National Library of Energy BETA

Sample records for kwh kwh kwh

  1. max kwh | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data book Homefuelleasing Homemaps Home Jweers'smax kwh

  2. Design and cost analysis of a 20-kWh bipolar zinc-bromine battery

    SciTech Connect (OSTI)

    Einstein, H.; Bellows, R.J.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1981-01-01

    Zinc-Bromine secondary batteries are attractive systems for electric vehicles and energy storage (off-peak and photovoltaic) applications because of low cost raw materials, relatively high energy density, and ambient temperature operation. Exxon's approach to the system uses conductive carbon plastic electrodes in a bipolar configuration, separable bromine complexes, and selective membranes in a circulating electrolyte design. The 20 kWh battery design consists of two 10 kWh battery stacks placed back-to-back with a common center electrolyte feed block. Each of the two battery stacks consists of 78 cells for a system voltage of 120 volt output. Active electrode area per electrode is 12 dm/sup 2/. Cell-to-cell spacing is 0.25 cm. The two-stack module is assembled over a tray serving as a cover for the plastic electrolyte reservoir. Unit cells are comprised of alternating bipolar electrodes and separator assemblies. For various applications, accessories and controls are built into the system. The projected battery factory price of $28./kWh is discussed, along with the manufacturing, materials, and labor costs.

  3. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  4. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  5. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  6. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  7. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just Hot ResourcesEnergy JumpKLDKSLKWhOURS

  8. OpenEI Community - max kwh

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 enBigWater

  9. kWh Analytics: Quality Ratings for PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  10. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump to:MaxInc

  11. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump

  12. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW

  13. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  14. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy Information

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergy

  16. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergyEnergy

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation HeatPumps

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen Energy

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen

  1. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly

  2. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a property

  3. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a

  4. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is

  5. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This

  6. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search

  7. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to: navigation,

  8. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:

  9. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:Information

  10. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump

  11. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas JumpInformation

  12. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas

  13. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGasInformation

  14. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to: navigation,

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to:

  17. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrunkWh

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation

  19. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    electric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (k

  20. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  1. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-01-01

    Electricity Price Price 1998$/kWh 1998$/kWh Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t ? The carbon

  2. 2004 status report: Savings estimates for the Energy Star(R) voluntarylabeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  3. 2003 status report savings estimates for the energy star(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  4. 2005 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-01-01

    Electricity Price Price 2003$/kWh 2003$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  5. 2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

    2003-01-01

    Price Price 2000$/kWh 2000$/kWh Electric Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  6. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  7. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6222015 14:27 SLCAIP Hydro Generation Estimates Month Forecast Generation less losses (kWh) Less Proj. Use (kWh) Net Generation (kWh) SHP Deliveries (kWh) Firming Purchases...

  8. Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs

    E-Print Network [OSTI]

    Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

    2008-01-01

    7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oil Baseload Coal7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

  9. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  10. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01

    0.11 $/kWh, as in San Francisco, Baltimore, Phoenix and Lask) l) Phoenix, AZ Minneapolis, MN Energy ($/kWh) Power ($/Phoenix and Miami, where the average electricity price is 0.05 $/kWh,

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  12. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01

    per kWh) i f a $10 per metric ton carbon allowance priceper kWh) i f a $100 per metric ton carbon allowance price

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  14. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  15. An Estimate of Energy Use in Laboratories, Cleanrooms, and Data Centers in New York

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01

    cost ($/MCF) NY - Labs - Electricty expenditures (Million $)kWh) NY - Data Centers - Electricty expenditures (Million $)

  16. Guidelines for Company Reporting on Greenhouse Gas Emissions Annexes updated July 2005

    E-Print Network [OSTI]

    0.32 LPG kWh x 0.214 therms x 6.27 litres x 1.49 Coking Coal tonnes x 2736 kWh x 0.331 Aviation.63 Petrol tonnes x 3135 kWh x 0.24 litres x 2.30 Fuel Oil tonnes x 3223 kWh x 0.27 Coal2 tonnes x 2548 kWh xWh x 0.25 Petroleum Coke tonnes x 3410 kWh x 0.34 Refinery Miscellaneous kWh x 0.24 therms x 7

  17. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  18. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  19. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light-...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    melded rate for this site was 0.056 per kWh for electricity. However, if the national electricity rate of 0.1022kWh was used the payback would change to between four and five...

  1. Alliant Energy Interstate Power and Light - Residential Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: 1.25kWh x estimated first year output Standard Solar PV: 0.75kWh x estimated first...

  2. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    and in the latter, its PV of cost savings is per kWh. NoteDG unit, then it obtains the PV of cost savings relative toremaining terms comprise the PV of cost savings per kWh from

  3. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  4. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    E-Print Network [OSTI]

    Sanchez, Marla

    2010-01-01

    energy price in year t (in $/kWh or $/MBtu) C t = The carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  5. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    cost per kWh than current energy efficiency procurement programs in California.Energy Down The Drain: The Hidden Costs of California’sCost of Procurement of Electricity Efficiency (Ratio of respective $/Annual KWh) California Energy

  6. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of electricity from new hydrothermal development to 6 kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6 kWh by 2030. For more information, see this funding...

  7. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    Central Changchun East China Energy Databook 7.0 Table 8C.2.Total scoProvRegion East Chapter 4, Energy Consumption kwh/Total scoProvRegion East Chapter 4, Energy Consumption kwh/

  8. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Hydrologic Area: East Branch Energy 2,97 x 3,25 x 108 KWH =Energy conservation: Family values, household practices, and contextual values, East1974 energy costs were 3,249 KWH/AF for the East Branch and

  9. Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge 

    E-Print Network [OSTI]

    Anderson, K. J.; Annen, B.; Scott, S.

    2003-01-01

    capital upgrades. As of the end of 2002 the program has saved 16 million kWh annually and by 2010 the region expects to save 320 million kWh a year....

  10. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    kwh/gallon X 10- 3 a Waste Water Treatment kwh/gallon X 10-3re- requirements for waste water treatment. This year,requirements for residential waste water treatment have also

  11. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    E-Print Network [OSTI]

    Michael, Stadler

    2011-01-01

    $/yr) Battery Capacity Installed (kWh) Flow Battery PowerInstalled (kW) Flow Battery Energy Installed (kWh) PV326.7 kW as well as a flow battery with a rated peak power

  12. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    electrical stationary storage. An amount of 371kWh of EV batteries energy, corresponding to around 23 employee cars

  13. Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy

    E-Print Network [OSTI]

    Bezryadina, Anna Sergeyevna

    2012-01-01

    Photovoltaic solar panels which generate electricity directly currently cost around $0.24 per kWh in Central

  14. Energy Storage for Long Endurance AUVs Gwyn Griffiths

    E-Print Network [OSTI]

    Griffiths, Gwyn

    energy batteries · Manganese alkaline 110 Wh.kg-1 £71 per kWh Rayovac · Lithium ion & Lithium polymer 100 - 195 Wh.kg-1 ~£1400 per kWh Capital cost · Lithium manganese dioxide 270 Wh.kg-1 £667 per kWh SAFT LM Eagle Pitcher LCF111 r=6.4 r=108 · Energy & cost for 700 kg energy payload Manganese alkaline: 77 kWh £5

  15. A database of window annual energy use in typical North American residences

    E-Print Network [OSTI]

    Arasteh, Dariush; Huang, Joe; Mitchel, Robin; Clear, Bob; Kohler, Christian

    1999-01-01

    Kwh) Maximum Minimum Madison, WI Denver, CO Washington, DC Seattle, WA Raleigh, NC San Francisco, CA Phoenix,

  16. Selecting Thermal Storage Systems for Schools 

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01

    per meter + KWH charge. On peak monthly average (June 89 thru September 89) $.0676/KWH. Off peak monthly average (October 89 thru May 90) $.0481/KWH. Natural Gas - Lone Star Gas Company - September 88 thru August 89 monthly average $4.41 MCF...

  17. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    kW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermal

  18. Cooling season study and economic analysis of a desiccant cooling system 

    E-Print Network [OSTI]

    Lee, James Howard

    1992-01-01

    10 20 30 40 50 60 70 80 Gas Cost (3/GJ) Figure 4. 4 Gas Price vs DINC Cycle Payback Period at Various Electricity Prices SEER = 12 35 20 18 16 ~ 14 ~ 12 D o 10 8 6 o 4 $0. 06/Kwh $0. 09/Kwh $0. 12/Kwh $0. 15/Kwh $0. 'I 8/Kwh 10 20... IV ECONOMIC ANALYSIS V CONCLUSIONS 28 36 NOMENCLATURE 39 REFERENCES 46 APPENDIX A - HOUSE CONSTRUCTION DATA . . APPENDIX B - SECOND LAW COMPARISON 48 53 APPENDIX C - COOLING SEASON AND DINC CYCLE PROGRAM LISTING 72 APPENDIX D - ECONOMIC...

  19. Cost vs. performance ... Gwyn Griffiths email: gxg@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/

    E-Print Network [OSTI]

    Griffiths, Gwyn

    ) Specific energy (Wh.kg-1 ) Cell cost per kWh (£) Cost per kWh inc. assembly & disposal. (£) Mn Alkaline 0@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/ Chemistry Cost per cell in quantity (£) Energy per cell (Wh://www.noc.soton.ac.uk/OED/gxg/ Cost & performance of Li-Po secondary batteries Component Capital cost Amortised cost per kWh Cost per

  20. Samuel Sandoval Solis, PhD Assistant Professor

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Samuel Sandoval Solis, PhD Assistant Professor University of California, Davis Department of Land of 10 #12;Hoover Dam 158 m 35.2 Km3 4.2 bill. KWh $49M - 1936 Oroville Dam 230 m 4.4 Km3 2.2 bill. KWh Shasta Dam 159 m 5.6 Km3 1.8 bill. KWh $36M - 1945 #12;· Masonry - Arch Dams · Gravity Dams · Embankment

  1. J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?

    E-Print Network [OSTI]

    Gerwert, Klaus

    ­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

  2. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    1969. "Scrubber Survey: a Lime/Limestone Trend," ElectricalMills/Kwh Process Limestone Lime Magnesia Cat-Ox Sodium Tonsto Unsaturated Operation of Lime and Limestone Scrubbers,"

  3. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    Residential Sector Electricity Prices in CaliforniaResidential electricity prices in the Los Angeles area are currently about $0.10 per kWh, but the California

  4. Flow of mantle fluids through the ductile lower crust: Helium isotope trends

    E-Print Network [OSTI]

    Kennedy, B. Mack; van Soest, Matthijs C.

    2008-01-01

    particularly for geothermal energy development. Mantlex 10 kWh of accessible geothermal energy. This is a sizableBasic Energy Sciences and Office of Geothermal Technologies

  5. Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels

    E-Print Network [OSTI]

    Delucchi, Mark

    1996-01-01

    36.5 SCF of natural gas per square foot (Energy Information2.5 kWh per square foot for lighting (Energy Information

  6. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    the very aggressive “passive house” standard of 15 Kwh/m2-yplus energy houses”) which combine a passive solar direct

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  8. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    7. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  9. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  10. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  11. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  12. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  14. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  1. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  2. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  3. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric system more options for solutions and resources, from home energy management and demand response to participating in the energy market using its KWH, KW, and ancillary...

  4. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity remains .... * Achieve parity with natural gas @5-6 kWh * Establish offshore wind deployment * Provide foundational R&D to facilitate wind as a principal...

  5. Determining the Lowest-Cost Hydrogen Delivery Mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2008-01-01

    $0.05 to $0.075/kWh, diesel fuel price increases from $2 toin energy prices (electricity and diesel fuel), and storage

  6. Determining the lowest-cost hydrogen delivery mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2007-01-01

    to $0.075/kWh, the diesel fuel price increases from $2 to $in energy prices (electricity and diesel fuel), and storage

  7. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    -voltaic capacity, 250kW of wind turbine capacity, 400kWh of vanadium redox flow battery storage, and local grid

  8. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    electric storage thermal storage decoupling by Figure ES 1.by decoupling by thermal storage representative exampleor $/kWh) lifetime (a) thermal storage 1 absorption chiller

  9. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    residences (homes) for EV charging: $0.138/kWh EnvironmentalStorage conclusions EV Charging / discharging pattern mainlythe healthcare facility EV battery charging efficiency EV

  10. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    battery storage.grid, the cost of battery storage per unit of load servedalong with 22 kWh of battery storage. This study claims only

  11. Separating myths from reality in PV inverter reliability

    E-Print Network [OSTI]

    Rollins, Andrew M.

    . · This is based upon a LCOE of 5 cents per kWh, so reliability is critical · MTBF of string inverters in 2006: 5

  12. Technical Report NREL/TP-7A2-48267

    E-Print Network [OSTI]

    -conditioning KIUC Kauai Island Utility Cooperative kWh kilowatt-hour LCOE levelized cost of energy M&V measurement

  13. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    and amortization ERCOT Electric Reliability Council of Texas kW kilowatt kWh kilowatt-hour LCOE levelized cost

  14. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    6. Solar Power Dish Engine for Wastewater Plant Electricitytreatment plant 4 MGD with 1 MW Solar power generation kWh

  15. Renewable Energy Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind): * Innovation Concepts and Emerging Technologies detail designs to reduce the cost of wind to compete unsubsidized with fossil-based alternatives (projected as .06kWh)....

  16. Following electron flow: From a Gram-positive community to mechanisms of electron transfer

    E-Print Network [OSTI]

    Wrighton, Kelly Catherine

    2010-01-01

    annually to treat food processing waste (3, 4). Moreover,waste alone contains 34 billion kWh of energy (3), while food

  17. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01

    C. McParland, "Open Automated Demand Response Communications2011. Utility & Demand Response Programs Energy ProviderAnnual Consumption (kWh) Demand Response Program Curtailment

  18. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01

    price of electric vehicle electricity exchange at home, $/kWh marginal carboncarbon emissions rate from generation technology j, kg/kWh price

  19. 2006 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan, Gregory K.

    2006-01-01

    Price Source Carbon Emissions Factor for Electricity kg C/kWh Carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  20. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01

    Washing Machines Fluorescent Ballasts Electric Water HeatersRoom AC Washing Machines $/kWh Electric Water HeatersWashing Machine) Cooking Products (Electric Induction

  1. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    SAS-PAS Electric Water Heating UEC (kWh) 13 Reference (Jannuzzi G. 2005) (SAS+PAS Other Average Efficiency Base Case Reference Voice Mag. (oct 2005) (

  2. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01

    Energy and Demand Prices . . . . . . . . . . . . . . . . . . . . . .US DOE 1999. Marginal Energy Prices Report U.S. Departmentmarginal price Marginal energy price in cper kwh Marginal

  3. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy

    2013-01-01

    price of electricity charged to industrial customers per kWh was the greatest in Japan ($0.154), followed by Germany (

  4. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01

    demand savings, each kWh saved with this efficiency measuresavings with peak demand. Previous analysis indicates that the ClF of efficiency measures

  5. Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007

    E-Print Network [OSTI]

    .498 Coking Coal tonnes x 2810 x 2810 kWh x 0.349 x 0.332 Aviation Spirit tonnes x 3128 x 3128 kWh x 0.250 x 0.281 x 0.267 Burning Oil1 tonnes x 3150 x 3150 kWh x 0.258 x 0.245 litres x 2.518 x 2.518 Coal 2 tonnes xWh x 0.249 x 0.237 Lubricants tonnes x 3171 x 3171 kWh x 0.263 x 0.250 Petroleum Coke tonnes x 3410 x

  6. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Electricity Expenditures by Census Region for Non-Mall Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square...

  7. Peak CO2? China's Emissions Trajectories to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01

    kWh) in 2050 Installed capacity of wind, solar, and biomassTWh in 2050 Installed capacity of wind, solar, and biomass

  8. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01

    kWh) in 2020 Installed capacity of wind, solar, and biomassgce/kWh) in Installed capacity of wind, solar, and biomass

  9. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  10. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  11. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2007-01-01

    house in a Marine climate. Annual Energy Consumptionmarine climate has very little air conditioning - compressor energyEnergy Consumption Relative to Unvented House, kWh Marine -

  12. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    gas-fired genset, solar thermal collectors, an absorptionchiller, 722 kW of solar thermal collectors, 1100 kWh of

  13. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    chiller (kW) solar thermal collector (kW) electricalchiller, 722 kW of solar thermal collectors, 1100 kWh of

  14. How Much Can a Campus Save on Utility Bills by Turning a 5-Workday Week Into a 4­Workday Week 

    E-Print Network [OSTI]

    Zhou, J.; Giebler, T.; Wei, G.; Turner, W. D.

