National Library of Energy BETA

Sample records for kwh kwh kwh

  1. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    APPROACH kWh Analytics will create the solar industry's largest database of financial payment history for solar financing contracts. This data set would serve as a crucial ...

  2. PROJECT PROFILE: kWh Analytics (Phase 3) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kWh Analytics (Phase 3) PROJECT PROFILE: kWh Analytics (Phase 3) Funding Opportunity: Orange Button (SB-DATA) SunShot Subprogram: Soft Costs Location: San Francisco, CA Amount Awarded: $1,000,000 Awardee Cost Share: $1,000,000 kWh Analytics will support the adoption of industry-led data standards, including the development of a data format translation software tool, Solar BabelFish, which will instantly translate original data formats into data standards. This will significantly reduce the time

  3. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPPurchasedEngyPerAreaKwhM2Other Jump to: navigation, search This is a property of type String. Other Pages using the property...

  4. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters...

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters Jump to: navigation, search This is...

  5. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used...

  6. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open...

    Open Energy Info (EERE)

    rcityUseKwhM2Printers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.928422444931 + Sweden Building 05K0002 + 1.42372881356 + Sweden...

  7. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating...

    Open Energy Info (EERE)

    UseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  8. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  9. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy...

    Open Energy Info (EERE)

    ElctrcityUseKwhM2Misc" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 9.09953195331 + Sweden Building...

  10. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy...

    Open Energy Info (EERE)

    fElctrcityUseKwhM2Pcs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 26.0998626444 + Sweden Building 05K0002 + 22.2888135593 + Sweden...

  11. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens...

    Open Energy Info (EERE)

    UseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  12. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans...

    Open Energy Info (EERE)

    eKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  13. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating |...

    Open Energy Info (EERE)

    reaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  14. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors...

    Open Energy Info (EERE)

    seKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open...

    Open Energy Info (EERE)

    lctrcityUseKwhM2Pumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 6.37190900733 + Sweden Building 05K0002 + 6.03888185355 + Sweden...

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Large computers servers Pages using the property "BuildingSPBreakdownOfElctrcityUseKwhM2LargeComp...

  18. text in "Max kWh" fields | OpenEI Community

    Open Energy Info (EERE)

    it should as we are trying to prevent users from writing "less than X", "greater than Y", etc. and follow the intention of the "Max kWh" field. Also there should be a warning...

  19. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open...

    Open Energy Info (EERE)

    PerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open...

    Open Energy Info (EERE)

    trcityUseKwhM2Laundry" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  1. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy...

    Open Energy Info (EERE)

    gyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  2. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  3. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  4. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  5. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  6. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  7. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  8. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    South Hamilton, Massachusetts Zip: 1982 Sector: Services Product: Massachusetts software maker which provides mobile data collection, calculation, and report generation...

  9. max kwh | OpenEI Community

    Open Energy Info (EERE)

    This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which...

  10. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  11. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  12. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  13. kWh Analytics: Quality Ratings for PV

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  14. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open...

    Open Energy Info (EERE)

    + 49.0472118426 + Sweden Building 05K0023 + 125.55033781 + Sweden Building 05K0024 + 100.666666667 + Sweden Building 05K0025 + 99.0384615385 + (previous 25) (next 25)...

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open...

    Open Energy Info (EERE)

    + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  16. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open...

    Open Energy Info (EERE)

    + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 +...

  17. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open...

    Open Energy Info (EERE)

    + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  18. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open...

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building...

  20. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  1. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh- Without New Dams

    Broader source: Energy.gov [DOE]

    $30.6 million Recovery Act investment by the Department of Energy highlights the additional potential of hydro power

  2. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect (OSTI)

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  3. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  4. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  5. Entergy Arkansas - Small Business Energy Efficiency Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount Lighting and Lighting Controls: 0.21 per kWh Window Film: .35 per kWh Duct Sealing:.35 per kWh Ceiling Insulation: .35 per kWh Refrigeration:...

  6. City of Sidney, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Average Rates Residential: 0.1070kWh Commercial: 0.0878kWh Industrial: 0.0555kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from...

  7. Orange & Rockland Utils Inc | Open Energy Information

    Open Energy Info (EERE)

    kWh Commercial: 0.1230kWh Industrial: 0.0580kWh The following table contains monthly sales and revenue data for Orange & Rockland Utils Inc (New York). Scroll leftright to...

  8. City of Fort Collins, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Average Rates Residential: 0.0926kWh Commercial: 0.0737kWh Industrial: 0.0562kWh The following table contains monthly sales and revenue data for Fort Collins City...

  9. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Schedules Grid-background.png Average Rates Residential: 0.1060kWh Commercial: 0.1120kWh Industrial: 0.0733kWh The following table contains monthly sales and revenue data...

  10. PHEVs Component Requirements and Efficiencies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption l100km Electrical Consumption Whkm Conventional Split HEV PHEV 8kWh Split Optimum Engine Power PHEV 12 kWh Series Thermostat Control PHEV 16 kWh Series ...

  11. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.2030kWh Commercial: 0.2160kWh Industrial: 0.1730kWh References "EIA Form EIA-861...

  12. Presidential Permit Holders - Annual Reports | Department of...

    Office of Environmental Management (EM)

    Utility A arranged for the purchase of 200,000,000 kwh for its own use and wheeled 100,000,000 kwh to neighboring utility B. Utility A must report 300,000,000 kwh of imports over ...

  13. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  14. Latest in Village Scale Clean Energy Technology

    Office of Environmental Management (EM)

    ... * Generally calculated on monthly or annual basis * Total energy savings * Loading on ... Power Wind n Penetratio ous Instantane (kWh) Demand Energy Primary (kWh) Produced ...

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  16. Upright Vacuum Sweeps Up the Competition in #EnergyFaceoff Round...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum: 297 W (297 x 1)1000 .297 kWh per week (weekly consumption) .297 kWhweek x 52 weeks 15.44 kWh (annual energy consumption) 15.44 kWh x 0.11kWh 1.70 per year Hair ...

  17. DOE Challenge Home Case Study: Near Zero Maine Home II, Vassalboro...

    Energy Savers [EERE]

    ... without PV 15,218 kWh, with PV 19,536 kWh; 393 gallons of oil * Annual PV production: projected 4,204 kWh, actual 5,400 kWh DOE CHALLENGE HOME Near Zero Maine Home 2 (Most ...

  18. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  19. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  20. Building America Case Study: Community-Scale Energy Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh ... To that end, the U.S. Department of Energy Building America team IBACOS analyzed ...

  1. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  2. NV Energy (Southern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  3. NV Energy (Northern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  4. Building America Top Innovations Hall of Fame Profile … High...

    Energy Savers [EERE]

    ... Each home's 2.2-kW photovoltaic system produced about 3,330 kWh during the 12 months studied, about half the average consumption of each household (7,007 kWh). Premier Homes chose ...

  5. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Years 11-20: retail electric rate 2014 Premium Rates: Solar: 0.04kWh Wind, Biomass, and Hydro: 0.03kWh Summary Note: Enrollment for 2015 was conducted from January 26th to...

  6. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  7. Pacific Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator Pacific Power Website http:www.pacificpower.netbusseepi.html State California Program Type Rebate Program Rebate Amount 0.12kWh-0.18kWh...

  8. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  9. Energy Incentive Programs, New Hampshire | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What public-purpose-funded energy efficiency programs are available in my state? In 2002, the New Hampshire Public Utilities Commission allocated 1.8 mills per kWh (0.0018kWh) of ...

  10. Nyseg non-residential adjustment fees? | OpenEI Community

    Open Energy Info (EERE)

    MFC on Nyseg's site and each is less than 0.005kWh. That being said, the posted value matches my expectations more for high New York electricity rates (0.16kWh). Am I missing...

  11. SOUTHWESTERN POWER ADMINISTRATION ANNUAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Estimated annual energy* (millions kWh) actual net energy (millions kWh) Beaver 1965 112,000 172 161 Blakely Mountain 1956 75,000 169 119 Broken Bow 1970 100,000 129 186 Bull ...

  12. Microsoft PowerPoint - Stockton Update_SWPA Conf_Rev 1 (Jun...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vertical axis Kaplan unit Peaking plant Peaking plant Average annual energy production of 55 000 000 KWH 55,000,000 KWH Plant placed in service in 1973 Remote operated from ...

  13. U.S. Virgin Islands Feed-In Tariff

    Broader source: Energy.gov [DOE]

    In May of 2014, AB 7586 created a feed-in-tariff that would allow owners of solar photovotaic systems ranging between 10 kWh and 500 kWh to sell their energy for approximately 26 cents per kWh. Two...

  14. Northwest Arctic Sustainable Energy Projects

    Broader source: Energy.gov (indexed) [DOE]

    ... each Water-sewer plant to off-set energy usage. * Yearly electricity offset per array ... Performance Community installed size Kw MWh Kwh lb Gallon installed Kwhday Since ...

  15. Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies Recent Advancements and Future Opportunities Mike Perry Project Leader, Electrochemical Systems United Technologies Research Center ec c es UTC Proprietary Grand Challenges in Electrical Energy Storage (EES) SCALE & COST: Want to go from Wh to kWh to MWh...  El tri Vehicl  Grid-Scale $100/kWh GRIDS Program Target  Portable Devices > $500/kWh  Electric Vehicles $250/kWh BEEST Program Target Wh UTC Proprietary Batteries are currently < 1%

  16. Renewable Energy Update

    Broader source: Energy.gov (indexed) [DOE]

    ... with lowest cost fossil fuel - Natural Gas, projected as .06kWh and achieve 20 ... studies, and optimized transmission integration. Market barriers will additionally provide ...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat Pumps, Programmable Thermostats, Other EE Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production,...

  18. Property:Incentive/QuantNotes | Open Energy Information

    Open Energy Info (EERE)

    kWh if offsetting electric water heater or 60 therms if the offsetting natural gas or propane. California Solar Initiative - Solar Thermal Program (California) + This program...

  19. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    saved Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 Lighting Control (Exterior): 70 Air Conditioners and Heat...

  20. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Only Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 CFL Wallpack (Exterior): 30 Lighting Control (Exterior):...

  1. ETATP13AppA.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page of DATE TIME CONNECT DISCONNECT SOC READING VEHICLE ODOMETER BATTERY TEMP. kWh METER READING COMMENTS INITIALS 1999 E lectric T ransportation A pplications All ...

  2. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  3. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  4. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  5. Untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatthours (kWh) used for lighting. The survey contained more...

  6. CIBO Energy Efficiency Handbook

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... With electricity costs typically at 0.065kwh and higher, the payback analysis justifies the extra expense. Here are some typical motor efficien- cies available today from ...

  7. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    1.4 M - Cord Wood 275 - 300 per cord - Kwh 0.51 (rate increase coming) - Propane 193 per 100 lbs tank - Funder reassurance - Consultant accountability - Harvest ...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  11. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. Energy Cost Calculator for Faucets and Showerheads | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use gal Annual Water Cost Lifetime Water Cost WITH ELECTRIC WATER HEATING Annual Energy Use kWh Annual Energy Cost Lifetime Energy Cost ...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings...

  15. Key Concepts in Project Development and Financing in Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...kWh * Calculates present value of the total cost of - ... - Different capital cost - Risk, return, and capacities ... and either production tax credit (PTC) or income tax credit ...

  16. Microsoft Word - Future Power Systems 20 - The Smart Enterprise...

    Broader source: Energy.gov (indexed) [DOE]

    all gives inefficient burn which costs more in fuel and emissions per kWh. Future Power Systems 20 The Smart Enterprise, its Objective and Forecasting. Steve ...

  17. Upgrading the UES Measure List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Present Value of Region Act's 10% Conservation Credit (kWh)" * Sequence of columns (reading left to right) does not follow logical thinking What We Propose * Improve...

  18. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  19. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  20. Electric Metering | Department of Energy

    Office of Environmental Management (EM)

    and comparison of data on electricity consumption for overhead lighting and power outlets. ... reducing user controlled electricity consumption at Forrestal by 1,000,000 KWh per year ...

  1. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  2. Alaska Strategic Energy Plan and Planning Handbook

    Energy Savers [EERE]

    ... Electric usage (annual, kWh) Heating fuel usage (annual, gallons) Other information Teacher Housing HUD or Housing Authority Housing Owner Built Renewable Energy Sources Readily ...

  3. 7atab.xlsx

    Gasoline and Diesel Fuel Update (EIA)

    Average residential electricity usage per customer (kWh) ...... 2,924 2,350 3,190 ... , DOEEIA-0226; and Electric Power Annual , DOEEIA-0348. Minor discrepancies ...

  4. SAND2010-5782C

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... so their usage should not unduly affect the predictions from the simulation. ... The histogram displays counts of inverter-arrays in categories of annual kWh energy ...

  5. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  6. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  7. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  8. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6¢/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6¢/ kWh by 2030.

  9. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles ... 4.4 Battery Electric Vehicles 2013 Tesla Model S 85 2013 Tesla Model S 60 2013 ...

  10. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  11. HIA 2015 DOE Zero Energy Ready Home Case Study: Amaris Homes...

    Energy Savers [EERE]

    ... Added Cost Over 2006 IECC: without PV 20,000, with PV 37,660 * Annual Energy Savings: without PV 2,480 kWh, 614 Therms; with PV 9,032 kWh, 614 Therms 2015 WINNER DOE ZERO ...

  12. NREL: Technology Deployment - Field Demonstrations of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heads-showed promising cost and energy savings, with an estimated annual savings of 4,000 kilowatt-hours (kWh) in air-conditioning use and 1,400 kWh in water heating use per home. ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Rebates The Driving Rhode Island to Vehicle Electrification (DRIVE) rebate program offers rebates of up to $2,500 for the purchase or lease of qualified PEVs. Rebates are offered on a sliding scale based on battery capacity, providing $2,500 for any vehicle with a battery capacity of 18 kilowatt-hours (kWh) or greater, $1,500 for any vehicle with a battery capacity between 7 and 18 kWh, and $500 for any vehicle with a battery capacity less than 7 kWh. Applicants

  14. Recent progress on Exxon's circulating zinc bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    The design, performance, and factory cost of Exxon's circulating zinc bromine batteries are described. The Exxon system has demonstrated stable performance in scale-ups to 3- and 10-kWh sub-modules. Cost studies based on recently demonstrated extrusion and injection molding techniques, have shown that this battery, with plastic electrodes, bipolar stacks, Br/sub 2/ complexation, and circulating electrolytes, could be produced (20 kWh units, 100,000 units/year) at a factory cost of $28/kWh (excluding R.O.I., and various indirect overheads).

