National Library of Energy BETA

Sample records for ky kentucky utilities

  1. City of Murray, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Murray, Kentucky (Utility Company) Jump to: navigation, search Name: City of Murray Place: Kentucky Phone Number: (270) 753-5312 Website: www2.murray-ky.net Twitter:...

  2. Kentucky

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kentucky

  3. Kentucky Utilities Co (Tennessee) | Open Energy Information

    Open Energy Info (EERE)

    Co (Tennessee) Jump to: navigation, search Name: Kentucky Utilities Co (Tennessee) Place: Tennessee Phone Number: 800-981-0600 Website: lge-ku.comcustomer-serviceou Outage...

  4. City of Olive Hill, Kentucky (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Olive Hill, Kentucky (Utility Company) Jump to: navigation, search Name: Olive Hill City of Place: Kentucky Phone Number: (606) 286-2192 Website: www.cityofolivehillutiliti...

  5. City of Glasgow, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Kentucky (Utility Company) Jump to: navigation, search Name: City of Glasgow Place: Kentucky Phone Number: (270) 651-8341 Website: www.glasgowepb.net Facebook: https:...

  6. City of Owensboro, Kentucky (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Owensboro, Kentucky (Utility Company) Jump to: navigation, search Name: City of Owensboro Place: Kentucky Phone Number: (270) 926-3200 Website: omu.org Facebook: https:...

  7. City of Hickman, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Hickman, Kentucky (Utility Company) Jump to: navigation, search Name: City of Hickman Place: Kentucky Phone Number: (270) 236-3951 or (270) 236-2535 Website: hickman.cityof.org...

  8. Kentucky Utilities Company- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  9. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    SciTech Connect (OSTI)

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  10. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  11. Quality characteristics of Kentucky coal from a utility perspective

    SciTech Connect (OSTI)

    Eble, C.F.; Hoover, J.C.

    1999-07-01

    Coal in Kentucky has been, and continues to be, a valuable energy source, especially for the electric utility industry. However, Federal mandates in Titles III and IV of the Clean Air Act Amendments of 1990, and more recently proposed ``greenhouse gas'' emission reductions, have placed increasingly stringent demands on the type and grade of coal that can be burned in an environmentally-accepted manner. Therefore, a greater understanding of the spatial and temporal distribution of thickness and quality parameters, and the geological factors that control their distribution, is critical if Kentucky will continue to be a major producer of high quality coal. Information from the Kentucky Geological Survey's Coal Resource Information System data base (KCRIS) is used in this paper to document the geological and stratigraphic distribution of important factors such as bed thickness, calorific value, ash yield, and total sulfur content. The distribution of major and minor elements that naturally occur in Kentucky coal is also discussed as some of these elements contribute to slagging and fouling in coal-fired furnaces; others may require monitoring with passage of Title III of the Clean Air Act Amendments of 1990.

  12. Kentucky Utilities Company and Louisville Gas & Electric- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

     Kentucky Utilities Company's Home Energy Rebate program provides incentives for residential customers to upgrade to energy efficiency home appliances and heat and air conditioning equipment. ...

  13. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. [Demonstration plant at Newman, KY

    SciTech Connect (OSTI)

    none,

    1980-11-21

    This document and its several appendices constitute an application for a Kentucky Permit to Construct an Air Contaminant Source as well as a Prevention of Significant Air Quality Deterioration (PSD) Permit Application. The information needed to satisfy the application requirements for both permits has been integrated into a complete and logical description of the proposed source, its emissions, control systems, and its expected air quality impacts. The Department of Energy believes that it has made every reasonable effort to be responsive to both the letter and the spirit of the PSD regulations (40 CFR 52.21) and Kentucky Regulation No. 401 KAR 50:035. In this regard, it is important to note that because of the preliminary status of some aspects of the process engineering and engineering design for the Demonstration Plant, it is not yet possible precisely to define some venting operations or their associated control systems. Therefore, it is not possible precisely to quantify some atmospheric emissions or their likely impact on air quality. In these instances, DOE and ICRC have used assumptions that produce impact estimates that are believed to be worst case and are not expected to be exceeded no matter what the outcome of future engineering decisions. As these decisions are made, emission quantities and rates, control system characteristics and efficiencies, and vent stack parameters are more precisely defined; this Permit Application will be supplemented or modified as appropriate. But, all needed modifications are expected to represent either decreases or at worst no changes in the air quality impact of the SRC-I Demonstration Plant.

  14. Northern Kentucky Veterans Job Fair | Department of Energy

    Energy Savers [EERE]

    Northern Kentucky Veterans Job Fair Northern Kentucky Veterans Job Fair March 23, 2016 8:00AM to 4:40PM EDT Receptions, Erlanger, KY

  15. Kentucky Utilities Company and Louisville Gas & Electric- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Kentucky Utilities Company (KU) offers rebates to all commercial customers who pay a DSM charge on monthly bills. Rebates are available on lighting measures, sensors, air conditioners, heat pumps,...

  16. Hickman, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources (Redirected from Hickman, KY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.5711721, -89.1861791 Show Map Loading map......

  17. Kentucky - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  18. Kentucky - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  19. Kentucky - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Kentucky

  20. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:43 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  1. ,"Kentucky Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:42 AM" "Back to Contents","Data 1: Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035KY3" "Date","Kentucky...

  2. Community Energy Systems and the Law of Public Utilities. Volume Nineteen. Kentucky

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description is given of the laws and programs of the State of Kentucky governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  3. File:USDA-CE-Production-GIFmaps-KY.pdf | Open Energy Information

    Open Energy Info (EERE)

    KY.pdf Jump to: navigation, search File File history File usage Kentucky Ethanol Plant Locations Size of this preview: 776 600 pixels. Full resolution (1,650 1,275 pixels,...

  4. Categorical Exclusion Determinations: Kentucky | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kentucky Categorical Exclusion Determinations: Kentucky Location Categorical Exclusion Determinations issued for actions in Kentucky. DOCUMENTS AVAILABLE FOR DOWNLOAD December 1, 2014 CX-100119 Categorical Exclusion Determination No Heat Spray Drying Technology Award Number: DE-EE0005774 CX(s) Applied: A9, B3.6 Date: 12/01/2014 Location(s): KY Office(s): Golden Field Office December 5, 2013 CX-011735: Categorical Exclusion Determination UHV Technologies, Inc. - Low Cost High Throughput In-Line

  5. Kentucky/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Incentives for Kentucky CSV (rows 1 - 71) Incentive Incentive Type Active Atmos Energy - Natural Gas and Weatherization Efficiency Program (Kentucky) Utility Rebate Program Yes...

  6. Williamstown Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    Comm Place: Kentucky Phone Number: (859) 824-3633 Website: www.wtownky.orgDepartmentsEl Twitter: @WilliamstownKY Facebook: https:www.facebook.comWilliamstownKY Outage...

  7. West KY Regional Middle School Science Bowl | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    West KY Regional Middle School Science Bowl West KY Regional Middle School Science Bowl Deegan Lawrence (far right) from Henderson County North Middle School gives an answer as teammates D.J. Banks (middle) and Alex Chandler look on during DOE's West Kentucky Regional Middle School Science Bowl in Paducah February 6. Henderson North won the competition and will compete in DOE's National Science Bowl® in Washington, D.C. April 30 through May 4. Addthis Related Articles 1st Place Henderson County

  8. Harlan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky Cumberland, Kentucky Evarts, Kentucky Harlan, Kentucky Loyall, Kentucky Lynch, Kentucky South Wallins, Kentucky Wallins Creek, Kentucky Retrieved from "http:...

  9. Jefferson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Broeck Pointe, Kentucky Brownsboro Farm, Kentucky Brownsboro Village, Kentucky Cambridge, Kentucky Coldstream, Kentucky Creekside, Kentucky Crossgate, Kentucky Douglass...

  10. West Kentucky Regional High School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School Science Bowl West Kentucky Regional High School Science Bowl February 19, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/high-school/high-school-regionals/ken

  11. West Kentucky Regional Middle School Science Bowl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Science Bowl West Kentucky Regional Middle School Science Bowl February 5, 2016 8:00AM to 5:00PM CST West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: 270-441-6821 Event Website Info: http://science.energy.gov/wdts/nsb/middle-school/middle-school-regionals

  12. Hardin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Elizabethtown, Kentucky Fort Knox, Kentucky Muldraugh, Kentucky Radcliff, Kentucky Sonora, Kentucky Upton, Kentucky Vine Grove, Kentucky West Point, Kentucky Retrieved from...

  13. Kenton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lakeside Park, Kentucky Ludlow, Kentucky Park Hills, Kentucky Ryland Heights, Kentucky Taylor Mill, Kentucky Villa Hills, Kentucky Walton, Kentucky Retrieved from "http:...

  14. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energys (DOEs) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentuckys most abundant indigenous resource and an important industry the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealths economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentuckys electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  15. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl | Department of Energy Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National Science Bowl March 31, 2014 - 12:00pm Addthis Members of Lone Oak Middle School’s winning team at DOE’s 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd, formulate their answer to a question in the middle school finals Feb. 28 in Paducah, Ky.

  16. Christian County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Commonwealth AgriEnergy Places in Christian County, Kentucky Crofton, Kentucky Fort Campbell North, Kentucky Hopkinsville, Kentucky LaFayette, Kentucky Oak Grove, Kentucky...

  17. Owen County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Places in Owen County, Kentucky Gratz, Kentucky Monterey, Kentucky Owenton, Kentucky Sparta, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleOwenCounty,Kentucky...

  18. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  19. Kentucky DOE EPSCoR Program

    SciTech Connect (OSTI)

    Grulke, Eric; Stencel, John

    2011-09-13

    The KY DOE EPSCoR Program supports two research clusters. The Materials Cluster uses unique equipment and computational methods that involve research expertise at the University of Kentucky and University of Louisville. This team determines the physical, chemical and mechanical properties of nanostructured materials and examines the dominant mechanisms involved in the formation of new self-assembled nanostructures. State-of-the-art parallel computational methods and algorithms are used to overcome current limitations of processing that otherwise are restricted to small system sizes and short times. The team also focuses on developing and applying advanced microtechnology fabrication techniques and the application of microelectrornechanical systems (MEMS) for creating new materials, novel microdevices, and integrated microsensors. The second research cluster concentrates on High Energy and Nuclear Physics. lt connects research and educational activities at the University of Kentucky, Eastern Kentucky University and national DOE research laboratories. Its vision is to establish world-class research status dedicated to experimental and theoretical investigations in strong interaction physics. The research provides a forum, facilities, and support for scientists to interact and collaborate in subatomic physics research. The program enables increased student involvement in fundamental physics research through the establishment of graduate fellowships and collaborative work.

  20. Kentucky Save Energy Now Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » State and Utility Engagement Activities » Kentucky Save Energy Now Initiative Kentucky Save Energy Now Initiative Kentucky The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program), has developed multiple resources and a suite of tools focused on best practices to help industrial manufacturers reduce their energy intensity. AMO adopted the Energy Policy Act of 2005 (EPAct) objective of reducing industrial

  1. Study of the impacts of regulations affecting the acceptance of Integrated Community Energy Systems: public utility, energy facility siting and municipal franchising regulatory programs in Kentucky. Preliminary background report

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L; Gallagher, K C; Hejna, D; Rielley, K J

    1980-01-01

    Until April 1, 1979, the Public Service Commission had been vested with exclusive jurisdiction over the regulation of rates and service of utilities. As of that date two new agencies, the Energy Regulatory Commission (ERC) and the Utility Regulatory Commission (URC), have replaced the Public Service Commission. The ERC consists of three full-time members appointed by the governor for four year terms and is responsible for enforcing the provisions of the Kentucky statutes relating to electric and gas utilities. The three-member URC is responsible for enforcing the provisions relating to non-energy utilities such as telephone, sewer, and water utilities. The statutes vest all regulatory authority over public utilities in either the ERC or the URC. Local governments retain only the power to grant local franchises. However, it should be noted, that any utility owned or operated by a political subdivision of the state is exempt from regulation. Thus, local government has complete authority over utilities which are self-owned. Public utility regulatory statutes, energy facility siting programs, and municipal franchising authority are examined to identify how they may impact on the ability of an organization, whether or not it be a regulated utility, to construct and operate an ICES.

  2. Hopkins County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Hopkins County, Kentucky Dawson Springs, Kentucky Earlington, Kentucky Hanson, Kentucky Madisonville, Kentucky Mortons...

  3. Oldham County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Oldham County, Kentucky Buckner, Kentucky Crestwood, Kentucky Goshen, Kentucky La Grange, Kentucky Orchard Grass...

  4. Lincoln County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crab Orchard, Kentucky Eubank, Kentucky Hustonville, Kentucky Junction City, Kentucky Stanford, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,Kent...

  5. Mountain Association for Community Economic Development- How$martKY On-Bill Financing Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Four rural utility cooperatives in Eastern Kentucky (Big Sandy RECC, Fleming-Mason RECC, Grayson RECC, and Jackson Energy) work with MACED to provide energy retrofits as part of utility service...

  6. Kentucky.pdf | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Kentucky.pdf More Documents & Publications Kentucky Recovery Act State Memo Slide 1 Stimulating Energy Efficiency in Kentucky: An Implementation Model for States

  7. Kentucky National Guard Radiation Specialist Course | Department...

    Office of Environmental Management (EM)

    Kentucky National Guard Radiation Specialist Course Kentucky National Guard Radiation Specialist Course PDF icon Kentucky National Guard Radiation Specialist Course More Documents...

  8. Summary - Building C-400 Thermal Treatment Remedial Design Report and Investigation, Paducah, Kentucky

    Office of Environmental Management (EM)

    Paducah, KY EM Project: Building C400 Thermal Treatment ETR Report Date: August 2007 ETR-8 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, Paducah Kentucky Why DOE-EM Did This Review The groundwater underlying the Paducah Gaseous Diffusion Plant (PGDP) is contaminated by chlorinated solvents, principally trichloroethylene (TCE), as well as other

  9. Software Helps Kentucky County Gauge Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Helps Kentucky County Gauge Energy Use Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis How does it work? Software tracks energy usage, greenhouse gas levels and analyzes utility bills. County could see savings and cost recoveries of $100,000 to $200,000. Information allows county to make energy usage changes and identify retrofit needs. For county officials conscious of energy efficiency, deciphering complex utility bills and identifying both municipal

  10. Caldwell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Caldwell County, Kentucky Dawson Springs, Kentucky Fredonia, Kentucky Princeton, Kentucky Retrieved from "http:...

  11. Monroe County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Monroe County, Kentucky Fountain Run, Kentucky Gamaliel, Kentucky Tompkinsville, Kentucky Retrieved from "http:...

  12. Gallatin County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Gallatin County, Kentucky Glencoe, Kentucky Sparta, Kentucky Warsaw, Kentucky Retrieved from "http:en.openei.orgw...

  13. Barren County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Barren County, Kentucky Cave City, Kentucky Glasgow, Kentucky Park City, Kentucky Retrieved from "http:en.openei.orgw...

  14. Pendleton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Pendleton County, Kentucky Butler, Kentucky Falmouth, Kentucky Williamstown, Kentucky Retrieved from "http:...

  15. Grayson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    4 Climate Zone Subtype A. Places in Grayson County, Kentucky Caneyville, Kentucky Clarkson, Kentucky Leitchfield, Kentucky Retrieved from "http:en.openei.orgw...

  16. Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Kentucky (Million Cubic Feet) Kentucky Natural Gas Processed in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 60,941 67,568 61,463 56,226 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Processed Kentucky-Kentucky

  17. Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Kentucky (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-Kentucky

  18. Corbin City Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Corbin City Utilities Comm Jump to: navigation, search Name: Corbin City Utilities Comm Place: Kentucky Phone Number: 606-528-4026 Website: corbinutilities.com Outage Hotline:...

  19. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    ... Kentucky Utilities Co Green River ...... See footnotes at end of table. Source: Federal Energy Regulatory Commission, FERC Form ...

