National Library of Energy BETA

Sample records for kwh flywheel energy

  1. Flywheel energy storage workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Carmack, J.

    1995-12-31

    Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

  2. Flywheel Energy Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    K2H 8S1 Product: Focuses on design, fabrication, assembling and distributing flywheel energy storage systems and related components. References: Flywheel Energy Systems Inc1...

  3. Flywheels

    SciTech Connect (OSTI)

    Bender, Donald Arthur

    2015-05-01

    In use since ancient times, the flywheel has smoothed the flow of energy in rotating machinery from small, hand held devices to the largest engines. Today, standalone flywheel systems are being developed to store electrical energy. These systems are deployed in applications as diverse as uninterruptible power supplies, gantry cranes, and large research facilities. This chapter presents the technical foundation of flywheel design, a comparison with other energy storage technologies, and a survey of applications where flywheel energy storage systems are currently in service.

  4. Flywheel energy storage advances using HTS bearings.

    SciTech Connect (OSTI)

    Mulcahy, T. M.

    1998-09-11

    High-Temperature-Superconducting (HT) bearings have the potential to reduce idling losses and make flywheel energy storage economical. Demonstration of large, high-speed flywheels is key to market penetration. Toward this goal, a flywheel system has been developed and tested with 5-kg to 15-kg disk-shaped rotors. Rlm speeds exceeded 400 mls and stored energies were >80 W-hr. Test implementation required technological advances in nearly all aspects of the flywheel system. Features and limitations of the design and tests are discussed, especially those related to achieving additional energy storage.

  5. Flywheel energy storage system focus of display

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flywheel Energy Storage System Focus of Display Demonstration to feature advanced, solar-powered replacement for batteries For more information contact: e:mail: Public Affairs Golden, Colo., March 20, 1997 -- Media are invited to visit the flywheel display. What: An outdoor display and demonstration of an environmentally-friendly, advanced electricity storage technology that can replace lead acid batteries. A flywheel is a rapidly-spinning cylinder or disc suspended in a vacuum-sealed container

  6. 'Recycling' Grid Energy with Flywheel Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    'Recycling' Grid Energy with Flywheel Technology 'Recycling' Grid Energy with Flywheel Technology September 30, 2010 - 5:03pm Addthis Seven-foot tall cylinders equipped with flywheel technology (shown above) will make up Beacon Power’s energy storage plant in Stephentown, N.Y. The company received a $43 million loan guarantee from the Energy Department to build the plant. | Photo courtesy of Beacon Power Corporation Seven-foot tall cylinders equipped with flywheel technology (shown above)

  7. Flywheel Energy Storage technology workshop

    SciTech Connect (OSTI)

    O`Kain, D.; Howell, D.

    1993-12-31

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  8. RPM Flywheel Battery | Open Energy Information

    Open Energy Info (EERE)

    RPM Flywheel Battery Jump to: navigation, search Name: RPM Flywheel Battery Place: California Product: Start-up planning to develop, produce, and market flywheel batteries for...

  9. Flywheel Energy Storage Device for Hybrid and Electric Vehicles - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Storage Energy Storage Find More Like This Return to Search Flywheel Energy Storage Device for Hybrid and Electric Vehicles Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis cost-effective technology stores and reuses what would otherwise be wasted energy inside a hybrid electric vehicle engine. The invention, a mechanical flywheel coupled to a rotor inside the engine, stores rotational energy during engine performance,

  10. Reluctance apparatus for flywheel energy storage

    DOE Patents [OSTI]

    Hull, John R.

    2000-01-01

    A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

  11. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  12. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  13. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  14. Flywheel Energy Storage -- An Alternative to Batteries for UPS Systems

    SciTech Connect (OSTI)

    Brown, Daryl R.; Chvala, William D.

    2003-11-12

    Direct current (DC) system flywheel energy storage technology can be used as a substitute for batteries for providing backup power to an uninterruptible power supply (UPS) system. Although the initial cost will usually be higher, flywheels offer a much longer life, reduced maintenance, a smaller footprint, and better reliability compared to a battery. The combination of these characteristics will generally result in a lower life-cycle cost for a flywheel compared to a battery. This paper describes the technology, its variations, and installation requirements, as well as provides application advice. One Federal application is highlighted as a “case study,” followed by an illustrative life-cycle cost comparison of batteries and flywheels. A list of manufacturers, with contact information is also provided.