  15. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUTURE WORK CONCLUSIONS 50.0% 40.0% 30.0% 20.0% 10.0% 00.0% Facility 1 Facility 2 Facility 3 Facility 4 Facility 5 $100/kW, $100/kWh $300/kW, $100/kWh $300/kW, $300/kWh This presentation does not contain any proprietary, confi dential, or otherwise restricted information NREL/PO-5400-60291 * This activity is funded by the DOE Vehicle Technologies Offi ce, Energy Storage Technology * We appreciate the support provided by DOE program managers - David Howell - Brian Cunningham * Technical questions

  16. International Energy Outlook 2016-Electricity - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration 5. Electricity print version Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from isolated, small grids to integrated national markets and

  17. Chapter 5 - Individuals and Agencies Contacted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 5 Electricity Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from

  18. Chapter 5 - Electricity

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 5 Electricity Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from

  19. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    E6. Electricity Consumption (kWh) Intensities by End Use for Non-Mall Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool-...

  20. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  1. Building Retrofit and DSM Study in Jiangsu | Open Energy Information

    Open Energy Info (EERE)

    (data?) EPP (?) allocates 35 million in government incentives (verify) Results: reduced electricity consumption by 2 billion KWh annually; 1.84 MM tons CO2e verify Future If...

  2. Property:PotentialRuralUtilityScalePVGeneration | Open Energy...

    Open Energy Info (EERE)

    areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  3. Property:PotentialRooftopPVGeneration | Open Energy Information

    Open Energy Info (EERE)

    PV for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  4. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  5. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  6. Property:PotentialBiopowerSolidGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  7. Property:PotentialCSPGeneration | Open Energy Information

    Open Energy Info (EERE)

    CSP for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  8. Consumers Energy Co | Open Energy Information

    Open Energy Info (EERE)

    0.0833kWh The following table contains monthly sales and revenue data for Consumers Energy Co (Michigan). Scroll leftright to see all of the table values. Month RES REV...

  9. DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST | OpenEI...

    Open Energy Info (EERE)

    picture Submitted by Jim.leyshon(5) Member 15 August, 2013 - 12:14 DLA Energy RFP (Sol. SPE600-13-R-0410) seeking 898,504,000 kWh of renewable energy certificates for...

  10. Blue-Dam

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015, BPA will pay 0.025 per kWh of busbar energy savings. Rationale: The previous language was confusing and leftover from when the measure was a custom project. Effective...

  11. US MidAtl PA Site Consumption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consumed in their homes. * Average electricity consumption in Pennsylvania homes is 10,402 kWh ... CONSUMPTION BY END USE Half the energy consumed in Pennsylvania homes is for space ...

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Broader source: Energy.gov (indexed) [DOE]

    ... In 2014, U.S. industrial plants accounted for 955 billion kWh of electricity consumption-over a quarter of end-use electrical consumption in the United States. 1, 2 It is projected ...

  13. Engineering Students and Alumni Recognized for Distinguished...

    Energy Savers [EERE]

    dioxide emissions and 481 MBtu saved in energy consumption. ... large industrial end-users reduce electrical energy use. ... in savings of more than 967 million kWh of electricity. ...

  14. Covered Product Category: Room Air Conditioners | Department...

    Office of Environmental Management (EM)

    with the ENAC "LM" at the end of the NSN. The United ... using an assumed electricity price of 0.09 per kWh, ... lead to higher energy consumption and poor humidity ...

  15. ClearEdge Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    From This To This To This ClearEdge5 - Delivering Smart Energy Today Combined heat and power 5kWh distributed power system CE5 converts natural gas into power and heat without ...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  17. Electrochemical Hydrogen Compression (EHC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MW installed + backlog, >50 MW per year production rate, 11 MW single site unit in Korea, >1.5 billion kWh produced) * Unique internal reforming technology for high efficiency ...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  2. From: Mark Hanson [mailto:mark@controltecas20.com

    Broader source: Energy.gov (indexed) [DOE]

    5. New standard only requires and tests for daily kWh consumption. 6. The current ASHRAE testing standard adopted by the DoE is for CRE equipment at 5575. 7. Decreased door ...

  3. Cass County Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @CassCountyElec Facebook: https:www.facebook.comCassCountyElectric Outage Hotline: 701-356-4499 or 1-888-277-4424 Outage Map: outage.kwh.com References: EIA...

  4. CASCADED USES OF GEOTHERMAL ENERGY Paul Brophy EGS, Inc. & GRC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dramatically EXAMPLE 1 * Consider: Power plant and dehydration plant * Assumptions - 150 o C resource (300 o F) - 2.0 MWe net binary power plant - US0.07 per kWh power sales price ...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    individual customers, and retail electric providers. Generally, incentives are paid based on the kW and kWh saved and verified through a measurement and verification process....

  6. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178 millskWh) to fund renewable energy and energy efficiency incentive programs. The...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned...

  9. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Interior Lighting: 0.08kWh annual savings Induction Fixture (Exterior): 125unit LED OutdoorRoadway Fixture (Exterior): 100unit CFL...

  10. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. ...

  11. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows. ...

  12. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    The program offers performance based incentive of $0.04/kWh for the first 10 years after the project is operational. This incentive is additional to the seasonal and time-of-day price for electri...

  13. Technology advances needed for photovoltaics to achieve widespread...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... discount rates of 7.0%, system lifetimes of 30 years, and module efficien- cies of 20%. ... DOI: 10.1002pip goal of 6 cents per kWh could only be realized at efficien- cies ...

  14. Partnering with Utilities and Other Program Administrators

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... expensive to procure than a kWh from a power plant, the utility may choose to invest in ... building automation systems, and "envelope" measures (e.g., insulation, windows). ...

  15. Better Buildings Residential Network Reporting and Recognition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from FY 2014 Reporting 78,530 MMBtu annual energy savings; 60,256,000 lifetime cost benefit - Efficiency Maine 250,980.17 kWh saved annually; 62,006.91 annual cost ...

  16. Cc: Magno, Regina; Ackley,Sandra J (BPA) - KEC-4; Lynn Holt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kWhacre foot: "It is stated in the FEIS that the cost of power used for pumping in diversion and delivery to farms was 2.2 mills per kWh. Please provide the quantity of pumping...

  17. RECEIVED B'VBP,t From: Christensen, Gwendolyn [gchnstensen@usbrgov...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kWhacre foot: "It is stated in the FEIS that the cost of power used for pumping in diversion and delivery to farms was 2.2 mills per kWh. Please provide the quantity of pumping...

  18. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2. how we capture net market effects and Momentum Savings Baselines We almost lost our clothes washer measures. number of units sold kWh consumption per unit lots little the market...

  19. CONTINUED HIGH PERFORMANCE ENERGY MANAGEMENT COMPANY Fitesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington, which transforms polymer pellets into sheets of non-woven fiber for diapers, wipes and filters, had been consuming about 19 million kWh of energy annually....

  20. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  1. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  3. GMP Cow Power

    Broader source: Energy.gov [DOE]

    GMP purchases the renewable energy credits for up to $0.04 per kWh with full subscription of the GMP voluntary Cow Power tariff. Attributes associated with production in excess of voluntary...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumps Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Wind (Small), Hydroelectric (Small) Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells using Renewable Fuels, Other Distributed Generation Technologies Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specific technologies not identified, Wind (Small), Anaerobic Digestion Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not identified, Wind (Small), Fuel Cells using Renewable Fuels Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility:...

  10. Trends in Workplace Charging

    Broader source: Energy.gov (indexed) [DOE]

    *Based on Energy Charges Only using an average annual electricity consumption for a U.S. residential utility customer of 11,496 kWh (EIA http:www.eia.gov). (WASHINGTON, ...

  11. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Power Providers program contract term is 20 years. For years 1-10, TVA will purchase 100% of the output from qualifying systems at a premium of 0.02** per kilowatt-hour (kWh)...

  12. AEP (SWEPCO) - Residential Energy Efficiency Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    CLEAResult Consulting Website http:www.swepcogridsmart.comtexashomes-overview.html State Texas Program Type Rebate Program Rebate Amount Standard: 280kW, 0.09kWh...

  13. Terrebonne Parish Consol Gov't | Open Energy Information

    Open Energy Info (EERE)

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from "http:en.openei.orgwindex.php?titleTerrebonneParishConsolGov%27t&oldid881745...

  14. BONNEVILLE POWER ADMINISTRATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Account Number o SRR Designation o Performance Payment (kWh) o % of EEI Budget Cap 3. Enter the dollar figure you would like your performance payment limited to for the...

  15. Renewables Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the kWh attributable to nuclear power plants, demand-side management measures, and fossil fuel power plants that sequester their carbon emissions. For example, if a utility has...

  16. Chelan County PUD - Sustainable Natural Alternative Power Producers...

    Broader source: Energy.gov (indexed) [DOE]

    on the system's production. The PUD distributes SNAP payments annually, on or around Earth Day. The amount paid per kilowatt-hour (kWh) to SNAP Producers is determined by...

  17. Geothermal Technology Breakthrough in Alaska: Harvesting Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    geothermal exploration at lower temperatures, thanks to a ... degrees Fahrenheit).This innovation increases the ... Hot Springs to reduce the cost of power from 0.30 per kWh ...

  18. Parking Savings Through LED Project for Iowa City | Department...

    Broader source: Energy.gov (indexed) [DOE]

    grant and rebate from utility. City to save 66,000 annually with energy efficient LED lights in parking garages. Project will reduce energy usage by 1.4 million kWh...

  19. Delmarva- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  20. Rhode Island Renewable Energy Fund (RIREF)

    Broader source: Energy.gov [DOE]

    Rhode Island's PBF is supported by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at $0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to...

  1. Florida Power & Light Co. | Open Energy Information

    Open Energy Info (EERE)

    was awarded 200,000,000 Recovery Act Funding with a total project value of 578,347,232. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  2. N E W U T I L I T Y B U S I N E S S M O D E L S

    Broader source: Energy.gov (indexed) [DOE]

    ... and their consumers. Figure 2. EPRI 2009 Prism Analysis of a low carbon scenario. 0 1 2 3 2010 2020 2030 2050 4 5 2040 6 TRILLION KWh PER YEAR DEMAND REDUCTION COAL RETROFIT NEW ...

  3. Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Connecticut electricity customers that install energy efficiency equipment and reduce their energy use during peak hours may be eligible for a rebate based on the amount of kilowatt-hours (kWh) s...

  4. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    . Electricity Consumption (kWh) Intensities by End Use for Non-Mall Buildings, 2003 Electricity Energy Intensity (kWhsquare foot) Total Space Heat- ing Cool- ing Venti- lation...

  5. UESC Project Overview: NASA Ames Research Center

    Energy Savers [EERE]

    Energy Challenges High energy intensity at many of the center's key buildings * Median energy intensity for typical bldg. similar to ARC's (mix of lab and office) is 21.2 kWh...

  6. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Broader source: Energy.gov (indexed) [DOE]

    Although plug-in vehicles sell in much lower volume, their battery packs are much larger with capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of ...

  7. Better Buildings Residential Network Peer Exchange Call Series...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Solar PV Generating kWh to Offset Driving Questions? www.driveoregon.org Twitter: @DriveOregon Presentation Highlights: Drive Oregon With new models such as Tesla, EVs are ...

  8. Microsoft Word - eGallon methodology update Jan 2016.docx

    Broader source: Energy.gov (indexed) [DOE]

    ... Trends, October 2014. 4 This includes Tesla Model S, Nissan Leaf, Chevrolet Volt, BMW ... PEV Model kWh100 Miles Combined 1 Chevrolet Volt 35 Nissan Leaf 30 Tesla Model S 34 BMW ...

  9. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  10. Renewable Energy Cost Recovery Incentive Payment Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of the renewable-energy credits (RECs) associated with generation remains with the...

  11. Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices

    Broader source: Energy.gov [DOE]

    All energy prices vary from month to month and year to year. However, when comparing the national average retail price for a gallon of regular gasoline and a kilowatt-hour (kWh) for residential...

  12. ESI-CS-Boise 1.5.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trade ally Rogers Machinery UTiliTy Oregon Trail Electric Consumers Cooperative (OTEC) ProjecT Air Compression System Energy Efficiency energy SavingS (kWh) 725,000 kWhyr (22%...

  13. Hawaii Energy

    Broader source: Energy.gov [DOE]

    The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour ($/kWh) basis to meet the target budget. The surcharge ...

  14. ESI-CS-MalheurLumber 1.5.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lumber TrAde Ally Rogers Machinery UTiliTy Oregon Trail Electric Consumers Cooperative (OTEC) ProjecT Refurbished 200 hp Inlet Modulating Air Compressor energy SAvingS (kWh)...

  15. EV Everywhere: Charging at Home | Department of Energy

    Energy Savers [EERE]

    Charging at a multi-family residential complex, like a condo or apartment, is possible, ... General Motors estimates the annual energy use of a Chevy Volt is 2,520 kWh, which is less ...

  16. EECBG Success Story: Finding Six-Figure ROI from Energy Efficiency

    Broader source: Energy.gov [DOE]

    Huntington, New York is installing new energy efficient street lights to reduce the city's electricity use by 947,000 kWh, thanks to an Energy Efficiency and Conservation Block Grant. Learn more.

  17. Powering Remote Northern Villages with the Midnight Sun

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We face high energy costs: 0.51 per kWh electricity 6.75 per gallon gasoline 5.75 per gallon heating fuel 130 per 100 lb propane Project Overview Project Overview (cont.) ...

  18. Fort Yukon Wood Energy Program: Wood Boiler Deployment

    Broader source: Energy.gov (indexed) [DOE]

    Oil cost per year for school 210,000 Fuel cost for electrical generation 1.4 M Cord Wood 275 - 300 per cord Kwh 0.77 (rate increase coming) Propane 203.89 per 100 ...