  20. DOE - Office of Legacy Management -- Paducah Gaseous Diffusion Plant - KY

    Office of Legacy Management (LM)

    01 Paducah Gaseous Diffusion Plant - KY 01 FUSRAP Considered Sites Site: Paducah Gaseous Diffusion Plant (KY.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.oakridge.doe.gov/factsheets/paducgdp.htm Documents Related to Paducah Gaseous Diffusion Plant

  1. Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky

    Office of Environmental Management (EM)

    Power Plant | Department of Energy Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant Construction Begins on DOE-Sponsored Carbon-Capture Project at Kentucky Power Plant July 21, 2014 - 10:21am Addthis Washington, D.C. - Today, construction began on an innovative $19.5 million carbon-capture pilot, funded in part by the U.S. Department of Energy (DOE), at Kentucky Utilities' E.W. Brown Generating Station near Harrodsburg, Kentucky. The 2 megawatt thermal

  2. Kentucky Save Energy Now Program

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Kentucky.

  3. Western Kentucky thrives

    SciTech Connect (OSTI)

    Buchsbaum, L.

    2005-10-01

    Independents and big boys struggle to keep up with increasing demand and a lack of experienced workers in the Illinois Basin. This is the second of a two part series reviewing the coal mining industry in the Illinois Basin which also includes Indiana and Western Kentucky. It includes a classification/correction to Part 1 of the article published in the September 2005 issue (see Coal Abstracts Entry data/number Dec 2005 00204). 4 photos.

  4. ,"Kentucky Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5030ky2m.xls"

  5. ,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5290ky2m.xls"

  6. Proceedings of Office of Surface Mining Coal Combustion By-product Government/Regulatory Panel: University of Kentucky international ash utilization symposium

    SciTech Connect (OSTI)

    Vories, K.C.

    2003-07-01

    Short papers are given on: the Coal Combustion Program (C2P2) (J. Glenn); regional environmental concerns with disposal of coal combustion wastes at mines (T. FitzGerald); power plant waste mine filling - an environmental perspective (L.G. Evans); utility industry perspective regarding coal combustion product management and regulation (J. Roewer); coal combustion products opportunities for beneficial use (D.C. Goss); state perspective on mine placement of coal combustion by-products (G.E. Conrad); Texas regulations provide for beneficial use of coal combustion ash (S.S. Ferguson); and the Surface Mining Control and Reclamation Act - a response to concerns about placement of CCBs at coal mine sites (K.C. Vories). The questions and answers are also included.

  7. Cost and Quality of Fuels for Electric Utility Plants 2000 Tables

    Gasoline and Diesel Fuel Update (EIA)

    ... Kentucky Utilities Co Green River ...... See footnotes at end of table. Source: Federal Energy Regulatory Commission, FERC Form ...

  8. Fulton County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fulton County, Kentucky Fulton, Kentucky Hickman, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFultonCounty,Kentu...

  9. Madison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Madison County, Kentucky Berea, Kentucky Richmond, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleMadisonCounty,Kent...

  10. Kentucky Consortium for Carbon Storage | Open Energy Information

    Open Energy Info (EERE)

    Consortium for Carbon Storage Jump to: navigation, search Name: Kentucky Consortium for Carbon Storage Place: Lexington, Kentucky Zip: 40506-0107 Product: Kentucky based...

  11. Calloway County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Calloway County, Kentucky Hazel, Kentucky Murray, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCallowayCounty,Kent...

  12. Trimble County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Trimble County, Kentucky Bedford, Kentucky Milton, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleTrimbleCounty,Kentu...

  13. Barbourville Utility Comm | Open Energy Information

    Open Energy Info (EERE)

    Comm Place: Kentucky Phone Number: 1 (606) 546-3187 Website: www.barbourville.comindex-4.h Facebook: https:www.facebook.compagesBarbourville-Utility-Commission185033288196247...

  14. Madisonville Municipal Utils | Open Energy Information

    Open Energy Info (EERE)

    Utils Place: Kentucky Phone Number: (270) 824-2102 Website: madisonvilleky.usindex.phpgo Twitter: @TBTOE Facebook: https:www.facebook.compagesThe-City-of-Madisonville...

  15. Gatton Academy Wins 2015 DOE West Kentucky Regional Science Bowl...

    Broader source: Energy.gov (indexed) [DOE]

    PADUCAH, KY - Gatton Academy, Bowling Green, KY, won the U.S. Department of Energy's ... areas of science, including biology, chemistry, Earth science, physics, energy, and math. ...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mountain Association for Community Economic Development- HowmartKY On-Bill Financing Energy Efficiency Program Four rural utility cooperatives in Eastern Kentucky (Big Sandy RECC,...

  17. Columbus, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Columbus is a city in Hickman County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  18. Adairville, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. Adairville is a city in Logan County, Kentucky. It falls under Kentucky's 1st congressional district.12...

  19. Kentucky Residential Energy Code Field Study

    Broader source: Energy.gov [DOE]

    Lead Performer: Midwest Energy Efficiency Alliance – Chicago, ILPartners:   -  Kentucky Department of Housing, Buildings and Construction (DHBC) – Frankfort, KY  -  Kentucky Department of Energy...

  20. Maxey Flats, Kentucky, Disposal Site Fact Sheet

    Office of Legacy Management (LM)

    3 Fact Sheet Maxey Flats, Kentucky, Disposal Site This fact sheet provides information about the Maxey Flats, Kentucky, Disposal Site. This site is managed by the U.S. Department of Energy Office of Legacy Management under the Comprehensive Environmental Response, Compensation, and Liability Act. Location of the Maxey Flats, Kentucky, Disposal Site Site Description and History The Maxey Flats site is an inactive, low-level radioactive waste disposal site located in eastern Kentucky about 10

  1. EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

  2. West Kentucky Rural E C C | Open Energy Information

    Open Energy Info (EERE)

    West Kentucky Rural E C C Jump to: navigation, search Name: West Kentucky Rural E C C Place: Kentucky Phone Number: 270-247-1321 or 1-877-495-7322 Website: www.wkrecc.com Twitter:...

  3. Category:Utility Company Aliases | Open Energy Information

    Open Energy Info (EERE)

    Country Public Utility GreyStone H HECO Huntsville Utilities I IID I cont. Integrys J JCP&L K Kansas Gas & Electric Co KCP&L Kentucky Utilities Co (Virginia) KeySpan Generation LLC...

  4. Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky, ...

  5. South Kentucky RECC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    South Kentucky Rural Electric Cooperative Corporation (RECC) provides service to more than 60,000 customers in southeastern Kentucky. To promote energy efficiency to residential customers, South...

  6. Kentucky DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    DNR Oil and Gas Division Jump to: navigation, search Name: Kentucky DNR Oil and Gas Division Address: 1025 Capital Center Drive Place: Kentucky Zip: 40601 Website:...

  7. Crittenden County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Crittenden County, Kentucky Marion, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleCrittendenCounty,Ke...

  8. Breathitt County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 4 Climate Zone Subtype A. Places in Breathitt County, Kentucky Jackson, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleBreathittCounty,Ke...

  9. Fayette County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 4 Climate Zone Subtype A. Places in Fayette County, Kentucky Lexington-Fayette urban, Kentucky Retrieved from "http:en.openei.orgwindex.php?titleFayetteCounty,Kentu...

  10. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  11. Anderson County, Kentucky ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Anderson County, Kentucky ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Anderson County, Kentucky ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  12. Tennessee Valley Authority (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Place: Kentucky Phone Number: 865-632-2101 Website: www.tva.comabouttvacontact.h Twitter: @TVANewsroom Facebook: https:www.facebook.comTVAapp116943498446376 Outage...

  13. State Energy Program: Kentucky Implementation Model Resources

    Broader source: Energy.gov [DOE]

    Below are resources associated with the U.S. Department of Energy's Weatherization and Intergovernmental Programs Office State Energy Program Kentucky Implementation Model.

  14. Kentucky/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Kentucky Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  15. ,"Kentucky Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  16. Sonora, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sonora, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.524226, -85.8930192 Show Map Loading map... "minzoom":false,"mappingservic...

  17. Recovery Act State Memos Kentucky

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  18. Tennessee Valley and Eastern Kentucky Wind Working Group

    SciTech Connect (OSTI)

    Katie Stokes

    2012-05-03

    In December 2009, the Southern Alliance for Clean Energy (SACE), through a partnership with the Appalachian Regional Commission, EKPC, Kentucky's Department for Energy Development and Independence, SACE, Tennessee's Department of Environment and Conservation, and TVA, and through a contract with the Department of Energy, established the Tennessee Valley and Eastern Kentucky Wind Working Group (TVEKWWG). TVEKWWG consists of a strong network of people and organizations. Working together, they provide information to various organizations and stakeholders regarding the responsible development of wind power in the state. Members include representatives from utility interests, state and federal agencies, economic development organizations, non-government organizations, local decision makers, educational institutions, and wind industry representatives. The working group is facilitated by the Southern Alliance for Clean Energy. TVEKWWG supports the Department of Energy by helping educate and inform key stakeholders about wind energy in the state of Tennessee.

  19. Kentucky DOE-EPSCoR Program

    SciTech Connect (OSTI)

    Stencel, J.M.; Ochsenbein, M.P.

    2003-04-14

    The KY DOE EPSCoR Program included efforts to impact positively the pipeline of science and engineering students and to establish research, education and business infrastructure, sustainable beyond DOE EPSCoR funding.

  20. Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative

  1. Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    to Its Fleet Kentucky Trucking Company Adds CNG Vehicles to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG Vehicles to Its Fleet on Google Bookmark Alternative Fuels Data Center: Kentucky Trucking Company Adds CNG

  2. Western Kentucky University Research Foundation Biodiesel Project

    SciTech Connect (OSTI)

    Pan, Wei-Ping; Cao, Yan

    2013-03-15

    Petroleum-based liquid hydrocarbons is exclusively major energy source in the transportation sector. Thus, it is the major CO{sub 2} source which is the associated with greenhouse effect. In the United States alone, petroleum consumption in the transportation sector approaches 13.8 million barrels per day (Mbbl/d). It is corresponding to a release of 0.53 gigatons of carbon per year (GtC/yr), which accounts for approximate 7.6 % of the current global release of CO{sub 2} from all of the fossil fuel usage (7 GtC/yr). For the long term, the conventional petroleum production is predicted to peak in as little as the next 10 years to as high as the next 50 years. Negative environmental consequences, the frequently roaring petroleum prices, increasing petroleum utilization and concerns about competitive supplies of petroleum have driven dramatic interest in producing alternative transportation fuels, such as electricity-based, hydrogen-based and bio-based transportation alternative fuels. Use of either of electricity-based or hydrogen-based alternative energy in the transportation sector is currently laden with technical and economical challenges. The current energy density of commercial batteries is 175 Wh/kg of battery. At a storage pressure of 680 atm, the lower heating value (LHV) of H{sub 2} is 1.32 kWh/liter. In contrast, the corresponding energy density for gasoline can reach as high as 8.88 kWh/liter. Furthermore, the convenience of using a liquid hydrocarbon fuel through the existing infrastructures is a big deterrent to replacement by both batteries and hydrogen. Biomass-derived ethanol and bio-diesel (biofuels) can be two promising and predominant U.S. alternative transportation fuels. Both their energy densities and physical properties are comparable to their relatives of petroleum-based gasoline and diesel, however, biofuels are significantly environmental-benign. Ethanol can be made from the sugar-based or starch-based biomass materials, which is easily fermented to create ethanol. In the United States almost all starch ethanol is mainly manufactured from corn grains. The technology for manufacturing corn ethanol can be considered mature as of the late 1980s. In 2005, 14.3 % of the U.S. corn harvest was processed to produce 1.48 x10{sup 10} liters of ethanol, energetically equivalent to 1.72 % of U.S. gasoline usage. Soybean oil is extracted from 1.5 % of the U.S. soybean harvest to produce 2.56 x 10{sup 8} liters of bio-diesel, which was 0.09 % of U.S. diesel usage. However, reaching maximum rates of bio-fuel supply from corn and soybeans is unlikely because these crops are presently major contributors to human food supplies through livestock feed and direct consumption. Moreover, there currently arguments on that the conversion of many types of many natural landscapes to grow corn for feedstock is likely to create substantial carbon emissions that will exacerbate globe warming. On the other hand, there is a large underutilized resource of cellulose biomass from trees, grasses, and nonedible parts of crops that could serve as a feedstock. One of the potentially significant new bio-fuels is so called "cellulosic ethanol", which is dependent on break-down by microbes or enzymes. Because of technological limitations (the wider variety of molecular structures in cellulose and hemicellulose requires a wider variety of microorganisms to break them down) and other cost hurdles (such as lower kinetics), cellulosic ethanol can currently remain in lab scales. Considering farm yields, commodity and fuel prices, farm energy and agrichemical inputs, production plant efficiencies, byproduct production, greenhouse gas (GHG) emissions, and other environmental effects, a life-cycle evaluation of competitive indicated that corn ethanol yields 25 % more energy than the energy invested in its production, whereas soybean bio-diesel yields 93 % more. Relative to the fossil fuels they displace, greenhouse gas emissions are reduced 12 % by the production and combustion of ethanol and 41 % by bio-diesel. Bio-diesel also releases less air pollutants per net energy gain than ethanol. Bio-diesel has advantages over ethanol due to its lower agricultural inputs and more efficient conversion. Thus, to be a viable alternative, a bio-fuel firstly should be producible in large quantities without reducing food supplies. In this aspect, larger quantity supplies of cellulose biomass are likely viable alternatives. U. S. Congress has introduced an initiative and subsequently rolled into the basic energy package, which encourages the production of fuel from purely renewable resources, biomass. Secondly, a bio-fuel should also provide a net energy gain, have environmental benefits and be economically competitive. In this aspect, bio-diesel has advantages over ethanol. The commonwealth of Kentucky is fortunate to have a diverse and abundant supply of renewable energy resources. Both Kentucky Governor Beshear in the energy plan for Kentucky "Intelligent Energy Choices for Kentucky's Future", and Kentucky Renewable Energy Consortium, outlined strategies on developing energy in renewable, sustainable and efficient ways. Smart utilization of diversified renewable energy resources using advanced technologies developed by Kentucky public universities, and promotion of these technologies to the market place by collaboration between universities and private industry, are specially encouraged. Thus, the initially question answering Governor's strategic plan is if there is any economical way to make utilization of larger quantities of cellulose and hemicellulose for production of bio-fuels, especially bio-diesel. There are some possible options of commercially available technologies to convert cellulose based biomass energy to bio-fuels. Cellulose based biomass can be firstly gasified to obtain synthesis gas (a mixture of CO and H{sub 2}), which is followed up by being converted into liquid hydrocarbon fuels or oxygenate hydrocarbon fuel through Fischer-Tropsch (F-T) synthesis. Methanol production is regarded to be the most economic starting step in many-year practices of the development of F-T synthesis technology since only C{sub 1} synthesis through F-T process can potentially achieve 100% conversion efficiency. Mobil's F-T synthesis process is based on this understanding. Considering the economical advantages of bio-diesel production over ethanol and necessary supply of methanol during bio-diesel production, a new opportunity for bio-diesel production with total supplies of biomass-based raw materials through more economic reaction pathways is likely identified in this proposal. The bio-oil part of biomass can be transesterified under available methanol (or mixed alcohols), which can be synthesized in the most easy part of F-T synthesis process using synthesis gas from gasification of cellulose fractions of biomass. We propose a novel concept to make sense of bio-diesel production economically though a coupling reaction of bio-oil transesterification and methanol synthesis. It will overcome problems of current bio-diesel producing process based on separated handling of methanol and bio-oil.

  3. Kentucky Residents Cash in on Rebate Program

    Broader source: Energy.gov [DOE]

    A look at Kentucky's energy efficient rebate program, which has issued nearly 29,500 rebates for 16 different types of energy efficient appliances to residents across the state.

  4. Biodiesel is Working Hard in Kentucky

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet describes the use of biodiesel fuel in 6 school districts throughout Kentucky. It contains usage information for each school district, as well as contact information for local Clean Cities Coordinators and Biodiesel suppliers.

