National Library of Energy BETA

Sample records for kwh hymotion prius

  1. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  2. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  3. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicle’s fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energy’s Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  4. Report on Toyota Prius Motor Thermal Management

    SciTech Connect (OSTI)

    Hsu, J.S.

    2005-02-11

    In the current hybrid vehicle market, the Toyota Prius drive system is considered the leader in electrical, mechanical, and manufacturing innovations. It is a significant accomplishment that Toyota is able to manufacture and sell the vehicle for a profit. The Toyota Prius traction motor design approach for reducing manufacturing costs and the motor s torque capability have been studied and tested. The findings were presented in two previous Oak Ridge National Laboratory (ORNL) reports. The conclusions from this report reveal, through temperature rise tests, that the 2004 Toyota Prius (THSII) motor is applicable only for use in a hybrid automobile. It would be significantly undersized if used in a fuel cell vehicle application. The power rating of the Prius motor is limited by the permissible temperature rise of the motor winding (170 C) and the motor cooling oil (158 C). The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. They are approximately 15 kW with 105 C coolant and 21 kW with 35 C coolant. These continuous ratings are much lower than the 30 kW specified as a technical motor target of the U.S. Department of Energy FreedomCAR Program. All tests were conducted at about 24 C ambient temperature. The load angle of each torque adjustment was monitored to prevent a sudden stop of the motor if the peak torque were exceeded, as indicated by the load angle in the region greater than 90 electrical degrees. For peak power with 400 Nm torque at 1200 rpm, the permissible running time depends upon the initial winding temperature condition. The projected rate of winding temperature rise is approximately 2.1 C/sec. The cooling-oil temperature does not change much during short peak power operation. For light and medium load situations, the efficiency varies from 80% to above 90%, and the power factor varies from 70% to above 90%, depending on the load and speed. When the motor is loaded heavily near the peak-torque (400-Nm) region, the efficiency goes down to the 40-50% range, and the power factor is nearly 100%. The efficiency is not a major concern at the high-torque region. The water-ethylene-glycol heat exchanger attached to the motor is small. During continuous operation, it dissipates about 76% of the total motor heat loss with 35 C coolant. The heat exchanger is less effective when the coolant temperature increases. With 75 C coolant, the heat exchanger dissipates about 38% of the motor heat. When the coolant temperature is 105 C, the heat exchanger not only stops cooling the motor but also adds heat to the large motor housing that acts as an air-cooled heat sink. From start to the base speed, 400 Nms of torque can be produced by the Prius motor with a reasonably low stator current. However, the permissible running time of the motor depends on the load drawn from the motor and the coolant temperature. In the Toyota Prius hybrid configuration, if the motor gets too hot and cannot keep running, the load can be shifted back to the engine. The motor acts to improve the system efficiency without being overly designed. A detailed thermal model was developed to help predict the temperature levels in key motor components. The model was calibrated and compared with the experimentally measured temperatures. Very good agreement was obtained between model and experiment. This model can now be used to predict the temperature of key motor components at a variety of operating conditions and to evaluate the thermal characteristics of new motor designs. It should be pointed out that a fuel-cell motor does not have an engine to fall back on to provide the needed wheel power. Therefore, the design philosophy of a fuel-cell motor is very different from that of a hybrid Prius motor. Further thermal management studies in the high-speed region of the Prius motor, fed by its inverter, are planned.

  5. AVTA: 2013 Toyota Prius PHEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Toyota Prius PHEV 2013. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). The reports for download here are based on research done at Idaho National Laboratory. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  6. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  7. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  8. max kwh | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data book Homefuelleasing Homemaps Home Jweers'smax kwh

  9. AVTA: 2010 Toyota Prius Gen III HEV Testing Results

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Toyota Prius III hybrid-electric vehicle. Baseline data, which provides a point of comparison for the other test results, was collected at two different research laboratories. Baseline and other data collected at Idaho National Laboratory is in the attached documents. Baseline and battery testing data collected at Argonne National Laboratory is available in summary and CSV form on the Argonne Downloadable Dynometer Database site (http://www.anl.gov/energy-systems/group/downloadable-dynamometer-databas...). Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

  10. Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System

    SciTech Connect (OSTI)

    Burress, Timothy A; Campbell, Steven L; Coomer, Chester; Ayers, Curtis William; Wereszczak, Andrew A; Cunningham, Joseph Philip; Marlino, Laura D; Seiber, Larry Eugene; Lin, Hua-Tay

    2011-03-01

    Subsystems of the 2010 Toyota Prius hybrid electric vehicle (HEV) were studied and tested as part of an intensive benchmarking effort carried out to produce detailed information concerning the current state of nondomestic alternative vehicle technologies. Feedback provided by benchmarking efforts is particularly useful to partners of the Vehicle Technologies collaborative research program as it is essential in establishing reasonable yet challenging programmatic goals which facilitate development of competitive technologies. The competitive nature set forth by the Vehicle Technologies Program (VTP) not only promotes energy independence and economic stability, it also advocates the advancement of alternative vehicle technologies in an overall global perspective. These technologies greatly facilitate the potential to reduce dependency on depleting natural resources and mitigate harmful impacts of transportation upon the environment.

  11. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System Interim Report

    SciTech Connect (OSTI)

    Ayers, C.W.

    2004-11-23

    Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  12. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  13. Model year 2010 (Gen 3) Toyota Prius level 1 testing report.

    SciTech Connect (OSTI)

    Rask, E.; Duoba, M.; Lohse-Busch, H.; Bocci, D.; Energy Systems

    2010-06-24

    As a part of the US Department of Energy's Advanced Vehicle Testing Activity (AVTA), a model year 2010 Toyota Prius (Generation 3) was procured by eTec (Phoenix, AZ) and sent to ANL's Advanced Powertrain Research Facility for the purposes of 'Level 1' testing in support of the Advanced Vehicle Testing Activity (AVTA). Data was acquired during testing using non-intrusive sensors, vehicle network connection, and facilities equipment (emissions and dynamometer data). Standard drive cycles, performance cycles, steady-state cycles and A/C usage cycles were conducted. Much of this data is openly available for download in ANL's Downloadable Dynamometer Database (D{sup 3}). The major results are shown here in this report. Given the preliminary nature of this assessment, the majority of the testing was done over standard regulatory cycles and seeks to obtain a general overview of how the vehicle performs. These cycles include the US FTP cycle (Urban) and Highway Fuel Economy Test cycle as well as the US06, a more aggressive supplemental regulatory cycle. Data collection for this testing was kept at a fairly high level and includes emissions and fuel measurements from the exhaust emissions bench, high-voltage and accessory current and voltage from a DC power analyzer, and minimal CAN bus data such as engine speed and pedal position. The following sections will seek to explain some of the basic operating characteristics of the MY2010 Prius over standard regulatory cycles.

  14. 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  15. 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk

    2013-01-01

    The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

  16. Design and cost analysis of a 20-kWh bipolar zinc-bromine battery

    SciTech Connect (OSTI)

    Einstein, H.; Bellows, R.J.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1981-01-01

    Zinc-Bromine secondary batteries are attractive systems for electric vehicles and energy storage (off-peak and photovoltaic) applications because of low cost raw materials, relatively high energy density, and ambient temperature operation. Exxon's approach to the system uses conductive carbon plastic electrodes in a bipolar configuration, separable bromine complexes, and selective membranes in a circulating electrolyte design. The 20 kWh battery design consists of two 10 kWh battery stacks placed back-to-back with a common center electrolyte feed block. Each of the two battery stacks consists of 78 cells for a system voltage of 120 volt output. Active electrode area per electrode is 12 dm/sup 2/. Cell-to-cell spacing is 0.25 cm. The two-stack module is assembled over a tray serving as a cover for the plastic electrolyte reservoir. Unit cells are comprised of alternating bipolar electrodes and separator assemblies. For various applications, accessories and controls are built into the system. The projected battery factory price of $28./kWh is discussed, along with the manufacturing, materials, and labor costs.

  17. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  18. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  19. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  20. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  1. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  2. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just Hot ResourcesEnergy JumpKLDKSLKWhOURS

  3. OpenEI Community - max kwh

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 enBigWater

  4. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    · Market Segments · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End-in Prius Battery kWh: Charge Time: Level 1 Level 2 Level 3 All Electric Range: Price: 3hrs/110v (15A) 1 rebate program (CCSE) · Data collected on February-March 2012 Survey Leaf Volt Tesla San Diego 312 24 0

  5. AVTA: 2012 Toyota Prius PHEV Downloadable Dynamometer Database Reports

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. ...

  6. Honey, Did You Plug in the Prius? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before...

  7. Honey, Did You Plug in the Prius? | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate Webinar Slides HomeHomeServices

  8. kWh Analytics: Quality Ratings for PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  9. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump to:MaxInc

  10. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump

  11. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW

  12. ATOC/CHEM 5151 Fall 2014 Factcheck: Mercedes E250 versus a Prius

    E-Print Network [OSTI]

    Toohey, Darin W.

    ...most regular gasoline contains 10% ethanol in order to further reduce pollutants like carbon monoxide. We on 71 lbs of diesel Assuming that the amount of chemical energy from combustion from a lb of gasoline an internet search engine to determine the amount of CO2 produced by combustion of a gallon of gasoline

  13. Microsoft Word - TM-2010-253 - 2010 Prius Report - 26 - Tim - edited 2-16-2011

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby aLED Street LightingFromJune 2013 DOE/NV--325-Rev.11

  14. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy Information

  16. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergy

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergyEnergy

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation HeatPumps

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen Energy

  1. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen

  2. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly

  3. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a property

  4. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a

  5. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is

  6. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This

  7. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search

  8. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to: navigation,

  9. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:

  10. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:Information

  11. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump

  12. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas JumpInformation

  13. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas

  14. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGasInformation

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to: navigation,

  17. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to:

  18. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrunkWh

  19. NOT EVERY HYBRID BECOMES ANOT EVERY HYBRID BECOMES A PRIUS: THE CASE AGAINST THEPRIUS: THE CASE AGAINST THE

    E-Print Network [OSTI]

    for the expansion of nuclear energyof nuclear energy ·· Waste ManagementWaste Management ·· Fuel Resource Management solutions to the waste management and fuel resource issues. #12;1111 Status Of Fusion as an Energy ITS HYBRID CAR CALLED THE NUCLEON WITH NUCLEAR DRIVECALLED THE NUCLEON WITH NUCLEAR DRIVE #12;Past

  20. ATOC 3500/CHEM 3151 Spring 2014 Which is more fuel efficient, a Mercedes E250 or a Prius?

    E-Print Network [OSTI]

    Toohey, Darin W.

    pollutants like carbon monoxide. We really need to account for the even lighter weight of 90%/10% gasoline, which traveled 410 miles on 71 lbs of diesel Assuming that the amount of chemical energy from combustion by combustion of a gallon of gasoline and a gallon of diesel. On the basis of CO2 emissions, which vehicle

  1. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation

  2. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    electric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (k

  3. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric...

  4. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  5. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-01-01

    Electricity Price Price 1998$/kWh 1998$/kWh Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t ? The carbon

  6. 2004 status report: Savings estimates for the Energy Star(R) voluntarylabeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  7. 2003 status report savings estimates for the energy star(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  8. 2005 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-01-01

    Electricity Price Price 2003$/kWh 2003$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  9. 2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

    2003-01-01

    Price Price 2000$/kWh 2000$/kWh Electric Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  10. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  11. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6222015 14:27 SLCAIP Hydro Generation Estimates Month Forecast Generation less losses (kWh) Less Proj. Use (kWh) Net Generation (kWh) SHP Deliveries (kWh) Firming Purchases...

  12. Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs

    E-Print Network [OSTI]

    Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

    2008-01-01

    7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oil Baseload Coal7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

  13. EHRS Impact on Engine Warm-up and Fuel Economy

    Broader source: Energy.gov [DOE]

    Presents an investigation performed on a Toyota Prius III with the objective to quantify and demonstrate the benefits of current exhaust heat recovery technologies

  14. We All Share One Planet: Comparative Case Studies in Education for Sustainable Development in India

    E-Print Network [OSTI]

    Arribas Layton, Lucas

    2013-01-01

    celebrities sporting the eco-friendly Prius or other hybrideveryone wants to seem eco-friendly (Lafferty 1996). In acompost production, eco- friendly rural infrastructures,

  15. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  17. Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities

    E-Print Network [OSTI]

    Williams, Brett D; Kurani, Kenneth S

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  18. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01

    combustion Prius, Eco Fuel CNG Hybrid Escape, and Solara methanol vehicle, and a CNG vehicle. The participants werewas predominately the CNG vehicle. The authors explain the

  19. Saving Fuel, Reducing Emissions

    E-Print Network [OSTI]

    Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

    2009-01-01

    and Impacts of Hybrid Electric Vehicle Options for Compactand Impacts of Hybrid Electric Vehicle Options. (EPRI: PaloEvaluation of Hybrid Electric Vehicles: Toyota’s Prius vs.

  20. National Parks Clean Up with Alternative Fuels | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel vehicles and infrastructure (including biodiesel, compressed natural gas, E85-ethanol, and propane). As a result of industry partnerships, Toyota donated 23 Prius...

  1. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  2. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01

    0.11 $/kWh, as in San Francisco, Baltimore, Phoenix and Lask) l) Phoenix, AZ Minneapolis, MN Energy ($/kWh) Power ($/Phoenix and Miami, where the average electricity price is 0.05 $/kWh,

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  4. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01

    per kWh) i f a $10 per metric ton carbon allowance priceper kWh) i f a $100 per metric ton carbon allowance price

  5. SAVE A NAPKIN SAVE A TREE: THE ROLE OF METAPHORS IN PRODUCT DESIGN TO CHANGE BEHAVIOR

    E-Print Network [OSTI]

    Papalambros, Panos

    dispenser and study the effect on napkin consumption rate in an actual retail location. Before presenting environmental impact. For example, in the Prius automobile from Toyota Motor Company, an instantaneous fuel

  6. In the Viewpoints section, academics, practitioners and experts share their perspectives on policy questions relevant to sustainable development. In this issue, experts address the question

    E-Print Network [OSTI]

    Vermont, University of

    " house, buying lots of environmentally sustainable products, driving his/her Prius 20,000 miles a year, cultural and ecological criteria, and how "business-as-usual" development and more sustainable alternatives

  7. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  8. Essays in Behavioral Economics and Environmental Policy

    E-Print Network [OSTI]

    Sexton, Steven E.

    2012-01-01

    flex-fuel fleet), and hybrid cars (like the Prius, the HondaStates; 48% of the 290,271 hybrid cars sold in the U.S. indescribed by Khan, with hybrid cars enjoying greater market

  9. September 10, 2009

    Office of Environmental Management (EM)

    enables consumers to receive near-real time usage data and adjust their behavior to lower their monthly electric bill. Known as the Prius effect, smart grid pilot projects have...

  10. An Update on Advanced Battery Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    50 billion in 2020, an average annual growth rate of roughly 25 percent. Earlier this year, the Toyota Prius became the third best-selling vehicle in the world. Virtually every...

  11. Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sales overall and led among plug-in hybrid vehicles with sales of about 25,000. As a proportion of sales, the Nissan Leaf and Toyota Prius Plug-in hybrid had the most even...

  12. Quenching China's Thirst for Renewable Power: Water Implications of China's Renewable Development

    E-Print Network [OSTI]

    Zheng, Nina

    2014-01-01

    rare earth metal mining on water and air quality are gainingrare earth metal mining on water and air quality are gainingeven Priuses, severe air and water pollution problems with

  13. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 were the Nissan Leaf, Chevrolet Volt, Tesla Model S, Toyota Prius PHEV, and Ford Fusion Energi. From the first plug-in vehicle sales in 2011 to 2014 about 287 million...

  14. A study in hybrid vehicle architectures : comparing efficiency and performance

    E-Print Network [OSTI]

    Cotter, Gavin M

    2009-01-01

    This paper presents a comparison of performance and efficiencies for four vehicle power architectures; the internal combustion engine (ICE), the parallel hybrid (i.e. Toyota Prius), the serial hybrid (i.e. Chevrolet Volt), ...

  15. Reuse of hybrid car power systems

    E-Print Network [OSTI]

    Kirkby, Nicholas (Nicholas J.)

    2015-01-01

    Used hybrid car power systems are inexpensive and capable of tens of kilowatts of power throughput. This paper documents a process for using the second generation Toyota Prius inverter module to drive a three phase permanent ...