    2003-01-01

    average electricity price during this period is $0.0457/kWh from Monday to Friday, and $0.0359/kWh for Saturday and Sunday, based on the current electricity utility contract between the university and the utility company. TAMUCC Whole Campus...) consumption (daily) profiles for weekdays, weekends and holidays. Daily WCE difference between a typical weekday and a typical weekend is around 20,000 kWh; Daily WCE difference between a typical weekend and a typical holiday is around 10,000 kWh; Daily...

  15. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

  16. SunShot Incubator Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding rounds. Awardees CURRENT PROJECTS PAST PROJECTS Soft Costs Aurora Solar, Inc. Clean Energy Collective Demeter Power Group EnergySage Faraday Genability kWh Analytics...

  17. Expressive Power-Based Resource Allocation for Data Centers Benjamin Lubin

    E-Print Network [OSTI]

    Chen, Yiling

    Expressive Power-Based Resource Allocation for Data Centers Benjamin Lubin Harvard University David C. Parkes Harvard University Abstract As data-center energy consumption continues to rise billion kWh; that is, 1.5% of the 4 trillion kWh consumed in total. This is the amount of energy used by 5

  18. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  19. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  20. China's March on the 21st Century

    E-Print Network [OSTI]

    Deutch, John

    ,523/3,299 5,250/10,581 25,028/43,676 0 1 2 3 4 5 6 7 8 Oil Natural Gas Electricity Nuclear Electricity Coal CO/day (oil); trillion cu feet (natural gas); billion kWh (electricity); billion kWh (nuclear electricity COORDINATOR NATIONAL SECURITY AND INTERNATIONAL POLICY CENTER FOR AMERICAN PROGRESS China's remarkable

  1. Energy in the Developing World Physics of Sustainable Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    wellbeing (prosperity) 2. Life expectancy, public heath, health care 3. Literacy and education UN publishes Development Index (HDI) vs. Electricity ConsumpPon (kWh) Human Development Index (HDI) vs. Electricity ConsumpPon (kWh) Human Development Index (HDI) vs. Electricity

  2. Project Profile: Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Infinia, under the Thermal Storage FOA, is developing a thermal energy storage (TES) system that, when combined with Infinia's dish-Stirling system, can achieve DOE's CSP cost goals of $0.07/kWh by 2015 for intermediate power and 5¢/kWh by 2020 for baseload power.

  3. Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP

    Broader source: Energy.gov [DOE]

    Infinia, under the CSP R&D FOA, is developing a 30 kW CSP system that utilizes a multi-cylinder, free-piston Stirling engine to achieve the goal LCOE of $0.07–$0.10/kWh by 2015 and $0.05–$0.07/kWh by 2020.

  4. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01

    the ownership cost for clean energy technologies, bringingcosts of fuel cells fall in between. The clean energycost of 6.9 cents/kwh before incentives and 4.1 cents/kwh after incentives, is the most economical clean energy

  5. What does a negawatt really cost?

    E-Print Network [OSTI]

    Joskow, Paul L.

    1991-01-01

    We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

  6. Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    2002-01-01

    initial construction cost per ac-ft of water savings measure is $26.87 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001603 per BTU ($0.547 per kwh). The amount of initial construction...

  7. secondary purpose was to alert people to the relative size of the different resources avail

    E-Print Network [OSTI]

    the price (12 ¢/kWh) California utilities are willing to pay for any daytime electricity ­ and the rest. Driven by rising carbon dioxide and oil prices, these are big changes in the handful of years since like those being made by First Solar, 16 ¢/kWh PV (Figure 1) and CSP right now in the US Southwestern

  8. THE ECONOMICS OF CO2 SEPARATION AND CAPTURE Howard J. Herzog

    E-Print Network [OSTI]

    for CO2 sequestration could be less than 1 ¢/kWh from advanced coal plants and less than 1.5 ¢/kWh from Laboratory Cambridge, MA 02139 USA #12;3 Abstract Carbon management and sequestration offers an opportunity and increasing the use of non-fossil energy resources. When most people think of sequestering carbon, they think

  9. 1 Copyright 2010 by ASME Proceedings of the ASME 2010 International Design Engineering Technical Conferences &

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design the greatest reduction in lifecycle GHG emissions. At today's average US energy prices, battery pack cost must

  10. www.advmat.de www.MaterialsViews.com

    E-Print Network [OSTI]

    McCalley, James D.

    and small, in the USA alone, accounts for nearly 750 billion kWh or, at an average price of $0.06 per kWh of millions of dollars and a reduction in CO2 emissions of nearly 2.2 million metric tons of carbon equivalent

  11. 2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors

    E-Print Network [OSTI]

    2457 x 2457 kWh x 0.347 x 0.330 Domestic Coal 3 tonnes x 2523 x 2523 kWh x 0.313 x 0.298 Wood Pellets 4 stations or for industrial purposes have different emission factors. Wood pellets are used in domestic

  12. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  13. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01

    Cost of Energy ($/kWh) State Alabama Alaska Arizona Arkansas CaliforniaCost of Energy ($/kWh) State Alabama Alaska Arizona Arkansas Californiaenergy crisis, California increased the rebate level to $4.50/Watt with a maximum cap of 50 percent system cost.

  14. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  15. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  16. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8.3 miles 27.1 miles 15 miles 2.2 kWh 5.7 kWh 13 Both vehicles can drive a UDDS cycle in electric mode, but not the aggressive US06 cycle EV power...

  17. On the Use of Agent-Based Simulation for Efficiency Analysis of Domestic

    E-Print Network [OSTI]

    Treur, Jan

    Photovoltaic Solar Energy Production Combined with a Heatpump Jan Treur Abstract In this paper agent with photovoltaic (PV) solar energy production. A simulation model for the cost (in terms of required kWh per day of a PV production agent estimating the produced solar energy (in kWh per day). In particular

  18. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01

    0.11 $/kWh, as in San Francisco, Baltimore, Phoenix, and Lasl) Phoenix, AZ Minneapolis, MN Energy Charge Energy ($/kWh)Phoenix and Miami are in this category; all have average electricity prices of 0.05 $/kWh.

  19. Metering Air Compressor Systems for Efficiency: A Progress Report 

    E-Print Network [OSTI]

    Joseph, B.

    2005-01-01

    was termed CASE Index, which varies from 0 to about 320, and has the units of SCF/KWH. The procedure we developed, involved metering of input (KWH) and output (SCFM), in and out of the central plant. After the initial beta testing of the procedure, as more...

  20. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    a) thermal storage 1 absorption chiller solar thermal flowSolar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (solar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (

  1. Recent technology improvements in Exxon's circulating zinc-bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    Recent electrode and electrolyte performance on 500 wH and 3 kWh units indicates that Exxon's circulating zinc-bromine battery in 20 kWh designs will be capable of high energy density (65 to 70 wH/kg), and turn-around efficiency (65 to 70%). This performance, coupled with recent factory cost projections of $28/kWh (exclusive of R.O.I. and various indirect overheads), makes zinc/bromine an attractive advanced battery candidate for not only photovoltaic, but also electric vehicle and bulk energy storage applications. Recent technical developments in this program may be generally useful in other circulating electrolyte systems.

  2. Recent progress on Exxon's circulating zinc bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    The design, performance, and factory cost of Exxon's circulating zinc bromine batteries are described. The Exxon system has demonstrated stable performance in scale-ups to 3- and 10-kWh sub-modules. Cost studies based on recently demonstrated extrusion and injection molding techniques, have shown that this battery, with plastic electrodes, bipolar stacks, Br/sub 2/ complexation, and circulating electrolytes, could be produced (20 kWh units, 100,000 units/year) at a factory cost of $28/kWh (excluding R.O.I., and various indirect overheads).

  3. Plug-In Electric Vehicles' Charging Dr. Alireza Khaligh

    E-Print Network [OSTI]

    Zeng, Ning

    type Price Battery On-Board Charger E-Range Connector type Level 2 Nissan leaf EV $21,300 24kWh LiWh Li-ion 3.3 kW OBC 68 mi SAE J1772 6 hrs Tesla Model S 60kWh EV $71,000 60 kWh Li-ion 10 kW OBC 208 mi battery voltage 320 V ~ 420 V Maximum output power 1 kW Output voltage ripple

  4. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  5. Impact of Energy Disaggregation on Consumer Behavior

    E-Print Network [OSTI]

    Chakravarty, Prateek; Gupta, Abahy

    2013-01-01

    engagement and reduced energy usage. This paper highlightsnumber of participants, energy usage, HDD and CDD Figure 4Sacramento CA Figure 4: Energy usage (kWh) and HDD/CDD

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    155,000 kWh of electric energy per year, totaling savings ofnatural gas/electric boilers and found energy savings of $varying energy savings results. The Tokyo Electric Power

  7. Development of the Supply Chain Optimization and Planning for the Environment (SCOPE) Tool - Applied to Solar Energy

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Fletcher, Tristan; Dornfeld, David; Horne, Steve

    2008-01-01

    USA) Panel (Germany) Panel (China) indicates the number of years a technology must produce electricity,Electricity (kg-CO2/kWh) Circularity Production Distribution Circularity Production Germany Hungary Italy Finland Spain USA

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    in Exeter, New Hampshire, identified electricity savings ofNew Hampshire, opportunities were identified for saving 1.7 million kWh of electricityelectricity use at OSRAM Sylvania’s glass plant in Exeter, New Hampshire,

  9. Furnace Blower Performance Improvements - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who install high-performance furnace blowers with well-designed and installed ducts can achieve annual savings of 45% of fan energy or about 300 kWh per home. Read about...

  10. Freescale Semiconductor Successfully Implements an Energy Management...

    Broader source: Energy.gov (indexed) [DOE]

    projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million...

  11. DIVERSAS MANERAS DE GENERAR ENERGIA CON

    E-Print Network [OSTI]

    Gilbes, Fernando

    DE OLAS #12;PAISES CON MAYOR CAPACIDAD HIDROELECTRICA Country Annual Hydroelectric Energy Production hydroelectric generating system. Three Gorges Dam Gezhouba Dam #12;COSTO PROMEDIO DE PRODUCCION (KWH) #12;U

  12. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    Residential Sector Electricity Prices in California Table 2-Residential Sector Electricity Prices in California (1995$)Residential electricity prices in the Los Angeles area are currently about $0.10 per kWh, but the California

  13. National Laboratory Concentrating Solar Power Research and Development...

    Office of Environmental Management (EM)

    receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for 0.06kWh. cspnatllabrdfactsheet.pdf More Documents & Publications...

  14. AEP Ohio - Commercial New Construction Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    0.02 - 0.04kWh annualized savings Interior Controls: 0.08Watt controlled Lighting Power Density Incentive: 400kW below ASHRAE 90.1-2004 allowed wattage Unitary and Split...

  15. The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01

    wall switches. Lighting power density equals 0.88 watts/switching only. Lighting power density is 1.4 watts/squareMaximum Installed Lighting Power Density (w/sf) Total kWh

  16. Utility Rate Structures and the Impact of Energy Efficiency and...

    Energy Savers [EERE]

    FL Energy Efficiency Calculations * Rates: most common are energy only rates, or a demand rate (kVa or kW) * Demand Rate - Can't use the average cost per kWh for calculations -...

  17. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  18. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    generated by the Nevada Solar One plant is about $0.18/kWh (SEGS IX APS Saguaro Nevada Solar One Total Location Daggett,I - IX APS Saguaro Nevada Solar One PS10 Puertollano Plant

  19. Interpreting human activity from electrical consumption data through non-intrusive load monitoring

    E-Print Network [OSTI]

    Gillman, Mark Daniel

    2014-01-01

    Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear ...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west...

  1. Healthcare Energy Efficiency Research and Development

    E-Print Network [OSTI]

    Lanzisera,, Judy Lai, Steven M.

    2012-01-01

    can’t be judged on energy per square foot in a meaningfulmedian energy intensity of 470 kBtu per square foot per yearequipment energy use intensity, e.g. as kWh per square foot

  2. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    E-Print Network [OSTI]

    Budhraja, Vikram

    2008-01-01

    production level from small hydro as recorded in 2006.  kWH Geothermal Biomass Small Hydro 830 est Wind Solar TotalRPS Geothermal Biomass Small Hydro 830 est Wind Solar Total

  3. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  4. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  5. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  6. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  7. Multi-sensor Wireless System for Fault Detection in Induction Motors

    E-Print Network [OSTI]

    Tarkesh Esfahani, Ehsan

    2012-01-01

    Industrial Electric Motor Systems Market Opportunities As- sessment,” US DOE, Washington DC, 1998. [6] “California Energyindustrial motors in California consume about 70 billion kWh. 95% of this energy (

  8. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    100 Table 33. LPG allocation and intensity by buildingIRR ISP ISP Kg Kt kWh kWh/t LPG MBN MDEA MOS MOSPI MRPL Mtto run equipment and lights, LPG used for water heating and

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  10. PIANO DI RIQUALIFICAZIONE AMBIENTALE E PAESAGGISTICA DEL TERMOVALORIZZATORE DI DESIO TERMOVALORIZZATORE DI DESIO (MI) BRIANZA ENERGIA E AMBIENTE SPA

    E-Print Network [OSTI]

    Columbia University

    TERMOVALORIZZATORE DI DESIO (MI) ­ BRIANZA ENERGIA E AMBIENTE SPA Impianto di costruito negli anni '70 per lo. · Energia elettrica prodotta: 13.000.000 KWh/anno. LAND S.r.l. Landscape Architecture Nature Development

  11. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  12. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    E6. Electricity Consumption (kWh) Intensities by End Use for Non-Mall Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool-...

  13. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  14. Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement

    E-Print Network [OSTI]

    Wang, Quanlu; Delucchi, Mark A.

    1991-01-01

    These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003 Electricity Energy Intensity (kWhsquare foot) Total Space Heat- ing Cool- ing Venti- lation Water...

  16. Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    tonne yarn) Annual Electricity consumption (kWh) Annual fuelis equal to the electricity consumption at the end-use. Inshows that specific electricity consumption in plant C is

  17. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    outside pump circulating heat transfer fluid air make-up inside exhaust 24 Cogged V Belts A major N.C. Manufacturer Tested 2-17 Months (yr 1985) .052KWH (.13 EP) 2700 Hours...

  18. Residential Customer Response to Real-time Pricing: The Anaheim Critical Peak Pricing Experiment

    E-Print Network [OSTI]

    Wolak, Frank A.

    2007-01-01

    The consumption reductions paid rebates during CPP days area CPP rate with a rebate mechanism as the default rate forthese customers received a rebate of 35 cents/KWh for the

  19. Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast

    E-Print Network [OSTI]

    Casillas, Christian E.

    2012-01-01

    Worldwide Status of Wind/Diesel Applications.  Proceedings Elliot, G.  (1994).  Wind?Diesel Systems: A Guide to the cost 2010 $/kWh Wind turbine Diesel marginal generation cost

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Cost Recovery Incentive Payment Program These multipliers result in production incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of...

  1. November 2012 Key Performance Indicator (KPI): Energy Consumption

    E-Print Network [OSTI]

    Evans, Paul

    and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    FERC GE GW G&T HTS ICE IOU IPP IREC IRS ISO ITC kW kWh LADWPwind Source: EIA, Ventyx, AWEA, IREC, Berkeley Lab Figure 2.Renewable Energy Council (IREC) and Berkeley Lab. Data on

  3. Sustainable Energy in Remote Indonesian Grids: Accelerating Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of return kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy LED light-emitting diode MW megawatt MWe megawatt electric NAL Nirmala Agro Lestari NGOs...

  4. Microgrid Selection and Operation for Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Marnay, Chris; Environmental Energy Technologies Division

    2008-01-01

    of 2.5US$/W & low solar thermal costs (minus 10% of originalIncluding low-cost storage of US$50/kWh for solar thermalsolar photo- storage storage battery chiller thermal voltaics intercept costs (

  5. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Performance-Cost analysis of solar combined heat and powerCHP system where the solar field cost is split between thea predicted levelized solar thermal cost of $0.03/kWh, this

  6. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    DG unit, then it obtains the PV of cost savings relative toterms comprise the PV of cost savings per kWh e from usingstate, the microgrid’s PV of cost savings reflects the

  7. Optimization and integration of renewable energy sources on a community scale using Artificial Neural Networks and Genetic Algorithms

    E-Print Network [OSTI]

    Davis, Bron

    2011-01-01

    section, the relative cost of PV fluctuations is estimated,of electricity (/kWh) the cost of PV is the price of energyof a PV system; but rather, represent the costs of having

  8. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Incentive Program: Solar PV Costs and Incentive Factors, £0.20 /kWh)  to find PV cost  effective at £4/Wp  before Model for the Projection of PV Module Costs and Its  Policy 

  9. Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage

    E-Print Network [OSTI]

    Chen, Yaliang

    2009-01-01

    For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

  10. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    with Electric and Thermal Storage Technologies”, ACEEE 2008DER-CAM decoupling by thermal storage decoupling by electricor $/kWh) lifetime (a) thermal storage 1 flow battery 220$/

  11. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  12. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    show that Lithium- ion batteries can be a financially viablethe price at which Lithium-ion batteries become financiallyinstalled cost for Lithium-ion batteries of a) $600/kWh, $

  13. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits...

