Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Development of 5kWh Flywheel Energy Storage System Using MATLAB/xPC Target  

Science Conference Proceedings (OSTI)

A 5kWh class FESS(Flywheel Energy Storage System) with the operating speed range of 9,000~15,000rpm has been developed. The system consists of a composite flywheel rotor, active magnetic bearings, a motor/generator and its controller. Because Active ... Keywords: FESS, Magnetic bearing, rotor dynamics, Imbalace Response, xPC Target

Cheol Hoon Park; Sang-Kyu Choi; Young Su Son; Young Hee Han

2009-03-01T23:59:59.000Z

2

Next-Generation Flywheel Energy Storage: Development of a 100 kWh/100 kW Flywheel Energy Storage Module  

SciTech Connect

GRIDS Project: Beacon Power is developing a flywheel energy storage system that costs substantially less than existing flywheel technologies. Flywheels store the energy created by turning an internal rotor at high speeds—slowing the rotor releases the energy back to the grid when needed. Beacon Power is redesigning the heart of the flywheel, eliminating the cumbersome hub and shaft typically found at its center. The improved design resembles a flying ring that relies on new magnetic bearings to levitate, freeing it to rotate faster and deliver 400% as much energy as today’s flywheels. Beacon Power’s flywheels can be linked together to provide storage capacity for balancing the approximately 10% of U.S. electricity that comes from renewable sources each year.

None

2010-09-22T23:59:59.000Z

3

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

4

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

5

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

6

Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing  

DOE Green Energy (OSTI)

The summaries of this project are: (1) Program goal is to design, develop, and demonstrate a 100 kW UPS flywheel electricity system; (2) flywheel system spin tested up to 15,000 RPM in a sensorless, closed loop mode; (3) testing identified a manufacturing deficiency in the motor stator--overheats at high speed, limiting maximum power capability; (4) successfully spin tested direct cooled HTS bearing up to 14,500 RPM (limited by Eddy current clutch set-up); (5) Testing confirmed commercial feasibility of this bearing design--Eddy Current losses are within acceptable limits; and (6) Boeing's investment in flywheel test facilities increased the spin-test capabilities to one of the highest in the nation.

Dr. Michael Strasik, Philip E Johnson; A. C. Day; J. Mittleider; M. D. Higgins; J. Edwards; J. R. Schindler; K. E. McCrary; C.R. McIver; D.; J. F. Gonder; J. R. Hull

2007-10-29T23:59:59.000Z

7

Flywheel energy storage workshop  

DOE Green Energy (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

8

Design of Flywheel Energy Storage Structure  

Science Conference Proceedings (OSTI)

In this paper, we have mainly studied the flywheel energy storage system's construction and working principle, which include flywheel battery, integrated driven converting motor (Device of energy converter), and magnetic suspension support system. We ... Keywords: Flywheel principle, Flywheel energy storage, Energy transudcer, Application of flywheel storage

Baoquan Geng; Yiming He

2011-03-01T23:59:59.000Z

9

Reluctance apparatus for flywheel energy storage - Energy ...  

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ...

10

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant...

11

Property:Incentive/PVComFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Incentive/PVComFitDolKWh Jump to: navigation, search Property Name Incentive/PVComFitDolKWh Property Type String Description Feed-in tariff for commercial systems. The $ amount per kWh generated such that the incentive is disbursed over time based on metered production. 100% of energy generated is exported; none is used on-site. Ex: TVA Green Power Switch $0.15/kWh; We Energies $0.225/kWh Format: $0.225 [1] References ↑ DSIRE Pages using the property "Incentive/PVComFitDolKWh" Showing 25 pages using this property. (previous 25) (next 25) A Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + $0.25 + C CPS Energy - Solartricity Producer Program (Texas) + $0.27 +

12

Property:Incentive/PVResFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Incentive/PVResFitDolKWh Jump to: navigation, search Property Name Incentive/PVResFitDolKWh Property Type String Description Feed-in Tariff (FIT): The $ amount per kWh generated such that the incentive is disbursed over time based on metered production. 100% of energy generated is exported; none is used on-site. Ex: TVA Green Power Switch $0.15/kWh; We Energies $0.225/kWh Format: $0.225 [1] References ↑ DSIRE Pages using the property "Incentive/PVResFitDolKWh" Showing 25 pages using this property. (previous 25) (next 25) A Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + $0.25 + C CPS Energy - Solartricity Producer Program (Texas) + $0.27 +

13

Property:Incentive/PVNPFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Incentive/PVNPFitDolKWh Jump to: navigation, search Property Name Incentive/PVNPFitDolKWh Property Type String Description Feed-in tariff for non-profit and/or government systems. The $ amount per kWh generated such that the incentive is disbursed over time based on metered production. 100% of energy generated is exported; none is used on-site. Ex: TVA Green Power Switch $0.15/kWh; We Energies $0.225/kWh Format: $0.225 [1] References ↑ DSIRE Pages using the property "Incentive/PVNPFitDolKWh" Showing 25 pages using this property. (previous 25) (next 25) A Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + $0.25 + C CPS Energy - Solartricity Producer Program (Texas) + $0.27 +

14

Flywheel energy storage advances using HTS bearings.  

DOE Green Energy (OSTI)

High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

Mulcahy, T. M.

1998-09-11T23:59:59.000Z

15

Flywheel Energy Storage technology workshop  

DOE Green Energy (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

16

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Stephen Graff Former Writer & editor for Energy Empowers, EERE

17

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

18

Reluctance apparatus for flywheel energy storage  

DOE Patents (OSTI)

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

Hull, John R. (Downers Grove, IL)

2000-01-01T23:59:59.000Z

19

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Conference Proceedings (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

20

Flywheel energy storage using superconducting magnetic bearings  

DOE Green Energy (OSTI)

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FLYWHEEL ENERGY STORAGE SYSTEMS WITH SUPERCONDUCTING BEARINGS FOR UTILITY APPLICATIONS  

DOE Green Energy (OSTI)

This project’s mission was to achieve significant advances in the practical application of bulk high-temperature superconductor (HTS) materials to energy-storage systems. The ultimate product was planned as an operational prototype of a flywheel system on an HTS suspension. While the final prototype flywheel did not complete the final offsite demonstration phase of the program, invaluable lessons learned were captured on the laboratory demonstration units that will lead to the successful deployment of a future HTS-stabilized, composite-flywheel energy-storage system (FESS).

Dr. Michael Strasik; Mr. Arthur Day; Mr. Philip Johnson; Dr. John Hull

2007-10-26T23:59:59.000Z

22

Flywheel Energy Storage Device for Hybrid and Electric Vehicles  

ORNL 2011-G00218/jcn UT-B ID 200701859 07.2011 Flywheel Energy Storage Device for Hybrid and Electric Vehicles Technology Summary This cost-effective technology ...

23

Flywheel Project Escalates Grid Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New York State: in addition to last week's announcement on the AES energy storage project, the Energy Department has finalized a $43 million loan guarantee for Beacon Power Corporation's flywheel energy storage plant. Not only is the project estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is

24

Flywheel Energy Storage for End-Use Power  

Science Conference Proceedings (OSTI)

Power quality represents both a challenge and an opportunity for utilities to provide quality and service to their customers. Flywheel systems are becoming commercially available for solving short-term power quality problems, specifically voltage sags and momentary interruptions, and a variety of products appears particularly attractive for this market. This report provides information on the subject of flywheel energy storage systems to utility personnel responsible for end-use power quality.

1998-12-15T23:59:59.000Z

25

Dynamic Analysis and Control of an Energy Storage Flywheel Rotor with Active Magnetic Bearings  

Science Conference Proceedings (OSTI)

Flywheel energy storage is a promising technology for providing intermediate energy storage. An energy storage flywheel is supported by active magnetic bearings (AMBs) to achieve high speed running and increase energy efficiency of the energy storage ... Keywords: Flywheel, Energy Storage, Magnetic Bearing, Rotor Dynamics

Zhang Kai; Dai Xingjian; Zhang Xiaozhang

2010-12-01T23:59:59.000Z

26

Low-cost flywheel demonstration program. Final report  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 19'9. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1)kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; developmeNt of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

None

1980-04-01T23:59:59.000Z

27

Flywheel rotor and containment technology development  

DOE Green Energy (OSTI)

The goals of the project are: to develop an economical and practical composite flywheel having an energy density of 88 Wh/kg at failure, an operational energy density of 44 to 55 Wh/kg, and an energy storage capacity of approximately 1 kWh; to determine the suitability of various manufacturing processes for low-cost rotor fabrication; to investigate flywheel and flywheel-systems dynamics; to test and evaluate prototype rotors for use in transportation and stationary applications; and to develop a fail-safe, lightweight, and low-cost flywheel containment. The following tasks have been accomplished: evaluation and selection of 1-kWh, first-generation, advanced flywheel rotor designs for subsequent development towards the DOE-established energy density goal of 88 Wh/kg at burst; completion of an advanced design concept for a flywheel primary containment structure, capable of containing the failure of a 1-kWh flywheel rotor and targeted for vehicular applications; non-destructive inspection and burst testing of approximately twenty (20) prototype rotors, and initiation of cyclic testing; completion of various activities in the areas of rotor manufacturing processes, dynamic analyses and composite materials design data generation; and initiation of an economic feasibility study to establish a rational costing methodology for composite rotors and containment.

Kulkarni, S.V.

1981-08-11T23:59:59.000Z

28

Composite-flywheel burst-containment study  

Science Conference Proceedings (OSTI)

A key component impacting total flywheel energy storage system weight is the containment structure. This report addresses the factors that shape this structure and define its design criteria. In addition, containment weight estimates are made for the several composite flywheel designs of interest so that judgements can be made as to the relative weights of their containment structure. The requirements set down for this program were that all containment weight estimates be based on a 1 kWh burst. It should be noted that typical flywheel requirements for regenerative braking of small automobiles call for deliverable energies of 0.25 kWh. This leads to expected maximum burst energies of 0.5 kWh. The flywheels studied are those considered most likely to be carried further for operational design. These area: The pseudo isotropic disk flywheel, sometimes called the alpha ply; the SMC molded disk; either disk with a carbon ring; the subcircular rim with cruciform hub; and Avco's bi-directional circular weave disk. The flywheel materials for the disk are S-glass; the subcircular rim is Kevlar over S-glass. Test data on flywheel bursts and containment failures were analyzed. Recommendations are made for further testing.

Sapowith, A.D.; Handy, W.E.

1982-04-08T23:59:59.000Z

29

Flywheel energy storage with superconductor magnetic bearings  

DOE Patents (OSTI)

A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

1993-01-01T23:59:59.000Z

30

ESS 2012 Peer Review - Amber Kinetics Flywheel Energy Storage Demo - Ed Chiao, Amber Kinetics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

amber_kinetics amber_kinetics DOE Peer Review September 2012 Ed Chiao, CEO amber_kinetics Amber Kinetics: Our Flywheel History Start-up launched in 2009, Stanford University Cleantech Entrepreneurship class Established a technology licensing & flywheel development partnership with LLNL; Amber Kinetics identified new material & lower-cost rotor designs for commercialization Awarded a Smart Grid Energy Storage Demonstration grant award for flywheels Awarded a matching grant for development & demonstration of flywheel technology Stanford University Lawrence Livermore National Laboratory U.S. Department of Energy California Energy Commission World-class institutions | innovative, deep flywheel technology owned by Amber Amber Kinetics, Inc. - Confidential and Proprietary, All Rights Reserved

31

Technologies for energy storage flywheels and super conducting magnetic energy storage  

DOE Green Energy (OSTI)

A flywheel is an electromechanical storage system in which energy is stored in the kinetic energy of a rotating mass. Flywheel systems under development include those with steel flywheel rotors and resin/glass or resin/carbon-fiber composite rotors. The mechanics of energy storage in a flywheel system are common to both steel- and composite-rotor flywheels. In both systems, the momentum of the rotating rotor stores energy. The rotor contains a motor/generator that converts energy between electrical and mechanical forms. In both types of systems, the rotor operates in a vacuum and spins on bearings to reduce friction and increase efficiency. Steel-rotor systems rely mostly on the mass of the rotor to store energy while composite flywheels rely mostly on speed. During charging, an electric current flows through the motor increasing the speed of the flywheel. During discharge, the generator produces current flow out of the system slowing the wheel down. The basic characteristics of a Flywheel system are shown. Steel flywheel systems are currently being marketed in the US and Germany and can be connected in parallel to provide greater power if required. Sizes range from 40kW to 1.6MW for times of 5--120 seconds. At this time sales are limited but growing. The suppliers of the composite type flywheel systems are currently in the prototype stages of development. Flywheel systems offer several potential advantages. FES systems, as their developers envision them will have exceptionally long service lives and low life-cycle costs as a result of minimal O and M requirements. FES systems are compact and self-contained allowing them to be placed in tight quarters, and they contain no hazardous chemicals nor do they produce flammable gases.

BOYES,JOHN D.

2000-04-26T23:59:59.000Z

32

Low-cost flywheel demonstration program. Final report, 1 October 1977-31 December 1979  

DOE Green Energy (OSTI)

The Applied Physics Laboratory/Department of Energy Low Cost Flywheel Demonstration Program was initiated on 1 October 1977 and was successfully concluded on 31 December 1979. The total cost of this program was $355,190. All primary objectives were successfully achieved as follows: demonstration of a full-size, 1-kWh flywheel having an estimated cost in large-volume production of approximately $50/kWh; development of a ball-bearing system having losses comparable to the losses in a totally magnetic suspension system; successful and repeated demonstration of the low-cost flywheel in a complete flywheel energy-storage system based on the use of ordinary house voltage and frequency; and application of the experience gained in the hardware program to project the system design into a complete, full-scale, 30-kWh home-type flywheel energy-storage system.

Rabenhorst, D.W.; Small, T.R.; Wilkinson, W.O.

1980-04-01T23:59:59.000Z

33

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazle Spindle LLC Hazle Spindle LLC American Recovery and Reinvestment Act (ARRA) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for Hazle Spindle LLC, the Recipient of the ARRA Cooperative Agreement. The plant will provide frequency regulation services to grid operator PJM Interconnection. Flywheel systems are kinetic energy storage devices that react instantly when needed. By accelerating a cylindrical rotor (flywheel) to a very high speed and maintaining the energy in the system as rotational energy, flywheel energy storage systems can moderate fluctuations in grid demand. When generated power exceeds load, the flywheel speeds up; when load exceeds generation, the flywheel is slowed to convert the energy for

34

ESS 2012 Peer Review - Amber Kinetics Flywheel Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7700 RPM - Spin testing accelerates rotor to: 530 ms and 11,000 RPM - Rotor stores 10 kWh of kinetic energy @ 11,000 RPM (2x more than design speed) - All testing conducted in...

35

ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Boeing Management Company. Copyright 2011 Boeing. All rights reserved. | 1 Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration" Mike Strasik Program...

36

Energy Storage Application Brief -- Case History for Large Flywheel System: Piller -- Flywheel Energy Storage Systems for Premium Power  

Science Conference Proceedings (OSTI)

Piller of Middleton, New York produces premium power systems for power quality and uninterruptible power supply (UPS) applications. An entire family of products is commercially available in a variety of system and circuit configurations for industrial use. These products are beneficial because they are highly reliable and protect from voltage sags. The energy storage components of these systems uses mature, conventional flywheel technology. This technology review describes the various applications of the...

1999-11-23T23:59:59.000Z

37

AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES  

Science Conference Proceedings (OSTI)

An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

Hansen, James Gerald [ORNL

2012-02-01T23:59:59.000Z

38

Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.  

SciTech Connect

As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

2013-09-01T23:59:59.000Z

39

Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.  

Science Conference Proceedings (OSTI)

As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

2013-09-01T23:59:59.000Z

40

Fields and forces in flywheel energy storage with high-temperature superconducting bearings  

DOE Green Energy (OSTI)

The development of low-loss bearings employing high-temperature superconductors has brought closer the advent of practical flywheel energy storage systems. These systems require magnetic fields and forces for levitation, stabilization, and energy transfer. This paper describes the status of experiments on flywheel energy storage at Argonne National Laboratory and computations in support of that project, in particular computations for the permanent-magnet rotor of the motor-generator that transfers energy to and from the flywheel, for other energy-transfer systems under consideration, and for the levitation and stabilization subsystem.

Turner, L.R. [Argonne National Lab., IL (United States). Energy Technology Div.

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Welcoming Remarks Imre Gyuk US Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mark A. Smith (Sandia National Laboratories) Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing -...

42

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

DOE Green Energy (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

43

High speed flywheel  

DOE Patents (OSTI)

This invention relates generally to flywheels and relates more particularly to the construction of a high speed, low-mass flywheel. Flywheels with which this invention is to be compared include those constructed of circumferentially wound filaments or fibers held together by a matrix or bonding material. Flywheels of such construction are known to possess a relatively high hoop strength but a relatively low radial strength. Hoop-wound flywheels are, therefore, particularly susceptible to circumferential cracks, and the radial stress limitations of such a flywheel substantially limit its speed capabilities. It is an object of the present invention to provide a new and improved flywheel which experiences reduced radial stress at high operating speeds. Another object of the present invention is to provide flywheel whose construction allows for radial growth as flywheel speed increases while providing the necessary stiffness for transferring and maintaining kinetic energy within the flywheel. Still another object of the present invention is to provide a flywheel having concentrically-disposed component parts wherein rotation induced radial stresses at the interfaces of such component parts approach zero. Yet another object of the present invention is to provide a flywheel which is particularly well-suited for high speed applications. 5 figs.

McGrath, S.V.

1990-01-01T23:59:59.000Z

44

Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2Total" SPBreakdownOfElctrcityUseKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.4577086539 + Sweden Building 05K0002 + 110.926946534 + Sweden Building 05K0003 + 72.9096074806 + Sweden Building 05K0004 + 66.0248923654 + Sweden Building 05K0005 + 54.8654809632 + Sweden Building 05K0006 + 65.291976787 + Sweden Building 05K0007 + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 + 27.5018481341 + Sweden Building 05K0012 + 37.9937990385 + Sweden Building 05K0013 + 68.8990371973 + Sweden Building 05K0014 + 166.794253904 + Sweden Building 05K0015 + 71.0813662687 + Sweden Building 05K0016 + 38.5267410327 +

45

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Total" SPPurchasedEngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden Building 05K0003 + 195.801526718 + Sweden Building 05K0004 + 174.148148148 + Sweden Building 05K0005 + 340.088495575 + Sweden Building 05K0006 + 211.255924171 + Sweden Building 05K0007 + 144.028151521 + Sweden Building 05K0008 + 171.282051282 + Sweden Building 05K0009 + 140.296360236 + Sweden Building 05K0010 + 300.961098398 + Sweden Building 05K0011 + 98.1045751634 + Sweden Building 05K0012 + 106.609793929 + Sweden Building 05K0013 + 175.776187637 + Sweden Building 05K0014 + 291.160427408 + Sweden Building 05K0015 + 174.193548387 + Sweden Building 05K0016 + 145.793794187 +

46

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating Jump to: navigation, search This is a property of type String. District heating Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 111.56331078 + Sweden Building 05K0002 + 72.7932960894 + Sweden Building 05K0003 + 111.899416255 + Sweden Building 05K0004 + 72.865497076 + Sweden Building 05K0005 + 285.840707965 + Sweden Building 05K0006 + 128.449958182 + Sweden Building 05K0007 + 63.8377147588 + Sweden Building 05K0008 + 115.128205128 + Sweden Building 05K0009 + 66.5515753129 + Sweden Building 05K0010 + 148.741418764 +

47

Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2Misc SPBreakdownOfElctrcityUseKwhM2Misc Jump to: navigation, search This is a property of type String. Miscellaneous Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Misc" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 9.09953195331 + Sweden Building 05K0003 + 8.78442379242 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 12.9530389597 + Sweden Building 05K0008 + 6.03377747253 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 10.9950724049 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 14.2856105095 + Sweden Building 05K0014 + 27.8718727739 +

48

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2HeatPumps SPBreakdownOfElctrcityUseKwhM2HeatPumps Jump to: navigation, search This is a property of type String. Heat pumps Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

49

Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

50

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

Science Conference Proceedings (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

51

ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage - Jim Martin, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

subsidiary subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Photos placed in horizontal position with even amount of white space between photos and header Photos placed in horizontal position with even amount of white space between photos and header Magnetic composites for flywheel energy storage September 27, 2012 James E. Martin Project description  The bearings currently used in energy storage flywheels dissipate a significant amount of energy. Magnetic bearings would reduce these losses appreciably.  Magnetic bearings require magnetic materials on an inner annulus of the flywheel for magnetic levitation.  This magnetic material must be able to withstand a 2% tensile deformation, yet

52

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPPurchasedEngyPerAreaKwhM2ElctrcHeating" SPPurchasedEngyPerAreaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

53

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" SPBreakdownOfElctrcityUseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.745132743363 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 25.8064516129 + Sweden Building 05K0016 + 5.89159465829 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 + Sweden Building 05K0019 + 0.0 +

54

Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy  

Open Energy Info (EERE)

OtherElctrty OtherElctrty Jump to: navigation, search This is a property of type String. Other electricity Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 70.305743501 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

55

Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open Energy  

Open Energy Info (EERE)

Pumps Pumps Jump to: navigation, search This is a property of type String. Pumps Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Pumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 6.37190900733 + Sweden Building 05K0002 + 6.03888185355 + Sweden Building 05K0003 + 3.38991548528 + Sweden Building 05K0004 + 4.33303636174 + Sweden Building 05K0005 + 2.75390897598 + Sweden Building 05K0006 + 7.77750996655 + Sweden Building 05K0007 + 1.66724551261 + Sweden Building 05K0008 + 3.32543498168 + Sweden Building 05K0009 + 3.08636405861 + Sweden Building 05K0010 + 14.8373684211 + Sweden Building 05K0011 + 1.47492819795 + Sweden Building 05K0012 + 3.32673206926 + Sweden Building 05K0013 + 2.63132906976 +

56

Property:Building/SPBreakdownOfElctrcityUseKwhM2Elevators | Open Energy  

Open Energy Info (EERE)

Elevators Elevators Jump to: navigation, search This is a property of type String. Elevators Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Elevators" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.139664804469 + Sweden Building 05K0003 + 5.78356533453 + Sweden Building 05K0004 + 0.0116959064327 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.699648105982 + Sweden Building 05K0008 + 0.192307692308 + Sweden Building 05K0009 + 0.0661775284132 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.163674492353 + Sweden Building 05K0014 + 2.7497571546 +

57

Property:Building/SPBreakdownOfElctrcityUseKwhM2Fans | Open Energy  

Open Energy Info (EERE)

Fans Fans Jump to: navigation, search This is a property of type String. Fans Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Fans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 5.21311928139 + Sweden Building 05K0002 + 18.5995610535 + Sweden Building 05K0003 + 20.3514016294 + Sweden Building 05K0004 + 8.08671679198 + Sweden Building 05K0005 + 16.0166245259 + Sweden Building 05K0006 + 10.358795651 + Sweden Building 05K0007 + 8.3953561818 + Sweden Building 05K0008 + 9.28527472527 + Sweden Building 05K0009 + 12.8398873749 + Sweden Building 05K0010 + 20.0966982674 + Sweden Building 05K0011 + 6.90408963585 + Sweden Building 05K0012 + 8.60719192175 + Sweden Building 05K0013 + 16.7539365907 +

58

Property:Building/SPBreakdownOfElctrcityUseKwhM2Copiers | Open Energy  

Open Energy Info (EERE)

Copiers Copiers Jump to: navigation, search This is a property of type String. Copiers Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Copiers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.85593220339 + Sweden Building 05K0003 + 0.447247706422 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.897811865554 + Sweden Building 05K0008 + 0.9 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 7.78032036613 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.24104401228 + Sweden Building 05K0014 + 2.91414481058 + Sweden Building 05K0015 + 0.41935483871 +

59

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

ElctrtyTotal ElctrtyTotal Jump to: navigation, search This is a property of type String. Electricity, total Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 71.2214478303 + Sweden Building 05K0002 + 95.9357541899 + Sweden Building 05K0003 + 72.2496632241 + Sweden Building 05K0004 + 65.8830409357 + Sweden Building 05K0005 + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 + 56.4810818587 + Sweden Building 05K0010 + 152.219679634 + Sweden Building 05K0011 + 25.5555555556 + Sweden Building 05K0012 + 35.8807888323 + Sweden Building 05K0013 + 61.3267863536 +