  16. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  17. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  18. An Estimate of Energy Use in Laboratories, Cleanrooms, and Data Centers in New York

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01

    cost ($/MCF) NY - Labs - Electricty expenditures (Million $)kWh) NY - Data Centers - Electricty expenditures (Million $)

  19. Guidelines for Company Reporting on Greenhouse Gas Emissions Annexes updated July 2005

    E-Print Network [OSTI]

    0.32 LPG kWh x 0.214 therms x 6.27 litres x 1.49 Coking Coal tonnes x 2736 kWh x 0.331 Aviation.63 Petrol tonnes x 3135 kWh x 0.24 litres x 2.30 Fuel Oil tonnes x 3223 kWh x 0.27 Coal2 tonnes x 2548 kWh xWh x 0.25 Petroleum Coke tonnes x 3410 kWh x 0.34 Refinery Miscellaneous kWh x 0.24 therms x 7

  20. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  1. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  2. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light-...

  3. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    melded rate for this site was 0.056 per kWh for electricity. However, if the national electricity rate of 0.1022kWh was used the payback would change to between four and five...

  4. Alliant Energy Interstate Power and Light - Residential Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: 1.25kWh x estimated first year output Standard Solar PV: 0.75kWh x estimated first...

  5. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    and in the latter, its PV of cost savings is per kWh. NoteDG unit, then it obtains the PV of cost savings relative toremaining terms comprise the PV of cost savings per kWh from

  6. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  7. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    E-Print Network [OSTI]

    Sanchez, Marla

    2010-01-01

    energy price in year t (in $/kWh or $/MBtu) C t = The carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  8. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    cost per kWh than current energy efficiency procurement programs in California.Energy Down The Drain: The Hidden Costs of California’sCost of Procurement of Electricity Efficiency (Ratio of respective $/Annual KWh) California Energy

  9. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of electricity from new hydrothermal development to 6 kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6 kWh by 2030. For more information, see this funding...

  10. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    Central Changchun East China Energy Databook 7.0 Table 8C.2.Total scoProvRegion East Chapter 4, Energy Consumption kwh/Total scoProvRegion East Chapter 4, Energy Consumption kwh/

  11. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Hydrologic Area: East Branch Energy 2,97 x 3,25 x 108 KWH =Energy conservation: Family values, household practices, and contextual values, East1974 energy costs were 3,249 KWH/AF for the East Branch and

  12. Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge 

    E-Print Network [OSTI]

    Anderson, K. J.; Annen, B.; Scott, S.

    2003-01-01

    capital upgrades. As of the end of 2002 the program has saved 16 million kWh annually and by 2010 the region expects to save 320 million kWh a year....

  13. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    kwh/gallon X 10- 3 a Waste Water Treatment kwh/gallon X 10-3re- requirements for waste water treatment. This year,requirements for residential waste water treatment have also

  14. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    E-Print Network [OSTI]

    Michael, Stadler

    2011-01-01

    $/yr) Battery Capacity Installed (kWh) Flow Battery PowerInstalled (kW) Flow Battery Energy Installed (kWh) PV326.7 kW as well as a flow battery with a rated peak power

  15. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    electrical stationary storage. An amount of 371kWh of EV batteries energy, corresponding to around 23 employee cars

  16. Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy

    E-Print Network [OSTI]

    Bezryadina, Anna Sergeyevna

    2012-01-01

    Photovoltaic solar panels which generate electricity directly currently cost around $0.24 per kWh in Central

  17. Energy Storage for Long Endurance AUVs Gwyn Griffiths

    E-Print Network [OSTI]

    Griffiths, Gwyn

    energy batteries · Manganese alkaline 110 Wh.kg-1 £71 per kWh Rayovac · Lithium ion & Lithium polymer 100 - 195 Wh.kg-1 ~£1400 per kWh Capital cost · Lithium manganese dioxide 270 Wh.kg-1 £667 per kWh SAFT LM Eagle Pitcher LCF111 r=6.4 r=108 · Energy & cost for 700 kg energy payload Manganese alkaline: 77 kWh £5

  18. A database of window annual energy use in typical North American residences

    E-Print Network [OSTI]

    Arasteh, Dariush; Huang, Joe; Mitchel, Robin; Clear, Bob; Kohler, Christian

    1999-01-01

    Kwh) Maximum Minimum Madison, WI Denver, CO Washington, DC Seattle, WA Raleigh, NC San Francisco, CA Phoenix,

  19. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  20. Selecting Thermal Storage Systems for Schools 

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01

    per meter + KWH charge. On peak monthly average (June 89 thru September 89) $.0676/KWH. Off peak monthly average (October 89 thru May 90) $.0481/KWH. Natural Gas - Lone Star Gas Company - September 88 thru August 89 monthly average $4.41 MCF...

  1. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    kW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermal

  2. Cooling season study and economic analysis of a desiccant cooling system 

    E-Print Network [OSTI]

    Lee, James Howard

    1992-01-01

    10 20 30 40 50 60 70 80 Gas Cost (3/GJ) Figure 4. 4 Gas Price vs DINC Cycle Payback Period at Various Electricity Prices SEER = 12 35 20 18 16 ~ 14 ~ 12 D o 10 8 6 o 4 $0. 06/Kwh $0. 09/Kwh $0. 12/Kwh $0. 15/Kwh $0. 'I 8/Kwh 10 20... IV ECONOMIC ANALYSIS V CONCLUSIONS 28 36 NOMENCLATURE 39 REFERENCES 46 APPENDIX A - HOUSE CONSTRUCTION DATA . . APPENDIX B - SECOND LAW COMPARISON 48 53 APPENDIX C - COOLING SEASON AND DINC CYCLE PROGRAM LISTING 72 APPENDIX D - ECONOMIC...

  3. A Language Model Approach to Keyphrase Extraction Takashi Tomokiyo and Matthew Hurst

    E-Print Network [OSTI]

    of hybrid cars may harvest messages from online fo- rums. They may then want to rapidly construct a hi car example, the result of this pro- cess is a set of phrases like that shown in Figure 1. 1 civic hybrid 2 honda civic hybrid 3 toyota prius 4 electric motor 5 honda civic 6 fuel cell 7 hybrid cars 8

  4. ZEV Ac'onable Science Webinar Series Presenta-on 1

    E-Print Network [OSTI]

    California at Davis, University of

    valuable than increasing the size of the battery pack Franke, et al, August 2011 #12;PHEVs only complicate-fuel options: n Gasoline vs. electric consumption n When will driver recharge the vehicle? 13 #12;The Prius-depleting range o EV, "Blended" & CS operation modes 14 Photo: Toyota ESQ #12;Electricity consumption varies

  5. Double Planetary Gear (PG) power-split hybrid powertrains have been used in production vehicles from Toyota

    E-Print Network [OSTI]

    Peng, Huei

    ABSTRACT Double Planetary Gear (PG) power-split hybrid powertrains have been used in production are power-split type [3], which utilizes one or more planetary gears as the transmission device. Toyota Prius, Ford Fusion and Chevrolet Volt are all power-split hybrid vehicles. The planetary gears

  6. Electric Propulsion for Cars: New Directions for Energy Research

    E-Print Network [OSTI]

    Firestone, Jeremy

    a Prius 220 gal/year #12;Substitute Alternative Fuels for Gasoline Electricity Natural gas Methanol ? Bio: CEC, EIA 2003 CA US Natural Gas 37% 17% Large Hydro 16% 7% Coal 21% 51% Nuclear 15% 20% Eligible is used in: US 2005 · petrochemicals 7% · freight and aviation 32% · light vehicles 51% 90% #12;Oil Use vs

  7. LowCostGHG ReductionCARB 3/03 Low-Cost and Near-Term Greenhouse Gas Emission Reduction

    E-Print Network [OSTI]

    Edwards, Paul N.

    manufacturers to focus on high fuel-economy cars. And Toyota Prius and Honda Civic Hybrid are wonderful, or oil resources. Nor would the anticipated 40 mpg Ford Escape hybrid in the "small SUV" class Cycle (UDC) for representative cars and light trucks.1 The horizontal axis shows measured emissions

  8. 912 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 47, NO. 2, MARCH/APRIL 2011 Impact of SiC Devices on Hybrid Electric and

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , Senior Member, IEEE, and Burak Ozpineci, Senior Member, IEEE Abstract--The application of silicon carbide and weight and the vehicle's fuel economy. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV carbide (SiC). I. INTRODUCTION AS THE issues of natural resource depletion and en- vironmental impacts

  9. Atmos. Chem. Phys., 6, 53395346, 2006 www.atmos-chem-phys.net/6/5339/2006/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    - ning FTP-75 and typical driving cycles for the Mexico City Metropolitan Area (MCMA) on a Toyota Prius in car technology to en- ter the market is the gas-electric hybrid car. It has become a realistic way: Analysis of non-regulated vehicular emissions by extractive FTIR spectrometry: tests on a hybrid car

  10. 17 June 2010 About GCC Contact RSS Subscribe Twitter headlines UNEP: Existing Greenhouse Gas Reduction Pledges "Unlikely" To Hold Warming To 2 C Or Less By Mid-

    E-Print Network [OSTI]

    Southern California, University of

    Oil Sands Synthetic Crude Output to 425,000 Barrels per Day by 2020 » Print this post New Institute-size engines. Vinay Patwardhan, the company's director of group planning and development and a merchant ship will be the principal investigators. From the Dashboard Prius Tops Japan Sales for Third Month in a Row in July

  11. Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean and fast.

    E-Print Network [OSTI]

    passenger-car importer, Volkswagen, with new models of their own. As of now, only the VW Jetta/Golf/Beetle 1Diesel Futures Forget the black soot and smoke. Modern diesel-powered cars are quiet, clean, and be within a gnat's whisker of a gasoline hybrid like the Prius. The studies of total energy consumption

  12. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Kammen, Daniel M.

    in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity fall by at least a factor of two, or gasoline prices double, the present value of fuel savings companies now offer to convert HEVs (such as the Toyota Prius and Ford Escape models) into PHEVs and plan

  13. Cost vs. performance ... Gwyn Griffiths email: gxg@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/

    E-Print Network [OSTI]

    Griffiths, Gwyn

    ) Specific energy (Wh.kg-1 ) Cell cost per kWh (£) Cost per kWh inc. assembly & disposal. (£) Mn Alkaline 0@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/ Chemistry Cost per cell in quantity (£) Energy per cell (Wh://www.noc.soton.ac.uk/OED/gxg/ Cost & performance of Li-Po secondary batteries Component Capital cost Amortised cost per kWh Cost per

  14. Samuel Sandoval Solis, PhD Assistant Professor

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Samuel Sandoval Solis, PhD Assistant Professor University of California, Davis Department of Land of 10 #12;Hoover Dam 158 m 35.2 Km3 4.2 bill. KWh $49M - 1936 Oroville Dam 230 m 4.4 Km3 2.2 bill. KWh Shasta Dam 159 m 5.6 Km3 1.8 bill. KWh $36M - 1945 #12;· Masonry - Arch Dams · Gravity Dams · Embankment

  15. J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?

    E-Print Network [OSTI]

    Gerwert, Klaus

    ­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

  16. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    1969. "Scrubber Survey: a Lime/Limestone Trend," ElectricalMills/Kwh Process Limestone Lime Magnesia Cat-Ox Sodium Tonsto Unsaturated Operation of Lime and Limestone Scrubbers,"

  17. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    Residential Sector Electricity Prices in CaliforniaResidential electricity prices in the Los Angeles area are currently about $0.10 per kWh, but the California

  18. Flow of mantle fluids through the ductile lower crust: Helium isotope trends

    E-Print Network [OSTI]

    Kennedy, B. Mack; van Soest, Matthijs C.

    2008-01-01

    particularly for geothermal energy development. Mantlex 10 kWh of accessible geothermal energy. This is a sizableBasic Energy Sciences and Office of Geothermal Technologies

  19. Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels

    E-Print Network [OSTI]

    Delucchi, Mark

    1996-01-01

    36.5 SCF of natural gas per square foot (Energy Information2.5 kWh per square foot for lighting (Energy Information

  20. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    the very aggressive “passive house” standard of 15 Kwh/m2-yplus energy houses”) which combine a passive solar direct

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  2. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    7. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  3. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  6. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  7. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  8. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  9. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  10. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  11. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot...

  12. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  14. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  15. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  16. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  17. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric system more options for solutions and resources, from home energy management and demand response to participating in the energy market using its KWH, KW, and ancillary...

  18. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity remains .... * Achieve parity with natural gas @5-6 kWh * Establish offshore wind deployment * Provide foundational R&D to facilitate wind as a principal...

  19. Determining the Lowest-Cost Hydrogen Delivery Mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2008-01-01

    $0.05 to $0.075/kWh, diesel fuel price increases from $2 toin energy prices (electricity and diesel fuel), and storage

  20. Determining the lowest-cost hydrogen delivery mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2007-01-01

    to $0.075/kWh, the diesel fuel price increases from $2 to $in energy prices (electricity and diesel fuel), and storage

  1. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    -voltaic capacity, 250kW of wind turbine capacity, 400kWh of vanadium redox flow battery storage, and local grid

  2. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    electric storage thermal storage decoupling by Figure ES 1.by decoupling by thermal storage representative exampleor $/kWh) lifetime (a) thermal storage 1 absorption chiller

  3. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    residences (homes) for EV charging: $0.138/kWh EnvironmentalStorage conclusions EV Charging / discharging pattern mainlythe healthcare facility EV battery charging efficiency EV

  4. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    battery storage.grid, the cost of battery storage per unit of load servedalong with 22 kWh of battery storage. This study claims only

  5. Separating myths from reality in PV inverter reliability

    E-Print Network [OSTI]

    Rollins, Andrew M.

    . · This is based upon a LCOE of 5 cents per kWh, so reliability is critical · MTBF of string inverters in 2006: 5

  6. Technical Report NREL/TP-7A2-48267

    E-Print Network [OSTI]

    -conditioning KIUC Kauai Island Utility Cooperative kWh kilowatt-hour LCOE levelized cost of energy M&V measurement

  7. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    and amortization ERCOT Electric Reliability Council of Texas kW kilowatt kWh kilowatt-hour LCOE levelized cost

  8. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    6. Solar Power Dish Engine for Wastewater Plant Electricitytreatment plant 4 MGD with 1 MW Solar power generation kWh

  9. Renewable Energy Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind): * Innovation Concepts and Emerging Technologies detail designs to reduce the cost of wind to compete unsubsidized with fossil-based alternatives (projected as .06kWh)....

  10. Following electron flow: From a Gram-positive community to mechanisms of electron transfer

    E-Print Network [OSTI]

    Wrighton, Kelly Catherine

    2010-01-01

    annually to treat food processing waste (3, 4). Moreover,waste alone contains 34 billion kWh of energy (3), while food

  11. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01

    C. McParland, "Open Automated Demand Response Communications2011. Utility & Demand Response Programs Energy ProviderAnnual Consumption (kWh) Demand Response Program Curtailment

  12. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01

    price of electric vehicle electricity exchange at home, $/kWh marginal carboncarbon emissions rate from generation technology j, kg/kWh price

  13. 2006 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan, Gregory K.

    2006-01-01

    Price Source Carbon Emissions Factor for Electricity kg C/kWh Carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  14. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01

    Washing Machines Fluorescent Ballasts Electric Water HeatersRoom AC Washing Machines $/kWh Electric Water HeatersWashing Machine) Cooking Products (Electric Induction

  15. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    SAS-PAS Electric Water Heating UEC (kWh) 13 Reference (Jannuzzi G. 2005) (SAS+PAS Other Average Efficiency Base Case Reference Voice Mag. (oct 2005) (

  16. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01

    Energy and Demand Prices . . . . . . . . . . . . . . . . . . . . . .US DOE 1999. Marginal Energy Prices Report U.S. Departmentmarginal price Marginal energy price in cper kwh Marginal

  17. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy

    2013-01-01

    price of electricity charged to industrial customers per kWh was the greatest in Japan ($0.154), followed by Germany (

  18. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01

    demand savings, each kWh saved with this efficiency measuresavings with peak demand. Previous analysis indicates that the ClF of efficiency measures

  19. Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007

    E-Print Network [OSTI]

    .498 Coking Coal tonnes x 2810 x 2810 kWh x 0.349 x 0.332 Aviation Spirit tonnes x 3128 x 3128 kWh x 0.250 x 0.281 x 0.267 Burning Oil1 tonnes x 3150 x 3150 kWh x 0.258 x 0.245 litres x 2.518 x 2.518 Coal 2 tonnes xWh x 0.249 x 0.237 Lubricants tonnes x 3171 x 3171 kWh x 0.263 x 0.250 Petroleum Coke tonnes x 3410 x

  20. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Electricity Expenditures by Census Region for Non-Mall Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square...