  14. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    Division Conclusions EV Charging / discharging patternresidences (homes) for EV charging: $0.138/kWh Environmental8am – 5pm 7pm – 7am EV battery charging efficiency EV

  15. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

  16. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    along with 22 kWh of battery storage. This study by Baek etpower, but the cost of battery storage per unit of loadMargolis [37], local battery storage for building-sited PV,

  17. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

  18. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    30 RTUs with advanced controls, resulting in over 100 kWh of energy savings; Walmart Stores Inc. completed over 10,000 high-efficiency RTU installations in new and...

  19. Drivers of Success in the Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (n 54) VARIABLE MODEL 1 2 3 4 5 6 7 Constraints on energy use and savings opportunities index - 1.43 b 1.06 - - - - State-level average electricity cost (cents per kWh) - - -...

  20. Artificial Neural Network for Optimized Power System Management

    E-Print Network [OSTI]

    OLeary, Daniel Albert

    2015-01-01

    to improve solar and wind forecasts. Further, weather dataone-third of a kWh. Wind data forecasts based on wind speedwind power models presented here, with the potential of improving forecast

  1. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  2. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    E-Print Network [OSTI]

    Breunig, Hanna Marie

    2015-01-01

    from a natural gas power plant (0.635 kgCO 2 /kWh). 53 We2 , such as natural gas power plants, captured CO 2 in thecoal- and natural gas- fired power plants, and are often

  3. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    between a coal/steam power plant and a nuclear/ Brayton power plant. Electrical power produced (kWh) Coal reactors, space reactors, concentrated solar power, gas turbines, and fossil energy. advanced

  4. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    kW kWh IEPR IOU IPCC ITC LADWP LCOE LSE LTEESP MASH Assemblylevelized cost of energy (LCOE) for PV-based electricitygeneration systems. The LCOE for each system is calculated

  5. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual 11,255 in...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    TVA- Solar Solutions Initiative The program offers performance based incentive of 0.04kWh for the first 10 years after the project is operational. This incentive is additional to...

  7. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    kW) 9 hour CHP heat solar thermal thermal storage Fig. 3.is replaced by storage and solar thermal collection, but thechiller, 722 kW of solar thermal collectors, 1100 kWh of

  8. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    DER available include solar thermal, photovoltaics (PV) and1 absorption chiller solar thermal flow battery 220$/kWh andabsorption chiller (kW) Solar thermal (kW) PV (kW) lead-acid

  9. LM to Meet Energy Metering Goals Through Enhanced Data Collection...

    Broader source: Energy.gov (indexed) [DOE]

    water each day. The pumps used in these wells consumed 3,899,472 kilowatt-hours (kWh) of electricity in FY 2013, causing the preserve site to account for more than 88 percent of...

  10. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    1962, PP• 427-435. Heat Transmission," Jour. Petrol. Tech. ,production, when the heat transmission distance is 15 miles,for 15 miles of heat transmission, or 5.3 million kWh (3.2

  11. UESC Project Overview: NASA Ames Research Center

    Energy Savers [EERE]

    Energy Challenges High energy intensity at many of the center's key buildings * Median energy intensity for typical bldg. similar to ARC's (mix of lab and office) is 21.2 kWh...

  12. Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings

    E-Print Network [OSTI]

    Rosenblum, Benjamin Tarr

    2012-01-01

    item/1pz2528w If energy consumption data are not availablewith both energy consumption data (in kWh or kBtu) andaffects energy consumption, and use occupant data to

  13. Delmarva- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  14. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    option, especially as lithium ion battery costs decline. ItkW electric motor, a lithium-ion battery pack and a 6- speedkw electrical, 31 kWh lithium ion battery, 6-speed automatic

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is...

  16. Maximum output at minimum cost

    E-Print Network [OSTI]

    Firestone, Jeremy

    Gamesa G90-2.0 MW #12;Maximum output at minimum cost per kWh for low wind sites ®® Class IIIA mast and the electrical substation. This innovative modular design based on TCP/IP architecture has

  17. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.25¢/kWh (the levelized cost of gas-fired generation (assuming 7,000

  18. Assessment of the Impacts of Standards and Labeling Programs in Mexico (four products).

    E-Print Network [OSTI]

    Sanchez, Itha; Pulido, Henry; McNeil, Michael A.; Turiel, Isaac; della Cava, Mirka

    2007-01-01

    MW avoided Avoided cost by generation Cost by MW avoidedapplying the annualized cost of generation capacity. RevenueConsiderations: Cost of generation of one kWh considering a

  19. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.33¢/kWh (the levelized cost of gas-fired generation (assuming 7,000

  20. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    rate Variable cost Demand/Generation (MW) Figure 1:rate (CO 2 -eq/kWh) Cost of generation (¢/kWh) NGST+NGCTrelatively low-cost coal and hydro generation that comprise

  1. Covered Product Category: Uninterruptible Power Supplies (for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) for a unit operating continuously (8,760 hours per year). The assumed electricity price is 0.09 per kWh, the federal average electricity price. Lifetime energy cost is the...

  2. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and...

  3. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    saving over 30,000 gallons of gasoline, 37,242 gallons of diesel, 9,820 gallons of propane, and producing 217,350 kilowatt-hours (kWh) of electricity each year. The...

  4. Advancing PEVs and the Future of PEV R&D and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEVs and EREVs Future Next Generation Li-ion or Li-metal Chemistry with 3x energy density Battery Cost (kWh) Energy Density (WhL) 2007 2008 2009 2010 2011 2012 2014 2013...

  5. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  6. Energy Department's Hospital Energy Alliance Helps Partner Save...

    Office of Environmental Management (EM)

    bills. Gundersen is investing in renewable energy solutions, including a biogas generator that uses methane from a local landfill to produce over 8 million kWh of electricity...

  7. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  8. A Review of the 2011 and 2013 Digital Television Energy Efficiency Regulations Developed and Adopted by the California Energy Commission

    E-Print Network [OSTI]

    Wazzan, C. Paul; Eash, Dawn E.

    2011-01-01

    8: Column L. Annual Energy Prices were not explicitly givenr)^( a - 2011) Annual Energy Prices ($/kWh) 3 Present Value1: Column J. Annual Energy Prices were not explicitly given

  9. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01

    electricity prices over time (similar to the new reality in GermanyGermany $/W German system price $ 2011/W FiT $/kWh Electricityprice differences between Germany and the United States affect the associated electricity

  10. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    greenhouse gas GWh HERS HVAC IPMVP kW kWh MW MWh NASEOand Verification Protocol (IPMVP) for quantifying emissionsand Verification Protocol (IPMVP) was listed as one of the

  11. Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    p, €/kW volumetric demand response costs, €/kWh thickness ofof end-use u removed by demand response measures in month m,measures such as demand response are also included, as well

  12. Assessment of SEAD Global Efficiency Medals for Televisions

    E-Print Network [OSTI]

    Young, Park, Won

    2013-01-01

    cost IND India IEA International Energy Agency kWh kilowatt-Index (EEI) A, India 5 Stars, or ENERGY STAR Version 6India (IND) star rating requirements are based on annual energy

  13. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in annual energy costs * Saves 52,000 MMBtu of natural gas annually * Improves boiler performance * Saves 526,000 kWh per year * Achieves a simple payback of less than 14...

  14. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    countries over time, with hydro power counted at 3 kWh t / 1e The large amount of hydro- power available in Sweden hasplentiful while little hydro- power was available. Higher

  15. Efficient Energy Use and Well-Being: The Swedish Example

    E-Print Network [OSTI]

    Schipper, Lee; Lichtenberg, A.J.

    1976-01-01

    countries over time, with hydro power counted at 3 kWh / 1electricity has been hydro- power (66). In 1971, electricitysupply came from hydro- power, Sweden's most important

  16. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT) 

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high ...

  17. imulation und Optimierung der Standort- und Kapazit¨atsauswahl in der Planung von Ladeinfrastruktur fur batterieelektrische Fahrzeug?otten

    E-Print Network [OSTI]

    Siefen, Kostja

    2012-01-01

    sich auch die Technik der Energiespeicher in den letzten 20Batterie als singul¨ aren Energiespeicher f¨ ur die gesamtewird f¨ ur elektrische Energiespeicher in kWh pro 100 km

  18. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower volume, their battery packs are much larger with capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of Batteries Sold and Battery Capacity Sold...

  19. Energy Storage Systems 2009 Peer Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2009 Peer Review - Development of a 5kWh Flywheel ESS Using a High Tem Superconducting Magnetic Bearing (Phase III) - Make Strasik, Boeing.pdf ESS 2009 Peer Review - Large Area...

  20. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    The program offers performance based incentive of $0.04/kWh for the first 10 years after the project is operational. This incentive is additional to the seasonal and time-of-day price for electri...

  1. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and...

    Energy Savers [EERE]

    an average of 50% installed efficiency gain at 40 stores and were able to reduce capacity on some units from 8% to 41%. That is big savings - over an estimated 12, 000 kWh...

  2. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    project saved 6,300,000 kWh per year with upgrades to its hydrogen burners on an annealing furnace. This reduction saved the company 150,000 per year. The company also...

  3. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    Electrical (kWh) Electrical COP 3.8 Economic Evaluation Asimple economic evaluation of the system was performed using47 3.8 Economic Evaluation…………………………………………………………….49 4. A

  4. Energy Department's Hospital Energy Alliance Helps Partner Save...

    Office of Environmental Management (EM)

    on its energy bills. Gundersen is investing in renewable energy solutions, including a biogas generator that uses methane from a local landfill to produce over 8 million kWh of...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Wind (Small), Hydroelectric (Small) Net Metering Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the...

  6. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    market-based forward price projections argues for furtherAEO 2008 and NYMEX price projections. Nominal ¢/kWh (at 7000that exceed the AEO price projection) described above. If

  7. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    impacts We converted other cost metrics to ¢/kWh retail ratePower System Operating Costs: Summary and Perspective onA. Bibliography of RPS Cost Studies Studies listed in

  8. SEP Success Story: Library Patrons in New York Check-Out Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    library in Esopus, New York, used Recovery Act funds to install two photovoltaic arrays expected to generate 31,200 kWh of electricity annually -- approximately 30 percent of the...

  9. 2.1E Sample Run Book

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01

    iS RESVVT UNIT LOAD ENERGY USE SUN (I_TU) (KWH) MONTH PEAK (HOUR. WITH SUN UP . PERCENT bIGHTING ENERGYHOURS WITH SUN UP . PERCENT LIGHTING ENERGY

  10. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  11. NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity...

  12. Abstract--This paper describes a spreadsheet model for estimating the impact of High Temperature Supercon-

    E-Print Network [OSTI]

    -576-2733, e-mail:mcconnellbw@ornl.gov). J. W. Mulholland is with the Arizona Power Authority, Phoenix AZ 85007 into the grid. The output results are explicit numbers of kWh and dollars; however, the real intent

  13. Microsoft Word - Energy Resilience Report SAND2014-18019.docx

    Broader source: Energy.gov (indexed) [DOE]

    below. With estimates of the value of service to customers, expected unserved energy (kWh) can be converted to dollar values. This process can be carried out explicitly in a...

  14. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    E-Print Network [OSTI]

    Apte, Michael; Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang

    2008-01-01

    Phoenix Raleigh RedBluff Reno Riverside Sacramento SaltLakeCity SanAntonio SanDiego Seattle Sunnyvale Washington Heating Cooling Fan Total Heating (kWh) (

  15. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    kg-CO 2eq /kWh for Puertollano, Phoenix, Sydney, Mountainin Phoenix, Arizona (Direct Normal Insolation of 6.9 kWh/m5, 6, 7 kWh/m 2 /day in Puertollano, Phoenix, Sydney, Moun-

  16. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    kWh) DOE?2.2 EnergyPlus % Difference Figure 7 – Monthly Cooling Electricity Consumption for Phoenix kWh) DOE?2.2 EnergyPlus % Difference Figure 8 – Monthly Cooling Electricity Consumption for Phoenix 

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the end of the year in December from customers that generate electricity using small wind turbines or small solar-energy systems. Any NEG above 1,000 kWh is paid out at the...

  18. Microgrid Selection and Operation for Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Marnay, Chris; Environmental Energy Technologies Division

    2008-01-01

    flow absorption solar photo- storage storage battery chillerdisallowed; 5. a low storage, PV, and solar thermal pricelow-cost storage of US$50/kWh for solar thermal and US$

  19. Minimization of Impact from Electric Vehicle Supply Equipment...

    Office of Scientific and Technical Information (OSTI)

    of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest...

  20. Prof. Dr. Stefan Krauter Decentralized Power Systems -DPS 2012 Energieautonomie durch

    E-Print Network [OSTI]

    Noé, Reinhold

    1 nach Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat); 1 GWh = 1 Mio. kWh; 1 MW = 1 Mio erneuerbarer Energien in Deutschland 2000-2011 #12;Prof. Dr. Stefan Krauter Decentralized Power Systems - DPS

  1. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  2. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    a) thermal storage 1 flow battery 220$/kWh and 2125$/kWlead-acid batteries flow battery thermal n/a n/a xiv Thestorage heat storage flow battery abs. chiller photovoltaic

  3. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    capacity electrical flow battery thermal n/a n/a source:a) thermal storage 15 flow battery 220$/kWh and 2125$/kW 18

  4. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and energy ratings of a flow battery are independent of eachcapacity electrical flow battery thermal n/a n/a source:$/kWh) thermal storage 30 flow battery 220$/kWh and 2125$/kW

  5. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    chiller solar thermal flow battery 220$/kWh and 2125$/kWlead-acid batteries flow battery thermal n/a n/a Please notestorage heat storage flow battery abs. chiller photovoltaic

  6. China's March on the 21st Century

    E-Print Network [OSTI]

    Deutch, John

    ,523/3,299 5,250/10,581 25,028/43,676 0 1 2 3 4 5 6 7 8 Oil Natural Gas Electricity Nuclear Electricity Coal CO/day (oil); trillion cu feet (natural gas); billion kWh (electricity); billion kWh (nuclear electricity, this economic expansion has been accompanied by a corresponding surge in energy consumption. China beca

  7. BC's Electricity Options: Multi-Attribute Trade-Off and Risk Analysis of the Natural Gas

    E-Print Network [OSTI]

    ) 220 440 660 Generation (GWh) 1,760 3,520 5,280 CCGT Generation Cost (¢ / kWh) 5.3 5.3 5.3 Capital Cost,883 3,766 5,649 Avg. Generation Cost (¢ / kWh) 5.5 5.5 5.5 Capital Cost of Transmission (million 2001 and are low in cost relative to other environmentally desirable technologies. We evaluated the two portfolios

  8. Case Study: Goose Creek CISD 

    E-Print Network [OSTI]

    White, D.

    2014-01-01

    GOOSE CREEK CISD FINANCIALS • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... • $693,866 project • $87k annual savings • 682,228 kWh annual savings IMPROVEMENTS • HVAC, lighting and water efficiency, computer power management case study Lake Dallas ISD was interested in improving the energy efficiency and aging infrastructure...

  9. A Cost Benefit Analysis of a V2G-Capable Electric School Bus Compared to a Traditional Diesel School Bus

    E-Print Network [OSTI]

    Firestone, Jeremy

    Average Electricity Carbon Emission Rate 1.18 lbs/kWh Cdr Diesel Carbon Emission Rate 22.2 lbs/kWh D Miles $0.106/kWh PR Regulation Price for V2G Revenue $28/MWh R Range of Battery 100 miles rd Discount Rate of Replacement Battery $300/kWh CD Seating Capacity of Diesel Bus 32 CE Seating Capacity of Electric Bus 24 Cer

  10. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    ) The all-electric Tesla Roadster requires 0.177 kWh / mile. You commute 20miles per day, 5 days a week.12/kWh, how much does the Tesla cost to drive for a year? c. If your current car gets 30mpg and gas, acceleration/performance, battery life, etc.) would you consider an electric vehicle for your next car purchase

  11. DFW Airport 

    E-Print Network [OSTI]

    Dennis, J. R.

    2011-01-01

    ? Rents ~2 million cars per year ? Total electric ? 7.7 million kWh annually 10 Continuous Commissioning? - Consolidated Rent-A-Car Center CC? Assessment/Implementation ? Excessive outside air ? Duct static pressure too high ? Economizer cycle... at t H o u rs (K W H ) RAC Electric Consumption Over $767,000 in Total Savings 18% reduction in annual average kWh 11 Continuous Commissioning? - Consolidated Rent-A-Car Center Results of CC Project 12 Continuous Commissioning...

  12. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  13. Development of a circulating zinc-bromine battery, Phase II. Final report

    SciTech Connect (OSTI)

    Bellows, R.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.; Tsien, H.; Young, A.