  19. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC ...

  20. Strategic Energy LLC (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 18193 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0729kWh...

  1. Tenaska Power Services Co (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 18995 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0534kWh...

  2. Liberty Power Corp. (District of Columbia) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 55781 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0866kWh...

  3. Dominion Retail Inc (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 3763 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0593kWh...

  4. Constellation NewEnergy, Inc (District of Columbia) | Open Energy...

    Open Energy Info (EERE)

    861 Data Utility Id 13374 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0937kWh...

  5. Texas Retail Energy, LLC (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 50046 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0507kWh...

  6. Morris Cogeneration LLC | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 54755 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0336kWh...

  7. University of Illinois | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 19528 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1470kWh...

  8. Integrys Energy Services, Inc. (District of Columbia) | Open...

    Open Energy Info (EERE)

    861 Data Utility Id 21795 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0780kWh...

  9. Coral Power LLC (Washington) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4410 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0221kWh...

  10. Electric Energy Inc (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5748 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0355kWh...

  11. Winner Municipal Utility | Open Energy Information

    Open Energy Info (EERE)

    Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  12. MxEnergy Electric, Inc. (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 50149 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0819kWh...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yes; specific technologies not identified, Wind (Small), Anaerobic Digestion Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Initiative The program offers performance based incentive of 0.04kWh for the first 10 years after the project is operational. This incentive is additional to the seasonal...

  16. Makah Renewable Energy Feasibility Study

    Broader source: Energy.gov (indexed) [DOE]

    3,100,000 kWh per year * But - both projects would cost too much by wide margins. ... to other entities: - Weather forecasting - Wind speed forecasting for inland windfarms. ...

  17. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * .10 per kwh is equivalent to buying diesel at 2.90 per gallon * Current diesel ...

  18. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  19. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.036kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  20. NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity...

  1. Tips: Kitchen Appliances | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    you how much electricity in kilowatt-hours (kWh) a particular model uses in one year. ... Recommended temperatures are 35-38F for the fresh food compartment and 0 F for ...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mandatory Photovoltaic System Cost Estimate If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to...

  3. 2009 Template

    Broader source: Energy.gov (indexed) [DOE]

    K E McCrary, and C R McIver 2009 Energy Storage Peer Review, October 8, Seattle, WA ... Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a ...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. ... performance advantages of its technology for use in grid-tied energy storage applications. ...

  5. Abuse Tolerance Improvements (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    of these systems continues to increase (> 50 kWh for EVs); making safety and reliability ... Report Number(s): SAND2015--9391R 607892 DOE Contract Number: AC04-94AL85000 Resource ...

  6. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west...

  7. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  8. Denver Public Schools Get Solar Energy System | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity per year. Denver ...

  9. TEP - Commercial EasySave Plus Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Varies Custom: 0.10kWh saved Summary The Commercial Energy Solutions EasySave Plus program (formerly known as the Large Business program) offers rebates to business...

  10. Net PV Value by location and building type | Open Energy Information

    Open Energy Info (EERE)

    location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

  11. Energy Incentive Programs, Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Custom projects pay 0.15 per first-year kWh savings (maximum 70% and one-year simple ... Idaho Falls Power's Commercial Energy Conservation Program offers rebates or 0% interest ...

  12. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  13. Orcas Power & Light- MORE Green Power Program

    Broader source: Energy.gov [DOE]

    Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is interconnected. In 2014, incentive rates were adjusted to accommodate f...

  14. Strategic Energy LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleStrategicEnergyLLC(Maryland)&oldid788103...

  15. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Cost Recovery Incentive Payment Program These multipliers result in production incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of...

  17. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund is funded by a surcharge of $0.003 per kilowatt-hour (3 mills per kWh) on Connecticut Light and Power (CL&P) and United Illuminating (UI) customers' electric bills....

  18. Combined Heat and Power (CHP) Integrated with Burners for Packaged...

    Office of Environmental Management (EM)

    ... a spark spread defined by 0.16kWh for price of electricity and 5 MMBtu for natural gas). ... Developing a new ULNB that considers the optimum integration of the SCMT equipment and ...

  19. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    Not Available

    2005-12-01

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  20. BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cut its energy use by about 19 percent, or 2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut...

  1. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  2. Advancing PEVs and the Future of PEV R&D and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEVs and EREVs Future Next Generation Li-ion or Li-metal Chemistry with 3x energy density Battery Cost (kWh) Energy Density (WhL) 2007 2008 2009 2010 2011 2012 2014 2013...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    paid based on the kW and kWh saved and verified through a measurement and verification process. However, certain types of improvement projects have been assigned pre-determined...

  4. Climate Control Load Reduction Strategies for Electric Drive...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Drive Cycle Simulations The vehicle simulation tool Autonomie was used to calculate ... The Focus Electric uses a 23-kWh capacity lithium-ion battery pack. The battery utilization ...

  5. Nicaragua: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    imported 63.95 million kWh from its neighbours Panama and Honduras.Nicaragua has no oil production; in 2001, its consumption was of 24,500 bblday. There is one oil refinery...

  6. NREL: Transportation Research - Electric Vehicle Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Table showing 2022 targets for decreases in battery cost (125kWh) and increases in battery capacity, size (400 Whl), and weight (250 Whkg, 2,000 Wkg). Batteries Often the most ...

  7. Assumptions to the Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    ... when evaluating investments in new coal-fired power plants, new coal-to-liquids (CTL) ...kilowatthour (kWh) for electricity produced in the first 10 years of plant operation. ...

  8. Final TEchnical REport Two 175 ton geothermal chiller heat pumps...

    Office of Scientific and Technical Information (OSTI)

    ... was generated by coal-fired plants, producing approximately 900 grams of C02 per kWh. ... Exposure to the working chiller plant (see images 1, 4, and 5) provided valuable ...

  9. Energy Storage Systems 2009 Peer Review | Department of Energy

    Office of Environmental Management (EM)

    (1.23 MB) ESS 2009 Peer Review - Power Electronics Reliability Analysis - Mark Smith, SNL.pdf (432.54 KB) ESS 2009 Peer Review - Development of a 5kWh Flywheel ESS Using a ...

  10. Adak Renewable Energy Reconnaissance Report

    Energy Savers [EERE]

    ... RECONNAISSANCE LEVEL ASSESSMENTS HYDROELECTRIC Hatch USA ... fraction of the 1.5 - 2.5 million kWh of annual diesel generation. ... slope, bed material, and usage by species would need to ...

  11. Where It's Needed, When It's Needed

    Energy Savers [EERE]

    Lighting accounts for more than 31 billion kWh of annual elec- tricity use in U.S. hospitals, ... Add to this the growing classroom trend of increased usage during evening hours, often ...

  12. ESIF 2015 Mid-Year Report (Brochure), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... warm-water liquid cooling, an annual average power usage effectiveness (PUE) of 1.06, and ... Army Rapid Equipping Force Reliability and Engineering Analysis 300-kW, 386-kWh ...

  13. Rampart, Alaska Strategic Enerrgy Plan: 2015-2020

    Energy Savers [EERE]

    ... Across Rampart's 30 homes a total of 82,762 kWh were used. ... Figure 4 shows the annual electric load profile for Rampart ... 20 Two projects will increase transportation energy usage. ...

  14. EEI DOE QER Comments and Resources

    Energy Savers [EERE]

    ... With more than 85 billion in annual capital expenditures, the electric power industry ... based on their individual kilowatt-hour (KWH) usage. We refer to this as a volumetric charge. ...

  15. Energy Saving Holiday Kitchen Trivia | Department of Energy

    Office of Environmental Management (EM)

    In fact, there are entire books dedicated to culinary usage of the microwave. ... the number of days you use the appliance during the year for the annual consumption in kWh per year. ...

  16. Final Report: Weatherization and Energy Conservation Education...

    Energy Savers [EERE]

    economical way of reaching our goal of reducing fossil fuel usage in the region. ... 66 homes x 10,896 kWh* X 8760 11,345 KwHyr *average annual electricity consumption for a U.S. ...

  17. Promoting and Advancing the Development of Healthy, Durable,...

    Office of Environmental Management (EM)

    * 16,000 HDD * Electricity .60kWh * Heating Oil 8gallon * 1,400 gallons... Tight assembly must be ventilated Annual fuel usage very low www.cchrc.org CCHRC Cold ...

  18. Reducing the High Energy Costs of Alaska's Rural Water Systems

    Energy Savers [EERE]

    ... gallons of fuel oil and 25,000 kWh annually * Equates to 66% ... Important Things YOU Can Do * Annual Boiler Maintenance * Keep Detailed Fuel Usage Records by week or month * ...

  19. Alaska Energy Authority Renewable Energy Fund Round IV Grant...

    Energy Savers [EERE]

    ... The estimated annual electricity savings, based on the use of a couple 10KW turbines will be 27,120kWh. This will ... for current and predicted usage 10112 to 113012 * ...

  20. NREL: National Residential Efficiency Measures Database - Glossary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10 Code of Federal Regulations Part 430, Appendix N to Subpart B. Annual kWh (Dishwasher) Annual energy usage in both electricity and hot water for a year based on 215 cyclesyear. ...

  1. Y-12 garners six NNSA Sustainability Awards | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Water: Y-12 Reduced Water Usage and Improved Water Quality. This award ... In the fourth period of performance, Y-12 has annual savings of 10 million kWh of electricity, 76,771 ...

  2. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    538,800 35 Average retail price (centskWh) 33.43 1 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  3. Case Study - The Challenge: Saving Energy at a Sewage Lift Station...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By adding a small booster pump to the sewage pumping system, the city reduced the station's annual energy consumption by 36,096 kWh, or more than 15 percent, which resulted in ...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    684,481 33 Average retail price (centskWh) 8.68 39 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    20,316,681 2 Average retail price (centskWh) 8.09 46 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    28,310 49 Average retail price (centskWh) 15.41 5 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,576,943 20 Average retail price (centskWh) 9.17 33 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    34,883,315 1 Average retail price (centskWh) 8.94 37 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  10. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,255,974 22 Average retail price (centskWh) 8.18 43 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    3,151,592 10 Average retail price (centskWh) 12.65 11 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  12. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    33,870 48 Average retail price (centskWh) 12.11 12 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    696,6330 32 Average retail price (centskWh) 7.65 50 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  14. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,763,652 19 Average retail price (centskWh) 9.60 27 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  15. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,364,746 13 Average retail price (centskWh) 8.15 44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,181,447 24 Average retail price (centskWh) 9.73 23 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    138,573,884 Average retail price (centskWh) 10.44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,227,421 23 Average retail price (centskWh) 8.35 42 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    253,513 39 Average retail price (centskWh) 17.46 2 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  20. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    201,071 40 Average retail price (centskWh) 10.18 19 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  1. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11,180,448 3 Average retail price (centskWh) 15.15 8 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  2. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60,865 47 Average retail price (centskWh) 10.16 20 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,388,386 21 Average retail price (centskWh) 7.76 49 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  4. Air-Source Heat Pumps | Department of Energy

    Energy Savers [EERE]

    When displacing oil (i.e., the oil system remains, but operates less frequently), the average annual savings are near 3,000 kWh (or about 300). Types of Air-Source Heat Pumps The ...

  5. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    844,760 29 Average retail price (centskWh) 12.10 13 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    2,463,339 11 Average retail price (centskWh) 9.40 29 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    944,590 27 Average retail price (centskWh) 7.13 51 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,123,692 25 Average retail price (centskWh) 9.52 28 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    use 7,958,621 4 Average retail price (centskWh) 9.06 35 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    89 51 Average retail price (centskWh) 9.05 36 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. Electric Power Annual 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric industry sales to ultimate customers statistics by state State Sales to ultimate customers (million kWh) Revenue (thousand dollars) Customers Alabama 90,494 8,386,390 ...

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    4,565,846 8 Average retail price (centskWh) 10.03 22 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  13. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,117,420 17 Average retail price (centskWh) 10.57 17 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    83,636 46 Average retail price (centskWh) 10.06 21 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    391,720 37 Average retail price (centskWh) 8.15 45 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,462 50 Average retail price (centskWh) 14.57 9 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,375,185 5 Average retail price (centskWh) 10.77 16 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,439,427 9 Average retail price (centskWh) 9.36 30 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This suggests that any of the three model options are suitable for estimates of a PV system's output or cost. Annual Output (kWhyr) LCOE (kWh) Sandia Module 360,000 11.8 CEC ...

  20. Fact #766: February 11, 2013 Electricity Prices are More Stable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stable than Gasoline Prices All energy prices vary from month to month and year to year. ... (kWh) for residential electricity, the pricing for gasoline is far more volatile. ...

  1. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  2. EERE Success Story-Data Access and Analytics Improve Solar Valuation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Data Access and Analytics Improve Solar Valuation EERE Success Story-Data Access and Analytics Improve Solar Valuation April 18, 2016 - 1:09pm Addthis KWh Analytics employees discuss their solar portfolio management platform, HelioStats. KWh Analytics employees discuss their solar portfolio management platform, HelioStats. As the solar energy industry expands, banks and investors increasingly require higher quality data and tools to quantify the risks associated with

  3. SunShot: Revitalizing American Competitiveness in Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Revitalizing American Competitiveness in Solar Technologies So what is the SunShot Initiative? 2 SunShot Initiative SunShot Initiative 5 - 6¢/kwh without subsidy A 75% cost reduction by the end of the decade Price 3 Pathway to SunShot - CSP 9¢ 2¢ 4¢ 2¢ 3¢ 1¢ 5¢ 1¢ 7¢ 2¢ 2¢ 4¢ 21¢ / kWh 6¢ / kWh ¢ 5¢ 10¢ 15¢ 20¢ 25¢ Thermal Storage Receiver/Heat Transfer Power Plant Solar Field System Price 2010 Solar Field Power Plant Receiver/ Heat Transfer Thermal Storage SunShot Target

  4. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  5. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  6. Tax Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives of 1992, allows owners of qualified over a 10-year period. Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit (PTC), established by the Energy Policy Act renewable energy facilities to receive tax credits for each kilowatt-hour (kWh) of electricity generated by the facility power projects are eligible to receive 2.3 cents per kWh for the produc - tion of electricity from utility-scale dsireusa.org/incentives/incentive.