  1. Peak CO2? China's Emissions Trajectories to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01

    kWh) in 2050 Installed capacity of wind, solar, and biomassTWh in 2050 Installed capacity of wind, solar, and biomass

  2. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01

    kWh) in 2020 Installed capacity of wind, solar, and biomassgce/kWh) in Installed capacity of wind, solar, and biomass

  3. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  4. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  5. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2007-01-01

    house in a Marine climate. Annual Energy Consumptionmarine climate has very little air conditioning - compressor energyEnergy Consumption Relative to Unvented House, kWh Marine -

  6. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    gas-fired genset, solar thermal collectors, an absorptionchiller, 722 kW of solar thermal collectors, 1100 kWh of

  7. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    chiller (kW) solar thermal collector (kW) electricalchiller, 722 kW of solar thermal collectors, 1100 kWh of

  8. How Much Can a Campus Save on Utility Bills by Turning a 5-Workday Week Into a 4­Workday Week 

    E-Print Network [OSTI]

    Zhou, J.; Giebler, T.; Wei, G.; Turner, W. D.

    2003-01-01

    average electricity price during this period is $0.0457/kWh from Monday to Friday, and $0.0359/kWh for Saturday and Sunday, based on the current electricity utility contract between the university and the utility company. TAMUCC Whole Campus...) consumption (daily) profiles for weekdays, weekends and holidays. Daily WCE difference between a typical weekday and a typical weekend is around 20,000 kWh; Daily WCE difference between a typical weekend and a typical holiday is around 10,000 kWh; Daily...

  9. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

  10. SunShot Incubator Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding rounds. Awardees CURRENT PROJECTS PAST PROJECTS Soft Costs Aurora Solar, Inc. Clean Energy Collective Demeter Power Group EnergySage Faraday Genability kWh Analytics...

  11. Chap. 4-6. ATP, glycogen, protein Page 1 of 40

    E-Print Network [OSTI]

    Sharp, Kim

    to be aerobic, meaning that it uses O2. The hybrid car has another power system; this system is electrical.1 The human body has a duel power system In hybrid cars, such as a PriusTM , power is supplied by two systems in metabolism: C,H (gasoline in cars, food in people) + O2 CO2 + H2O + energy The above reaction is said

  12. Vehicle Technologies Office: AVTA- Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. This page provides data on the hybrid electric versions of the Volkswagen Jetta, Ford C-Max, Chevrolet Malibu, Honda Civic, Hyundai Sonata, Honda CRZ, Honda Civic with Advanced Experimental Ultra Lead Acid Battery, Mercedes Benz, Toyota Prius Gen III, Ford Fusion, Honda Insight and Honda CR-Z.

  13. Technology and Cost of the Model Year (MY) 2007 Toyota Camry HEV Final Report

    SciTech Connect (OSTI)

    None

    2007-09-30

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  14. Technology and Cost of the MY 2007 toyota Camry HEV -- A Subcontract Report

    SciTech Connect (OSTI)

    Marlino, Laura D [ORNL

    2007-09-01

    The Oak Ridge National Laboratory (ORNL) provides research and development (R&D) support to the Department of Energy on issues related to the cost and performance of hybrid vehicles. ORNL frequently benchmarks its own research against commercially available hybrid components currently used in the market. In 2005 we completed a detailed review of the cost of the second generation Prius hybrid. This study examines the new 2007 Camry hybrid model for changes in technology and cost relative to the Prius. The work effort involved a detailed review of the Camry hybrid and the system control strategy to identify the hybrid components used in the drive train. Section 2 provides this review while Section 3 presents our detailed evaluation of the specific drive train components and their cost estimates. Section 3 also provides a summary of the total electrical drive train cost for the Camry hybrid vehicle and contrasts these estimates to the costs for the second generation Prius that we estimated in 2005. Most of the information on cost and performance were derived from meetings with the technical staff of Toyota, Nissan, and some key Tier I suppliers like Hitachi and Panasonic Electric Vehicle Energy (PEVE) and we thank these companies for their kind cooperation.

  15. Expressive Power-Based Resource Allocation for Data Centers Benjamin Lubin

    E-Print Network [OSTI]

    Chen, Yiling

    Expressive Power-Based Resource Allocation for Data Centers Benjamin Lubin Harvard University David C. Parkes Harvard University Abstract As data-center energy consumption continues to rise billion kWh; that is, 1.5% of the 4 trillion kWh consumed in total. This is the amount of energy used by 5

  16. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  17. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  18. China's March on the 21st Century

    E-Print Network [OSTI]

    Deutch, John

    ,523/3,299 5,250/10,581 25,028/43,676 0 1 2 3 4 5 6 7 8 Oil Natural Gas Electricity Nuclear Electricity Coal CO/day (oil); trillion cu feet (natural gas); billion kWh (electricity); billion kWh (nuclear electricity COORDINATOR NATIONAL SECURITY AND INTERNATIONAL POLICY CENTER FOR AMERICAN PROGRESS China's remarkable

  19. Energy in the Developing World Physics of Sustainable Energy

    E-Print Network [OSTI]

    Kammen, Daniel M.

    wellbeing (prosperity) 2. Life expectancy, public heath, health care 3. Literacy and education UN publishes Development Index (HDI) vs. Electricity ConsumpPon (kWh) Human Development Index (HDI) vs. Electricity ConsumpPon (kWh) Human Development Index (HDI) vs. Electricity

  20. Project Profile: Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Infinia, under the Thermal Storage FOA, is developing a thermal energy storage (TES) system that, when combined with Infinia's dish-Stirling system, can achieve DOE's CSP cost goals of $0.07/kWh by 2015 for intermediate power and 5¢/kWh by 2020 for baseload power.

  1. Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP

    Broader source: Energy.gov [DOE]

    Infinia, under the CSP R&D FOA, is developing a 30 kW CSP system that utilizes a multi-cylinder, free-piston Stirling engine to achieve the goal LCOE of $0.07–$0.10/kWh by 2015 and $0.05–$0.07/kWh by 2020.

  2. Reducing the Environmental Footprint and Economic Costs of Automotive Manufacturing through an Alternative Energy Supply

    E-Print Network [OSTI]

    Yuan, Chris; Dornfeld, David

    2009-01-01

    the ownership cost for clean energy technologies, bringingcosts of fuel cells fall in between. The clean energycost of 6.9 cents/kwh before incentives and 4.1 cents/kwh after incentives, is the most economical clean energy

  3. What does a negawatt really cost?

    E-Print Network [OSTI]

    Joskow, Paul L.

    1991-01-01

    We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

  4. Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters 

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    2002-01-01

    initial construction cost per ac-ft of water savings measure is $26.87 per ac-ft of water savings. The aggregate initial construction cost per BTU (kwh) of energy savings measure is $0.0001603 per BTU ($0.547 per kwh). The amount of initial construction...

  5. secondary purpose was to alert people to the relative size of the different resources avail

    E-Print Network [OSTI]

    the price (12 ¢/kWh) California utilities are willing to pay for any daytime electricity ­ and the rest. Driven by rising carbon dioxide and oil prices, these are big changes in the handful of years since like those being made by First Solar, 16 ¢/kWh PV (Figure 1) and CSP right now in the US Southwestern

  6. THE ECONOMICS OF CO2 SEPARATION AND CAPTURE Howard J. Herzog

    E-Print Network [OSTI]

    for CO2 sequestration could be less than 1 ¢/kWh from advanced coal plants and less than 1.5 ¢/kWh from Laboratory Cambridge, MA 02139 USA #12;3 Abstract Carbon management and sequestration offers an opportunity and increasing the use of non-fossil energy resources. When most people think of sequestering carbon, they think

  7. 1 Copyright 2010 by ASME Proceedings of the ASME 2010 International Design Engineering Technical Conferences &

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design the greatest reduction in lifecycle GHG emissions. At today's average US energy prices, battery pack cost must

  8. www.advmat.de www.MaterialsViews.com

    E-Print Network [OSTI]

    McCalley, James D.

    and small, in the USA alone, accounts for nearly 750 billion kWh or, at an average price of $0.06 per kWh of millions of dollars and a reduction in CO2 emissions of nearly 2.2 million metric tons of carbon equivalent

  9. 2008 Guidelines to Defra's GHG Conversion Factors Guidelines to Defra's GHG Conversion Factors

    E-Print Network [OSTI]

    2457 x 2457 kWh x 0.347 x 0.330 Domestic Coal 3 tonnes x 2523 x 2523 kWh x 0.313 x 0.298 Wood Pellets 4 stations or for industrial purposes have different emission factors. Wood pellets are used in domestic

  10. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  11. Evaluating state markets for residential wind systems: Results from an economic and policy analysis tool

    E-Print Network [OSTI]

    Edwards, Jennifer L.; Wiser, Ryan; Bolinger, Mark; Forsyth, Trudy

    2004-01-01

    Cost of Energy ($/kWh) State Alabama Alaska Arizona Arkansas CaliforniaCost of Energy ($/kWh) State Alabama Alaska Arizona Arkansas Californiaenergy crisis, California increased the rebate level to $4.50/Watt with a maximum cap of 50 percent system cost.

  12. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  13. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  14. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8.3 miles 27.1 miles 15 miles 2.2 kWh 5.7 kWh 13 Both vehicles can drive a UDDS cycle in electric mode, but not the aggressive US06 cycle EV power...

  15. On the Use of Agent-Based Simulation for Efficiency Analysis of Domestic

    E-Print Network [OSTI]

    Treur, Jan

    Photovoltaic Solar Energy Production Combined with a Heatpump Jan Treur Abstract In this paper agent with photovoltaic (PV) solar energy production. A simulation model for the cost (in terms of required kWh per day of a PV production agent estimating the produced solar energy (in kWh per day). In particular

  16. A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings

    E-Print Network [OSTI]

    Feng, Wei

    2014-01-01

    0.11 $/kWh, as in San Francisco, Baltimore, Phoenix, and Lasl) Phoenix, AZ Minneapolis, MN Energy Charge Energy ($/kWh)Phoenix and Miami are in this category; all have average electricity prices of 0.05 $/kWh.

  17. Metering Air Compressor Systems for Efficiency: A Progress Report 

    E-Print Network [OSTI]

    Joseph, B.

    2005-01-01

    was termed CASE Index, which varies from 0 to about 320, and has the units of SCF/KWH. The procedure we developed, involved metering of input (KWH) and output (SCFM), in and out of the central plant. After the initial beta testing of the procedure, as more...

  18. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    a) thermal storage 1 absorption chiller solar thermal flowSolar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (solar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (

  19. Recent technology improvements in Exxon's circulating zinc-bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    Recent electrode and electrolyte performance on 500 wH and 3 kWh units indicates that Exxon's circulating zinc-bromine battery in 20 kWh designs will be capable of high energy density (65 to 70 wH/kg), and turn-around efficiency (65 to 70%). This performance, coupled with recent factory cost projections of $28/kWh (exclusive of R.O.I. and various indirect overheads), makes zinc/bromine an attractive advanced battery candidate for not only photovoltaic, but also electric vehicle and bulk energy storage applications. Recent technical developments in this program may be generally useful in other circulating electrolyte systems.

  20. Recent progress on Exxon's circulating zinc bromine battery system

    SciTech Connect (OSTI)

    Bellows, R.J.

    1981-01-01

    The design, performance, and factory cost of Exxon's circulating zinc bromine batteries are described. The Exxon system has demonstrated stable performance in scale-ups to 3- and 10-kWh sub-modules. Cost studies based on recently demonstrated extrusion and injection molding techniques, have shown that this battery, with plastic electrodes, bipolar stacks, Br/sub 2/ complexation, and circulating electrolytes, could be produced (20 kWh units, 100,000 units/year) at a factory cost of $28/kWh (excluding R.O.I., and various indirect overheads).

  1. Plug-In Electric Vehicles' Charging Dr. Alireza Khaligh

    E-Print Network [OSTI]

    Zeng, Ning

    type Price Battery On-Board Charger E-Range Connector type Level 2 Nissan leaf EV $21,300 24kWh LiWh Li-ion 3.3 kW OBC 68 mi SAE J1772 6 hrs Tesla Model S 60kWh EV $71,000 60 kWh Li-ion 10 kW OBC 208 mi battery voltage 320 V ~ 420 V Maximum output power 1 kW Output voltage ripple

  2. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  3. Impact of Energy Disaggregation on Consumer Behavior

    E-Print Network [OSTI]

    Chakravarty, Prateek; Gupta, Abahy

    2013-01-01

    engagement and reduced energy usage. This paper highlightsnumber of participants, energy usage, HDD and CDD Figure 4Sacramento CA Figure 4: Energy usage (kWh) and HDD/CDD

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry: An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Galitsky, Christina

    2008-01-01

    155,000 kWh of electric energy per year, totaling savings ofnatural gas/electric boilers and found energy savings of $varying energy savings results. The Tokyo Electric Power

  5. Development of the Supply Chain Optimization and Planning for the Environment (SCOPE) Tool - Applied to Solar Energy

    E-Print Network [OSTI]

    Reich-Weiser, Corinne; Fletcher, Tristan; Dornfeld, David; Horne, Steve

    2008-01-01

    USA) Panel (Germany) Panel (China) indicates the number of years a technology must produce electricity,Electricity (kg-CO2/kWh) Circularity Production Distribution Circularity Production Germany Hungary Italy Finland Spain USA

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    E-Print Network [OSTI]

    Worrell, Ernst

    2008-01-01

    in Exeter, New Hampshire, identified electricity savings ofNew Hampshire, opportunities were identified for saving 1.7 million kWh of electricityelectricity use at OSRAM Sylvania’s glass plant in Exeter, New Hampshire,

  7. Furnace Blower Performance Improvements - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    who install high-performance furnace blowers with well-designed and installed ducts can achieve annual savings of 45% of fan energy or about 300 kWh per home. Read about...

  8. Freescale Semiconductor Successfully Implements an Energy Management...

    Broader source: Energy.gov (indexed) [DOE]

    projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million...

  9. DIVERSAS MANERAS DE GENERAR ENERGIA CON

    E-Print Network [OSTI]

    Gilbes, Fernando

    DE OLAS #12;PAISES CON MAYOR CAPACIDAD HIDROELECTRICA Country Annual Hydroelectric Energy Production hydroelectric generating system. Three Gorges Dam Gezhouba Dam #12;COSTO PROMEDIO DE PRODUCCION (KWH) #12;U

  10. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy Edward

    1999-01-01

    Residential Sector Electricity Prices in California Table 2-Residential Sector Electricity Prices in California (1995$)Residential electricity prices in the Los Angeles area are currently about $0.10 per kWh, but the California

  11. National Laboratory Concentrating Solar Power Research and Development...

    Office of Environmental Management (EM)

    receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for 0.06kWh. cspnatllabrdfactsheet.pdf More Documents & Publications...

  12. AEP Ohio - Commercial New Construction Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    0.02 - 0.04kWh annualized savings Interior Controls: 0.08Watt controlled Lighting Power Density Incentive: 400kW below ASHRAE 90.1-2004 allowed wattage Unitary and Split...

  13. The Advantage of Highly Controlled Lighting for Offices and Commercial Buildings

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01

    wall switches. Lighting power density equals 0.88 watts/switching only. Lighting power density is 1.4 watts/squareMaximum Installed Lighting Power Density (w/sf) Total kWh

  14. Utility Rate Structures and the Impact of Energy Efficiency and...

    Energy Savers [EERE]

    FL Energy Efficiency Calculations * Rates: most common are energy only rates, or a demand rate (kVa or kW) * Demand Rate - Can't use the average cost per kWh for calculations -...

  15. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  16. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    generated by the Nevada Solar One plant is about $0.18/kWh (SEGS IX APS Saguaro Nevada Solar One Total Location Daggett,I - IX APS Saguaro Nevada Solar One PS10 Puertollano Plant

  17. Interpreting human activity from electrical consumption data through non-intrusive load monitoring

    E-Print Network [OSTI]

    Gillman, Mark Daniel

    2014-01-01

    Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear ...

  18. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west...

  19. Healthcare Energy Efficiency Research and Development

    E-Print Network [OSTI]

    Lanzisera,, Judy Lai, Steven M.