    1983-10-01

    This report summarizes Phase II of a multi-phase program aimed at developing Exxon's circulating zinc-bromine battery into an advanced energy storage system. Previous work at Exxon had developed a basic zinc-bromine battery system approach. This approach utilizes carbon-plastic electrodes in a bipolar stack design, a circulating electrolyte with separable bromine complexes, and shunt current protection. Phase II was highlighted by the successful scale-up and demonstration of a 20 kWh zinc-bromine battery module. Important technology improvements were demonstrated in the areas of extended life cycling, low cost stack technology, high power/high efficiency supported electrolytes, and system auxiliaries. The basic technology was augmented via increases in parametric testing, materials testing, and electrolyte studies. Production cost estimates from Phase I ($28/kWh in 1980$) were projected to an OEM price of $37/kWh using the A.D. Little costing method. A revised cost analysis, using an approach in which all battery components are produced at the battery manufacturing facility (as compared to the original analysis based on purchase of cell components from plastics fabricators) showed essentially the same factory costs as the original estimate (approx. $28/kWh). A design has been developed for a prototype 20 kWh energy storage system which will be delivered to Sandia National laboratories in 1983 near the completion of Phase III. Project effort is continuing to show steady progress toward the attainment of this goal.

  14. Zinc-bromine battery design for electric vehicles

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Einstein, H.; Kantner, E.; Malachesky, P.; Newby, K.

    1982-01-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine batery projections (60 to 80 Wh/kg, 130 to 200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 cm/sup 2/ electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 cm/sup 2/) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  15. Zinc-bromine battery design for electric vehicles

    SciTech Connect (OSTI)

    Bellows, R.J.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-02-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine battery projections (60-80 Wh/kg, 130-200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 cm/sup 2/ electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 cm/sup 2/) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  16. Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979

    SciTech Connect (OSTI)

    Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  17. Low-cost flywheel demonstration program. Final report

    SciTech Connect (OSTI)

    None

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  18. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  19. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  20. Industrial Gases as a Vehicle for Competitiveness 

    E-Print Network [OSTI]

    Dale, J. R.

    1992-01-01

    and process cost reductions led to investment in gas process development. The use of nitrogen in industrial processes went from by-product to primary gas produced in less than ten years. The nature of the cryogenic liquefaction process is such that a... ratio of three volumes of nitrogen to one of oxygen is optimal for merchant plan loading and costs. The specific power requirement for the liquefaction of nitrogen gas has gone from 2.0 kwh/ccf to 1.4 kwh/ccf. This represents a thirty percent...

  1. Keynote Speaker Presentation 

    E-Print Network [OSTI]

    Rosenfeld, A.

    2007-01-01

    for rebates on installed solar • Sends a message: Efficiency 1 st , Solar 2 nd … Preferably Both! 18 New Solar Homes Partnership Efficiency Tiers Tier Efficiency Target Cost Premium Incentive I 15% better than T-24 Energy Star Appliances & T-24 Lighting... rebates, in solar • Annual Return On Investment: – 17% for EE –4.5% for solar • Cost of Conserved Electricity: – 8.5¢ per kWh for EE – 27¢ to 37¢ per kWh for Solar, after state and federal rebates *Based on data from Consol and CEC For peak reduction, we...

  2. Low Temperature Air Distribution with Ice Storage System: A Case Study 

    E-Print Network [OSTI]

    Ash, A.

    1990-01-01

    revenue increase that would be implemented in August of 1990. The effect of this revenue increase on commercial customers is essentially a 50% increase in the demand charge and very little change in the consumption (KWH) charge. Since the primary.... We installed a pulse meter on our building electrical distribution panel to monitor both on peak and off peak demand as well as KWH consumption with our BAS. We run continuous trend logs on these figures and they can be reviewed in Attachment H...

  3. Energy Conservation Opportunities in Commercial and Industrial Facilities: Energy Utilization Indices (EUI) in Texas LoanSTAR Buildings 

    E-Print Network [OSTI]

    Phillips, Michael

    1993-01-01

    : Electricity1 4,199,728 kwh 14,329 million Btu $289,087.11 Natural Gas2 2,221 MCF 2.288 million Btu $ 10.407.60 Total 16,617 million Btu $299,494.71 The energy conservation opportunities (ECOs) recommended and outlined in this report could result... in an estimated annual savings of 37,575 kwh/yr of electrical energy, a savings of 82 KVA« mo/yr of electrical demand, and an annual savings of 774 MCF/yr of natural gas. The energy related savings are worth about $5,8OO/yr. There is an additional cost savings...

  4. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

  5. Pavement Recycling Machine 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    2011-08-29

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  6. Kenneth S. Kurani (knkurani@ucdavis.edu) Jonn Axsen (jaxsen@sfu.ca)

    E-Print Network [OSTI]

    California at Davis, University of

    of their monthly consumption 2. Green electricity production lease Household leases an amount of green electricity utility or third-party retailer to pay for investments in green electricity production Per kWh premium production capability at a specific production facility · For example, 100KW blocks of production at a solar

  7. Dean's Faculty Meeting 5/7/13 UHM Total $

    E-Print Network [OSTI]

    Wang, Yuqing

    scientific analyses. Don Thomas Nicole Lautze #12;Battery Energy Storage for Generation Smoothing & Frequency · Frequency regulation on HELCO grid · Solar smoothing · Voltage/VAR support on distribution line with high penetration PV · Smart Grid applications 1 MW / 250 kWh fast response Lithium ion Titanate battery Rick

  8. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    that pre-cool, rebound, or otherwise shift energy use to theexhibit almost no rebound and save some energy on DR days,kW) Rebound (kW) Daily Peak Demand (kW) Daily Energy (kWh) a

  9. Oil prices spike to over barreland price

    E-Print Network [OSTI]

    Oil prices spike to over $145/ barreland price of electricity exceeds $0.50/kWh in U.S. Virgin installs waste heat recovery plant, adding19 MWofpower withoutburningasingledropof additionaloil VIEO Biomass Grid Waste-to- Energy Landfill Gas LEGEND Solar EDIN Energy Development in Island Nations EDIN

  10. center for carbon-free power integration

    E-Print Network [OSTI]

    Firestone, Jeremy

    generation Red: Gas turbine or combined cycle Gray: Steam Green: Wind #12;offshore wind energy (2/3) The UD wind turbine: · In operation for 2 years; · Manufactured by Gamesa; · Generated >11 million kWh; · Net wind projects in Delaware and New Jersey, including the UD wind turbine (DE/NOAA Seagrant, 2012

  11. William Lloyd Bircher Dissertation Committee for William Lloyd Bircher

    E-Print Network [OSTI]

    John, Lizy Kurian

    data center energy usage in the United States reached 61 billion kilowatt-hours (KWh) at an annual cost USD. The nature of energy usage in these systems provides an opportunity to reduce consumption.S.E.E.; M.S.E. Dissertation Presented to the Faculty of the Graduate School of The University of Texas

  12. Pechiney Rolled Products: Plant-Wide Energy Assessment Identifies Opportunities to Optimize Aluminum Casting and Rolled Operations

    SciTech Connect (OSTI)

    2004-07-01

    A Pechiney Rolled Products plant focused on various aluminum casting processes during a PWA. The assessment revealed potential annual savings of 460,000 MMBtu in natural gas, 9.6 million kWh in electricity, 69 million pounds in CO2, and $2.5 million.

  13. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  14. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  15. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  16. Taming the Energy Hog in Cloud Infrastructure

    E-Print Network [OSTI]

    Hunt, Galen

    gasoline Transformer UPS PDU Power grid power Water chillers CRAC air water Racks Internet PUE= #12 energy consumption consumed 61 Billion kWh in 2006, enough to power 5.8 Million average US households 190 miles of conduit 7.5 miles of chilled water piping 100+ MW Power Capacity 60 MW Total Critical

  17. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and changing environmental conditions. Since the energy consumption density, in kilowatt-hours (kWh) per square foot, is higher than the energy generation density of solar and wind deployments at most locations on both the total number of participating consumers and the total amount of energy contributed per

  18. Assessment of Load and Energy Reduction Techniques (ALERT) Retrocommissioning Case Study of Two National Renewable Energy Laboratory (NREL) Sites 

    E-Print Network [OSTI]

    Luskay, L.; Haasl, T.; Schwab, J.; Beattie, D.

    2003-01-01

    are 231,924 kWh, 51,550 therms, and $28,920 annual energy savings. Implementation costs were estimated at $56,380, which would result in a 1.9 year average payback. It cost approximately $0.09 per square foot to perform the ALERT RCx assessment. Of the 33...

  19. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    Efficiency (Indian) Financial Year Liquefied Natural GasRegassified Liquefied Natural Gas Reliance Natural ResourcesLiquefied Petroleum Gas Maharashtra Electricity Regulatory Commission Million Units (kWh) National Capital Territory New Delhi Municipal Council North Delhi Power Limited Natural Gas

  20. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    electricity by heat power plants, hydropower plants and nuclear plants, which are all centralized large system and would have a low cost of every kWh of electricity. However, traditional generation method electricity management method for this topology is of great demand to be developed. 2. Model Formulation

  1. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameter FedEx HEV C d 0.7 Frontal area (m 2 ) 7.02 Vehicle mass (kg) 4,472 Engine power (kW) 182 Motor power (kW) 100 Battery power (kW) 60 Battery capacity (kWh) 2.45...

  2. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  3. Global Change: Solutions? Quiz for Pacala & Socolow, 2004

    E-Print Network [OSTI]

    Schweik, Charles M.

    is effective Reduced electricity use by 6% Changeinelectricity consumption(kwh/day) #12;Promoting Individual/household energy use) · Reduce consumption #12;Large differences in efficiency AR4 WGIII TS USA consumption Conservation #12;Reduce Consumption: Food Choices #12;Reduce Consumption: Food Choices Machinova et al., 2015

  4. Self-Adaptive Management of The Sleep Depths of Idle Nodes in Large Scale Systems to Balance Between Energy Consumption and Response Times

    E-Print Network [OSTI]

    Zhu, Hong

    U.S. electricity consumption or the output of about 15 typical power plants [2]. In 2007, the electricity consumption of global cloud computing was 623 billion kWh which is larger than the 5th largest Between Energy Consumption and Response Times Yongpeng Liu(1) , Hong Zhu(2) , Kai Lu(1) , Xiaoping Wang(1

  5. Retrofit Savings for Brazos County 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

    2001-01-01

    This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

  6. Public Attitudes Toward the Development of Seawater Air

    E-Print Network [OSTI]

    at the University of Hawai`i (UHERO) ­ Center for Microbial Oceanography: Research and Education (C dependent state in the nation ­ 75% of electricity generation from oil ­ Hawai`i Clean Energy Initiative · Highest state electricity prices (2011 per kWh) O`ahu 33¢ Maui 35¢ Kaua`i 42¢ Moloka`i 42¢ Lana`i 44¢ Big

  7. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093-RP, Final Report 

    E-Print Network [OSTI]

    Abushakra, B.; Sreshthaputra, A.; Haberl, J. S.; Claridge, D. E.

    2001-01-01

    from the diversity factors are then compared with the EUI?s calculated directly from the raw data (Total kWh per year divided by the square footage) to assure that the data manipulation during the derivation of the diversity factors is free...

  8. Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice

    E-Print Network [OSTI]

    Kammen, Daniel M.

    above to the average residential electricity rates in each of these cities. In which cities is electricity from PV equal to or cheaper than retail rates? [2 points] GRADUATE STUDENTS ONLY: Concerning Rate (¢/kWh) 16.5 19.2 10.30 12.3 PV electricity is more expensive than residential rates in Detroit

  9. Energy Policy, 2004. Vol. 32, 289-297 John Byrnea

    E-Print Network [OSTI]

    Delaware, University of

    2012 $1.50/Wp $0.50/Wp$1.00/Wp Neij, 1997; IEA,2000 $0.15~0.25/kWh $1.50/Wp BOS 50 $3.00/Wp $1.50/Wp 22,000 A 4 15% 30% 2011 2019 Williams and Terzian, 1993; Neij, 1997; IEA,2000

  10. SUSTAINABLE PROCESS DESIGN IN THE CONTEXT OF

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Federal University of Rio de Janeiro #12;Electricity Consumption (kwh per Capita) (2004) Brazil: 2340 http capita Brazil (2010) Energy(CO2), a By-product of Economic Development #12;6 2E 2P #12;Economy x Environment NOT EVIL JUST WRONG "The True Cost of Global Warming Hysteria" "(...) warns Americans

  11. Casting Project Version 4 September 16, 2011 1 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Colton, Jonathan S.

    assume the labor (L) and overhead (B) rates are $75/hour and 75% respectively. 3. The cost of capital.0892 per kW-h. So, you do NOT need to specify a furnace or include its capital cost in your calculation. 11, etc., is 90 mm of thickness per minute. You may ignore the capital cost of the #12;Casting Project

  12. Joint Host-Network Optimization for Energy-Efficient Data Center Networking

    E-Print Network [OSTI]

    Pan, Deng

    billion kWh, representing a $7.4 billion annual electricity cost. As a result, energy efficiency of dataJoint Host-Network Optimization for Energy-Efficient Data Center Networking Hao Jin, Tosmate amounts of energy. As severs become more energy efficient with various energy saving techniques, the data

  13. INTERNATIONAL Presented by

    E-Print Network [OSTI]

    Keller, Arturo A.

    exhaust from the gas turbine is sent to a Heat Recovery Steam Generator (HRSG) The steam turbine drives a generator Low pressure steam from the turbine is condensed and sent back to the boiler Thermal efficiency turbine) at 10,000 to 12,000 BTU/kwh Combined Cycle BoilerFeedwater Condenser Steam Turbine & Generator

  14. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    of 2.5$/W & low solar thermal costs (minus 10% of originalof 2.5$/W & low solar thermal costs (minus 10% of originalcosts ($/kW or $/kWh) lifetime ( a) thermal storage 11 flow battery absorption chiller solar

  15. Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows 

    E-Print Network [OSTI]

    Stone, G. A.; DeVito, E. M.; Nease, N. H.

    2002-01-01

    energy use over ten years by 15 billion kWh; 2) Reduce cumulative statewide electric peak demand over ten years by over 1200 MW; 3) Result in cooling cost savings of more than a billion dollars; and 4) Reduce cumulative statewide key air pollutants....

  16. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan O-1

    E-Print Network [OSTI]

    credit kWh LCOE Kilowatt-hour Levelized cost of energy LED lighting Light-emitting diode - solid state Public Utility Regulatory Policies Act of 1978 PV Photovoltaics REC RPM Renewable energy credit Regional resource cost VRF Variable refrigerant flow WECC Western Electricity Coordinating Council WEPT Web

  17. Energy Analysis of a Kraft Pulp Mill: Potential for Energy Efficiency and Advanced Biomass Cogeneration 

    E-Print Network [OSTI]

    Subbiah, A.; Nilsson, L. J.; Larson, E. D.

    1995-01-01

    rates. Process modifications and retrofits using commercially proven technologies could reduce steam and electricity demand to as low as 9.7 MMBtu per ADST, a 50% reduction, and 556 kWh per ADST, a 19% reduction, respectively. Electricity demand could...

  18. Development of a circulating zinc-bromine battery. Phase I. Final report

    SciTech Connect (OSTI)

    Bellows, R.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.; Tsien, H.

    1983-01-01

    This report summarizes Phase I of a three phase program aimed at developing Exxon's circulating zinc-bromine battery for photovoltaic energy storage. Previous work at Exxon had developed a basic zinc-bromine system approach. This approach incorporates carbon plastic electrodes in a bipolar stack design, a circulating electrolyte with separable bromine complexes, and shunt current protection. Phase I was highlighted by the successful scale-up and demonstration of 3 and 10 kWh submodules. Two smaller demonstration batteries were delivered to Sandia for testing. Important technology improvements were demonstrated concerning shunt current protection, improved performance of low cost microporous separators, and insert injection molding of electrodes and separators. Base technology was expanded via an increased parametric testing program, materials testing and electrolyte studies. Production cost estimates were revised based on improved design concepts to project direct factory costs of $28/kWh (1980$) for large scale production of 20 kWh modules. A potential developmental plan was drafted, delineating critical development milestones. The project effort is continuing to show steady progress toward developing a deliverable 20 kWh photovoltaic battery for the completion of Phase III in 1983.