  7. L EONARDO BELTRAN DEPUTY SECRETARY FOR PLANNING AND ENERGY TRANSITION OF MEXICO

    U.S. Energy Information Administration (EIA) Indexed Site

    L EONARDO BELTRAN DEPUTY SECRETARY FOR PLANNING AND ENERGY TRANSITION OF MEXICO MEXICAN ENERGY REFORM 2015 EIA ENERGY CONFERENCE JUNE 15, 2015 * AVERAGE DAILY IRRADIATION IN MEXICO IS ABOUT 5.5 KWH/M 2 /D, AND CAN REACH VALUES HIGHER THAN 8.5KWH/M 2 . ** STUDIES TO CHARACTERIZE THE WIND RESOURCE IN REGIONS OF THE ISTHMUS OF TEHUANTEPEC, THE PENINSULAS OF YUCATAN AND BAJA CALIFORNIA, AND THE NORTHERN REGION OF THE GULF OF MEXICO. *** GEOTHERMAL POTENTIAL BASED ON THE CENSUS OF MORE THAN 1,300

  8. Energy Efficiency UPgrades for Sanitation Facilities in Selawik, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Sanitation Facilities in Selawik, Alaska DOE Program Review November 2011 Alaska Native Tribal Health Consortium Division of Environmental Health & Engineering Selawik Overview ● Anchorage Selawik Overview Selawik Overview Selawik Overview Selawik Overview: Energy Use & Costs l Electricity * FY 2010 $91,559 * Total = 337,829 kWh * Average = $0.271/kWh l Fuel * FY 2010 $38,902 * Total = 10,514 gal * Average = $3.70/gal l Heat Recovery * FY 2010 $7,688 * Total = 5,125 equiv. gal *

  9. LEESS Battery Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy At its Supercenter in Leavenworth, Kansas—the first site to implement the LED Site Lighting Specification—Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the pedestrian walkway. Credit: Walmart At its Supercenter in Leavenworth, Kansas-the first site to implement the LED Site Lighting Specification-Walmart anticipates energy savings of over 125,000 kWh

  10. Photosynthesis for Hydrogen and Fuels Production Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photosynthesis for Hydrogen and Fuels Production Tasios Melis, UC Berkeley 24-Jan-2011 1 UCB-Melis 2 CO 2 H 2 O Photosynthesis Photons H 2 HC O 2 , Biomass Feedstock and products Process offers a renewable fuels supply and mitigation of climate change. UCB-Melis Average US Solar insolation = 5 kWh m -2 d -1 CA household electricity consumption = 15 kWh d -1 Sunlight 3 UCB-Melis Gains upon improving the carbon reactions of photosynthesis: up to 50% 4 "Six potential routes of increasing

  11. Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP | Department of Energy Maintenance-Free Stirling Engine for High-Performance Dish CSP Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP Image of a prototype 30-kW Stirling engine on test. A prototype 30-kW Stirling engine on test. Infinia, under the CSP R&D FOA, is developing a 30 kW CSP system that utilizes a multi-cylinder, free-piston Stirling engine to achieve the goal LCOE of $0.07-$0.10/kWh by 2015 and $0.05-$0.07/kWh by 2020. Approach Infinia is

  12. Buildings Energy Data Book: 1.5 Generic Fuel Quad and Comparison

    Buildings Energy Data Book [EERE]

    4 Average Annual Carbon Dioxide Emissions for Various Functions Stock Refrigerator (1) kWh - Electricity Stock Electric Water Heater kWh - Electricity Stock Gas Water Heater million Btu - Natural Gas Stock Oil Water Heater million Btu - Fuel Oil Single-Family Home million Btu Mobile Home million Btu Multi-Family Unit in Large Building million Btu Multi-Family Unit in Small Building million Btu School Building million Btu Office Building million Btu Hospital, In-Patient million Btu Stock Vehicles

  13. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Power Research and Development Motivation The current cost of concentrating solar power (CSP) without economic support is estimated to be approximately $0.21/kWh. Signifcant improvements across all four major CSP subsystems-solar felds, power plants, receivers, and thermal storage-are necessary to achieve the SunShot cost goal of $0.06/kWh. The 2012 SunShot CSP Research and Development (R&D) program addresses the technical barriers for solar felds, receivers, and power plants.

  14. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0

    SciTech Connect (OSTI)

    None, None

    2015-12-30

    In this program, Amber Kinetics designed, built, and tested a sub-­scale 5 kWh engineering prototype flywheel system. Applying lessons learned from the engineering prototype, Amber Kinetics then designed, built and tested full-­size, commercial-­scale 25 kWh flywheel systems. The systems underwent basic functional qualification testing before being installed, sequentially, at the company’s outdoor test site in Alameda, CA for full-­speed field-testing. The primary considerations in testing the prototype units were to demonstrate the functionality of the system, verify the frequencies of resonant modes, and quantify spinning losses and motor/generator efficiency.

  15. CX-100435 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    35 Categorical Exclusion Determination CX-100435 Categorical Exclusion Determination Data Standards and Data Format Translation Tool Development Award Number: DE-EE0007314 CX(s) Applied: A9, A11 Solar Energy Technology Office Date: 12/22/2015 Location(s): CA Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to kWh Analytics, Inc. to support the creation and adoption of industry-led data standards. kWh Analytics would define and create a

  16. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2

  17. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  18. IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76%

    Broader source: Energy.gov [DOE]

    Document provides an overview of how the IRS and MC Realty Group, its property management firm, achieved a 76% reduction in lighting energy use at an IRS facility parking garage in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2 million kWh, annual cost savings of over $122,000, and a simple payback of 2.5 years.

  19. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  20. CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    2014-05-01

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  1. CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

    2014-05-27

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  2. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  3. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  4. Pechiney Rolled Products: Plant-Wide Energy Assessment Identifies Opportunities to Optimize Aluminum Casting and Rolled Operations

    SciTech Connect (OSTI)

    2004-07-01

    A Pechiney Rolled Products plant focused on various aluminum casting processes during a PWA. The assessment revealed potential annual savings of 460,000 MMBtu in natural gas, 9.6 million kWh in electricity, 69 million pounds in CO2, and $2.5 million.

  5. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  6. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to 1,000, the utility must provide the comparison at no cost. If the...

  7. EV Everywhre Grand Challenge - Battery Status and Cost Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80-100 150 180 225 Pack Energy Density WhL 200 250 300 425 SOC Window % 50 80 90 90 Tesla * 250 mile electric range * 85 kWh 270 kW battery * Battery Cost: 35,000 3 ...

  8. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  9. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  10. Library Patrons in New York Check-Out Renewable Energy

    Broader source: Energy.gov [DOE]

    The new solar system on the Esopus Library in New York is expected to generate 31,200 kWh of electricity annually -- approximately 30 percent of the library’s electricity use and a savings of nearly $4,000 in energy costs each year.

  11. Lighting Up Georgia Convenience Stores

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thanks to help from the Energy Department, convenience stores across Georgia are saving energy by switching to energy efficient lighting. In the first year alone, participating small businesses have saved over $7,000 after the retrofits and over 54,000 KWh of energy.

  12. NREL: Transportation Research - A Vision for Sustainable Transportatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three lines originating at the circle representing the typical car today (at 1.5 kWhkm ... line at 0.62 kWhkm and 50 g CO2kWh), hydrogen fuel cell (solid line, meets goal line ...

  13. DOE Zero Energy Ready Home: Montlake Modern- Seattle, Washington

    Office of Energy Efficiency and Renewable Energy (EERE)

    This DOE Zero Energy Ready Home features structural insulated panel walls and roof, an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, and 9.7 kWh PV for electric car charging station.

  14. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  15. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  16. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  17. Atlanta Central UESC Pilot Project

    Office of Environmental Management (EM)

    ... Rebates 0 0 Water Usage Costs 1,266,004 1,112,051 ... Average Power Cost Annual Saving Rome - 330 kW (DC) Solar Photovoltaic System 1,371,468 380,052 kWh 0.082 31,164 ...

  18. Renewable Energy Resoure Assessment for the Communities of Cold...

    Energy Savers [EERE]

    ... Governmental customers are categorized as commercial customers. The annual ... 2,922,604 2,876,502 2,879,593 kWh In Plant Usage 149,728 152,896 147,788 150,102 150,129 ...

  19. Results of Wind Monitoring Effort at Sand Point

    Energy Savers [EERE]

    ... The average wind speed is still 5 ms but the average power density is now 0.5*1.0*1.0*(3 3 + 7 3 )2 92.5 watts. This leads to an annual energy of 810 kWh. Power density is ...

  20. POLYMERIC MIRROR FILMS: DURABILITY IMPROVEMENT AND IMPLEMENTATION...

    Office of Environmental Management (EM)

    ... from 5 to 10 m aperture 3 15.1% LCOE Improvement 0.101 0.119 Nominal LCOE kWh 60% 56% Annual Plant Capacity Factor 18.3% 17.2% Annual Solar-Electric Efficiency 1148 M ...

  1. Minnesota Power- Power Grant Program

    Broader source: Energy.gov [DOE]

    Grants are ranked and awarded based on least grant cost per kW (annually) and/or kWh (lifetime). Design assistance grants are awarded on a case-by-case basis. All improvements qualify for a $200/kW...

  2. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  3. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  4. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect (OSTI)

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  5. Alkaline Membrane Fuel Cell Workshop Welcome and OverviewInnovation

    Office of Environmental Management (EM)

    Aleutian Pribilof Islands Wind Feasibility and Energy Weatherization and Training Bruce Wright APIA Senior Scientist 2005 Wind Feasibility Studies: False Pass, Nikolski Sand Point, St. George, and Current Wind Energy Development Status Communities KwH Cost KwH (1,000,000) Diesel Demand (1,000 gals) KwHs Per Gallon King Cove 0.26 3.79 162 23 Akutan 0.32 0.52 44 12 Unalaska 0.36 34.48 2,194 16 False Pass 0.42 N/A N/A N/A St. Paul 0.46 4.59 389 12 Sand Point 0.52 4.03 317 13 AVERAGE 0.53 2.21 177

  6. Sodium/sulfur battery engineering for stationary energy storage. Final report

    SciTech Connect (OSTI)

    Koenig, A.; Rasmussen, J.

    1996-04-01

    The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

  7. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption

    Broader source: Energy.gov [DOE]

    This case study describes a plant-wide energy assessment conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. The assessment focused on finding ways to reduce the plant's use of steam, electricity, compressed air, and water. Assessment recommendations had a potential total annual energy savings of about 9.6 million kWh for electricity and more than 338,000 MBtu for natural gas, with potential annual cost savings amounting to nearly $3.3 million.

  8. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  9. Really Off the Grid: Hooper Bay, AK

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Really Off the Grid - Hooper Bay, AK Old Housing - Energy Efficiency Vintage Hooper Bay Renewable Energy - Before & After DOE Tribal Energy Grant * $200,000 - Energy Efficiency Feasibility Study * Hire & train 2-5 local energy assessors * Energy audits of 24 homes with blower doors, etc. - Reduce energy consumption from air leakage - Moisture/mold issues - Reduce drafts * $7/gallon heating fuel * ~ $0.55/kWh - electricity (over half of households behind on utility payments) Is your house

  10. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009, the U.S. had 29,440 MW of installed wind power capacity. continued > Tax incentives The federal government uses several tax-based policy incentives to stimulate the deployment of wind power. The Department of the Treasury's Internal Revenue Service administers these incentives. The federal renewable energy Production Tax Credit (PTC), established by the Energy Policy Act of 1992, allows owners of qualified renewable energy facilities to receive tax credits for each kilowatt-hour (kWh)

  11. Department of Veterans Affairs Medical Center, San Francisco, California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Department of Veterans Affairs Medical Center, San Francisco, California Department of Veterans Affairs Medical Center, San Francisco, California San Francisco VA Medical Center The San Francisco VA Medical Center is saving more than $500,000 and almost 3 million kWh every year through a retrofit financed by FEMP's Super ESPC Program. Overview The Veterans Affairs (VA) Medical Center in San Francisco is saving almost 3 million kilowatt-hours of electricity, more than

  12. Camp Pendleton Saves 91% in Parking Lot Lighting

    SciTech Connect (OSTI)

    2016-01-01

    Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh.

  13. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  14. AGENDA (Preliminary)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRESENTATIONS Energy Storage Systems (ESS) PRESENTATION SPEAKER Perspective of Energy Storage Advisory Committee Brad Roberts (S&C Electric) Overview of ESS Program John Boyes (Sandia National Laboratories) Update on the Joint Energy Storage Collaboration Between NYSERDA & DOE Joe Sayer (N.Y. State Energy Research & Development Association) Advanced, Sodium-Sulfur, Battery Energy Storage System Project at MTA Long Island Bus Guy Sliker (N.Y. Power Authority) 300 kW/900 kWh PowerTower

  15. Voltage-matched multijunction solar cell architectures for integrating PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies - Energy Innovation Portal Find More Like This Return to Search Voltage-matched multijunction solar cell architectures for integrating PV technologies National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary The U.S. Department of Energy SunShot Initiative aims to reduce the total installed cost of solar energy systems to $.06 per kilowatt-hour (kWh) by the year 2020. Reducing the cost of solar electricity requires that solar cell

  16. National Laboratory Concentrating Solar Power Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The SunShot National Laboratory Concentrating Solar Power Research and Development Fact Sheet provides a synopsis of the 12 projects funded to address the technical barriers toward achieving the technoeconomic targets of the SunShot Initiative. Significant cost and performance improvements across all major concentrating CSP subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for $0.06/kWh.

  17. Native Village of Eyak Wind Energy Feasibility Study: A Summary of Sites Evaluated for Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eyak Wind Energy Feasibility Study A summary of Sites evaluated for development. John C. Whissel Director Department of the Environment and Natural Resources Background  Cordova, AK is a rural, remote, landlocked community in Southcentral Alaska, located between Prince William Sound and the Copper River Delta  Electricity is generated by two run-of-the-river hydro power plants  During winter months, hydro is supplemented by diesel generators. Electricity can cost over $0.50/kwh. 