60

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtColg | Open Energy  

Open Energy Info (EERE)

DstrtColg DstrtColg Jump to: navigation, search This is a property of type String. District cooling Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DstrtColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 38.7648166048 + Sweden Building 05K0002 + 44.9720670391 + Sweden Building 05K0003 + 11.6524472384 + Sweden Building 05K0004 + 35.3996101365 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 24.0451630889 + Sweden Building 05K0007 + 18.6296832954 + Sweden Building 05K0008 + 15.7692307692 + Sweden Building 05K0009 + 17.2637030643 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 5.09803921569 + Sweden Building 05K0012 + 15.0675825393 + Sweden Building 05K0013 + 21.4822771214 +

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Property:Building/SPBreakdownOfElctrcityUseKwhM2Lighting | Open Energy  

Open Energy Info (EERE)

This is a property of type String. This is a property of type String. Lighting Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Lighting" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.6004313481 + Sweden Building 05K0002 + 51.2740526316 + Sweden Building 05K0003 + 25.3519773429 + Sweden Building 05K0004 + 14.5539566929 + Sweden Building 05K0005 + 17.1088606195 + Sweden Building 05K0006 + 11.7758321884 + Sweden Building 05K0007 + 16.0796522459 + Sweden Building 05K0008 + 15.7053876478 + Sweden Building 05K0009 + 19.44639866 + Sweden Building 05K0010 + 37.0625 + Sweden Building 05K0011 + 12.9336787565 + Sweden Building 05K0012 + 12.985779547 + Sweden Building 05K0013 + 21.6361810339 + Sweden Building 05K0014 + 29.853732347 +

62

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy  

Open Energy Info (EERE)

LargeKitchens LargeKitchens Jump to: navigation, search This is a property of type String. Large kitchens Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.409356725146 + Sweden Building 05K0005 + 2.13953488372 + Sweden Building 05K0006 + 0.383200490497 + Sweden Building 05K0007 + 3.38701556508 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.294507436313 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.177556818182 + Sweden Building 05K0012 + 0.0953379731147 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

63

Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy  

Open Energy Info (EERE)

Pcs Pcs Jump to: navigation, search This is a property of type String. PCs Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Pcs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 26.0998626444 + Sweden Building 05K0002 + 22.2888135593 + Sweden Building 05K0003 + 4.12075688073 + Sweden Building 05K0004 + 22.9175048733 + Sweden Building 05K0005 + 6.03962790698 + Sweden Building 05K0006 + 15.790619252 + Sweden Building 05K0007 + 5.8172794947 + Sweden Building 05K0008 + 4.66333333333 + Sweden Building 05K0009 + 8.50154616404 + Sweden Building 05K0010 + 8.05491990847 + Sweden Building 05K0011 + 2.70028409091 + Sweden Building 05K0012 + 2.19353608542 + Sweden Building 05K0013 + 8.43270214944 +

64

Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open Energy  

Open Energy Info (EERE)

Printers Printers Jump to: navigation, search This is a property of type String. Printers Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Printers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.928422444931 + Sweden Building 05K0002 + 1.42372881356 + Sweden Building 05K0003 + 0.412844036697 + Sweden Building 05K0004 + 0.980506822612 + Sweden Building 05K0005 + 1.76744186047 + Sweden Building 05K0006 + 1.27988963826 + Sweden Building 05K0007 + 1.12158808933 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.765719334413 + Sweden Building 05K0010 + 1.01601830664 + Sweden Building 05K0011 + 0.774147727273 + Sweden Building 05K0012 + 1.11545428544 + Sweden Building 05K0013 + 0.549891248721 +

65

Property:Building/SPBreakdownOfElctrcityUseKwhM2Refrigeration | Open Energy  

Open Energy Info (EERE)

Refrigeration Refrigeration Jump to: navigation, search This is a property of type String. Refrigeration Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Refrigeration" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 2.77390577084 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 37.1080462614 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.895094880057 + Sweden Building 05K0014 + 12.4536103016 + Sweden Building 05K0015 + 0.0 +

66

Properties of fiber composites for advanced flywheel energy storage devices  

DOE Green Energy (OSTI)

The performance of commercial high-performance fibers is examined for application to flywheel power supplies. It is shown that actual delivered performance depends on multiple factors such as inherent fiber strength, strength translation and stress-rupture lifetime. Experimental results for recent stress-rupture studies of carbon fibers will be presented and compared with other candidate reinforcement materials. Based on an evaluation of all of the performance factors, it is concluded that carbon fibers are preferred for highest performance and E-glass fibers for lowest cost. The inferior performance of the low-cost E-glass fibers can be improved to some extent by retarding the stress-corrosion of the material due to moisture and practical approaches to mitigating this corrosion are discussed. Many flywheel designs are limited not by fiber failure, but by matrix-dominated failure modes. Unfortunately, very few experimental results for stress-rupture under transverse tensile loading are available. As a consequence, significant efforts are made in flywheel design to avoid generating any transverse tensile stresses. Recent results for stress-rupture of a carbon fiber/epoxy composite under transverse tensile load reveal that these materials are surprisingly durable under the transverse loading condition and that some radial tensile stress could be tolerated in flywheel applications.

DeTeresa, S J; Groves, S E

2001-01-12T23:59:59.000Z

67

Flywheel Battery Commercialization Study  

Science Conference Proceedings (OSTI)

High energy-density flywheel batteries, already in development as load leveling devices for electric and hybrid vehicles, have the potential to form part of an uninterruptible power supply (UPS) for utilities and their customers. This comprehensive assessment of the potential of flywheels in a power conditioning role shows that a sizeable market for flywheel battery-UPS systems may emerge if units can be manufactured in sufficient volume.

1999-09-23T23:59:59.000Z

68

Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open Energy  

Open Energy Info (EERE)

Laundry Laundry Jump to: navigation, search This is a property of type String. Laundry Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2Laundry" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

69

Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy  

Open Energy Info (EERE)

WoodChips WoodChips Jump to: navigation, search This is a property of type String. Wood chips Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

70

Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy  

Open Energy Info (EERE)

Pellets Pellets Jump to: navigation, search This is a property of type String. Pellets Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

71

Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy  

Open Energy Info (EERE)

This is a property of type String. This is a property of type String. Other Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Other" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 + Sweden Building 05K0018 + 0.0 +

72

Property:Building/SPPurchasedEngyPerAreaKwhM2Logs | Open Energy Information  

Open Energy Info (EERE)

Logs Logs Jump to: navigation, search This is a property of type String. Logs Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2Logs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

73

Property:Building/SPPurchasedEngyPerAreaKwhM2TownGas | Open Energy  

Open Energy Info (EERE)

TownGas TownGas Jump to: navigation, search This is a property of type String. Town gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2TownGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

74

Property:Building/SPPurchasedEngyPerAreaKwhM2NaturalGas | Open Energy  

Open Energy Info (EERE)

NaturalGas NaturalGas Jump to: navigation, search This is a property of type String. Natural gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2NaturalGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 + Sweden Building 05K0017 + 0.0 +

75

Competition between SMES and flywheels  

DOE Green Energy (OSTI)

The benefits of flywheel energy storage using high-temperature superconducting bearings is compared to that of SMES for the same applications. Flywheels cover the same range of energy storage times as SMES but their scaling relationships make them inherently more amenable to modular manufacture. In addition, the magnetic fields seen by the environment are considerably reduced for flywheels.

Hull, J.R.

1995-02-01T23:59:59.000Z

76

Third Generation Flywheels for electric storage  

Science Conference Proceedings (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

77

Demonstration of an inductor motor/alternator/flywheel energy storage system. Quarterly progress report No. 1, June 28, 1976--September 28, 1976  

SciTech Connect

Vehicle propulsion concepts utilizing flywheel energy are described. Analyses are presented for sizing an inductor motor/alternator/flywheel for application to a 3000 pound vehicle. Component tradeoffs are included for the inductor motor/alternator drive, the solid state inverter/rectifier, the control circuit, and a composite flywheel. Design specifications for the machine are established and a test plan defined.

1976-09-28T23:59:59.000Z

78

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly  

E-Print Network (OSTI)

In this study, a novel concept for a downhole flywheel energy storage module to be embedded in a bottom-hole-assembly (BHA) is presented and modeled, as an alternative power source to existing lithium-ion battery packs currently deployed in measurement-while-drilling (MWD) or logging-while-drilling (LWD) operations. Lithium-ion batteries disadvantages include deteriorated performance in high temperature, limited lifetime that necessitates frequent replacement which elevates operational costs, and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel module should adhere to the geometric constraints of the wellbore and its corresponding BHA. Hence, a flywheel sizing procedure was developed that takes into consideration the required energy to be stored, the surrounding environmental conditions, and the geometric constraints. A five-axis magnetic levitation control system was implemented and tuned to maintain continuous suspension of the flywheel under the harsh lateral, axial and torsional drilling vibrations of the BHA. Thus, an integrated finite element model was developed that included the rotordynamic behavior of the flywheel and the BHA, the component dynamics of the magnetic levitation control system, and the cutting dynamics of the drillbit for both PDC and tricone types. The model also included a newly developed coupling between lateral, axial and torsional vibrations. It was demonstrated through simulations conducted by numerical integration that the flywheel maintains levitation due to all different types of external vibration as well as its own lateral vibration due to mass unbalance. Moreover, a passive proof-mass-damper (PPMD) was developed that suppresses axial bit-bounce vibrations as well as torsional vibrations, and was extended to also mitigate lateral vibrations. Optimized values of the mass, stiffness and damping values of the PPMD were obtained by the hybrid analytical-numerical Chebyshev spectral method that was superior in computational efficiency to iterative numerical integration. This also enabled the fine-plotting of an operating stability chart indicating stability regions where bit-bounce and stick-slip are avoided. The proof-mass-damping concept was extended to the flywheel to be an active proof-mass-damper (APMD) where simulations indicated functionality for a light-weight BHA.

Saeed, Ahmed

2012-05-01T23:59:59.000Z

79

Lightweight flywheel containment  

DOE Patents (OSTI)

A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

Smith, James R. (Livermore, CA)

2001-01-01T23:59:59.000Z

80

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

Kulkarni, S.V.; Stone, R.G.

1983-10-11T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

82

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

83

Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule  

SciTech Connect

Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

1980-05-01T23:59:59.000Z

84

Utility Cycle Testing of a 500-kWh Zinc Chloride Battery at the Battery Energy Storage Test (BEST) Facility  

Science Conference Proceedings (OSTI)

A 500-kWh zinc chloride battery test system completed an entire schedule of 80 simulated utility and customer application cycles--the most diverse and severe known to be successfully performed by any advanced battery system. Encouraged by these results, researchers plan to have a 2-MW demonstration battery system ready for testing in 1986.

1985-10-09T23:59:59.000Z

85

Flywheel Energy Storage Device for Hybrid and Electric ...  

Technology Marketing Summary This cost-effective technology stores and reuses what would otherwise be wasted energy inside a hybrid electric vehicle ...

86

Rimmed and edge thickened stodola shaped flywheel. [Patent application  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, S.V.; Stone, R.G.

1980-09-24T23:59:59.000Z

87

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents (OSTI)

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, Satish V. (San Ramon, CA); Stone, Richard G. (Oakland, CA)

1983-01-01T23:59:59.000Z

88

Ambient-Temperature Passive Magnetic Bearings for Flywheel Energy Storage Systems  

DOE Green Energy (OSTI)

Based on prior work at the Lawrence Livermore National Laboratory ambient-temperature passive magnetic bearings are being adapted for use in high-power flywheel energy storage systems developed at the Trinity Flywheel Power company. En route to this goal specialized test stands have been built and computer codes have been written to aid in the development of the component parts of these bearing systems. The Livermore passive magnetic bearing system involves three types of elements, as follows: (1) Axially symmetric levitation elements, energized by permanent magnets., (2) electrodynamic ''stabilizers'' employing axially symmetric arrays of permanent magnet bars (''Halbach arrays'') on the rotating system, interacting with specially wound electrically shorted stator circuits, and, (3) eddy-current-type vibration dampers, employing axially symmetric rotating pole assemblies interacting with stationary metallic discs. The theory of the Livermore passive magnetic bearing concept describes specific quantitative stability criteria. The satisfaction of these criteria will insure that, when rotating above a low critical speed, a bearing system made up of the three elements described above will be dynamically stable. That is, it will not only be stable for small displacements from equilibrium (''Earnshaw-stable''), but will also be stable against whirl-type instabilities of the types that can arise from displacement-dependent drag forces, or from mechanical-hysteritic losses that may occur in the rotor. Our design problem thus becomes one of calculating and/or measuring the relevant stiffnesses and drag coefficients of the various elements and comparing our results with the theory so as to assure that the cited stability criteria are satisfied.

Bender, D.; Post, R.

2000-05-26T23:59:59.000Z

89

On the Optimization of Composite Flywheel Rotors.  

E-Print Network (OSTI)

??Energy storing flywheel rotor technology has yet to be fully optimized given the design possibilities. There have been many design approaches that have been published… (more)

Ross, Jacob

2013-01-01T23:59:59.000Z

90

kWh | OpenEI  

Open Energy Info (EERE)

kWh kWh Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

91

Cost optimization of a hybrid composite flywheel rotor with a split-type hub using combined analytical/numerical models  

Science Conference Proceedings (OSTI)

A procedure to find the optimal design of a flywheel with a split-type hub is presented. Since cost plays a decisive role in stationary flywheel energy storage applications, a trade-off between energy and cost is required. Applying a scaling technique, ... Keywords: Cost optimization, Flywheel energy storage, Flywheel rotors, Multifidelity optimization, Split-type hub, Surrogate-based optimization

Malte Krack; Marc Secanell; Pierre Mertiny

2011-07-01T23:59:59.000Z

92

Advanced high-speed flywheel energy storage systems for pulsed power application  

E-Print Network (OSTI)

Power systems on modern commercial transportation systems are moving to more electric based equipment, thus improving the reliability of the overall system. Electrical equipment on such systems will include some loads that require very high power for short periods of time, on the order of a few seconds, especially during acceleration and deceleration. The current approach to solving this problem is sizing the electrical grid for peak power, rather than the average. A method to efficiently store and discharge the pulsed power is necessary to eliminate the cost and weight of oversized generation equipment to support the pulsed power needs of these applications. Highspeed Flywheel Energy Storage Systems (FESS) are effectively capable of filling the niche of short duration, high cycle life applications where batteries and ultra capacitors are not usable. In order to have an efficient high-speed FESS, performing three important steps towards the design of the overall system are extremely vital. These steps are modeling, analysis and control of the FESS that are thoroughly investigated in this dissertation. This dissertation establishes a comprehensive analysis of a high-speed FESS in steady state and transient operations. To do so, an accurate model for the complete FESS is derived. State space averaging approach is used to develop DC and small-signal AC models of the system. These models effectively simplify analysis of the FESS and give a strong physical intuition to the complete system. In addition, they result in saving time and money by avoiding time consuming simulations performed by expensive packages, such as Simulink, PSIM, etc. In the next step, two important factors affecting operation of the Permanent Magnet Synchronous Machine (PMSM) implemented in the high-speed FESS are investigated in detail and outline a proper control strategy to achieve the required performance by the system. Next, a novel design algorithm developed by S.P. Bhattacharyya is used to design the control system. The algorithm has been implemented to a motor drive system, for the first time, in this work. Development of the complete set of the current- and speed-loop proportional-integral controller gains stabilizing the system is the result of this implementation. In the last part of the dissertation, based on the information and data achieved from the analysis and simulations, two parts of the FESS, inverter/rectifier and external inductor, are designed and the former one is manufactured. To verify the validity and feasibility of the proposed controller, several simulations and experimental results on a laboratory prototype are presented.

Talebi Rafsanjan, Salman

2008-12-01T23:59:59.000Z

93

Diesel Rig Mechanical Peaking System Based on Flywheel Storage Technolgy  

Science Conference Proceedings (OSTI)

Flywheel energy storage technology is an emerging energy storage technology, there is a great development in recent years promising energy storage technology, with a large energy storage, high power, no pollution, use of broad, simple maintenance, enabling ... Keywords: Flywheel energy storage technology, mechanical peaking, diesel rig, peak motor

Shuguang Liu, Jia Wang

2012-07-01T23:59:59.000Z

94

High speed flywheel  

DOE Patents (OSTI)

A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

McGrath, Stephen V. (Knoxville, TN)

1991-01-01T23:59:59.000Z

95

Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application  

DOE Patents (OSTI)

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

1980-09-24T23:59:59.000Z

96

Matched metal die compression molded structural random fiber sheet molding compound flywheel  

DOE Patents (OSTI)

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, Satish V. (San Ramon, CA); Christensen, Richard M. (Danville, CA); Toland, Richard H. (West Chester, PA)

1985-01-01T23:59:59.000Z

97

Optimum flywheel sizing for parallel and series hybrid vehicles  

DOE Green Energy (OSTI)

Flywheels have the possibility of providing high turnaround efficiency and high specific power output. These characteristics are very important for the successful manufacture of parallel and series hybrid vehicles, which have the potential for providing high fuel economy and very low emissions with range and performance comparable to today`s light-duty vehicles. Flywheels have a high specific power output, but relatively low specific energy output. Therefore, it is of importance to determine energy and power requirements for flywheels applied to light-duty vehicles. Vehicle applications that require an energy storage system with high power and low energy are likely to benefit from a flywheel. In this paper, a vehicle simulation code and a flywheel model are applied to the calculation of optimum flywheel energy storage capacity for a parallel and a series hybrid vehicle. A conventional vehicle is also evaluated as a base-case, to provide an indication of the fuel economy gains that can be obtained with flywheel hybrid vehicles. The results of the analysis indicate that the optimum flywheel energy storage capacity is relatively small. This results in a low weight unit that has a significant power output and high efficiency. Emissions generated by the hybrid vehicles are not calculated, but have the potential of being significantly lower than the emissions from the conventional car.

Aceves, S.M.; Smith, J.R.

1996-12-20T23:59:59.000Z

98

LIRR High-Speed Flywheel Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LIRR High-Speed Flywheel LIRR High-Speed Flywheel Demonstration Guy Sliker Program Manager Research & Technology Development New York Power Authority This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Presentation Layout Introduction Flywheel Description Project Reasoning Project Objective Project Participants Expected Benefits New York Power Authority Highlights A public benefit energy corporation founded 1931 Largest non-federal public electric utility in United States Wholesale power supplier throughout New York State and neighboring states as required by law

99

Composite flywheel development completion report, May 1--September 30, 1976  

DOE Green Energy (OSTI)

The program to design, fabricate, and performance test a prototype, vehicular-sized, composite flywheel is described. The overall program scope encompasses development of both the flywheel and its containment; however, the FY 1976-1976T objective was directed toward development of the flywheel and testing it in existing facilities. The development effort was successful, leading to successful testing of a flywheel design which demonstrated an energy density performance of 10.1 Wh/lb during spin testing. The initial application selected for development of the composite flywheel was the heat engine/flywheel hybrid propulsion system for a vehicle. This application was selected by the ERDA Advanced Physical Methods Branch staff because of its high potential for conservation of petroleum fuel in both the near and far-term time frames. Other applications, such as utility load leveling, represent potential areas for significant energy savings but require more extensive development programs and funding resources. Successful development of a high-performance, composite, vehicular flywheel represents one step along the development path leading toward larger, higher-energy storage flywheel applications.

Huddleston, R. L.; Kelly, J. J.; Knight, C. E.

1977-05-01T23:59:59.000Z

100

Modeling and Analysis of a Flywheel Energy Storage System for Voltage Regulation.  

E-Print Network (OSTI)

??Ontario in 21st century is progressing rapidly to source a bulk of its energy supply from green and renewable energy sources, including wind energy. However… (more)

Farahani, Kamran Masteri

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Flywheel Power Systems: Market Analysis  

Science Conference Proceedings (OSTI)

High speed flywheel power systems offer a new opportunity to provide power delivery systems. Such systems are very useful to mitigate power quality problems. This report focuses on the industrial market for flywheel storage systems.

1998-02-20T23:59:59.000Z

102

max kwh | OpenEI Community  

Open Energy Info (EERE)

max kwh max kwh Home Ewilson's picture Submitted by Ewilson(53) Contributor 4 January, 2013 - 08:42 Rates with tier problems max kwh tiers I've detected that the following rates all have the improper number of "Max kWh" values (should be one less than the number of charges, since the highest tier is always "all remaining"). This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which should be entered as "300, 1000". This is why we need checks on input that prevent users from entering this incorrectly. Here is the list (my script only checked residential rates): Syndicate content 429 Throttled (bot load)

103

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

104

Separators for flywheel rotors  

DOE Patents (OSTI)

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

105

Evaluation of Demo 1C composite flywheel rotor burst test and containment design  

DOE Green Energy (OSTI)

Laboratory-Directed funds were provided in FY 1995 for research to develop flywheel containment specifications and to consider concepts that could satisfy these specifications and produce a prototype small, lightweight, inexpensive, mobile flywheel containment. Research activities have included an analytical and pictorial review of the Demo 1C flywheel failure test, which provided significant insight about radial and axial failure modes; calculations of the thickness of ultra-conservative pressure vessel containment; entertainment of advanced containment concepts using lightweight materials and armor literature; consideration of fabrication assembly procedures; and participation in a Flywheel Energy Storage Workshop during which additional flywheel failure experiences were discussed. Based on these activities, calculations, and results, a list of conclusions concerning flywheel containment and its relation to the flywheel are presented followed by recommendations for further research.

Kass, M.D.; McKeever, J.W.; Akerman, M.A.; Goranson, P.L.; Litherland, P.S.; O`Kain, D.U.

1998-07-01T23:59:59.000Z

106

Flywheel rotor and containment technology development, FY83  

DOE Green Energy (OSTI)

The Department of Energy decided to terminate the Flywheel Rotor and Containment Technology Development project during FY 1983. Activities this year included fabrication, inspection, and test evaluation of rotor and containment structures. A peak energy of 700 Wh was stored at an energy density of 70 Wh/kg. In cyclic tests, 10,000 cycles from design speed to half speed were logged without failure. The first test of a lightweight containment structure indicates the need for additional development. In complementary studies, production cost estimates were made for three flywheel designs. In a cooperative program with the University of Wisconsin, work began on construction of a flywheel/continuously variable transmission/heat engine car which promises fuel economy improvements of up to 100%. Suggestions are made for the direction of future work when interest in flywheel system reappears.

Mohr, P.B.; Walter, C.E.

1983-09-12T23:59:59.000Z

107

A zinc-air battery and flywheel zero emission vehicle  

DOE Green Energy (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

108

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

Davis, D.E.; Ingham, K.T.

1987-04-28T23:59:59.000Z

109

Fiber composite flywheel rim  

DOE Patents (OSTI)

A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

Davis, Donald E. (Thousand Oaks, CA); Ingham, Kenneth T. (Woodland Hills, CA)

1987-01-01T23:59:59.000Z

110

Publicly Submitted White Papers - Energy  

Science Conference Proceedings (OSTI)

Energy. 10 ... Advanced Composites for Flywheels; Advanced Technologies for the Infrastructure: Mobile Energy; Alternative ...

2011-08-16T23:59:59.000Z

111

Computer-aided-design of flywheels  

Science Conference Proceedings (OSTI)

We have presented in this work, a computer-aided-design software for flywheels using object-oriented programming approach of Visual Basic. The various configurations of flywheels (rimmed or solid) formed the basis for the development of the software. ... Keywords: Computer-aided-design, Flywheels, Object-oriented programming, Speed fluctuation, Stress

John A. Akpobi; Imafidon A. Lawani

2006-04-01T23:59:59.000Z

112

Computer-aided-design of flywheels  

Science Conference Proceedings (OSTI)

We have presented in this work, a computer-aided-design software for flywheels using object-oriented programming approach of Visual Basic. The various configurations of flywheels (rimmed or solid) formed the basis for the development of the software. ... Keywords: computer-aided-design, flywheels, object-oriented programming, speed fluctuation, stress

John A. Akpobi; Imafidon A. Lawani

2006-04-01T23:59:59.000Z

113

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-cells-backup-infrastructure-cleanly-and-quietly Article 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage...