  15. Dynamic voltage compensation on distribution feeders using flywheel energy storage

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1999-04-01

    Advancements in power electronics bearings and materials have made flywheel energy storage systems a viable alternative to electrochemical batteries. A future application of such a device is as an uninterruptible power supply for critical loads on a distribution feeder. However, the same power electronics and flywheel system could also be used for dynamic voltage compensation. A comparison is made between series and parallel connection of such dynamic compensation techniques used to maintain rated load voltage on distribution feeders when there are momentary dips in the supply voltage. For each case a mathematical model is presented and analyzed. The two cases are compared and the series compensation technique is more effective.

  16. Flywheel energy storage with superconductor magnetic bearings

    DOE Patents [OSTI]

    Weinberger, Bernard R.; Lynds, Jr., Lahmer; Hull, John R.

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  17. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPPurchasedEngyPerAreaKwhM2Other Jump to: navigation, search This is a property of type String. Other Pages using the property...

  18. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy...

    Open Energy Info (EERE)

    ElctrcityUseKwhM2Misc" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 9.09953195331 + Sweden Building...

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy...

    Open Energy Info (EERE)

    fElctrcityUseKwhM2Pcs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 26.0998626444 + Sweden Building 05K0002 + 22.2888135593 + Sweden...

  1. Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.

    SciTech Connect (OSTI)

    Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

    2013-09-01

    As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

  2. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    SciTech Connect (OSTI)

    Hansen, James Gerald

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  3. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Incubator 10) PROJECT PROFILE: kWh Analytics (Incubator 10) kwh logo.png Project Title: Solar for the Other 35% Funding Opportunity: SunShot Technology to Market (Incubator 10) SunShot Subprogram: Technology to Market Location: San Francisco, CA Amount Awarded: $599,974 Awardee Cost Share: $600,022 Project Investigator: Chun Wei Yuan About 35% of American citizens hold "non-prime" FICO scores that are less than 680, which restricts their ability to take on a solar lease, power purchase

  4. PROJECT PROFILE: kWh Analytics (Phase 3) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase 3) PROJECT PROFILE: kWh Analytics (Phase 3) Funding Opportunity: Orange Button (SB-DATA) SunShot Subprogram: Soft Costs Location: San Francisco, CA Amount Awarded: $1,000,000 Awardee Cost Share: $1,000,000 kWh Analytics will support the adoption of industry-led data standards, including the development of a data format translation software tool, Solar BabelFish, which will instantly translate original data formats into data standards. This will significantly reduce the time and effort

  5. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy...

    Open Energy Info (EERE)

    gyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  6. An overview of flywheel energy systems.

    SciTech Connect (OSTI)

    Wolsky, A. M.; Energy Systems

    2002-05-01

    Passive magnetic bearings incorporating permanent magnets and ReBaCuO, together with carbon fibre, offer the possibility of increasing the stored, volumetric energy density of FES and unprecedentedly low idling loss of FES. Its stored energy need only satisfy customers needs for the time it takes to bring on conventional 'back-up'. The FES itself must come up to power quickly enough to avoid any disruption in the customer's operation (e.g., continuous industrial processes involving fragile materials, for example paper forming). Such customers do not care about the price of electricity nearly as much as they care about not ruining their product, damaging their machines or having 'clean ups' that stop or slow output. Firms that engage in electronic commerce and/or telecommunications also value uninterruptible power. Another set of potential customers (construction, electric railroads) may wish to avoid fluctuations in their electrical supply or they may wish to avoid causing harm to others who may hold them liable for poor power quality. Finally, real time prices (e.g., every 15 s) and real time commands, disseminated via internet, and distributed storage might enable reduced system generation costs. Generators and FES makers would have to cooperate to make this feasible. Now, the central techno-economic challenge is to build a high-power, low-loss motor generator that reaches full power in a very short time.