  18. MANUSCRIPT PREPARATION TEMPLATE FOR THE 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Levelized Cost of Energy for Distributed PV: A Parametric Study Christopher P. Cameron 1 , Alan C. Goodrich 2 1 Sandia National Laboratories, Albuquerque, NM, USA 2 National Renewable Energy Laboratory, Golden, CO ABSTRACT The maturation of distributed solar PV as an energy source requires that the technology no longer compete on module efficiency and manufacturing cost ($/Wp) alone. Solar PV must yield sufficient energy (kWh) at a competitive cost (¢/kWh) to justify its system investment and

  19. DOE Zero Energy Ready Home Case Study: Leganza Residence - Greenbank, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  20. Freescale Semiconductor Successfully Implements an Energy Management System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Freescale Semiconductor Successfully Implements an Energy Management System Freescale Semiconductor Successfully Implements an Energy Management System This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than

  1. Gwichyaa Zhee Gwich'in Tribal Government: Gwich'in Solar and Energy Efficiency in the Arctic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO March 26, 2014 Tony Peters - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in

  2. Simulator for SUPO, a Benchmark Aqueous Homogeneous Reactor (AHR)

    SciTech Connect (OSTI)

    Klein, Steven Karl; Determan, John C.

    2015-10-14

    A simulator has been developed for SUPO (Super Power) an aqueous homogeneous reactor (AHR) that operated at Los Alamos National Laboratory (LANL) from 1951 to 1974. During that period SUPO accumulated approximately 600,000 kWh of operation. It is considered the benchmark for steady-state operation of an AHR. The SUPO simulator was developed using the process that resulted in a simulator for an accelerator-driven subcritical system, which has been previously reported.

  3. From PADD 1 to PADD 2 Movements of Crude Oil by Rail

    Gasoline and Diesel Fuel Update (EIA)

    Future of Coal and Nuclear Power Ernest J. Moniz Cecil and Ida Green Professor of Physics and Engineering Systems Director, MIT Energy Initiative EIA April 2008 2 NAE Engineering Achievement of the Twentieth Century l Electrification l Reflects both the technological challenge of this continent- scale system and the ubiquitous contribution to quality of life 3 Annual Per Capita Electricity Use (kWh) 4 MIT Joint Program on the Science and Policy of Global Change H. Jacoby and R. Prinn,

  4. Post Secondary Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Post Secondary Project Performance Benchmarks (All ASHRAE Zones) continued > We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach

  5. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Baseload Power Tower Project Profile: Brayton Cycle Baseload Power Tower Wilson logo Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh. Approach Photo of a tower in the background with slanted panels connected by a wire in the foreground. Wilson developed, built, tested, and evaluated two prototype components-an unpressurized thermal storage system and an

  6. Public Housing Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Housing Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper et

  7. Case Study- The Challenge: Saving Energy at a Sewage Lift Station Through Pump System Modifications

    Broader source: Energy.gov [DOE]

    This case study explores how the City of Milford, Connecticut saved energy at the Welches Point sewage lift station. By adding a small booster pump to the sewage pumping system, the city reduced the station's annual energy consumption by 36,096 kWh, or more than 15 percent, which resulted in annual savings of $2,960. With a total implementation cost of $16,000, the project yielded a simple payback of 5.4 years.

  8. State/Local Government Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State/Local Government Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in

  9. California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    PV 246,008 GWh246,008,000,000 kWh 246,008,000,000,000 Wh 246,008,000 MWh 8.856288e+17 J 111 GW111,000 MW 111,000,000 kW 111,000,000,000 W 111,000,000,000,000 mW 0.111 TW 2,320...

  10. AGREEMENT BETWEEN THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA

    Office of Environmental Management (EM)

    PRESENTATIONS Energy Storage Systems (ESS) PRESENTATION SPEAKER Perspective of Energy Storage Advisory Committee Brad Roberts (S&C Electric) Overview of ESS Program John Boyes (Sandia National Laboratories) Update on the Joint Energy Storage Collaboration Between NYSERDA & DOE Joe Sayer (N.Y. State Energy Research & Development Association) Advanced, Sodium-Sulfur, Battery Energy Storage System Project at MTA Long Island Bus Guy Sliker (N.Y. Power Authority) 300 kW/900 kWh PowerTower

  11. BUSINESS SENSITIVE

    Office of Environmental Management (EM)

    of Energy BPA Headquarters Now "Gold Certified" for Sustainability BPA Headquarters Now "Gold Certified" for Sustainability January 10, 2013 - 11:33am Addthis BPA's efforts to incorporate sustainability into all aspects of its business were recently recognized with a local certification. Overall, the agency demonstrated a 445,000 kWh energy savings at its headquarters building. Joel Scruggs Public Affairs Specialist at the Bonneville Power Administration Who else is

  12. Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $3/W total installed price vs. GE base residential system @ $4/W; $0.13/kWh LCOE (< average EIA 2015 retail electricity price) $0.10/W (30%) reduction of microinverter cost, and >$0.25/W reduction of installed price; Safety, MPPT and grid support functions including Volt/VAR support Module Embedded Microninverter Smart Grid Ready Residential Solar Electric System RUI ZHOU/ GE GLOBAL RESEARCH Develop and demonstrate power electronics technologies that address the following microinverter

  13. Unified HVAC and Refrigeration Control Systems for Small Footprint Supermarkets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unified HVAC and Refrigeration Control Systems for Small Footprint Supermarkets Teja Kuruganti, David Fugate, James Nutaro, Jibonananda Sanyal, Brian Fricke Oak Ridge National Laboratory John Wallace Emerson Climate Technologies Presented at: Technical Meeting on Software Framework for Transactive Energy: VOLTTRON 23 rd - 24 th July, 2015 2 Presentation_name Motivation and Objective * Supermarket Energy Consumption - 37,000 supermarkets in the US * 2,000,000 kWh per year per store * 1,000,000

  14. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  15. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  16. Kootznoowoos Thayer Lake Hydroelectric Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    November 16, 2011 Tribal Energy Program The Project - Run of River Project - 200 ft of head - 6 miles North - 1000 kilowatt - 8 miles of road - Underwater crossing Angoon - Angoon and its people - from Time immemorial - Only year round community in Wilderness and National Monument - USDA is the land manager - 400 residents with potential to grow - Current spot demand of 600 kW - Commercial Rate unsubsidized $.60 plus kWh - Centrally located in Panhandle & Tongass - Considerable hydroelectric

  17. Department of Veterans Affairs Medical Center, San Francisco, California |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Department of Veterans Affairs Medical Center, San Francisco, California Department of Veterans Affairs Medical Center, San Francisco, California San Francisco VA Medical Center The San Francisco VA Medical Center is saving more than $500,000 and almost 3 million kWh every year through a retrofit financed by FEMP's Super ESPC Program. Overview The Veterans Affairs (VA) Medical Center in San Francisco is saving almost 3 million kilowatt-hours of electricity, more than

  18. Optimized Pump Systems Save Coal Preparation Plant Money and Energy

    Broader source: Energy.gov [DOE]

    This case study describes how Peabody Holding Company was able to improve the performance of a coal slurry pumping system at its Randolph Coal Preparation plant. Using a systematic approach, three energy-saving opportunities were identified involving the motor, belt drive, and pump components of the pumping system. The modifications saved 87,184 kWh of electricity, equivalent to $5,231 in annual energy cost savings, and overall energy consumption of the pumping system decreased by approximately 15 percent.

  19. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-05-11

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  20. Prospects for reducing the processing cost of lithium ion batteries

    SciTech Connect (OSTI)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  1. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  2. Prospects for reducing the processing cost of lithium ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood III, David L.; Li, Jianlin; Daniel, Claus

    2014-11-06

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; doubling the thicknesses of the anode and cathode to raise energy density; and, reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and amore » standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).« less

  3. Assessment of the Electrohol process to manufacture acetaldehyde from ethanol electrogeneratively. Final report

    SciTech Connect (OSTI)

    Trevino, A.A.

    1985-04-10

    Preliminary process economics data for the electrogenerative process to manufacture acetaldehyde from ethanol were generated based on patent information. The technology was assessed in four alternative processing options. The Electrohol process is viable in the US only if integrated to the production of 190 pf ethanol from corn in a large scale unit. To be competitive, the Electrohol process must show yields in excess of 93%. Its attractiveness depends on corn prices remaining under $2.90/bu and DDG selling for more than $132/T. A corn price of $2.00/bu is needed to make a farm-size corn-based processing alternative competitive. A plant based on the fermentation of molasses proved too expensive under the US economic assumptions. The Electrohol technology based on purchased ethanol cannot compete with the existing ethylene-based process under current conditions. To become attractive, the Electrohol process must have access to cheap ethanol ($1.43/gal). The zero electricity generation mode is the most attractive mode of operation for the Electrohol technology in the US. The penalty for low levels of generation (0.130 kwh/kg AcH) is, however, negligible. The optimum operating mode in W. Europe is the generation of 0.312 kwh/kg AcH. In Japan, the low generation level is perferred (0.130 kwh/kg AcH). In general, higher energy prices improve the competitiveness of the Electrohol processing alternatives.

  4. Forecasting the oil-gasoline price relationship: should we care about the Rockets and the Feathers?

    Gasoline and Diesel Fuel Update (EIA)

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,153 3,253 3.2% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.98 0.2% Expenditures $415 $405 $393 $396 $408 $422 3.3% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,993 2,051 2.9% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.36 -1.5% Expenditures $336 $339 $348 $340 $372 $377 1.3% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,372 2,431 2.5% Price (cents/kWh) 16.39 15.63

  5. Forecast Change

    U.S. Energy Information Administration (EIA) Indexed Site

    Forecast Change 2011 2012 2013 2014 2015 2016 from 2015 United States Usage (kWh) 3,444 3,354 3,129 3,037 3,151 3,302 4.8% Price (cents/kWh) 12.06 12.09 12.58 13.04 12.95 12.84 -0.9% Expenditures $415 $405 $393 $396 $408 $424 3.9% New England Usage (kWh) 2,122 2,188 2,173 1,930 1,992 2,082 4.5% Price (cents/kWh) 15.85 15.50 16.04 17.63 18.64 18.37 -1.5% Expenditures $336 $339 $348 $340 $371 $382 3.0% Mid-Atlantic Usage (kWh) 2,531 2,548 2,447 2,234 2,371 2,497 5.3% Price (cents/kWh) 16.39 15.63

  6. Critical-fluid extraction of organics from water. Volume I. Engineering analysis. Final report, 1 October 1979-30 November 1983

    SciTech Connect (OSTI)

    Moses, J.M.; de Filippi, R.P.

    1984-06-01

    Critical-fluid extraction of several organic solutes from water was investigated analytically and experimentally to determine the energy conservation potential of the technology relative to distillation. This Volume gives the results of an engineering analysis. The process uses condensed or supercritical carbon dioxide as an extracting solvent to separate aqueous solutions of common organics such as ethanol, isopropanol and sec-butanol. Energy input to the systems is electric power to drive compressors. A detailed process analysis included evaluation and correlation of thermophysical properties and phase equilibria for the two- and three-component systems involved. The analysis showed that a plant fed with 10 weight percent ethanol feed would consume 0.65 kilowatt-hours (kwh) of power for compression energy per gallon of alcohol. This energy consumption would be 5300 Btu of steam-equivalent, or 6500 Btu of fossil-fuel-equivalent energy. The extraction product, however, would require additional energy to produce high-purity alcohol. Doubling the ethanol feed concentration to 20 weight percent would reduce the energy required to about 0.30 kwh per gallon. Halving the ethanol feed concentration to 5 weight percent would increase the energy required to about 1.35 kwh per gallon. For the same feed composition, isopropanol can be separated with 48% of the energy required for ethanol. The same separation of sec-butanol can be done with 25% of the ethanol energy requirement.

  7. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  8. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  9. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  10. Willow firing in retrofitted Irish peat plant

    SciTech Connect (OSTI)

    Broek, R. van den; Faaij, A.; Kent, T.

    1995-11-01

    Interest in biomass electricity in Ireland is being re-awakened by environmental concerns about CO{sub 2} emissions from power generation and the potential of biomass production to provide an alternative agricultural enterprise. The technical and economical feasibility of wood-fuelled power production using willow from energy farming in existing peat-fired plants in Ireland is being studied within the framework of the EU JOULE II+ programme. These options are compared with new combustion plants and a biomass integrated gasifier with combined cycle (BIG/CC). Background studies supplied data for yields of willow farming, establishment of willow plantations, harvesting methods, logistics and costs and efficiencies for different retrofit options at Irish peat plants. All technologies considered are currently available or are expected to be available in the near future. Neither agricultural subsidies nor possible CO{sub 2} taxes have been included. In the least cost supply scenario storage and chipping of wood is done at the power station. In this case wood is only stored in the form of sticks and wood harvested by a chips harvester is supplied to the plant directly during the harvesting season. Fuel costs at the plant gate were estimated between 3.3 and 11 EGU/GJ{sub LHV}. This wide range resulted in a wide range of kWh costs. For the lowest cost option they ranged between 5.4 and 15 ECUcents/kWh. The cheapest proven retrofit option is the conversion of the existing milled peat Lanesborough unit 3 into a bubbling fluidized bed with kWh costs ranging from 5.6 up to 16 ECUcents/kWh. For this plant, costs per tonne of avoided CO{sub 2} emissions varied between 1 and 70 ECU. It is noteworthy that the kWh costs for all options considered were very close. Especially in the high costs scenario a BIG/CC appeared to have lower kWh cost than all biomass combustion plants. Mainly for the retrofitted plants the fuel costs were by far the largest kWh cost component.