114

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

p-rfi-reply-comments-communications-requirements Article 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage...

115

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

DOE Green Energy (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

116

ESS 2012 Peer Review - Energy Storage Controls for Grid Stability...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

dissipated across the ESR 8 High fidelity (14 th order) model based on a Beacon flywheel (Smart Energy 25 Flywheel) Parameters were derived from published performance...

117

Oak Ridge Flywheel Evaluation Laboratory. Annual report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

The purpose of the Oak Ridge Flywheel Evaluation Laboratory Annual Report is to present work performed for and funded by the Mechanical Energy Storage Technology Project at Lawrence Livermore National Laboratory (LLNL). In addition to the management sections (schedules, budgets, and facility accomplishments), summaries are given for the ultimate speed evaluations of one flywheel built by Union Carbide Corporation, Nuclear Division (UCC-ND); four flywheels constructed under subcontracts from Sandia National Laboratory, Albuquerque; one fabricated by LLNL; and one manufactured by General Electric Company. Also included are the test results from two momentum transfer tests of the UCC-ND-designed flywheel. Prototype crash rings were used in a number of these tests, and a discussion of their performance is included.

Steele, Jr., R. S.; Babelay, Jr., E. F.; Sutton, B. J.

1981-04-30T23:59:59.000Z

118

Performance Testing of a Flywheel-Based Uninterruptible Power Supply  

Science Conference Proceedings (OSTI)

Performance testing of a fully integrated flywheel-based uninterruptible power supply (UPS) confirmed that the Caterpillar UPS 250 unit offers an innovative power quality solution for a broad range of industrial and commercial applications. It provides stored energy, immediately available, to protect critical loads against temporary power disturbances such as outages, sags, and surges. This report provides complete details of performance testing of the UPS system, including test instrumentation and setup...

2002-07-17T23:59:59.000Z

119

Optimum rotationally symmetric shells for flywheel rotors  

DOE Patents (OSTI)

A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

Blake, Henry W. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

120

Canned pump having a high inertia flywheel  

DOE Patents (OSTI)

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

Veronesi, Luciano (O' Hara Twp., Allegheny County, PA); Raimondi, ALbert A. (Monroeville Borough, Allegheny County, PA)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Canned pump having a high inertia flywheel  

DOE Patents (OSTI)

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

Veronesi, L.; Raimondi, A.A.

1989-12-12T23:59:59.000Z

122

High-performance batteries for off-peak energy storage and electric-vehicle propulsion. Progress report, January--June 1975. [Li--Al/KCl--LiCl/Fe sulfide, 42 kWh  

DOE Green Energy (OSTI)

This report describes the research and management efforts, for the period January--June 1975, of Argonne National Laboratory's program on high-performance lithium/metal sulfide batteries. The batteries are being developed for two applications, off-peak energy storage in electric utility networks and electric-vehicle propulsion. The battery design for the two applications differ, particularly in cell configuration and electrode design, because of the differing performance requirements. The present cells are vertically oriented, prismatic cells with two negative electrodes of a solid lithium--aluminium alloy, a central positive electrode of iron sulfide (FeS/sub 2/ or FeS), and an electrolyte of LiCl--KCl eutectic (mp, 352/sup 0/C). The operating temperature of the cells is about 400--450/sup 0/C. Recent effort in the development of engineering-scale cells was focused on designing and fabricating vertically oriented, prismatic cells and on improving the lifetime capabilities of cells. Work on electrode development was directed toward the evaluation of the factors that influence the performance of the negative electrode and the development of new designs of vertical, prismatic iron sulfide electrodes. Materials studies included work on improving feedthroughs and separators, corrosion tests of candidate materials of construction, and postoperative examinations of cells. Cell chemistry studies included continuing investigations of cell reactions and the identification of advanced cell systems. Battery development work included the design of a battery for an electric automobile and the development of battery components. The transfer of Li--Al/FeS/sub x/ battery technology to industry is being implemented through contracts with industrial firms for the manufacture of components, electrodes, and cells.

Not Available

1976-03-01T23:59:59.000Z

123

Layered flywheel with stress reducing construction  

DOE Patents (OSTI)

A flywheel having elastic spokes carrying an elastic rim; and a hub coupling the spokes to a shaft and deforming in response to centrifugal force to match the radial distortion of the spokes.

Friedericy, Johan A. (Palos Verdes Estates, CA); Towgood, Dennis A. (Huntington Beach, CA)

1984-11-13T23:59:59.000Z

124

The Flywheel Effect in the Middle Atmosphere  

Science Conference Proceedings (OSTI)

Because of the requirement of geostrophic balance, mechanical inertia can affect the thermal response of the atmosphere to transient heating. We examine some very simple linear models of this “flywheel effect,” and discuss their possible ...

Roelof K. Snieder; Stephen B. Fels

1988-12-01T23:59:59.000Z

125

Assessment of Magtube Power Ring Flywheel Technology  

Science Conference Proceedings (OSTI)

This report provides an assessment of a novel flywheel technology being developed by Magtube Inc. as a concept that is potentially scalable to MW ratings and MWh storage capabilities.

2004-01-22T23:59:59.000Z

126

ESS 2012 Peer Review - Next Generation Composite Materials for Flywheel Development - Timothy Lambert, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia! Sandia! National! Laboratories! Acknowledgments We gratefully acknowledge support from Dr. Imre Gyuk and the Office of Electricity, Delivery and Energy Reliability. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the United States Department of Energy s National Nuclear Security Administration under contract DE-AC04-94AL85000. Abstract Flywheels are "mechanical battery" storage systems that have fast response times, long lifetimes and lower maintenance costs; when coupled with high-temperature superconducting (HTS) bearings, flywheels can exhibit extremely low rotational losses resulting in high efficiency. For energy storage purposes, materials with higher strengths, and lower densities that would allow the flywheel to spin

127

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term -...

128

Design of plywood and paper flywheel rotors  

SciTech Connect

Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationaly flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of plywood rotors are evaluated. Wound kraft paper, twine and veneer rotors are examined. Plywood moisture equilibration during manufacture and assembly is critical. Disk shaping and rotor assembly are described. Potential self-centering dynamic balancing methods and equipment are described. High resolution tensile tests were performed while monitoring the acoustic emissions. Reasonable correlations exist between the instantaneous sample stiffness during the test and the accumulated acoustic energy released in fracture of the sample. They indicate promise for short term monitoring of damage during tensile tests. Preliminary duration of load tests were performed on vacuum dried hexagonal Birch plywood. Dynamic and static rotor-hub fatigue equipment were designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for 17 examples. Plywood rotors appear to be marginally competitive with steel hose wire or E-glass rotors. High performance oriented draft paper rotors potentially provide the lowest energy storage costs in stationary systems.

Hagen, D.L.

1982-01-01T23:59:59.000Z

129

CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

Not Available

2005-11-01T23:59:59.000Z

130

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency and Renewable Energy, National Energy Technology Laboratory August 9, 2010 Flywheel Project Escalates Grid Efficiency How does an energy storage plant recycle energy?...

131

A Review of Energy Storage Technologies for Marine Current Energy Systems A Review of Energy Storage Technologies for Marine Current Energy Systems  

E-Print Network (OSTI)

to the tide phenomenon while supercapacitor and flywheel are more suitable for eliminating short-period power current energy; Power fluctuation; Battery; Flywheel; Supercapacitor hal-00757890,version1-27Nov2012

Paris-Sud XI, Université de

132

Transient analysis of a flywheel battery containment during a full rotor burst event.  

DOE Green Energy (OSTI)

Flywheels are being developed for use in an Advanced Locomotive Propulsion System (ALPS) targeted for use in high speed passenger rail service. The ALPS combines high performance, high speed gas turbines, motor/generators and flywheels to provide a light-weight, fuel-efficient power system. Such a system is necessary to avoid the high cost of railway electrification, as is currently done for high speed rail service (>100mph) since diesels are too heavy. The light-weight flywheel rotors are made from multilayered composite materials, and are operated at extremely high energy levels. Metal containment structures have been designed to enclose the rotors and provide encapsulation of the rotor during postulated failure events. One such event is a burst mode failure of the rotor in which the composite rim is assumed to burst into debris that impacts against the containment. This paper presents a finite element simulation of the transient structural response of a subscale metal flywheel containment structure to a rotor burst event.

Hsieh, B. J.

1998-04-17T23:59:59.000Z

133

REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT  

DOE Patents (OSTI)

A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

Loeb, E.

1961-01-17T23:59:59.000Z

134

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Technology Description Advanced storage technologies under active development include processes that are mechanical (flywheels, pneumatic), electrochemical...

135

DOE: T-O-D rates shift kWh and kW  

SciTech Connect

Technical report:In 1975, FEA, in cooperation with state and local utility authorities, initiated a series of field projects that collected electricity usage data under new electric utility rate designs and load management techniques. Individual projects included a wide range of load-management and electricity rate design alternatives, with emphasis on several forms of time-of-day rates. The program is now funded by the U.S. Dept. of Energy. Objectives of the program, kWh usage effects, kw demand effects, and sources of the load changes are discussed. Initial results indicate actual or effective shifts in electricity consumption from peak to off-peak periods, and reductions in diversified demand coincident with system peaks. (10 graphs)

Johnson, C.R.; Mintz, S.

1978-11-15T23:59:59.000Z

136

Evaluation of the Urenco PQ Flywheel Energy Storage System for Enhancing the Ride-Through Performance of an Adjustable-Speed Drive  

Science Conference Proceedings (OSTI)

Power electronic technologies have revolutionized the process industry. However, power quality problems, such as voltage sags and momentary interruptions, threaten the continuity of automated processes that are endowed with power electronics. Adjustable-speed drives, programmable logic controllers, and microprocessor-based controls enable wonderful efficiency but are particularly susceptible to electrical disturbances. This report discusses the application of a promising energy storage technology that en...

2000-11-08T23:59:59.000Z

137

Beyond kWh and kW demand: Understanding the new real-time electric power  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond kWh and kW demand: Understanding the new real-time electric power Beyond kWh and kW demand: Understanding the new real-time electric power measurement system in LBNL Building 90 Speaker(s): Alex McEachern Date: January 14, 2010 - 12:00pm Location: 90-3122 In the Summer of 2009, LBNL researchers installed end-use sub-metering equipment and associated Energy Information System (EIS) tools to characterize energy use and comfort in Building 90. Seven of 40 key electric loads were measured using advanced meters that make sophisticated real-time measurements of dozens of power flow parameters, power disturbances, and harmonics. The talk will review some electrical engineering fundamentals, how use and interpret data measured in building 90 in real-time. The real-time data available includes power, volt-amps, VAR's, unbalance voltage and current, voltage and current distortion,

138

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

139

Concentric ring flywheel without expansion separators  

DOE Patents (OSTI)

A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

Kuklo, T.C.

1999-08-24T23:59:59.000Z

140

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

technology to manage and store energy better -- it continuously absorbs and injects electricity. http:energy.govarticlesrecycling-grid-energy-flywheel-technology Download...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

'Recycling' Grid Energy with Flywheel Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

electrical grid has been around much longer than other vital technologies, like telecommunications and the Internet. Yet these systems have become more efficient in significantly...

142

Flywheel storage for photovoltaics: an economic evaluation of two applications  

E-Print Network (OSTI)

A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

143

Modeling and torque estimation of an automotive dual mass flywheel  

Science Conference Proceedings (OSTI)

The Dual Mass Flywheel (DMF) is primarily used for dampening of oscillations in automotive powertrains and to prevent gearbox rattling. This paper explains the DMF mechanics along with its application and components. Afterwards a detailed ab-inltio model ...

Ulf Schaper; Oliver Sawodny; Tobias Mahl; Uli Blessing

2009-06-01T23:59:59.000Z

144

Beyond kWh and kW demand: Understanding the new real-time electric...  

NLE Websites -- All DOE Office Websites (Extended Search)

Beyond kWh and kW demand: Understanding the new real-time electric power measurement system in LBNL Building 90 Speaker(s): Alex McEachern Date: January 14, 2010 - 12:00pm...

145

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

Groves, S.E.; Deteresa, S.J.

1998-07-14T23:59:59.000Z

146

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents (OSTI)

An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

1998-01-01T23:59:59.000Z

147

FVB Energy Inc. Technical Assistance Project  

DOE Green Energy (OSTI)

The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

DeSteese, John G.

2011-05-17T23:59:59.000Z

148

ARPA-E 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

has been working to develop critical components of a highly advanced "flying ring" flywheel energy storage system. Image: Sarah Gerrity, Energy Department Date taken: 2013-02-26...

149

Design of plywood and paper flywheel rotors. Final report  

SciTech Connect

Technical and economic design factors of cellulosic rotors are compared with conventional materials for stationary flywheel energy storage systems. Wood species, operation in a vacuum, assembly and costs of rotors are evaluated. Wound kraft paper, twine and plywood rotors are examined. Two hub attachments are designed. Support stiffness is shown to be constrained by the material strength, rotor configuration and speed ratio. Preliminary duration of load tests was performed on vacuum dried hexagonal birch plywood. Dynamic and static rotor-hub fatigue equipment is designed. Moisture loss rates while vacuum drying plywood cylinders were measured, and the radial and axial diffusion coefficients were evaluated. Diffusion coefficients of epoxy coated plywood cylinders were also obtained. Economics of cellulosic and conventional rotors were examined. Plywood rotor manufacturing costs were evaluated. The optimum economic shape for laminated rotors is shown to be cylindrical. Vacuum container costs are parametrically derived and based on material properties and costs. Containment costs are significant and are included in comparisons. The optimum design stress and wound rotor configuration are calculated for seventeen examples. Plywood rotors appear to be marginally competitive with the steel hose wire or E-glass rotors. High performance oriented kraft paper rotors potentially provide the lowest energy storage costs in stationary systems.

Erdman, A.G.; Hagen, D.L.; Gaff, S.A.

1982-05-01T23:59:59.000Z

150

ESS 2012 Peer Review - Higher Power Motor for ARPA-E Flywheel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Higher Power Motor for ARPA-E Flywheel Limitations of ARPA-E Flywheel * 1 Hour of Storage Program Tasks * Add Back-Iron to Stator to Increase Magnet Flux g * Limited to Longer Term...

151

Vycon Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Cerritos, California Zip 90703 Product Vycon markets and manufactures flywheel energy storage systems for a wide range of applications in the power quality and UPS...

152

Amber Kinetics | Open Energy Information  

Open Energy Info (EERE)

search Name Amber Kinetics Product Start-up company developing a novel flywheel energy storage system with the Lawrence Livermore National Laboratory. References Amber...

153

Ashman Technologies | Open Energy Information  

Open Energy Info (EERE)

has developed various permanent magnet high-speed generators and various flywheel energy storage applications funded by NASA and NASA GRC has extensively tested these...

154

Cost analysis of 50 kWh zinc--chlorine batteries for mobile applications  

DOE Green Energy (OSTI)

The costs comprising the projected selling price of a 50-kWh zinc--chlorine battery for mobile applications were analyzed. This analysis is predicated on a battery whose engineering and design specifications are well crystallized. Such a design has been proposed and a process plan conceived. This, in turn, led to a simulated manufacturing plan. This analysis showed that no critical resources or complex manufacturing operations are required. The projected cost presumes a production level of 25,000 batteries per year. In that context, a selling price was estimated, in mid-1977 dollars, to be $1645 per battery or $33/kWh. This price excludes the battery charger, for which an added $400 ($8/kWh) is considered reasonable. 8 figures, 19 tables.

Catherino, H.; Henriksen, G.L.; Whittlesey, C.C.; Warde, C.J.; Carr, P.; Symons, P.C.

1978-01-01T23:59:59.000Z

155

Energy Systems High Pressure Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

with energy storage activities such as ultra- capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to...

156

Arete Power Inc | Open Energy Information  

Open Energy Info (EERE)

Arete Power Inc Place Reno, Nevada Product Developer and manufacturer of advanced flywheel energy storage systems. Coordinates 32.944065, -97.578279 Loading map......

157

Peer Review Oct 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Peer Review - Sept, 2007 Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III...

158

Hopf Bifurcation Analysis for a Mechanical Centrifugal Flywheel Governor System  

Science Conference Proceedings (OSTI)

The complex dynamic behavior of the mechanical centrifugal flywheel governor system is studied. The dynamical equation of the system is established using Lagrangian and Newton’s second law. The bifurcation behavior and stability of the mechanical ... Keywords: centrifugal governor, Lyapunov exponents, chaos, chaos synchronization, Poincaré map

Jian-Gang Zhang; Jian-Ning Yu; Yan-Dong Chu; Xian-Feng Li

2008-10-01T23:59:59.000Z

159

Utilization of rotor kinetic energy storage for hybrid ...  

Flywheel Energy Storage Device for Hybrid and Electric Vehicles: Abstract: A power system for a motor vehicle having an internal combustion engine, ...

160

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02092010 Location(s):...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oak Ridge Flywheel Evaluation Laboratory. Annual report, April 1, 1979-September 30, 1979  

DOE Green Energy (OSTI)

The Oak Ridge Flywheel Evaluation Laboratory (ORFEL) was assembled, and the initial stages of proof testing were completed in FY 1979. The significant accomplishments for the past year included the establishment of adequate full-time personnel; facility modification to reflect the emphasis on flywheel evaluation over simple testing; and the facility proof test involving two aluminum disk flywheels and one composite flywheel. This report contains details of the FY 1979 program plans for ORFEL, personal profiles of the dedicated manpower, and details of the tests performed.

Steele, R.S. Jr.; Casstevens, J.M.; Sutton, B.J.

1979-12-01T23:59:59.000Z

162

Flywheel electric battery. Final report, June 12, 1995--January 16, 1997  

DOE Green Energy (OSTI)

The objective is to develop proposals to obtain funding for development of a 2nd Generation Flywheel Battery Prototype designed for a specific application.

Thorpe, D.G.

1997-01-16T23:59:59.000Z

163

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |  

Open Energy Info (EERE)

LargeComputersServers LargeComputersServers Jump to: navigation, search This is a property of type String. Large computers / servers Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 2.88701226026 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 3.90838206628 + Sweden Building 05K0005 + 0.697674418605 + Sweden Building 05K0006 + 1.18332311465 + Sweden Building 05K0007 + 11.4098804421 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.556088941246 + Sweden Building 05K0010 + 10.0228832952 + Sweden Building 05K0011 + 0.471022727273 + Sweden Building 05K0012 + 0.774049003718 + Sweden Building 05K0013 + 0.0 +

164

Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open  

Open Energy Info (EERE)

CirculationFans CirculationFans Jump to: navigation, search This is a property of type String. Circulation fans Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 2.80646609789 + Sweden Building 05K0004 + 8.95823904901 + Sweden Building 05K0005 + 5.55016340076 + Sweden Building 05K0006 + 6.81308969891 + Sweden Building 05K0007 + 2.02541916787 + Sweden Building 05K0008 + 0.625641025641 + Sweden Building 05K0009 + 7.59721281624 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.757191316527 + Sweden Building 05K0012 + 6.04077487892 + Sweden Building 05K0013 + 0.767224182906 +

165

Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open  

Open Energy Info (EERE)

AirCompressors AirCompressors Jump to: navigation, search This is a property of type String. Air compressors Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 1.86549707602 + Sweden Building 05K0005 + 2.04651162791 + Sweden Building 05K0006 + 1.92596566524 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.970107495214 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 1.30894886364 + Sweden Building 05K0012 + 2.01978262942 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 +

166

Property:Building/SPBreakdownOfElctrcityUseKwhM2SmallKitchensCoffeeRms |  

Open Energy Info (EERE)

SmallKitchensCoffeeRms SmallKitchensCoffeeRms Jump to: navigation, search This is a property of type String. Small kitchens / coffee rooms Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2SmallKitchensCoffeeRms" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 1.20677966102 + Sweden Building 05K0003 + 1.46100917431 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 2.53105456775 + Sweden Building 05K0007 + 1.08639747349 + Sweden Building 05K0008 + 0.910666666667 + Sweden Building 05K0009 + 2.06390811368 + Sweden Building 05K0010 + 3.29519450801 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 1.54234902764 +

167

Cogenerator to quit Con Ed by selling kWh to neighbor  

SciTech Connect

Selling 125 kilowatts of electricity around the clock to a nearby supermarket will make cogeneration feasible for the Flagship Restaurant in White Plains, NY, allowing it to drop off Consolidated Edison's grid and pay for a necessary backup generator, according to John Prayias, the restaurant's owner. The ambitious $536,000 project, which will be financed conventionally with a commercial bank loan, will eliminate the Flagship's $70,000 electricity costs and the $7240 spent of heating and domestic hot water, Prayias said. By selling the power to the supermarket at 9 cents per kilowatt hour - 3 cents less than Con Ed's rate of 12 cents per kWh - the restaurant will collect $120,000 a year in revenues - just about enough to cover the cost of diesel fuel for the 350-kW system and pay for monitoring and maintenance.

Springer, N.

1986-02-10T23:59:59.000Z

168

Critical National Need: Improved Composites for Flywheels  

Science Conference Proceedings (OSTI)

... The US does possess abundant renewable resources in the form of wind, hydro, geothermal, and solar energy inputs. Hydro ...

2011-08-02T23:59:59.000Z

169

DTE Energy - Commercial New Construction Energy Efficiency Program...  

Open Energy Info (EERE)

Sector Utility Energy Category Energy Efficiency Incentive Programs Amount 10% - 20% energy savings: 0.08 per kWh and 4.00 per MCF 20% - 30% energy savings: 0.10 per kWh...

170

LIRR High-Speed Flywheel Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

approximately 23% of New York State electricity needs 2006 Generation: 26.9MM MWh 75% hydro; 25% fossil 2006 energy sales: 42.9MM MWh (includes 16.5MM MWh purchased power)...

171

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

Deteresa, S.J.; Groves, S.E.

1998-06-02T23:59:59.000Z

172

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents (OSTI)

An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

1998-06-02T23:59:59.000Z

173

Design and cost study of nickel--zinc batteries for electric vehicle. Final report. [24 kWh battery of 48 325-Ah cells, 35 Wh/lb  

DOE Green Energy (OSTI)

A battery module configuration consisting of four 325-Ah cells was selected. Twelve such modules would make up a 24-kWh battery. The key design parameter is operation current density. An energy density of 2.1 Wh/in./sup 3/ and 35 Wh/lb was obtained. A flow diagram was drawn for the manufacturing process. An eight-month period would be required to set up a pilot plant. The material requirements for 100,000 batteries per year would not have a significant impact on current U.S. consumption. 29 figures, 28 tables (RWR)

Klein, M; Dube, D

1976-10-01T23:59:59.000Z

174

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

DigesterLandfillGas DigesterLandfillGas Jump to: navigation, search This is a property of type String. Digester / landfill gas Pages using the property "Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.0 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 + Sweden Building 05K0016 + 0.0 +

175

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters | Open  

Open Energy Info (EERE)

ElctrcEngineHeaters ElctrcEngineHeaters Jump to: navigation, search This is a property of type String. Electric engine heaters Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 2.44788473329 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.353408923575 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.835160644485 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

176

Third Generation Flywheels for electric storage  

DOE Green Energy (OSTI)

Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

177

Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a 43...

178

Oregon | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Trust for approval. Incentive levels are as follows: * 5.00 per kilowatt-hour (kWh) for systems with estimated annual energy output of 9,500 kWh or less July 12, 2013...

179

Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine  

E-Print Network (OSTI)

This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

Ran, Li

180

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network (OSTI)

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power's energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation 'Recycling' Grid Energy with Flywheel Technology Beacon Power in New York is using innovative flywheel technology to manage and store energy better -- it continuously absorbs and injects electricity. September 30, 2010 Renovations to Pinehurst's City Hall are saving residents of this bedroom community $1,335 a year | Photo courtesy of Pinehurst Big Energy Savings for Small Idaho City The Pinehurst City Hall had been in need of renovations for quite some time. Constructed in the 1960s, the building had received few physical

182

Renewable Energy Tax Credit (Corporate) (Nebraska) | Open Energy...  

Open Energy Info (EERE)

Energy Category Renewable Energy Incentive Programs Amount Credits are available for a 10-year period: 0.00075kWh for electricity generated through 9302007; 0.001kWh from 10...