  7. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  8. Flywheel Project Escalates Grid Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flywheel Project Escalates Grid Efficiency Flywheel Project Escalates Grid Efficiency August 9, 2010 - 1:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What does this project do? It's estimated to create 60 jobs in New York and Massachusetts (where Beacon Power is headquartered) and help bring clean technologies to market by improving the stability and reliability of the state's electric grid. More good news for New

  9. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  10. Model and simulation of a flywheel energy storage system at a utility substation using electro-magnetic transients programs

    SciTech Connect (OSTI)

    Weissbach, R.S.; Karady, G.G.; Farmer, R.G.

    1996-11-01

    A flywheel energy storage system for use as an uninterruptible power supply at a utility substation to replace electrochemical batteries has been modeled. The model is developed using the Electro-Magnetic Transients Program (EMTP). Models for the flywheel, permanent magnet (synchronous) motor/generator, rectifiers and inverter have been included. Transient response for loss of power and clearing of a short circuit fault, as well as variation of load voltage due to the flywheel spinning down, is presented.

  11. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  12. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R.

    2001-01-01

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  13. Lightweight flywheel containment

    DOE Patents [OSTI]

    Smith, James R.

    2004-06-29

    A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

  14. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1983-10-11

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

  15. Rimmed and edge thickened stodola shaped flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Stone, R.G.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  16. Rimmed and edge thickened Stodola shaped flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V. (San Ramon, CA); Stone, Richard G. (Oakland, CA)

    1983-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

  17. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. ...

  18. Rimmed and edge thickened Stodola shaped flywheel (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Title: Rimmed and edge thickened Stodola shaped flywheel A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some ...

  19. Development of long life three phase uninterruptible power supply using flywheel energy storage unit

    SciTech Connect (OSTI)

    Takahashi, Isao; Okita, Yoshihisa; Andoh, Itaru

    1995-12-31

    According to development of computer applications, uninterruptible power supplies (UPS) are indispensable to the industrial field. But the cost for maintaining the conventional UPS is very high, because frequent replacement of parts which have short life time is necessary. This paper describes the research and development of a new UPS which has long life parts for maintenance free. To lengthen the life time, the following techniques are introduced: (1) a flywheel energy storage unit having more than 20 years life time; (2) electrolytic capacitor less inverter and converter. By using these techniques, a three phase UPS rating 5kVA, 200V is developed, and excellent performance is obtained: input power factor is over 99.7%; output voltage distortion is under 1.5%; transformer less UPS achieves light weight system; the UPS have function of automatic output voltage balance using auxiliary diode rectifier; input current harmonic distortion is less than 1.2%, even if the single phase load is connected.

  20. High speed flywheel

    DOE Patents [OSTI]

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  1. Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application

    DOE Patents [OSTI]

    Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

    1980-09-24

    A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  2. Matched metal die compression molded structural random fiber sheet molding compound flywheel

    DOE Patents [OSTI]

    Kulkarni, Satish V.; Christensen, Richard M.; Toland, Richard H.

    1985-01-01

    A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

  3. Reactor coolant pump flywheel

    DOE Patents [OSTI]

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

    2013-11-26

    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  4. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  5. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    South Hamilton, Massachusetts Zip: 1982 Sector: Services Product: Massachusetts software maker which provides mobile data collection, calculation, and report generation...

  6. Evaluation of Demo 1C composite flywheel rotor burst test and containment design

    SciTech Connect (OSTI)

    Kass, M.D.; McKeever, J.W.; Akerman, M.A.; Goranson, P.L.; Litherland, P.S.; O`Kain, D.U.

    1998-07-01

    Laboratory-Directed funds were provided in FY 1995 for research to develop flywheel containment specifications and to consider concepts that could satisfy these specifications and produce a prototype small, lightweight, inexpensive, mobile flywheel containment. Research activities have included an analytical and pictorial review of the Demo 1C flywheel failure test, which provided significant insight about radial and axial failure modes; calculations of the thickness of ultra-conservative pressure vessel containment; entertainment of advanced containment concepts using lightweight materials and armor literature; consideration of fabrication assembly procedures; and participation in a Flywheel Energy Storage Workshop during which additional flywheel failure experiences were discussed. Based on these activities, calculations, and results, a list of conclusions concerning flywheel containment and its relation to the flywheel are presented followed by recommendations for further research.

  7. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, D.A.; Kuklo, T.C.

    1998-07-07

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

  8. Separators for flywheel rotors

    DOE Patents [OSTI]

    Bender, Donald A.; Kuklo, Thomas C.