  5. File:EIA-Appalach7-TN-KY-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    Appalachian Basin, Kentucky and Tennessee By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  6. Kentucky's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Kentucky's 1st congressional district Commonwealth AgriEnergy Four Rivers BioEnergy Retrieved from "http:en.openei.orgwindex.php?titleKentucky%27s1stcongressiona...

  7. West Point, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Point is a city in Hardin County, Kentucky. It falls under Kentucky's 2nd congressional...

  8. Kentucky Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Kentucky Recovery Act State Memo Kentucky Recovery Act State Memo Kentucky has substantial natural resources, including coal, oil, gas, and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Kentucky are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles.

  9. Alternative Fuels Data Center: Kentucky Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Kentucky Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Kentucky Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  10. Kentucky Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Kentucky Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 2 2 5 2010's 4 4 4 4 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Kentucky Shale Gas Proved Reserves, Reserves Changes, and Production Shale G

  11. Kentucky Shale Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Kentucky Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 21 20 55 2010's 10 41 34 46 50 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Kentucky Shale Gas Proved Reserves, Reserves

  12. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Mike Waters - Duke Energy November 18th, 2014 Duke Energy  Electricity provider for over 7.2 million retail customers  6 states: NC, SC, FL, OH, IN, KY  104,000 sq. miles of service territory  ~50,000 MW of regulated generation  Fortune 250 company  Vertically integrated utility  Headquarters: Charlotte, NC 2 Duke Energy Support Activities Goals  Provide safe, reliable, affordable and increasingly clean electricity to power the movement of people and goods 

  13. City of Paducah, Kentucky (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    pagesPaducah-Power-System158534167504742 Outage Hotline: 270.575.4010 Outage Map: paducahpower.comoutagesoutag References: EIA Form EIA-861 Final Data File for 2010...

  14. City of Princeton, Kentucky (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    @PrincetonEPB Facebook: https:www.facebook.compagesPrinceton-EPB118073408207017?refts Outage Hotline: 270-365-2031 References: EIA Form EIA-861 Final Data File for 2010 -...

  15. Kentucky Launches State-Wide School Energy Manager Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Kentucky Launches State-Wide School Energy Manager Program Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 2:00pm Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Paul Lester Paul Lester Digital

  16. SEP Success Story: Kentucky Launches State-Wide School Energy Manager

    Energy Savers [EERE]

    Program | Department of Energy Kentucky Launches State-Wide School Energy Manager Program SEP Success Story: Kentucky Launches State-Wide School Energy Manager Program August 17, 2010 - 9:29am Addthis Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution Prevention Center Kentucky's School Energy Managers pose for a photo during an orientation session. | Photo courtesy of Chris Wooten, Kentucky Pollution

  17. A Guidance Document for Kentucky's Oil and Gas Operators

    SciTech Connect (OSTI)

    Bender, Rick

    2002-03-18

    The accompanying report, manual and assimilated data represent the initial preparation for submission of an Application for Primacy under the Class II Underground Injection Control (UIC) program on behalf of the Commonwealth of Kentucky. The purpose of this study was to identify deficiencies in Kentucky law and regulation that would prevent the Kentucky Division of Oil and Gas from receiving approval of primacy of the UIC program, currently under control of the United States Environmental Protection Agency (EPA) in Atlanta, Georgia.

  18. Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Howell | Department of Energy Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell Transitioning Kentucky Off Oil: An Interview with Clean Cities Coordinator Melissa Howell June 18, 2013 - 4:12pm Addthis With the help of Kentucky Clean Fuels Coalition, Mammoth Cave National Park was the first National Park fleet to use 100 percent alternative fuel. The Global Electric Motorcar (pictured above) is used by park rangers who need to travel between the

  19. DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Headquarters Review Focuses on Improved LATA Kentucky Worker Safety DOE Headquarters Review Focuses on Improved LATA Kentucky Worker Safety July 1, 2012 - 12:00pm Addthis Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement, addresses LATA Kentucky employees during a training session. The June regulatory assistance review was aimed at ensuring worker safety. Kevin Dressman, director of the DOE Office of Worker Safety and Health Enforcement,

  20. Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy

    Energy Savers [EERE]

    Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER | Department of Energy Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER This case study summarizes energy efficiency achievements made by Sherwin-Williams' Richmond, Kentucky,

  1. Hart County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hart County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.3101304, -85.8486236 Show Map Loading map... "minzoom":false,"mapping...

  2. Clay County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.1738044, -83.7199136 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  3. Powell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8380647, -83.8260884 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  4. Webster County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4892188, -87.7369607 Show Map Loading map... "minzoom":false,"mappingservice":"goo...

  5. Green County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.2570117, -85.56121 Show Map Loading map... "minzoom":false,"mappingservice":"googl...

  6. Boyle County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Boyle County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6526034, -84.8150781 Show Map Loading map... "minzoom":false,"mappin...

  7. Lyon County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Lyon County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.0247261, -88.0900762 Show Map Loading map... "minzoom":false,"mapping...

  8. Washington County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Washington County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7516142, -85.1479364 Show Map Loading map......

  9. South Kentucky Rural Electric Coop Corp (Tennessee) | Open Energy...

    Open Energy Info (EERE)

    Electric Coop Corp Place: Tennessee Phone Number: 800-772-4636 Website: www.skrecc.com Twitter: @skrecc Facebook: https:www.facebook.compagesSouth-Kentucky-RECC...

  10. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky...

  11. Columbia Gas of Kentucky- Home Savings Rebate Program

    Broader source: Energy.gov [DOE]

    Columbia Gas of Kentucky offers rebates to residential customers for the purchase and installation of energy efficient appliances and equipment. These programs include:

  12. Kentucky Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. ,"Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  14. Kentucky Natural Gas Deliveries to Electric Power Consumers ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deliveries to Electric Power Consumers (Million Cubic Feet) Kentucky Natural Gas Deliveries to Electric Power Consumers (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  15. EECBG Success Story: Software Helps Kentucky County Gauge Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Software Helps Kentucky County Gauge Energy Use EECBG Success Story: Software Helps ... Learn more. Addthis Related Articles EECBG Success Story: The Jury's In: Hillsborough ...

  16. Nelson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nelson County, Kentucky: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7647455, -85.4788065 Show Map Loading map... "minzoom":false,"mappi...

  17. Seismic Hazard Assessment for Western Kentucky, Northeastern Kentucky and Southeastern Ohio

    SciTech Connect (OSTI)

    Cobb, James C; Wang, Zhenming; Woolery, Edward W; Kiefer, John D

    2002-07-01

    Earthquakes pose a seismic hazards and risk to the Commonwealth of Kentucky. Furthermore, the seismic hazards and risk vary throughout the Commonwealth. The US Nuclear Regulatory Commission uses the seismic hazard maps developed by the US Geological Survey for seismic safety regulation for nuclear facilities. Under current US Geological Survey's seismic hazard assessment it is economically unfeasible to build a new uranium plant near Paducah relative to the Portsmouth, Ohio site. This is not to say that the facility cannot be safely engineered to withstand the present seismic load, but enormously expensive to do so. More than 20 years observations and research at UK have shown that the US Geological Survey has overestimated seismic hazards in western Kentucky, particularly in the Jackson Purchase area that includes Paducah. Furthermore, our research indicates underestimated seismic hazards in northeastern Kentucky and southeastern Ohio. Such overestimation and underestimation could jeopardize possible site selection of PGDP for the new uranium plant. The existing database, research experience, and expertise in UK's Kentucky Geological Survey and Department of Geological Science put this institution in a unique position to conduct a comprehensive seismic hazard evaluation.

  18. Kentucky Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Kentucky Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane

  19. Kentucky Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Used for Repressuring Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Used for Repressuring

  20. High Performance Without Increased Cost: Urbane Homes, Louisville, KY- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Building America Innovations profile describes work with Urbane Homes of Louisville, Kentucky, to build a high-performance home that cost $36 per ft2 (not counting the lot).Between 2005 and 2010, Building America research partners worked with 34 builders to construct nearly 3,000 HERS

  1. Preliminary Notice of Violation, LATA Environmental Services of Kentucky,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LLC - WEA-2012-01 | Department of Energy LATA Environmental Services of Kentucky, LLC - WEA-2012-01 Preliminary Notice of Violation, LATA Environmental Services of Kentucky, LLC - WEA-2012-01 May 23, 2012 Issued to LATA Environmental Services of Kentucky, LLC related to a Heat Stress Event and a Uranium Hexafluoride Release at the Paducah Gaseous Diffusion Plant. On May 23, 2012, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement and Oversight

  2. Gatton Academy Wins DOE's West Kentucky Regional Science Bowl |

    Energy Savers [EERE]

    Department of Energy Gatton Academy Wins DOE's West Kentucky Regional Science Bowl Gatton Academy Wins DOE's West Kentucky Regional Science Bowl February 19, 2016 - 4:30pm Addthis Gatton Academy Team-1 won the U.S. Department of Energy’s (DOE) West Kentucky Regional Science Bowl on February 19, 2016. Gatton will travel to Washington, D.C. to compete in the National Finals of DOE’s National Science Bowl® April 28 through May 2. Pictured, from left: Gatton's Taylor Young, Seth

  3. EECBG Success Story: Software Helps Kentucky County Gauge Energy Use |

    Office of Environmental Management (EM)

    Department of Energy Software Helps Kentucky County Gauge Energy Use EECBG Success Story: Software Helps Kentucky County Gauge Energy Use July 27, 2010 - 1:00pm Addthis Lexington-Fayette Urban County, Kentucky invested $140,000 of a $2.7 million Energy Efficiency and Conservation Block Grant (EECBG) to purchase EnergyCAP software. The energy management software will allow the county to track energy usage and greenhouse gas emission levels in targeted properties as well as process reports and

  4. Stimulating Energy Efficiency in Kentucky: An Implementation Model for

    Broader source: Energy.gov (indexed) [DOE]

    States | Department of Energy Stimulating Energy Efficiency in Kentucky. PDF icon Presentation More Documents & Publications DOE Perspectives on Sustainable Bioenergy Landscapes HIA ZERH Judge Bios The 2nd US-China Energy Efficiency Forum Agenda - Friday

  5. Pike County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Kentucky. Its FIPS County Code is 195. It is classified as ASHRAE...

  6. Harrison County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Kentucky. Its FIPS County Code is 097. It is classified as...

  7. Hickman County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Hickman County is a county in Kentucky. Its FIPS County Code is 105. It is classified as...

  8. Simpson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Simpson County is a county in Kentucky. Its FIPS County Code is 213. It is classified as...

  9. Johnson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson County is a county in Kentucky. Its FIPS County Code is 115. It is classified as...

  10. Logan County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Kentucky. Its FIPS County Code is 141. It is classified as...

  11. Campbell County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Campbell County is a county in Kentucky. Its FIPS County Code is 037. It is classified as...

  12. Marion County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Kentucky. Its FIPS County Code is 155. It is classified as...

  13. Henry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Henry County is a county in Kentucky. Its FIPS County Code is 103. It is classified as...

  14. Taylor County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Taylor County is a county in Kentucky. Its FIPS County Code is 217. It is classified as...

  15. Montgomery County, Kentucky: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Kentucky. Its FIPS County Code is 173. It is classified as...

  16. Indiana-Kentucky Electric Corp | Open Energy Information

    Open Energy Info (EERE)

    search Name: Indiana-Kentucky Electric Corp Place: Ohio Website: www.ovec.comindex.php Outage Hotline: (740) 289-7200 References: EIA Form EIA-861 Final Data File for 2010 -...

  17. Carter County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Carter County is a county in Kentucky. Its FIPS County Code is 043. It is classified as...

  18. Butler County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Butler County is a county in Kentucky. Its FIPS County Code is 031. It is classified as...

  19. Jackson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Kentucky. Its FIPS County Code is 109. It is classified as...

  20. Floyd County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Floyd County is a county in Kentucky. Its FIPS County Code is 071. It is classified as...

  1. Kentucky Natural Gas Processed in West Virginia (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia (Million Cubic Feet) Kentucky Natural Gas Processed in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  2. Lee County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Kentucky. Its FIPS County Code is 129. It is classified as ASHRAE...

  3. Kentucky Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 105,889 105,889...

  4. Lewis County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lewis County is a county in Kentucky. Its FIPS County Code is 135. It is classified as...

  5. Y-12 team garners efficiency best practices at Toyota's Kentucky...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 team garners ... Y-12 team garners efficiency best practices at Toyota's Kentucky plant Posted: October 17, 2014 - 2:25pm Y-12 Production managers recently gained a new...

  6. SEP Success Story: Kentucky Launches State-Wide School Energy...

    Broader source: Energy.gov (indexed) [DOE]

    In what could potentially be the first program of its scale, Kentucky has hired a new green team of 35 energy managers. Learn more. Addthis Related Articles Energy efficiency ...

  7. Scott County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Scott County is a county in Kentucky. Its FIPS County Code is 209. It is classified as...

  8. Anderson County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Anderson County is a county in Kentucky. Its FIPS County Code is 005. It is classified as...

  9. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Perry County, Kentucky: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perry County is a county in Kentucky. Its FIPS County Code is 193. It is classified as...

  11. Kentucky Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Kentucky Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1980's 237,759 230,940 241,558 256,522 253,652 150,627 26,888 26,673 18,707 1990's 28,379 40,966 47,425 45,782 42,877 44,734 46,015 43,352 37,929 44,064 2000's 36,734 36,901 41,078 42,758 38,208 38,792 39,559 38,158 58,899 60,167 2010's 66,579 60,941 92,883 85,549 79,985 - = No Data Reported; -- = Not

  12. Kentucky Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Kentucky Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2015 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: Email Us Middle School Regionals Kentucky Regions Print

  13. Kentucky - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  14. Electric Energy Inc (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5748 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0355kWh...

  15. Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Kentucky Coalbed Methane Proved

  16. Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) West Virginia (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production Extracted in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,465 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kentucky-West Virginia

  17. Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 508 49 66 0 0 0 534 6 13 0 2010's 39 84 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Kentucky Dry Natural Gas Proved

  18. Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 432 50 2 0 5 1 432 4 10 0 2010's 0 100 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Kentucky Dry Natural Gas Proved Reserves Dry Natural Gas

  19. STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders STEM Mentors Reach Nearly 300 Western Kentucky Sixth Graders November 25, 2015 - 12:00pm Addthis David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. David Curry (far right) teaches Ayden Mowery, Jake Miller, and Bella Presson (left to right) at Ballard County Middle School to read a pH strip to test water. Ken Davis

  20. Origin State>> CA ID ID IL IL KY NM NM NV NY OH TN TN TN, WA,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IL IL KY NM NM NV NY OH TN TN TN, WA, CA TN TN TN TN Total Shipments by Route Lawrence Livermore National Laboratory Batelle Energy Alliance Idaho National Laboratory Energx Argonne National Laboratory Argonne National Laboratory Paducah Gaseous Diffusion Plant Sandia National Laboratory Los Alamos National Laboratory National Security Technologies West Valley Environmental Services Portsmouth Gaseous Diffusion Plant Duratek/Energy Solutions Babcox & Wilcox Technical Services Y-12 Plant

  1. Reservoir fracture mapping using microearthquakes: Austin chalk, Giddings field, TX and 76 field, Clinton Co., KY

    SciTech Connect (OSTI)

    Phillips, W.S.; Rutledge, J.T.; Gardner, T.L.; Fairbanks, T.D.; Miller, M.E.; Schuessler, B.K.

    1996-11-01

    Patterns of microearthquakes detected downhole defined fracture orientation and extent in the Austin chalk, Giddings field, TX and the 76 field, Clinton Co., KY. We collected over 480 and 770 microearthquakes during hydraulic stimulation at two sites in the Austin chalk, and over 3200 during primary production in Clinton Co. Data were of high enough quality that 20%, 31% and 53% of the events could be located, respectively. Reflected waves constrained microearthquakes to the stimulated depths at the base of the Austin chalk. In plan view, microearthquakes defined elongate fracture zones extending from the stimulation wells parallel to the regional fracture trend. However, widths of the stimulated zones differed by a factor of five between the two Austin chalk sites, indicating a large difference in the population of ancillary fractures. Post-stimulation production was much higher from the wider zone. At Clinton Co., microearthquakes defined low-angle, reverse-fault fracture zones above and below a producing zone. Associations with depleted production intervals indicated the mapped fractures had been previously drained. Drilling showed that the fractures currently contain brine. The seismic behavior was consistent with poroelastic models that predicted slight increases in compressive stress above and below the drained volume.