183

Renewable Energy Tax Credit (Personal) (Nebraska) | Open Energy...  

Open Energy Info (EERE)

Energy Category Renewable Energy Incentive Programs Amount Credits are available for a 10-year period: 0.00075kWh for electricity generated through 9302007; 0.001kWh from 10...

184

Beacon Power-Flywheel Energy Storage System Case Study  

Science Conference Proceedings (OSTI)

As the telecommunications industry grows and competition increases, providers of cable, telephone, and other products are looking for more equipment reliability and cost-effectiveness to distinguish themselves. Reliability for telecommunication and cable equipment has traditionally been provided through the use of lead-acid batteries. However, because these batteries have disadvantages, telecommunications operators are looking for alternative power quality and reliability solutions for their systems. The...

1999-11-11T23:59:59.000Z

185

ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in greater detail. Develop mixed particle composites based on monodisperse steel shot to appreciably increase the packing density and composite permeability. ...

186

EIA - State Electricity Profiles - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

kWh = Kilowatthours. Sources: Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." Energy Information Administration, Form EIA ...

187

Beacon Power Corp | Open Energy Information  

Open Energy Info (EERE)

Zip 1879 Sector Solar Product US-based developer of solar PV inverters and flywheel-based energy storage systems. References Beacon Power Corp1 LinkedIn Connections CrunchBase...

188

CPS Energy - New Commercial Construction Incentives | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Program Type Utility Rebate Program Rebate Amount Tier 1 Energy Incentive: 0.08kWh Tier 1 Peak Demand Incentive: 125kW Tier 2 Energy Incentive: 0.12kWh Tier 2 Peak...

189

Renewable Energy RFPs: Solicitation Response and Wind Contract Prices  

E-Print Network (OSTI)

requirements. Wind Power Contract Costs Renewable energyCost of Energy (2003 ¢/kWh) Levelized Cost of Energy (2003 ¢/kWh) Windenergy solicitations; and 2. Wind power purchase costs as

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

190

Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report  

SciTech Connect

Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P. [Oak Ridge National Lab., TN (United States); Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D. [Visual Computer Systems Corp., Greenville, IN (United States)

1997-12-31T23:59:59.000Z

191

Electric vehicle propulsion batteries: design and cost study for nickel/zinc battery manufacture. Task A. [25 kWh, 700 pounds, 245 Ah at 100+ V, 4. 77 ft/sup 3/  

DOE Green Energy (OSTI)

For satisfying the 25-kWh energy requirement necessary for vehicle propulsion, a 700-pound nickel--zinc battery was configured. Containing 64 individual cells, the unit was selected for minimum weight from computed packaging possibilities. Unit volume was projected to be 4.77 cubic feet. Capacity of the cells delivering 100+ volts was set at 245 ampere-hours. Selection was made primarily because of the compatibility with expressed vehicle requirements of a lower-current system. Manufacturing costs were computed for a unit using sintered positive electrodes at $86/kWh, pilot plant rate, and $78/kWh, production plant rate. Based on a lower than anticipated cost differential between sintered and nonsintered positive electrodes and certain other performance differences, the sintered electrode was chosen for the battery design. Capital expenditures for a production rate of 10,000 batteries per year are estimated to be $2,316,500. Capital expenditure for demonstrating production rates in a pilot plant facility is approximately $280,000, with the use of some shared available equipment. 29 figures, 9 tables.

None

1977-01-01T23:59:59.000Z

192

Carbon Nanostructured for Energy Storage Bingqing (BQ) Wei  

Science Conference Proceedings (OSTI)

... E n e rg y d e n s ity (W h /k g ) Power density (kW/kg) Flywheels Department of Energy (DOE) Target Ragone Chart NIST Workshop 2011BQWei ...

2012-10-22T23:59:59.000Z

193

Design guide for composite-material flywheels: rotor dyamic considerations. Part I. System whirling and stability. Final report  

DOE Green Energy (OSTI)

Information to designers of flywheels is provided which will enable them to predict many aspects of the dynamic behavior of their flywheel systems when spin-tested with a quill-shaft support and driven by an air turbine. Computer programs are presented for the following dynamic analysis to obtain the results indicated: free whirling for natural frequencies versus rotational speed and the associated mode shapes; rough-type stability analysis for determining the stability limits; and forced whirling analysis for estimating the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped-parameter analysis, while the other is a combined distributed- and lumped-parameter analysis. When applied to an existing flywheel system, the two models yielded numerical values for the lowest first-order forward critical speed in very close agreement with each other and with experimental results obtained in spin tests. Therefore, for the second kind of analysis, only the lumped-parameter model is implemented. Qualitative discussions as to why forced retrograde whirling is not as severe as forward whirling are also presented. The analyses are applied to the multi-material ring type flywheel systems, a constant-thickness-diskring type, and a tapered-thickness-disk type. In addition, the effects of the following flywheel design parameters on system dynamics were investigated: flywheel mass; diametral and polar mass moments of inertia; location of mass center from the lower end of the quill shaft; quill shaft length; lower turbine-bearing support stiffness; equivalent viscous damping coefficient of the external damper; flywheel dead weight; and torque applied at the turbine.

Bert, C.W.; Ramunujam, G.

1981-09-01T23:59:59.000Z

194

New Hampshire | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.8 mills per kilowatt-hour (0.0018kWh) on electric bills. A separate surcharge of 1.5 mills per kWh (0.0015kWh) supports low-income energy assistance programs. July 12, 2013...

195

Department of Energy - New Hampshire  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1.8 mills per kilowatt-hour (0.0018kWh) on electric bills. A separate surcharge of 1.5 mills per kWh (0.0015kWh) supports low-income energy assistance programs. Approximately...

196

Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Start Date 2007 Oregon Program Type State Rebate Program Rebate Amount 5kWh estimated AEO for systems with estimated annual energy output of 9,500 kWh or less...

197

Energy Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 Flywheel Project Escalates Grid Efficiency How does an energy storage plant recycle energy? Find out how flywheels are expanding the capacity for renewable energy sources. August 9, 2010 LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo Lighting Retrofits Saving Energy, Helping Local Companies It's easy to measure the effects of a lighting retrofit project in a city like Altoona, Pa., where 169 new LED units are expected to save $4,078 in energy costs annually. But there are also other benefits to such energy efficiency initiatives, which can be seen in the local companies that make the projects possible... August 9, 2010 AcuTemp received a $900,000 48C manufacturing tax credit under the American Recovery and Reinvestment Act to increase production of the company's ThermoCor vacuum insulation panels for more efficient ENERGY STAR appliances. | Photo courtesy of AcuTemp |

198

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open  

Open Energy Info (EERE)

HeatPumpsUsedForColg HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used for cooling Pages using the property "Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building 05K0004 + 0.0 + Sweden Building 05K0005 + 0.0 + Sweden Building 05K0006 + 0.250906049624 + Sweden Building 05K0007 + 0.0 + Sweden Building 05K0008 + 0.0 + Sweden Building 05K0009 + 0.0 + Sweden Building 05K0010 + 0.0 + Sweden Building 05K0011 + 0.0 + Sweden Building 05K0012 + 0.0 + Sweden Building 05K0013 + 0.0 + Sweden Building 05K0014 + 0.0 + Sweden Building 05K0015 + 0.0 +

199

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents (OSTI)

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

200

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents (OSTI)

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

Kuklo, T.C.

1999-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Peer Review Oct 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Sept , 2008 Peer Review Sept , 2008 Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Boeing Technology | Phantom Works Superconducting Flywheel Development 2 Copyright © 2004 Boeing. All rights reserved. Flywheel Energy Storage Systems Objective: *Design, build and deliver flywheel energy storage systems utilizing high temperature superconducting (HTS) bearings tailored for uninterruptible power systems and off-grid applications Goal: *Successfully integrate FESS into a demonstration site through cooperative agreements with DOE and contracts with Sandia National Labs Deployment of a demo system, shown in relation to diesel genset and balance of system. Over All Status:

202

Energy Efficiency in Regulated and Deregulated Markets  

E-Print Network (OSTI)

to-energy External cost in cents per kWh Coal Oil Naturaluse at a cost of approxi- mately 3.2 cents per kWh relativeenergy at a cost of 2 or 3 cents per kWh, lower than the

Rotenberg, Edan

2005-01-01T23:59:59.000Z

203

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

APS Solar Partners Program central PV 1997 17.6kWh AZ Salt River Project EarthWise Energy central PV, wind, landfill gas, small hydro, geothermal 1998 2001 3.0kWh AZ Tucson...

204

Alliant Energy Interstate Power and Light - Residential Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: 1.25kWh x estimated first year output Standard Solar PV: 0.75kWh x estimated...

205

Alliant Energy Interstate Power and Light - Business and Farm...  

Open Energy Info (EERE)

of either the estimated first year output in kilowatt hours (kWh) or the optimal annual energy usage of the facility in kWh as follows: Standard PV: The lesser of estimated first...

206

Energy Storage for DC Fast Chargers Development and Demonstration...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-13-28684 Energy Storage for DC Fast Chargers Development and Demonstration of Operating Protocols for 20-kWh and 200-kWh Field Sites Russell Newnham a Sally (Xiaolei) Sun a...

207

Alliant Energy Interstate Power and Light - Residential Renewable...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: 1.25kWh x estimated first year output Standard Solar PV: 0.75kWh x estimated...

208

SRP - EarthWise Solar Energy Incentive Program (Arizona) | Open...  

Open Energy Info (EERE)

Commercial PV: 0.10W Residential solar water heaters: 0.35kWh for 1st year estimated energy savings (based on SRCC rating) Commercial solar water heaters: 0.35kWh for 1st...

209

Distributed Energy | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems. Distributed energy offers solutions to many of the nation's most pressing energy and electric power problems, including blackouts and brownouts, energy security concerns, power quality issues, tighter emissions standards, transmission bottlenecks, and the desire for greater control over energy costs.

210

Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams  

Energy.gov (U.S. Department of Energy (DOE))

$30.6 million Recovery Act investment by the Department of Energy highlights the additional potential of hydro power

211

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

212

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

11111111111111111111111111111111 OpenEIUtilityRateDescription Energy adjustment base average 0.058kwh (E.A. base would vary each month based on projected power costs.)...

213

CX-004955: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-004955: Categorical Exclusion Determination Beacon Power -Development of a 100 Kilowatt Hour/1100 Kilowatt Flywheel Energy Storage Module CX(s) Applied: B3.6 Date: 08/09/2010 Location(s): Tyngsboro, Massachusetts Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory and bench scale research and development on a flywheel energy storage module that will provide 4 times the stored energy at 118 the cost-per-energy of Beacon's state-of-the-art Gen 4 flywheel. The proposed work is consistent with the goal of Grid-Scale Rampable Intermittently Dispachable Storage (GRIDS): development of new technologies to enable the widespread deployment of cost-effective, grid-scale energy storage. Work consists entirely of research, development,

214

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

P P r o m or Field Office: Advanced Research Projects Agency - Energy Proiect Title: (0290-1654) Beacon Power - Development of a 100 k w h 1 100 kW Flywheel Energy Storage Module Location: Massachusetts Proposed Action or Project Description: American Recovery and Reinvestment Act: Fundingwill support laboratory and bench scale researchand development on a flywheel energy storage modulethat will provide4 times the stored energy at 118 the cost-per-energy of Beacon's state-of-the-art Gen4 flywheel. The proposedwork is consistentwith the goal of GRIDS: development of newtechnologies to enable the widespreaddeployment of cost-effective, grid-scale energy storage. Work consists entirely of RD&D to be completed at the Beacon Power facility in Tyngsboro, MA The work performed

215

Cool roofs as an energy conservation measure for federal buildings  

E-Print Network (OSTI)

31000 kWh yr -1 and annual gas usage is 0.0732 × 7200 = 527= 26700 kWh yr -1 and annual gas usage is 0.081 × 7200 = 580electricity usage (kWh yr -1 ), 2) annual gas energy use (

Taha, Haider; Akbari, Hashem

2003-01-01T23:59:59.000Z

216

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network (OSTI)

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants with little or no internal loads. The evaporative roof cooling system keeps the building from heating up during the day by misting the roof surface with a fine spray of water -just enough to evaporate. This process keeps the roof surface at 90° levels instead of 150° and knocks out the radiant heat transfer from the roof into the building. The system is controlled by a thermostat and automatically shuts off at night or when the roof surface cools below the set point. The same control system turns on exhaust fans to load the building with cool night air. Air circulators are installed to provide air movement on workers during the day. Best results are achieved by closing dock doors and minimizing hot air infiltration during the day. The typical application will maintain inside temperatures that will average 84° -86° when outside ambient temperatures range from 98 °-100°. Many satisfied users will attest to marked improvements in employee moral and productivity, along with providing safe storage temperatures for many products. Installed "Flywheel" systems' costs are usually less than 20% of comparable air-conditioning equipment. By keeping a built up roof cooler, the system will eliminate thermal shock and extend roof life while reducing maintenance.

Abernethy, D.

1992-05-01T23:59:59.000Z

217

Brazil - Analysis - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Brazil generated 424 billion kWh of hydroelectric power in 2011.

218

Energy Information Handbook: Applications for Energy-Efficient Building Operations  

E-Print Network (OSTI)

Average energy per day Photovoltaic Energy Output Weekly orminute or BtuH Photovoltaic kWh kW * The energy content ofphotovoltaic array generation enables you to quantify output or net energy

Granderson, Jessica

2013-01-01T23:59:59.000Z

219

2009 Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Energy Storage Systems Program, November 2-4, 2010 Washington DC 10 Energy Storage Systems Program, November 2-4, 2010 Washington DC This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract #598172 and #1059559 . Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing Engineering, Operations & Technology | Boeing Research & Technology Superconducting Flywheel System System Architecture for Deployment of a 3 kW / 5 kWh Flywheel Energy Storage System - DOE/Sandia Project Benefits of Using FESS Instead of Idling 2 nd Generator on Standby * Reduce Generator Maintenance by 50% (estimate) * Reduce Fuel Costs by $200k/yr (estimate) * Lower Pollution Flywheel Energy Storage System would supply power

220

Energy Efficiency Standard for Focus on Energy | Open Energy...  

Open Energy Info (EERE)

Energy Incentive Programs Electric Sales Reduction 2011-2014: Net annual electric energy savings of 1,816,320,000 kWh Natural Gas Sales Reduction 2011-2014: Net annual...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alliant Energy Interstate Power and Light - Residential Renewable Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Residential Renewable Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Wind Maximum Rebate Solar Thermal Water Heater: $750 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: $1.25/kWh x estimated first year output Standard Solar PV: $0.75/kWh x estimated first year output Energy Efficient Wind: $0.75/kWh x estimated first year output Standard Wind: 0.25/kWh x estimated first year output Solar Thermal Water Heater (electric): $0.35 x annual kWh savings Solar Thermal Water Heater (natural gas): $2.50 x annual therm savings

222

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or...

223

Form EIA-861 Instructions - Energy Information Administration  

U.S. Energy Information Administration (EIA)

PART C. GREEN PRICING. Green Pricing Programs are Voluntary Retail Programs. ... An entity sells Green Energy for an additional $5.50 per 100 kWh block:

224

Commonwealth Hydropower Program (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Category Renewable Energy Incentive Programs Amount Design & Construction: 50% of costs or 1.00 per incremental kWh per year Feasibility study: 80% of costs Equipment...

225

Data:Eef7990a-140e-42ae-843b-c89105fa9bce | Open Energy Information  

Open Energy Info (EERE)

990a-140e-42ae-843b-c89105fa9bce 990a-140e-42ae-843b-c89105fa9bce No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Reliant Energy Retail Services LLC Effective date: 2012/02/15 End date if known: Rate name: 12 (e-sense Time-Of with 20% Wind) Sector: Residential Description: This is an indexed product - your average price per kWh each month is determined by using the monthly customer charge and energy charges above and the predetermined formula below based on your actual kWh usage in each pricing tier. Price per kWh =(Monthly Customer Charge + (Monthly Billed kWh Usage for Off-Peak Hours x Energy Charge per kWh for Off-Peak Hours) + (Monthly Billed kWh Usage for Standard Hours x Energy Charge per kWh for Standard Hours) + (Monthly Billed kWh for Summer Peak Hours x Energy Charge per kWh for Summer Peak Hours) + (Monthly Billed kWh for Non-Time-of-Use Hours x Energy Charge per kWh for Non-Time-of-Use Hours)) / Total Monthly Billed kWh Usage

226

Market failures, consumer preferences, and transaction costs in energy efficiency purchase decisions  

E-Print Network (OSTI)

determine their levelized costs per kWh saved. For any givenCFL Wattage Elec Cost per kWh Lifetime (Hours) Hours of UseAnnual Energy Cost, Elec per w/ Gas WH Water kWh Elec Elec

Sathaye, Jayant; Murtishaw, Scott

2004-01-01T23:59:59.000Z

227

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

end of 2005. The city reached this goal in 2008, the city with a purchase of 215 million kWh of wind and biomass energy from MidAmerican Energy. July 12, 2013 City of Chicago -...

228

Data:5e240676-2ccf-4a99-865e-d79a4c8a51bd | Open Energy Information  

Open Energy Info (EERE)

exceed 3,500 kWh. This rate will also be implemented when an established MGS customer's energy usage fails to equal or exceed 3,500 kWh in eleven months of the twelve month...

229

Data:5b3c8467-2695-40b6-a4be-203dd22b586f | Open Energy Information  

Open Energy Info (EERE)

and all three- (3) phase commercial customers and small non-residential customers with energy usage averaging 6,000 kWh or greater per month, but less than 25,000 kWh per month...

230

Data:A1a173d1-4706-4c8e-97bb-6026f1206bc3 | Open Energy Information  

Open Energy Info (EERE)

commercial user and available at consumer's service location, whose average usage monthly energy usage is less than 10,000 kWh per month. Fixed Monthly Charge includes 1st 100 kWh...

231

Temperature and frequency effects in a high-performance superconducting bearing.  

DOE Green Energy (OSTI)

A high-temperature superconducting (HTS) bearing was fabricated and tested by itself and as a component in a 1-kWh and a 10-kWh flywheel energy system (FES). The rotational losses of the HTS bearing as a function of rotational rate and HTS temperature were determined. The 1-kWh FES was tested with a motor/generator and with an eddy current clutch to determine the motor/generator losses.

Day, A. C.; Hull, J. R.; Strasik, M.; Johnson, P. E.; McCrary, K. E.; Edwards, J.; Mittleider, J.; Schindler, J. R.; Hawkins, R. A.; Yoder, M.

2002-09-10T23:59:59.000Z

232

Peer Review Oct 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Peer Review - DOE Peer Review - Sept, 2007 Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Boeing Technology | Phantom Works Copyright © 2004 Boeing. All rights reserved. Superconducting Flywheel Development 2 Flywheel Energy Storage Systems Objective: *Design, build and deliver flywheel energy storage systems utilizing high temperature superconducting (HTS) bearings tailored for uninterruptible power systems and off-grid applications Goal: *Successfully integrate FESS into a demonstration site through cooperative agreements with DOE and contracts with Sandia National Labs Deployment of a demo system, shown in relation to diesel genset and balance of system. Status: *The 1 kWh / 3 kW test was successful

233

EA-1631: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Final Environmental Assessment 1: Final Environmental Assessment EA-1631: Final Environmental Assessment Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York The environmental assessment examines the potential environmental impacts associated with issuing a Federal loan guarantee to Beacon Power Corporation for construction and operation of a flywheel-based frequency regulation facility at an undeveloped seven acre site in Stephentown, New York. Environmental Assessment for Department of Energy Loan Guarantee for Beacon Power Corporation Frequency Regulation Facility in Stephentown, New York, DOE/EA-1631, February 2009 More Documents & Publications EA-1631: Finding of No Significant Impact Fact Sheet: Grid-Scale Flywheel Energy Storage Plant

234

Energy conversion apparatus for supplying variable voltage direct current power to an electrically propelled vehicle  

SciTech Connect

A synchronous machine, operable as both a motor and a generator, is mounted on an electrically powered vehicle, such as a mine shuttle car, and includes a plurality of conductors having connections that are detachably engagable with receptacles of a stationary power bank. Engagement of the conductors with the receptacles supplies variable voltage alternating current power to the machine. The machine is drivingly connected to a flywheel on the vehicle and, operating as a motor, energizes the flywheel to store a preselected amount of mechanical energy. The electrical connection between the vehicle and the power bank is opened after the flywheel has been sufficiently charged. The stored energy in the flywheel is then available to drive the machine as a generator and produce high frequency, three phase, alternating current power. The generated power is transmitted to a full wave silicon controlled rectifier that converts the alternating current power to direct current for powering the traction motors of the vehicle. A variable voltage controller is connected to the rectifier and actuates the rectifier to supply direct current at a selected voltage level. The controller is responsive to an operator foot pedal. By manually depressing the foot pedal to a selected position, the voltage level of the rectified current is controlled. Thus, the speed of the traction motors is adjustable topropel the vehicle at a speed within a given range. After a portion of the energy stored by the flywheel is consumed, the vehicle is returned to the power bank to replenish the energy supply.

Jamison, W.B.; Burr, J.F.

1976-09-07T23:59:59.000Z

235

Energy storage options for space power  

DOE Green Energy (OSTI)

Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

Hoffman, H.W.; Martin, J.F.; Olszewski, M.

1985-01-01T23:59:59.000Z

236

Uganda - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, manufacturing, and transportation. ... (hydro and biomass) and 0.8 billion kWh from petroleum.

237

Kenya - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Consumption & Efficiency. Energy use in homes, commercial buildings, ... in 2010, of which 5.2 billion KWh derived from renewable sources (hydro, geothermal, ...

238

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network (OSTI)

Energy Consumption useful Hot water/hh, kWh Country Australia Austria Brazil Canada china Denmark Finland France Germany Greece India Iran,

McNeil, Michael A

2008-01-01T23:59:59.000Z

239

Entergy Arkansas - CitySmart Energy Efficiency Program (Arkansas...  

Open Energy Info (EERE)

Free to eligible customers Equipment Requirements Measures must result in estimated energy savings of at least 25,000 kWh. Program Administrator Entergy Arkansas, Inc....

240

Definition: Electrical Energy | Open Energy Information  

Open Energy Info (EERE)

Energy The generation or use of electric power by a device over a period of time, expressed in kilowatthours (kWh), megawatthours (MWh), or gigawatthours (GWh).1 Related Terms...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Progress Energy Carolinas - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study (Retrofit Only): 50% of cost Design Incentive (New Construction Only): 0.05kWh projected first-year savings Building Energy Modeling (New Construction Only): Up to...

242

Optimal Sizing of Energy Storage System in Solar Energy Electric Vehicle Using Genetic Algorithm and Neural Network  

Science Conference Proceedings (OSTI)

Owing to sun's rays distributing randomly and discontinuously and load fluctuation, energy storage system is very important in Solar Energy Electric Vehicle (SEEV). The combinatorial optimization by genetic algorithm and neural network was used to optimize ... Keywords: battery flywheel, genetic algorithm, neural network

Shiqiong Zhou; Longyun Kang; Miaomiao Cheng; Binggang Cao

2009-11-01T23:59:59.000Z

243

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

in Progress Research Highlights Sources and Credits PDF of EETD News Image of a flywheel uninterruptible power supply (UPS) Figure 1. Flywheel uninterruptible power supply...

244

On-Site Small Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program On-Site Small Wind Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Lesser of $400,000 per site/customer or 50% of installed cost of system Program Info Funding Source RPS surcharge Start Date 01/01/2012 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount First 10,000 kWh of expected annual energy production: $3.50/annual kWh Next 115,000 kWh of expected annual energy production: $1.00/annual kWh Energy production greater than 125,000 kWh: $0.30/annual kWh Provider New York State Energy Research and Development Authority

245

Data:Fdb4966a-0867-4cdb-856e-077731a7fab8 | Open Energy Information  

Open Energy Info (EERE)

Fdb4966a-0867-4cdb-856e-077731a7fab8 Fdb4966a-0867-4cdb-856e-077731a7fab8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: High West Energy, Inc Effective date: End date if known: Rate name: Irrigation Sector: Industrial Description: Commodity Charge: Seasonal kWh per kWh $0.06664 Off Season kWh per kWh $0.10393 Source or reference: http://www.highwest-energy.com/public/index.php/custservices/content-all-comcontent-views/rates Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):

246

Energy Department's Hospital Energy Alliance Helps Partner Save...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on its energy bills. Gundersen is investing in renewable energy solutions, including a biogas generator that uses methane from a local landfill to produce over 8 million kWh of...