    1998-01-01

    A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

  9. Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013) | Department of Energy Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) Beacon Power will design, build, and operate a utility-scale 20 MW flywheel energy storage plant at the Humboldt Industrial Park in Hazle Township, PA for Hazle Spindle LLC. The plant will provide frequency regulation services to grid operator PJM Interconnection. For more information about how OE performs research

  10. Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant

    Energy Savers [EERE]

    Hazle Spindle, LLC Beacon Power 20 MW Flywheel Frequency Regulation Plant Project Description Beacon Power will design, build, and operate a utility-scale 20MW flywheel plant at the Humboldt Industrial Park in Hazle Township, Pennsylvania for the plant owner/operator, Hazle Spindle LLC The plant will provide frequency regulation services to grid operator PJM Interconnection. The Beacon Power technology uses flywheels to recycle energy from the grid in response to changes in demand and grid

  11. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, Donald E.; Ingham, Kenneth T.

    1987-01-01

    A flywheel 2 comprising a hub 4 having at least one radially projecting disc 6, an annular rim 14 secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers 22 wound about said rim congruent to said surface, and a shell 26 enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface.

  12. Fiber composite flywheel rim

    DOE Patents [OSTI]

    Davis, D.E.; Ingham, K.T.

    1987-04-28

    A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

  13. Energy Storage Systems 2009 Peer Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    APEI.pdf PDF icon ESS 2009 Peer Review - Power Electronics Reliability Analysis - Mark Smith, SNL.pdf PDF icon ESS 2009 Peer Review - Development of a 5kWh Flywheel ESS Using a ...

  14. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Energy Savers [EERE]

    Clean Energy States Alliance Batteries, flywheels, above-ground compressed air, micro ... Projects must include energy storage technologies such as batteries, flywheels, ...

  15. Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Rounds, Robert; Peek, Georgianne Huff

    2009-01-01

    This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

  16. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  17. Rimmed and edge thickened Stodola shaped flywheel (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Patent: Rimmed and edge thickened Stodola shaped flywheel Citation Details In-Document Search Title: Rimmed and edge thickened Stodola shaped flywheel × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also

  18. Optimum rotationally symmetric shells for flywheel rotors

    DOE Patents [OSTI]

    Blake, Henry W.

    2000-01-01

    A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

  19. Canned pump having a high inertia flywheel

    DOE Patents [OSTI]

    Veronesi, Luciano; Raimondi, ALbert A.

    1989-01-01

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

  20. Canned pump having a high inertia flywheel

    DOE Patents [OSTI]

    Veronesi, L.; Raimondi, A.A.

    1989-12-12

    A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

  1. Fact Sheet: Energy Storage Technology Advancement Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. ...

  2. Layered flywheel with stress reducing construction

    DOE Patents [OSTI]

    Friedericy, Johan A.; Towgood, Dennis A.

    1984-11-13

    A flywheel having elastic spokes carrying an elastic rim; and a hub coupling the spokes to a shaft and deforming in response to centrifugal force to match the radial distortion of the spokes.

  3. Elk Valley Rancheria, California Energy Efficiency and Alternaives...

    Energy Savers [EERE]

    Center - Tribal Gamming Commission Offices - Elk Valley Casino TRIBAL ENERGY USEAGE Facility Annual Usage (kwh) Monthly Average (kwh) Administrative Offices 116,400 13,867 Small ...

  4. Fact Sheet: Advanced Implementation of Energy Storage Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. ...

  5. Fact Sheet: Codes and Standards for Energy Storage System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage Program page. ...

  6. text in "Max kWh" fields | OpenEI Community

    Open Energy Info (EERE)

    it should as we are trying to prevent users from writing "less than X", "greater than Y", etc. and follow the intention of the "Max kWh" field. Also there should be a warning...

  7. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  8. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Large computers servers Pages using the property "BuildingSPBreakdownOfElctrcityUseKwhM2LargeComp...

  9. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters...

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters Jump to: navigation, search This is...

  10. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used...

  11. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open...

    Open Energy Info (EERE)

    rcityUseKwhM2Printers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.928422444931 + Sweden Building 05K0002 + 1.42372881356 + Sweden...

