show a universal scaling. We argue that such scaling is an emergent property of the cloud system, which results from numbers interactions at the microscopic scale.

  8. DETECTABILITY OF OORT CLOUD OBJECTS USING KEPLER

    SciTech Connect (OSTI)

    Ofek, Eran O. [Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Nakar, Ehud [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2010-03-01

    The size distribution and total mass of objects in the Oort Cloud have important implications to the theory of planet formation, including the properties of, and the processes taking place in the early solar system. We discuss the potential of space missions, such as Kepler and CoRoT, designed to discover transiting exoplanets, to detect Oort Cloud, Kuiper Belt, and main belt objects by occultations of background stars. Relying on published dynamical estimates of the content of the Oort Cloud, we find that Kepler's main program is expected to detect between 0 and {approx}100 occultation events by deca-kilometer-sized Oort Cloud objects. The occultation rate depends on the mass of the Oort Cloud, the distance to its 'inner edge', and the size distribution of its objects. In contrast, Kepler is unlikely to find occultations by Kuiper Belt or main belt asteroids, mainly due to the fact that it is observing a high ecliptic latitude field. Occultations by solar system objects will appear as a photometric deviation in a single measurement, implying that the information regarding the timescale and light-curve shape of each event is lost. We present statistical methods that have the potential to verify the authenticity of occultation events by solar system objects, to estimate the distance to the occulting population, and to constrain their size distribution. Our results are useful for planning of future space-based exoplanet searches in a way that will maximize the probability of detecting solar system objects, without hampering the main science goals.

  9. MBL Drizzle Properties and Their Impact on Cloud Property Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTech ConnectFuture |0396THIN^J MASTER

  10. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  11. iLAB@MAKBrief -Brief History Visit to MUK by Prof. J. del Alamo to

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    #12;iLAB@MAKBrief - Brief History Aug/Sept 2004: ·Installation of the new iLab Shared Architecture Electrical Engineering students) June 2005: ·Official start of active iLab-Africa ·iLab Meeting for iLab-Africa of Execution: 1 st Quarter 2. Training Areas · iLab Architecture · iLab Toolkits · Web Services & Related

  12. Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and

    E-Print Network [OSTI]

    Mason, Andrew

    Cite this: Lab Chip, 2013, 13, 3929 Lab-on-CMOS integration of microfluidics and electrochemical* and Andrew J. Mason This paper introduces a CMOS­microfluidics integration scheme for electrochemical of the carrier, leaving a flat and smooth surface for integrating microfluidic structures. A model device

  13. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  14. CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications

    E-Print Network [OSTI]

    Buyya, Rajkumar

    CloudAnalyst: A CloudSim-based Visual Modeller for Analysing Cloud Computing Environments and Applications Bhathiya Wickremasinghe1 , Rodrigo N. Calheiros2 , and Rajkumar Buyya1 1 The Cloud Computing and Distributed Systems (CLOUDS) Laboratory Department of Computer Science and Software Engineering The University

  15. Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda bottle.

    E-Print Network [OSTI]

    Johnson, Cari

    Cloud in a Bottle Demonstrate how pressure relates to cloud formation by making a cloud in a soda doesn't escape. 5. Squeeze the soda bottle and release, repeating several times. Eventually, a cloud construction paper (or anything dark) on half of the bottle may make the cloud easier to see. What Happened

  16. Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband Radiometer measurements

    E-Print Network [OSTI]

    Retrievals of cloud optical depth and effective radius from Thin-Cloud Rotating Shadowband December 2011. [1] A Thin-Cloud Rotating Shadowband Radiometer (TCRSR) was developed and deployed) through an optically thin cloud (optical depth

  17. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect (OSTI)

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative properties to uncertainties in ice microphysics is largest for midlatitude cirrus and smallest for tropical anvil cirrus.

  18. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?˘ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?˘ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?˘ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  19. Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2014-07-28

    Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

  20. Minimalist Model of Ice Microphysics in Mixed-phase Stratiform Clouds

    SciTech Connect (OSTI)

    Yang, F.; Ovchinnikov, Mikhail; Shaw, Raymond A.

    2013-07-28

    The question of whether persistent ice crystal precipitation from super cooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model, and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power law relationship with ice number concentration ni. wi and ni from a LES cloud model with stochastic ice nucleation also confirm the 2.5 power law relationship. The prefactor of the power law is proportional to the ice nucleation rate, and therefore provides a quantitative link to observations of ice microphysical properties.