  11. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect (OSTI)

    Shepard, Kenneth L

    2013-03-31

    devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

  12. The feasibility of applying geopressured-geothermal resources to direct uses

    SciTech Connect (OSTI)

    Lunis, B.C.; Negus-de Wys, J.; Plum, M.M. ); Lienau, P.J. . Geo-Heat Center); Spencer, F.J. ); Nitschke, G.F. )

    1991-09-01

    This study concludes that direct use technologies, especially desalinated water production, can contribute significantly to the value added process and the overall economic viability in developing a geopressured resource. Although agriculture and aquaculture applications are marginal projects when they are the only use of a geopressured well, the small margin of profitability can contribute to improving the overall economics of the direct use development. The added complexity from a technical and management aspect may add to the overall risk and unpredictability of the project. Six combination of direct uses received economic evaluation that resulted in 15% discounted payback periods ranging from 4 to over 10 years. Many other combinations are possible depending on the resource and market variables. Selection of appropriate technologies and sizes of applications will be established by the developer that engages in geopressured resource utilization. Currently, many areas of the country where geopressured resources are located also have surplus electrical capacity and generation, thus power utilities have been selling power for less than 2 cents per kWH, well below a reasonable breakeven value for geopressured produced electricity. However, when the energy demand of the integrated geopressured facility is large enough to install power generation equipment, operating expenses can be reduced by not paying the 10 to 12 cents per kWH utility rate. The study includes an analysis of a geothermal turbine unit installed with a desalination and an agriculture/aquaculture facility, taking advantage of the cascading energy values. Results suggest that this scenario becomes profitable only where the market price for electricity exceeds five cents per kWH.

  13. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  14. Demonstration of energy savings of cool roofs

    SciTech Connect (OSTI)

    Konopacki, S.; Gartland, L.; Akbari, H.; Rainer, L.

    1998-06-01

    Dark roofs raise the summertime air-conditioning demand of buildings. For highly-absorptive roofs, the difference between the surface and ambient air temperatures can be as high as 90 F, while for highly-reflective roofs with similar insulative properties, the difference is only about 20 F. For this reason, cool roofs are effective in reducing cooling energy use. Several experiments on individual residential buildings in California and Florida show that coating roofs white reduces summertime average daily air-conditioning electricity use from 2--63%. This demonstration project was carried out to address some of the practical issues regarding the implementation of reflective roofs in a few commercial buildings. The authors monitored air-conditioning electricity use, roof surface temperature, plenum, indoor, and outdoor air temperatures, and other environmental variables in three buildings in California: two medical office buildings in Gilroy and Davis and a retail store in San Jose. Coating the roofs of these buildings with a reflective coating increased the roof albedo from an average of 0.20--0.60. The roof surface temperature on hot sunny summer afternoons fell from 175 F--120 F after the coating was applied. Summertime average daily air-conditioning electricity use was reduced by 18% (6.3 kWh/1000ft{sup 2}) in the Davis building, 13% (3.6 kWh/1000ft{sup 2}) in the Gilroy building, and 2% (0.4 kWh/1000ft{sup 2}) in the San Jose store. In each building, a kiosk was installed to display information from the project in order to educate and inform the general public about the environmental and energy-saving benefits of cool roofs. They were designed to explain cool-roof coating theory and to display real-time measurements of weather conditions, roof surface temperature, and air-conditioning electricity use. 55 figs., 15 tabs.

  15. Plug-in hybrid electric vehicles : How does one determine their potential for reducing U.S. oil dependence?

    SciTech Connect (OSTI)

    Vyas, A.; Santini, D.; Duoba, M.; Alexander, M.; Energy Systems; EPRI

    2008-09-01

    Estimation of the potential of plug-in hybrid electric vehicles (PHEV's) ability to reduce U.S. gasoline use is difficult and complex. Although techniques have been proposed to estimate the vehicle kilometers of travel (VKT) that can be electrified, these methods may be inadequate and/or inappropriate for early market introduction circumstances. Factors that must be considered with respect to the PHEV itself include (1) kWh battery storage capability; (2) kWh/km depletion rate of the vehicle (3) liters/km use of gasoline (4) average daily kilometers driven (5) annual share of trips exceeding the battery depletion distance (6) driving cycle(s) (7) charger location [i.e. on-board or off-board] (8) charging rate. Each of these factors is actually a variable, and many interact. Off the vehicle, considerations include (a) primary overnight charging spot [garage, carport, parking garage or lot, on street], (b) availability of primary and secondary charging locations [i.e. dwellings, workplaces, stores, etc] (c) time of day electric rates (d) seasonal electric rates (e) types of streets and highways typically traversed during most probable trips depleting battery charge [i.e. city, suburban, rural and high vs. low density]; (f) cumulative trips per day from charger origin (g) top speeds and peak acceleration rates required to make usual trips. Taking into account PHEV design trade-off possibilities (kW vs. kWh of battery, in particular), this paper attempts to extract useful information relating to these topics from the 2001 National Household Travel Survey (NHTS), and the 2005 American Housing Survey (AHS). Costs per kWh of PHEVs capable of charge depleting (CD) all-electric range (CDE, or AER) vs. those CD in 'blended' mode (CDB) are examined. Lifetime fuel savings of alternative PHEV operating/utilization strategies are compared to battery cost estimates.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Qualified Two-Wheeled Plug-in Electric Drive Motor Vehicle Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. A credit is available for the purchase of a new qualified two-wheeled plug-in electric drive vehicle that draws propulsion using a traction battery that has at least 2.5 kilowatt hours (kWh) of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Qualified Plug-In Electric Drive Motor Vehicle Tax Credit A tax credit is available for the purchase of a new qualified plug-in electric drive motor vehicle that draws propulsion using a traction battery that has at least five kilowatt-hours (kWh) of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating of up to 14,000 pounds, and meets specified emission standards. The minimum credit amount is $2,500, and the credit may be up to $7,500, based on

  18. Community Based Wood Heat System for Fort Yukon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Based Wood Heat System for Fort Yukon A Systems Integration Bill Wall, PhD Alaska Wood Energy Associates Village Survival Highest Energy Costs in Nation Project Initiation Partners 2005  Council of Athabascan Tribal Government  Alaska Village Initiatives  Original Goal: Displace as much diesel fuel as possible through development of a sustainable community based program  $0.51 per kWh electricity  $6.75 per gallon gasoline  $7.00 per gallon heating fuel  $200 per

  19. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    SciTech Connect (OSTI)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  20. Retro-Commissioning Increases Data Center Efficiency at Low Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieved at SRS Basic Retro-Cx: 1. Eliminated electric reheat. 2. Turned off humidification devices. 3. Tuned floor tile airflow. 4. Turned off three CRAC units. Total estimated savings ≅ 1,400,000 kWh/year Retro-Cx cost at SRS: Engineering consultant: preliminary, on-site, and follow-up work including data measurements and retrieval. SRS on-site facilities personnel and engineering support. Total estimated cost ≅ $25,000 Simple Payback at SRS: Estimated, at $0.045/kWh = 2.5 months. taken

  1. Data Center Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center Energy Efficiency In 2014, data centers in the U.S. con- sumed an estimated 70 billion kWh, 1.8% of total U.S. electricity consump- tion. 1 Thus, it is no surprise that both private and public sector efforts are underway to reduce energy use in data centers. Executive Order (E.O.) 13693 "Planning for Federal Sustain- ability in the Next Decade" outlines the energy efficiency requirements and strategies for federal data centers. The Federal Energy Management Program (FEMP)

  2. 2009_ECR_Report_Cover_Letter.pdf

    Office of Environmental Management (EM)

    Mike Strasik Flywheel Program Manager J R Hull, J A Mittleider, J F Gonder, P E Johnson, K E McCrary, and C R McIver 2009 Energy Storage Peer Review, October 8, Seattle, WA This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract 598172. Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Engineering, Operations & Technology | Boeing

  3. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  4. Final Technical Report

    SciTech Connect (OSTI)

    Maxwell, Gregory M.

    2007-02-28

    The Industrial Assessment Center at Iowa State University provided 93 companies in 5 states with Industrial Assessments. The total potential energy cost savings is approximately $11.43 million. The savings includes approximately 38.6 million kWh of electrical energy, 65 MW of electrical demand, and 426,000 MMBtu of natural gas. The center employed and trained 43 engineering students and involved 4 engineering faculty from both the Industrial and Mechanical Engineering Departments. Benefits to the public include increased productivity of manufacturing plants, training of engineering students in the area of industrial energy efficiency and reduced energy consumption.

  5. Table 7.6 Quantity of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Quantity of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Electricity Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,108 75,652 2 4

  6. Table B-1: Analytical Results Statistical Mean Upper Confidence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  7. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  8. PowerPoint Presentation

    Office of Environmental Management (EM)

    True-up Projections Current Rate Schedules  New Rate Schedules were effective October 1, 2015.  The Rate Schedules have been approved on an interim basis through September 30, 2020.  Final action by FERC is pending. 2 Current Rate Schedules  Rate schedules include an automatic adjustment, or "true-up", for transfers to plant-in-service.  Under the RIOP, the adjustment per $1 million investment is:  $0.001 /kW/Month to Capacity  0.02 mills per kWh to Energy 

  9. Grid Integration of Solar Energy Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Grid Integration of Solar Energy Workshop Important: The bullets below are an attempt to represent the opinions and input shared by workshop attendees. They are not a statement of the opinions of the U.S. Department of Energy. Breakout Session 1 What grid architectural objectives are required to achieve seamless, real-time integration of hundreds of GW of solar at the $0.06/kWh SunShot goal?  Need a clear definition of architectural objectives o Consider services that architecture needs to

  10. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  11. USVI Makes Headway Toward Goal to Reduce Fossil Fuel 60% by 2025

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil prices spike to over $145/ barrel and price of electricity exceeds $0.50/kWh in U.S. Virgin Islands (USVI) USVI announces goal to reduce fossil fuel use 60% by 2025 In 3rd most active hurricane season on record, Earl hits USVI Virgin Islands Energy O ce (VIEO) launches Sun Power Loan Program WAPA installs waste heat recovery plant, adding 19 MW of power without burning a single drop of additional oil VIEO awards nearly $1 million to USVI nonpro ts for energy e ciency and renewable energy

  12. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect (OSTI)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The

  13. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  14. table7.4_02.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Average Prices of Selected Purchased Energy Sources, 2002; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: U.S. Dollars per Physical Units. Residual Distillate Natural LPG and RSE Economic Electricity Fuel Oil Fuel Oil(b) Gas(c) NGL(d) Coal Row Characteristic(a) (kWh) (gallons) (gallons) (1000 cu ft) (gallons) (short tons) Factors Total United States RSE Column Factors: 0.7 1.2 2.2 0.7 0.5 1.6 Value of Shipments and Receipts

  15. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    05/20/14 Photovoltaics R&D Becca Jones-Albertus, Ph.D Program Manager for PV R&D SunShot Grand Challenge Summit and Peer Review energy.gov/sunshot energy.gov/sunshot * Reduce the levelized cost of energy (LCOE) through R&D advances in PV cell and module technology Focus of the Photovoltaics R&D Subprogram ¢ kWh * Module Cost < 50¢/W * New PV materials * Reduced PV materials use * New processes * Module Reliability * Module Efficiency > 20% * Understanding defects *

  16. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Solar Energy Technologies Office Getting to Ubiquitous Solar Minh Le, Director Solar Energy Technologies Office energy.gov/sunshot energy.gov/sunshot SunShot Initiative SunShot Initiative 5 - 6¢/kwh without subsidy A 75% cost reduction by the end of the decade Price SunShot energy.gov/sunshot energy.gov/sunshot The Right Stuff * Half of the Federal Workforce * 10 times the number of PhDs/MBAs (some with decades of industrial experience) * FOAs awarded in half the time * Working with

  17. Explore Solar Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Careers Explore Solar Careers The Solar Energy Technologies Office, through the national effort of the SunShot Initiative funds research and development, striving to make solar energy technologies fully cost-competitive with traditional energy sources by 2020. Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour (kWh). Since SunShot’s inception, the average price per

  18. Table 35. U.S. Coal Consumption at Manufacturing Plants by North American Industry Classification System (NAICS) Code

    Gasoline and Diesel Fuel Update (EIA)

    1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99

  19. Final Report- 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Office of Energy Efficiency and Renewable Energy (EERE)

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process.

  20. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  1. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  2. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 Energy Use of Wastewater Treatment Plants by Capacity and Treatment Level (kWh per Million Gallons) 1 - 5 - 10 - 20 - 50 - 100 - Note(s): Source(s): 673 1,028 1,188 1,558 The level of treatment indicates the amount of processing involved before water is released from the treatment facility. Primary treatment removes solids and oils from wastewater. Secondary treatment uses biological processes to remove organic material from the water. Tertiary treatment includes additional processes to

  3. Case Study- The Challenge: Improving Sewage Pump System Performance

    Broader source: Energy.gov [DOE]

    This case study looks at how Trumbull, Connecticut increased the energy and operating efficiency of its Reservoir Avenue sewage pump station. With the help of ITT Flygt Corporation, the town altered the existing pump system by adding a smaller pump and modifying the system control scheme. The changes reduced annual electricity consumption by almost 44 percent, or nearly 31,900 kWh, saving more than $2,600 per year. The $12,000 project had a simple payback of 4.6 years.