247

COMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES  

E-Print Network (OSTI)

-storage materials, flywheels, pumped hydro (PH), superconducting magnetic energy storage (SMES) and compressed airCOMPRESSED-AIR ENERGY STORAGE SYSTEMS FOR STAND-ALONE OFF-GRID PHOTOVOLTAIC MODULES Dominique, USA ABSTRACT In this work, a low-cost, low-volume, low-maintenance, small-scale compressed-air energy

Deymier, Pierre

248

EA-1753: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

753: Finding of No Significant Impact 753: Finding of No Significant Impact EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois Based on the analyses in the environmental assessment (EA), DOE determined that its proposed action--awarding a federal grand to Beacon Power Corporation (Beacon Power) to facilitate installation and operation of a 20-megawatt flywheel frequency regulation plant--would result in no significant adverse impacts. DOE further determined that the proposed project could result in beneficial impacts o the nation's energy efficiency and air quality. Operating the flywheel plant could result in a decrease in carbon dioxide emissions from regional power plants. In addition, there would be small positive socioeconomic impacts from the expenditures for the

249

EA-1753: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Finding of No Significant Impact 3: Finding of No Significant Impact EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois Based on the analyses in the environmental assessment (EA), DOE determined that its proposed action--awarding a federal grand to Beacon Power Corporation (Beacon Power) to facilitate installation and operation of a 20-megawatt flywheel frequency regulation plant--would result in no significant adverse impacts. DOE further determined that the proposed project could result in beneficial impacts o the nation's energy efficiency and air quality. Operating the flywheel plant could result in a decrease in carbon dioxide emissions from regional power plants. In addition, there would be small positive socioeconomic impacts from the expenditures for the

250

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network (OSTI)

108 Volts (dc) open circuit 600 Volts (dc) max 540 Volts (dc) open circuit Energy Capacity 50 k discharged for nearly 4 hours and achieved energy output in excess of the 500 kWh (dc) rating. Voltage are shown in Figure 7. The unit achieved greater that 500 kWh (dc) total energy output during each

251

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

has been reduced to 0.40 per equivalent kilowatt-hour (kWh), and incentives for all non-solar renewable energy technologies have been suspended. ''''' July 12, 2013 System...

252

Vermont | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

utilizing anaerobic digestion of agricultural products, byproducts or wastes to generate electricity. GMP purchases the renewable energy credits for up to 0.04 per kWh with full...

253

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a 0.20 per kilowatt-hour (kWh) production...

254

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for solar water heating has been reduced to 0.40 per equivalent kilowatt-hour (kWh), and incentives for all non-solar renewable energy technologies have been suspended. ''''' Prev...

255

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The rebate amount is calculated as 0.40 times the estimated annual kilowatt-hour (kWh) savings (the Oregon Department of Energy provides the estimates for approved systems)....

256

Arizona | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for solar water heating has been reduced to 0.40 per equivalent kilowatt-hour (kWh), and incentives for all non-solar renewable energy technologies have been suspended....

257

Data:365a14a9-ec95-40b2-bea7-c30d4e8e1529 | Open Energy Information  

Open Energy Info (EERE)

to private single family dwellings or individually metered apartments. Total Energy Charge Delivery Services-Energy + Power Supply Charges PPFAC of 0.08778kWh Source...

258

Data:727ebf27-9c2b-4831-814e-99733d1d8a83 | Open Energy Information  

Open Energy Info (EERE)

ebf27-9c2b-4831-814e-99733d1d8a83 ebf27-9c2b-4831-814e-99733d1d8a83 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Carroll Electric Member Corp Effective date: 2012/01/01 End date if known: Rate name: General Service Rate Sector: Industrial Description: RATE PER MONTH Service Charge @ $80.00 per month First 200 kWh per kW of Demand First 1500 kWh @ $0.13018 per kWh Next 8500 kWh @ $0.11218 per kWh Over 10,000 kWh @ $0.08318 per kWh Next 100 kWh per kW of Demand which is also in excess of 1500 kWh @ $0.05098 per kWh All consumption in excess of 300 kWh per kW of demand which is also in excess of 1500 kWh @ $0.02918 per kWh

259

Bearing design for flywheel energy storage using high-TC superconductors  

DOE Patents (OSTI)

A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

2000-01-01T23:59:59.000Z

260

2009 Template  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Energy Storage Peer Review, October 8, Seattle, WA 09 Energy Storage Peer Review, October 8, Seattle, WA This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract 598172. Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Engineering, Operations & Technology | Boeing Research & Technology AM&ST/Advanced Physics Applications System Architecture for Deployment of a 3kW / 5kWh Flywheel Energy Storage System - DOE/Sandia Project Benefits of Using FESS Instead of Idling 2 nd Generator on Standby * Reduce Generator Maintenance by 50% (estimate) * Reduce Fuel Costs by $160k/yr (estimate) * Lower Pollution Flywheel Energy Storage System would supply power

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Country Review of Energy-Efficiency Financial Incentives in the Residential Sector  

E-Print Network (OSTI)

incentive GHG greenhouse gas HVAC heating, ventilation, and air conditioning kW kilowatt kWh kilowatt hour PACE property-assessed clean energy

Can, Stephane de la Rue du

2011-01-01T23:59:59.000Z

262

Fuel and Famine: Rural Energy Crisis in the Democratic People's Republic of Korea  

E-Print Network (OSTI)

SUPPLY OIL SUPPLY COAL SUPPLY BIOMASS USE FIGURE 1. DeclinesTONS ELECTRICITY SUPPLY MILLION TONS BILLION KWH BIOMASS USEdeclined. Biomass energy use increased. COAL SUPPLY MILLION

Williams, James H.; von Hippel, David; Hayes, Peter

2000-01-01T23:59:59.000Z

263

CenterPoint Energy - SCORE and CitySmart Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » CenterPoint Energy - SCORE and CitySmart Program CenterPoint Energy - SCORE and CitySmart Program < Back Eligibility Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Texas Program Type Utility Rebate Program Rebate Amount '''SCORE''' SCORE (Lighting): $125/kW plus $0.02/kWh SCORE (HVAC Measure): $165/kW plus $0.03/kWh '''CitySmart''' CitySmart: $145/kW plus $0.025/kWh '''SCORE LITE''' Lighting: $120/kW plus $0.04/kWh LED: $210/kW plus $0.08/kWh DX: $240/kW plus $0.09/kWh Chiller: $260/kW plus $0.11/kWh Motor: $235/kW plus $0.09/kWh VFD: $180/kW plus $0.07/kWh

264

Increased fuel economy in transportation systems by use of energy management. Third year's program. Final report, May 1, 1976--July 1, 1976  

DOE Green Energy (OSTI)

A report is given of the results accomplished during the third year of a three-year research program, the overall goal of which has been to conceive and evaluate practical ways to increase automobile fuel economy by energy management within the engine-transmission-vehicle system. The third year was devoted primarily to the detailed design, construction, and preliminary evaluation of a Flywheel Energy Management Powerplant (FEMP) installed in a Pinto. The vehicle has been built to experimentally verify performance simulations and to allow the practical aspects of a real flywheel vehicle to be studied. The FEMP consists basically of an internal combustion engine, a high-speed energy-storage flywheel, and a hydrostatic power-split continuously-variable transmission (CVT) system. The flywheel drives the car, and the engine comes on to ''recharge'' it (with efficient wide-open throttle operation) only when the flywheel speed drops below a predetermined value. The concept also permits effective and efficient regenerative braking. Computer simulations have indicated an improvement in city fuel mileage of about 50%, with improvements of 100% appearing feasible with further research. Preliminary testing of the car shows favorable performance.

Beachley, N.H.; Frank, A.A.

1976-07-01T23:59:59.000Z

265

SUPPORTING SOLAR ENERGY DEVELOPMENT THROUGH GREEN POWER MARKETS...  

NLE Websites -- All DOE Office Websites (Extended Search)

PV Arizona Public Service Solar Partners 616 kW* 1997 17.6kWh Austin Energy GreenChoice 153 kW 1997 1.08kWh Salt River Project EarthWise Energy 400 kW 1998...

266

Energy Incentive Programs, Louisiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Louisiana Louisiana Energy Incentive Programs, Louisiana October 29, 2013 - 11:29am Addthis Updated August 2012 What public-purpose-funded energy efficiency programs are available in my state? Louisiana has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Entergy New Orleans' Energy Smart program provides financial incentives for its small (demand less than 100 kW) and large (100 kW or greater) non-residential customers to install qualifying energy-efficient equipment including lighting, air conditioning, heat pumps, electric chillers, motors, window film and other measures that reduce electricity use. Incentive levels are based on kWh saved; small customers earn $0.14 per kWh and large customers $0.10 per kWh for qualifying lighting upgrades and

267

Energy Cost Calculator for Commercial Ice Machines | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ice Machines Ice Machines Energy Cost Calculator for Commercial Ice Machines October 8, 2013 - 2:25pm Addthis Vary capacity size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Ice Cube Machine Ice Making Head Self-Contained Remote Condensing Unit Ice Making Head Type of Condenser Air Cooled Water Cooled Air Cooled Ice Harvest Rate (lbs. ice per 24 hrs.) lbs. per 24 hrs. 500 lbs. per 24 hrs. Energy Consumption (per 100 lbs. of ice) kWh 5.5 kWh Quantity of ice machines to be purchased 1 Energy Cost $/kWh 0.06 $/kWh Annual Hours of Operation hrs. 3000 hrs. Calculate Reset OUTPUT SECTION Performance per Ice Cube Machine Your

268

FirstEnergy (West Penn Power) - Commercial and Industrial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Source Heat Pumps: 250unit Chillers: 12.50-25ton Custom: 0.05kWh saved annually RefrigerationFood Service Equipment: Varies Provider FirstEnergy (West Penn Power)...

269

Data:4943f5a3-30ce-4be3-bf24-c2c7bf7ffa6e | Open Energy Information  

Open Energy Info (EERE)

a3-30ce-4be3-bf24-c2c7bf7ffa6e a3-30ce-4be3-bf24-c2c7bf7ffa6e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Elec Member Corp Effective date: 2012/01/01 End date if known: Rate name: General Service Demand - Single Phase Sector: Industrial Description: Monthly Rate: First 20 kWh or less $30.00 per mo. Next 1,980 kWh 15.0¢ per kWh Next 198,000 kWh 10.3¢ per kWh Over 200,000 7.4¢ per kWh All consumption in excess of 200 kWh 6.9¢ per kWh per kW of billing demand All consumption in excess of 400 kWh 6.6¢ per kWh per kW of billing demand All consumption in excess of 600 kWh 5.8¢ per kWh

270

Data:A45e571e-607a-48f3-a0a8-9b273309e21e | Open Energy Information  

Open Energy Info (EERE)

1e-607a-48f3-a0a8-9b273309e21e 1e-607a-48f3-a0a8-9b273309e21e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Elec Member Corp Effective date: 2012/01/01 End date if known: Rate name: General Service Demand - Three Phase Sector: Industrial Description: Monthly Rate: First 20 kWh or less $42.50 per mo. Next 1,980 kWh 15.0¢ per kWh Next 198,000 kWh 10.3¢ per kWh Over 200,000 7.4¢ per kWh All consumption in excess of 200 kWh 6.9¢ per kWh per kW of billing demand All consumption in excess of 400 kWh 6.6¢ per kWh per kW of billing demand All consumption in excess of 600 kWh 5.8¢ per kWh

271

Benefits and Costs of Aggressive Energy Efficiency Programs and the Impacts of Alternative Sources of Funding: Case Study of Massachusetts  

E-Print Network (OSTI)

2030) .to Energy Efficiency ($B, 2009-2030 PV relative to No New EEEfficiency (¢/kWh, 2009-2030 average relative to No New EE

Cappers, Peter

2010-01-01T23:59:59.000Z

272

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

E-Print Network (OSTI)

Cost From Base ($/yr) Battery Capacity Installed (kWh) Flowacid battery bankwith an energy storage capacity of 44.5

Michael, Stadler

2011-01-01T23:59:59.000Z

273

Cost analysis of energy storage systems for electric utility applications  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

274

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network (OSTI)

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

275

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

UtilityRateDemandRateUnit kW + OpenEIUtilityRateDescription Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs. OpenEI...

276

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

UtilityRateDemandRateUnit kW + OpenEIUtilityRateDescription Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs.)...

277

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

kW + OpenEIUtilityRateDescription Closed to New Accounts Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs. OpenEI...

278

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

kW + OpenEIUtilityRateDescription Single Phase Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs.)...

279

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

kW + OpenEIUtilityRateDescription Closed to New Accounts. Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs. OpenEI...

280

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

DemandRateUnit kW + OpenEIUtilityRateDescription Three Phase Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs. OpenEI...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

kW + OpenEIUtilityRateDescription Closed to New Accounts. Energy adjustment base average 0.054kwh (E.A. base would vary each month based on projected power costs.)...

282

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

... A Customer will receive service on this schedule if the following conditions are met: Energy usage does not exceed 25,000 kWh per BILLING PERIOD for each of six consecutive...

283

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

and measured through one meter. This schedule is applicable to Customers whose metered energy usage is 2,000 kWh, or less, per Billing Period for ten or more Billing Periods...

284

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

of adequate capacity. No resale of service is permitted. Customers on this rate must have energy usage of 20,000 kWh or more in each billing month. Customers falling below required...

285

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

is made up of two parts: The customer charge (a fixed minimum amount each month) The energy usage charge (per kWh usage) The customer charge is a fixed rate that applies each...

286

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

will receive service on this schedule if any of the following conditions are met: Energy usage is greater than 100,000 kWh per BILLING PERIOD for each of six consecutive...

287

Data:88b3ac22-0534-460f-bfd5-c519355f1e97 | Open Energy Information  

Open Energy Info (EERE)

b3ac22-0534-460f-bfd5-c519355f1e97 b3ac22-0534-460f-bfd5-c519355f1e97 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Diverse Power Incorporated Effective date: 2011/03/19 End date if known: Rate name: General Electric Service Sector: Commercial Description: Monthly Rates Energy Charge including Demand Charge All consumption (kWh) not greater than 200 hours times the billing demand: First 1,500 kWh per month...................................$0.152 per kWh Next 8,500 kWh per month...................................$0.142 per kWh Over 10,000 kWh per month.................................$0.122 per kWh

288

Alliant Energy Interstate Power and Light - Business and Farm Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alliant Energy Interstate Power and Light - Business and Farm Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates Alliant Energy Interstate Power and Light - Business and Farm Renewable Energy Rebates < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Energy Efficient Wind: $35,000 Standard Wind: $30,000 Energy Efficient PV: $25,000 Standard PV: $20,000 Biomass: $500,000 Anaerobic Digester: $200,000 Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Wind: $0.75/kWh Standard Wind: $0.25/kWh Energy Efficient PV: $1/kWh Standard PV: $0.50/kWh Biomass: 50% of system cost Anaerobic Digester: 50% of system cost Provider Alliant Energy The Alliant Energy Renewable Cash-Back Rewards program offers rebates for

289

East Central Energy (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

Energy (Wisconsin) Energy (Wisconsin) Jump to: navigation, search Name East Central Energy Place Wisconsin Utility Id 5574 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1200/kWh Commercial: $0.1130/kWh Industrial: $0.0968/kWh The following table contains monthly sales and revenue data for East Central Energy (Wisconsin). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

290

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

291

Peer Review Oct 2005  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Peer Review Oct 2006.ppt | 10/17/2006 Peer Review Oct 2006.ppt | 10/17/2006 BOEING is a trademark of Boeing Management Company. Copyright © 2004 Boeing. All rights reserved. Superconducting Flywheel Development Phil Johnson FESS Program Manager Boeing Phantom Works DOE Energy Storage Systems 2006 Peer Review Boeing Technology | Phantom Works Superconducting Flywheel Development Peer Review Oct 2006.ppt | 2 Copyright © 2004 Boeing. All rights reserved. 50kW / 5kWh Flywheel Energy Storage System Off-Grid Demo System Objective: *Design, build and deliver a flywheel energy storage system tailored for off- grid applications utilizing a High Temperature Superconducting (HTS) Bearing Goal: *Successfully integrate the FESS system into a demonstration site One of three deployment options for the demo system, shown in relation to

292

Data:81382fe9-7ed5-441a-ba64-b5f9f0fc8a26 | Open Energy Information  

Open Energy Info (EERE)

known: Rate name: security light-400 watt Mercury Vapor Sector: Lighting Description: * Energy usage 195 kWh No longer offered but still maintained Subject to Power Cost...

293

Data:26c74797-0d1d-4729-8521-708e6868be4d | Open Energy Information  

Open Energy Info (EERE)

known: Rate name: security light- 400 watt Metal Halide Sector: Lighting Description: * Energy usage 195 kWh. Subject to Power Cost Recovery Factor. Source or reference: http:...

294

Data:7e81505e-b671-4659-96ca-d85a5021d91b | Open Energy Information  

Open Energy Info (EERE)

Rate name: security light-400 watt High Pressure Sodium Sector: Lighting Description: * Energy usage 195 kWh Subject to Power Cost Recovery Factor. Source or reference: http:...

295

Data:91bdaad6-a428-48ac-9f06-34fd60f0c0e5 | Open Energy Information  

Open Energy Info (EERE)

Rate name: security light- 100 watt High Pressure Sodium Sector: Lighting Description: * Energy Usage 40 kWh Subject to Power Cost Recovery Factor. Source or reference: http:...

296

Data:C30516bc-5855-4748-a9a8-5ac8ecf95a47 | Open Energy Information  

Open Energy Info (EERE)

Description: Applicable to non-residential uses where the average monthly metered energy usage is greater than 3,000 KWh. Source or reference: Illinois State University...

297

DPL Energy Resources | Open Energy Information  

Open Energy Info (EERE)

DPL Energy Resources DPL Energy Resources Jump to: navigation, search Name DPL Energy Resources Place Ohio Utility Id 50062 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0694/kWh Commercial: $0.0639/kWh Industrial: $0.0570/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=DPL_Energy_Resources&oldid=410555" Categories: EIA Utility Companies and Aliases Utility Companies

298

Commerce Energy, Inc. | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Commonwealth Energy Corp) (Redirected from Commonwealth Energy Corp) Jump to: navigation, search Name Commerce Energy, Inc. Place California Utility Id 4100 Utility Location Yes Ownership R NERC Location WECC Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0840/kWh Commercial: $0.0815/kWh Industrial: $0.0764/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Commerce_Energy,_Inc.&oldid=412239" Categories:

299

Marin Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Energy Authority Energy Authority Jump to: navigation, search Name Marin Energy Authority Place California Utility Id 56692 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes ISO CA Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1330/kWh Commercial: $0.0843/kWh Industrial: $0.0862/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Marin_Energy_Authority&oldid=411038" Categories:

300

REA Energy Coop Inc | Open Energy Information  

Open Energy Info (EERE)

REA Energy Coop Inc REA Energy Coop Inc Jump to: navigation, search Name REA Energy Coop Inc Place Pennsylvania Utility Id 40292 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service Commercial Electric Heat Residential Electric Heat Over 7000 Commercial Residential Service Residential Average Rates Residential: $0.1040/kWh Commercial: $0.0919/kWh Industrial: $0.0915/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=REA_Energy_Coop_Inc&oldid=411419"

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

3 Phases Energy Services | Open Energy Information  

Open Energy Info (EERE)

Phases Energy Services Phases Energy Services Jump to: navigation, search Name 3 Phases Energy Services Place California Utility Id 21093 Utility Location Yes Ownership R NERC Location WECC NERC WECC Yes ISO CA Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1220/kWh Commercial: $0.1090/kWh Industrial: $0.0707/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=3_Phases_Energy_Services&oldid=678228"

302

Minnesota Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.833therm. Electricity prices were set to 0.103kWh for space heating and 0.108kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

303

Michigan Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.971therm. Electricity prices were set to 0.123kWh for space heating and 0.131kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

304

Maine Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.353therm. Electricity prices were set to 0.158kWh for space heating and 0.155kWh for air conditioning. Oil prices were set to 22.21MBtu. Energy...

305

District of Columbia Energy and Cost Savings for New Single-...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.202therm. Electricity prices were set to 0.135kWh for space heating and 0.143kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

306

Nebraska Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.762therm. Electricity prices were set to 0.079kWh for space heating and 0.102kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

307

Vermont Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.433therm. Electricity prices were set to 0.158kWh for space heating and 0.155kWh for air conditioning. Oil prices were set to 23.13MBtu. Energy...

308

Pennsylvania Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.101therm. Electricity prices were set to 0.125kWh for space heating and 0.133kWh for air conditioning. Oil prices were set to 23.41MBtu. Energy...

309

Virginia Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.077therm. Electricity prices were set to 0.098kWh for space heating and 0.108kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

310

Massachusetts Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.405therm. Electricity prices were set to 0.148kWh for space heating and 0.149kWh for air conditioning. Oil prices were set to 24.06MBtu. Energy...

311

Idaho Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.869therm. Electricity prices were set to 0.078kWh for space heating and 0.084kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

312

Utah Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

prices were set to 0.843therm. Electricity prices were set to 0.0825kWh for space heating and 0.0941kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

313

Seattle City Light - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Seattle City Light - Commercial Energy Efficiency Rebate Programs Seattle City Light - Commercial Energy Efficiency Rebate Programs Seattle City Light - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Institutional Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 70% of cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: $0.02 - $0.23/kWh saved or $3 - $86/fixture Lighting Controls: $0.20 - $0.26/kWh saved or $30 - $90/sensor HVAC Controls: $0.20 - $0.23 Chillers: $0.23-$0.34 per kWh saved Air Conditioners: $0.20 -$0.23 per kWh saved Heat Pumps $0.20-$0.27 per kWh saved

314

Consumers Energy - Experimental Advanced Renewable Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Energy - Experimental Advanced Renewable Program Consumers Energy - Experimental Advanced Renewable Program Consumers Energy - Experimental Advanced Renewable Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 08/27/2009 State Michigan Program Type Performance-Based Incentive Rebate Amount Non-Residential, August - September 2011: $0.229/kWh Residential, December 2011: $0.259/kWh Non-Residential, February - March 2012: $0.229/kWh Residential, April - May 2012: $0.259/kWh Residential, June - July 2012: $0.249/kWh Non-Residential, August - October 2012: $0.219 Residential, August - October 2012: $0.249 Residential, January - February 2013: $0.249

315

Mohave Electric Cooperative, Inc | Open Energy Information  

Open Energy Info (EERE)

Mohave Electric Cooperative, Inc Mohave Electric Cooperative, Inc Jump to: navigation, search Name Mohave Electric Cooperative, Inc Place Arizona Utility Id 21538 Utility Location Yes Ownership C NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png LS (100 W HPS Cooperative Owned-50 kWh Per Month) Lighting LS (100 W HPS Customer Owned-50 kWh Per Month) Lighting LS (175 W MVL Cooperative Owned-100kWh Per Month) Lighting LS (175 W MVL Customer Owned-100 kWh Per Month) Lighting LS (250 W HPS Cooperative Owned-129 kWh Per Month) Lighting

316

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in India  

E-Print Network (OSTI)

Energy Group (2010). "Energy Saving Potential In Indian2011). "Assessment of China's Energy-Saving and Emission-available on the market. Energy savings: 60 billion kWh per

McNeil, Michael A.