    2012-01-01

    can’t be judged on energy per square foot in a meaningfulmedian energy intensity of 470 kBtu per square foot per yearequipment energy use intensity, e.g. as kWh per square foot

  20. Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues

    E-Print Network [OSTI]

    Budhraja, Vikram

    2008-01-01

    production level from small hydro as recorded in 2006.  kWH Geothermal Biomass Small Hydro 830 est Wind Solar TotalRPS Geothermal Biomass Small Hydro 830 est Wind Solar Total

  1. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  2. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  3. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  4. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  5. Multi-sensor Wireless System for Fault Detection in Induction Motors

    E-Print Network [OSTI]

    Tarkesh Esfahani, Ehsan

    2012-01-01

    Industrial Electric Motor Systems Market Opportunities As- sessment,” US DOE, Washington DC, 1998. [6] “California Energyindustrial motors in California consume about 70 billion kWh. 95% of this energy (

  6. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01

    100 Table 33. LPG allocation and intensity by buildingIRR ISP ISP Kg Kt kWh kWh/t LPG MBN MDEA MOS MOSPI MRPL Mtto run equipment and lights, LPG used for water heating and

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  8. PIANO DI RIQUALIFICAZIONE AMBIENTALE E PAESAGGISTICA DEL TERMOVALORIZZATORE DI DESIO TERMOVALORIZZATORE DI DESIO (MI) BRIANZA ENERGIA E AMBIENTE SPA

    E-Print Network [OSTI]

    Columbia University

    TERMOVALORIZZATORE DI DESIO (MI) ­ BRIANZA ENERGIA E AMBIENTE SPA Impianto di costruito negli anni '70 per lo. · Energia elettrica prodotta: 13.000.000 KWh/anno. LAND S.r.l. Landscape Architecture Nature Development

  9. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  10. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    E6. Electricity Consumption (kWh) Intensities by End Use for Non-Mall Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool-...

  11. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003" ,"Electricity Energy Intensity (kWhsquare foot)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  12. Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement

    E-Print Network [OSTI]

    Wang, Quanlu; Delucchi, Mark A.

    1991-01-01

    These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) Intensities by End Use for All Buildings, 2003 Electricity Energy Intensity (kWhsquare foot) Total Space Heat- ing Cool- ing Venti- lation Water...

  14. Energy-Efficiency Technologies and Benchmarking the Energy Intensity for the Textile Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2014-01-01

    tonne yarn) Annual Electricity consumption (kWh) Annual fuelis equal to the electricity consumption at the end-use. Inshows that specific electricity consumption in plant C is

  15. Heating, Ventilation and Air Conditioning Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    outside pump circulating heat transfer fluid air make-up inside exhaust 24 Cogged V Belts A major N.C. Manufacturer Tested 2-17 Months (yr 1985) .052KWH (.13 EP) 2700 Hours...

  16. Residential Customer Response to Real-time Pricing: The Anaheim Critical Peak Pricing Experiment

    E-Print Network [OSTI]

    Wolak, Frank A.

    2007-01-01

    The consumption reductions paid rebates during CPP days area CPP rate with a rebate mechanism as the default rate forthese customers received a rebate of 35 cents/KWh for the

  17. Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast

    E-Print Network [OSTI]

    Casillas, Christian E.

    2012-01-01

    Worldwide Status of Wind/Diesel Applications.  Proceedings Elliot, G.  (1994).  Wind?Diesel Systems: A Guide to the cost 2010 $/kWh Wind turbine Diesel marginal generation cost

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Cost Recovery Incentive Payment Program These multipliers result in production incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of...

  19. November 2012 Key Performance Indicator (KPI): Energy Consumption

    E-Print Network [OSTI]

    Evans, Paul

    and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    FERC GE GW G&T HTS ICE IOU IPP IREC IRS ISO ITC kW kWh LADWPwind Source: EIA, Ventyx, AWEA, IREC, Berkeley Lab Figure 2.Renewable Energy Council (IREC) and Berkeley Lab. Data on

  1. Sustainable Energy in Remote Indonesian Grids: Accelerating Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of return kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy LED light-emitting diode MW megawatt MWe megawatt electric NAL Nirmala Agro Lestari NGOs...

  2. Microgrid Selection and Operation for Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Marnay, Chris; Environmental Energy Technologies Division

    2008-01-01

    of 2.5US$/W & low solar thermal costs (minus 10% of originalIncluding low-cost storage of US$50/kWh for solar thermalsolar photo- storage storage battery chiller thermal voltaics intercept costs (

  3. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    Performance-Cost analysis of solar combined heat and powerCHP system where the solar field cost is split between thea predicted levelized solar thermal cost of $0.03/kWh, this

  4. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    DG unit, then it obtains the PV of cost savings relative toterms comprise the PV of cost savings per kWh e from usingstate, the microgrid’s PV of cost savings reflects the

  5. Optimization and integration of renewable energy sources on a community scale using Artificial Neural Networks and Genetic Algorithms

    E-Print Network [OSTI]

    Davis, Bron

    2011-01-01

    section, the relative cost of PV fluctuations is estimated,of electricity (/kWh) the cost of PV is the price of energyof a PV system; but rather, represent the costs of having

  6. Feasibility of Achieving a Zero-Net-Energy, Zero-Net-Cost Homes

    E-Print Network [OSTI]

    Al-Beaini, S.

    2010-01-01

    Incentive Program: Solar PV Costs and Incentive Factors, £0.20 /kWh)  to find PV cost  effective at £4/Wp  before Model for the Projection of PV Module Costs and Its  Policy 

  7. Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage

    E-Print Network [OSTI]

    Chen, Yaliang

    2009-01-01

    For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

  8. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    with Electric and Thermal Storage Technologies”, ACEEE 2008DER-CAM decoupling by thermal storage decoupling by electricor $/kWh) lifetime (a) thermal storage 1 flow battery 220$/

  9. Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

  10. Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems

    E-Print Network [OSTI]

    Nottrott, A.; Kleissl, J.; Washom, B.

    2013-01-01

    show that Lithium- ion batteries can be a financially viablethe price at which Lithium-ion batteries become financiallyinstalled cost for Lithium-ion batteries of a) $600/kWh, $

  11. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits...

  12. Smart buildings with electric vehicle interconnection as buffer for local renewables?

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    Division Conclusions EV Charging / discharging patternresidences (homes) for EV charging: $0.138/kWh Environmental8am – 5pm 7pm – 7am EV battery charging efficiency EV

  13. Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects

    E-Print Network [OSTI]

    Burke, Andy; Miller, Marshall

    2009-01-01

    to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

  14. Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    along with 22 kWh of battery storage. This study by Baek etpower, but the cost of battery storage per unit of loadMargolis [37], local battery storage for building-sited PV,

  15. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

  16. Energy Department Launches Better Buildings Alliance Indoor Lighting...

    Energy Savers [EERE]

    30 RTUs with advanced controls, resulting in over 100 kWh of energy savings; Walmart Stores Inc. completed over 10,000 high-efficiency RTU installations in new and...

  17. Drivers of Success in the Better Buildings Neighborhood Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (n 54) VARIABLE MODEL 1 2 3 4 5 6 7 Constraints on energy use and savings opportunities index - 1.43 b 1.06 - - - - State-level average electricity cost (cents per kWh) - - -...

  18. Artificial Neural Network for Optimized Power System Management

    E-Print Network [OSTI]

    OLeary, Daniel Albert

    2015-01-01

    to improve solar and wind forecasts. Further, weather dataone-third of a kWh. Wind data forecasts based on wind speedwind power models presented here, with the potential of improving forecast

  19. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  20. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    E-Print Network [OSTI]

    Breunig, Hanna Marie

    2015-01-01

    from a natural gas power plant (0.635 kgCO 2 /kWh). 53 We2 , such as natural gas power plants, captured CO 2 in thecoal- and natural gas- fired power plants, and are often

  1. Energy, Climate, & Infrastructure Security

    E-Print Network [OSTI]

    Siefert, Chris

    between a coal/steam power plant and a nuclear/ Brayton power plant. Electrical power produced (kWh) Coal reactors, space reactors, concentrated solar power, gas turbines, and fossil energy. advanced

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    kW kWh IEPR IOU IPCC ITC LADWP LCOE LSE LTEESP MASH Assemblylevelized cost of energy (LCOE) for PV-based electricitygeneration systems. The LCOE for each system is calculated

  3. New Water Booster Pump System Reduces Energy Consumption by 80...

    Broader source: Energy.gov (indexed) [DOE]

    be adjusted to meet plant requirements. As a result, the company reduced pumping system energy consumption by 80 percent (225,100 kWh per year), saving an annual 11,255 in...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    TVA- Solar Solutions Initiative The program offers performance based incentive of 0.04kWh for the first 10 years after the project is operational. This incentive is additional to...

  5. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    kW) 9 hour CHP heat solar thermal thermal storage Fig. 3.is replaced by storage and solar thermal collection, but thechiller, 722 kW of solar thermal collectors, 1100 kWh of

  6. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    DER available include solar thermal, photovoltaics (PV) and1 absorption chiller solar thermal flow battery 220$/kWh andabsorption chiller (kW) Solar thermal (kW) PV (kW) lead-acid

  7. LM to Meet Energy Metering Goals Through Enhanced Data Collection...

    Broader source: Energy.gov (indexed) [DOE]

    water each day. The pumps used in these wells consumed 3,899,472 kilowatt-hours (kWh) of electricity in FY 2013, causing the preserve site to account for more than 88 percent of...

  8. THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    1962, PP• 427-435. Heat Transmission," Jour. Petrol. Tech. ,production, when the heat transmission distance is 15 miles,for 15 miles of heat transmission, or 5.3 million kWh (3.2

  9. UESC Project Overview: NASA Ames Research Center

    Energy Savers [EERE]

    Energy Challenges High energy intensity at many of the center's key buildings * Median energy intensity for typical bldg. similar to ARC's (mix of lab and office) is 21.2 kWh...

  10. Collecting Occupant Presence Data for Use in Energy Management of Commercial Buildings

    E-Print Network [OSTI]

    Rosenblum, Benjamin Tarr

    2012-01-01

    item/1pz2528w If energy consumption data are not availablewith both energy consumption data (in kWh or kBtu) andaffects energy consumption, and use occupant data to

  11. Delmarva- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  12. Climate and Transportation Solutions: Findings from the 2009 Asilomar Conference on Transportation and Energy Policy

    E-Print Network [OSTI]

    Sperling, Daniel; Cannon, James S.

    2010-01-01

    option, especially as lithium ion battery costs decline. ItkW electric motor, a lithium-ion battery pack and a 6- speedkw electrical, 31 kWh lithium ion battery, 6-speed automatic

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is...

  14. Maximum output at minimum cost

    E-Print Network [OSTI]

    Firestone, Jeremy

    Gamesa G90-2.0 MW #12;Maximum output at minimum cost per kWh for low wind sites ®® Class IIIA mast and the electrical substation. This innovative modular design based on TCP/IP architecture has

  15. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.25¢/kWh (the levelized cost of gas-fired generation (assuming 7,000

  16. Assessment of the Impacts of Standards and Labeling Programs in Mexico (four products).

    E-Print Network [OSTI]

    Sanchez, Itha; Pulido, Henry; McNeil, Michael A.; Turiel, Isaac; della Cava, Mirka

    2007-01-01

    MW avoided Avoided cost by generation Cost by MW avoidedapplying the annualized cost of generation capacity. RevenueConsiderations: Cost of generation of one kWh considering a

  17. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    or other forms of generation whose costs are not tied to thethe levelized cost of gas-fired generation by 0.33¢/kWh (the levelized cost of gas-fired generation (assuming 7,000

  18. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01

    rate Variable cost Demand/Generation (MW) Figure 1:rate (CO 2 -eq/kWh) Cost of generation (¢/kWh) NGST+NGCTrelatively low-cost coal and hydro generation that comprise

  19. Covered Product Category: Uninterruptible Power Supplies (for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012) for a unit operating continuously (8,760 hours per year). The assumed electricity price is 0.09 per kWh, the federal average electricity price. Lifetime energy cost is the...

  20. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and...

  1. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    saving over 30,000 gallons of gasoline, 37,242 gallons of diesel, 9,820 gallons of propane, and producing 217,350 kilowatt-hours (kWh) of electricity each year. The...

  2. Advancing PEVs and the Future of PEV R&D and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEVs and EREVs Future Next Generation Li-ion or Li-metal Chemistry with 3x energy density Battery Cost (kWh) Energy Density (WhL) 2007 2008 2009 2010 2011 2012 2014 2013...

  3. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  4. Energy Department's Hospital Energy Alliance Helps Partner Save...

    Office of Environmental Management (EM)

    bills. Gundersen is investing in renewable energy solutions, including a biogas generator that uses methane from a local landfill to produce over 8 million kWh of electricity...

  5. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  6. A Review of the 2011 and 2013 Digital Television Energy Efficiency Regulations Developed and Adopted by the California Energy Commission

    E-Print Network [OSTI]

    Wazzan, C. Paul; Eash, Dawn E.

    2011-01-01

    8: Column L. Annual Energy Prices were not explicitly givenr)^( a - 2011) Annual Energy Prices ($/kWh) 3 Present Value1: Column J. Annual Energy Prices were not explicitly given

  7. An Analysis of Residential PV System Price Differences Between the United States and Germany

    E-Print Network [OSTI]

    Seel, Joachim

    2014-01-01

    electricity prices over time (similar to the new reality in GermanyGermany $/W German system price $ 2011/W FiT $/kWh Electricityprice differences between Germany and the United States affect the associated electricity

  8. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    greenhouse gas GWh HERS HVAC IPMVP kW kWh MW MWh NASEOand Verification Protocol (IPMVP) for quantifying emissionsand Verification Protocol (IPMVP) was listed as one of the

  9. Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    p, €/kW volumetric demand response costs, €/kWh thickness ofof end-use u removed by demand response measures in month m,measures such as demand response are also included, as well

  10. Assessment of SEAD Global Efficiency Medals for Televisions

    E-Print Network [OSTI]

    Young, Park, Won

    2013-01-01

    cost IND India IEA International Energy Agency kWh kilowatt-Index (EEI) A, India 5 Stars, or ENERGY STAR Version 6India (IND) star rating requirements are based on annual energy

  11. J.R. Simplot: Burner Upgrade Project Improves Performance and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in annual energy costs * Saves 52,000 MMBtu of natural gas annually * Improves boiler performance * Saves 526,000 kWh per year * Achieves a simple payback of less than 14...

  12. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    countries over time, with hydro power counted at 3 kWh t / 1e The large amount of hydro- power available in Sweden hasplentiful while little hydro- power was available. Higher

  13. Efficient Energy Use and Well-Being: The Swedish Example

    E-Print Network [OSTI]

    Schipper, Lee; Lichtenberg, A.J.

    1976-01-01

    countries over time, with hydro power counted at 3 kWh / 1electricity has been hydro- power (66). In 1971, electricitysupply came from hydro- power, Sweden's most important

  14. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT) 

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high ...

  15. imulation und Optimierung der Standort- und Kapazit¨atsauswahl in der Planung von Ladeinfrastruktur fur batterieelektrische Fahrzeug?otten

    E-Print Network [OSTI]

    Siefen, Kostja

    2012-01-01

    sich auch die Technik der Energiespeicher in den letzten 20Batterie als singul¨ aren Energiespeicher f¨ ur die gesamtewird f¨ ur elektrische Energiespeicher in kWh pro 100 km

  16. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower volume, their battery packs are much larger with capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of Batteries Sold and Battery Capacity Sold...

  17. Energy Storage Systems 2009 Peer Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2009 Peer Review - Development of a 5kWh Flywheel ESS Using a High Tem Superconducting Magnetic Bearing (Phase III) - Make Strasik, Boeing.pdf ESS 2009 Peer Review - Large Area...

  18. TVA- Solar Solutions Initiative

    Broader source: Energy.gov [DOE]

    The program offers performance based incentive of $0.04/kWh for the first 10 years after the project is operational. This incentive is additional to the seasonal and time-of-day price for electri...

  19. What's on your Roof? Rooftop Unit (RTU) Efficiency Advice and...

    Energy Savers [EERE]

    an average of 50% installed efficiency gain at 40 stores and were able to reduce capacity on some units from 8% to 41%. That is big savings - over an estimated 12, 000 kWh...