  2. Utilities and Workplace Charging

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summit Mike Waters - Duke Energy November 18th, 2014 Duke Energy Electricity provider for over 7.2 million retail customers 6 states: NC, SC, FL, OH, IN, KY 104,000 sq....

  3. Schools Near EM Sites in Kentucky, Ohio Advance to DOE's National...

    Broader source: Energy.gov (indexed) [DOE]

    Lone Oak Middle Schools winning team at DOEs 2014 West Kentucky Regional Science Bowl, left to right, David Perriello, Drew Schofield, Ethan Brown, and David Dodd,...

  4. Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736

  5. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 93 44 49 - = No Data Reported; -- = Not

  6. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    + Lease Condensate Proved Reserves (Million Barrels) Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 24 2010's 16 22 13 22 21 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

  7. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves in Nonproducing Reservoirs (Million Barrels) Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 0 0 2000's 0 0 4 4 5 5 0 0 1 3 2010's 0 0 0 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved Nonproducing Reserves of Crude

  8. Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 1 1990's 1 0 0 1 0 1 1 1 1 0 2000's 0 0 1 1 1 1 1 1 4 4 2010's 1 5 4 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  9. Kentucky Natural Gas Plant Liquids, Expected Future Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Expected Future Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 15 1990's 24 24 32 25 39 42 45 47 53 69 2000's 56 72 65 65 71 69 104 88 96 101 2010's 124 88 81 95 108 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Million Barrels) Kentucky Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 26 1980's 25 25 35 31 24 27 29 23 24 16 1990's 25 24 32 26 39 43 46 48 54 69 2000's 56 72 66 66 72 70 105 89 100 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages:

  11. ,"Kentucky Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Prices",8,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","ng_pri_sum_dcu_sky_m.xls"

  12. Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 64 -66 1980's 67 -20 -4 6 55 -126 7 68 16 14 1990's -31 97 -107 -34 40 43 -55 321 -93 34 2000's -4 158 -24 49 -40 65 -22 37 81 97 2010's -58 -34 -282 103 -9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  13. Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 48 52 49 1980's 60 52 44 38 54 53 56 58 60 65 1990's 62 78 61 66 64 67 58 79 63 59 2000's 67 73 79 78 83 85 66 80 93 108 2010's 96 101 83 81 70 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  14. Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10 26 16 1980's 3 11 33 13 22 12 6 10 51 60 1990's 42 27 35 8 35 10 10 18 20 30 2000's 2 42 92 49 96 101 23 373 200 713 2010's 383 4 0 132 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  15. Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 17 23 17 1980's 11 8 19 14 29 26 9 17 18 13 1990's 19 6 12 31 101 12 12 3 41 41 2000's 77 397 383 167 153 77 21 152 133 760 2010's 540 639 276 58 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  16. Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 35 79 37 1980's 39 91 54 32 65 343 126 65 25 67 1990's 93 99 73 34 49 100 43 107 14 230 2000's 363 348 377 128 176 251 56 62 187 126 2010's 103 178 43 159 72 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  17. Kentucky Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Coalbed Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Gross Withdrawals from Coalbed Wells Kentucky Natural Gas Gross Withdrawals and Production Natural Gas Gross Withdrawals from Coalbed

  18. Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 7,025 7,165 6,940 4,056 852 830 627 1990's 657 702 707 689 611 702 682 641 548 641 2000's 419 475 535 536 617 698 653 691 587 391 2010's 772 278 641 280 278 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  19. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  20. Utility Partnership Program Utility Partners

    Broader source: Energy.gov [DOE]

    Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals.

  1. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Kentucky

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Kentucky.

  2. Kentucky State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    Not Available

    1981-08-01

    The Kentucky State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kentucky. The profile is the result of a survey of NRC licensees in Kentucky. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Kentucky.

  3. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  4. Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 451 545 468 1980's 508 530 551 554 613 766 841 909 923 992 1990's 1,016 1,155 1,084 1,003 969 1,044 983 1,364 1,222 1,435 2000's 1,760 1,860 1,907 1,889 1,880 2,151 2,227 2,469 2,714 2,782 2010's 2,613 2,006 1,408 1,663 1,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Kentucky Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    % of Total Residential Deliveries (Percent) Kentucky Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1.35 1.29 1.36 1.34 1.33 1.23 1.25 2000's 1.29 1.19 1.21 1.22 1.16 1.16 1.08 1.09 1.12 1.08 2010's 1.14 1.08 1.04 1.11 1.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  6. Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Kentucky Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 1980's 3 2 3 2 2 2 2 1 2 1 1990's 1 2 2 2 3 3 3 3 3 3 2000's 2 3 3 3 3 3 3 3 3 4 2010's 5 4 5 5 5 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  7. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 1,515 1,794 1,753 - = No Data Reported;

  8. Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's

  9. Kentucky Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Kentucky Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 227,931 205,129 218,399 2000's 225,168 208,974 227,920 223,226 225,470 234,080 211,049 229,799 225,295 206,833 2010's 232,099 223,034 225,924 229,983 254,244 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  10. Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Kentucky Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3 0 1 1980's 2 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 1 0 0 0 2000's 5 0 0 0 0 17 0 0 0 0 2010's 0 1 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016

  11. Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Kentucky Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 42 2 131 259 94 4 1 0 6 44 1990's 2 2 5 16 50 6 45 24 2 3 2000's 10 2 1 98 0 15 3 124 15 18 2010's 5 8 1 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next

  12. Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,336 1,873 2,155 2,279 2,402 2,112 1,718 1990's 2,492 1,730 2,105 2,573 2,162 1,945 1,744 1,816 1,777 1,615 2000's 2,075 1,980 3,442 2,278 2,044 2,879 3,524 2,676 3,914 4,862 2010's 5,626 5,925 6,095 6,095 4,388 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  13. Kentucky Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Kentucky Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 63,024 63,971 65,041 1990's 67,086 68,461 69,466 71,998 73,562 74,521 76,079 77,693 80,147 80,283 2000's 81,588 81,795 82,757 84,110 84,493 85,243 85,236 85,210 84,985 83,862 2010's 84,707 84,977 85,129 85,999 85,318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  14. Kentucky Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Kentucky Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,391 1,436 1,443 1990's 1,544 1,587 1,608 1,585 1,621 1,630 1,633 1,698 1,864 1,813 2000's 1,801 1,701 1,785 1,695 1,672 1,698 1,658 1,599 1,585 1,715 2010's 1,742 1,705 1,720 1,767 1,780 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  15. Kentucky Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Kentucky Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 596,320 606,106 614,058 1990's 624,477 633,942 644,281 654,664 668,774 685,481 696,989 713,509 726,960 735,371 2000's 744,816 749,106 756,234 763,290 767,022 770,080 770,171 771,047 753,531 754,761 2010's 758,129 759,584 757,790 761,575 760,131 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 22,854 15,750 16,632 2000's 13,826 14,912 11,993 14,279 10,143 8,254 6,510 11,885 12,957 12,558 2010's 13,708 12,451 8,604 7,157 8,426 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  17. Kentucky Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Kentucky Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6 15 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016

  18. Kentucky Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Kentucky Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,720 61,518 73,126 80,195 70,125 44,725 72,417 1990's 75,333 78,904 79,690 86,966 73,081 74,754 81,435 79,547 81,868 76,770 2000's 81,545 81,723 88,259 87,609 94,259 92,795 95,320 95,437 114,116 NA 2010's 135,355

  19. Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feet) Underground Storage Net Withdrawals (Million Cubic Feet) Kentucky Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 7,009 -3,443 1,276 -952 -4,745 -5,360 -7,787 -7,006 -7,202 -3,309 4,438 5,964 1991 6,950 3,513 2,589 -3,809 -2,358 -3,297 -5,327 -3,162 -3,437 460 6,590 2,686 1992 1,568 1,211 4,848 1,675 1,236 -1,546 -3,544 -1,610 -4,201 -10,704 1,514 2,982 1993 5,891 11,750 10,031 793 -6,525 -7,919 -7,627

  20. Henderson County North Middle School wins 2015 DOE West Kentucky Regional

    Energy Savers [EERE]

    Science Bowl | Department of Energy Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl February 6, 2015 - 12:08pm Addthis 1st Place Henderson County North Middle School, from left: (Top) Deegan Lawrence, Coach Chris Fifer and D.J. Banks. (Bottom) Luke Payne, Alex Chandler and Nick Cissell (not pictured). 1st Place Henderson County North Middle School, from left: (Top)

  1. DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment

    Energy Savers [EERE]

    Cabinet | Department of Energy Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet DOE Awards Grants to the Commonwealth of Kentucky, Energy and Environment Cabinet October 31, 2014 - 3:00pm Addthis Media Contact Lynette Chafin, 513-246-0461, Lynette.Chafin@emcbc.doe.gov Cincinnati - The U.S. Department of Energy (DOE) Environmental Management Consolidated Business Center (EMCBC) is awarding two separate grants together totaling about $7 million to the Commonwealth of

  2. FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC

    Office of Environmental Management (EM)

    FISCAL YEAR 2014 AWARD FEE DETERMINATION SCORECARD Contractor: LATA Environmental Services of Kentucky, LLC Contract No.: DE-AC30-10CC40020 Award Period: October 1, 2013 through September 30, 2014 (FY14) Basis of Evaluation: Fy14 Award Fee Plan for LATA Environmental Services of Kentucky LLC Award Fee Area Adjectival Ratings: Quality and Effectiveness of Documents and Associated Support: Very Good Quality and Effective of ESH&QA: Very Good Quality and Effective of Project Support: Excellent

  3. Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection

    Office of Environmental Management (EM)

    JUN 1 1 2013 Mr. Todd Mullins Federal Facility Agreement Manager Kentucky Department for Environmental Protection Division of Waste Management 200 Fair Oaks Lane, 2 nd Floor Frankfort, Kentucky 40601 Ms. Jennifer Tufts Federal Facility Agreement Manager U.S. Environmental Protection Agency, Region 4 61 Forsyth Street Atlanta, Georgia 30303 Dear Mr. Mullins and Ms. Tufts: PPPO-02-1813000-13B TRANSMITTAL OF THE COMMUNITY RELATIONS PLAN UNDER THE FEDERAL FACILITY AGREEMENT AT THE U.S. DEPARTMENT OF

  4. Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Wellhead Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.24 0.25 0.25 1970's 0.25 0.25 0.25 0.35 0.50 0.54 0.55 0.55 0.58 0.95 1980's 0.89 1.01 1.52 1.51 1.70 2.39 1.88 1.82 2.56 2.13 1990's 2.24 2.03 1.92 2.28 2.24 1.64 2.55 2.66 2.39 2.07 2000's 3.16 4.78 3.01 4.54 5.26 6.84 8.83 7.35 8.42 NA 2010's 4.47 - = No Data Reported; -- = Not Applicable;

  5. Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Kentucky Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 58,567 62,011 60,735 61,687 66,432 71,791 79,578 86,584 93,785 97,094 92,657 86,693 1991 79,816 76,289 72,654 77,239 79,610 82,915 88,262 91,449 94,895 94,470 87,950 85,249 1992 84,385 83,106 78,213 76,527 75,300 76,861 80,412 82,020 86,208 96,910 95,391 92,376 1993 87,306 76,381 66,748 66,019 72,407 80,245 87,794

  6. Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Kentucky Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 11,500 8,573 8,579 1970's 6,574 6,133 6,063 5,441 5,557 5,454 5,231 4,764 6,192 3,923 1980's 6,845 5,638 6,854 6,213 6,516 6,334 4,466 2,003 2,142 1,444 1990's 1,899 2,181 2,342 2,252 2,024 2,303 2,385 2,404 2,263 2,287 2000's 1,416 1,558 1,836 1,463 2,413 1,716 2,252 1,957 2,401 3,270 2010's 4,576 4,684

  8. Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gross Withdrawals (Million Cubic Feet) Kentucky Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 7,021 6,303 6,870 6,515 6,458 6,272 6,394 6,382 6,194 6,740 6,739 7,017 1992 5,425 7,142 6,716 7,270 7,191 6,365 6,320 7,295 6,011 6,813 6,684 6,458 1993 7,343 7,269 6,783 6,309 6,962 9,647 6,801 7,537 5,997 6,422 6,163 9,732 1994 6,171 6,109 5,700 5,302 5,850 8,107 5,715 6,333 5,040 5,397 5,179 8,179 1995 6,312 6,249 5,831 5,423 5,984 8,293

  9. Kentucky Natural Gas Industrial Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Kentucky Natural Gas Industrial Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 11,054 8,742 7,395 9,901 6,629 6,460 6,740 6,597 7,074 7,364 8,090 8,851 2002 10,214 9,404 9,297 8,186 8,277 7,314 7,074 6,669 7,743 9,145 9,856 9,932 2003 11,702 9,996 8,913 7,847 7,552 6,781 6,777 7,226 7,568 8,569 8,686 10,655 2004 11,629 10,760 10,598 9,045 8,910 8,413 8,094 8,712 8,332 9,496 9,776 10,526 2005 11,242 10,146 10,519 9,307

  10. Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Industrial Price (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 8.55 8.47 8.09 7.29 6.31 5.90 5.58 5.10 4.29 4.78 5.09 4.77 2002 4.88 4.69 4.15 4.57 4.50 4.26 4.14 3.99 4.25 4.66 5.46 5.36 2003 5.80 6.30 8.68 6.38 6.42 6.88 6.54 6.03 6.40 5.88 6.42 6.92 2004 7.65 7.53 6.89 6.77 6.84 7.39 7.27 7.21 6.61 6.97 8.58 8.08 2005 7.92 8.11 7.89 8.38 8.17 7.79 8.32 8.91 11.11 13.42 14.35 12.71 2006

  11. Kentucky Natural Gas Marketed Production (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketed Production (Million Cubic Feet) Kentucky Natural Gas Marketed Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 6,865 6,165 6,721 6,372 6,316 6,135 6,256 6,243 6,056 6,593 6,590 6,862 1992 5,282 6,953 6,539 7,078 7,001 6,197 6,153 7,102 5,852 6,633 6,507 6,287 1993 7,126 7,054 6,582 6,122 6,756 9,362 6,600 7,314 5,820 6,232 5,981 9,444 1994 5,988 5,928 5,531 5,145 5,677 7,867 5,546 6,146 4,891 5,237 5,026 7,937 1995 6,148 6,086 5,679 5,282 5,828

  12. Kentucky Natural Gas Residential Consumption (Million Cubic Feet)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Consumption (Million Cubic Feet) Kentucky Natural Gas Residential Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 9,700 10,403 8,293 5,319 3,161 1,809 1,332 1,337 1,446 3,109 6,141 13,034 1990 9,736 8,409 6,367 5,007 2,448 1,599 1,376 1,288 1,375 3,306 5,741 9,412 1991 11,629 9,644 7,168 3,430 1,805 1,378 1,278 1,168 1,487 3,120 7,676 9,682 1992 11,805 8,511 7,813 4,179 2,626 1,835 1,326 1,416 1,413 3,376 6,997 10,617 1993 11,143 11,145

  13. Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    per Thousand Cubic Feet) Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Kentucky Price of Natural Gas Delivered to Residential Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.48 4.49 4.46 4.71 5.03 5.50 5.98 6.12 5.98 5.12 4.68 4.39 1990 4.71 4.76 4.62 4.79 5.51 5.86 6.48 6.29 5.94 5.21 4.67 4.75 1991 4.60 4.69 4.65 5.12 5.73 6.36 6.75 6.62 5.71 4.88 4.67 4.67 1992 4.67 4.46 4.54 4.69 4.98 5.79 6.25 6.42 6.96 6.34

  14. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  15. Department of Energy Cites LATA Environmental Services of Kentucky, LLC for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Worker Safety and Health and Nuclear Safety Violations | Department of Energy LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations Department of Energy Cites LATA Environmental Services of Kentucky, LLC for Worker Safety and Health and Nuclear Safety Violations May 24, 2012 - 3:32pm Addthis News Media Contact (202) 586-4940 WASHINGTON, D.C. - The U.S. Department of Energy (DOE) has issued a Preliminary Notice of Violation (PNOV) to LATA

  16. Finding Energy Efficiency and Savings on a Kentucky Farm | Department of

    Office of Environmental Management (EM)

    Energy Finding Energy Efficiency and Savings on a Kentucky Farm Finding Energy Efficiency and Savings on a Kentucky Farm September 28, 2010 - 4:00pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What does this project do? The project is expected to create $852,000 worth of energy savings. Alvin Frogue of Frogue Dairy has been in the dairy business for 50 years and until recently one of his top challenges was managing 250 cows with individualized care. Now $80,540 worth of

  17. ,"Kentucky Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5070ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:28 PM" "Back to

  18. ,"Kentucky Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n5070ky2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070ky2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:28:28 PM" "Back to

  19. TVA - Solar Solutions Initiative (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    Weather-stripping, DuctAir sealing, Building Insulation, Windows, Doors, Siding, Roofs, Photovoltaics Active Incentive Yes Implementing Sector Utility Energy Category Renewable...