  12. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating...

    Open Energy Info (EERE)

    UseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  13. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens...

    Open Energy Info (EERE)

    UseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  14. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans...

    Open Energy Info (EERE)

    eKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  15. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating |...

    Open Energy Info (EERE)

    reaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  16. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors...

    Open Energy Info (EERE)

    seKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open...

    Open Energy Info (EERE)

    lctrcityUseKwhM2Pumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 6.37190900733 + Sweden Building 05K0002 + 6.03888185355 + Sweden...

  18. Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. ...

  19. Alternative Energy Portfolio Standard

    Broader source: Energy.gov [DOE]

    The “alternative energy generating sources” include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that generate us...

  20. FVB Energy Inc. Technical Assistance Project

    SciTech Connect (OSTI)

    DeSteese, John G.

    2011-05-17

    The request made by FVB asked for advice and analysis regarding the value of recapturing the braking energy of trains operating on electric light rail transit systems. A specific request was to evaluate the concept of generating hydrogen by electrolysis. The hydrogen would, in turn, power fuel cells that could supply electric energy back into the system for train propulsion or, possibly, also to the grid. To allow quantitative assessment of the potential resource, analysis focused on operations of the SoundTransit light rail system in Seattle, Washington. An initial finding was that the full cycle efficiency of producing hydrogen as the medium for capturing and reusing train braking energy was quite low (< 20%) and, therefore, not likely to be economically attractive. As flywheel energy storage is commercially available, the balance of the analysis focused the feasibility of using this alternative on the SoundTransit system. It was found that an investment in a flywheel with a 25-kWh capacity of the type manufactured by Beacon Power Corporation (BPC) would show a positive 20-year net present value (NPV) based on the current frequency of train service. The economic attractiveness of this option would increase initially if green energy subsidies or rebates were applicable and, in the future, as the planned frequency of train service grows.

  1. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  2. REACTOR-FLASH BOILER-FLYWHEEL POWER PLANT

    DOE Patents [OSTI]

    Loeb, E.

    1961-01-17

    A power generator in the form of a flywheel with four reactors positioned about its rim is described. The reactors are so positioned that steam, produced in the reactor, exists tangentially to the flywheel, giving it a rotation. The reactors are incompletely moderated without water. The water enters the flywheel at its axis, under sufficient pressure to force it through the reactors, where it is converted to steam. The fuel consists of parallel twisted ribbons assembled to approximate a cylinder.

  3. Optimal Energy Systems | Open Energy Information

    Open Energy Info (EERE)

    Energy Systems Place: Torrance, California Zip: 90505 Product: Manufacturer of flywheel power system, specialising in aerospace and defence sector. Coordinates: 40.417285,...

  4. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open...

    Open Energy Info (EERE)

    PerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  5. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open...

    Open Energy Info (EERE)

    trcityUseKwhM2Laundry" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy generating sources" include combined heat and power (CHP) projects, flywheel energy storage, energy efficient steam technology. and renewable technologies that...

  7. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-08-24

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion. 3 figs.

  8. Concentric ring flywheel without expansion separators

    DOE Patents [OSTI]

    Kuklo, Thomas C.

    1999-01-01

    A concentric ring flywheel wherein the adjacent rings are configured to eliminate the need for differential expansion separators between the adjacent rings. This is accomplished by forming a circumferential step on an outer surface of an inner concentric ring and forming a matching circumferential step on the inner surface of an adjacent outer concentric ring. During operation the circumferential steps allow the rings to differentially expand due to the difference in the radius of the rings without the formation of gaps therebetween, thereby eliminating the need for expansion separators to take up the gaps formed by differential expansion.

  9. Amber Kinetics | Open Energy Information

    Open Energy Info (EERE)

    search Name: Amber Kinetics Product: Start-up company developing a novel flywheel energy storage system with the Lawrence Livermore National Laboratory. References: Amber...

  10. Vycon Inc | Open Energy Information

    Open Energy Info (EERE)

    Place: Cerritos, California Zip: 90703 Product: Vycon markets and manufactures flywheel energy storage systems for a wide range of applications in the power quality and UPS...

  11. Ashman Technologies | Open Energy Information

    Open Energy Info (EERE)

    has developed various permanent magnet high-speed generators and various flywheel energy storage applications funded by NASA and NASA GRC has extensively tested these...