2013-01-01T23:59:59.000Z

317

CPS Energy - New Commercial Construction Incentives | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - New Commercial Construction Incentives CPS Energy - New Commercial Construction Incentives CPS Energy - New Commercial Construction Incentives < Back Eligibility Commercial Multi-Family Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Maximum Rebate 35% of eligible project costs or $250,000 per project Program Info Start Date 01/01/2010 State Texas Program Type Utility Rebate Program Rebate Amount Tier 1 Energy Incentive: $0.08/kWh Tier 1 Peak Demand Incentive: $125/kW Tier 2 Energy Incentive: $0.12/kWh Tier 2 Peak Demand Incentive: $150/kW Tier 3 Energy Incentive: $0.20/kWh Tier 3 Peak Demand Incentive: $200/kW Provider CPS Energy CPS Energy offers incentives for new commercial construction that is at

318

Modeling of customer adoption of distributed energy resources  

E-Print Network (OSTI)

energy revenue neutrality International Fuel Cell market analysis and informationenergy market) price during hour h, type of day t, and month m ($/kWh) Distributed Energy Resource Technologies Information

2001-01-01T23:59:59.000Z

319

Laoratories for the 21st Century: Energy Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

has the mildest climate and the lowest annual energy cost; Atlanta has the lowest total energy use. Electricity rates of 0.03 per kilowatt-hour (kWh), 7kW on-peak, and 4...

320

EPUD - Commercial and Industrial Energy Efficiency Rebate Program...  

Open Energy Info (EERE)

see program worksheet on web site Custom Industrial Projects: 0.25kWh of verified energy savings Energy Smart Grocer Program Auto-Closers: 25 - 170 Gaskets: 35 - 70...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

City of Houston - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a 5-year contract with Reliant Energy for up to 80 MW or 700 million kilowatt-hours (kWh) annually of renewable energy credits (RECs). These RECs will be generated almost...

322

City of Chicago - Green Power Purchasing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

end of 2005. The city reached this goal in 2008, the city with a purchase of 215 million kWh of wind and biomass energy from MidAmerican Energy. The http:www.chicagoclimateactio...

323

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

with DG investment options and energy tariffs and rates, toend-use energy loads 3 , electricity and natural gas tariffLBNL Tariff Analysis Project) fixed ($/month) energy ($/kWh)

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

324

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network (OSTI)

DA) tariff DER Install Tariffs Energy and Demand Gas pricesCapital cost O&M cost Tariff Energy charge ($/kWh) DemandTariff .53 iv Distributed Energy

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

325

Specification of an Information Delivery Tool to Support Optimal Holistic Environmental and Energy Management in Buildings  

E-Print Network (OSTI)

kWh) Ideal(kWh) Cost (e) Cooling Tower Energy Chiller EnergyLoad Condenser Loop Load Cooling Tower Energy Requirementscoil, chiller and cooling tower are con- suming excessive

O'Donnell, James

2008-01-01T23:59:59.000Z

326

CX-004960: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4960: Categorical Exclusion Determination 4960: Categorical Exclusion Determination CX-004960: Categorical Exclusion Determination Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage Grid CX(s) Applied: B3.6 Date: 08/13/2010 Location(s): Kent, Washington Office(s): Advanced Research Projects Agency - Energy Funding will support laboratory and bench-scale research and development, and pilot scale testing of a low-cost, flywheel-based energy storage system. The proposed work is consistent with the goal of Grid-Scale Rampable Intermittently Dispachable Storage (GRIDS): development of new technologies to enable the widespread deployment of cost-effective, grid-scale energy storage. Work consists entirely of research, development, and demonstration to be completed at the Boeing Research and Technology

327

Application of Energy Storage To Solar Electric Propulsion Orbital Transfer  

E-Print Network (OSTI)

Solar electric propulsion uses solar panels to generate power for electric thrusters. Using stored energy makes it possible to thrust through eclipses, but requires that some of the solar power collected during the sunlit portion of the trajectory be used to recharge the storage system. Previous researchers have reported that the required energy storage mass can be prohibitive. However, the use of high-speed flywheels for energy storage can provide advantages. In this paper, we compare the effectiveness of orbit transfers using and without using energy storage. The orbit transfers are developed as sequences of time-optimal circle-to-circle planar transfers from low-Earth orbit to geostationary orbit. We develop techniques for solving the appropriate boundary value problems, and illustrate tradeoffs between solar array and flywheel-battery masses for transfers

Mark W. Marasch; Christopher D. Hall

1999-01-01T23:59:59.000Z

328

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

329

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund, Minnesota offers a payment of 1.5 per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to... http:energy.gov...

330

Allegheny Power - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contact Utility Custom: 0.05kWh saved Provider SAIC FirstEnergy company Potomac Edison offers rebates to eligible commercial and industrial customers in Maryland service...

331

Renewable Energy Production Incentive (REPI) (Federal) | Open...  

Open Energy Info (EERE)

Energy Incentive Programs Amount 2.2kWh (subject to availability of annual appropriations in each federal fiscal year of operation) Expiration Date 10012016 (in-service...

332

Mohave Electric Cooperative - Renewable Energy Incentive Program...  

Open Energy Info (EERE)

PV and Wind systems: 0.35W Solar Water Heating: 0.75kWh of estimated first year energy savings Eligible System Size up to 50 kW or 125% onsite load, whichever is less...

333

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network (OSTI)

5W to 1 W, at a cost of two cents per kWh. Electric cookingassume a cost of conserved energy of two cents per kWh forCost of Conserved Energy Utility Price $ per MMbtu $ per kWh

Bojda, Nicholas

2011-01-01T23:59:59.000Z

334

Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System  

E-Print Network (OSTI)

of a suitable EV power supply. Industry experts have concluded that practical EVs must have energy storage's batteries can be extended considerably by supplying peak energy requirements from a secondary source to an external power supply, the braking energy must be stored `on board'. Advanced lead-acid batteries provide

Szabados, Barna

335

California Energy Commission Apply Today!  

E-Print Network (OSTI)

photovoltaic project in the future. Peak Demand Savings: 95 kW Energy Savings: 1,510,849 kWh Annual Energy CostCalifornia Energy Commission Apply Today! "The College implemented all of the recommended projects Programs Office (916) 654-4147 pubprog@energy.state.ca.us "CEC financing allowed us to install many

336

Alameda Municipal Power - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alameda Municipal Power - Commercial Energy Efficiency Rebate Alameda Municipal Power - Commercial Energy Efficiency Rebate Program Alameda Municipal Power - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Maximum Rebate Contact utility regarding maximum incentive amounts Program Info State California Program Type Utility Rebate Program Rebate Amount Custom Rebates (Motors): $0.09/kWh Custom Rebates (Lighting): $0.15/kWh Custom Rebates (HVAC, Refrigeration, Networks): $0.11/kWh HVAC System: 50% of the difference in cost between Title 24 required

337

Unitil Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Unitil Energy Systems Place New Hampshire Utility Id 24590 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Domestic Rate Residential G1 Large General Service Commercial G2 General Service Commercial Average Rates Residential: $0.0576/kWh Commercial: $0.0510/kWh Industrial: $0.1210/kWh The following table contains monthly sales and revenue data for Unitil

338

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0290-1757 Boeing Research and Technology - 0290-1757 Boeing Research and Technology - Low-Cost, High-Energy Density Flywheel Storage Grid Location: Washington ProposedAction or Project Description: American Recovery and Reinvestment Act: Funding will support laboratory and bench-scale research and development, and pilot scale testing of a low-cost, flywheel-based energy storage system. The proposed work is consistent with the goal of GRIDS: development of new technologies to enable the widespread deployment of cost- effective, grid-scale energy storage. Work consists entirely of RD&D to be completed at the Boeing Research and Technology development and test facilities in Kent and Seattle, WA. The work performedwill be limited to research, development, pilot scale testing, and evaluation.

339

Renewable Energy Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Personal) Personal) Renewable Energy Tax Credit (Personal) < Back Eligibility Commercial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Maximum Rebate Total amount of tax credits that may be used by all taxpayers is limited to $50,000. Program Info Start Date 07/14/2006 State Nebraska Program Type Personal Tax Credit Rebate Amount Credits are available for a 10-year period: $0.00075/kWh for electricity generated through 9/30/2007; $0.001/kWh from 10/1/2007 - 12/31/2009; $0.00075/kWh from 1/1/2010 - 12/31/2012; $0.0005/kWh on or after 1/1/2013 Provider Nebraska Department of Revenue Nebraska offers a production-based tax credit to any producer of electricity generated by wind, solar, geothermal, hydropower, fuel cells or

340

Renewable Energy Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate) Corporate) Renewable Energy Tax Credit (Corporate) < Back Eligibility Agricultural Commercial Industrial Residential Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Maximum Rebate Total amount of tax credits that may be used by all taxpayers is limited to $50,000 Program Info Start Date 7/14/2006 State Nebraska Program Type Corporate Tax Credit Rebate Amount Credits are available for a 10-year period: $0.00075/kWh for electricity generated through 9/30/2007; $0.001/kWh from 10/1/2007 - 12/31/2009; $0.00075/kWh from 1/1/2010 - 12/31/2012; $0.0005/kWh on or after 1/1/2013 Provider Nebraska Department of Revenue Nebraska offers a production-based tax credit to any producer of electricity generated by wind, solar, geothermal, hydropower, fuel cells or

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

White Paper on Energy Efficiency Status of Energy-Using Products in China (2012)  

E-Print Network (OSTI)

on-year. The electricity consumption of the 22 energy-usingelectricity consumption in China was 4.6928 trillion kWh in 2011, increasing by 11.7% year-

Zhou, Nan

2013-01-01T23:59:59.000Z

342

Analysis of Energy Conservation Options for USDOE Child Development Center  

E-Print Network (OSTI)

The Child Development Center (CDC) was designed to be a "showpiece" model building. Its construction included energy efficient features, including a photovoltaic system, solar hot water system, energy efficient lighting, and energy efficient heat pumps. The architect's estimate of the energy savings from these measures totaled 31.5 MWh per year, an annual savings of about $1,575 (at $0.05/kWh). The DOE-2 predicted total annual energy use for the CDC with all the ECO's installed is 146,317 kWh or 61,652 Btu/ft2-yr which is a 12% reduction from the DOE-2 predicted energy use of 166,559 kWh (70,181 Btu/ft2-yr using 1 kWh=3,413 Btu) if the ECOs had not been installed.

Bou-Saada, T. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

343

Alameda Municipal Power - Residential Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program Alameda Municipal Power - Residential Energy Efficiency Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Grant Program Rebate Amount Refrigerator Replacement: Up to $100 Second Refrigerator Pickup: $35 CFLs: 3 free replacement bulbs Motors: $0.18/per kWh saved Lighting: $0.20/per kWh saved HVAC: $0.22/per kWh saved Refrigeration: $0.22/per kWh saved Provider Alameda Municipal Power Alameda Municipal Power (AMP) has multiple program in place to help

344

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

345

South Carolina Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.018therm. Electricity prices were set to 0.107kWh for space heating and 0.106kWh for air conditioning. Oil prices are 23.7MBtu. Energy prices are...

346

West Virginia Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.988therm. Electricity prices were set to 0.088kWh for space heating and 0.089kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

347

New Hampshire Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.299therm. Electricity prices were set to 0.164kWh for space heating and 0.163kWh for air conditioning. Oil prices were set to 22.47MBtu. Energy...

348

South Dakota Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 0.749therm. Electricity prices were set to 0.083kWh for space heating and 0.097kWh for air conditioning. Oil prices were set to 23.7MBtu. Energy...

349

New York Energy and Cost Savings for New Single- and Multifamily...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel prices were set to 1.177therm. Electricity prices were set to 0.175kWh for space heating and 0.192kWh for air conditioning. Oil prices were set to 23.87MBtu. Energy...

350

Data:163a78c3-da63-485a-bb8c-64aa1836b3a5 | Open Energy Information  

Open Energy Info (EERE)

c3-da63-485a-bb8c-64aa1836b3a5 c3-da63-485a-bb8c-64aa1836b3a5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Holyoke, Massachusetts (Utility Company) Effective date: 2009/08/12 End date if known: Rate name: GENERAL SERVICE ELECTRIC SCHEDULE (RESIDENTIAL) Sector: Residential Description: Additional Info: Following rate(s) apply: First 200 Hrs. Times Demand First 3,000 kWh at .1181 per kWh Next 12,000 kWh at .1096 per kWh Next 85,000 kWh at .1033 per kWh All over 100,000 kWh at .0949 per kWh Next 200 Hrs. Times Demand (100 KW Minimum) at .0878 per kWh All over 400 Hrs. Times Demand (100 KW Minimum) at .0728 per kWh

351

Data:1980fb12-686f-41a1-91fb-276aa0f033f4 | Open Energy Information  

Open Energy Info (EERE)

2-686f-41a1-91fb-276aa0f033f4 2-686f-41a1-91fb-276aa0f033f4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Holyoke, Massachusetts (Utility Company) Effective date: 2009/08/12 End date if known: Rate name: GENERAL SERVICE ELECTRIC SCHEDULE (COMMERCIAL) Sector: Commercial Description: Additional Info: Following rate(s) apply: First 200 Hrs. Times Demand First 3,000 kWh at .1181 per kWh Next 12,000 kWh at .1096 per kWh Next 85,000 kWh at .1033 per kWh All over 100,000 kWh at .0949 per kWh Next 200 Hrs. Times Demand (100 KW Minimum) at .0878 per kWh All over 400 Hrs. Times Demand (100 KW Minimum) at .0728 per kWh

352

Data:E866bc51-7ce1-4e1c-8ea1-df77dcdb4ab0 | Open Energy Information  

Open Energy Info (EERE)

6bc51-7ce1-4e1c-8ea1-df77dcdb4ab0 6bc51-7ce1-4e1c-8ea1-df77dcdb4ab0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Piedmont Electric Member Corp Effective date: 2011/01/01 End date if known: Rate name: OUTDOOR LIGHTING SERVICE 100 Watt High Pressure Sodium Lamp Sector: Lighting Description: kWh Sales, kWh Discount, and Dollar Discount Night hrs-Sunset to 10PM: kWh Sales 12, kWh Discount 28, Dollar Discount $0.74 Night hrs-Sunset to 11 PM: kWh sales 16, kWh discount 24, dollar discount $0.60 Night Hrs -Sunset to 12 pm: kWh sales 19, kWh discount 21, dollar discount $0.50 Night hrs-sunset to 1 am: kWh sales 23, kWh discount 17, dollar discount $0.37

353

Data:9f46e5c5-458c-4864-80f3-026768cb761f | Open Energy Information  

Open Energy Info (EERE)

6e5c5-458c-4864-80f3-026768cb761f 6e5c5-458c-4864-80f3-026768cb761f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Holyoke, Massachusetts (Utility Company) Effective date: 2009/08/12 End date if known: Rate name: GENERAL SERVICE ELECTRIC SCHEDULE (INDUSTRIAL) Sector: Industrial Description: Additional Info: Following rate(s) apply: First 200 Hrs. Times Demand First 3,000 kWh at .1181 per kWh Next 12,000 kWh at .1096 per kWh Next 85,000 kWh at .1033 per kWh All over 100,000 kWh at .0949 per kWh Next 200 Hrs. Times Demand (100 KW Minimum) at .0878 per kWh All over 400 Hrs. Times Demand (100 KW Minimum) at .0728 per kWh

354

Energy Storage Systems Program at Sandia National Laboratories  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Sandia National Laboratories at Sandia National Laboratories John D. Boyes Nov. 2, 2010 Sandia National Laboratories is a multiprogram Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. FY10 SNL ESS Program FY10 Budget ~$11 M * System and Prototype Development - HYBSIM model development - Boeing Superconducting Flywheel - ABMASS Hybrid Controller - Iowa Stored Energy Project - CEC Support - NYSERDA Support Molecules to Megawatts * Applied Research increased to $2.3 M - Develop Ionic Liquid Electrolytes for Flow Batteries - N2-O2 Battery Feasibility - CRADA formed with East Penn Manufacturing Co. to study carbon additions to plate structure of lead acid battery - Advanced Flywheel Materials *

355

OpenEI - kWh  

Open Energy Info (EERE)

are given by a location defined by the Typical Meteorological Year (TMY) for which the weather data was collected. Commercial load data is sorted by the (TMY) site as a...

356

Data.gov Mashathon 2010: an Energy Mashup | OpenEI.org  

Open Energy Info (EERE)

kWh of your electricity usage per year. That's equivalent to 50% - 80% of the average US home energy usage per year When you multiply your solar system's annual energy output by...

357

Strategic Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania Pennsylvania Utility Id 18193 Utility Location Yes Ownership R NERC Location RFC NERC NPCC Yes NERC RFC Yes NERC SERC Yes NERC WECC Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0845/kWh Commercial: $0.0845/kWh Industrial: $0.0845/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Strategic_Energy_LLC&oldid=411611

358

EnergyUnited Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

EnergyUnited Elec Member Corp EnergyUnited Elec Member Corp Jump to: navigation, search Name EnergyUnited Elec Member Corp Place North Carolina Utility Id 21632 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0961/kWh Commercial: $0.0831/kWh Industrial: $0.0549/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=EnergyUnited_Elec_Member_Corp&oldid=410655"

359

Biomass Energy Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Energy Production Incentive Biomass Energy Production Incentive Biomass Energy Production Incentive < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 100,000 per fiscal year per taxpayer; 2.1 million per fiscal year for all taxpayers Program Info Start Date 5/29/2008 State South Carolina Program Type Performance-Based Incentive Rebate Amount 0.01 per kWh / 0.30 per therm Provider South Carolina Energy Office In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-hour (kWh) for electricity generated or $0.30 per therm (100,000 Btu) for energy produced

360

California | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2010 10, 2010 CX-001055: Categorical Exclusion Determination American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant City of Los Angeles Strategy CX(s) Applied: A9, A11, B5.1 Date: 02/10/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-000760: Categorical Exclusion Determination Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6 Date: 02/09/2010 Location(s): Freemont, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory February 8, 2010 CX-000665: Categorical Exclusion Determination Development of an Advanced Stimulation/Production Predictive Simulator for Enhanced Geothermal Systems

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

LLL energy technologies  

DOE Green Energy (OSTI)

Lawrence Livermore Laboratory (LLL) research programs directed toward recovering and conserving major energy resources are outlined. The research programs are based on the following concepts: (1) Underground Coal Gasification; thick coal beds can be converted underground into a mixture of combustible gases suitable for use as a fuel. (2) Underground Oil Shale Retorting; when oil shale is heated underground to about 400/sup 0/C, organic material bound in the rock structure decomposes, forming shale oil, a petroleum-like liquid. (3) Gas Stimulation by Massive Hydraulic Fracturing; by fracturing tight underground gas shales and sandstones, great quantities of natural gas can be liberated that would otherwise remain trapped in the rock. (4) Solar Energy; unique solar heat collectors developed at LLL can provide industry with large quantities of hot water and steam at competitive costs. (5) Uranium Resource Survey; LLL is participating in a comprehensive National Uranium Resource Evaluation (NURE). (6) Metal-Air Power Cells for Automobiles; metal-air power cells seem capable of matching the range and performance of internal combustion engines. (7) Fiber-Composite Flywheels for Energy Storage; flywheels made of light, strong, fiber-composite materials could improve the performance of electric cars.

Not Available

1978-06-01T23:59:59.000Z

362

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program Entergy Arkansas - CitySmart Quick Start Energy Efficiency Program < Back Eligibility Institutional Local Government Schools Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount One Measure: $0.10/kWh saved in first year Two Measures: $0.11/kWh saved in first year Three Measures: $0.12/kWh saved in first year Comprehensive Measures (4 +): $0.14/kWh saved in first year Benchmarking/Master Planning: Free to eligible customers Provider Entergy Arkansas, Inc. The CitySmart Program is an energy efficiency program designed to provide

363

November 2012 Key Performance Indicator (KPI): Energy Consumption  

E-Print Network (OSTI)

and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

Evans, Paul

364

Power Technologies Energy Data Book: Fourth Edition, Chapter...  

NLE Websites -- All DOE Office Websites (Extended Search)

facilities eligible. Yes. ERCOT REC Trading System. Lesser of 5kWh or 200% of average market value of renewable energy credits. WI 0.5% by 2001 increasing to 2.2% by 2011 (0.6%...

365

ESS 2012 Peer Review - NYSERDA Energy Storage Projects - Dhruv...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Program in the DOE Office of Electricity for its support in this work. LIPA Tariff Time Energy Charge (kWh) Demand Charge (kWmonth) I. Off peak 11pm - 7am...

366

City of Houston - Green Power Purchasing (Texas) | Open Energy...  

Open Energy Info (EERE)

MW, equivalent to roughly 350 million kWh annually or 25% of the annual electricity consumption of the city's municipal facilities. Additional 10 MW increments of renewable energy...

367

Glendale Water and Power - Large Business Energy Efficiency Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its medium and large business customers with electric bills of more than 3000 per month (electric usage of 250,000 kWh annually 36,000 per year) to encourage energy efficiency...

368

Cowlitz County PUD - Commercial Energy Efficiency Rebate Programs...  

Open Energy Info (EERE)

up to 70% of cost Custom Projects (Commercial): up to 0.20 per kWh of verified annual energy savings OR 70% of incremental project costs, whichever is less Custom Projects...

369

AEP Texas - Commercial and Industrial Energy Efficiency Rebate...  

Open Energy Info (EERE)

Incentive Programs Amount 175kW for peak demand reduction and 0.060kWh for annual energy savings Program Administrator AEP Southwestern Electric Power Website http:...

370

TVA - Energy Right Solutions for Business (Virginia) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Type Utility Rebate Program Rebate Amount EnergyRight Solutions Custom Program: 0.10kWh savings Motors: 10-300motor Air Conditioners and Heat Pumps: 40ton Food Service...

371

MidAmerican Energy (Gas and Electric) - Commercial New Construction...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Program Type Utility Rebate Program Rebate Amount Construction rebates: 0.06-0.19kWh saved; 0.60-1.90therm saved based on % savings from Iowa Energy Code Design rebates:...

372

PSE&G - Commercial Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with an electric demand of less than 150 kilowatts(kW) or 40,300 kilowatt-hours (kWh) per month. PSE&G provides a walk-through energy evaluation, and a report of...

373

Residential Energy Consumption Survey (RECS) - Data - U.S ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... 25% of households living in mobile homes consumed less than 6,059 kWh and 75% consumed more than that amount. ...