  20. EIS-0073: Solvent Refined Coal-I Demonstration Project, Daviess County, Kentucky

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to assess the potential environmental, economic, and social impacts associated with construction and operation of a 6,000-tons-per-stream-day-capacity coal liquefaction facility in Newman, Kentucky, and the potential impacts of a future expansion of the proposed facility to an approximately 30,000 tons per stream day capacity.

  1. Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready – Solar Map

    Broader source: Energy.gov [DOE]

    The Ohio-Kentucky-Indiana Regional Council of Governments Go Solar Ready Map provides general information about the estimated annual solar energy potential on building rooftops in the OKI region. The intention of this tool is to provide the user a general understanding of the solar energy available on rooftops in the OKI tristate region.

  2. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  3. PowerPoint Presentation

    Broader source: Energy.gov (indexed) [DOE]

    Business Models and Regulation of Regulated Utilities Gregory Starheim, President & CEO Kenergy Corp., Henderson, KY Quadrennial Energy Review September 8, 2014 Public Meeting #12 - East Newark, NJ Kenergy Overview: * Distribution Electric Utility * Serving 56,000 consumers * Strong Industrial base * 2013 Sales: 9,760 M MWh * 7,000 miles of power lines * Regulated by Kentucky PSC * Member-Owner of Big Rivers Electric Corporation (BREC) for power supply services - Total Power Capacity -

  4. Michael W. Hancock, P.E., President Secretary, Kentucky Transportation Cabinet

    Energy Savers [EERE]

    W. Hancock, P.E., President Secretary, Kentucky Transportation Cabinet Bud Wright, Executive Director 444 North Capitol Street NW, Suite 249 , Washington, DC 20001 (202) 624-5800 Fax: (202) 624-5806 * transportation.org * centennial.transportation.org Statement of Chris Smith Senior Program Manager for Freight American Association of State Highway and Transportation Officials Quadrennial Energy Review Rail, Barge, Truck Transportation August 8, 2014 Chicago, Illinois Thank you for the

  5. SREL Reprint #3215

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L. Jones3, Cris Hagen2, and Stacey L. Lance2 1Department of Biological Sciences, Moore 235, Eastern Kentucky University, 521 Lancaster Avenue, Richmond, KY 40475, USA...

  6. Regional News Coverage 2015 | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    National Science Bowl U.S. Department of Energy SC-27 Forrestal Building 1000 ... and Science in Kentucky, Bowling Green, KY .pdf file (18KB) The Westminster ...

  7. SREL Reprint #3291

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de Mxico, Mexico 2Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, USA 3Department of Biology, University of Kentucky, Lexington, KY, USA 4Department of...

  8. Students Imagine Paducah Site as Technical, Industrial Hub

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – University of Kentucky (UK) College of Design students envision the Paducah site as a thriving, multiple-use area in the future.

  9. NETL F 451.1/1-1, Categorical Exclusion Designation Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11122-45 GSI Environmental Multiple sites, KY Kentucky Geological Survey, University of Kentucky, Lexington, KY (CX approval is for the sub-recipient only) FE/TDIC/OG/UOG Team David P. Cercone Reducing the Impacts of Gas Shale Development; Advanced Analytical Methods for.. University of Kentucky will go to eastern Kentucky field locations and collect samples from wells in the study area. The samples will be analyzed and reported from facilities at the University. DAVID CERCONE Digitally signed

  10. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  11. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  12. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  13. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  14. ,"Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  15. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  16. ,"Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  17. ,"Kentucky Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  18. ,"Kentucky Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Heat Content of Natural Gas Consumed",1,"Monthly","12/2015","01/15/2013" ,"Release Date:","02/29/2016" ,"Next Release Date:","03/31/2016" ,"Excel File

  19. ,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  20. ,"Kentucky Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Consumption by End Use",6,"Monthly","12/2015","1/15/1989" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  1. ,"Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    from Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  2. ,"Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  3. ,"Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  5. ,"Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File

  6. ,"Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Kentucky Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.78 5.30 4.62 5.10 5.54 6.68 6.75 6.68 2000's 5.49 7.78 9.42 11.15 -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring

  9. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  10. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  11. ,"Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ky3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ky3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:20 PM" "Back to

  12. ,"Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015 ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","n3045ky3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3045ky3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"2/26/2016 2:25:19 PM" "Back to

  13. Coal quality trends and distribution of Title III trace elements in Eastern Kentucky coals

    SciTech Connect (OSTI)

    Eble, C.F.; Hower, J.C.

    1995-12-31

    The quality characteristics of eastern Kentucky coal beds vary both spatially and stratigraphically. Average total sulfur contents are lowest, and calorific values highest, in the Big Sandy and Upper Cumberland Reserve Districts. Average coal thickness is greatest in these two districts as well. Conversely, the thinnest coal with the highest total sulfur content, and lowest calorific value, on average, occurs in the Princess and Southwest Reserve Districts. Several Title III trace elements, notably arsenic, cadmium, lead, mercury, and nickel, mirror this distribution (lower average concentrations in the Big Sandy and Upper Cumberland Districts, higher average concentrations in the Princess and Southwest Districts), probably because these elements are primarily associated with sulfide minerals in coal. Ash yields and total sulfur contents are observed to increase in a stratigraphically older to younger direction. Several Title III elements, notably cadmium, chromium, lead, and selenium follow this trend, with average concentrations being higher in younger coals. Average chlorine concentration shows a reciprocal distribution, being more abundant in older coals. Some elements, such as arsenic, manganese, mercury, cobalt, and, to a lesser extent, phosphorus show concentration spikes in coal beds directly above, or below, major marine zones. With a few exceptions, average Title III trace element concentrations for eastern Kentucky coals are comparable with element distributions in other Appalachian coal-producing states.

  14. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-04-26

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-08-01

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  18. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-07-29

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  19. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2005-01-28

    Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

  20. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect (OSTI)

    David Harris; David Williams; J. Richard Bowersox; Hannes Leetaru

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian?Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE??funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on?site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  1. Utilities Offering Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    The Energy Policy Act of 1992, codified as 42 USC Section 8256 (c) Utility Incentive Programs, authorizes and encourages agencies to participate in programs to increase energy efficiency and for water conservation or the management of electricity demand conducted by gas, water, or electric utilities and generally available to customers of such utilities.

  2. Kentucky Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Kentucky Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,053 1,501 1,828 1990's 1,575 2,035 2,451 2,809 3,171 4,169 3,773 3,860 4,076 4,315 2000's 5,584 6,424 7,590 7,942 7,864 7,488 6,092 6,304 6,673 7,047 2010's 7,163 7,188 6,941 7,919 7,819 - = No Data

  3. Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Kentucky Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 0 1 1980's 0 0 1 4 0 3 1 0 0 6 1990's 1 0 1 8 7 1 10 17 21 19 2000's 27 23 0 1 0 0 4 0 0 0 2010's 0 0 0 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  4. Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Kentucky Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,828 1,992 2,277 1970's 2,317 2,212 1,509 1,238 1,206 1,218 1,040 1,107 1,160 1,214 1980's 989 1,040 9,772 8,361 9,038 9,095 6,335 3,254 2,942 2,345 1990's 3,149 2,432 2,812 3,262 2,773 2,647 2,426 2,457 2,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  5. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -1,772 682 336 86 308 -489 138 -272 -702 -351 130 2,383 1991 21,249 14,278 11,919 15,552 13,179 11,123 8,684 4,865 1,110 -2,624 -4,707 -1,444 1992 4,569 6,818 5,559 -712 -4,310 -6,053 -7,850 -9,429 -8,687 2,440 7,441 7,127 1993 2,921 -6,726 -11,466

  6. Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Foot) Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Kentucky Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,023 1,022 1,023 1,025 1,026 1,027 1,028 1,030 1,031 1,028 1,028 1,033 2014 1,029 1,024 1,026 1,028 1,031 1,037 1,034 1,036 1,038 1,022 1,017 1,019 2015 1,023 1,018 1,015 1,016 1,023 1,021 1,024 1,015 1,020 1,024 1,021 1,024 - = No Data Reported; -- = Not Applicable; NA = Not

  7. Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2002 W W W W W W W W W 4.91 4.91 5.24 2003 W W W W W W W W W W W W 2004 W W W W W W W W W W W W 2005 W W W 9.04 W W W W W W W W 2006 W 9.57 W W W W W 8.62 W W W W 2007 W W W W W W W W W W W W 2008 9.16 9.60 W W W W W W W W W W 2009 W W W 6.74 11.32 W W W

  8. Sherwin-Williams Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C L E A N C I T I E S Sherwin-Williams' Richmond, Kentucky, Facility Achieves 26% Energy Intensity Reduction; Leads to Corporate Adoption of Save Energy Now LEADER When Sherwin-Williams' Richmond, Kentucky, manufacturing plant made the decision to advance its energy effciency efforts, the company capitalized on the resources made available to industry by the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP). In 2008, ITP conducted an assessment on the site's steam system

  9. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  10. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine whether municipalization would be a beneficial option for many California cities. Source: Bay Area Economic Forum. Establishing a Tribal Utility Authority Handbook Provides an introduction to electric utility operation and general guidance for the steps required to form a tribal utility authority. Funded by an economic

  11. TVA Partner Utilities - Energy Right Heat Pump Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Kentucky Program Type Loan Program Summary The Tennessee Valley Authority (TVA) energy right Heat Pump Plan provides financing to promote the installation of high efficiency heat...

  12. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret ... *US Energy Information Administration New ... nation in utility-scale electricity generation from solar ...

  13. Reassessment of liquefaction potential and estimation of earthquake- induced settlements at Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Yule, D.E.

    1996-04-01

    This report documents a reassessment of liquefaction potential and estimation of earthquake-induced settlements for the U.S. Department of Energy (DOE), Paducah Gaseous Diffusion Plant (PGDP), located southwest of Paducah, KY. The U.S. Army Engineer Waterways Experiment Station (WES) was authorized to conduct this study from FY91 to FY94 by the DOE, Oak Ridge Operations (ORO), Oak Ridge, TN, through Inter- Agency Agreement (IAG) No. DE-AI05-91OR21971. The study was conducted under the Gaseous Diffusion Plant Safety Analysis Report (GDP SAR) Program.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  17. Program in Functional Genomics of Autoimmunity and Immunology of yhe University of Kentucky and the University of Alabama

    SciTech Connect (OSTI)

    Alan M Kaplan

    2012-10-12

    This grant will be used to augment the equipment infrastructure and core support at the University of Kentucky and the University of Alabama particularly in the areas of genomics/informatics, molecular analysis and cell separation. In addition, we will promote collaborative research interactions through scientific workshops and exchange of scientists, as well as joint exploration of the role of immune receptors as targets in autoimmunity and host defense, innate and adaptive immune responses, and mucosal immunity in host defense.

  18. GEOLOGIC CHARACTERIZATION AND CARBON STORAGE RESOURCE ESTIMATES FOR THE KNOX GROUP, ILLINOIS BASIN, ILLINOIS, INDIANA, AND KENTUCKY

    SciTech Connect (OSTI)

    Harris, David; Ellett, Kevin; Rupp, John; Leetaru, Hannes

    2014-09-30

    Research documented in this report includes (1) refinement and standardization of regional stratigraphy across the 3-state study area in Illinois, Indiana, and Kentucky, (2) detailed core description and sedimentological interpretion of Knox cores from five wells in western Kentucky, and (3) a detailed calculation of carbon storage volumetrics for the Knox using three different methodologies. Seven regional cross sections document Knox formation distribution and thickness. Uniform stratigraphic nomenclature for all three states helps to resolve state-to-state differences that previously made it difficult to evaluate the Knox on a basin-wide scale. Correlations have also refined the interpretation of an important sandstone reservoir interval in southern Indiana and western Kentucky. This sandstone, a CO2 injection zone in the KGS 1 Blan well, is correlated with the New Richmond Sandstone of Illinois. This sandstone is over 350 ft (107 m) thick in parts of southern Indiana. It has excellent porosity and permeability at sufficient depths, and provides an additional sequestration target in the Knox. The New Richmond sandstone interval has higher predictability than vuggy and fractured carbonates, and will be easier to model and monitor CO2 movement after injection.

  19. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  20. Navajo Tribal Utility Authority Moves Forward with First Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant Navajo Tribal Utility Authority Moves Forward with First Utility-Scale Solar Plant January 14, ...

  1. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  2. baepgig-clean | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Kentucky Pioneer IGCC Demonstration Project - Project Brief [PDF-80KB] (Withdrawn) Kentucky Pioneer Energy, L.L.C.; Trapp, Clark County, KY PROGRAM PUBLICATIONS Final Report Kentucky Pioneer Energy LLC Integrated Gasification Combined Cycle Project: 2 MW Fuel Cell Demonstration [PDF-3.2MB] (Apr 2006) Design Reports Kentucky Pioneer Energy IGCC CCT Demonstration Project, 2 MW Fuel Cell Demonstration, Basis of Design [PDF-696KB] (May 2002) Environmental Reports Kentucky Pioneer Integrated

  3. EA-1642-S1: Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis, Lexington, KY

    Broader source: Energy.gov [DOE]

    This draft Supplemental Environmental Assessment (SEA) analyzes the potential environmental impacts of DOE’s proposed action of providing cost-shared funding for the University of Kentucky (UK) Center for Applied Energy Research (CAER) Small-Scale Pilot Plant for the Gasification of Coal and Coal-Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis project and of the No-Action Alternative.

  4. Kentucky Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Kentucky Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 36.3 23.0 19.6 25.2 19.8 15.5 10.9 5.6 1.2 -2.7 -5.1 -1.7 1992 5.7 8.9 7.7 -0.9 -5.4 -7.3 -8.9 -10.3 -9.2 2.6 8.5 8.4 1993 3.5 -8.1 -14.7 -13.7 -3.8 4.4 9.2 12.9 14.8 3.2 -1.2 -9.6 1994 -25.7 -31.2 -28.1 -20.1 -13.8 -10.6 -7.3 -4.7 -7.2 -4.8 1.4 4.5 1995 14.0 16.7 18.3 14.2 16.8 12.2

  5. Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thousand Cubic Feet) Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Kentucky Price of Natural Gas Sold to Commercial Consumers (Dollars per Thousand Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4.30 4.28 4.32 4.30 4.48 4.48 4.63 4.76 4.66 4.43 4.39 4.23 1990 4.54 4.53 4.42 4.40 4.72 4.76 5.00 4.71 4.78 4.45 4.30 4.50 1991 4.41 4.42 4.43 4.64 4.62 4.72 5.09 4.75 4.19 4.16 4.34 4.42 1992 4.43 4.27 4.16 4.27 4.19 4.46 4.50 4.75 4.61 4.52 4.77 4.78 1993

  6. Sauk structural elements and depositional response in Ohio and northern Kentucky

    SciTech Connect (OSTI)

    Coogan, A.H.; Peng, Shengfeng (Kent State Univ., OH (United States). Dept. of Geology)

    1992-01-01

    Three area structural elements were inherited from Precambrian events--the Rome Trough, Middle Run trough at the Grenville Line, and the Ohio platform on part of the more stable Grenville Province. They strongly influence the type of basal Sauk clastic and non-clastic deposits as documented from hundreds of wells in Ohio and adjacent northern Kentucky. These elements and the topography resulting from erosion during the Lipalian Interval most directly influence sedimentation during the onlap phase of the basal Sauk Sequence. Clastic wedge-base deposits are the Mt. Simon, Rome'', and Eau Claire formations. Deposition of the middle Cambrian Conasauga Shale coincides with the maximum marine onlap and wedge middle position. Upper Sauk Sequence deposition of the Knox Group carbonate rocks (Cooper Ridge Dolomite, Beekmantown Dolomite) and their interbedded clastic units (Steam Corners and Rose Run formations) represents the shallowing upward, pulsating clastic depositional events which anticipate the differential uplift and erosion that occurred later during the Taconic Orogeny and Early Ordovician hiatus. New Taconic structural elements involve the uplift of the central Ohio platform on the western part of the Grenville Province along reactivated, pre-Grenville sutures identified by CoCorp seismic lines. Platform uplift exposes lower Knox rocks to erosion. Younger Knox rocks are preserved east of the fault line zone. The Appalachian Basin's western edge is marked at this time by the trend of the Rose Run and Beekmantown subcrop below the Knox Unconformity surface and by the edge of the high magnetic intensity basement.