  19. Propagating Electricity Bill onto Cloud Tenants: Using a Novel Pricing Mechanism

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to change their electricity usage to contribute in cutting electricity bills by participation in demand is the cost of total kWh electricity consumed by the DC. The demand charge is about the average peak load in k in order to shed the electricity utilities' peak loads. The demand charge of a DC can be equal to or even

  20. ELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA -A 250 AND 10KW CASE STUDY

    E-Print Network [OSTI]

    Vermont, University of

    electricity at US$ 0.18 and 0.34/kWh, respectively. A stable electricity demand close to the rated capacityELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA - A 250 AND 10KW CASE STUDY Thomas Buchholza their potential to compete economically with diesel generated electricity when operating close to the rated

  1. Pulp & Paper Industry- A Strategic Energy Review 

    E-Print Network [OSTI]

    Stapley, C. E.

    1997-01-01

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  2. LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX

    E-Print Network [OSTI]

    and purge ports. #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX 3' x 5' Solar Panels 191 watts per panel 600 KW Solar Array 2,988 Solar Panels 850,000 kWh Annual Output Solar Classroom Deck SOLAR PV SYSTEM #12 in the United States #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX THE LAYOUT AFTER HOURS GYM ENTRY SOLAR

  3. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    ; these goals are critical for the broad adoption of PV globally. Silicone polymers possess key material The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership; supporting new customers and new application areas for the use of silicones in the PV industry She also

  4. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower

  5. Power-Saving Approaches and Tradeoffs for Storage Systems BEN BUZBEE, Florida State University

    E-Print Network [OSTI]

    Wang, Andy

    and storage performance, capacity, reliability, cost of ownership, etc. This survey walks through layers of the legacy storage stack, exploring tradeoffs made by a representative set of energy-efficient storage that the average price of electricity has risen by 36% (from 7.29 to 9.9 cents per KWh) from 2001 to 2011

  6. Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling

    E-Print Network [OSTI]

    Feitelson, Dror

    consuming 61.4 billion kWh per year [4], an amount of energy equivalent to that consumed by the entireReducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling Zhou Zhou1 , Zhiling Lan1, with the goal of reducing energy cost and not degrading system utilization. We design scheduling strategies

  7. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Feng, Xizhou

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads.e. cost in power usage over time) will vary by application. For example, it costs 535 joules of energy

  8. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Ge, Rong

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads to application characteristics. While machines require peak power at times, energy consumption (i.e. cost

  9. Sustainable Energy without the hot air David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    person in kilowatt-hours (kWh), the same units that appear on household energy bills; and powers1 Sustainable Energy ­ without the hot air David J.C. MacKay Synopsis We have an addiction energy from fossil fuels; Britain, 90%. And this is unsustainable for three reasons. First, easily

  10. Universit di Pavia, Dipartimento di Fisica http://fisica.unipv.it

    E-Print Network [OSTI]

    World Energy Outlook, 2012; dati in TWh=109 kWh) circa il 65% dell'energia elettrica è prodotta da Pavia - http://fisica.unipv.it 4 Fonti energetiche: il potenziale Solar Wind Coal Gas Oil Global energy the invention of efficient blue light-emitting diodes (LEDs) which has enabled bright and energy saving white

  11. Brookings-Google Plug-in Hybrid Summit, Washington, DC, July 2008 Version date: September 7, 2008

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wh, or U.S. gasoline prices must remain at roughly $5/gallon - or policy innovations and incentives need, to decrease the GHG intensity of electricity, and to raise gasoline prices relative to electricity prices can under current market conditions, battery prices must decline from about $1,300/kWh to below $500/k

  12. RECONCILIATION OF RETAILER CLAIMS, COMMISSIONREPORT

    E-Print Network [OSTI]

    ." All retail providers of electricity must disclose fuel source information to consumers about's default product. #12;- 2 - The law also requires all electricity generators who report meter data to a system operator to also report generation (in kWh), generator technology, and fuel type consumed (as

  13. Danti with Nuclear Magnetic Resonance Machine 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  14. International Business Machines Corporation 

    E-Print Network [OSTI]

    Gumula, M. G.

    1985-01-01

    the peak demand by an effective 12,389 KW and annual energy consumption by approximately 72,938,223 KWH. They have employed both conventional and innovative techniques and have certainly earned their first place award in the 1984 Duke Power Energy...

  15. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives 

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    1999-01-01

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  16. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    a levelized cost of energy (LCOE) of about $722/kW-yr, fromprocurement costs assume an LCOE of $0.10, $0.09, $0.15 persources are assumed to have an LCOE of $0.10/kWh. The LCOEs

  17. 2010 MITEI Summer UROPs and Interns Joseph Aboki Ragheb El Khaja Jared Forman Erick Fuentes Jennifer Hammond

    E-Print Network [OSTI]

    Suresh, Subra

    minor, was launched in September 2009. In May 2010, MIT and its electric utility NSTAR announced a first of its kind collaboration to reduce MIT's electricity consumption by 15%, or 34M KWH. MITEI wireless device will require the development of mixed ion and electron conducting thin polymer membranes

  18. Energy Savings by Veneering 

    E-Print Network [OSTI]

    Cook, T. H.

    1980-01-01

    in Augusta, Georgia is probably a very typical example of the cost rises experienced by Industry since the 1972-1973 period. 1. Electric Power Increase: 190% per KWH 2. Natural Gas Increase: 320% per Therm 3. No.2 Oil Increase: 271% per Gallon 4. No.4 Oil...

  19. Validation of an Integrated System for a Hydrogen-Fueled Power Park

    E-Print Network [OSTI]

    simulation ­ Efficiency ­ Waste heat availability Develop cost of operation models ­ Capital ­ Fuel costs reformer with equal loads All waste heat can be utilized 3-5 kW commercially available PEM fuel cells Heat and Power Has the Potential to Lower Power Cost by ~$0.01/kWh · CHP Requires Reformer and Fuel

  20. 1 Copyright 2007 by ASME Proceedings of IMECE 2007

    E-Print Network [OSTI]

    Texas at Arlington, University of

    capacity to within 1% of the undented condition and SEER to within 6% of the undented efficiency. Similar and commercial air- conditioners has a large influence on electrical energy consumption in the United States. In 2004, households in the U.S. used 216.8 billion kWh of electricity for air-conditioning, accounting

  1. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  2. Economic Assessment of CO2 Capture and Disposal Richard S. Eckaus, Henry D. Jacoby, A. Denny Ellerman, Wing-Chi Leung and Zili Yang

    E-Print Network [OSTI]

    , Cc&d, but reduce the emissions per kWh generated by as much as 90%. In the future, these costs, on the structure of international agreements to control greenhouse gases, and on the availability of low- carbon level of use. This paper was presented to the Third Annual Conference on Carbon Dioxide Removal

  3. DEVELOPING CARBON CAPTURE AND STORAGE Howard J Herzog

    E-Print Network [OSTI]

    possibility is a small surcharge (less than $0.001/kWh) on all fossil generated electricity. We also needDEVELOPING CARBON CAPTURE AND STORAGE 1 Howard J Herzog MIT Energy Initiative Massachusetts, it is unreasonable to expect carbon capture and storage (CCS) to be deployed on a large-scale without strong climate

  4. CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    2014-05-01

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  5. CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

    2014-05-27

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  6. H A&S 222a: Introduction to Energy and Environment (Life Under the Pale Sun) out: Tues 4 April 2006

    E-Print Network [OSTI]

    : there are about 430,000 deaths in the US per year from smoking related illnesses.) This question may seem per second). ·Then convert this to horsepower, an old fashioned unit of power (one horsepower = 746? At this price, what is the dollar value of your walk up the mountain? The KWH is a unit of energy, not power

  7. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. DOEZEHCliftonViewHom...

  8. Code Corner 118 Home Power #92 December 2002 / January 2003

    E-Print Network [OSTI]

    Johnson, Eric E.

    of solar radiation data is the National Renewable Energy Laboratory solar radiation Web site, http energy available will have a direct bearing on the system size and cost for any specific size of load://rredc.nrel.gov/solar. Solar radiation data in formats used for PV systems (KWH/m2) is found at http://rredc.nrel.gov/solar/old_data

  9. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01

    horizontal wind electric machines, and other Wind Pumpingmachine is an 8-10 KVA recently designed, bUilt, and mark- eted by Jacobs Wind Electricmachine delivers about 1095 Kwh of en- ergy during the six month farming period. Assuming an electric

  10. Purdue Farm Energy Production & Innovation Center

    E-Print Network [OSTI]

    generated by solar panel: Average for Indiana is 4.481 kWh per sq meter per day #12;Dairy Beef USDA Lab M alternative sources, including wind, biomass, solar, gasification/liquefaction, digester " Energy efficiency and engineering approaches to convert wind, solar, and agricultural resources/wastes into energy ! Utilize broad

  11. WHAT WE ARE DOING TO IT AND WHAT WE ARE DOING TO UNDERSTAND IT

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    you burn the gasoline in your car. ? ? #12;YOUR FAMILY'S CONTRIBUTION TO THE GREENHOUSE EFFECT 0.8 0.6 0.4 0.2 0.0 CO2emissions,Pounds(C)perKWH Coal Oil Natural gas Nuclear CARBON DIOXIDE EMISSIONS FROM ELECTRIC ENERGY PRODUCTION (1990's Technology) Suffolk County 2001 Legislation How much does your household

  12. Fossil fuels will at some point in the future be depleted, therefore

    E-Print Network [OSTI]

    Langendoen, Koen

    this possible even when the wind turbine is operative. To meet the increased demand for wind energy, high to be found. Wind energy is one of these new (renewable) sources of energy. As the capacity of the wind capacity wind turbines are needed. These wind turbines are more cost effective per kWh, but also more

  13. STEWARDSHIP MAINTAINING NATURAL RICHES

    E-Print Network [OSTI]

    Ford, James

    ;Outstanding Results 5 Energy Conservation: Saved 240 Million KWH over last fifteen years. Green BuildingLAND STEWARDSHIP MAINTAINING NATURAL RICHES TRANSPORTATION GOING THE EXTRA MILE GREEN BUILDING SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING

  14. Primer on Conservation Potential Assessment MethodologyAssessment Methodology

    E-Print Network [OSTI]

    Measures that Save Electricity 2. Establish the Measure's "Baseline" Efficiency2. Establish the Measure s Baseline Efficiency 3. Estimate Electricity & Capacity Savings per Unit 4. Estimate Costs & Benefits per Unit 5. Estimate Measure Life 6. Calculate Cost per kWh Saved 7. Calculate Number of Units Available 8

  15. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  16. Testing and Evaluation of a Power Factor Correction for Power-Savings Potential 

    E-Print Network [OSTI]

    Alotaibi, A.

    2011-01-01

    is to develop the electromagnetic fields (EMFs) to ground the induction windings of the motor. In Kuwait, consumers only pay for the active power and energy used in kWh. A PFC unit stores the reactive power needed to create EMFs within the inductive loads...

  17. Duct leakage impacts on VAV system performance in California large commercial buildings

    E-Print Network [OSTI]

    Wray, Craig P.; Matson, Nance E.

    2003-01-01

    the energy cost and value of California’s electricity in twocosts using year 2000 average commercial sector energy prices for California:California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in HVAC system annual operating cost

  18. Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitlinger, ISBN 90 5809 197 X Moment-based fatigue load models for wind energy systems

    E-Print Network [OSTI]

    Manuel, Lance

    -moment model not to the stress ranges themselves, but to a power-law transformation of these that directly and with diameters over 65 meters are on the market, producing electricity for prices below $0.04/kWh in good wind exponentially. BTM Consult (a Danish wind energy consulting firm) reports that in 1998 2,600 MW of wind power

  19. Mathematics and Energy With the exception of humans and some chemosynthetic ecosystems powered

    E-Print Network [OSTI]

    Russo, Bernard

    an argument for the fol- lowing claim: The most economical (as in "cheapest"), fastest, and most reli- able various forms of energy: electric, mechanical, chemical, 151 #12;152 Mathematics for the Environment heat are no doubt familiar with is the kWh, i.e., the kilowatt-hour. For electric energy you pay about 10 cents

  20. Optimization of Lithium Iron Phosphate Battery Charging and Performance

    E-Print Network [OSTI]

    Misic, Aleksandar

    The goal of this project is to efficiently and safely charge a 5kWh battery pack in 15 minutes. Since the project is still in progress, this report describes experiments on a 56Wh battery. Experiments were performed to ...

  1. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  2. Network Cooperation for Energy Saving in Green Radio Communications

    E-Print Network [OSTI]

    Zhuang, Weihua

    is for energy costs [1]. Each base station (BS), in cellular networks, roughly consumes upto 2.7 KWH in the following. RENEWABLE ENERGY SOURCES From an environmental perspective, the objective of green radio communications is to reduce the CO2 emissions [6]. This can be achieved by using renewable energy sources

  3. Application of an Energy Management System to a Distribution Center 

    E-Print Network [OSTI]

    Warnick, T.

    1984-01-01

    such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant...

  4. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  5. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  6. In high-tech industries, large amounts of reliable, high-quality

    E-Print Network [OSTI]

    In high-tech industries, large amounts of reliable, high-quality power are critical to information processing networks--industry giant Verizon Telecommunications uses over 5.1 billion kWh annually. Because with the grid, three reciprocating engines, two absorption chillers, and a heat recovery steam generator (HRSG

  7. Battery-Aware Energy-Optimal Electric Vehicle Driving Management

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    of replacing the battery, e.g. 12,000$ for Tesla Model S 85KWh [4] and 5,500$ for Nissan Leaf S [5], extendingBattery-Aware Energy-Optimal Electric Vehicle Driving Management Korosh Vatanparvar, Jiang Wan environmental concerns, e.g. air pollution. However, EVs pose new challenges regarding their Battery Life

  8. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    · Market Segments · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End-in Prius Battery kWh: Charge Time: Level 1 Level 2 Level 3 All Electric Range: Price: 3hrs/110v (15A) 1 rebate program (CCSE) · Data collected on February-March 2012 Survey Leaf Volt Tesla San Diego 312 24 0

  9. Suburban New York home with Solar Panels When are Solar Panels

    E-Print Network [OSTI]

    Menke, William

    States, with approximately 16 GW of installed capacity that produced, in 2014, about one half of one, this percentage is increasing every year; furthermore, solar panels are being installed at a growing rate. Solar,700 kWh of electricity3 . A typical rooftop solar installation on a suburban house can produce about

  10. In order to implement sustainable changes, it is important to understand how the University of Minnesota impacts the

    E-Print Network [OSTI]

    reduced use of coal. Solar panels have been installed on UMN campuses and are used to power ZAP bike trip) Campuses look to local fuels like oat hulls, corn stover and cattails for energy 98,000 kWh solar capacity is currently installed across the U Campus Specific Interim GHG Reduction Targets (CO2 e) -PRESIDENT ERIC W

  11. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  12. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  13. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01

    6 Coal price (2005$) $1.29/MMBTU 93.8 kg CO 2 /MMBTU coal COsales $0.05/kWh price (2005$) Coal type Illinois no.coal-to- electricity ef?ciency is 37%, carbon capture is 91%, and the electricity price

  14. The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date

    E-Print Network [OSTI]

    Heeter, Jenny

    2014-01-01

    facility in Hawaii. It supplies almost 10% of KIUC’s daytimeKIUC pays 20 ¢/kWh for solar power. In 2008, the HawaiiHawaii Electric Light Maui Division Maui Electric Company Lanai Division Molokai Division Source: HECO 2012 Kauai Island Utility Cooperative (KIUC)

  15. Green Pricing Experience and Lessons Learned Edward A. Holt

    E-Print Network [OSTI]

    times the number of kWh offered). In another variant, Detroit Edison charges for increments of capacity in a 28.4 kW photovoltaic demonstration, and then a lower-than- standard energy charge for the output from of renewable energy (or capacity) being purchased. The price charged is unrelated to the amount of energy

  16. The Cost-Effectiveness of Continuous Commissioning® Over the Past Ten Years 

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.; Turner, W. D.; Deng, S.; Wei, G.

    2008-01-01

    ). Savings are not analyzed based on the actual energy savings (kWh, MMBtu, etc.) due to the limited amount of the required information available. Savings per Unit Area A simple way to compare savings across many buildings of various sizes and types...