  12. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, Scott E.; Deteresa, Steven J.

    1998-01-01

    An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

  13. Interlayer toughening of fiber composite flywheel rotors

    DOE Patents [OSTI]

    Groves, S.E.; Deteresa, S.J.

    1998-07-14

    An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

  14. TPT Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Place: United Kingdom Product: Specialists in high-cycling flywheel systems for grid-level power management. References: TPT Energy1 This article is a stub. You can...

  15. Arete Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Power Inc Place: Reno, Nevada Product: Developer and manufacturer of advanced flywheel energy storage systems. Coordinates: 32.944065, -97.578279 Show Map Loading map......

  16. Electric Blanket Delivers K.O. to Space Heater During #EnergyFaceoff...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Space Heater Space Heater (low end of energy use): (750 W x 8 hours) 1000 6 kWhday (daily consumption) 6 kWhday x 50 days 300 kWh (annual energy consumption) 300 kWh x ...

  17. Building America Case Study: Community-Scale Energy Modeling...

    Energy Savers [EERE]

    Price Range: Not available Date completed: 1970s, 2000s Climate Zone: 3A, Hot-humid PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh Standard ...

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  3. A Look Inside the Detroit Auto Show | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the power of a 563-horsepower V-8 engine and a dual inertial flywheel system to ... building energy efficiency Among other biofuel vehicles, Swedish Biogas had their ...

  4. The magnetic flywheel flow meter: Theoretical and experimental contributions

    SciTech Connect (OSTI)

    Buchenau, D. Galindo, V.; Eckert, S.

    2014-06-02

    The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

  5. Oneida Nation Energy Team: Energy Strategy for Our Community

    Office of Environmental Management (EM)

    ... Annual KWh Saved Est. Annual Therms Saved Est. Annual Saving 172 Child Care Outdoor ... of audit recommendations Monitor energy usage and document effectiveness of upgrades ...

  6. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  7. DOE Zero Energy Ready Home Verification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ready Home Verification Summary DRAFT REMRate - Residential ... annual energy savings Electric: 12024 kWh Natural Gas: ... Home access to utility bill data for one year ...

  8. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, Steven J.; Groves, Scott E.

    1998-06-02

    An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

  9. Interface structure for hub and mass attachment in flywheel rotors

    DOE Patents [OSTI]

    Deteresa, S.J.; Groves, S.E.

    1998-06-02

    An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

  10. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  11. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    saved Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 Lighting Control (Exterior): 70 Air Conditioners and Heat...

  12. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Only Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 CFL Wallpack (Exterior): 30 Lighting Control (Exterior):...

  13. Delmarva- Green Energy Fund

    Broader source: Energy.gov [DOE]

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  14. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  15. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  16. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  17. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  18. International Energy Outlook 2016-Electricity - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration 5. Electricity Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from isolated, small grids to integrated national markets and even

  19. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC ...

  20. Beacon Power Corp | Open Energy Information

    Open Energy Info (EERE)

    1879 Sector: Solar Product: US-based developer of solar PV inverters and flywheel-based energy storage systems. References: Beacon Power Corp1 This article is a stub. You can...

  1. Strategic Energy LLC (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleStrategicEnergyLLC(Maryland)&oldid788103...

  2. Consumers Energy Co | Open Energy Information

    Open Energy Info (EERE)

    0.0833kWh The following table contains monthly sales and revenue data for Consumers Energy Co (Michigan). Scroll leftright to see all of the table values. Month RES REV...

  3. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies

    Office of Scientific and Technical Information (OSTI)

    Project Type. Flywheel Energy Storage Demonstration Revision: V1.0 (Technical Report) | SciTech Connect Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0 Citation Details In-Document Search Title: Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0 In this program, Amber Kinetics designed, built, and tested a sub--scale 5

  4. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund is funded by a surcharge of $0.003 per kilowatt-hour (3 mills per kWh) on Connecticut Light and Power (CL&P) and United Illuminating (UI) customers' electric bills....

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178 millskWh) to fund renewable energy and energy efficiency incentive programs. The...

  6. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  7. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  8. Sub-Area. 2.5 Demonstration of Promising Energy Storage Technologies...