  20. Pennsylvania's Comprehensive, Statewide, Pro-Active Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    project saved 6,300,000 kWh per year with upgrades to its hydrogen burners on an annealing furnace. This reduction saved the company 150,000 per year. The company also...

  1. Performance Analysis of XCPC Powered Solar Cooling Demonstration Project

    E-Print Network [OSTI]

    Widyolar, Bennett

    2013-01-01

    Electrical (kWh) Electrical COP 3.8 Economic Evaluation Asimple economic evaluation of the system was performed using47 3.8 Economic Evaluation…………………………………………………………….49 4. A

  2. Energy Department's Hospital Energy Alliance Helps Partner Save...

    Office of Environmental Management (EM)

    on its energy bills. Gundersen is investing in renewable energy solutions, including a biogas generator that uses methane from a local landfill to produce over 8 million kWh of...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Wind (Small), Hydroelectric (Small) Net Metering Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the...

  4. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01

    market-based forward price projections argues for furtherAEO 2008 and NYMEX price projections. Nominal ¢/kWh (at 7000that exceed the AEO price projection) described above. If

  5. Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections

    E-Print Network [OSTI]

    Chen, Cliff; Wiser, Ryan; Bolinger, Mark

    2007-01-01

    impacts We converted other cost metrics to ¢/kWh retail ratePower System Operating Costs: Summary and Perspective onA. Bibliography of RPS Cost Studies Studies listed in

  6. SEP Success Story: Library Patrons in New York Check-Out Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    library in Esopus, New York, used Recovery Act funds to install two photovoltaic arrays expected to generate 31,200 kWh of electricity annually -- approximately 30 percent of the...

  7. 2.1E Sample Run Book

    E-Print Network [OSTI]

    Winkelmann, F.C.

    2010-01-01

    iS RESVVT UNIT LOAD ENERGY USE SUN (I_TU) (KWH) MONTH PEAK (HOUR. WITH SUN UP . PERCENT bIGHTING ENERGYHOURS WITH SUN UP . PERCENT LIGHTING ENERGY

  8. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  9. NREL: Awards and Honors - Triple-Junction Terrestrial Concentrator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of power and produce as much as 86.3 kWh of electricity during a typical year under a Phoenix, AZ sun. This means that 100 to 150 of these cells could produce enough electricity...

  10. Abstract--This paper describes a spreadsheet model for estimating the impact of High Temperature Supercon-

    E-Print Network [OSTI]

    -576-2733, e-mail:mcconnellbw@ornl.gov). J. W. Mulholland is with the Arizona Power Authority, Phoenix AZ 85007 into the grid. The output results are explicit numbers of kWh and dollars; however, the real intent

  11. Microsoft Word - Energy Resilience Report SAND2014-18019.docx

    Broader source: Energy.gov (indexed) [DOE]

    below. With estimates of the value of service to customers, expected unserved energy (kWh) can be converted to dollar values. This process can be carried out explicitly in a...

  12. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    E-Print Network [OSTI]

    Apte, Michael; Michael G. Apte, Bourassa Norman, David Faulkner, Alfred T. Hodgson,; Toshfumi Hotchi, Michael Spears, Douglas P. Sullivan, and Duo Wang

    2008-01-01

    Phoenix Raleigh RedBluff Reno Riverside Sacramento SaltLakeCity SanAntonio SanDiego Seattle Sunnyvale Washington Heating Cooling Fan Total Heating (kWh) (

  13. Decision-Making to Reduce Manufacturing Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Reich-Weiser, Corinne

    2010-01-01

    kg-CO 2eq /kWh for Puertollano, Phoenix, Sydney, Mountainin Phoenix, Arizona (Direct Normal Insolation of 6.9 kWh/m5, 6, 7 kWh/m 2 /day in Puertollano, Phoenix, Sydney, Moun-

  14. Comparisons of HVAC Simulations between EnergyPlus and DOE-2.2 for Data Centers

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01

    kWh) DOE?2.2 EnergyPlus % Difference Figure 7 – Monthly Cooling Electricity Consumption for Phoenix kWh) DOE?2.2 EnergyPlus % Difference Figure 8 – Monthly Cooling Electricity Consumption for Phoenix 

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the end of the year in December from customers that generate electricity using small wind turbines or small solar-energy systems. Any NEG above 1,000 kWh is paid out at the...

  16. Microgrid Selection and Operation for Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Marnay, Chris; Environmental Energy Technologies Division

    2008-01-01

    flow absorption solar photo- storage storage battery chillerdisallowed; 5. a low storage, PV, and solar thermal pricelow-cost storage of US$50/kWh for solar thermal and US$

  17. Minimization of Impact from Electric Vehicle Supply Equipment...

    Office of Scientific and Technical Information (OSTI)

    of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest...

  18. Prof. Dr. Stefan Krauter Decentralized Power Systems -DPS 2012 Energieautonomie durch

    E-Print Network [OSTI]

    Noé, Reinhold

    1 nach Arbeitsgruppe Erneuerbare Energien-Statistik (AGEE-Stat); 1 GWh = 1 Mio. kWh; 1 MW = 1 Mio erneuerbarer Energien in Deutschland 2000-2011 #12;Prof. Dr. Stefan Krauter Decentralized Power Systems - DPS

  19. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  20. Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    a) thermal storage 1 flow battery 220$/kWh and 2125$/kWlead-acid batteries flow battery thermal n/a n/a xiv Thestorage heat storage flow battery abs. chiller photovoltaic

  1. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    capacity electrical flow battery thermal n/a n/a source:a) thermal storage 15 flow battery 220$/kWh and 2125$/kW 18

  2. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and energy ratings of a flow battery are independent of eachcapacity electrical flow battery thermal n/a n/a source:$/kWh) thermal storage 30 flow battery 220$/kWh and 2125$/kW

  3. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    chiller solar thermal flow battery 220$/kWh and 2125$/kWlead-acid batteries flow battery thermal n/a n/a Please notestorage heat storage flow battery abs. chiller photovoltaic

  4. China's March on the 21st Century

    E-Print Network [OSTI]

    Deutch, John

    ,523/3,299 5,250/10,581 25,028/43,676 0 1 2 3 4 5 6 7 8 Oil Natural Gas Electricity Nuclear Electricity Coal CO/day (oil); trillion cu feet (natural gas); billion kWh (electricity); billion kWh (nuclear electricity, this economic expansion has been accompanied by a corresponding surge in energy consumption. China beca

  5. BC's Electricity Options: Multi-Attribute Trade-Off and Risk Analysis of the Natural Gas

    E-Print Network [OSTI]

    ) 220 440 660 Generation (GWh) 1,760 3,520 5,280 CCGT Generation Cost (¢ / kWh) 5.3 5.3 5.3 Capital Cost,883 3,766 5,649 Avg. Generation Cost (¢ / kWh) 5.5 5.5 5.5 Capital Cost of Transmission (million 2001 and are low in cost relative to other environmentally desirable technologies. We evaluated the two portfolios

  6. Case Study: Goose Creek CISD 

    E-Print Network [OSTI]

    White, D.

    2014-01-01

    GOOSE CREEK CISD FINANCIALS • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose... • $693,866 project • $87k annual savings • 682,228 kWh annual savings IMPROVEMENTS • HVAC, lighting and water efficiency, computer power management case study Lake Dallas ISD was interested in improving the energy efficiency and aging infrastructure...

  7. A Cost Benefit Analysis of a V2G-Capable Electric School Bus Compared to a Traditional Diesel School Bus

    E-Print Network [OSTI]

    Firestone, Jeremy

    Average Electricity Carbon Emission Rate 1.18 lbs/kWh Cdr Diesel Carbon Emission Rate 22.2 lbs/kWh D Miles $0.106/kWh PR Regulation Price for V2G Revenue $28/MWh R Range of Battery 100 miles rd Discount Rate of Replacement Battery $300/kWh CD Seating Capacity of Diesel Bus 32 CE Seating Capacity of Electric Bus 24 Cer

  8. Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank

    E-Print Network [OSTI]

    Bowen, James D.

    ) The all-electric Tesla Roadster requires 0.177 kWh / mile. You commute 20miles per day, 5 days a week.12/kWh, how much does the Tesla cost to drive for a year? c. If your current car gets 30mpg and gas, acceleration/performance, battery life, etc.) would you consider an electric vehicle for your next car purchase

  9. DFW Airport 

    E-Print Network [OSTI]

    Dennis, J. R.

    2011-01-01

    ? Rents ~2 million cars per year ? Total electric ? 7.7 million kWh annually 10 Continuous Commissioning? - Consolidated Rent-A-Car Center CC? Assessment/Implementation ? Excessive outside air ? Duct static pressure too high ? Economizer cycle... at t H o u rs (K W H ) RAC Electric Consumption Over $767,000 in Total Savings 18% reduction in annual average kWh 11 Continuous Commissioning? - Consolidated Rent-A-Car Center Results of CC Project 12 Continuous Commissioning...

  10. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  11. Effect of Side Permanent Magnets for Reluctance Interior Permanent Magnet Reluctance Machines

    SciTech Connect (OSTI)

    Hsu, John S; Lee, Seong T; Wiles, Randy H; Coomer, Chester; Lowe, Kirk T

    2007-01-01

    A traditional electric machine uses two dimensional magnetic flux paths in its rotor. This paper presents the development work on the utilization of the third dimension of a rotor. As an example, the air gap flux of a radial gap interior permanent magnet motor can be significantly enhanced by additional permanent magnets (PM) mounted at the sides of the rotor. A prototype motor built with this concept provided higher efficiency and required a shorter stator core length for the same power output as the Toyota/Prius traction drive motor.

  12. The Fermat and Mersenne Numbers 

    E-Print Network [OSTI]

    Nowlin, W. D.

    1960-01-01

    . (Throughout this thesis, F will always denote a Feraat nmaber and M a Mersenne nuuber. ) The problea of deternining p which of the Fernat and Mersenne nmabers are prius has concerned uany matheuaticians during the last two centuries. This research has... or a Fermat, number. Next? Froth~a theorem, of which Pepin's test is a special case, is stated and proved. In the last section the theory of recurring series is used to establish primality tests of the Lucas type for both the Fermat and Mersenne...

  13. NREL: Transportation Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota Prius being

  14. NREL: Water Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota Prius

  15. NREL: Wind Research - Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilver Toyota PriusAwards

  16. Development of a circulating zinc-bromine battery, Phase II. Final report

    SciTech Connect (OSTI)

    Bellows, R.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.; Tsien, H.; Young, A.

    1983-10-01

    This report summarizes Phase II of a multi-phase program aimed at developing Exxon's circulating zinc-bromine battery into an advanced energy storage system. Previous work at Exxon had developed a basic zinc-bromine battery system approach. This approach utilizes carbon-plastic electrodes in a bipolar stack design, a circulating electrolyte with separable bromine complexes, and shunt current protection. Phase II was highlighted by the successful scale-up and demonstration of a 20 kWh zinc-bromine battery module. Important technology improvements were demonstrated in the areas of extended life cycling, low cost stack technology, high power/high efficiency supported electrolytes, and system auxiliaries. The basic technology was augmented via increases in parametric testing, materials testing, and electrolyte studies. Production cost estimates from Phase I ($28/kWh in 1980$) were projected to an OEM price of $37/kWh using the A.D. Little costing method. A revised cost analysis, using an approach in which all battery components are produced at the battery manufacturing facility (as compared to the original analysis based on purchase of cell components from plastics fabricators) showed essentially the same factory costs as the original estimate (approx. $28/kWh). A design has been developed for a prototype 20 kWh energy storage system which will be delivered to Sandia National laboratories in 1983 near the completion of Phase III. Project effort is continuing to show steady progress toward the attainment of this goal.

  17. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  18. Zinc-bromine battery design for electric vehicles

    SciTech Connect (OSTI)

    Bellows, R.; Grimes, P.; Einstein, H.; Kantner, E.; Malachesky, P.; Newby, K.

    1982-01-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine batery projections (60 to 80 Wh/kg, 130 to 200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 cm/sup 2/ electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 cm/sup 2/) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  19. Zinc-bromine battery design for electric vehicles

    SciTech Connect (OSTI)

    Bellows, R.J.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1983-02-01

    Design projections for zinc-bromine batteries are attractive for electric vehicle applications in terms of low manufacturing costs ($28/kWh) and good performance characteristics. Zinc-bromine battery projections (60-80 Wh/kg, 130-200 W/kg) compare favorably to both current lead acid batteries and proposed advanced battery candidates. The performance of recently developed battery components with 1200 cm/sup 2/ electrodes in a 120V, 10 kWh module is described. Similarly constructed smaller scale (600 cm/sup 2/) components have shown lifetimes exceeding 400 cycles and the ability to follow both regenerative braking (J227aD) and random cycling regimes. Initial dynamometer evaluations of full scale 20 kWh batteries is expected in early 1984.

  20. Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979

    SciTech Connect (OSTI)

    Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  1. Low-cost flywheel demonstration program. Final report

    SciTech Connect (OSTI)

    None

    1980-04-01

    The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

  2. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  3. Development of zinc-bromine batteries for utility energy storage. Interim report, September 1978-August 1979

    SciTech Connect (OSTI)

    Putt, R.A.

    1981-03-01

    The goals in the first year of study were to build and test full-size zinc-bromide cell hardware in the form of three 8-kWh submodules and to provide a cost-design study of an 80-kWh module. Supporting studies were included for developing the basic electrochemistry of the system. The program was based on technology developed during a prior contract in which the system's design simplicity, high efficiency, long cycle life, and ease of scale-up, all of which are requirements of a battery for utility application were demonstrated. The system design which evolved during that program comprised a monopolar cell stack using titanium electrodes and a microporous separator, circulation of electrolyte through both the negative and positive sides of the cell stack, and storage of electrolyte and bromine (the latter in the form of a liquid polybromide complex) externally to the cell stack. Two monopolar, 8-kWh submodules of that design were built during the present program. Despite poor electrochemical efficiencies, one of the submodules achieved over 160 deep discharge cycles in continuous hands-off automatic cycling, indicating the inherent cyclability of the system. A major design improvement was made during the program, which has proved crucial to the successful scale-up of the zinc-bromine battery - conversion from a monopolar to a bipolar cell design. The bipolar design has been shown to be superior with respect to cost, performance, and simplicity. Conversion from the monopolar to bipolar cell design was achieved at the 8-kWh submodule level with a minimal perturbation on the hardware construction and testing schedule; one bipolar submodule was built and under test within the 12-month contract period. The 80-kWh stand-alone module will comprise 10 identical 8-kWh submodules of the bipolar electrode configuration, electrolyte circulation systems (pumps, tanks, and plumbing) for both the negative and positive electrolytes, and a bromine storage system.

  4. Industrial Gases as a Vehicle for Competitiveness 

    E-Print Network [OSTI]

    Dale, J. R.

    1992-01-01

    and process cost reductions led to investment in gas process development. The use of nitrogen in industrial processes went from by-product to primary gas produced in less than ten years. The nature of the cryogenic liquefaction process is such that a... ratio of three volumes of nitrogen to one of oxygen is optimal for merchant plan loading and costs. The specific power requirement for the liquefaction of nitrogen gas has gone from 2.0 kwh/ccf to 1.4 kwh/ccf. This represents a thirty percent...

  5. Keynote Speaker Presentation 

    E-Print Network [OSTI]

    Rosenfeld, A.

    2007-01-01

    for rebates on installed solar • Sends a message: Efficiency 1 st , Solar 2 nd … Preferably Both! 18 New Solar Homes Partnership Efficiency Tiers Tier Efficiency Target Cost Premium Incentive I 15% better than T-24 Energy Star Appliances & T-24 Lighting... rebates, in solar • Annual Return On Investment: – 17% for EE –4.5% for solar • Cost of Conserved Electricity: – 8.5¢ per kWh for EE – 27¢ to 37¢ per kWh for Solar, after state and federal rebates *Based on data from Consol and CEC For peak reduction, we...

  6. Low Temperature Air Distribution with Ice Storage System: A Case Study 

    E-Print Network [OSTI]

    Ash, A.

    1990-01-01

    revenue increase that would be implemented in August of 1990. The effect of this revenue increase on commercial customers is essentially a 50% increase in the demand charge and very little change in the consumption (KWH) charge. Since the primary.... We installed a pulse meter on our building electrical distribution panel to monitor both on peak and off peak demand as well as KWH consumption with our BAS. We run continuous trend logs on these figures and they can be reviewed in Attachment H...