  4. 2009 Template

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strasik Flywheel Program Manager J R Hull, J A Mittleider, J F Gonder, P E Johnson, K E McCrary, and C R McIver 2009 Energy Storage Peer Review, October 8, Seattle, WA This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract 598172. Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Engineering, Operations & Technology | Boeing Research

  5. SunShot Summit to be Featured in May 7th #SolarChat | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be Featured in May 7th #SolarChat SunShot Summit to be Featured in May 7th #SolarChat March 28, 2014 - 2:39pm Addthis Did you know that more than half of all solar cell efficiency records have been directly funded by the U.S. Department of Energy (DOE)? Only three years into the Department's decade-long SunShot Initiative, the solar industry is already more than 60% of the way to achieving SunShot's aggressive cost targets -$0.06 per kilowatt hour (kWh) for utility-scale PV solar electricity

  6. SunShotBook-all.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Photovoltaics To meet the SunShot Initiative goal of an unsubsidized utility- scale PV system cost of $1/W and to attain a levelized cost of energy (LCOE) of $0.06/kWh by 2020, the PV program has the following targets: * Module cost of $0.50/W (including margin) * Module efficiency of 20% While module costs have decreased dramatically since the start of the SunShot Initiative, an additional 1/3 cost reduction is necessary. Further, increases in module efficiency enable decreases in the balance

  7. TP14AppABC.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    C Day 3 Range and Charge Schedule Page 2 of 2 24 Segment Number % of TP4 Range Distance Required (miles) Segment Speed (mph) Initial SOC Time Start Time End Miles Driven Final SOC kWh Used Charge Number Initial Battery Temp Charge Time Start Charge Time End Energy Returned (Ah/kWh) Final Battery Temp 1 80% 60 2 60% 45 3 60% 60 4 80% 45 5 40% 60 6 30% 45 7 50% 60 8 30% 45 9 40% 60 10 60% 45 11 40% 60 12 50% 45 13 30% 60 14 30% 45 TOTALS AVG's Completed By: (Printed Name) (Signature ) (Date)

  8. TP14AppB.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B Day 2 Range and Charge Data Sheet Page 2 of 2 22 Charge Data Segment Number % of TP4 Range Distance Required (miles) Segment Speed (mph) Initial SOC Time Start Time End Miles Driven Final SOC kWh Used Charge Number Initial Battery Temp Charge Time Start Charge Time End Energy Returned (Ah/kWh) Final Battery Temp 1 50% 45 2 30% 60 3 60% 60 4 40% 45 5 50% 60 6 30% 45 7 60% 45 8 40% 60 9 50% 45 10 30% 60 11 60% 60 12 40% 45 13 50% 60 14 30% 60 TOTALS AVG's Completed By: (Printed Name) (Signature

  9. SAS Output

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  10. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy at a Lehigh Southwest Cement Plant

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  11. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    none,

    2004-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the project's cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  12. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    Not Available

    2001-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the projects cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  13. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy

    SciTech Connect (OSTI)

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  14. Metallic phase change material thermal storage for Dish Stirling (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Journal Article: Metallic phase change material thermal storage for Dish Stirling Citation Details In-Document Search Title: Metallic phase change material thermal storage for Dish Stirling Dish-Stirling systems provide high-efficiency solar-only electrical generation and currently hold the world record at 31.25%. This high efficiency results in a system with a high possibility of meeting the DOE SunShot goal of $0.06/kWh. However, current dish-Stirling systems do

  15. New Water Booster Pump System Reduces Energy Consumption by 80 Percent and Increases Reliability

    Office of Energy Efficiency and Renewable Energy (EERE)

    This case study outlines how General Motors (GM) developed a highly efficient pumping system for their Pontiac Operations Complex in Pontiac, Michigan. In short, GM was able to replace five original 60- to 100-hp pumps with three 15-hp pumps whose speed could be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual $11,255 in pumping costs. With a capital investment of $44,966 in the energy efficiency portion of their new system, GM projected a simple payback of 4 years.

  16. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dr. Michael Strasik

    2007-06-29

    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  17. DOE Zero Energy Ready Home Case Study: Montlake Modern - Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  18. Ultra Efficient Combined Heat, Hydrogen, and Power System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultra Efficient Combined Heat, Hydrogen, and Power System DE-EE0003679 FuelCell Energy, Inc. 10/1/2010 - 9/30/2011 Pinakin Patel FuelCell Energy Inc. ppatel@fce.com 203-825-6072 U.S. DOE Industrial Distributed Energy Portfolio Review Meeting Washington, D.C. June 1-2, 2011 2 FCE Overview * Leading fuel cell developer for over 40 years - MCFC, SOFC, PAFC and PEM (up to 2.8 MW size products) - Over 700 million kWh of clean power produced world-wide (>50 installations) - Renewable fuels: over

  19. Innovative Cell Materials and Designs for 300 Mile Range EVs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovative Cell Materials and Design for 300 Mile Range EVs Yimin Zhu, PD/PI OneD Material, LLC (former Nanosys Energy Storage) Palo Alto, California June 16 ~20, 2014 DOE Vehicle Technologies AMR 2014 ES130_zhu_2014_p This presentation does not contain any proprietary, confidential, or otherwise restricted information TM * Barriers addressed - Performance: Low Wh/kg & Wh/L - Life: Poor deep discharge cycles - Cost: High $/kWh * Targets Anode: >700 mAh/g 1,600 mAh/g >800 cycles

  20. K…12 Schools Project Performance Benchmarks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    K-12 Schools Project Performance Benchmarks (All ASHRAE Zones) We define an ESCO as a company that provides energy efficiency-related and other value-added services and that employs performance contracting as a core part of its energy efficiency services business. 1 For projects with electricity savings, we assume site energy conversion (1 kWh = 3,412 Btu). We did not estimate avoided Btus from gallons of water conserved. In general, we followed the analytical approach documented in Hopper et

  1. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  2. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 620 1 7 * 105 * 3112 Grain and Oilseed Milling 318 15,464 * * 117 * 5 0 29 *

  3. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources Unit: Physical Units or Btu Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,186 73,440 4 3 618 1 7 * 107

  4. Originally Released: July 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    4.1 Offsite-Produced Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,124 73,551 4 3

  5. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  6. High-Efficiency Parking Lighting in Federal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Parking Lighting in Federal Facilities FEdEraL EnErgy ManagEMEnt PrograM MC Realty Group Saving Energy and Money with the IRS MC Realty Group, LLC, won a 2014 LEEP Award for cutting energy use by 76% at the Internal Revenue Service (IRS) Facility Parking Garage in Kansas City, Missouri. MC Realty replaced 1,500 metal halide fxtures with an equal number of T8 fuorescent fxtures in the fve-story parking structure to cut energy use by 2 million kilowatt-hours (kWh) annually, which

  7. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Leganza Residence - Greenbank, Washington DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington Case study of a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  8. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  9. Camp Pendleton Saves 91% in Parking Lot Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Camp Pendleton Saves 91% in Parking Lot Lighting Camp Pendleton Saves 91% in Parking Lot Lighting Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh. Download the Camp Pendleton case study.

  10. COE projection for the modular WARP{trademark} wind power system for wind farms and electric utility power transmission

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-09-01

    Wind power has emerged as an attractive alternative source of electricity for utilities. Turbine operating experience from wind farms has provided corroborating data of wind power potential for electric utility application. Now, a patented modular wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for next generation megawatt scale wind farm and/or distributed wind power plants. When arranged in tall vertically clustered TARP{trademark} module stacks, such power plant units are designated Wind Amplified Rotor Platform (WARP{trademark}) Systems. While heavily building on proven technology, these systems are projected to surpass current technology windmills in terms of performance, user-friendly operation and ease of maintenance. In its unique generation and transmission configuration, the WARP{trademark}-GT System combines both electricity generation through wind energy conversion and electric power transmission. Furthermore, environmental benefits include dramatically less land requirement, architectural appearance, lower noise and EMI/TV interference, and virtual elimination of bird mortality potential. Cost-of-energy (COE) is projected to be from under $0.02/kWh to less than $0.05/kWh in good to moderate wind resource sites.

  11. Tilting at windmills

    SciTech Connect (OSTI)

    Selde, V.

    1982-04-01

    The three MOD-2, 300 ft. blade windmills, situated in the Goodnoe Hills in Washington state are described. Built by Boeing Engineering and Construction and financed by the DOE ($35 million) and the Bonneville Power Administration ($2 million), the wind turbines are rated at 2.5 megawatts of capacity per turbine. The need for the large size of the blades (world's largest) is explained as well as the factors influencing the site selection. It is pointed out that efficiency increases as the square of the rotor diameter and a wind velocity of at least 14 m.p.h. is required. The various factors and people involved in the financial aspects of commercialization of large windmills are discussed. Current cost of power generated is about $0.10/kWh. This can be reduced to $0.04-0.05/kwh by developing a facility with 100 windmills. Control of the facility by computers, safety features, rotor and tower design and the test program are described as well as environmental effects. (MJJ)

  12. Analysis of data from electric and hybrid electric vehicle student competitions

    SciTech Connect (OSTI)

    Wipke, K.B.; Hill, N.; Larsen, R.P.

    1994-01-01

    The US Department of Energy sponsored several student engineering competitions in 1993 that provided useful information on electric and hybrid electric vehicles. The electrical energy usage from these competitions has been recorded with a custom-built digital meter installed in every vehicle and used under controlled conditions. When combined with other factors, such as vehicle mass, speed, distance traveled, battery type, and type of components, this information provides useful insight into the performance characteristics of electrics and hybrids. All the vehicles tested were either electric vehicles or hybrid vehicles in electric-only mode, and had an average energy economy of 7.0 km/kwh. Based on the performance of the ``ground-up`` hybrid electric vehicles in the 1993 Hybrid Electric Vehicle Challenge, data revealed a I km/kwh energy economy benefit for every 133 kg decrease in vehicle mass. By running all the electric vehicles at a competition in Atlanta at several different constant speeds, the effects of rolling resistance and aerodynamic drag were evaluated. On average, these vehicles were 32% more energy efficient at 40 km/h than at 72 km/h. The results of the competition data analysis confirm that these engineering competitions not only provide an educational experience for the students, but also show technology performance and improvements in electric and hybrid vehicles by setting benchmarks and revealing trends.

  13. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    SciTech Connect (OSTI)

    1994-12-31

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies.

  14. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-06-24

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  15. Market failures, consumer preferences, and transaction costs inenergy efficiency purchase decisions

    SciTech Connect (OSTI)

    Sathaye, Jayant; Murtishaw, Scott

    2004-11-23

    Several factors limit the energy savings potential and increase the costs of energy-efficient technologies to consumers. These factors may usefully be placed into two categories; one category is what economists would define as market failures and the other is related to consumer preferences. This paper provides a conceptual framework for understanding the roles of these factors, and develops a methodology to quantify their effects on costs and potentials of two energy efficient end uses - residential lighting and clothes washers. It notes the significant roles played by the high implicit cost of obtaining information about the benefits of the two technologies and the apparent inability to process and utilize information. For compact fluorescent lamps, this report finds a conservative estimate of the cost of conserved energy of 3.1 cents per kWh. For clothes washers, including water savings reduces the cost of conserved energy from 13.6 cents to 4.3 cents per equivalent kWh. Despite these benefits, market share remains low. About 18 million tons of CO2 could be saved cost effectively from 2005 sales of these two technologies alone. The paper also notes that trading of carbon emissions will incur transaction costs that will range from less than 10 cents per metric ton of CO2 for larger size projects and programs to a few dollars per metric ton of carbon for the smaller ones.

  16. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  17. New York Power Authority/New York City Housing Authority refrigerator replacement program, first program year evaluation. Final report

    SciTech Connect (OSTI)

    Kinney, L.F.; Lewis, G.; Pratt, R.G.; Miller, J.

    1997-08-01

    Acting as an energy services provider, the New York Power Authority (NYPA) has initiated a long-term project through which 20,000 refrigerators per year will be replaced with the most energy-efficient units possible in apartments managed by the New York City Housing Authority (NYCHA). Using bulk purchasing as an incentive to appliance manufacturers to produce energy-efficient refrigerators suitable for use in apartments, replaced in the first year of the program, which ended in December 1996. These units, kWh per year. Savings were determined by field testing and laboratory testing of 220 existing refrigerators and 56 newly-installed units. In the next program year, a 15.0-cubic-foot Maytag refrigerator, newly-designed in response to bulk purchasing incentives, is being installed. The new unit has a label rating of 437 kWh per year, 31 percent better than 1993 energy standards. Old refrigerators removed from apartments are {open_quotes}demanufactured{close_quotes} in an environmentally-appropriate way and both metals and refrigerants are recovered for reuse.

  18. Don`t overlook natural gas cooling equipment

    SciTech Connect (OSTI)

    Katzel, J.

    1997-03-01

    If one thought the confusion surrounding chiller specification and operation ended with the availability of CFC-free refrigerant alternatives, think again. Plant engineers involved in the selection and installation of cooling equipment are facing yet another complicated task, this time thanks to deregulation of the electric utility industry. Still in its early stages, deregulation is a process that could take up to a decade. However, deregulation is also bringing about changing pricing structures. Electric power costs may not always be low for everyone. For plants paying $0.02/kwh for electricity, an electric-powered chiller is a must. But those paying $0.35 or $0.40/kwh, even for a few hours, cannot afford NOT to consider something besides an electric-motor-driven chiller. Among the most viable, yet often overlooked, options available is natural gas cooling. Gas cooling equipment gives industrial users the flexibility to choose either gas or electricity to drive their cooling systems. Natural gas cooling is defined here as the use of absorption cooling systems and engine-driven chillers, as alternatives to electric-driven equipment, to deliver chilled water in a conventional manner. Desiccant systems can also be gas fired and are used primarily for providing dry air for process control. Because of their specialized applications, desiccant cooling is not covered in this article.

  19. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  20. Lighting system replacement brings energy costs down, light levels up

    SciTech Connect (OSTI)

    Radmer, D.J.

    1984-11-08

    The R.J. Frisby Mfg. Co. operates on three shifts and produces precision screw machine products for a variety of industries, including automotive, marine, machine tool, hydraulics and pneumatics, business machines, electrical and electronics, photography, and precision instruments. The required degree of manufacturing precision demands high light levels in manufacturing areas. When the 100,000 sq ft plant was built in 1973, mercury vapor lighting was installed consistent with the current state of the art for lighting such facilities. In the ensuing years, it became apparent that the soaring electric bills that came in the wake of the Arab oil embargo of 1973-74 would have to be controlled. Estimates by the U.S. Department of Energy indicated that electric energy costs were likely to rise by 160 percent over the next 10 yr. Based on this estimate, and the fact that lighting accounted for $70,000, or half of the annual electric bill, it was estimated that $900,000 to $1,000,000 would be spent for lighting energy over the next decade. The concern over the probability of rapidly escalating electrical costs was soon justified when, in three steps over one 12 mo period, the electric energy rate increased from $0.0305/kwh to $0.0416/kwh -more than a 36 percent increase. During that same period, the demand charge was raised in two steps from $3.75/kw to $4.85/kw --more than a 29 percent increase.