374

Definition: Kilowatt-hour | Open Energy Information  

Open Energy Info (EERE)

Kilowatt-hour Kilowatt-hour Jump to: navigation, search Dictionary.png Kilowatt-hour A unit of measure for energy, typically applied to electricity usage; equal to the amount of energy used at a rate of 1,000 watts over the course of one hour. One kWh is equivalent to 3,412 Btu, or 3,600 kJ.[1][2] View on Wikipedia Wikipedia Definition The kilowatt hour, or kilowatt-hour, (symbol kW·h, kW h or kWh) is a unit of energy equal to 1000 watt hours or 3.6 megajoules. For constant power, energy in watt hours is the product of power in watts and time in hours. The kilowatt hour is most commonly known as a billing unit for energy delivered to consumers by electric utilities. Also Known As kWh Related Terms British thermal unit, Electricity, Energy, Kilowatt, energy, electricity generation

375

Data:71fb7fd5-d384-4529-9590-9990446dae0d | Open Energy Information  

Open Energy Info (EERE)

d384-4529-9590-9990446dae0d d384-4529-9590-9990446dae0d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of North Little Rock, Arkansas (Utility Company) Effective date: 2012/09/01 End date if known: Rate name: MV-100 Watt Sector: Lighting Description: Source or reference: http://nlrelectric.com/assets/ratetariffs/AllNightOutdoorLightingL4Rates.pdf Source Parent: Comments Energy Charge For each unit size above, $0.02198 per rated kWh per month. Rated kwh 34 Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

376

Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. Presentations from the second session of Day 2, chaired by Sandia's Ross Guttromson, are below. ESS 2012 Peer Review - Na-ion Intercalation Electrodes for Na-ion Battery - Jun Liu, PNNL ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David Enos, SNL ESS 2012 Peer Review - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage -

377

ESS 2012 Peer Review - NYSERDA Energy Storage Projects - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSERDA Energy Storage Projects NYSERDA Energy Storage Projects Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP NaS Battery at MTA Long Island Bus Depot Beacon Flywheel Plant at Stephentown, NY 4 Demonstration Project Sites 1) Beacon Flywheel Plant at Stephentown, NY * Ancillary services in NYISO 2) NaS Battery at MTA Long Island Bus Depot * Time of day load shifting to avoid TOU rates 3) Flow Battery at Niagara Falls State Park * Renewables integration/firming &

378

Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2, Session 2 Energy Storage Systems 2012 Peer Review Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. Presentations from the second session of Day 2, chaired by Sandia's Ross Guttromson, are below. ESS 2012 Peer Review - Na-ion Intercalation Electrodes for Na-ion Battery - Jun Liu, PNNL ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL ESS 2012 Peer Review - Carbon Enhanced VRLA Batteries - David Enos, SNL ESS 2012 Peer Review - Improved Properties of Nanocomposites for Flywheel Applications - Tim Boyle, SNL ESS 2012 Peer Review - Magnetic Composites for Flywheel Energy Storage -

379

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

E-Print Network (OSTI)

to Battery Figure 17: The Forecasted Energy Needs and Costkg/yr) Reduction in Cost From Base ($/yr) Battery CapacityFlow Battery Energy Installed (kWh) PV Installed (kW) Cost

Michael, Stadler

2011-01-01T23:59:59.000Z

380

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents (OSTI)

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate Project Sponsor Limits (Large Projects): $125,000 Project Sponsor Limits (Small Projects): $30,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Tier 1: $245/kW; $0.08/kWh Tier 2: $270/kW; $0.09/kWh Tier 3: $300/kW; $0.10/kWh Tier 4: $350/kW; $0.11/kWh Provider Southwestern Electric Power Company The SWEPCO Residential Standard Offer Program provides incentives to

382

1710 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 6, NOVEMBER/DECEMBER 2003 An Integrated Flywheel Energy Storage System  

E-Print Network (OSTI)

data from an average male human (Tilley, 1993; Department of Defense (DOD-HDBK-743A), 1991 of Anthropometry of US Military Personnel. DOD-HDBK-743A. Larson, S.G., Schmitt, D., Lemelin, P., Hamrick, M., 2000

Sanders, Seth

383

Cleveland Electric Illum Co | Open Energy Information  

Open Energy Info (EERE)

Illum Co Illum Co Jump to: navigation, search Name Cleveland Electric Illum Co Place Ohio Utility Id 3755 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS (General Service) Commercial RS (Residential Service) Residential Average Rates Residential: $0.0903/kWh Commercial: $0.1260/kWh Industrial: $0.0497/kWh Transportation: $0.0978/kWh

384

Optimal Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Optimal Energy Systems Optimal Energy Systems Jump to: navigation, search Name Optimal Energy Systems Place Torrance, California Zip 90505 Product Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates 40.417285°, -79.223959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.417285,"lon":-79.223959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Property:Incentive/Amt | Open Energy Information  

Open Energy Info (EERE)

Amt Amt Jump to: navigation, search Property Name Incentive/Amt Property Type Text Description Amount. Pages using the property "Incentive/Amt" Showing 25 pages using this property. (previous 25) (next 25) 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + varies 3 30% Business Tax Credit for Solar (Vermont) + 30% for property commissioned before 09/01/2011 for C-corporations (that file a Vermont corporate return). A AEP (Central and North) - CitySmart Program (Texas) + $150/peak kW AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Residential Standard Offer Program: $242/kW and $0.08/kWh Residential Standard Offer Program Underserved Measures (HVAC, Insulation): $269/kW and $0.09/kWh Residential Standard Offer Program Underserved Counties: $296/kW and $0.10/kWh TCC ENERGY STAR Homes: Custom for builders Hard to Reach Standard Offer Program (Single Family): $360/kW and $0.11/kWh Hard to Reach Standard Offer Program (Multifamily): $325/kW and $0.10/kWh Hard to Reach Standard Offer Program (Underserved Counties): $440/kW and $0.15/kWh

386

Data:26717407-8534-4783-8ac3-7bd0d670e268 | Open Energy Information  

Open Energy Info (EERE)

407-8534-4783-8ac3-7bd0d670e268 407-8534-4783-8ac3-7bd0d670e268 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Electric Coop, Inc (Florida) Effective date: End date if known: Rate name: Industrial Three-Phase Service Demand Schedule Sector: Industrial Description: Energy Charge All consumption (KWH) not greater than 200 hours times the billing demand: 8.90 cents per KWH All consumption(KWH) at greater than 200 hours, but not greater than 400 hours times the billing demand: 7.70 cents per KWH All consumption (KWH) in excess of 400 hours time the billing demand: 6.70 cents

387

Draft Paper Prepared for "Energy Access II" Working Group Global Network on Energy for Sustainable Development  

E-Print Network (OSTI)

a heavy burden on a bill with relatively low energy (kWh) usage. For comparison one should note1 Draft Paper Prepared for "Energy Access II" Working Group Global Network on Energy for Sustainable Development Electric Energy Access in Jordan, Lebanon and Syria Sami Karaki* , Farid Chaaban

388

Data:8720921a-1600-4028-8fc8-e83e11818502 | Open Energy Information  

Open Energy Info (EERE)

20921a-1600-4028-8fc8-e83e11818502 20921a-1600-4028-8fc8-e83e11818502 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lebanon, Ohio (Utility Company) Effective date: End date if known: Rate name: Industrial Primary Power Customer Service Sector: Industrial Description: *Subject to Fuel Adjustment Charge and Ohio kWh Tax. State of Ohio Kilowatt-Hour Tax Tax rates are applied to all kWH usage: $0.00465 per kWH first 2000 kWh $0.00419 per kWH next 13000 kWh $0.00363 per kWH over 15000 kWh Source or reference: http://www.lebanonohio.gov/index.aspx?NID=321 Source Parent: Comments Applicability

389

Duke Energy Retail Sales, LLC | Open Energy Information  

Open Energy Info (EERE)

Retail Sales, LLC Retail Sales, LLC Jump to: navigation, search Name Duke Energy Retail Sales, LLC Place Ohio Utility Id 56502 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0749/kWh Commercial: $0.0600/kWh Industrial: $0.0515/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Duke_Energy_Retail_Sales,_LLC&oldid=410603" Categories: EIA Utility Companies and Aliases

390

First Energy Solutions Corp. (Pennsylvania) | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania) Pennsylvania) Jump to: navigation, search Name First Energy Solutions Corp. Place Pennsylvania Utility Id 6458 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0847/kWh Commercial: $0.0709/kWh Industrial: $0.0601/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=First_Energy_Solutions_Corp._(Pennsylvania)&oldid=412557" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

391

High West Energy, Inc (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

Place Nebraska Place Nebraska Utility Id 27058 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting Street Lighting-400 watt M V/ HPS Lighting Average Rates Residential: $0.1100/kWh Commercial: $0.1040/kWh Industrial: $0.1000/kWh The following table contains monthly sales and revenue data for High West Energy, Inc (Nebraska).

392

Presidential Permit Holders - Annual Reports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permit Holders - Permit Holders - Annual Reports Presidential Permit Holders - Annual Reports Presidential permit holders are responsible for reporting the gross amount electric energy which flows into and out of the United States over the permitted international transmission facility regardless if the energy is wheeled to or for another entity. For example, utility A receives a Presidential permit for a single international transmission line across the U.S.-Canadian border. During the calendar year just completed, 300,000,000 kilowatt-hours (kwh) are imported from Canada across this line. Utility A arranged for the purchase of 200,000,000 kwh for its own use and wheeled 100,000,000 kwh to neighboring utility B. Utility A must report 300,000,000 kwh of imports over the international

393

Data:5212b87e-d125-45c2-8967-6526aef88d3c | Open Energy Information  

Open Energy Info (EERE)

under this rate schedule range from 50 to 250 kW DETERMINATION OF SOLAR ENERGY The Solar Energy, which is the nominal expected monthly kWh output from the photovoltaic solar...

394

Data:4c12aee9-3569-42cd-a3f0-9e01aca66f48 | Open Energy Information  

Open Energy Info (EERE)

under this rate schedule range from 50 to 250 kW DETERMINATION OF SOLAR ENERGY The Solar Energy, which is the nominal expected monthly kWh output from the photovoltaic solar...

395

Data:3ee36eed-2f92-4fd1-bfc2-edf5cbc83abd | Open Energy Information  

Open Energy Info (EERE)

approximately 8 hours per day, normally 11:00 PM to 7:00 AM or as established by Connexus Energy. Usage under this rate shall be metered separately. Energy usage (kWH sales) is...

396

Data:E64b8e5b-4da4-43d2-921d-82824430c9bd | Open Energy Information  

Open Energy Info (EERE)

period. Any energy consumption used during this period will be included in the May bill. Energy usage (kwh sales) is subject to the Power Cost Adjustment Rider (0.009197 for July...

397

Data:5aa98257-4db1-4da5-9f7c-0d22265666d3 | Open Energy Information  

Open Energy Info (EERE)

- This schedule is available for electric service used by a non-residential customer with energy usage less than 1,000 kWh per month. When energy consumption is greater than 1,000...

398

Data:C61d06fb-db5b-4830-8302-18e6e199da5b | Open Energy Information  

Open Energy Info (EERE)

small commercial single-phase customers (only) and small non-residential customers with energy usage less than 6,000 kWh per month. Flat rate buy is sum of distribution energy...

399

Data:9ed67b5a-813f-4509-b6f9-a11b44d7b1ec | Open Energy Information  

Open Energy Info (EERE)

Connexus Energy. Type of Service: Single Phase, 60 hertz, at available secondary voltage. Energy usage (kWh sales) is subject to the Power Cost Adjustment Rider. In certain...

400

Data:Dd2601dc-c577-48d5-b6d7-ae7823a000b1 | Open Energy Information  

Open Energy Info (EERE)

has available. Energy Charge, Group Baseline: Accounts with an average maximum energy usage of 400,000 kWh in the highest 3 months of the previous 36 months will be...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data:D2365748-b630-4088-a38f-9f1a4c4eca3e | Open Energy Information  

Open Energy Info (EERE)

- This schedule is available for electric service used by a non-residential customer with energy usage less than 1,000 kWh per month. When energy consumption is greater than 1,000...

402

Data:4a7ce33d-f605-49af-9655-2f39246c3bf3 | Open Energy Information  

Open Energy Info (EERE)

for either the purchase of enough renewable energy credits (RECs) to match 100% of the energy usage at the facility every month, or for the purchase of 1000 kilowatt-hour (kWh)...

403

Data:B9e51668-f484-4276-abd6-51a86e75e0fd | Open Energy Information  

Open Energy Info (EERE)

for either the purchase of enough renewable energy credits (RECs) to match 100% of the energy usage at the facility every month, or for the purchase of 1000 kilowatt-hour (kWh)...

404

DPI Energy LLC | Open Energy Information  

Open Energy Info (EERE)

DPI Energy LLC DPI Energy LLC Jump to: navigation, search Name DPI Energy LLC Place Texas Utility Id 56326 Utility Location Yes Ownership R NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1740/kWh Commercial: $0.1370/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=DPI_Energy_LLC&oldid=410554" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs

405

Potentia Energy, LLC | Open Energy Information  

Open Energy Info (EERE)

Potentia Energy, LLC Potentia Energy, LLC Jump to: navigation, search Name Potentia Energy, LLC Place Texas Utility Id 56428 Utility Location Yes Ownership R NERC Location TX Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1000/kWh Commercial: $0.1080/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Potentia_Energy,_LLC&oldid=411384" Categories: EIA Utility Companies and Aliases Utility Companies

406

Our Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Name Our Energy LLC Place Texas Utility Id 56441 Utility Location Yes Ownership R NERC ERCOT Yes ISO Ercot Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1290/kWh Commercial: $0.0928/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Our_Energy_LLC&oldid=411288" Categories: EIA Utility Companies and Aliases Utility Companies Organizations

407

Spark Energy, LP | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Spark Energy) (Redirected from Spark Energy) Jump to: navigation, search Name Spark Energy, LP Place Texas Utility Id 17710 Utility Location Yes Ownership R NERC Location TRE Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1460/kWh Commercial: $0.1210/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Spark_Energy,_LP&oldid=411595" Categories: EIA Utility Companies and Aliases Utility Companies

408

Agway Energy Services, LLC | Open Energy Information  

Open Energy Info (EERE)

Agway Energy Services, LLC Agway Energy Services, LLC Jump to: navigation, search Name Agway Energy Services, LLC Place New York Utility Id 113 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0893/kWh Commercial: $0.0781/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Agway_Energy_Services,_LLC&oldid=408942" Categories: EIA Utility Companies and Aliases

409

Energy Use and Water Consumption at University of Texas at Austin...  

Open Energy Info (EERE)

Use and Water Consumption at University of Texas at Austin Provides annual energy usage for years 1989 through 2010 for UT at Austin; specifically, electricity usage (kWh), natural...

410

On-Site Generation Simulation with EnergyPlus for Commercial Buildings  

E-Print Network (OSTI)

and natural gas costs, time of use demand charges,energy ($/kWh) demand ($/kW month) Natural gas fixed ($/demand charge ($/kW month) fixed ($/month) Natural gas

Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

2006-01-01T23:59:59.000Z

411

Data:65032b26-f80c-418a-8a78-e71402e237a8 | Open Energy Information  

Open Energy Info (EERE)

032b26-f80c-418a-8a78-e71402e237a8 032b26-f80c-418a-8a78-e71402e237a8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Greenwood Commissioners-Pub Wk Effective date: 2008/09/01 End date if known: Rate name: Municipal service - with Large Demand Sector: Industrial Description: MINIMUM CHARGE: The minimum monthly charge shall be the "Facility Charge". The following energy charge schedule is applied: First 400 kWh per kW of Billing Demand: First 250,000 kWh .................................................... $0.0327 Per kWh All Over 250,000 kWh .............................................. $0.0250 Per kWh

412

Data:C59bf658-ac51-4245-962f-3e58bdf5cd27 | Open Energy Information  

Open Energy Info (EERE)

8-ac51-4245-962f-3e58bdf5cd27 8-ac51-4245-962f-3e58bdf5cd27 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Anoka, Minnesota (Utility Company) Effective date: 2009/01/01 End date if known: Rate name: Green Power Wind Sector: Description: Source or reference: Rate Binder Kelly 3 ISU Documentation Source Parent: Comments $1/75 per 100 hwr converted to $0.0175 per kwh; ie Green Power is sold in blocks of 100kwh. Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

413

IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers  

E-Print Network (OSTI)

energy usage and energy cost over time using net presentlower energy costs substantially. (5) Real-Time Monitoring:costs: demand = $10 per kW per month (all 12 months of the year); energy consumption = 7 per kWh (all times

Brown, Moya Melody, Camilla Dunham Whitehead, Rich

2011-01-01T23:59:59.000Z

414

Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 21, 2011 EA-1753: Finding of No Significant Impact Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois April 19, 2011 CX-005691:...

415

Solar Renewable Energy Certificates | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Renewable Energy Certificates Solar Renewable Energy Certificates Solar Renewable Energy Certificates < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Maximum Rebate $500/MWh (the Solar Alternative Compliance Payment, or SACP) or $0.50/kWh Program Info Start Date 01/01/2006 State District of Columbia Program Type Performance-Based Incentive Rebate Amount Varies based on market conditions. As of December 2012 the market price for D.C.-sourced SRECs was approximately $310/MWh ($0.31/kWh) although some individual trades have taken place at substantially lower and higher

416

Bolivar Energy Authority | Open Energy Information  

Open Energy Info (EERE)

Energy Authority Energy Authority Jump to: navigation, search Name Bolivar Energy Authority Place Tennessee Utility Id 1936 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power Rate, part 1- 0 TO 50 kw & Less Than 15,000 Kwh Commercial General Power Rate, part 2- Over 50 Kw To 1000 Kw or Over 15,000 Kwh Commercial General Power Rate, part 3- Over 1000 Kw Commercial Outdoor Lighting Rates 100Watt Sodium Lighting Outdoor Lighting Rates 250Watt Sodium Lighting Outdoor Lighting Rates 400Watt Metal Halide Lighting

417

Gold Country Energy | Open Energy Information  

Open Energy Info (EERE)

Gold Country Energy Gold Country Energy Place Alaska Utility Id 56739 Utility Location Yes Ownership I NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] EIA Form EIA-861 Final Data File for 2010 - File1_a[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6670/kWh Commercial: $0.6430/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Gold_Country_Energy&oldid=412919"

418

Data:149c4a63-bffd-4869-a17d-4c0bb3ddad5c | Open Energy Information  

Open Energy Info (EERE)

bffd-4869-a17d-4c0bb3ddad5c bffd-4869-a17d-4c0bb3ddad5c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Butler County Rural Elec Coop Effective date: 2012/01/01 End date if known: Rate name: Electric Storage Heat Sector: Commercial Description: Rate(s) All kWh (Summer) @ 7.13 cents per kWh All kWh (Winter) @ 4.2 cents per kWh ECA (applicable all 12 months) 1.419 cents per kWh Source or reference: http://www.recinfocenter.com/userdocs/announcements/Rates_2012.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

419

Assessment of Distributed Energy Adoption in Commercial Buildings  

E-Print Network (OSTI)

Energy Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO preliminary analysis on CHP investment climate in the U.S. and Japan. DER technologies, energy prices typical U.S. rates. The rate for buildings with cogeneration has an around 0.0306 $/kWh energy charge

420

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

Energy Electricity from wind is currently supplied on a commercial scale, and continued improvements in cost andWind Power Installation, Cost and Performance. Lawrence Berkeley National Laboratory Department of Energy,cost of energy from large systems to 3 cents\\kwh by 2010 Wind greatly expanded deployment of distributed wind energy

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Reliant Energy Retail Services LLC | Open Energy Information  

Open Energy Info (EERE)

Services LLC Services LLC Jump to: navigation, search Name Reliant Energy Retail Services LLC Place Texas Utility Id 15847 Utility Location Yes Ownership R NERC Location TRE NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 12 (e-sense Time-Of with 20% Wind) Residential Basic Power Plan - 12 (Commercial Service) Commercial One Rate For Business Commercial POLR (Residential Service) Residential Average Rates Residential: $0.1360/kWh Commercial: $0.1370/kWh Industrial: $0.0680/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

422

Energy Cost Calculator for Faucets and Showerheads | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Faucets and Showerheads Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads October 8, 2013 - 2:35pm Addthis Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06 $/kWh 0.06 $/kWh Minutes per Day of Operation minutes 30 minutes 20 minutes Days per Year of Operation days 260 days 365 days Quantity to be Purchased unit(s) 1 unit 1 unit Calculate Reset

423

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate Farmers Electric Cooperative (Kalona) - Renewable Energy Purchase Rate < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Payment limited to 25% of customers monthly kWh usage Program Info State Iowa Program Type Performance-Based Incentive Rebate Amount $0.20/kWh Provider Farmers Electric Cooperative Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a $0.20 per kilowatt-hour (kWh) production incentive for up to 10 years for energy production that offsets up to 25% of monthly energy usage.

424

System Benefits Charge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

System Benefits Charge System Benefits Charge System Benefits Charge < Back Eligibility Commercial Industrial Residential Schools Utility Program Info State New Hampshire Program Type Public Benefits Fund Provider New Hampshire Public Utilities Commission New Hampshire's 1996 electric-industry restructuring legislation authorized the creation of a system benefits charge (SBC) to support energy-efficiency programs and energy-assistance programs for low-income residents. The efficiency fund, which took effect in 2002, is funded by a non-bypassable surcharge of 1.8 mills per kilowatt-hour ($0.0018/kWh) on electric bills. A separate surcharge of 1.5 mills per kWh ($0.0015/kWh) supports low-income energy assistance programs. Approximately $19 million is collected annually to support the efficiency fund, although the annual sum collected has

425

Black Hills Energy - Solar Power Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 7/1/2006 State Colorado Program Type Performance-Based Incentive Rebate Amount Systems up to 10 kW: $0.1267/kWh (only for first 5 kW) Systems larger than 10 kW up to 100 kW: $0.16/kWh Provider Black Hills Energy Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right to the renewable energy credits (RECs) associated with the PV-generated electricity for a period of

426

Data:273289df-3e81-4909-acbd-1c9508283eda | Open Energy Information  

Open Energy Info (EERE)

df-3e81-4909-acbd-1c9508283eda df-3e81-4909-acbd-1c9508283eda No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: LAL- MH 1000 Watt 362 kWh (Existing Pole)- Metered Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

427

Waupun Utilities | Open Energy Information  

Open Energy Info (EERE)

Waupun Utilities Waupun Utilities Jump to: navigation, search Name Waupun Utilities Place Wisconsin Utility Id 20213 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial Three Phase Commercial Renewable Energy Residential Residential Small Power Industrial Average Rates Residential: $0.1060/kWh Commercial: $0.0968/kWh Industrial: $0.0770/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

428

Omya Inc | Open Energy Information  

Open Energy Info (EERE)

Omya Inc Omya Inc Jump to: navigation, search Name Omya Inc Place Vermont Utility Id 19794 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0850/kWh Commercial: $0.0960/kWh Industrial: $0.0837/kWh The following table contains monthly sales and revenue data for Omya Inc

429

Washington | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-003457: Categorical Exclusion Determination Sidewall Coring of Single-Shell Tank 241-A-106 CX(s) Applied: A9, B3.1, B3.11 Date: 08/16/2010 Location(s): Richland, Washington Office(s): Environmental Management, Office of River Protection-Richland Office August 13, 2010 CX-004960: Categorical Exclusion Determination Boeing Research and Technology -Low-Cost, High-Energy Density Flywheel Storage Grid CX(s) Applied: B3.6 Date: 08/13/2010 Location(s): Kent, Washington Office(s): Advanced Research Projects Agency - Energy August 12, 2010 CX-003624: Categorical Exclusion Determination Replacement of Twenty 22-L Structures on the Satsop-Aberdeen Number 2 230-kilovolt Transmission Line CX(s) Applied: B1.3 Date: 08/12/2010 Location(s): Gray's Harbor County, Washington

430

Data:91953b94-ea47-46a4-bccf-aa46294425bb | Open Energy Information  

Open Energy Info (EERE)

b94-ea47-46a4-bccf-aa46294425bb b94-ea47-46a4-bccf-aa46294425bb No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Shelby Energy Co-op, Inc Effective date: 2011/06/01 End date if known: Rate name: Large Power Service - Rate 2 Sector: Industrial Description: * Additional $0.0275 per kWh for renewable energy Source or reference: http://www.shelbyenergy.com/yourelectricrate.html Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

431

Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York  

E-Print Network (OSTI)

energy in the real-time wholesale market $0.45/ kWh or 90% of priceenergy in the real-time wholesale market Customers are paid at least the forecasted price

Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

2006-01-01T23:59:59.000Z

432

Data:297e238e-5483-4672-bf9b-2289941b4fd3 | Open Energy Information  

Open Energy Info (EERE)

between October 1 and March 31. Billing will be issued in the month following any kWh energy usage. Seasonal Rate: Applies to irrigation pumping between April 1 and September...

433

Data:Efdc9a47-f3bf-4879-a79d-9982894c4831 | Open Energy Information  

Open Energy Info (EERE)

or three-phase service and have measured maximum demands of 75 kW* or less and annual energy usage of 250,000 kWh or less. Existing farm and commercial customers with measured...

434

Data:D0cf03c8-db64-4597-8552-cedef90699be | Open Energy Information  

Open Energy Info (EERE)

be provided only by special contract for such service. Accounts with an average maximum energy usage of 300,000 kWh in the highest 3 months of the previous 36 months will be...

435

Data:38870880-2603-4178-a9b7-e1af4ce2bef7 | Open Energy Information  

Open Energy Info (EERE)

above, there are two components to a residential electric charge. One, is for the energy or KWH usage and the other is a service charge. The service charge is billed each...

436

Data:A59577f7-dbcb-4def-b91b-32264922611e | Open Energy Information  

Open Energy Info (EERE)

for all large commercial and industrial customer or customers with average monthly energy usage equal to or greater than 25,000 kWh per month. Demand charge is sum of...

437

Data:A0710845-8bfb-4874-a4cb-8c7482cbdf35 | Open Energy Information  

Open Energy Info (EERE)

for all large commercial and industrial customer or customers with average monthly energy usage equal to or greater than 25,000 kWh per month. Demand charge is sum of...

438

Data:470047fc-e14b-47d0-aa16-e00605154b1c | Open Energy Information  

Open Energy Info (EERE)

certain communities, bills are subject to a surcharge as describe in the Surcharge Rider. Energy usage (kWh sales) is subject to the Power Cost Adjustment Rider (0.009197 for July...