  7. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    SciTech Connect (OSTI)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  8. Review of earthquake hazard assessments of plant sites at Paducah, Kentucky and Portsmouth, Ohio

    SciTech Connect (OSTI)

    1997-03-01

    Members of the US Geological Survey staff in Golden, Colorado, have reviewed the submissions of Lawrence Livermore National Laboratory (LLNL) staff and of Risk Engineering, Inc. (REI) (Golden, Colorado) for seismic hazard estimates for Department of Energy facilities at Portsmouth, Ohio, and Paducah, Kentucky. We reviewed the historical seismicity and seismotectonics near the two sites, and general features of the LLNL and EPRI/SOG methodologies used by LLNL and Risk Engineering respectively, and also the separate Risk Engineering methodology used at Paducah. We discussed generic issues that affect the modeling of both sites, and performed alternative calculations to determine sensitivities of seismic hazard results to various assumptions and models in an attempt to assign reasonable bounding values of the hazard. In our studies we find that peak acceleration values of 0.08 g for Portsmouth and 0.32 g for Paducah represent central values of the, ground motions obtained at 1000-year return periods. Peak accelerations obtained in the LLNL and Risk Engineering studies have medians near these values (results obtained using the EPRI/SOG methodology appear low at both sites), and we believe that these medians are appropriate values for use in the evaluation of systems, structures, and components for seismic structural integrity and for the seismic design of new and improved systems, structures, and components at Portsmouth and Paducah.

  9. Site-specific earthquake response analysis for Paducah Gaseous Diffusion Plant, Paducah, Kentucky. Final report

    SciTech Connect (OSTI)

    Sykora, D.W.; Davis, J.J.

    1993-08-01

    The Paducah Gaseous Diffusion Plant (PGDP), owned by the US Department of Energy (DOE) and operated under contract by Martin Marietta Energy systems, Inc., is located southwest of Paducah, Kentucky. An aerial photograph and an oblique sketch of the plant are shown in Figures 1 and 2, respectively. The fenced portion of the plant consists of 748 acres. This plant was constructed in the 1950`s and is one of only two gaseous diffusion plants in operation in the United States; the other is located near Portsmouth, Ohio. The facilities at PGDP are currently being evaluated for safety in response to natural seismic hazards. Design and evaluation guidelines to evaluate the effects of earthquakes and other natural hazards on DOE facilities follow probabilistic hazard models that have been outlined by Kennedy et al. (1990). Criteria also established by Kennedy et al. (1990) classify diffusion plants as ``moderate hazard`` facilities. The US Army Engineer Waterways Experiment Station (WES) was tasked to calculate the site response using site-specific design earthquake records developed by others and the results of previous geotechnical investigations. In all, six earthquake records at three hazard levels and four individual and one average soil columns were used.

  10. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  11. Utility Partnerships Program Overview

    SciTech Connect (OSTI)

    2014-10-03

    Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program.

  12. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  13. U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    KentucKy 2014 EIA reports and publications Kentucky accounts for roughly one-tenth of total U.S. coal production and about one-fifth of production east of the Mississippi River. Kentucky has more coal mines than any other state; almost one-third of all U.S. coal mines are located in the state. Kentucky had two oil refineries with a combined operating capacity of about 245,000 barrels per day in 2013. KentucKy energy highlights: State-Level Energy-Related Carbon Dioxide Emissions, 2000-2011 *

  14. ,"Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  16. Ground penetrating radar surveys over an alluvial DNAPL site, Paducah Gaseous Diffusion Plant, Kentucky

    SciTech Connect (OSTI)

    Carpenter, P.J. |; Doll, W.E.; Phillips, B.E.

    1994-09-01

    Ground penetrating radar (GPR) surveys were used to map shallow sands and gravels which are DNAPL migration pathways at the Paducah Gaseous Diffusion Plant in western Kentucky. The sands and gravels occur as paleochannel deposits, at depths of 17-25 ft, embedded in Pleistocene lacustrine clays. More than 30 GPR profiles were completed over the Drop Test Area (DTA) to map the top and base of the paleochannel deposits, and to assess their lateral continuity. A bistatic radar system was used with antenna frequencies of 25 and 50 MHz. An average velocity of 0.25 ft/ns for silty and clayey materials above the paleochannel deposits was established from radar walkaway tests, profiles over culverts of known depth, and comparison of radar sections with borings. In the south portion of the DTA, strong reflections corresponded to the water table at approximately 9-10 ft, the top of the paleochannel deposits at approximately 18 ft, and to gravel horizons within these deposits. The base of these deposits was not visible on the radar sections. Depth estimates for the top of the paleochannel deposits (from 50 records) were accurate to within 2 ft across the southern portion of the DTA. Continuity of these sands and gravels could not be assessed due to interference from air-wave reflections and lateral changes in signal penetration depth. However, the sands and gravels appear to extend across the entire southern portion of the DTA, at depths as shallow as 17 ft. Ringing, air-wave reflections and diffractions from powerlines, vehicles, well casings, and metal equipment severly degraded GPR profiles in the northern portion of the DTA; depths computed from reflection times (where visible) were accurate to within 4 ft in this area. The paleochannel deposits are deeper to the north and northeast where DNAPL has apparently pooled (DNAPL was not directly imaged by the GPR, however). Existing hydrogeological models of the DTA will be revised.

  17. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  18. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  19. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  20. When Utility Bills Attack!

    Broader source: Energy.gov [DOE]

    As proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills.

  1. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  2. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  3. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  4. USET Tribal Utility Summit

    Broader source: Energy.gov [DOE]

    The United South and Eastern Tribes (USET) is hosting its annual Tribal Utility Summit at the Harrah's Cherokee Casino and hosted by Eastern Band of Cherokee Indians.

  5. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  6. Utility Partnerships Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UESCs help utilities improve key customer load profles, meet effciency and renewable energy portfolio standards, and provide exemplary customer service. Federal sites beneft from ...

  7. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentationgiven at the April 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers significant electric industry trends and industry priorities with federal customers.

  8. Dalton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Dalton Utilities Jump to: navigation, search Name: Dalton Utilities Place: Georgia Phone Number: 706-278-1313 Website: www.dutil.comresidentialinde Twitter: @DaltonUtilities...

  9. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  10. Teuchos Utility Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Teuchos is designed to provide portable, object-oriented tools for Trillnos developers and users. This includes templated wrappers to BLAS/LAPACK, a serial dense matrix class, a parameter list, XML parsing utilities, reference counted pointer (smart pointer) utilities, and more. These tools are designed to run on both serial and parallel computers.

  11. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  12. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentationgiven at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  13. Hualapai Tribal Utility Project

    Office of Environmental Management (EM)

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  14. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

  15. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

  16. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    SciTech Connect (OSTI)

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, a total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.

  17. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect Technical Report: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar

  18. Flora Utilities | Open Energy Information

    Open Energy Info (EERE)

    Flora Utilities Jump to: navigation, search Name: Flora Utilities Place: Indiana Phone Number: 574-967-4971 Website: www.townofflora.orgflora-util Outage Hotline: 574-967-4971...

  19. For Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Superior Energy Performance » For Utilities For Utilities Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities helped industrial customers prepare for SEP certification in SEP demonstrations. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Utilities and energy efficiency program administrators are testing SEP as a practical, energy-saving program offering. Superior Energy

  20. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  1. Industrial Energy Efficiency Utility Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    State, regional, and utility partners can learn how to help manufacturing customers save energy by reading the following presentations. Webinars feature experts from utilities, government, and...

  2. Cannelton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Cannelton Utilities Jump to: navigation, search Name: Cannelton Utilities Place: Indiana Phone Number: (812) 547-7919 Outage Hotline: (812) 547-7919 References: EIA Form EIA-861...

  3. Hustisford Utilities | Open Energy Information

    Open Energy Info (EERE)

    Hustisford Utilities Jump to: navigation, search Name: Hustisford Utilities Place: Wisconsin Phone Number: (920) 349-3650 Website: www.hustisford.comindex.asp?S Outage Hotline:...

  4. Maryville Utilities | Open Energy Information

    Open Energy Info (EERE)

    Maryville Utilities Jump to: navigation, search Name: Maryville Utilities Place: Tennessee Phone Number: 865.273.3900 or 865-273-3300 Website: www.maryvillegov.comutility-p...

  5. Slinger Utilities | Open Energy Information

    Open Energy Info (EERE)

    Slinger Utilities Jump to: navigation, search Name: Slinger Utilities Place: Wisconsin Phone Number: (262)644-5265 Website: www.vi.slinger.wi.govindex.as Outage Hotline: (262)...

  6. EM Reviews Portsmouth, Paducah Site Contractor Performance, Determines Award Fees

    Broader source: Energy.gov [DOE]

    LEXINGTON, Ky. – EM has completed annual performance evaluations of four prime contractors working on the deactivation, decontamination, and decommissioning of the former gaseous diffusion plants near Portsmouth, Ohio and Paducah, Kentucky.

  7. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  8. MTV Utility Library

    Energy Science and Technology Software Center (OSTI)

    2008-02-29

    The MSV Java Utility Library contains software developed over many years for many sponsors. (This work is not a derivative of CB-EMIS), but rather support to the CB-EMIS software). Projects that have used and contributed to code in this library: CB-EMIS (PROTECT), BWIC, Fort Future, Teva, Integrated Oceans, ENKIMDU, RCW, JEMS, JWACS, EPA watershed, and many others. This library will continue to be used in other non-CB-EMIS related projects. The components include: Spatial components: Multi-coordinatemore » system spatial objects. 2D spatial indexing system, and polygon griding system. Data translation: Allows import and export of file based data to and from object oriented systems. Multi-platform data streams: Allows platform specific data streams to operate on any support platform. Other items include printing, custom GUI components, support for NIMA Raster Product Format, program logging utilities and others.« less

  9. DOE/EA-1927, Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky

    Office of Environmental Management (EM)

    Paducah Gaseous Diffusion Plant Final Environmental Assessment for Potential Land and Facilities Transfers, McCracken County, Kentucky U.S. Department of Energy Portsmouth/Paducah Project Office December 2015 DOE/EA-1927 ACRONYMS AND ABBREVIATIONS CEQ Council on Environmental Quality CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980 CFR Code of Federal Regulations dBA A-weighted decibel DOE U.S. Department of Energy DUF 6 depleted uranium hexafluoride EA

  10. A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Provide Energy Efficiency Resources for Key Accounts | Department of Energy Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts This case study provides information on how Danville Utilities used Industrial Assessment Centers to provide energy efficiency resources to key accounts. PDF

  11. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  12. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  13. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  14. SREL Reprint #3210

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Comparative Geochemical and Microbiological Characterization of Two Thermal Pools in the Uzon Caldera, Kamchatka, Russia Elizabeth A. Burgess1, Jason M. Unrine2, Gary L. Mills1, Christopher S. Romanek3, and Juergen Wiegel4 1Savannah River Ecology Laboratory, University of Georgia, P.O. Drawer E, Aiken, SC 29802, USA 2Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, USA 3Department of Earth & Environmental Sciences, University of Kentucky, Lexington, KY, USA

  15. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: Demand-side management This refers to efforts to reduce energy use through energy efficiency and conservation measures. Off-grid, facility and household scale renewable energy systems These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. Medium to large scale renewable energy development for sale to the grid In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be developed and sold to the wholesale electricity market. Facility scale, net metered renewable energy systems These are renewable energy systems that provide power to individual households or facilities that are connected to conventional electric utility grid.

  16. Tribal Utility Formation

    Energy Savers [EERE]

    I L L E P O W E R A D M I N I S T R A T I O N Tribal Utility Formation in the Bonneville Power Administration Service Territory Ken Johnston Acting Tribal Affairs Manager BPA TRIBAL AFFAIRS DEPARTMENT JULY 2015 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 The Basics  BPA markets power from 31 Federal dams, the Columbia Generating Station Nuclear Plant, and several small non- Federal power plants  About 80% of the power BPA sells is hydroelectric  BPA accounts for about

  17. Tribal Utility Policy Issues

    Energy Savers [EERE]

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  18. Coming utility squeeze play

    SciTech Connect (OSTI)

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  19. Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Hatcher, Robert D

    2005-11-30

    This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

  20. Draft Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky, Site

    SciTech Connect (OSTI)

    N /A

    2003-11-28

    This document is a site-specific environmental impact statement (EIS) for construction and operation of a proposed depleted uranium hexafluoride (DUF{sub 6}) conversion facility at the U.S. Department of Energy (DOE) Paducah site in northwestern Kentucky (Figure S-1). The proposed facility would convert the DUF{sub 6} stored at Paducah to a more stable chemical form suitable for use or disposal. In a Notice of Intent (NOI) published in the ''Federal Register'' (FR) on September 18, 2001 (''Federal Register'', Volume 66, page 48123 [66 FR 48123]), DOE announced its intention to prepare a single EIS for a proposal to construct, operate, maintain, and decontaminate and decommission two DUF{sub 6} conversion facilities at Portsmouth, Ohio, and Paducah, Kentucky, in accordance with the National Environmental Policy Act of 1969 (NEPA) (''United States Code'', Title 42, Section 4321 et seq. [42 USC 4321 et seq.]) and DOE's NEPA implementing procedures (''Code of Federal Regulations'', Title 10, Part 1021 [10 CFR Part 1021]). Subsequent to award of a contract to Uranium Disposition Services, LLC (hereafter referred to as UDS), Oak Ridge, Tennessee, on August 29, 2002, for design, construction, and operation of DUF{sub 6} conversion facilities at Portsmouth and Paducah, DOE reevaluated its approach to the NEPA process and decided to prepare separate site-specific EISs. This change was announced in a ''Federal Register'' Notice of Change in NEPA Compliance Approach published on April 28, 2003 (68 FR 22368); the Notice is included as Attachment B to Appendix C of this EIS. This EIS addresses the potential environmental impacts from the construction, operation, maintenance, and decontamination and decommissioning (D&D) of the proposed conversion facility at three alternative locations within the Paducah site; from the transportation of depleted uranium conversion products to a disposal facility; and from the transportation, sale, use, or disposal of the fluoride-containing conversion products (hydrogen fluoride [HF] or calcium fluoride [CaF{sub 2}]). Although not part of the proposed action, an option of shipping all cylinders (DUF{sub 6}, low-enriched UF{sub 6} [LEU-UF{sub 6}], and empty) stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Paducah rather than to Portsmouth is also considered. In addition, this EIS evaluates a no action alternative, which assumes continued storage of DUF{sub 6} in cylinders at the Paducah site. A separate EIS (DOE/EIS-0360) evaluates the potential environmental impacts for the proposed Portsmouth conversion facility.