  1. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  2. R and D in France and in Western Europe

    SciTech Connect (OSTI)

    Bastin, A.J.F. )

    1991-06-01

    This paper deals with worldwide electric utility R and D, but focuses on France first, and not on Western Europe as a whole. Apart from the fact that the R and D of European utilities hardly show a homogeneous set, there are four basic reasons. To begin with, France represents roughly 20 percent of Western Europe by itself. Germany, now extended to the late DDR, is the only country to have a larger share. Second, Electricite de France (EDF) is the largest electric utility worldwide, with annual sales of about 410 TWh. Third, EDF has consistently shown one of the lowest electricity prices: as an average .44 FF par kWh (about $.08 per kWh) which comes up on comparing the 410 TWh sales with a 165 GFF turnover. Beyond these three points, which are more or less permanent, it appears that both EDF and its R and D division have been stable over the last three years. So the French power system is the largest subsystem in Western Europe where a single well-defined R and D policy can be described and assessed; this is what the authors are going to do now.

  3. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  4. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  5. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  6. Energy efficiency study of single-wide manufactured homes

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Andrews, G.J.; Stovall, T.K.; Kelly, T.

    1999-12-01

    This Cooperative Research and Development Agreement (CRADA) was among Tennessee Technological University, Clayton Homes, Inc., and Oak Ridge National Laboratory (ORNL). Manufactured homes now make up a substantial portion of the new home market, and improving the energy efficiency of these homes would save significant amounts of energy. This project explored the impact of differing levels of attic insulation, the use of evacuated insulation panels, and the application of a solar reflective roof coating. The performance of the installed roof cavity insulation compared favorably with that predicted by laboratory measurements. The more heavily insulated of the two units used about 30% less energy over the period of the project than the standard unit. Based on the experimental data, computer simulations for nine cities were completed for a single-wide manufactured home with the solar reflective roof coating. Annual electric power savings ranged from 894 kWh in Rapid City to 2119 kWh for the same roof area in Los Angeles. The field performance of vacuum insulation panels was compared with laboratory performance. The panels will perform as expected if protected from puncture.

  7. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David; Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  8. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid

  9. Electric Power monthly, November 1995 with data for August 1995

    SciTech Connect (OSTI)

    1995-11-15

    This report presents monthly electricity statistics, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities; the information are from six data sources: forms EIA-759, FERC Form 423, EIA-826, EIA-861, EIA-860, and Form OE-417R. An article on reclicensing and environmental issues affecting hydropower is included. Then the statistics are presented in: US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks at utilities, fossil fuel receipts and costs, utility sales/revenue/average revenue per kWh, and monthly plant aggregates. Finally, nonutility power producer statistics, bibliography, technical notes, and a glossary are presented.

  10. Itaipu: never underestimate the Latins. [Paraguay/Brazil binational project

    SciTech Connect (OSTI)

    Not Available

    1983-04-06

    The Itaipu hydroelectric project, a joint effort of Brazil and Paraguay (with a cost of US $16 to 18 billion), will be finished in December 1989. The project is situated on the Parana River, 14 km beyond the Puente de da Amistad (Friendship Bridge), which connects the city Presidente Stroessner, in Paraguay, with Foz do Iguacu, in Brazil. It is considered today not only the biggest hydroelectric plant in the world, but also a great socio-economic boom in the making. Itaipu will add a total of 12.6-million kilowatt-hours (kWh) of hydroelectricity to the region, an equivalent of 600,000 barrels of oil daily (b/d). This issue of Energy Detente reviews the progress of Itaipu. Also appearing in this issue is the fuel price/tax series and the principal industrial fuel prices for April 1983 for countries of the Eastern Hemisphere.

  11. Baseload, industrial-scale wind power: An alternative to coal in China

    SciTech Connect (OSTI)

    Lew, D.J.; Williams, R.H.; Xie Shaoxiong; Zhang Shihui

    1996-12-31

    This report presents a novel strategy for developing wind power on an industrial-scale in China. Oversized wind farms, large-scale electrical storage and long-distance transmission lines are integrated to deliver {open_quotes}baseload wind power{close_quotes} to distant electricity demand centers. The prospective costs for this approach to developing wind power are illustrated by modeling an oversized wind farm at Huitengxile, Inner Mongolia. Although storage adds to the total capital investment, it does not necessarily increase the cost of the delivered electricity. Storage makes it possible to increase the capacity factor of the electric transmission system, so that the unit cost for long-distance transmission is reduced. Moreover, baseload wind power is typically more valuable to the electric utility than intermittent wind power, so that storage can be economically attractive even in instances where the cost per kWh is somewhat higher than without storage. 9 refs., 3 figs., 2 tabs.

  12. Technology Advances Needed for Photovoltaics to Achieve Widespread Grid Price Parity

    Broader source: Energy.gov [DOE]

    To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV systems parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency, degradation rate, and service lifetime. NREL’s System Advisor Model (SAM) is used to calculate the lifecycle cost per kilowatt-hour (kWh) for residential, commercial, and utility-scale PV systems within the contiguous United States, with a focus on utility-scale. Different technological pathways to the Department of Energy’s SunShot goal of PV electricity that is at grid price parity with conventional electricity sources are illustrated. In addition, the impact of independent changes to individual parameters on 2015 baseline costs is shown. These results may be used to identify research directions with the greatest potential to impact the cost of PV electricity.

  13. Bioconversion of animal manure into electricity and a liquid fuel

    SciTech Connect (OSTI)

    Fischer, J.R.; Iannotti, E.L.; Stahl, T.; Garcia, A. III; Harris, F.D.

    1983-01-01

    The integrated farm energy system operating at Columbia, Missouri converted animal manure into thermal and electrical energy and a liquid fuel. An anaerobic digester converted 510 kg of volatile solids into 285 m/sup 3/ of biogas consisting of 55% methane. An internal combustion engine coupled to an electrical generator produced 408 kWh/day of electricity and 3 GJ/day of thermal energy. An ethanol production plant converted thermal and electrical energy into 85 liters of ethanol. Subtracting the thermal and electrical demands of the digester and ethanol plant, the system produced a net energy of 277 kWh of electricity, 750 MJ of thermal energy and 85 liters of ethanol. 9 references, 6 figures, 2 tables.

  14. NREL/CCSE PEV Battery Second Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2011-09-01

    This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

  15. Electric power monthly. June 1966 with data for March 1996

    SciTech Connect (OSTI)

    1996-06-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities (Public Law 93-275). A section on upgrading transmission capacity for wholesale electric power trade is included. The tables include US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks/receipts/cost at utilities, utility sales/revenue/revenue per kWh, and monthly plant aggregates.

  16. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  17. Bayer Polymers: Plant Identifies Numerous Projects Following Plant-Wide Energy-Efficient Assessment

    SciTech Connect (OSTI)

    2003-08-01

    The Bayer Corporation undertook a plant-wide energy efficiency assessment of its New Martinsville, West Virginia, plant in 2001. The objectives were to identify energy saving projects in the utilities area. The projects, when complete, will save the company the loss of an estimated 236,000 MMBtu ($1.16 million) annually in energy from burning and leaking fossil fuels. Certain other projects will save the company 6,300,000 kWh ($219,000) of electrical energy each year. All of the projects could be duplicated in other chemical manufacturing facilities and most of the projects could be duplicated in other industries utilizing steam, pumps, and/or compressed air.

  18. 2014 Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine 91,541 3,627 12.70 460.77 Massachusetts 398,717 5,450 14.68 799.87 New Hampshire 105,840 3,515 14.34 504.04 Rhode Island 58,346 5,224 14.56 760.66 Vermont 52,453 3,226 14.56 469.78 Middle Atlantic 2,247,455 5,860

  19. Fort Polk EEAP. Final report

    SciTech Connect (OSTI)

    Busch, R.D.; Scheuch, K.E.; Shishman, T.T.

    1986-07-17

    This Final Presentation provides a summary of the work done under Increments A, B, E, and G of the Energy Engineering Analysis Program (EEAP) for Fort Polk Louisiana. The work was accomplished under Contract DACA63-80-C-0166 plus modifications with the Fort Worth District, Corps of Engineers. The vast majority of consumed energy at Fort Polk consists of electricity and natural gas. In FY75, Fort Polk used 48,399,000 kWh of electricity at a cost of $600,000. During that same period, 782,637 MCF of natural gas was purchased for $484,000. The total FY75 energy use was 1,368,327 MBtu.

  20. Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest

    SciTech Connect (OSTI)

    2013-10-01

    This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costs are $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings between Salishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.

  1. Reducing Data Center Loads for a Large-Scale, Net Zero Office Building

    SciTech Connect (OSTI)

    2011-12-01

    In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy-efficient data center to support its operations. NREL’s efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center performance as a baseline, the new facility cut energy use by nearly 1,450,000 kWh, delivering cost savings of approximately $82,000. The data center’s average total load was 165 kW less than the legacy center’s average total load, resulting in a 60% reduction in overall power. Finally, the limited use of cooling and fan energy enabled the new data center to achieve a 1.16 average power utilization effectiveness (PUE) rating, compared to the legacy data center’s PUE of 2.28.

  2. Abuse Tolerance Improvements

    SciTech Connect (OSTI)

    Orendorff, Christopher J.; Nagasubramanian, Ganesan; Fenton, Kyle R.; Allcorn, Eric

    2015-10-01

    As lithium-ion battery technologies mature, the size and energy of these systems continues to increase (> 50 kWh for EVs); making safety and reliability of these high energy systems increasingly important. While most material advances for lithium-ion chemistries are directed toward improving cell performance (capacity, energy, cycle life, etc.), there are a variety of materials advancements that can be made to improve lithium-ion battery safety. Issues including energetic thermal runaway, electrolyte decomposition and flammability, anode SEI stability, and cell-level abuse tolerance continue to be critical safety concerns. This report highlights work with our collaborators to develop advanced materials to improve lithium-ion battery safety and abuse tolerance and to perform cell-level characterization of new materials.

  3. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  4. table1.1_02

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources RSE NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Row Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Factors Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 *

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida

    SciTech Connect (OSTI)

    Lisell, L.; Mosey, G.

    2010-09-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site in St. Marks, Florida. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.08/kWh and incentives offered in the State of Florida and from the two accessible utilities, Progress Energy and the City of Tallahassee. According to the site production calculations, the most cost-effective system in terms of return on investment is the fixed-tilt thin film technology. The report recommends financing options that could assist in the implementation of such a system.

  6. Feasibility Study of Economics and Performance of Solar Photovoltaics at Massachusetts Military Reservation. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stafford, B.; Robichaud, R.; Mosey, G.

    2011-07-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying photovoltaics (PV) systems on a superfund site located within the Massachusetts Military Reservation (MMR). The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.17/kWh and incentives offered in the State of Massachusetts, such as the solar renewable energy credits. According to calculations, MMR can place 8 MW of ballast-weighted, ground-mounted PV systems on the crowns of the three landfill caps and the borrow pit with the PV modules tilted at 30 degrees.

  7. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect (OSTI)

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  8. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Source(s): Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of

  9. Buildings Energy Data Book: 6.1 Electric Utility Energy Consumption

    Buildings Energy Data Book [EERE]

    4 U.S. Electricity Net Generation, by Plant Type (Billion kWh) Renewables Growth Rate Hydr(1) Oth(2) Total CHP (3) Tot.(4) 2010-year 1980 276 6 282 N.A. 1981 261 6 267 N.A. 1982 309 5 314 N.A. 1983 332 6 339 N.A. 1984 321 9 330 N.A. 1985 281 11 292 N.A. 1986 291 12 302 N.A. 1987 250 12 262 N.A. 1988 223 12 235 N.A. 1989 269 28 297 42 1990 290 35 324 61 1991 286 38 324 72 1992 250 40 290 91 1993 278 42 320 108 1994 254 42 296 123 1995 305 39 345 141 1996 341 41 382 147 1997 351 41 392 148 1998

  10. Buildings Energy Data Book [EERE]

    3.1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Average Fuel Prices Total Expenditures Fuel Type ($/million BTU) ($ million) (2) Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total

  11. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  12. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oilmore » and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  13. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    SciTech Connect (OSTI)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Hi, My name is Ian. I am a 12 year old student. I am in the 7th grade. My question is: If a one pound block of ice (-2 degrees C) is placed in an insulated closed room that was 2 feet by 2 feet by 4 feet, set at 5 degrees C, 1.) How long would it take to melt the ice ? 2.) How many Btu's would it take to melt the ice ? 3.) Would the room temperature drop or stay at 5 deg. C ? 4.) If electricity was used to cool the room to 5 deg. C and cost 11 cents per kWh, how much would it cost to

  15. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  16. A simple tool for estimating city-wide annual electrical energy savings from cooler surfaces

    SciTech Connect (OSTI)

    Pomerantz, Melvin; Rosado, Pablo J.; Levinson, Ronnen M.

    2015-06-27

    We present a simple method to estimate the maximum possible electrical energy saving that might be achieved by increasing the albedo of surfaces in a large city. We restrict this to the “indirect effect”, the cooling of outside air that lessens the demand for air conditioning (AC). Given the power demand of the electric utilities and data about the city, we can use a single linear equation to estimate the maximum savings. For example, the result for an albedo change of 0.2 of pavements in a typical warm city in California, such as Sacramento, is that the saving is less than about 2 kWh per m2 per year. This may help decision makers choose which heat island mitigation techniques are economical from an energy-saving perspective.

  17. Raytheon: Compressed Air System Upgrade Saves Energy and Improves Performance

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    In 2003, Raytheon Company upgraded the efficiency of the compressed air system at its Integrated Air Defense Center in Andover, Massachusetts, to save energy and reduce costs. Worn compressors and dryers were replaced, a more sophisticated control strategy was installed, and an aggressive leak detection and repair effort was carried out. The total cost of these improvements was $342,000; however, National Grid, a utility service provider, contributed a $174,000 incentive payment. Total annual energy and maintenance cost savings are estimated at $141,500, and energy savings are nearly 1.6 million kWh. This case study was prepared for the U.S. Department of Energy's Industrial Technologies Program.

  18. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  19. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  20. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Stringfellow Superfund Site in Riverside, California

    SciTech Connect (OSTI)

    Mosey, G.; Van Geet, O.

    2010-12-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on the Stringfellow Superfund Site in Riverside, California. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.13/kWh and incentives offered by Southern California Edison under the California Solar Initiative. According to the assessment, a government-owned, ground-mounted PV system represents a technically and economically feasible option. The report recommends financing options that could assist in the implementation of such a system.