  7. Energy Conservation Opportunities in Commercial and Industrial Facilities: Energy Utilization Indices (EUI) in Texas LoanSTAR Buildings 

    E-Print Network [OSTI]

    Phillips, Michael

    1993-01-01

    : Electricity1 4,199,728 kwh 14,329 million Btu $289,087.11 Natural Gas2 2,221 MCF 2.288 million Btu $ 10.407.60 Total 16,617 million Btu $299,494.71 The energy conservation opportunities (ECOs) recommended and outlined in this report could result... in an estimated annual savings of 37,575 kwh/yr of electrical energy, a savings of 82 KVA« mo/yr of electrical demand, and an annual savings of 774 MCF/yr of natural gas. The energy related savings are worth about $5,8OO/yr. There is an additional cost savings...

  8. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

  9. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  10. Improving Battery Design with Electro-Thermal Modeling

    SciTech Connect (OSTI)

    Bharathan, D.; Pesaran, A.; Vlahinos, A.; Kim, G.-H.

    2005-01-01

    Operating temperature greatly affects the performance and life of batteries in electric and hybrid vehicles. Increased attention is necessary to battery thermal management. Electrochemical models and finite element analysis tools are available for predicting the thermal performance of batteries, but each has limitations. In this study we describe an electro-thermal finite element approach that predicts the thermal performance of a cell or module with realistic geometry. To illustrate the process, we simulated the thermal performance of two generations of Panasonic prismatic nickel-metal-hydride modules used in the Toyota Prius. The model showed why the new generation of Panasonic modules had better thermal performance. Thermal images from two battery modules under constant current discharge indicate that the model predicts the experimental trend reasonably well.

  11. Pavement Recycling Machine 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    2011-08-29

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  12. Kenneth S. Kurani (knkurani@ucdavis.edu) Jonn Axsen (jaxsen@sfu.ca)

    E-Print Network [OSTI]

    California at Davis, University of

    of their monthly consumption 2. Green electricity production lease Household leases an amount of green electricity utility or third-party retailer to pay for investments in green electricity production Per kWh premium production capability at a specific production facility · For example, 100KW blocks of production at a solar

  13. Dean's Faculty Meeting 5/7/13 UHM Total $

    E-Print Network [OSTI]

    Wang, Yuqing

    scientific analyses. Don Thomas Nicole Lautze #12;Battery Energy Storage for Generation Smoothing & Frequency · Frequency regulation on HELCO grid · Solar smoothing · Voltage/VAR support on distribution line with high penetration PV · Smart Grid applications 1 MW / 250 kWh fast response Lithium ion Titanate battery Rick

  14. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    that pre-cool, rebound, or otherwise shift energy use to theexhibit almost no rebound and save some energy on DR days,kW) Rebound (kW) Daily Peak Demand (kW) Daily Energy (kWh) a

  15. Oil prices spike to over barreland price

    E-Print Network [OSTI]

    Oil prices spike to over $145/ barreland price of electricity exceeds $0.50/kWh in U.S. Virgin installs waste heat recovery plant, adding19 MWofpower withoutburningasingledropof additionaloil VIEO Biomass Grid Waste-to- Energy Landfill Gas LEGEND Solar EDIN Energy Development in Island Nations EDIN

  16. center for carbon-free power integration

    E-Print Network [OSTI]

    Firestone, Jeremy

    generation Red: Gas turbine or combined cycle Gray: Steam Green: Wind #12;offshore wind energy (2/3) The UD wind turbine: · In operation for 2 years; · Manufactured by Gamesa; · Generated >11 million kWh; · Net wind projects in Delaware and New Jersey, including the UD wind turbine (DE/NOAA Seagrant, 2012

  17. William Lloyd Bircher Dissertation Committee for William Lloyd Bircher

    E-Print Network [OSTI]

    John, Lizy Kurian

    data center energy usage in the United States reached 61 billion kilowatt-hours (KWh) at an annual cost USD. The nature of energy usage in these systems provides an opportunity to reduce consumption.S.E.E.; M.S.E. Dissertation Presented to the Faculty of the Graduate School of The University of Texas

  18. Pechiney Rolled Products: Plant-Wide Energy Assessment Identifies Opportunities to Optimize Aluminum Casting and Rolled Operations

    SciTech Connect (OSTI)

    2004-07-01

    A Pechiney Rolled Products plant focused on various aluminum casting processes during a PWA. The assessment revealed potential annual savings of 460,000 MMBtu in natural gas, 9.6 million kWh in electricity, 69 million pounds in CO2, and $2.5 million.

  19. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  20. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  1. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  2. Taming the Energy Hog in Cloud Infrastructure

    E-Print Network [OSTI]

    Hunt, Galen

    gasoline Transformer UPS PDU Power grid power Water chillers CRAC air water Racks Internet PUE= #12 energy consumption consumed 61 Billion kWh in 2006, enough to power 5.8 Million average US households 190 miles of conduit 7.5 miles of chilled water piping 100+ MW Power Capacity 60 MW Total Critical

  3. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and changing environmental conditions. Since the energy consumption density, in kilowatt-hours (kWh) per square foot, is higher than the energy generation density of solar and wind deployments at most locations on both the total number of participating consumers and the total amount of energy contributed per

  4. Assessment of Load and Energy Reduction Techniques (ALERT) Retrocommissioning Case Study of Two National Renewable Energy Laboratory (NREL) Sites 

    E-Print Network [OSTI]

    Luskay, L.; Haasl, T.; Schwab, J.; Beattie, D.

    2003-01-01

    are 231,924 kWh, 51,550 therms, and $28,920 annual energy savings. Implementation costs were estimated at $56,380, which would result in a 1.9 year average payback. It cost approximately $0.09 per square foot to perform the ALERT RCx assessment. Of the 33...

  5. Impact of Large Scale Energy Efficiency Programs On Consumer Tariffs and Utility Finances in India

    E-Print Network [OSTI]

    Abhyankar, Nikit

    2011-01-01

    Efficiency (Indian) Financial Year Liquefied Natural GasRegassified Liquefied Natural Gas Reliance Natural ResourcesLiquefied Petroleum Gas Maharashtra Electricity Regulatory Commission Million Units (kWh) National Capital Territory New Delhi Municipal Council North Delhi Power Limited Natural Gas

  6. PROJECT REPORT Energy Management for EV Charge Station in Distributed Power System

    E-Print Network [OSTI]

    He, Lei

    electricity by heat power plants, hydropower plants and nuclear plants, which are all centralized large system and would have a low cost of every kWh of electricity. However, traditional generation method electricity management method for this topology is of great demand to be developed. 2. Model Formulation

  7. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameter FedEx HEV C d 0.7 Frontal area (m 2 ) 7.02 Vehicle mass (kg) 4,472 Engine power (kW) 182 Motor power (kW) 100 Battery power (kW) 60 Battery capacity (kWh) 2.45...

  8. Study Design And Realization Of Solar Water Heater

    SciTech Connect (OSTI)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-17

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m{sup 2} of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m{sup 2} a year in the north and 2263 KWh/m{sup 2} a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  9. Global Change: Solutions? Quiz for Pacala & Socolow, 2004

    E-Print Network [OSTI]

    Schweik, Charles M.

    is effective Reduced electricity use by 6% Changeinelectricity consumption(kwh/day) #12;Promoting Individual/household energy use) · Reduce consumption #12;Large differences in efficiency AR4 WGIII TS USA consumption Conservation #12;Reduce Consumption: Food Choices #12;Reduce Consumption: Food Choices Machinova et al., 2015

  10. Self-Adaptive Management of The Sleep Depths of Idle Nodes in Large Scale Systems to Balance Between Energy Consumption and Response Times

    E-Print Network [OSTI]

    Zhu, Hong

    U.S. electricity consumption or the output of about 15 typical power plants [2]. In 2007, the electricity consumption of global cloud computing was 623 billion kWh which is larger than the 5th largest Between Energy Consumption and Response Times Yongpeng Liu(1) , Hong Zhu(2) , Kai Lu(1) , Xiaoping Wang(1

  11. Retrofit Savings for Brazos County 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

    2001-01-01

    This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

  12. Public Attitudes Toward the Development of Seawater Air

    E-Print Network [OSTI]

    at the University of Hawai`i (UHERO) ­ Center for Microbial Oceanography: Research and Education (C dependent state in the nation ­ 75% of electricity generation from oil ­ Hawai`i Clean Energy Initiative · Highest state electricity prices (2011 per kWh) O`ahu 33¢ Maui 35¢ Kaua`i 42¢ Moloka`i 42¢ Lana`i 44¢ Big

  13. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093-RP, Final Report 

    E-Print Network [OSTI]

    Abushakra, B.; Sreshthaputra, A.; Haberl, J. S.; Claridge, D. E.

    2001-01-01

    from the diversity factors are then compared with the EUI?s calculated directly from the raw data (Total kWh per year divided by the square footage) to assure that the data manipulation during the derivation of the diversity factors is free...

  14. Energy and Society (ER100/PP184/ER200/PP284) Topics: PV, Wind, environmental justice

    E-Print Network [OSTI]

    Kammen, Daniel M.

    above to the average residential electricity rates in each of these cities. In which cities is electricity from PV equal to or cheaper than retail rates? [2 points] GRADUATE STUDENTS ONLY: Concerning Rate (¢/kWh) 16.5 19.2 10.30 12.3 PV electricity is more expensive than residential rates in Detroit

  15. Energy Policy, 2004. Vol. 32, 289-297 John Byrnea

    E-Print Network [OSTI]

    Delaware, University of

    2012 $1.50/Wp $0.50/Wp$1.00/Wp Neij, 1997; IEA,2000 $0.15~0.25/kWh $1.50/Wp BOS 50 $3.00/Wp $1.50/Wp 22,000 A 4 15% 30% 2011 2019 Williams and Terzian, 1993; Neij, 1997; IEA,2000

  16. SUSTAINABLE PROCESS DESIGN IN THE CONTEXT OF

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    Federal University of Rio de Janeiro #12;Electricity Consumption (kwh per Capita) (2004) Brazil: 2340 http capita Brazil (2010) Energy(CO2), a By-product of Economic Development #12;6 2E 2P #12;Economy x Environment NOT EVIL JUST WRONG "The True Cost of Global Warming Hysteria" "(...) warns Americans

  17. Casting Project Version 4 September 16, 2011 1 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Colton, Jonathan S.

    assume the labor (L) and overhead (B) rates are $75/hour and 75% respectively. 3. The cost of capital.0892 per kW-h. So, you do NOT need to specify a furnace or include its capital cost in your calculation. 11, etc., is 90 mm of thickness per minute. You may ignore the capital cost of the #12;Casting Project

  18. Joint Host-Network Optimization for Energy-Efficient Data Center Networking

    E-Print Network [OSTI]

    Pan, Deng

    billion kWh, representing a $7.4 billion annual electricity cost. As a result, energy efficiency of dataJoint Host-Network Optimization for Energy-Efficient Data Center Networking Hao Jin, Tosmate amounts of energy. As severs become more energy efficient with various energy saving techniques, the data

  19. INTERNATIONAL Presented by

    E-Print Network [OSTI]

    Keller, Arturo A.

    exhaust from the gas turbine is sent to a Heat Recovery Steam Generator (HRSG) The steam turbine drives a generator Low pressure steam from the turbine is condensed and sent back to the boiler Thermal efficiency turbine) at 10,000 to 12,000 BTU/kwh Combined Cycle BoilerFeedwater Condenser Steam Turbine & Generator

  20. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    of 2.5$/W & low solar thermal costs (minus 10% of originalof 2.5$/W & low solar thermal costs (minus 10% of originalcosts ($/kW or $/kWh) lifetime ( a) thermal storage 11 flow battery absorption chiller solar

  1. Benefits of the International Residential Code's Maximum Solar heat Gain Coefficient Requirement for Windows 

    E-Print Network [OSTI]

    Stone, G. A.; DeVito, E. M.; Nease, N. H.

    2002-01-01

    energy use over ten years by 15 billion kWh; 2) Reduce cumulative statewide electric peak demand over ten years by over 1200 MW; 3) Result in cooling cost savings of more than a billion dollars; and 4) Reduce cumulative statewide key air pollutants....

  2. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan O-1

    E-Print Network [OSTI]

    credit kWh LCOE Kilowatt-hour Levelized cost of energy LED lighting Light-emitting diode - solid state Public Utility Regulatory Policies Act of 1978 PV Photovoltaics REC RPM Renewable energy credit Regional resource cost VRF Variable refrigerant flow WECC Western Electricity Coordinating Council WEPT Web

  3. Energy Analysis of a Kraft Pulp Mill: Potential for Energy Efficiency and Advanced Biomass Cogeneration 

    E-Print Network [OSTI]

    Subbiah, A.; Nilsson, L. J.; Larson, E. D.

    1995-01-01

    rates. Process modifications and retrofits using commercially proven technologies could reduce steam and electricity demand to as low as 9.7 MMBtu per ADST, a 50% reduction, and 556 kWh per ADST, a 19% reduction, respectively. Electricity demand could...

  4. Development of a circulating zinc-bromine battery. Phase I. Final report

    SciTech Connect (OSTI)

    Bellows, R.; Einstein, H.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.; Tsien, H.

    1983-01-01

    This report summarizes Phase I of a three phase program aimed at developing Exxon's circulating zinc-bromine battery for photovoltaic energy storage. Previous work at Exxon had developed a basic zinc-bromine system approach. This approach incorporates carbon plastic electrodes in a bipolar stack design, a circulating electrolyte with separable bromine complexes, and shunt current protection. Phase I was highlighted by the successful scale-up and demonstration of 3 and 10 kWh submodules. Two smaller demonstration batteries were delivered to Sandia for testing. Important technology improvements were demonstrated concerning shunt current protection, improved performance of low cost microporous separators, and insert injection molding of electrodes and separators. Base technology was expanded via an increased parametric testing program, materials testing and electrolyte studies. Production cost estimates were revised based on improved design concepts to project direct factory costs of $28/kWh (1980$) for large scale production of 20 kWh modules. A potential developmental plan was drafted, delineating critical development milestones. The project effort is continuing to show steady progress toward developing a deliverable 20 kWh photovoltaic battery for the completion of Phase III in 1983.

  5. Propagating Electricity Bill onto Cloud Tenants: Using a Novel Pricing Mechanism

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    to change their electricity usage to contribute in cutting electricity bills by participation in demand is the cost of total kWh electricity consumed by the DC. The demand charge is about the average peak load in k in order to shed the electricity utilities' peak loads. The demand charge of a DC can be equal to or even

  6. ELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA -A 250 AND 10KW CASE STUDY

    E-Print Network [OSTI]

    Vermont, University of

    electricity at US$ 0.18 and 0.34/kWh, respectively. A stable electricity demand close to the rated capacityELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA - A 250 AND 10KW CASE STUDY Thomas Buchholza their potential to compete economically with diesel generated electricity when operating close to the rated

  7. Pulp & Paper Industry- A Strategic Energy Review 

    E-Print Network [OSTI]

    Stapley, C. E.

    1997-01-01

    The pulp and paper industry with yearly energy purchases of $5 billion per year including 50 billion kWh of power is one of the largest industrial energy producers in the U.S. However, structural changes in the global pulp and paper industry could...