  1. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  2. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  3. DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site

    Office of Legacy Management (LM)

    Maxey Flats Disposal Site - KY 02 Commercial (Burial) Disposal Site Maxey Flats Disposal Site - KY 02 FUSRAP Considered Sites Site: Commercial (Burial) Disposal Site, Maxey Flats Disposal Site (KY.02) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Maxey Flats, Kentucky, Site Documents Related to Commercial (Burial) Disposal Site,

  4. Utility Energy Service Contracts Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    This webinar targets Federal staff, as well as utility representatives, and provides an understanding of the legal parameters, contracting requirements, financing options, and other aspects of utility energy service contracts (UESC).

  5. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  6. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  7. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility

    Office of Scientific and Technical Information (OSTI)

    Planning and Operations (Technical Report) | SciTech Connect The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations Citation Details In-Document Search Title: The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  8. Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency

    Broader source: Energy.gov [DOE]

    This webinar highlights state mandates from throughout the country, and how they’ve influenced utility industrial energy efficiency programs.

  9. Tri-State Synfuels Project Review: Volume 12. Fluor project status. [Proposed Henderson, Kentucky coal to gasoline plant; engineering

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    The purpose of this report is to document and summarize activities associated with Fluor's efforts on the Tri-State Synfuels Project. The proposed facility was to be coal-to-transport fuels facility located in Henderson, Kentucky. Tri-State Synfuels Company was participating in the project as a partner of the US Department of Energy per terms of a Cooperative Agreement resulting from DOE's synfuel's program solicitation. Fluor's initial work plan called for preliminary engineering and procurement services to the point of commitment for construction for a Sasol Fischer-Tropsch plant. Work proceeded as planned until October 1981 when results of alternative coal-to-methanol studies revealed the economic disadvantage of the Synthol design for US markets. A number of alternative process studies followed to determine the best process configuration. In January 1982 Tri-State officially announced a change from Synthol to a Methanol to Gasoline (MTG) design basis. Further evaluation and cost estimates for the MTG facility eventually led to the conclusion that, given the depressed economic outlook for alternative fuels development, the project should be terminated. Official announcement of cancellation was made on April 13, 1982. At the time of project cancellation, Fluor had completed significant portions of the preliminary engineering effort. Included in this report are descriptions and summaries of Fluor's work during this project. In addition location of key project data and materials is identified and status reports for each operation are presented.

  10. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  11. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  12. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2002, each electric utility must inform its customers on a quarterly basis of the voluntary option to purchase green power. The details of each utility's program must be...

  13. Utility Connection | Open Energy Information

    Open Energy Info (EERE)

    your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be...

  14. Federal Utility Partnership Working Group

    Broader source: Energy.gov [DOE]

    The Federal Utility Partnership Working Group (FUPWG) establishes partnerships and facilitates communications among Federal agencies, utilities, and energy service companies. The group develops strategies to implement cost-effective energy efficiency and water conservation projects through utility incentive programs at Federal sites.

  15. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  16. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  17. Patent: Microelectromechanical pump utilizing porous silicon...

    Office of Scientific and Technical Information (OSTI)

    pump utilizing porous silicon Citation Details Title: Microelectromechanical pump utilizing porous silicon

  18. Kentucky-Kentucky Natural Gas Plant Processing

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    60,941 67,568 61,463 56,226 2011-2014 Total Liquids Extracted (Thousand Barrels) 3,625 3,593 3,606 2012-2014 NGPL Production, Gaseous Equivalent (Million Cubic Feet) 5,006

  19. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  20. Public Utilities Specialist (Energy Efficiency)

    Broader source: Energy.gov [DOE]

    This position will serve as a Public Utilities Specialist in the Programs group (PEJC) of the Program Implementation organization. The Program Implementation organization is responsible for the...

  1. Pueblo of Laguna Utility Authority

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRIBAL UTILITY KAWAIKA HANU INTERNET LET US GET YOU CONNECTED Kawaika Hanu is your local internet service provider offering high speed internet with competitive rates. ...

  2. Waupun Utilities | Open Energy Information

    Open Energy Info (EERE)

    .waupunutilities.com Facebook: https:www.facebook.compagesUtilities111651042230525?refbrrs Outage Hotline: 920-324-7920 References: EIA Form EIA-861 Final Data File for...

  3. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  4. Sheffield Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 389-2000 Website: sheffieldutilities.orgelectri Facebook: https:www.facebook.compagesSheffield-Utilities475026559217897 Outage Hotline:...

  5. Decatur Utilities | Open Energy Information

    Open Energy Info (EERE)

    Number: (256) 552-1400 Website: www.decaturutilities.com Twitter: @decaturutility Facebook: https:www.facebook.comDecaturUtilitiesAlabama Outage Hotline: (256) 552-1400...

  6. Sandia Energy - Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Operations and Programs Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Utility Operations and Programs Utility...

  7. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other ...

  8. Green Utility Srl | Open Energy Information

    Open Energy Info (EERE)

    Utility Srl Jump to: navigation, search Name: Green Utility Srl Place: Rome, Italy Zip: 153 Product: Italian PV project developer established by Solon, GESENU and Green Utility...

  9. Fairmont Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Fairmont Public Utilities Comm Jump to: navigation, search Name: Fairmont Public Utilities Comm Place: Minnesota Phone Number: 507-235-6918 Website: fairmont.orgpublic-utilities...

  10. TEST UTILITY COMPANY | Open Energy Information

    Open Energy Info (EERE)

    TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

  11. Pascoag Utility District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  12. Federal Utility Partnership Working Group Meeting: Washington...

    Energy Savers [EERE]

    Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting: Washington Update Federal Utility Partnership Working Group Meeting:...

  13. Competing Federal Utility Energy Service Contracts | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opening utility energy service contracts to competing franchised utility companies ensures ... in its model agreement requires utility companies to competitively select technical ...

  14. Building America Whole-House Solutions for New Homes: Urbane Homes,

    Energy Savers [EERE]

    Louisville, Kentucky | Department of Energy Urbane Homes, Louisville, Kentucky Building America Whole-House Solutions for New Homes: Urbane Homes, Louisville, Kentucky Case study of Urbane Homes who worked with Building America research partner NAHBRC to build HERS-57 homes with rigid foam insulated slabs and foundation walls, advanced framed walls, high-efficiency heat pumps, and ducts in conditioned space. PDF icon Urbane Homes - Louisville, KY More Documents & Publications High

  15. Xylose utilization in recombinant Zymomonas

    DOE Patents [OSTI]

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  16. Xylose utilization in recombinant zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  17. EA-1498: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky

  18. EA-1498: Finding of No Significant Impact

    Broader source: Energy.gov [DOE]

    Advanced Coal Utilization Byproduct Beneficiation Processing Plant Ghent Power Station, Carroll County, Kentucky

  19. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon West Power Project construction of the power infrastructure at Grand Canyon West. Develop the maintenance and operations capacity necessary to support utility operations. Develop rates for customers on the Grand Canyon West “mini-grid” sufficient for the tribal utility to be self-sustaining. Establish an implementation strategy for tribal utility service at Grand Canyon West Objective 2 - Develop a strategy for tribal utility takeover of electric service on the Reservation. Perform a cost analysis of Reservation electrical service. Develop an implementation strategy for tribal takeover of Reservation electrical service. Examine options and costs associated with integration of the Tribe’s wind resources.

  20. OpenEI Community - Utility+Utility Access Map

    Open Energy Info (EERE)

    the Special Ask page, in the query box enter the following:

    &91;&91;Category:Utility...

  1. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  2. ccpi-multi-product-coal | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coal Utilization By-Product Processing Plant - Project Brief PDF-78KB University of Kentucky Research Foundation, Ghent, Kentucky PROJECT FACT SHEET Advanced Multi-Product Coal ...

  3. Utility Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Government Comprehensive MeasuresWhole Building Yes Riverside Public Utilities - Energy Efficiency Technology Grant Program (California) Utility Grant Program California...

  4. Competing Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Opening utility energy service contracts to competing franchised utility companies ensures federal agencies get the best value for their projects.

  5. Evaluation Ratings Definitions (Excluding Utilization of Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...

  6. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arizona Utilities Announce Transmission Infrastructure Project Energization Energy Department, Arizona Utilities Announce Transmission Infrastructure Project Energization February ...

  7. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility Partnership Working Group Seminar:...

  8. FEMP Announces New Utilities Offering UESCs

    Broader source: Energy.gov [DOE]

    FEMP is pleased to announce four new utilities now offering Utility Energy Service Contracts (UESCs) to their Federal customers.

  9. Utility Partnerships Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Program Overview Utility Partnerships Program Overview Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program. PDF icon utility_program_2014.pdf More Documents & Publications Federal Utility Partnership Working Group Seminar: Chairman's Corner Funding Federal Energy and Water Projects Federal Utility Partnership Working Group Meeting Chairman's Corner

  10. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  11. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  12. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In 2015, H.B. 2941 expanded this requirement to include a rate option with a specific renewable energy resource, such as solar photovoltaics, if the Public Utilities Commission finds there is...

  13. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  14. utility | OpenEI Community

    Open Energy Info (EERE)

    service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  15. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that some sort of joint design and development effort that could take advantage of economies of scale and more favorable pricing could be good. He said that small utilities...

  16. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Austin Utilities. An energy audit must be performed prior to system installation and...

  17. WINDExchange: Utility-Scale Wind

    Wind Powering America (EERE)

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  18. Pueblo of Laguna Utility Authority

    Energy Savers [EERE]

    PUEBLO OF LAGUNA UTILITY AUTHORITY TRIBAL UTILITY FORMATION: REGULATION, FINANCE AND BUSINESS STRUCTURE FACTS ON LAGUNA PUEBLO * LAGUNA IS LOCATED ABOUT 45 MILES WEST OF ALBUQUERQUE ON INTERSTATE 40 * RESERVATION CONSISTS OF APPROX. 500,000 ACRES OF LAND SITUATED IN CIBOLA, VALENCIA AND BERNALILLO COUNTIES * SIX (6) VILLAGES, LAGUNA, MESITA, PAGUATE, SEAMA, ENCINAL, PARAJE ARE ALL WITHIN THE LAGUNA RESERVATION * 4,000+ TRIBAL MEMBERS LIVE ON THE RESERVATION * CASINOS, TRAVEL CENTERS, SUPERMARKET

  19. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  20. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public Service, Salt River Project, Xcel and Nevada Power Company as well as the Arizona electric cooperatives. In the second phase of the project, three years of 10 second power output data of the SGSSS was used to evaluate the effectiveness of frequency domain analysis, normal statistical distribution analysis and finally maximum/minimum differential output analysis to test the applicability of these mathematic methods in accurately modeling the output variations produced by clouds passing over the SGSSS array.

  1. Cpp Utility - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-09-08

    A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.

  2. Kentucky Natural Gas Summary

    Gasoline and Diesel Fuel Update (EIA)

    47 1967-2010 Pipeline and Distribution Use 1967-2005 Citygate 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Commercial 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Industrial 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015 Vehicle Fuel -- -- -- 1992-2012 Electric Power W W W W W W 1997-2015 Dry Proved Reserves (Billion Cubic Feet) Proved Reserves as of 12/31 2,613 2,006 1,408 1,663 1,611 1977-2014 Adjustments -58 -34 -282 103 -9 1977-2014 Revision Increases

  3. Kentucky Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  4. Kentucky Natural Gas Prices

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Citygate Price 3.44 3.41 3.34 3.41 3.21 3.85 1989-2015 Residential Price 23.26 22.36 21.14 16.21 11.07 9.41 1989-2015 Percentage of Total Residential Deliveries included in Prices 96.9 97.6 97.2 97.6 97.4 96.7 2002-2015 Commercial Price 11.98 11.34 10.55 9.42 8.63 7.72 1989-2015 Percentage of Total Commercial Deliveries included in Prices 66.4 67.6 68.0 72.3 76.0 80.6 1989-2015 Industrial Price 4.24 4.05 3.86 3.78 3.44 3.58 2001-2015

  5. Kentucky Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    47 1967-2010 Pipeline and Distribution Use Price 1967-2005 Citygate Price 5.69 5.18 4.17 4.47 5.16 NA 1984-2015 Residential Price 10.02 10.44 10.19 9.80 10.62 10.94 1967-2015 Percentage of Total Residential Deliveries included in Prices 95.7 95.5 95.9 96.2 96.3 96.3 1989-2015 Commercial Price 8.61 8.79 8.28 8.32 9.04 8.80 1967-2015 Percentage of Total Commercial Deliveries included in Prices 80.5 79.2 77.4 78.8 80.5 79.2 1990-2015 Industrial Price 5.57 5.16 3.96 4.84 5.80 4.36 1997-2015

  6. Kentucky Proved Nonproducing Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    0 0 0 1 0 1996-2014 Lease Condensate (million bbls) 0 0 0 0 0 0 1998-2014 Total Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Nonassociated Gas (billion cu ft) 149 106 75 6 3 6 1996-2014 Associated Gas (billion cu ft) 0 0 0 0 0 0

  7. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  8. Minnkota Power Cooperative (17 Utilities) - PowerSavers Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Cooperative Roseau Municipal Utilities Fosston Municipal Utilities City of Stephen Municipal Utilities Halstad Municipal Utilities Thief River Falls Municipal Utilities...

  9. Ocala Utility Services- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ocala Utility Services Electric and Telecommunications is a community owned utility that serves around 50,000 customers in Ocala and Marion County area. Ocala Utility Services offers rebates on A/C...

  10. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect (OSTI)

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  11. Effective Strategies for Participating in Utility Planning

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating in Utility Planning, Call Slides and Discussion Summary, August 2, 2012. This Peer Exchange Call discussed effective strategies for participating in utility planning.

  12. New London Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Jump to: navigation, search Name: New London Municipal Utilities Place: Iowa References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  13. Utility Energy Service Contracts - Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts

  14. LLNL E-Mail Utilities

    Energy Science and Technology Software Center (OSTI)

    2005-10-31

    The LLNL E-mail Utilities software library is a Java API that simplifies the creation and delivery of email in Java business applications. It consists of a database-driven template engine, various strategies for composing, queuing, dispatching email and a Java Swing GUI for creating and editing email templates.

  15. Departmental Energy and Utilities Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-15

    To establish requirements and responsibilities for managing Department of Energy (DOE) energy and utility supplies and services. Cancels paragraphs 6d(2), 6h, 7b(1), 7b(2), and 7e(16) of DOE O 430.1A) Cancels: DOE O 430.2, DOE O 430.1A (in part)

  16. Zymomonas with improved xylose utilization

    DOE Patents [OSTI]

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCutchen, Carol M.; McCole, Laura; Zhang, Min; Chou, Yat-Chen; Franden, Mary Ann

    2011-08-16

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  17. A utility`s perspective of the market for IGCC

    SciTech Connect (OSTI)

    Black, C.R.

    1993-06-01

    The market for Integrated Gasification Combined Cycle (IGCC) power plants is discussed and some of the experiments with an Integrated Gasification Combined Cycle Power Plant Project, Polk Unit {number_sign}1 are described. It was found that not only is the technology different from what most US utilities are accustomed to, but also that the non-technical issues or business issues, such as contracting, project management and contract administration also have different requirements. The non-technical or business issues that are vital to the successful commercialization of this technology are described. These business issues must be successfully addressed by both the utilities and the technology suppliers in order for integrated gasification combined cycle power plants to achieve commercial success.

  18. Utility Data Accessibility Map | Open Energy Information

    Open Energy Info (EERE)

    utility company to see your electricity data access options. Select the Benchmarking or Demand ResponseEnergy Efficiency map to find out whether your utility provides sufficient...

  19. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect (OSTI)

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  20. 2012 Green Utility Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Power Providers See All Leaders x Renewable Energy Sales Total Customer Participants Customer Participation...

  1. Clark Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    utility. The company started the Green Lights program to support the development of renewable energy resources in the Northwest. References: Clark Public Utilities1 This...

  2. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  3. UGI Utilities, Inc | Open Energy Information

    Open Energy Info (EERE)

    UGI Utilities, Inc Jump to: navigation, search Name: UGI Utilities, Inc Place: Pennsylvania Phone Number: (800) 276-2722 Website: www.ugi.comportalpageportal Twitter: https:...