  17. Michael Klepinger, Extension Specialist Michigan State University

    E-Print Network [OSTI]

    electricity continues to rise. The aver- age end-user price of electricity in the United States was 8 cents projects are voicing concerns to township, city and county officials. The most common concerns are about per kilowatt hour (kWh) in 2005 (EIA, 2006a). Since the early 1980s, the price of wind-generated elec

  18. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Planning & Analysis

    E-Print Network [OSTI]

    prices and incentives. 2007 residential PV and electricity price differences with existing incentives #12 utilities) are projected to have a price difference of less than 5 ¢/kWh. 2015 residential without incentives and moderate increase in electricity prices Policy analysis example: PV grid-parity analysis, 2015

  19. TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION

    E-Print Network [OSTI]

    environmental factors such as temperature cycling, humidity and bird strikes. Failures of these composite blades in wind turbine blades and thereby provide solutions to address these failures by leveraging key novel, will generate the decrease in cost per kWh which the industry needs to be competitive with other sources

  20. Appendix D: Update on the University of Hawai`i at Mnoa Budget and Budget Outlook

    E-Print Network [OSTI]

    Dong, Yingfei

    review and approval process to ensure proper energy savings for new buildings and major renovations of Mnoa Green Days (MGD), a campus wide initiative to reduce energy consumption on weekends, holidays year in the decline of net energy usage from the campus peak in FY 2004 at 121,350,873 kWh. The result

  1. The Digital Divide: Implications on the Forest Products

    E-Print Network [OSTI]

    · 180 Million global users · Only 14% users from developing countries · Telephone density: ­ 52.3 per 100 persons in industrialized countries ­ 5.2 per 100 persons in developing countries #12;Connectivity.htm #12;Connectivity Country Inhabitants Per Telephone Consume of Electricity Per Person In KWh China 60

  2. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  3. Maximizing EV January 21, 2015

    E-Print Network [OSTI]

    California at Davis, University of

    charges How to evaluate $/ton instead of $/kwh? 7 #12;References E3. California Transportation Electrification Assessment - Phase 2: Grid Impacts. For the California Electric Transportation Coalition. October 2014. http://goo.gl/sAnamk "Investigating a Higher Renewables Portfolio Standard in California", Energy

  4. PVSAT-2: INTELLIGENT PERFORMANCE CHECK OF PV SYSTEM OPERATION BASED ON SATELLITE DATA

    E-Print Network [OSTI]

    Heinemann, Detlev

    a Dept. of Energy and Semiconductor Research, University of Oldenburg, D-26111 Oldenburg, Germany b, D-86152 Augsburg Germany e Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße2, D-79110-back rates for PV energy (0.5/kWh in Germany since spring 2000, similar initiatives are foreseen in other

  5. Application of the Software as a Service Model to the Control of Complex Building Systems

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    energy Zinc-bromine flow battery power Photovoltaics Solar thermalEnergy (kWh) Hour of the Day Heat from DG Heat from Solar Thermalsolar thermal conventional collectors, HS: Heat storage, BC: Base case, and DN: “Do nothing” case, where all energy

  6. A Field Comparison of Performance Based Energy Efficient and Conventionally Constructed Homes in South Texas 

    E-Print Network [OSTI]

    Schertz, S.; Stracener, J.

    1986-01-01

    50 percent less than a conventionally built home. The load data gathered for this study included whole-house HVAC Compressor, HVAC Air handler heating and water heater KWH by a 15 minute interval. The data was gathered using multi-channel magnetic...

  7. Joseph H. Hoover Ph.D Student

    E-Print Network [OSTI]

    Scott, Christopher

    Salt River Project City of Phoenix Tucson Water City of Flagstaff Metro purchases for farms and ranches $52,635,000 Average cost per kWh for agriculture City of Phoenix (n=3) Pima County Regional Wastewater Reclama0on (n=7) Nogales

  8. Estimated Savings from Turning Off Unnecessary Lights at the Langford Architecture Center During the 1996 Christmas Holidays 

    E-Print Network [OSTI]

    Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

    1997-01-01

    lights been left on, the building would have consumed 100 kW more electricity every hour. The total electricity savings was about 31,200 kWh over 13 days, which is equivalent to a total cost saving of $936.00. If the College continues to turn off...

  9. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    Phoenix, US Shanghai, China Mumbai, India Insolation (kWh/mPhoenix, AZ Los Angeles, CA Riyadh, Saudi Arabia Honolulu, HI Insolation (kWh/Phoenix, US Madrid, Spain Munich, Germany Mumbai, India Toulouse, France Shanghai, China Insolation (kWh/

  10. Methodological and Practical Considerations for DevelopingMultiproject Baselines for Electric Power and Cement Industry Projects inCentral America

    SciTech Connect (OSTI)

    Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion,Kristel

    2004-09-02

    The Lawrence Berkeley National Laboratory (Berkeley Lab) andthe Center for Sustainable Development in the Americas (CSDA) conductedtechnical studies and organized two training workshops to developcapacity in Central America for the evaluation of climate changeprojects. This paper describes the results of two baseline case studiesconducted for these workshops, one for the power sector and one for thecement industry, that were devised to illustrate certain approaches tobaseline setting. Multiproject baseline emission rates (BERs) for themain Guatemalan electricity grid were calculated from 2001 data. Inrecent years, the Guatemalan power sector has experienced rapid growth;thus, a sufficient number of new plants have been built to estimateviable BERs. We found that BERs for baseload plants offsetting additionalbaseload capacity ranged from 0.702 kgCO2/kWh (using a weighted averagestringency) to 0.507 kgCO2/kWh (using a 10th percentile stringency),while the baseline for plants offsetting load-followingcapacity is lowerat 0.567 kgCO2/kWh. For power displaced from existing load-followingplants, the rate is higher, 0.735 kgCO2/kWh, as a result of the age ofsome plants used for meeting peak loads and the infrequency of their use.The approved consolidated methodology for the Clean Development Mechanismyields a single rate of 0.753 kgCO2/kWh. Due to the relatively smallnumber of cement plants in the region and the regional nature of thecement market, all of Central America was chosen as the geographicboundary for setting cement industry BERs. Unfortunately, actualoperations and output data were unobtainable for most of the plants inthe region, and many data were estimated. Cement industry BERs rangedfrom 205 kgCO2 to 225 kgCO2 per metric ton of cement.

  11. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  12. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  13. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect (OSTI)

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  14. Recent progress on Exxon's zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.J.

    1982-01-01

    The Exxon zinc-bromine battery design is based on the use of a circulating electrolyte, bromine complexing agents, conductive carbon plastic electrodes, and a bipolar electrode stack using shunt current protection. Manufacturing cost for this design, assuming large scale production is estimated at $28/kWh ($1980). Electrode and electrolyte performance is equivalent to 65 Wh/kg and over 150 w/kg in final designs. Recent program highlights include system scale-up to the 20 kWh level, extension of demonstrated life to over 400 cycles, the ability to follow various cycling regimes, and preparations for a full-scale deliverable during 1983. Program status is outlined. (WHK)

  15. Best Energy Savings Measurement at Texas City Monsanto Plant 

    E-Print Network [OSTI]

    Repschleger, W. E.

    1979-01-01

    "BTU KWH MMBTU MGAL TEXAS CITY PLANT S1725 DEPT 89972 UTILI TY DESCRIPTION STEAM MMBT ELECTRICITY FIL _TR MGAL MAKE UP WTR. C T WATER UNITS MMBTU KWH HGAL "GAL. MGAL HGAL PLANT N02 UNIT -------ACTUAL THIS MO 65,289 11,160. 56... FACTOR DESCRIPTION UNITS 38.521 3.881 30.423 01.3C188~ 5.079 STEAM MM3TU MM8TU 56.789 n2.6~7 S.679.31Cl ClO.OIOClCl 1.32' ElECTRI CIT Y KW H - ---_._.--- -_. 39 1.741 00.02699 5 FIl WH MGAl MGAl 222 6.989 98,332 ..... 678.711 OCl.ClIl9C1 1...

  16. UK Renewable Energy Policy Since Privatisation

    E-Print Network [OSTI]

    Pollitt, Michael G.

    to have an open competition to select a CCS project. Government policies will always be tempered by the reality of the need to control costs (and to obey EU rules on competition), especially when those costs are shown to be high relative... a series of bidding rounds whereby renewable energy projects bid for an RPI-indexed per KWh price for initially 8 and later 15 years. Winning bids were selected by cost within each technology category. The result was a significant amount...

  17. Learning curves and changing product attributes: the case of wind turbines

    E-Print Network [OSTI]

    Coulomb, Louis; Neuhoff, Karsten

    2006-03-14

    an important contribution. Other studies avoid this problem by using kWh as the energy benchmark; here, a reference wind site is selected, and the annual theoretical energy production of all turbines that constitute the installed capacity is determined... -seventh for onshore sites. Wind turbine designers have two options to capitalise on the increase in wind speed with increasing hub height. Firstly, they can retain the combination of turbine diameter and rated power of the generator and thus increase the energy...

  18. LED ProspectsLED Prospects photometric units

    E-Print Network [OSTI]

    Pulfrey, David L.

    -life incandescent with LED. · 10 light fixtures/home, lights on for 6h/day, 333 days/yr. · Electricity 0.12 $/kWh. W Illuminated by: (a) high-CRI source (b) low-CRI source EFS #12;6 http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/ #12;7 http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/ #12;8 http://www.ecse.rpi.edu/~schubert/Light

  19. Marketing Strategies in a Downturn Economy 

    E-Print Network [OSTI]

    Williams, M.

    1987-01-01

    IN A DOWNTURN ECONOMY MALCOLM WILLIAMS Manager Business Development Gulf States Utilities Beaumont, ABSTRACT The economic activity in an area may affect electric utility sales more than other retailers. Statistics show that the KWH consumption... market. This paper deals with some of these new concepts being used by utilities in a downturn economy. INTRODUCTION Sales programs and marketing strategies to sell electric energy are in many ways similar to selling other types of consumer goods...

  20. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  1. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  2. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  3. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22 

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    2007-01-01

    Intermediate Calculation Values ........................................12 Construction Cost per ac-ft of Water Saved ...............................12 Construction Cost per Unit of Energy Saved ...............................12 Construction Cost per Dollar.... Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost...

  4. Resource Conservation in Snack Food Processing 

    E-Print Network [OSTI]

    Perry, L. E.; Meyers, G. R.

    2001-01-01

    was then required to develop an action plan and timeline for implementation. Follow-up technical support to some facilities was necessary to assist with project implementation or to provide additional trouble shooting of problem systems. These "strike team... technical evaluation of each process was conducted to establish the theoretical "best-case" gallons of water, BTUs of fuel, and KWH of electricity required to produce the respective product. Building related consumption standards were then established...

  5. LED Lighting Retrofit 

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01

    kWh is the one that never gets used? ?Dedicated to making environmentally responsible products? Ringdale Introduction LED Roadway Lighting Better Light, Fewer Watts. Period. Nathan Shaw-Meadow LED Lighting Specialist Ringdale ActiveLED ESL.../exponential efficiency growth often deters investment today 7 Challenges to Implementation ESL-KT-11-11-57 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ? Municipal Street Light Case Study 8 ? Replaced 400W High Pressure Sodium fixtures with 52W Active...

  6. The Cost of Power Disturbances to Industrial & Digital Economy Companies

    E-Print Network [OSTI]

    Schrijver, Karel

    Outages Outage Costs as a Function of Duration of Outage 2-1 Outage Costs by Sector and kWh Consumption 2-4 Outage Costs as a Function of Business Activities and Equipment 2-5 The Impact of Advance Notice on Outage Costs 2-7 Elements of Outage Costs ­ Where Does the Money Go? 2-8 Chapter 3: Aggregate Cost

  7. Power translation chart kWh/d each GW / UK TWh/y / UK Mtoe/y / UK

    E-Print Network [OSTI]

    MacKay, David J.C.

    (2004) UK Nuclear (2004) UK Electricity fuel input (2004) 1 kWh/d the same as 1/24 kW `UK' = 60 millionWh/d each kWh(e) /d each t CO2/y each Mt CO2/y / UK MtC/y / UK GtC/y / World World (2005) `Safe'`Safe and fair' UK (1990) UK (2005) 60% target 80% target UK Electricity kWh thermal energy exchange rate: 1 k

  8. Bizuayehu Tesfaye REYST report 05-2011

    E-Print Network [OSTI]

    Karlsson, Brynjar

    is estimated to have access to electricity and the per capita energy consumption is 40.59kWh, which/wind/battery and battery storage of 48 h of autonomy has been selected. The cost of generating energy (COE, US$/kWh) from. But the diesel-only option in the existing arrangement, levelized cost of energy for Kebri Dehar and Degehabur

  9. Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator 

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    1984-01-01

    that this retrofit project would be adopted, since 8 c 0 ?a E ::J . 'C ::J 0 r Electr\\Cil'i = 3? I kWh 6 5 Assumptions: ? MVC Handles Entire Heat Load ? MVC... Product (To Siorage or to Additional Effects) Steam Vapor Condensate Condensate 841073 Fig. 2(a). Multiple Effect Evaporator product liquor to assure adequate heat transfer 1n the heat exchanger. If not known, a value of TA = lOaF can...

  10. Microprocessor-based control system for flowing-electrolyte zinc-bromine battery systems

    SciTech Connect (OSTI)

    Malachesky, P.A.; Chang, L.S.; Elspass, C.E.; Bellows, R.J.

    1983-01-01

    The zinc-bromine battery system under development at Exxon is based on a bipolar, circulating electrolyte design concept. Such circulating electrolyte systems require a controller to operate and monitor system auxiliaries such as valves and pumps. A 1.2 kWh zinc-bromine battery system controller has been constructed using a single board computer. The design and operation of this controller will be discussed.

  11. Behavioral Modification 

    E-Print Network [OSTI]

    DuPlessis, J.

    2012-01-01

    Education & Understanding Create a mutual effort to understand Energy Committee Activities Saved 5,174,305 kWh of electricity ? 13% of electricity usage Saved 18,873 MCF of natural gas ? 18% of natural gas usage Competition Results November 2011... with Select Principals Kicked Off Committee in One High School Cluster Expanded to All 6 Clusters Added Auxiliary Facilities Involving Every Department The Arlington ISD Energy Committee includes one member from each building...

  12. A Research Program for Promising Retrofit Technologies

    E-Print Network [OSTI]

    per kWh reduces the cost of CCS. 2 #12;At a coal-fired power plant, CO2 is a component of the flue gas commercial amine processes can work with gas- fired power plants, but today only a subset can work on coal-fired power plants. A coal plant flue gas is more difficult to handle because of the pollutants it contains

  13. Atmos. Chem. Phys., 12, 93659379, 2012 www.atmos-chem-phys.net/12/9365/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g

  14. Energy Unit Conversion Factors / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    kilowatt hour (kWh) equals 3.60 x lo6 1 3413 1 calorie (Cal) equals 4.184 1.19 x lO+j 3.97 x lo-3 1 British electron volt (eV) equals 1.60 x lo-l9 4.45 x lo-26 1.52 x 1o-22 Energy Equivalents Crude petroleum (42

  15. 1 KILOWATT = 1,000 WATTS 1 MEGAWATT = 1,000,000 WATTS

    E-Print Network [OSTI]

    Hochberg, Michael

    microwave for 1 hour uses 1.2 kW-h of energy. That's 4.3 megajoules or 4,300,000 joules. Power is how fast production of 150 hp. human body base metabolism 80 watts 1 kilowatt microwave 26 cu ft. refrigerator (annual solar panel array (peak production) 1.5 kilowatt ~10 m2 space shuttle lifto hand-cranked generator 10

  16. The Photovoltaic Crisis and the Demand-side Generation in Spain

    E-Print Network [OSTI]

    Mir-Artigues, Pere

    2013-03-01

    by hydro sources, cogeneration and renewable technologies was issued. These generators would receive a monthly payment based on plant capacity and a (small) price for kWh delivered.1 Initial values of both prices were fixed in the article 14. They would... renewable sources, cogeneration and power production from urban solid wastes (only for plants up to 50 MW). It also established preferential prices 1 Distribution companies were obliged to buy...

  17. Modelling energy efficiency for computation

    E-Print Network [OSTI]

    Reams, Charles

    2012-11-13

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10 List of Tables 3.1 Energy usage breakdown for computing equipment in the United States. Energy figures are in billions of kWh. . . . . . . . . . . . . . . . . . . . . . 40 5.1 Average solution time... understanding of the underlying behavioural properties will inevitably lead to improvements in the practicality of NTC, and practical NTC-purposed cores have now been constructed; for example, the Phoenix processor, which operates in the near-threshold region...

  18. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks HVAC source EUI (kWh/Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks HVAC source EUI (kWh/Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks Total building source EUI (kWh/

  19. DOE Zero Energy Ready Home Case Study: Leganza Residence - Greenbank, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  20. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  1. The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-05-11

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-minute interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05/kWh to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when commercial PV systems represent a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  2. Prospects for Reducing the Processing Cost of Lithium Ion Batteries

    SciTech Connect (OSTI)

    Wood III, David L; Li, Jianlin; Daniel, Claus

    2014-01-01

    A detailed processing cost breakdown is given for lithium-ion battery (LIB) electrodes, which focuses on: 1) elimination of toxic, costly N-methylpyrrolidone (NMP) dispersion chemistry; 2) doubling the thicknesses of the anode and cathode to raise energy density; and 3) reduction of the anode electrolyte wetting and SEI-layer formation time. These processing cost reduction technologies generically adaptable to any anode or cathode cell chemistry and are being implemented at ORNL. This paper shows step by step how these cost savings can be realized in existing or new LIB manufacturing plants using a baseline case of thin (power) electrodes produced with NMP processing and a standard 10-14-day wetting and formation process. In particular, it is shown that aqueous electrode processing can cut the electrode processing cost and energy consumption by an order of magnitude. Doubling the thickness of the electrodes allows for using half of the inactive current collectors and separators, contributing even further to the processing cost savings. Finally wetting and SEI-layer formation cost savings are discussed in the context of a protocol with significantly reduced time. These three benefits collectively offer the possibility of reducing LIB pack cost from $502.8 kWh-1-usable to $370.3 kWh-1-usable, a savings of $132.5/kWh (or 26.4%).