  8. LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX

    E-Print Network [OSTI]

    and purge ports. #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX 3' x 5' Solar Panels 191 watts per panel 600 KW Solar Array 2,988 Solar Panels 850,000 kWh Annual Output Solar Classroom Deck SOLAR PV SYSTEM #12 in the United States #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX THE LAYOUT AFTER HOURS GYM ENTRY SOLAR

  9. Institute for Critical Technology and Applied Science Seminar Series Silicone Materials for Sustainable

    E-Print Network [OSTI]

    Crawford, T. Daniel

    ; these goals are critical for the broad adoption of PV globally. Silicone polymers possess key material The Photovoltaic (PV) industry has aggressive goals to decrease $/kWh and lower the overall cost of ownership; supporting new customers and new application areas for the use of silicones in the PV industry She also

  10. The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS Systems

    E-Print Network [OSTI]

    The Effect of PV Array Size and Battery Size on the Economics of PV/Diesel/Battery Hybrid RAPS WA 6150 Abstract This paper focuses on pv/diesel/battery hybrid RAPS systems meeting loads above 50 kWh. INTRODUCTION A diesel hybrid system, incorporating a battery and inverter, can often provide power at a lower

  11. Power-Saving Approaches and Tradeoffs for Storage Systems BEN BUZBEE, Florida State University

    E-Print Network [OSTI]

    Wang, Andy

    and storage performance, capacity, reliability, cost of ownership, etc. This survey walks through layers of the legacy storage stack, exploring tradeoffs made by a representative set of energy-efficient storage that the average price of electricity has risen by 36% (from 7.29 to 9.9 cents per KWh) from 2001 to 2011

  12. Reducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling

    E-Print Network [OSTI]

    Feitelson, Dror

    consuming 61.4 billion kWh per year [4], an amount of energy equivalent to that consumed by the entireReducing Energy Costs for IBM Blue Gene/P via Power-Aware Job Scheduling Zhou Zhou1 , Zhiling Lan1, with the goal of reducing energy cost and not degrading system utilization. We design scheduling strategies

  13. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Feng, Xizhou

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads.e. cost in power usage over time) will vary by application. For example, it costs 535 joules of energy

  14. Power and Energy Profiling of Scientific Applications on Distributed Systems Xizhou Feng, Rong Ge, Kirk W. Cameron

    E-Print Network [OSTI]

    Ge, Rong

    to increase peak performance will lead to intolerable operating costs due to their electric power/energy hour (or $.10 per kWh), peak operation of such a petaflop machine is $10,000 per hour. Second, it leads to application characteristics. While machines require peak power at times, energy consumption (i.e. cost

  15. Sustainable Energy without the hot air David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    person in kilowatt-hours (kWh), the same units that appear on household energy bills; and powers1 Sustainable Energy ­ without the hot air David J.C. MacKay Synopsis We have an addiction energy from fossil fuels; Britain, 90%. And this is unsustainable for three reasons. First, easily

  16. Universit di Pavia, Dipartimento di Fisica http://fisica.unipv.it

    E-Print Network [OSTI]

    World Energy Outlook, 2012; dati in TWh=109 kWh) circa il 65% dell'energia elettrica è prodotta da Pavia - http://fisica.unipv.it 4 Fonti energetiche: il potenziale Solar Wind Coal Gas Oil Global energy the invention of efficient blue light-emitting diodes (LEDs) which has enabled bright and energy saving white

  17. Brookings-Google Plug-in Hybrid Summit, Washington, DC, July 2008 Version date: September 7, 2008

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wh, or U.S. gasoline prices must remain at roughly $5/gallon - or policy innovations and incentives need, to decrease the GHG intensity of electricity, and to raise gasoline prices relative to electricity prices can under current market conditions, battery prices must decline from about $1,300/kWh to below $500/k

  18. RECONCILIATION OF RETAILER CLAIMS, COMMISSIONREPORT

    E-Print Network [OSTI]

    ." All retail providers of electricity must disclose fuel source information to consumers about's default product. #12;- 2 - The law also requires all electricity generators who report meter data to a system operator to also report generation (in kWh), generator technology, and fuel type consumed (as

  19. Danti with Nuclear Magnetic Resonance Machine 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  20. International Business Machines Corporation 

    E-Print Network [OSTI]

    Gumula, M. G.

    1985-01-01

    the peak demand by an effective 12,389 KW and annual energy consumption by approximately 72,938,223 KWH. They have employed both conventional and innovative techniques and have certainly earned their first place award in the 1984 Duke Power Energy...

  1. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives 

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    1999-01-01

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  2. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    E-Print Network [OSTI]

    Darghouth, Naim Richard

    2013-01-01

    a levelized cost of energy (LCOE) of about $722/kW-yr, fromprocurement costs assume an LCOE of $0.10, $0.09, $0.15 persources are assumed to have an LCOE of $0.10/kWh. The LCOEs

  3. 2010 MITEI Summer UROPs and Interns Joseph Aboki Ragheb El Khaja Jared Forman Erick Fuentes Jennifer Hammond

    E-Print Network [OSTI]

    Suresh, Subra

    minor, was launched in September 2009. In May 2010, MIT and its electric utility NSTAR announced a first of its kind collaboration to reduce MIT's electricity consumption by 15%, or 34M KWH. MITEI wireless device will require the development of mixed ion and electron conducting thin polymer membranes

  4. Energy Savings by Veneering 

    E-Print Network [OSTI]

    Cook, T. H.

    1980-01-01

    in Augusta, Georgia is probably a very typical example of the cost rises experienced by Industry since the 1972-1973 period. 1. Electric Power Increase: 190% per KWH 2. Natural Gas Increase: 320% per Therm 3. No.2 Oil Increase: 271% per Gallon 4. No.4 Oil...

  5. Validation of an Integrated System for a Hydrogen-Fueled Power Park

    E-Print Network [OSTI]

    simulation ­ Efficiency ­ Waste heat availability Develop cost of operation models ­ Capital ­ Fuel costs reformer with equal loads All waste heat can be utilized 3-5 kW commercially available PEM fuel cells Heat and Power Has the Potential to Lower Power Cost by ~$0.01/kWh · CHP Requires Reformer and Fuel

  6. 1 Copyright 2007 by ASME Proceedings of IMECE 2007

    E-Print Network [OSTI]

    Texas at Arlington, University of

    capacity to within 1% of the undented condition and SEER to within 6% of the undented efficiency. Similar and commercial air- conditioners has a large influence on electrical energy consumption in the United States. In 2004, households in the U.S. used 216.8 billion kWh of electricity for air-conditioning, accounting

  7. Energy Systems Engineering 1 Clean Coal Technologies

    E-Print Network [OSTI]

    Banerjee, Rangan

    Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

  8. Economic Assessment of CO2 Capture and Disposal Richard S. Eckaus, Henry D. Jacoby, A. Denny Ellerman, Wing-Chi Leung and Zili Yang

    E-Print Network [OSTI]

    , Cc&d, but reduce the emissions per kWh generated by as much as 90%. In the future, these costs, on the structure of international agreements to control greenhouse gases, and on the availability of low- carbon level of use. This paper was presented to the Third Annual Conference on Carbon Dioxide Removal

  9. DEVELOPING CARBON CAPTURE AND STORAGE Howard J Herzog

    E-Print Network [OSTI]

    possibility is a small surcharge (less than $0.001/kWh) on all fossil generated electricity. We also needDEVELOPING CARBON CAPTURE AND STORAGE 1 Howard J Herzog MIT Energy Initiative Massachusetts, it is unreasonable to expect carbon capture and storage (CCS) to be deployed on a large-scale without strong climate

  10. CALiPER Report 21.3. Cost Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    2014-05-01

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  11. CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps

    SciTech Connect (OSTI)

    Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

    2014-05-27

    Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

  12. H A&S 222a: Introduction to Energy and Environment (Life Under the Pale Sun) out: Tues 4 April 2006

    E-Print Network [OSTI]

    : there are about 430,000 deaths in the US per year from smoking related illnesses.) This question may seem per second). ·Then convert this to horsepower, an old fashioned unit of power (one horsepower = 746? At this price, what is the dollar value of your walk up the mountain? The KWH is a unit of energy, not power

  13. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. DOEZEHCliftonViewHom...

  14. Code Corner 118 Home Power #92 December 2002 / January 2003

    E-Print Network [OSTI]

    Johnson, Eric E.

    of solar radiation data is the National Renewable Energy Laboratory solar radiation Web site, http energy available will have a direct bearing on the system size and cost for any specific size of load://rredc.nrel.gov/solar. Solar radiation data in formats used for PV systems (KWH/m2) is found at http://rredc.nrel.gov/solar/old_data

  15. ANALYSIS OF THE PERFORMANCE AND COST EFFECTIVENESS OF NINE SMALL WIND ENERGY CONVERSION SYSTEMS FUNDED BY THE DOE SMALL GRANTS PROGRAM

    E-Print Network [OSTI]

    Kay, J.

    2009-01-01

    horizontal wind electric machines, and other Wind Pumpingmachine is an 8-10 KVA recently designed, bUilt, and mark- eted by Jacobs Wind Electricmachine delivers about 1095 Kwh of en- ergy during the six month farming period. Assuming an electric

  16. Purdue Farm Energy Production & Innovation Center

    E-Print Network [OSTI]

    generated by solar panel: Average for Indiana is 4.481 kWh per sq meter per day #12;Dairy Beef USDA Lab M alternative sources, including wind, biomass, solar, gasification/liquefaction, digester " Energy efficiency and engineering approaches to convert wind, solar, and agricultural resources/wastes into energy ! Utilize broad

  17. WHAT WE ARE DOING TO IT AND WHAT WE ARE DOING TO UNDERSTAND IT

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    you burn the gasoline in your car. ? ? #12;YOUR FAMILY'S CONTRIBUTION TO THE GREENHOUSE EFFECT 0.8 0.6 0.4 0.2 0.0 CO2emissions,Pounds(C)perKWH Coal Oil Natural gas Nuclear CARBON DIOXIDE EMISSIONS FROM ELECTRIC ENERGY PRODUCTION (1990's Technology) Suffolk County 2001 Legislation How much does your household

  18. Fossil fuels will at some point in the future be depleted, therefore

    E-Print Network [OSTI]

    Langendoen, Koen

    this possible even when the wind turbine is operative. To meet the increased demand for wind energy, high to be found. Wind energy is one of these new (renewable) sources of energy. As the capacity of the wind capacity wind turbines are needed. These wind turbines are more cost effective per kWh, but also more

  19. STEWARDSHIP MAINTAINING NATURAL RICHES

    E-Print Network [OSTI]

    Ford, James

    ;Outstanding Results 5 Energy Conservation: Saved 240 Million KWH over last fifteen years. Green BuildingLAND STEWARDSHIP MAINTAINING NATURAL RICHES TRANSPORTATION GOING THE EXTRA MILE GREEN BUILDING SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING

  20. Primer on Conservation Potential Assessment MethodologyAssessment Methodology

    E-Print Network [OSTI]

    Measures that Save Electricity 2. Establish the Measure's "Baseline" Efficiency2. Establish the Measure s Baseline Efficiency 3. Estimate Electricity & Capacity Savings per Unit 4. Estimate Costs & Benefits per Unit 5. Estimate Measure Life 6. Calculate Cost per kWh Saved 7. Calculate Number of Units Available 8

  1. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  2. Testing and Evaluation of a Power Factor Correction for Power-Savings Potential 

    E-Print Network [OSTI]

    Alotaibi, A.

    2011-01-01

    is to develop the electromagnetic fields (EMFs) to ground the induction windings of the motor. In Kuwait, consumers only pay for the active power and energy used in kWh. A PFC unit stores the reactive power needed to create EMFs within the inductive loads...

  3. Duct leakage impacts on VAV system performance in California large commercial buildings

    E-Print Network [OSTI]

    Wray, Craig P.; Matson, Nance E.

    2003-01-01

    the energy cost and value of California’s electricity in twocosts using year 2000 average commercial sector energy prices for California:California ($0.0986/kWh and $7.71/Million Btu), the energy increases result in HVAC system annual operating cost

  4. Structural Safety and Reliability, Corotis et al. (eds), 2001 Swets & Zeitlinger, ISBN 90 5809 197 X Moment-based fatigue load models for wind energy systems

    E-Print Network [OSTI]

    Manuel, Lance

    -moment model not to the stress ranges themselves, but to a power-law transformation of these that directly and with diameters over 65 meters are on the market, producing electricity for prices below $0.04/kWh in good wind exponentially. BTM Consult (a Danish wind energy consulting firm) reports that in 1998 2,600 MW of wind power

  5. Mathematics and Energy With the exception of humans and some chemosynthetic ecosystems powered

    E-Print Network [OSTI]

    Russo, Bernard

    an argument for the fol- lowing claim: The most economical (as in "cheapest"), fastest, and most reli- able various forms of energy: electric, mechanical, chemical, 151 #12;152 Mathematics for the Environment heat are no doubt familiar with is the kWh, i.e., the kilowatt-hour. For electric energy you pay about 10 cents

  6. Optimization of Lithium Iron Phosphate Battery Charging and Performance

    E-Print Network [OSTI]

    Misic, Aleksandar

    The goal of this project is to efficiently and safely charge a 5kWh battery pack in 15 minutes. Since the project is still in progress, this report describes experiments on a 56Wh battery. Experiments were performed to ...

  7. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  8. Network Cooperation for Energy Saving in Green Radio Communications

    E-Print Network [OSTI]

    Zhuang, Weihua

    is for energy costs [1]. Each base station (BS), in cellular networks, roughly consumes upto 2.7 KWH in the following. RENEWABLE ENERGY SOURCES From an environmental perspective, the objective of green radio communications is to reduce the CO2 emissions [6]. This can be achieved by using renewable energy sources

  9. Application of an Energy Management System to a Distribution Center 

    E-Print Network [OSTI]

    Warnick, T.

    1984-01-01

    such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant...

  10. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  11. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  12. In high-tech industries, large amounts of reliable, high-quality

    E-Print Network [OSTI]

    In high-tech industries, large amounts of reliable, high-quality power are critical to information processing networks--industry giant Verizon Telecommunications uses over 5.1 billion kWh annually. Because with the grid, three reciprocating engines, two absorption chillers, and a heat recovery steam generator (HRSG

  13. Battery-Aware Energy-Optimal Electric Vehicle Driving Management

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    of replacing the battery, e.g. 12,000$ for Tesla Model S 85KWh [4] and 5,500$ for Nissan Leaf S [5], extendingBattery-Aware Energy-Optimal Electric Vehicle Driving Management Korosh Vatanparvar, Jiang Wan environmental concerns, e.g. air pollution. However, EVs pose new challenges regarding their Battery Life

  14. Suburban New York home with Solar Panels When are Solar Panels

    E-Print Network [OSTI]

    Menke, William

    States, with approximately 16 GW of installed capacity that produced, in 2014, about one half of one, this percentage is increasing every year; furthermore, solar panels are being installed at a growing rate. Solar,700 kWh of electricity3 . A typical rooftop solar installation on a suburban house can produce about

  15. In order to implement sustainable changes, it is important to understand how the University of Minnesota impacts the

    E-Print Network [OSTI]

    reduced use of coal. Solar panels have been installed on UMN campuses and are used to power ZAP bike trip) Campuses look to local fuels like oat hulls, corn stover and cattails for energy 98,000 kWh solar capacity is currently installed across the U Campus Specific Interim GHG Reduction Targets (CO2 e) -PRESIDENT ERIC W

  16. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  17. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  18. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01

    6 Coal price (2005$) $1.29/MMBTU 93.8 kg CO 2 /MMBTU coal COsales $0.05/kWh price (2005$) Coal type Illinois no.coal-to- electricity ef?ciency is 37%, carbon capture is 91%, and the electricity price

  19. The Costs and Benefits of Compliance with Renewable Portfolio Standards: Reviewing Experience to Date

    E-Print Network [OSTI]

    Heeter, Jenny

    2014-01-01

    facility in Hawaii. It supplies almost 10% of KIUC’s daytimeKIUC pays 20 ¢/kWh for solar power. In 2008, the HawaiiHawaii Electric Light Maui Division Maui Electric Company Lanai Division Molokai Division Source: HECO 2012 Kauai Island Utility Cooperative (KIUC)

  20. Green Pricing Experience and Lessons Learned Edward A. Holt

    E-Print Network [OSTI]

    times the number of kWh offered). In another variant, Detroit Edison charges for increments of capacity in a 28.4 kW photovoltaic demonstration, and then a lower-than- standard energy charge for the output from of renewable energy (or capacity) being purchased. The price charged is unrelated to the amount of energy

  1. The Cost-Effectiveness of Continuous Commissioning® Over the Past Ten Years 

    E-Print Network [OSTI]

    Bynum, J.; Claridge, D. E.; Turner, W. D.; Deng, S.; Wei, G.

    2008-01-01

    ). Savings are not analyzed based on the actual energy savings (kWh, MMBtu, etc.) due to the limited amount of the required information available. Savings per Unit Area A simple way to compare savings across many buildings of various sizes and types...