  4. Clinton Combined Utility Sys | Open Energy Information

    Open Energy Info (EERE)

    Clinton Combined Utility Sys Jump to: navigation, search Name: Clinton Combined Utility Sys Place: South Carolina Phone Number: 864-833-7524 Website: www.cityofclintonsc.com...

  5. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to...

  6. Greenville Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenville Utilities Comm Jump to: navigation, search Name: Greenville Utilities Comm Place: North Carolina Phone Number: 1-855-767-2482 Website: www.guc.com Twitter: @gucinfo...

  7. Truman Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Truman Public Utilities Comm Jump to: navigation, search Name: Truman Public Utilities Comm Place: Minnesota Phone Number: 507-776-7951 Website: trumanmn.usutilities Outage...

  8. Hibbing Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Hibbing Public Utilities Comm Jump to: navigation, search Name: Hibbing Public Utilities Comm Place: Minnesota Website: www.hpuc.com Outage Hotline: 218-262-7720 References: EIA...

  9. Trinity Public Utilities Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Utilities Dist Jump to: navigation, search Name: Trinity Public Utilities Dist Place: California Website: trinitypud.com Outage Hotline: (530) 623-5536 References: EIA Form...

  10. Keewatin Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Keewatin Public Utilities Jump to: navigation, search Name: Keewatin Public Utilities Place: Minnesota Phone Number: 218-778-6544 Website: www.keewatin.govoffice.comind Outage...

  11. Willmar Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Willmar Municipal Utilities Jump to: navigation, search Name: Willmar Municipal Utilities Place: Minnesota Phone Number: 320.235.4422 Website:...

  12. Delano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Delano Municipal Utilities Jump to: navigation, search Name: Delano Municipal Utilities Place: Minnesota Website: www.dmumn.com Outage Hotline: (763)972-0557 References: EIA Form...

  13. Greenwood Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenwood Utilities Comm Jump to: navigation, search Name: Greenwood Utilities Comm Place: Mississippi Phone Number: (622) 453-7234 Website: www.greenwoodutilities.com Facebook:...

  14. Brainerd Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Brainerd Public Utilities Jump to: navigation, search Name: Brainerd Public Utilities Abbreviation: BPU Address: 8027 Highland Scenic Rd Place: Brainerd, MN Zip: 56401 Phone...

  15. Shakopee Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Shakopee Public Utilities Comm Jump to: navigation, search Name: Shakopee Public Utilities Comm Place: Minnesota Website: spucweb.com Outage Hotline: 952-445-1988 References: EIA...

  16. Clarksdale Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Clarksdale Public Utilities Jump to: navigation, search Name: Clarksdale Public Utilities Place: Mississippi Phone Number: (662) 627-8499 Website: www.clarksdale.com Facebook:...

  17. Aitkin Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Aitkin Public Utilities Comm Jump to: navigation, search Name: Aitkin Public Utilities Comm Place: Minnesota Phone Number: 763-576-2750 Website: www.anokaelectric.govoffice3.c...

  18. Indianola Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Indianola Municipal Utilities Jump to: navigation, search Name: Indianola Municipal Utilities Place: Iowa Phone Number: 515.961.9444 Website: www.i-m-u.com Outage Hotline:...

  19. Preston Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Preston Public Utilities Comm Jump to: navigation, search Name: Preston Public Utilities Comm Place: Minnesota Phone Number: (507) 765-2491 Website: www.prestonmn.orgpuc1.htm...

  20. Central Lincoln People's Utility District - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  1. Truckee Donner Public Utility District - Energy Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  2. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  3. Federal Energy Efficiency through Utility Partnerships

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

  4. A Case Study of Danville Utilities:

    SciTech Connect (OSTI)

    2010-03-09

    This case study provides information on how Danville Utilities utilized ITP Industrial Assessment Centers to provide energy efficiency resources to key accounts.

  5. City Utilities of Springfield | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17833 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  6. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  7. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  8. Watertown Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: South Dakota Phone Number: (605)882-6233 Website: watertownmu.com Twitter: @watertownmu Facebook: https:www.facebook.compagesWatertown-Municipal-Utiliti...

  9. EPOD Renewable Utilities Inc | Open Energy Information

    Open Energy Info (EERE)

    EPOD Renewable Utilities Inc Jump to: navigation, search Name: EPOD Renewable Utilities Inc Place: Frankfurt, Germany Sector: Renewable Energy Product: Focused on operating...

  10. West Point Utility System | Open Energy Information

    Open Energy Info (EERE)

    Utility System Jump to: navigation, search Name: West Point Utility System Place: Iowa Phone Number: (319) 837-6313 Website: www.westpointiowa.comwp-utili Facebook: https:...

  11. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  12. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  13. Effective Strategies for Participating in Utility Planning |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effective Strategies for Participating in Utility Planning Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating ...

  14. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting Chairman's Corner Federal Utility Partnership Working Group Meeting Chairman's Corner Presentation-given at the Fall 2012 Federal Utility Partnership Working Group (FUPWG)...

  15. Federal Utility Partnership Working Group Meeting: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting: Chairman's Corner Federal Utility Partnership Working Group Meeting: Chairman's Corner Presentation-given at the April 2012 Federal Utility Partnership Working Group...

  16. Shawano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Wisconsin Phone Number: 715-526-3131 Website: www.shawano.tv Facebook: https:www.facebook.compagesShawano-Municipal-Utilities156410777732483 Outage...

  17. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect (OSTI)

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  18. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  19. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  20. Utility Partnerships Webinar Series: Electric Utility Energy Efficiency Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnerships Webinar Series: Electric Utility Energy Efficiency Programs October 5, 2010 Industrial Technologies Program eere.energy.gov Speakers and Topics: * Consortium for Energy Efficiency (CEE), Industrial Program Manager, Kellem Emanuele, will discuss national trends in electric energy efficiency programs for industrial customers. * Xcel Energy, Trade Relations Manager in Colorado, Bob Macauley, and Trade Relations Manager in Minnesota, Brian Hammarsten, will provide insight from a large

  1. Finding Utility Companies Under a Given Utility ID | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  2. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

  3. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  4. Tribal Legal Code: Umpqua Indian Utility Cooperative

    Broader source: Energy.gov [DOE]

    Provides an example tribal utility legal code. Also includes an example tribal energy development vision statement.

  5. EM Utility Contracts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Contracts EM Utility Contracts Table providing summary information of EM awards for utility services. PDF icon EM Utility Contracts More Documents & Publications Land and Asset Transfer for Beneficial Reuse Microsoft Word - 338M_Geothermal_Project_Descriptions CX-010152: Categorical Exclusion Determination

  6. Working With Municipal Utilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Network Program Sustainability / Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities, Call Slides and Summary, June 27, 2013. PDF icon Call Slides and Summary More Documents & Publications Better Buildings Working with Utilities Peer Exchange Call: Kick-off Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Tracking and Using Data to Support Revenue Streams

  7. Best Practices Case Study: Urbane Homes - Crestwood, KY, Various Locations, Greater Louisville, KY

    SciTech Connect (OSTI)

    2011-09-01

    Case study of Urbane Homes, who worked with Building America to build market rate homes with HERS scores of 57 to 62. Despite a down market theyve sold every home within 3 weeks of listing, without any advertising.

  8. 2014 Non-Utility Power Producers- Revenue

    Gasoline and Diesel Fuel Update (EIA)

    Revenue (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 296 0 0 296 Constellation NewEnergy, Inc AZ Non_Utility 0 256 0 0 256 Constellation Solar Arizona LLC AZ Non_Utility 0 774 0 0 774 Main Street Power AZ Non_Utility 0 533 0 0 533 Main Street Power AZ Non_Utility 0 265 0 0 265 Main Street Power AZ Non_Utility 0 165 0 0 165 Solar Star Arizona II LLC AZ Non_Utility 0 638 0 0 638 Solar Star

  9. Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia

    SciTech Connect (OSTI)

    Robert D. Hatcher

    2003-05-31

    This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

  10. Floodplain/wetland assessment of the effects of construction and operation ofa depleted uranium hexafluoride conversion facility at the Paducah, Kentucky,site.

    SciTech Connect (OSTI)

    Van Lonkhuyzen, R.

    2005-09-09

    The U.S. Department of Energy (DOE) Depleted Uranium Hexafluoride (DUF{sub 6}) Management Program evaluated alternatives for managing its inventory of DUF{sub 6} and issued the ''Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted Uranium Hexafluoride'' (DUF{sub 6} PEIS) in April 1999 (DOE 1999). The DUF{sub 6} inventory is stored in cylinders at three DOE sites: Paducah, Kentucky; Portsmouth, Ohio; and East Tennessee Technology Park (ETTP), near Oak Ridge, Tennessee. In the Record of Decision for the DUF{sub 6} PEIS, DOE stated its decision to promptly convert the DUF{sub 6} inventory to a more stable chemical form. Subsequently, the U.S. Congress passed, and the President signed, the ''2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the United States'' (Public Law No. 107-206). This law stipulated in part that, within 30 days of enactment, DOE must award a contract for the design, construction, and operation of a DUF{sub 6} conversion plant at the Department's Paducah, Kentucky, and Portsmouth, Ohio, sites, and for the shipment of DUF{sub 6} cylinders stored at ETTP to the Portsmouth site for conversion. This floodplain/wetland assessment has been prepared by DOE, pursuant to Executive Order 11988 (''Floodplain Management''), Executive Order 11990 (Protection of Wetlands), and DOE regulations for implementing these Executive Orders as set forth in Title 10, Part 1022, of the ''Code of Federal Regulations'' (10 CFR Part 1022 [''Compliance with Floodplain and Wetland Environmental Review Requirements'']), to evaluate potential impacts to floodplains and wetlands from the construction and operation of a conversion facility at the DOE Paducah site. Reconstruction of the bridge crossing Bayou Creek would occur within the Bayou Creek 100-year floodplain. Replacement of bridge components, including the bridge supports, however, would not be expected to result in measurable long-term changes to the floodplain. Approximately 0.16 acre (0.064 ha) of palustrine emergent wetlands would likely be eliminated by direct placement of fill material within Location A. Some wetlands that are not filled may be indirectly affected by an altered hydrologic regime, due to the proximity of construction, possibly resulting in a decreased frequency or duration of inundation or soil saturation and potential loss of hydrology necessary to sustain wetland conditions. Indirect impacts could be minimized by maintaining a buffer near adjacent wetlands. Wetlands would likely be impacted by construction at Location B; however, placement of a facility in the northern portion of this location would minimize wetland impacts. Construction at Location C could potentially result in impacts to wetlands, however placement of a facility in the southeastern portion of this location may best avoid direct impacts to wetlands. The hydrologic characteristics of nearby wetlands could be indirectly affected by adjacent construction. Executive Order 11990, ''Protection of Wetlands'', requires federal agencies to minimize the destruction, loss, or degradation of wetlands, and to preserve and enhance the natural and beneficial uses of wetlands. DOE regulations for implementing Executive Order 11990 as well as Executive Order 11988, ''Floodplain Management'', are set forth in 10 CFR Part 1022. Mitigation for unavoidable impacts may be developed in coordination with the appropriate regulatory agencies. Unavoidable impacts to wetlands that are within the jurisdiction of the USACE may require a CWA Section 404 Permit, which would trigger the requirement for a CWA Section 401 Water Quality Certification from the Commonwealth of Kentucky. A mitigation plan may be required prior to the initiation of construction. Cumulative impacts to floodplains and wetlands are anticipated to be negligible to minor under the proposed action, in conjunction with the effects of existing conditions and other activities. Habitat disturbance would involve settings commonly found i

  11. Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    SciTech Connect (OSTI)

    Boerner, A. J.; Maldonado, D. G.; Hansen, Tom

    2012-09-01

    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.

  12. Commercial low-Btu coal-gasification plant. Feasibility study: General Refractories Company, Florence, Kentucky. Volume I. Project summary. [Wellman-Galusha

    SciTech Connect (OSTI)

    1981-11-01

    In response to a 1980 Department of Energy solicitation, the General Refractories Company submitted a Proposal for a feasibility study of a low Btu gasification facility for its Florence, KY plant. The proposed facility would substitute low Btu gas from a fixed bed gasifier for natural gas now used in the manufacture of insulation board. The Proposal from General Refractories was prompted by a concern over the rising costs of natural gas, and the anticipation of a severe increase in fuel costs resulting from deregulation. The proposed feasibility study is defined. The intent is to provide General Refractories with the basis upon which to determine the feasibility of incorporating such a facility in Florence. To perform the work, a Grant for which was awarded by the DOE, General Refractories selected Dravo Engineers and Contractors based upon their qualifications in the field of coal conversion, and the fact that Dravo has acquired the rights to the Wellman-Galusha technology. The LBG prices for the five-gasifier case are encouraging. Given the various natural gas forecasts available, there seems to be a reasonable possibility that the five-gasifier LBG prices will break even with natural gas prices somewhere between 1984 and 1989. General Refractories recognizes that there are many uncertainties in developing these natural gas forecasts, and if the present natural gas decontrol plan is not fully implemented some financial risks occur in undertaking the proposed gasification facility. Because of this, General Refractories has decided to wait for more substantiating evidence that natural gas prices will rise as is now being predicted.

  13. Task 16 -- Sampling and analysis at the Vortec vitrification facility in Paducah, Kentucky. Semi-annual report, April 1--September 30, 1997

    SciTech Connect (OSTI)

    Laudal, D.L.; Lilemoen, C.M.; Hurley, J.P.; Ness, S.R.; Stepan, D.J.; Thompson, J.S.

    1997-05-01

    The Vortec Cyclone Melting System (CMS{reg_sign}) facility, to be located at the US Department of Energy (DOE) Paducah Gaseous Diffusion Plant, is designed to treat soil contaminated with low levels of heavy metals and radioactive elements, as well as organic waste. To assure that costs of sampling and analysis are contained, Vortec and the DOE Federal Energy Technology Center (FETC) have decided that initially the primary focus of the sampling activities will be on meeting permitting requirements of the state of Kentucky. Therefore, sampling will be limited to the feedstock entering the system, and the glass, flue gas, and water leaving the system. The authors provide suggestions for optional sampling points and procedures in case there is later interest in operations or mass balance data. The permits do not require speciation of the materials in the effluents, only opacity, total radioactivity, total particulate, and total HCl emissions for the gaseous emissions and total radioactivity in the water and solid products. In case future testing to support operations or mass balances is required, the authors include in this document additional information on the analyses of some species of interest. They include heavy metals (RCRA [Resource Conservation and Recovery Act] and Cu and Ni), radionuclides (Th{sub 230}, U{sub 235}, Tc{sup 99}, Cs{sup 137}, and Pu{sup 239}), and dioxins/furans.

  14. Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation

    Office of Environmental Management (EM)

    427 Rev. 1 U.S. Department of Energy Office of Environmental Management Paducah Gaseous Diffusion Plant (PGDP) Review Report: Building C-400 Thermal Treatment 90% Remedial Design Report and Site Investigation, PGDP, Paducah Kentucky 15 August 2007 Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Paducah Gaseous Diffusion Plant (PGDP) Paducah KY Prepared for: Office of Groundwater and Soil Remediation Office of Engineering and Technology Review Report - C-400 Thermal Remediation PGDP

  15. Spectral utilization in thermophotovoltaic devices

    SciTech Connect (OSTI)

    Clevenger, M.B.; Murray, C.S.

    1997-12-31

    Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

  16. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  17. La Porte City Utilities | Open Energy Information

    Open Energy Info (EERE)

    Porte City Utilities Jump to: navigation, search Name: La Porte City Utilities Place: Iowa Phone Number: (319)342-3139 or (319) 342-3160 Website: lpcia.comservices Facebook:...

  18. Sustainable Business Models: Utilities and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Session 1 -– Sustainable Business Models: Utilities and Efficiency Partnerships, July 10, 2012. Provides an overview and lessons learned on Energize Phoenix's utility partnership.

  19. Bethel Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 1651 Utility Location Yes Ownership I...

  20. Knoxville Utilities Board | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 Energy Information Administration Form 8263 EIA Form 861 Data Utility Id 10421 Utility Location Yes Ownership M...