  3. Techno-Economic Analysis of PEV Battery Second Use: Repurposed-Battery Selling Price and Commercial and Industrial End-User Value

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Williams, B.; Ferry, M.; Eyer, J.

    2012-06-01

    Accelerated market penetration of plug-in electric vehicles and deployment of grid-connected energy storage are restricted by the high cost of lithium-ion batteries. Research, development, and manufacturing are underway to lower material costs, enhance process efficiencies, and increase production volumes. A fraction of the battery cost may be recovered after vehicular service by reusing the battery where it may have sufficient performance for other energy-storage applications. By extracting post-vehicle additional services and revenue from the battery, the total lifetime value of the battery is increased. The overall cost of energy-storage solutions for both primary (automotive) and secondary (grid) customer could be decreased. This techno-economic analysis of battery second use considers effects of battery degradation in both automotive and grid service, repurposing costs, balance-of-system costs, the value of aggregated energy-storage to commercial and industrial end users, and competitive technology. Batteries from plug-in electric vehicles can economically be used to serve the power quality and reliability needs of commercial and industrial end users. However, the value to the automotive battery owner is small (e.g., $20-$100/kWh) as declining future battery costs and other factors strongly affect salvage value. Repurposed automotive battery prices may range from $38/kWh to $132/kWh.

  4. Assessment of the Electrohol process to manufacture acetaldehyde from ethanol electrogeneratively. Final report

    SciTech Connect (OSTI)

    Trevino, A.A.

    1985-04-10

    Preliminary process economics data for the electrogenerative process to manufacture acetaldehyde from ethanol were generated based on patent information. The technology was assessed in four alternative processing options. The Electrohol process is viable in the US only if integrated to the production of 190 pf ethanol from corn in a large scale unit. To be competitive, the Electrohol process must show yields in excess of 93%. Its attractiveness depends on corn prices remaining under $2.90/bu and DDG selling for more than $132/T. A corn price of $2.00/bu is needed to make a farm-size corn-based processing alternative competitive. A plant based on the fermentation of molasses proved too expensive under the US economic assumptions. The Electrohol technology based on purchased ethanol cannot compete with the existing ethylene-based process under current conditions. To become attractive, the Electrohol process must have access to cheap ethanol ($1.43/gal). The zero electricity generation mode is the most attractive mode of operation for the Electrohol technology in the US. The penalty for low levels of generation (0.130 kwh/kg AcH) is, however, negligible. The optimum operating mode in W. Europe is the generation of 0.312 kwh/kg AcH. In Japan, the low generation level is perferred (0.130 kwh/kg AcH). In general, higher energy prices improve the competitiveness of the Electrohol processing alternatives.

  5. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  6. Willow firing in retrofitted Irish peat plant

    SciTech Connect (OSTI)

    Broek, R. van den; Faaij, A.; Kent, T.

    1995-11-01

    Interest in biomass electricity in Ireland is being re-awakened by environmental concerns about CO{sub 2} emissions from power generation and the potential of biomass production to provide an alternative agricultural enterprise. The technical and economical feasibility of wood-fuelled power production using willow from energy farming in existing peat-fired plants in Ireland is being studied within the framework of the EU JOULE II+ programme. These options are compared with new combustion plants and a biomass integrated gasifier with combined cycle (BIG/CC). Background studies supplied data for yields of willow farming, establishment of willow plantations, harvesting methods, logistics and costs and efficiencies for different retrofit options at Irish peat plants. All technologies considered are currently available or are expected to be available in the near future. Neither agricultural subsidies nor possible CO{sub 2} taxes have been included. In the least cost supply scenario storage and chipping of wood is done at the power station. In this case wood is only stored in the form of sticks and wood harvested by a chips harvester is supplied to the plant directly during the harvesting season. Fuel costs at the plant gate were estimated between 3.3 and 11 EGU/GJ{sub LHV}. This wide range resulted in a wide range of kWh costs. For the lowest cost option they ranged between 5.4 and 15 ECUcents/kWh. The cheapest proven retrofit option is the conversion of the existing milled peat Lanesborough unit 3 into a bubbling fluidized bed with kWh costs ranging from 5.6 up to 16 ECUcents/kWh. For this plant, costs per tonne of avoided CO{sub 2} emissions varied between 1 and 70 ECU. It is noteworthy that the kWh costs for all options considered were very close. Especially in the high costs scenario a BIG/CC appeared to have lower kWh cost than all biomass combustion plants. Mainly for the retrofitted plants the fuel costs were by far the largest kWh cost component.

  7. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect (OSTI)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

  8. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  9. Development of Zinc/Bromine Batteries for Load-Leveling Applications: Phase 1 Final Report

    SciTech Connect (OSTI)

    Eidler, Phillip

    1999-07-01

    The Zinc/Bromine Load-Leveling Battery Development contract (No. 40-8965) was partitioned at the outset into two phases of equal length. Phase 1 started in September 1990 and continued through December 1991. In Phase 1, zinc/bromine battery technology was to be advanced to the point that it would be clear that the technology was viable and would be an appropriate choice for electric utilities wishing to establish stationary energy-storage facilities. Criteria were established that addressed most of the concerns that had been observed in the previous development efforts. The performances of 8-cell and 100-cell laboratory batteries demonstrated that the criteria were met or exceeded. In Phase 2, 100-kWh batteries will be built and demonstrated, and a conceptual design for a load-leveling plant will be presented. At the same time, work will continue to identify improved assembly techniques and operating conditions. This report details the results of the efforts carried out in Phase 1. The highlights are: (1) Four 1-kWh stacks achieved over 100 cycles, One l-kWh stack achieved over 200 cycles, One 1-kWh stack achieved over 300 cycles; (2) Less than 10% degradation in performance occurred in the four stacks that achieved over 100 cycles; (3) The battery used for the zinc loading investigation exhibited virtually no loss in performance for loadings up to 130 mAh/cm{sup 2}; (4) Charge-current densities of 50 ma/cm{sup 2} have been achieved in minicells; (5) Fourteen consecutive no-strip cycles have been conducted on the stack with 300+ cycles; (6) A mass and energy balance spreadsheet that describes battery operation was completed; (7) Materials research has continued to provide improvements in the electrode, activation layer, and separator; and (8) A battery made of two 50-cell stacks (15 kWh) was produced and delivered to Sandia National Laboratories (SNL) for testing. The most critical development was the ability to assemble a battery stack that remained leak free. The task of sealing the battery stack using vibration welding has undergone significant improvement resulting in a viable production process. Through several design iterations, a solid technology base for larger battery stack designs was established. Internal stack stresses can now be modeled, in addition to fluid velocity and fluid pressure distribution, through the use of a finite element analysis computer program. Additionally, the Johnson Controls Battery Group, Inc. (JCBGI) proprietary FORTRAN model has been improved significantly, enabling accurate performance predictions. This modeling was used to improve the integrity and performance of the battery stacks, and should be instrumental in reducing the turnaround time from concept to assembly.

  10. Running Process Plant Utilities Like a Business 

    E-Print Network [OSTI]

    Pavone, A.

    1995-01-01

    ........ 5700 '0IIII( 440 OJIIII( '0IIII( 9400 20000 1300 3400 3500 1500 6200 2500 Agua de Enfriamienlo (m3) Energia Electrica (kwh) Vapor de Alta (ton) Vapor de Media (Ion) Vapor de Baja (ton) Vapor de 60 kg/cm2 (ton) 114 ESL-IE-95....U1m.1 6766862...1Z Total Vapor Production mtlD Servjcios Agua Enlrjamiento a Va po m.Mm! Utility Consumptjon Energia Electrica a Vapor Ini.hL.m..l 4_4_6_21__~ DOWNTIME (HRS) 4 ? Real Programado 2 Fallas mecaoicas 2 Disparios De Planta...

  11. Advanced Low-Cost Receivers for Parabolic Troughs

    Broader source: Energy.gov [DOE]

    This fact sheet describes an advanced, low-cost receiver project for parabolic troughs, awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. Norwich Technologies is designing a novel receiver that addresses these issues for parabolic trough concentrating solar power systems. This technology represents significant operational and cost advances in the most trusted and broadly implemented form of CSP and provides a viable pathway to achieving SunShot’s $0.06/kWh goal for utility-scale CSP systems.

  12. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate 

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01

    , the nominal tank storage capacity is 60,500 ton-hr (2 13,000 kwh) and the instantaneous output at the maximum discharge flow rate is 5,600 tons (19,700 kW). The tank can discharge at this rate for nearly 11 hours. At design flow rates, the inlet Froude... on-peak hours that run from noon to 8 p.m. Controls are configured to obtain maximum efficiency from refrigerant equipment on- line by maintaining each on-line chiller at its peak capacity. During the on-peak period the tank is discharged...

  13. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    none,

    2004-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the project's cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  14. Residence Hall ROI: The Benefits of Energy Modeling for University Dormitories 

    E-Print Network [OSTI]

    Hodges, C.; Hernandez, A.

    2013-01-01

    , Texas Dec. 16-18 Units kWh + therm = kBtu University of Houston Texas State University Stephen F. Austin ESL-KT-13-12-20 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Baseline Energy Use Energy per square foot...Btu / sf 51 kBtu / sf 24 MBtu / bed 18 MBtu / bed 16 MBtu / bed University of Houston Texas State University Stephen F. Austin Energy per square foot: Energy per bed: ESL-KT-13-12-20 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio...

  15. IlIl RecuperoRecupero EnergeticoEnergetico deldel RifuitiRifuiti

    E-Print Network [OSTI]

    Columbia University

    is less understood is the adverse impact of landfilling municipal solid wastes (MSW) on the land and also.0% Landfill gas (from 64.1% of the MSW) 6.65 13.8% Wood/other biomass 8.37 17.4% Solar thermal 0.87 1.8% Solar photovoltaic 0.01 0.0% Wind 5.3 11.0% Total 48.22 100.0% 1 ton of MSW=550 kWh==1 barrel of oil #12;Another

  16. Gas -Fueled Engine-Driven Air Conditioning Systems for Commercial Buildings 

    E-Print Network [OSTI]

    Lindsay, B. B.

    1987-01-01

    .9 is targeted. A.G.A. Laboratories is wor!cin~ with Thermo King Corporation to develop a 15-ton rooftop package based on Thermo King's truck-trailer refrigeration system. Thermo King has manufactured engine- driven tefrigeration systems for 48 years and has.../kw) Summor, 1985 Rator, Largo Commorclal Bulldlngr. No Taxor or Surchargor Includod L-W3211.08 Ratchet Charger Applicable SENSITIVITY TO GAS PRICE Electric Energy Cost (*/kwh) - - ~pp Sb Boas Cora Aaaumptlona: Fhrt Cort Premlum: S30/Ton Gar Englne...

  17. Electrical Cost Reduction Via Steam Turbine Cogeneration 

    E-Print Network [OSTI]

    Ewing, T. S.; Di Tullio, L. B.

    1991-01-01

    REDUCTION VIA STEAM TURBINE COGENERATION LYNN B. DI TULLIO, P.E. Project Engineer Ewing Power Systems, Inc. South Deerfield, Mass. ABSTRACT Steam turbine cogeneration is a well established technology which is widely used in industry. However... reducing valves with turbine generator sets in applications with flows as low as 4000 pounds of steam per hour. These systems produce electricity for $0.01 to $.02 per kWh (based on current costs of gas and oil); system cost is between $200 and $800 per...

  18. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  19. Lehigh Southwest Cement Company: Compressed Air System Improvement Saves Energy

    SciTech Connect (OSTI)

    2003-10-01

    In 2001, Lehigh Southwest Cement Company improved the compressed air system at its cement plant in Tehachapi, California. Consequently, the system was able to operate more efficiently with less compressor capacity and at a lower system pressure. The project yielded total annual savings of 895,000 kWh and $199,000. The initial project cost was $417,000, but Southern California Edison provided a $90,000 incentive payment to reduce the cost to $327,000. Simple payback was about 20 months.

  20. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  1. Continuous Commissioning® 

    E-Print Network [OSTI]

    Culp, C.; Claridge, D. E.

    2011-01-01

    and Verification ? Keep Commissioning Continuous ? Involve On-site Staff Opportunity Assessor - OA Utility Bills Questionnaire Electricity (kWh) Gas (MMBtu) March 2010 160,350 418 April 2010 165,420 398 May 2010 171,353 391 1.Area = 172,000 ft2 2....Windows = 25% to 35% 3.OA %= 15 to 30% 4. Fan = VAV ..... Estimated % Energy Cost Savings Yes No Go to Next Building Good Opportunity? - Use WinAM to Determine Measures in Detailed Assessment Opportunity Assessor ? Determine building?s...

  2. Stability versus Sustainability: Energy Policy in the Gulf Monarchies

    E-Print Network [OSTI]

    Krane, Jim

    2013-02-07

      this  misuse  of  resources.  Rent  distribution  was  a  pre?oil  political  tool  even  before  the  formation  of  independent  states  in  the  Gulf,  as  Foley  (2010)  and  Davidson  (2005)  have  shown.4  The  arrival of oil revenues into...  bands at unchanged prices. By the mid?2000s,  these (by then) subsidized prices were seen as a convenient way to distribute oil rents and  maintain  regime  legitimacy.  In  Kuwait,  power  that  costs  nearly  14  US  cents  per  kWh  to  generate and deliver is still sold for less than 1...

  3. Some cultural practices affecting bulb rot, plant and floral development, and seed yield of the White Grano onion 

    E-Print Network [OSTI]

    Enzie, Joseph Vincent

    1955-01-01

    Public Buildings Leading by Example Philip Gates, CEM, CMVP, EIT Energy Manager 1 ESL-KT-13-12-27 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 2 H ow to be gin ? ESL-KT-13-12-27 CATEE 2013: Clean Air... solution • 6,500 devices • $200K annual savings Pool Pump Control • Stop over-circulating • 24 Public Pools • $70K annual savings LED Street Lighting • Replace high wattage fixt. • 25,000 fixtures • $, kWh annually Chillers & DX Units • Eff. equip. w...

  4. Wastewater Recycle- A Sustainable Approach Towards Desalination 

    E-Print Network [OSTI]

    Mittal, A.

    2013-01-01

    Consumption, Kwh/1000gal. 12 - 14 4 - 5 13 - 15 Thermal Energy Consumption, MM BTU/1000gal. 0.75 ? 1.1 0.6 ? 1.0 - Salient Comparative of Desalination Technologies Basis: Seawater TDS: 30,000 ? 40,000 ppm Seawater Temperature: 25 ? 30 C ESL-IE-13....g. MBBR, BAF) ? Tertiary Treatment ?For discharge ?Media/sand Filter ?GAC Adsorption ?Disinfection ?For Reuse ?Media Filter, MF/UF ?HERO/RO ? ZLD Raw WW Disposal Reuse ESL-IE-13-05-07 Proceedings of the Thrity-Fifth Industrial Energy...

  5. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  6. Control Optimization for a Chilled Water Thermal Storage System Under a Complicated Time-of-Use Electricity Rate Schedule 

    E-Print Network [OSTI]

    Zhou, J.; Wei, G.; Turner, W.D.; Deng, S.; Claridge, D.E.; Contreras, O.

    2005-01-01

    .6 m) in diameter with a total volume capacity of 1,400,000 gallon (5,299,560 L). Under design conditions, the fully charged thermal storage tank can hold a cooling capacity of 12,000 ton-hr (42,204 kWh). The temperatures of the stratified chilled... of time for the tank to discharge is selected, as many higher-priced hours as possible. The time charge the tank is automatically determined as n, the average chiller production rate required e charging period is calculated from the total campus load...

  7. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dr. Michael Strasik

    2007-06-29

    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  8. Forecasting technology costs via the Learning Curve - Myth or Magic?

    E-Print Network [OSTI]

    Alberth, Stephan

    Gas Turbine (CCGT) where data provided by Colpier was already converted from ‘costs per installed capacity’ to ‘costs per electricity produced’ (2002). The focus has been on technologies that remained in their growth stages in order to avoid... Electricity Usc(90)/kWh - TWh 1981 1997 15 3.6 Cleason Colpier 2002 Nuclear Instalation US$(90)/W - GW 1975 1993 19 2.0 Kouvaritakis et al. (2000) in M&S 2001 SCGT Instalation US$(90)/W - GW 1956 1981 14 8.9 IIASA-WEC (1998), p.50 Solar Production $/Wp - MWp...