439

Data:C4327cbb-3cfa-4c8a-afeb-e26757291bdb | Open Energy Information  

Open Energy Info (EERE)

kW-DC. The monthly bill will be based on the Customer's total metered usage net of the Solar Energy applied to all unbundled kWh charges in the customer's current applicable rate...

440

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

but not more than 300 kVa and monthly metered demand of 50 kW or more and an average energy use of at least 60,000 kWh per year. Power Cost Adjustments: all rates are subject to...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2012 (EIA)

Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh) Distribution of Building-Level Intensities (kWhsquare foot)...

442

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network (OSTI)

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12.ofPlants Source: CEA,2006, Thermal performance report 377 plants Sub-critical Pulverised coal (535-575 oC, 175/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types

Banerjee, Rangan

443

IID Energy - New Construction Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IID Energy - New Construction Energy Efficiency Program IID Energy - New Construction Energy Efficiency Program IID Energy - New Construction Energy Efficiency Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Whole Building Approach (Design Team): $30,000 Whole Building Approach (Owner): $150,000 Systems Approach: $50,000 All incentives are limited to 50% of the incremental cost of installed measures Program Info Expiration Date 12/31/2013 State California Program Type Utility Rebate Program Rebate Amount Whole Building Approach (Design Team): $0.06/kWh Whole Building Approach (Owner): $0.08/kWh

444

Data:6ddc1e74-5abb-407a-843a-93e257b0ba44 | Open Energy Information  

Open Energy Info (EERE)

ddc1e74-5abb-407a-843a-93e257b0ba44 ddc1e74-5abb-407a-843a-93e257b0ba44 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Groton, South Dakota (Utility Company) Effective date: End date if known: Rate name: Schedule A - Load Management Participating Residential Rates Sector: Residential Description: Schedule A - Load Management Participating Residential Rates Minimum Bill - $20/month which includes 1-100 kwh Next 900 kwh at $.125 per kwh Over 1000 kwh at $.0975 per kwh Source or reference: http://city.grotonsd.gov/electric.html Source Parent: Comments Applicability Demand (kW) Minimum (kW):

445

Cowlitz County PUD - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cowlitz County PUD - Commercial Energy Efficiency Rebate Programs Cowlitz County PUD - Commercial Energy Efficiency Rebate Programs Cowlitz County PUD - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Lighting: Incentive cannot exceed 70% of the total installed cost; must achieve 25% kWh reduction Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Lighting: up to 70% of cost Custom Projects (Commercial): up to $0.20 per kWh of verified annual energy savings OR 70% of incremental project costs, whichever is less Custom Projects (Industrial): up to $0.25 per kWh of verified annual energy savings OR 70% of incremental project costs, whichever is less.

446

Blue Star Energy Services | Open Energy Information  

Open Energy Info (EERE)

BlueStar) BlueStar) Jump to: navigation, search Name Blue Star Energy Services Place Illinois Utility Id 55722 Utility Location Yes Ownership R NERC Location RFC NERC RFC Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1180/kWh Commercial: $0.0687/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Star_Energy_Services&oldid=409064" Categories: EIA Utility Companies and Aliases

447

Major Energy Electric Services | Open Energy Information  

Open Energy Info (EERE)

Electric Services Electric Services Jump to: navigation, search Name Major Energy Electric Services Place New York Utility Id 56504 Utility Location Yes Ownership R NERC Location NPCC ISO NY Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0967/kWh Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Major_Energy_Electric_Services&oldid=411033" Categories: EIA Utility Companies and Aliases

448

Commerce Energy, Inc. (Maryland) | Open Energy Information  

Open Energy Info (EERE)

Maryland) Maryland) Jump to: navigation, search Name Commerce Energy, Inc. Place Maryland Utility Id 4100 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1140/kWh Commercial: $0.1140/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Commerce_Energy,_Inc._(Maryland)&oldid=412468" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes Special pages Printable version

449

Rock Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Energy Cooperative Energy Cooperative Place Wisconsin Utility Id 16196 Utility Location Yes Ownership C NERC Location MRO NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Irrigation Service Commercial Large Commercial- Industrial- Time of Day Industrial Lighting & Power Service- Three Phase Lighting Medium Commercial- Industrial Power Service Commercial Small Commercial Service- Single Phase Commercial Small Commercial Service- Three Phase Commercial Average Rates Residential: $0.1130/kWh Commercial: $0.1000/kWh

450

Energy Efficient Data Centers  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Utility Partnership Working Group Federal Utility Partnership Working Group Will Lintner November 20, 2008 Williamsburg, VA 2 Why Data Centers? * Data centers are highly energy intensive and growing at a rapid rate - Consume 10 to 100 times more energy per square foot than typical office building * Data centers consumed about 45 billion kWh in 2005 and 61 billion kWh in 2006 - This accounts for nearly 1.2% and 1.5% of all U.S. electricity respectively * At current rate, power requirements for data centers could double in 5 years 3 Typical Data Center Energy Use Server Load /Computing Operations Cooling Equipment Power Conversions & Distribution 100 Units 33 Units Delivered 35 Units 4 4 Server Load/ Computing Operations Cooling Equipment Power Conversion & Distribution Alternative Power Generation * High voltage distribution

451

Data:B5de3eef-0a20-4b11-95b7-608518715f9d | Open Energy Information  

Open Energy Info (EERE)

B5de3eef-0a20-4b11-95b7-608518715f9d B5de3eef-0a20-4b11-95b7-608518715f9d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Lodi, Ohio (Utility Company) Effective date: 2007/03/15 End date if known: Rate name: Commercial Load Management Rate Sector: Commercial Description: *Applicable for commercial secondary service for commercial customers with less than 50 kVA demands through one meter. Subject to Power Cost Adjustment and Ohio kWh Tax. State of Ohio Kilowatt-Hour Tax Tax rates are applied to all kWH usage: $0.00465 per kWH first 2000 kWh $0.00419 per kWH next 13000 kWh $0.00363 per kWH over 15000 kWh

452

Data:C09dc47c-963e-4df6-b262-a3a5f7001cd7 | Open Energy Information  

Open Energy Info (EERE)

dc47c-963e-4df6-b262-a3a5f7001cd7 dc47c-963e-4df6-b262-a3a5f7001cd7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lebanon, Ohio (Utility Company) Effective date: End date if known: Rate name: Industrial Large Power Customer Service Sector: Industrial Description: *Subject to Fuel Adjustment Charge and Ohio kWh Tax. State of Ohio Kilowatt-Hour Tax Tax rates are applied to all kWH usage: $0.00465 per kWH first 2000 kWh $0.00419 per kWH next 13000 kWh $0.00363 per kWH over 15000 kWh Source or reference: http://www.lebanonohio.gov/index.aspx?NID=321 Source Parent: Comments Applicability Demand (kW)

453

Sumter Electric Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

(Redirected from SECO Energy) (Redirected from SECO Energy) Jump to: navigation, search Name Sumter Electric Coop, Inc Place Florida Utility Id 18304 Utility Location Yes Ownership C NERC Location FRCC NERC FRCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Residential Residential Average Rates Residential: $0.1260/kWh Commercial: $0.1400/kWh Industrial: $0.0944/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Sumter_Electric_Coop,_Inc&oldid=411619"

454

Data:45fdae45-5981-4245-9838-0106a19ebf76 | Open Energy Information  

Open Energy Info (EERE)

fdae45-5981-4245-9838-0106a19ebf76 fdae45-5981-4245-9838-0106a19ebf76 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Mid-Kansas Electric Company, LLC (MKEC) Effective date: 2010/01/14 End date if known: Rate name: Flood Lights-1000W Metal Halide(On New Pole-100% Cooperative Investment Option) Sector: Lighting Description: Unmetered Facilities. The average consumption per month is 402kWh Source or reference: Rate Binder #6, Illinois State University. Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

455

Data:52212880-7508-4a90-bcab-474065426182 | Open Energy Information  

Open Energy Info (EERE)

2880-7508-4a90-bcab-474065426182 2880-7508-4a90-bcab-474065426182 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jump River Electric Coop Inc Effective date: 2012/06/01 End date if known: Rate name: Three-Season Heat Sector: Commercial Description: Power Cost Adjustment (PCA): $0.008/kWh Source or reference: Rates Binder A Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

456

Data:7c27c846-254f-46f2-9566-7135304cc021 | Open Energy Information  

Open Energy Info (EERE)

46-254f-46f2-9566-7135304cc021 46-254f-46f2-9566-7135304cc021 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Service Co of Colorado Effective date: 2012/10/11 End date if known: Rate name: ENERGY ONLY STREET LIGHTING SERVICE - SCHEDULE ESL - 42.1-45.0 kWh per light Sector: Lighting Description: Source or reference: www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory PDFs/psco_elec_entire_tariff.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

457

Data:B9ba8575-6558-4413-86de-41b810372394 | Open Energy Information  

Open Energy Info (EERE)

ba8575-6558-4413-86de-41b810372394 ba8575-6558-4413-86de-41b810372394 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Intermountain Rural Elec Assn Effective date: 2013/02/01 End date if known: Rate name: Residential Service (A) Sector: Residential Description: Source or reference: http://www.intermountain-rea.com/CurrentWV.pdf Source Parent: Comments after February Basic Service Charge, Per Month $10.00 Energy Charge, Per kWh $0.12310 Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

458

Data:57c555ae-4083-4441-9537-7390b005b301 | Open Energy Information  

Open Energy Info (EERE)

ae-4083-4441-9537-7390b005b301 ae-4083-4441-9537-7390b005b301 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: FSLS- HPS 360 Watt 138 kWh (2) Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

459

Data:C0f419f7-7001-4550-899b-abaec32daccd | Open Energy Information  

Open Energy Info (EERE)

f7-7001-4550-899b-abaec32daccd f7-7001-4550-899b-abaec32daccd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: LAL- HPS 200 Watt 85 kWh (Wood Pole)- Unmetered Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

460

Data:C84306a7-523c-4333-b368-5eeb96702675 | Open Energy Information  

Open Energy Info (EERE)

a7-523c-4333-b368-5eeb96702675 a7-523c-4333-b368-5eeb96702675 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Sandersville, Georgia (Utility Company) Effective date: 2008/06/01 End date if known: Rate name: Commercial Non-Demand Sector: Commercial Description: Applicable to non-residential uses where the average monthly metered energy is less than 3,000 KWh. Subject to Power Cost Adjustment (PCA) Source or reference: Illinois State University Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Data:A2027612-e9ba-4987-bb41-e3283ec3ebca | Open Energy Information  

Open Energy Info (EERE)

27612-e9ba-4987-bb41-e3283ec3ebca 27612-e9ba-4987-bb41-e3283ec3ebca No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: LAL- HPS 100 Watt 44 kWh (Standard Expansion)- Unmetered Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

462

VEHICLE SPECIFICATIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

463

EV America: Hybrid Electric Vehicle (HEV) Technical Specifications...  

NLE Websites -- All DOE Office Websites (Extended Search)

shall be designed and constructed such that there is complete containment of the flywheel energy storage system during all modes of operation. Additionally, flywheels and...

464

DOE Solar Decathlon: Energy Balance Contest  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Balance Contest Energy Balance Contest (100 points) For the U.S. Department of Energy Solar Decathlon 2013, each team house was equipped with a bidirectional utility meter that enabled competition organizers to measure the net energy a house produced or consumed over the course of the competition. In the Energy Balance Contest, a team received full points for producing at least as much energy as its house needed, thus achieving a net energy consumption of zero during contest week. This was accomplished by balancing production and consumption. Reduced points were earned for a net electrical energy balance between -50 kWh and 0 kWh. Reduced points were scaled linearly. The final measurements for the Energy Balance Contest are shown in the graphic below. Roll over each graphic with your mouse for detailed

465

DTE Energy - Solar Currents Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DTE Energy - Solar Currents Program DTE Energy - Solar Currents Program DTE Energy - Solar Currents Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 2009 State Michigan Program Type Utility Rebate Program Rebate Amount Residential Rebate: $0.20/W Residential Production Incentive: $0.03/kWh Non-Residential Rebate: $0.13/W Non-Residential Production Incentive: $0.02/kWh Provider DTE Energy '''''Although the program web site above links to the residential section of DTE Energy's web page, the program itself is not limited to residential customers. Other customers that meet the program requirements are also eligible to participate.

466

Pacific Power - Energy FinAnswer | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - Energy FinAnswer Pacific Power - Energy FinAnswer Pacific Power - Energy FinAnswer < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit State Government Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Other Maximum Rebate Retrofit: 50% of the eligible energy efficiency measure cost Lighting: 50% of savings If incentive brings the simple payback below one year, the incentive is reduced so the simple payback equals one year. Program Info State California Program Type Utility Rebate Program Rebate Amount $0.12/kWh-$0.18/kWh annual energy savings + $50/kW average monthly on-peak demand savings

467

Renewable Energy Production Tax Credit (Personal) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) Renewable Energy Production Tax Credit (Personal) < Back Eligibility Agricultural Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 1/1/2008 State New Mexico Program Type Personal Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

468

Renewable Energy Production Tax Credit (Corporate) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) Renewable Energy Production Tax Credit (Corporate) < Back Eligibility Commercial Industrial Savings Category Bioenergy Solar Buying & Making Electricity Wind Maximum Rebate Wind and biomass: First 400,000 MWh annually for 10 years (i.e. 4,000,000/year) Solar electric: First 200,000 MWh annually for 10 years (annual amount varies) Statewide cap: 2,000,000 MWh plus an additional 500,000 MWh for solar electric Program Info Start Date 7/1/2002 State New Mexico Program Type Corporate Tax Credit Rebate Amount 0.01/kWh for wind and biomass 0.027/kWh (average) for solar (see below) Provider New Mexico Energy, Minerals and Natural Resources Department Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit

469

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 1320 of 28,905 results. 11 - 1320 of 28,905 results. Download CX-004504: Categorical Exclusion Determination Beacon Power 20 Megawatt Flywheel Frequency Regulation Plant CX(s) Applied: A1, A9, A11 Date: 11/19/2010 Location(s): Tyngsboro, Massachusetts Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004504-categorical-exclusion-determination Download CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-004473-categorical-exclusion-determination Download CX-004474: Categorical Exclusion Determination

470

Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entergy Arkansas - Commercial and Industrial Energy Efficiency Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs Entergy Arkansas - Commercial and Industrial Energy Efficiency Programs < Back Eligibility Agricultural Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate Feasibility Study: 25% of cost Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Small Business Energy Solutions (under 100kW): $0.21 - $0.50/kwh first year savings Large Commercial/Industrial (Prescriptive): $0.09/kwh first year savings Large Commercial/Industrial (Custom): $0.07 - $0.15/kwh first year savings

471

Chicopee Electric Light - Commercial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chicopee Electric Light - Commercial Energy Efficiency Rebate Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) Chicopee Electric Light - Commercial Energy Efficiency Rebate Program (Massachusetts) < Back Savings Category Other Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $25,000; 30% of total cost if project did not recieve financing from CEL, 20% of total cost if project did recieve financing from CEL Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Custom: $0.17 per annual kWh saved Lighting: $0.17 per annual kWh saved New Construction: $0.17 per annual kWh saved Provider Program Administrator Chicopee Electric Light (CEL) offers a Pilot Energy Efficiency Program to encourage non-residential, commercial, and industrial facilities to pursue

472

CX-002104: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2104: Categorical Exclusion Determination 2104: Categorical Exclusion Determination CX-002104: Categorical Exclusion Determination Street Light and Signal Relamping CX(s) Applied: B5.1 Date: 04/19/2010 Location(s): Shelburne, Vermont Office(s): Energy Efficiency and Renewable Energy Energy Efficiency and Conservation Block Grant for: The Chittenden County Regional Planning Commission is focused on Energy Efficient Lighting. The Town of Shelburne is proposing to work with Green Mountain Power Company to replace 181 existing mercury vapor and sodium vapor municipal lights with light-emitting diode (LED) lights. Currently, the 181 lights that will be replaced use an estimated 107,427 kilowatt-hours (kWh) of electricity annually. The replacement LED heads will use an estimated 29,565 kWh of electricity providing a decrease of 77,862 kWh of electricity per year. The

473

Data:A98576f2-f705-4dcd-a6fb-cecf8fb8917f | Open Energy Information  

Open Energy Info (EERE)

f2-f705-4dcd-a6fb-cecf8fb8917f f2-f705-4dcd-a6fb-cecf8fb8917f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: PUD No 1 of Okanogan County Effective date: 2011/12/01 End date if known: Rate name: Small Commercial General Service Schedule No. 3A Sector: Commercial Description: Minimum energy charge: $25.00 per month. KWh in minimum energy charge:500. Source or reference: https://www.okanoganpud.org/electric/rates/small-general-service Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage

474

Data:6cdd5e22-38eb-4383-a80c-cd0f13e56e5d | Open Energy Information  

Open Energy Info (EERE)

is applicable to all service where demand is less than fifty (50) kWand monthly energy consumption is less than 10,000 kWh. and where another schedule is not specifically...

475

Data:5d72965d-ee13-4304-b7f7-065a45f6b369 | Open Energy Information  

Open Energy Info (EERE)

equal to or greater than fifty (50) kWand less than five hundred (500) kW or monthly energy consumption is equal to or greater than 10,000 kWh and where another schedule is not...

476

Data:B123cfba-db08-4670-8df1-6e133ad31f78 | Open Energy Information  

Open Energy Info (EERE)

is applicable to all service where demand is less than fifty (50) kWand monthly energy consumption is less than 10,000 kWh. and where another schedule is not specifically...

477

Data:1b8125e8-a615-474d-9471-5b4cdb357173 | Open Energy Information  

Open Energy Info (EERE)

for lighting and power in establishments not classified as residential whose energy consumption has not exceeded 9000kWh in any one of the prior twelve(12) consecutive...

478

Data:45b47e03-34aa-4bd2-b8d2-3b37e0f05853 | Open Energy Information  

Open Energy Info (EERE)

equal to or greater than fifty (50) kWand less than five hundred (500) kW or monthly energy consumption is equal to or greater than 10,000 kWh and where another schedule is not...

479

Data:92b39dc5-25ee-47a3-9783-208b379ea2aa | Open Energy Information  

Open Energy Info (EERE)

certain communities, bills are subject to a surcharge as describe in the Surcharge Rider. Energy usage (kWh sales) is exempt from the Power Cost Adjustment Rider. Source or...

480

Data:023d7db8-95fa-49ef-85b3-1fe539a04664 | Open Energy Information  

Open Energy Info (EERE)

he preceding 12 moths. Service to irrigation accounts is not available under this Tariff. Energy usage (kWh sales) is subject to the Power Cost Adjustment Rider. In certain...

Note: This page contains sample records for the topic "kwh flywheel energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Data:7c1bbad2-c941-4554-a1d3-3769e573f940 | Open Energy Information  

Open Energy Info (EERE)

charge (a fixed minimum amount each month). Each category has its own minimum amount The energy usage charge (per kWh usage) The customer charge is a fixed rate that applies each...

482

Data:9c948aaa-8fe2-4f0b-bbfa-f49491989ee0 | Open Energy Information  

Open Energy Info (EERE)

be provided only by special contract for such service. Accounts with an average maximum energy usage of 300,000 kWh in the highest 3 months of the previous 36 months will be...

483

Data:D0e5cbfd-52c6-4011-9a87-5d7427d6637c | Open Energy Information  

Open Energy Info (EERE)

for all large commercial and industrial customer or customers with average monthly energy usage equal to or greater than 25,000 kWh per month. Demand charge is sum of...

484

Data:C5634448-1afd-4daf-a13a-9ac25e88b734 | Open Energy Information  

Open Energy Info (EERE)

Sector: Commercial Description: For all non-residential uses where the average monthly energy usage is less than 3,000 kWh. High load factor customers, who would otherwise be...

485

Data:194467b1-bb93-4e5f-a771-edf4b72cfe4c | Open Energy Information  

Open Energy Info (EERE)

date if known: Rate name: Large Commercial Service Sector: Commercial Description: If the energy usage in the monthly billing period exceeds 15,000 kWh for 3 months out of a...

486

Data:9d24c068-56f2-4af9-9f16-69ff7cad82ac | Open Energy Information  

Open Energy Info (EERE)

certain communities, bills are subject to a surcharge as describe in the Surcharge Rider. Energy usage (kWh sales) is subject to the Power Cost Adjustment Rider (0.009197 for July...

487

Data:5cc93c9c-f006-4781-b4a4-beef5c7d879b | Open Energy Information  

Open Energy Info (EERE)

of adequate capacity. No resale of service is permitted. Customers on this rate must have energy usage of 20,000 kWh or more in each billing month. Customers falling below required...

488

Data:537202d9-3f19-4107-964d-10c11ff0964b | Open Energy Information  

Open Energy Info (EERE)

Discount 10% Sector: Commercial Description: OpenEIUtilityRateDescription::If the energy usage in the monthly billing period exceeds 15,000 kWh for 3 months out of a...

489

Data:2b8febe8-8a15-4fcb-ad46-67275065ef90 | Open Energy Information  

Open Energy Info (EERE)

A Customer will receive service on this schedule if the following conditions are met: Energy usage does not exceed 25,000 kWh per BILLING PERIOD for each of six consecutive...

490

Data:E3546228-00f0-4582-aa2f-2d6b4d2c826f | Open Energy Information  

Open Energy Info (EERE)

or three-phase service and have measured maximum demands of 75 kW* or less and annual energy usage of 250,000 kWh or less. Existing farm and commercial customers with measured...

491

Data:1f62981f-cdc4-4821-958a-9a372bbc06e9 | Open Energy Information  

Open Energy Info (EERE)

Description: Applicable to all non-residential uses where the average monthly metered energy usage is less that 3,000 KWh. Subject to Power Cost Recovery(PCR). Source or...

492

Data:D579708f-3772-4ac9-a56e-43c0cd2b1e3c | Open Energy Information  

Open Energy Info (EERE)

use in single-family dwellings and individually metered multi-family dwellings. If annual energy usage exceeds 15,000 kWh, the customer may elect to be served under the Residential...

493

Data:Cc7e1de7-7176-4f5f-b740-173da989da44 | Open Energy Information  

Open Energy Info (EERE)

Discount 3% Sector: Commercial Description: OpenEIUtilityRateDescription::If the energy usage in the monthly billing period exceeds 15,000 kWh for 3 months out of a...

494

Data:6818a375-dc19-44b9-a774-8b1be2b49578 | Open Energy Information  

Open Energy Info (EERE)

of adequate capacity. No resale of service is permitted. Customers on this rate must have energy usage of 20,000 kWh or more in each billing month. Customers falling below required...

495

Data:541f2909-3fb6-4a80-93d3-a1a50cc6f404 | Open Energy Information  

Open Energy Info (EERE)

and measured through one meter. This schedule is applicable to Customers whose metered energy usage is 2,000 kWh, or less, per Billing Period for ten or more Billing Periods...

496

Data:Ecaa7423-85c1-49d4-b056-1d13e802ef5d | Open Energy Information  

Open Energy Info (EERE)

SERVICE RATE Sector: Commercial Description: For any customer with at least six months energy usage of at least 20,000 kWh per month during the most current 12 month period....

497

Data:D5a1e39b-efaa-403a-96a6-7f9d9c435bfe | Open Energy Information  

Open Energy Info (EERE)

is made up of two parts: The customer charge (a fixed minimum amount each month) The energy usage charge (per kWh usage) The customer charge is a fixed rate that applies each...

498

Data:2eb458a2-d9a9-4bc0-a199-216c0e367551 | Open Energy Information  

Open Energy Info (EERE)

for a minimum of 12 months. Service to irrigation is not available under this Tariff. Energy usage (kwh sales) is subject to the Power Cost Adjustment Rider (0.009089 for Jan...

499

Data:2e396d09-e717-4570-9fd5-9f6edea94080 | Open Energy Information  

Open Energy Info (EERE)

A demand meter shall be installed and the demand rate shall apply whenever a customer's energy usage exceeds 6000 kwh in any winter month (November through April). Source or...

500

Data:A6386010-c99f-4ad7-a530-a81ad40f5aaf | Open Energy Information  

Open Energy Info (EERE)

will receive service on this schedule if any of the following conditions are met: Energy usage is greater than 100,000 kWh per BILLING PERIOD for each of six consecutive...