  2. Michael Klepinger, Extension Specialist Michigan State University

    E-Print Network [OSTI]

    electricity continues to rise. The aver- age end-user price of electricity in the United States was 8 cents projects are voicing concerns to township, city and county officials. The most common concerns are about per kilowatt hour (kWh) in 2005 (EIA, 2006a). Since the early 1980s, the price of wind-generated elec

  3. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Planning & Analysis

    E-Print Network [OSTI]

    prices and incentives. 2007 residential PV and electricity price differences with existing incentives #12 utilities) are projected to have a price difference of less than 5 ¢/kWh. 2015 residential without incentives and moderate increase in electricity prices Policy analysis example: PV grid-parity analysis, 2015

  4. TECHNICALADVANCES IN EPOXY TECHNOLOGY FOR WIND TURBINE BLADE COMPOSITE FABRICATION

    E-Print Network [OSTI]

    environmental factors such as temperature cycling, humidity and bird strikes. Failures of these composite blades in wind turbine blades and thereby provide solutions to address these failures by leveraging key novel, will generate the decrease in cost per kWh which the industry needs to be competitive with other sources

  5. Appendix D: Update on the University of Hawai`i at Mnoa Budget and Budget Outlook

    E-Print Network [OSTI]

    Dong, Yingfei

    review and approval process to ensure proper energy savings for new buildings and major renovations of Mnoa Green Days (MGD), a campus wide initiative to reduce energy consumption on weekends, holidays year in the decline of net energy usage from the campus peak in FY 2004 at 121,350,873 kWh. The result

  6. The Digital Divide: Implications on the Forest Products

    E-Print Network [OSTI]

    · 180 Million global users · Only 14% users from developing countries · Telephone density: ­ 52.3 per 100 persons in industrialized countries ­ 5.2 per 100 persons in developing countries #12;Connectivity.htm #12;Connectivity Country Inhabitants Per Telephone Consume of Electricity Per Person In KWh China 60

  7. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  8. Maximizing EV January 21, 2015

    E-Print Network [OSTI]

    California at Davis, University of

    charges How to evaluate $/ton instead of $/kwh? 7 #12;References E3. California Transportation Electrification Assessment - Phase 2: Grid Impacts. For the California Electric Transportation Coalition. October 2014. http://goo.gl/sAnamk "Investigating a Higher Renewables Portfolio Standard in California", Energy

  9. PVSAT-2: INTELLIGENT PERFORMANCE CHECK OF PV SYSTEM OPERATION BASED ON SATELLITE DATA

    E-Print Network [OSTI]

    Heinemann, Detlev

    a Dept. of Energy and Semiconductor Research, University of Oldenburg, D-26111 Oldenburg, Germany b, D-86152 Augsburg Germany e Fraunhofer Institute for Solar Energy Systems, Heidenhofstraße2, D-79110-back rates for PV energy (0.5/kWh in Germany since spring 2000, similar initiatives are foreseen in other

  10. Application of the Software as a Service Model to the Control of Complex Building Systems

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    energy Zinc-bromine flow battery power Photovoltaics Solar thermalEnergy (kWh) Hour of the Day Heat from DG Heat from Solar Thermalsolar thermal conventional collectors, HS: Heat storage, BC: Base case, and DN: “Do nothing” case, where all energy

  11. A Field Comparison of Performance Based Energy Efficient and Conventionally Constructed Homes in South Texas 

    E-Print Network [OSTI]

    Schertz, S.; Stracener, J.

    1986-01-01

    50 percent less than a conventionally built home. The load data gathered for this study included whole-house HVAC Compressor, HVAC Air handler heating and water heater KWH by a 15 minute interval. The data was gathered using multi-channel magnetic...

  12. Joseph H. Hoover Ph.D Student

    E-Print Network [OSTI]

    Scott, Christopher

    Salt River Project City of Phoenix Tucson Water City of Flagstaff Metro purchases for farms and ranches $52,635,000 Average cost per kWh for agriculture City of Phoenix (n=3) Pima County Regional Wastewater Reclama0on (n=7) Nogales

  13. Estimated Savings from Turning Off Unnecessary Lights at the Langford Architecture Center During the 1996 Christmas Holidays 

    E-Print Network [OSTI]

    Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

    1997-01-01

    lights been left on, the building would have consumed 100 kW more electricity every hour. The total electricity savings was about 31,200 kWh over 13 days, which is equivalent to a total cost saving of $936.00. If the College continues to turn off...

  14. Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems

    E-Print Network [OSTI]

    Zhang, Teresa Weirui

    2011-01-01

    Phoenix, US Shanghai, China Mumbai, India Insolation (kWh/mPhoenix, AZ Los Angeles, CA Riyadh, Saudi Arabia Honolulu, HI Insolation (kWh/Phoenix, US Madrid, Spain Munich, Germany Mumbai, India Toulouse, France Shanghai, China Insolation (kWh/

  15. Methodological and Practical Considerations for DevelopingMultiproject Baselines for Electric Power and Cement Industry Projects inCentral America

    SciTech Connect (OSTI)

    Murtishaw, Scott; Sathaye, Jayant; Galitsky, Christina; Dorion,Kristel

    2004-09-02

    The Lawrence Berkeley National Laboratory (Berkeley Lab) andthe Center for Sustainable Development in the Americas (CSDA) conductedtechnical studies and organized two training workshops to developcapacity in Central America for the evaluation of climate changeprojects. This paper describes the results of two baseline case studiesconducted for these workshops, one for the power sector and one for thecement industry, that were devised to illustrate certain approaches tobaseline setting. Multiproject baseline emission rates (BERs) for themain Guatemalan electricity grid were calculated from 2001 data. Inrecent years, the Guatemalan power sector has experienced rapid growth;thus, a sufficient number of new plants have been built to estimateviable BERs. We found that BERs for baseload plants offsetting additionalbaseload capacity ranged from 0.702 kgCO2/kWh (using a weighted averagestringency) to 0.507 kgCO2/kWh (using a 10th percentile stringency),while the baseline for plants offsetting load-followingcapacity is lowerat 0.567 kgCO2/kWh. For power displaced from existing load-followingplants, the rate is higher, 0.735 kgCO2/kWh, as a result of the age ofsome plants used for meeting peak loads and the infrequency of their use.The approved consolidated methodology for the Clean Development Mechanismyields a single rate of 0.753 kgCO2/kWh. Due to the relatively smallnumber of cement plants in the region and the regional nature of thecement market, all of Central America was chosen as the geographicboundary for setting cement industry BERs. Unfortunately, actualoperations and output data were unobtainable for most of the plants inthe region, and many data were estimated. Cement industry BERs rangedfrom 205 kgCO2 to 225 kgCO2 per metric ton of cement.

  16. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  17. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  18. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect (OSTI)

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  19. Recent progress on Exxon's zinc-bromine battery technology

    SciTech Connect (OSTI)

    Bellows, R.J.

    1982-01-01

    The Exxon zinc-bromine battery design is based on the use of a circulating electrolyte, bromine complexing agents, conductive carbon plastic electrodes, and a bipolar electrode stack using shunt current protection. Manufacturing cost for this design, assuming large scale production is estimated at $28/kWh ($1980). Electrode and electrolyte performance is equivalent to 65 Wh/kg and over 150 w/kg in final designs. Recent program highlights include system scale-up to the 20 kWh level, extension of demonstrated life to over 400 cycles, the ability to follow various cycling regimes, and preparations for a full-scale deliverable during 1983. Program status is outlined. (WHK)

  20. Best Energy Savings Measurement at Texas City Monsanto Plant 

    E-Print Network [OSTI]

    Repschleger, W. E.

    1979-01-01

    "BTU KWH MMBTU MGAL TEXAS CITY PLANT S1725 DEPT 89972 UTILI TY DESCRIPTION STEAM MMBT ELECTRICITY FIL _TR MGAL MAKE UP WTR. C T WATER UNITS MMBTU KWH HGAL "GAL. MGAL HGAL PLANT N02 UNIT -------ACTUAL THIS MO 65,289 11,160. 56... FACTOR DESCRIPTION UNITS 38.521 3.881 30.423 01.3C188~ 5.079 STEAM MM3TU MM8TU 56.789 n2.6~7 S.679.31Cl ClO.OIOClCl 1.32' ElECTRI CIT Y KW H - ---_._.--- -_. 39 1.741 00.02699 5 FIl WH MGAl MGAl 222 6.989 98,332 ..... 678.711 OCl.ClIl9C1 1...

  1. UK Renewable Energy Policy Since Privatisation

    E-Print Network [OSTI]

    Pollitt, Michael G.

    to have an open competition to select a CCS project. Government policies will always be tempered by the reality of the need to control costs (and to obey EU rules on competition), especially when those costs are shown to be high relative... a series of bidding rounds whereby renewable energy projects bid for an RPI-indexed per KWh price for initially 8 and later 15 years. Winning bids were selected by cost within each technology category. The result was a significant amount...

  2. Learning curves and changing product attributes: the case of wind turbines

    E-Print Network [OSTI]

    Coulomb, Louis; Neuhoff, Karsten

    2006-03-14

    an important contribution. Other studies avoid this problem by using kWh as the energy benchmark; here, a reference wind site is selected, and the annual theoretical energy production of all turbines that constitute the installed capacity is determined... -seventh for onshore sites. Wind turbine designers have two options to capitalise on the increase in wind speed with increasing hub height. Firstly, they can retain the combination of turbine diameter and rated power of the generator and thus increase the energy...

  3. LED ProspectsLED Prospects photometric units

    E-Print Network [OSTI]

    Pulfrey, David L.

    -life incandescent with LED. · 10 light fixtures/home, lights on for 6h/day, 333 days/yr. · Electricity 0.12 $/kWh. W Illuminated by: (a) high-CRI source (b) low-CRI source EFS #12;6 http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/ #12;7 http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/ #12;8 http://www.ecse.rpi.edu/~schubert/Light

  4. Marketing Strategies in a Downturn Economy 

    E-Print Network [OSTI]

    Williams, M.

    1987-01-01

    IN A DOWNTURN ECONOMY MALCOLM WILLIAMS Manager Business Development Gulf States Utilities Beaumont, ABSTRACT The economic activity in an area may affect electric utility sales more than other retailers. Statistics show that the KWH consumption... market. This paper deals with some of these new concepts being used by utilities in a downturn economy. INTRODUCTION Sales programs and marketing strategies to sell electric energy are in many ways similar to selling other types of consumer goods...

  5. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  6. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  7. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  8. Economic and Financial Costs of Saving Water and Energy: Preliminary Analysis for Hidalgo County Irrigation District No. 2 (San Juan) – Replacement of Pipeline Units I-7A, I-18, and I-22 

    E-Print Network [OSTI]

    Sturdivant, Allen W.; Rister, M. Edward; Lacewell, Ronald D.

    2007-01-01

    Intermediate Calculation Values ........................................12 Construction Cost per ac-ft of Water Saved ...............................12 Construction Cost per Unit of Energy Saved ...............................12 Construction Cost per Dollar.... Annual water and energy savings forthcoming from the total project are estimated, using amortization procedures, to be 485 ac-ft of water per year and 179,486,553 BTUs {52,604 kwh} of energy per year. The calculated economic and financial cost...

  9. Resource Conservation in Snack Food Processing 

    E-Print Network [OSTI]

    Perry, L. E.; Meyers, G. R.

    2001-01-01

    was then required to develop an action plan and timeline for implementation. Follow-up technical support to some facilities was necessary to assist with project implementation or to provide additional trouble shooting of problem systems. These "strike team... technical evaluation of each process was conducted to establish the theoretical "best-case" gallons of water, BTUs of fuel, and KWH of electricity required to produce the respective product. Building related consumption standards were then established...

  10. LED Lighting Retrofit 

    E-Print Network [OSTI]

    Shaw-Meadow, N.

    2011-01-01

    kWh is the one that never gets used? ?Dedicated to making environmentally responsible products? Ringdale Introduction LED Roadway Lighting Better Light, Fewer Watts. Period. Nathan Shaw-Meadow LED Lighting Specialist Ringdale ActiveLED ESL.../exponential efficiency growth often deters investment today 7 Challenges to Implementation ESL-KT-11-11-57 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 ? Municipal Street Light Case Study 8 ? Replaced 400W High Pressure Sodium fixtures with 52W Active...

  11. The Cost of Power Disturbances to Industrial & Digital Economy Companies

    E-Print Network [OSTI]

    Schrijver, Karel

    Outages Outage Costs as a Function of Duration of Outage 2-1 Outage Costs by Sector and kWh Consumption 2-4 Outage Costs as a Function of Business Activities and Equipment 2-5 The Impact of Advance Notice on Outage Costs 2-7 Elements of Outage Costs ­ Where Does the Money Go? 2-8 Chapter 3: Aggregate Cost

  12. Power translation chart kWh/d each GW / UK TWh/y / UK Mtoe/y / UK

    E-Print Network [OSTI]

    MacKay, David J.C.

    (2004) UK Nuclear (2004) UK Electricity fuel input (2004) 1 kWh/d the same as 1/24 kW `UK' = 60 millionWh/d each kWh(e) /d each t CO2/y each Mt CO2/y / UK MtC/y / UK GtC/y / World World (2005) `Safe'`Safe and fair' UK (1990) UK (2005) 60% target 80% target UK Electricity kWh thermal energy exchange rate: 1 k

  13. Bizuayehu Tesfaye REYST report 05-2011

    E-Print Network [OSTI]

    Karlsson, Brynjar

    is estimated to have access to electricity and the per capita energy consumption is 40.59kWh, which/wind/battery and battery storage of 48 h of autonomy has been selected. The cost of generating energy (COE, US$/kWh) from. But the diesel-only option in the existing arrangement, levelized cost of energy for Kebri Dehar and Degehabur

  14. Procedure for Applying an Open-Cycle Heat Pump to An Existing Evaporator 

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    1984-01-01

    that this retrofit project would be adopted, since 8 c 0 ?a E ::J . 'C ::J 0 r Electr\\Cil'i = 3? I kWh 6 5 Assumptions: ? MVC Handles Entire Heat Load ? MVC... Product (To Siorage or to Additional Effects) Steam Vapor Condensate Condensate 841073 Fig. 2(a). Multiple Effect Evaporator product liquor to assure adequate heat transfer 1n the heat exchanger. If not known, a value of TA = lOaF can...

  15. Microprocessor-based control system for flowing-electrolyte zinc-bromine battery systems

    SciTech Connect (OSTI)

    Malachesky, P.A.; Chang, L.S.; Elspass, C.E.; Bellows, R.J.

    1983-01-01

    The zinc-bromine battery system under development at Exxon is based on a bipolar, circulating electrolyte design concept. Such circulating electrolyte systems require a controller to operate and monitor system auxiliaries such as valves and pumps. A 1.2 kWh zinc-bromine battery system controller has been constructed using a single board computer. The design and operation of this controller will be discussed.

  16. Behavioral Modification 

    E-Print Network [OSTI]

    DuPlessis, J.

    2012-01-01

    Education & Understanding Create a mutual effort to understand Energy Committee Activities Saved 5,174,305 kWh of electricity ? 13% of electricity usage Saved 18,873 MCF of natural gas ? 18% of natural gas usage Competition Results November 2011... with Select Principals Kicked Off Committee in One High School Cluster Expanded to All 6 Clusters Added Auxiliary Facilities Involving Every Department The Arlington ISD Energy Committee includes one member from each building...

  17. A Research Program for Promising Retrofit Technologies

    E-Print Network [OSTI]

    per kWh reduces the cost of CCS. 2 #12;At a coal-fired power plant, CO2 is a component of the flue gas commercial amine processes can work with gas- fired power plants, but today only a subset can work on coal-fired power plants. A coal plant flue gas is more difficult to handle because of the pollutants it contains

  18. Atmos. Chem. Phys., 12, 93659379, 2012 www.atmos-chem-phys.net/12/9365/2012/

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    considered a major contributor to NOx emissions in China. Beijing initiated a comprehensive vehicle test-road distance-specific (g km-1) nor brake-specific (g kWh-1) NOx emission factors for diesel buses and heavy, the average NOx emission factors for Euro II, Euro III and Euro IV buses are 11.3 ± 3.3 g km-1, 12.5 ± 1.3 g

  19. Energy Unit Conversion Factors / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    kilowatt hour (kWh) equals 3.60 x lo6 1 3413 1 calorie (Cal) equals 4.184 1.19 x lO+j 3.97 x lo-3 1 British electron volt (eV) equals 1.60 x lo-l9 4.45 x lo-26 1.52 x 1o-22 Energy Equivalents Crude petroleum (42

  20. 1 KILOWATT = 1,000 WATTS 1 MEGAWATT = 1,000,000 WATTS

    E-Print Network [OSTI]

    Hochberg, Michael

    microwave for 1 hour uses 1.2 kW-h of energy. That's 4.3 megajoules or 4,300,000 joules. Power is how fast production of 150 hp. human body base metabolism 80 watts 1 kilowatt microwave 26 cu ft. refrigerator (annual solar panel array (peak production) 1.5 kilowatt ~10 m2 space shuttle lifto hand-cranked generator 10