  9. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  10. Reducing Water Use In Buildings 

    E-Print Network [OSTI]

    Schulz,J.

    2014-01-01

    and Adoption – AT&T Goals 1. Realize 150 million gallons – roughly 15 percent of cooling tower water use and 5 percent of total water use – of annualized water savings by the end of 2015 2. Realize 400 million kWh in annualized electricity savings from free... to expand awareness, increase use of the water efficiency toolkit and begin outreach to key stakeholders by the end of 2013 ESL-KT-14-11-32 CATEE 2014: Clean Air Through Efficiency Conference, Dallas, Texas Nov. 18-20 Los Angeles Dallas Houston Phoenix...

  11. DOE Zero Energy Ready Home Case Study: Montlake Modern - Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  12. The impact of retail rate structures on the economics of commercial photovoltaic systems in California

    SciTech Connect (OSTI)

    Mills, Andrew D.; Wiser, Ryan; Barbose, Galen; Golove, William

    2008-06-24

    This article examines the impact of retail electricity rate design on the economic value of grid-connected photovoltaic (PV) systems, focusing on commercial customers in California. Using 15-min interval building load and PV production data from a sample of 24 actual commercial PV installations, we compare the value of the bill savings across 20 commercial-customer retail electricity rates currently offered in the state. Across all combinations of customers and rates, we find that the annual bill savings from PV, per kWh generated, ranges from $0.05 to $0.24/kWh. This sizable range in rate-reduction value reflects differences in rate structures, revenue requirements, the size of the PV system relative to building load, and customer load shape. The most significant rate design issue for the value of commercial PV is found to be the percentage of total utility bills recovered through demand charges, though a variety of other factors are also found to be of importance. The value of net metering is found to be substantial, but only when energy from commercial PV systems represents a sizable portion of annual customer load. Though the analysis presented here is specific to California, our general results demonstrate the fundamental importance of retail rate design for the customer-economics of grid-connected, customer-sited PV.

  13. USFOE: Extended Summary - Lithium ion batteries and their manufacturing challenges

    SciTech Connect (OSTI)

    Daniel, Claus

    2014-01-01

    There is no one lithium ion battery. With the variety of materials and electrochemical couples at our disposal as shown in the previous talks, we have the opportunity to design battery cells specific for their applications. Such applications require optimization of voltage, state of charge utilization, lifetime needs, and safety considerations. Electrochemical couples allow for designing power and energy ratios and available energy for the application. Integration in a large format cell requires optimized roll to roll electrode manufacturing and active material utilization. Electrodes are coated on a current collector in a composite structure comprised of active material, binders, and conductive additives which requires careful control of colloidal chemistry, adhesion, and solidification. These added inactive materials and the cell packaging reduce energy density. Degree of porosity and compaction in the electrode can impede or enhance battery performance. Pathways are explored to bring batteries from currently commercially available 100Wh/kg and 200Wh/L at $500/kWh to 250Wh/kg and 400Wh/L at $125/kWh.

  14. R and D in France and in Western Europe

    SciTech Connect (OSTI)

    Bastin, A.J.F. )

    1991-06-01

    This paper deals with worldwide electric utility R and D, but focuses on France first, and not on Western Europe as a whole. Apart from the fact that the R and D of European utilities hardly show a homogeneous set, there are four basic reasons. To begin with, France represents roughly 20 percent of Western Europe by itself. Germany, now extended to the late DDR, is the only country to have a larger share. Second, Electricite de France (EDF) is the largest electric utility worldwide, with annual sales of about 410 TWh. Third, EDF has consistently shown one of the lowest electricity prices: as an average .44 FF par kWh (about $.08 per kWh) which comes up on comparing the 410 TWh sales with a 165 GFF turnover. Beyond these three points, which are more or less permanent, it appears that both EDF and its R and D division have been stable over the last three years. So the French power system is the largest subsystem in Western Europe where a single well-defined R and D policy can be described and assessed; this is what the authors are going to do now.

  15. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  16. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  17. NASA Redox Storage System Development Project. Final report

    SciTech Connect (OSTI)

    Hagedorn, N.H.

    1984-10-01

    The Redox Storage System Technology Project was jointly supported by the US Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to prove its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25/sup 0/C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh pre-prototype system. A subsequent change was made in operating mode, going to 65/sup 0/C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/cm/sup 2/ with energy efficiencies greater than 80%. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office. This report covers the full duration of the project.

  18. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  19. Sensitivity analysis of conservation opportunities in the irrigated agriculture sector of the Pacific Northwest

    SciTech Connect (OSTI)

    Harrer, B.J.

    1985-07-01

    This report summarizes the results of a sensitivity analysis of the cost effectiveness and energy-savings potential of conservation measures in the irrigation sector of the Pacific Northwest. This study examines the sensitivity of estimates of the cost effectiveness and energy-savings potential of conservation measures in the irrigation sector generated in a previous study (Harrer et al. 1985c) to changes in various types of input data parameters: reductions in purchase, installation and operating/maintenance costs for irrigation-sector conservation measures. Increases in the amounts of irrigation pumping head savings that would result from the use of the measures were also implemented in the sensitivity analysis. The assumptions used in the sensitivity analysis cause the analysis to represent a ''best-case'' scenario for the amount of energy that can potentially be saved through the implementation of irrigation-sector conservation measures in the Pacific Northwest and the costs per kWh saved for obtaining these savings. Under these ''best-case'' assumptions, it is estimated that approximately 207 average megawatts of electricity can potentially be saved by the year 2003 through the implementation of low-pressure irrigation, pump fittings redesign, increases in mainline size, and improved irrigation scheduling on new and existing irrigated acres. The majority of these savings (70%) can be obtained for a cost of 20 mills per kWh saved or less.

  20. New York Power Authority/New York City Housing Authority refrigerator replacement program, first program year evaluation. Final report

    SciTech Connect (OSTI)

    Kinney, L.F.; Lewis, G.; Pratt, R.G.; Miller, J.

    1997-08-01

    Acting as an energy services provider, the New York Power Authority (NYPA) has initiated a long-term project through which 20,000 refrigerators per year will be replaced with the most energy-efficient units possible in apartments managed by the New York City Housing Authority (NYCHA). Using bulk purchasing as an incentive to appliance manufacturers to produce energy-efficient refrigerators suitable for use in apartments, replaced in the first year of the program, which ended in December 1996. These units, kWh per year. Savings were determined by field testing and laboratory testing of 220 existing refrigerators and 56 newly-installed units. In the next program year, a 15.0-cubic-foot Maytag refrigerator, newly-designed in response to bulk purchasing incentives, is being installed. The new unit has a label rating of 437 kWh per year, 31 percent better than 1993 energy standards. Old refrigerators removed from apartments are {open_quotes}demanufactured{close_quotes} in an environmentally-appropriate way and both metals and refrigerants are recovered for reuse.

  1. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    SciTech Connect (OSTI)

    1994-12-31

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies.

  2. Energy efficiency study of single-wide manufactured homes

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Andrews, G.J.; Stovall, T.K.; Kelly, T.

    1999-12-01

    This Cooperative Research and Development Agreement (CRADA) was among Tennessee Technological University, Clayton Homes, Inc., and Oak Ridge National Laboratory (ORNL). Manufactured homes now make up a substantial portion of the new home market, and improving the energy efficiency of these homes would save significant amounts of energy. This project explored the impact of differing levels of attic insulation, the use of evacuated insulation panels, and the application of a solar reflective roof coating. The performance of the installed roof cavity insulation compared favorably with that predicted by laboratory measurements. The more heavily insulated of the two units used about 30% less energy over the period of the project than the standard unit. Based on the experimental data, computer simulations for nine cities were completed for a single-wide manufactured home with the solar reflective roof coating. Annual electric power savings ranged from 894 kWh in Rapid City to 2119 kWh for the same roof area in Los Angeles. The field performance of vacuum insulation panels was compared with laboratory performance. The panels will perform as expected if protected from puncture.

  3. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  4. Heliostat cost reduction study.

    SciTech Connect (OSTI)

    Jones, Scott A.; Lumia, Ronald. (University of New Mexico, Albuquerque, NM); Davenport, Roger (Science Applications International Corporation, San Diego, CA); Thomas, Robert C. (Advanced Thermal Systems, Centennial, CO); Gorman, David (Advanced Thermal Systems, Larkspur, CO); Kolb, Gregory J.; Donnelly, Matthew W.

    2007-06-01

    Power towers are capable of producing solar-generated electricity and hydrogen on a large scale. Heliostats are the most important cost element of a solar power tower plant. Since they constitute {approx} 50% of the capital cost of the plant it is important to reduce heliostat cost as much as possible to improve the economic performance of power towers. In this study we evaluate current heliostat technology and estimate a price of $126/m{sup 2} given year-2006 materials and labor costs for a deployment of {approx}600 MW of power towers per year. This 2006 price yields electricity at $0.067/kWh and hydrogen at $3.20/kg. We propose research and development that should ultimately lead to a price as low as $90/m{sup 2}, which equates to $0.056/kWh and $2.75/kg H{sup 2}. Approximately 30 heliostat and manufacturing experts from the United States, Europe, and Australia contributed to the content of this report during two separate workshops conducted at the National Solar Thermal Test Facility.

  5. Micro-Grids for Colonias (TX)

    SciTech Connect (OSTI)

    Dean Schneider; Michael Martin; Renee Berry; Charles Moyer

    2012-07-31

    This report describes the results of the final implementation and testing of a hybrid micro-grid system designed for off-grid applications in underserved Colonias along the Texas/Mexico border. The project is a federally funded follow-on to a project funded by the Texas State Energy Conservation Office in 2007 that developed and demonstrated initial prototype hybrid generation systems consisting of a proprietary energy storage technology, high efficiency charging and inverting systems, photovoltaic cells, a wind turbine, and bio-diesel generators. This combination of technologies provided continuous power to dwellings that are not grid connected, with a significant savings in fuel by allowing power generation at highly efficient operating conditions. The objective of this project was to complete development of the prototype systems and to finalize and engineering design; to install and operate the systems in the intended environment, and to evaluate the technical and economic effectiveness of the systems. The objectives of this project were met. This report documents the final design that was achieved and includes the engineering design documents for the system. The system operated as designed, with the system availability limited by maintenance requirements of the diesel gensets. Overall, the system achieved a 96% availability over the operation of the three deployed systems. Capital costs of the systems were dependent upon both the size of the generation system and the scope of the distribution grid, but, in this instance, the systems averaged $0.72/kWh delivered. This cost would decrease significantly as utilization of the system increased. The system with the highest utilization achieved a capitol cost amortized value of $0.34/kWh produced. The average amortized fuel and maintenance cost was $0.48/kWh which was dependent upon the amount of maintenance required by the diesel generator. Economically, the system is difficult to justify as an alternative to grid power. However, the operational costs are reasonable if grid power is unavailable, e.g. in a remote area or in a disaster recovery situation. In fact, avoided fuel costs for the smaller of the systems in use during this project would have a payback of the capital costs of that system in 2.3 years, far short of the effective system life.

  6. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  7. Feasibility Study of Economics and Performance of Solar Photovoltaics in the Commonwealth of Puerto Rico

    SciTech Connect (OSTI)

    Salasovich, J.; Mosey, G.

    2011-03-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on brownfield sites in the Commonwealth of Puerto Rico. All of the assessed sites are landfills. The sites were assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.119/kWh and incentives offered by Puerto Rico and by the serving utility, PREPA. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

  8. Cost effective manufacturing of the SEA 10X concentrator array

    SciTech Connect (OSTI)

    Kaminar, N.; McEntee, J.; Curchod, D. (Solar Engineering Applications Corp., San Jose, CA (United States))

    1991-11-01

    This report describes a low-cost, mass-producible 10X concentrator system that has been claimed to produce electricity at $0.04/kWh. It details changes in manufacturing techniques that could produce a concentrator system at a selling price of $0.71/W. (A simple design and a minimum number of parts and manufacturing steps reduced production costs.) Present production techniques, changes to improve these techniques, impediments to changes, and solutions to the impediments are described. This 10X concentrator system uses available components and manufacturing processes and one-sun solar cells in conjunction with inexpensive plastic lenses to generate about eight times the amount of electricity normally produced by these cells.

  9. Feasibility Study of Economics and Performance of Solar Photovoltaics at Massachusetts Military Reservation. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stafford, B.; Robichaud, R.; Mosey, G.

    2011-07-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying photovoltaics (PV) systems on a superfund site located within the Massachusetts Military Reservation (MMR). The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.17/kWh and incentives offered in the State of Massachusetts, such as the solar renewable energy credits. According to calculations, MMR can place 8 MW of ballast-weighted, ground-mounted PV systems on the crowns of the three landfill caps and the borrow pit with the PV modules tilted at 30 degrees.

  10. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  11. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  12. ER100/PPC184/ER200/PPC284, Fall 2014 Energy Units & Conversions, Global Energy Use

    E-Print Network [OSTI]

    Kammen, Daniel M.

    ft3 natural gas g. 4.490x1012 kWhe/yr x 1 0.14 x 1 2· 5.7 x 1 365 = 1.5x1010 m2 solar panels h.6106 1 x 1 106 = 2.3x107 M J/kg Natural gas = 3.9107 3 x 3 0.80 x 1 106 = 49 MJ/kg Oil = 6.1109 x-yr x 1 gal/30 mi = 4x10^8 gal gas saved/yr 2. 1x10^6 vehicles x 13000 mi/vehicle-yr x 1 kWh/5 mi = 2.6x

  13. Development of vanadium redox flow battery for photovoltaic generation system

    SciTech Connect (OSTI)

    Shibata, Akira; Sato, Kanji; Nakajima, Masato

    1994-12-31

    Photovoltaic power generation system (PV) requires a battery for night and rainy day. A redox flow battery has advantage over a lead acid one on this application for the capability of deep discharge and needlessness of equalized charge. The authors have developed the high performance vanadium redox flow battery for this purpose and inexpensive production technology of electrolyte which occupies the majority in the battery cost by chemical reduction from boiler plant by-product. The 2 kW (10 kWh) battery, the minimum unit for practical size battery (50 kW x 50 h), achieved 1.2 kW/cm{sup 2}-electrode area at the 100 mA/cm{sup 2} current density.

  14. Bayer Polymers: Plant Identifies Numerous Projects Following Plant-Wide Energy-Efficient Assessment

    SciTech Connect (OSTI)

    2003-08-01

    The Bayer Corporation undertook a plant-wide energy efficiency assessment of its New Martinsville, West Virginia, plant in 2001. The objectives were to identify energy saving projects in the utilities area. The projects, when complete, will save the company the loss of an estimated 236,000 MMBtu ($1.16 million) annually in energy from burning and leaking fossil fuels. Certain other projects will save the company 6,300,000 kWh ($219,000) of electrical energy each year. All of the projects could be duplicated in other chemical manufacturing facilities and most of the projects could be duplicated in other industries utilizing steam, pumps, and/or compressed air.

  15. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  16. Fort Polk EEAP. Final report

    SciTech Connect (OSTI)

    Busch, R.D.; Scheuch, K.E.; Shishman, T.T.

    1986-07-17

    This Final Presentation provides a summary of the work done under Increments A, B, E, and G of the Energy Engineering Analysis Program (EEAP) for Fort Polk Louisiana. The work was accomplished under Contract DACA63-80-C-0166 plus modifications with the Fort Worth District, Corps of Engineers. The vast majority of consumed energy at Fort Polk consists of electricity and natural gas. In FY75, Fort Polk used 48,399,000 kWh of electricity at a cost of $600,000. During that same period, 782,637 MCF of natural gas was purchased for $484,000. The total FY75 energy use was 1,368,327 MBtu.

  17. NREL/CCSE PEV Battery Second Use Project (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.

    2011-09-01

    This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

  18. Quantification of Energy and Emissions Saved in Energy Efficiency/ Renewable Energy (EE/RE) Programs in Texas 

    E-Print Network [OSTI]

    Haberl, J. S.; Baltazar, J. C.; Mao, C.

    2012-01-01

    (6.0 tons/OSD) 1,772 tons/yr for SO2 2,286,012 tons/yr for CO2 * Note $0.095/kWh, $0.65/therm p. 64 Energy Systems Laboratory © 2011 RENEWABLES: WHAT ARE THEY? Wind energy is the largest portion. 0 5,000,000 10,000,000 15...,000,000 20,000,000 25,000,000 30,000,000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 E le ct ri ci ty G en er at ed in M W h Year Annual Electricity Generated in Texas by Renewable Sources Solar Biomass Landfill gas Hydro Wind p. 65 Energy Systems...

  19. Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest

    SciTech Connect (OSTI)

    2013-10-01

    This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costs are $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings between Salishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.

  20. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.