    Office of Scientific and Technical Information (OSTI)

    ...5 Demonstration of Promising Energy Storage Technologies Project Type. Flywheel Energy Storage Demonstration Revision: V1.0 Citation Details In-Document Search Title: Sub-Area. 2.5 ...

  9. Energy Incentive Programs, New Hampshire | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hampshire Energy Incentive Programs, New Hampshire Updated July 2015 What public-purpose-funded energy efficiency programs are available in my state? In 2002, the New Hampshire Public Utilities Commission allocated 1.8 mills per kWh ($0.0018/kWh) of the state's systems benefits charge to fund energy efficiency programs implemented by the state's investor-owned utilities. Approximately $20 million is collected annually through this program; revenues are also generated from New Hampshire's

  10. Phase 1 STTR flywheel motor/alternator for hybrid electric vehicles. CRADA final report

    SciTech Connect (OSTI)

    McKeever, J.W.; Scudiere, M.B.; Ott, G.W. Jr.; White, C.P.; Kessinger, R.L. Jr.; Robinson, S.T.; Seymour, K.P.; Dockstadter, K.D.

    1997-12-31

    Visual Computing Systems (VCS) and the Oak Ridge National Laboratory (ORNL) have teamed, through a Phase 1 Small Business Technology Transfer (STTR) grant from the US Department of Energy (DOE), to develop an advanced, low-cost motor/alternator drive system suitable for Flywheel Energy Storage (FES) applications. During Phase 1, system performance and design requirements were established, design concepts were generated, and preliminary motor/alternator designs were developed and analyzed. ORNL provided mechanical design and finite element collaboration and Lynx Motion Technology, a spin-off from VCS to commercialize their technology, constructed a proof-of-concept axial-gap permanent magnet motor/alternator that employed their Segmented Electromagnetic Array (SEMA) with a survivable design speed potential of 10,000 rpm. The VCS motor/alternator was successfully tested in ORNL`s Motor Test Tank using an ORNL inverter and ORNL control electronics. It was first operated as an unloaded motor to 6,000 rpm and driven as an unloaded generator to 6,000 rpm. Output from the generator was then connected to a resistance bank, which caused the loaded generator to decelerate to 3,860 rpm where data was collected. After about 4-1/2 minutes, the test was terminated because of an impact noise. Subsequent inspection and operation at low speeds did not reveal the source of the noise. Electrical performance of the motor was excellent, encouraging continued development of this technology. Phase 2 efforts will focus on further design development and optimization, manufacturing development and prototype construction, testing, and evaluation.

  11. Property:PotentialCSPGeneration | Open Energy Information

    Open Energy Info (EERE)

    CSP for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  12. Design guide for composite-material flywheels: rotor dyamic considerations. Part I. System whirling and stability. Final report

    SciTech Connect (OSTI)

    Bert, C.W.; Ramunujam, G.

    1981-09-01

    Information to designers of flywheels is provided which will enable them to predict many aspects of the dynamic behavior of their flywheel systems when spin-tested with a quill-shaft support and driven by an air turbine. Computer programs are presented for the following dynamic analysis to obtain the results indicated: free whirling for natural frequencies versus rotational speed and the associated mode shapes; rough-type stability analysis for determining the stability limits; and forced whirling analysis for estimating the response of major components of the system to flywheel mass eccentricity and initial tilt. For the first and third kinds of analyses, two different mathematical models of the generic system are investigated. One is a seven-degree-of-freedom lumped-parameter analysis, while the other is a combined distributed- and lumped-parameter analysis. When applied to an existing flywheel system, the two models yielded numerical values for the lowest first-order forward critical speed in very close agreement with each other and with experimental results obtained in spin tests. Therefore, for the second kind of analysis, only the lumped-parameter model is implemented. Qualitative discussions as to why forced retrograde whirling is not as severe as forward whirling are also presented. The analyses are applied to the multi-material ring type flywheel systems, a constant-thickness-diskring type, and a tapered-thickness-disk type. In addition, the effects of the following flywheel design parameters on system dynamics were investigated: flywheel mass; diametral and polar mass moments of inertia; location of mass center from the lower end of the quill shaft; quill shaft length; lower turbine-bearing support stiffness; equivalent viscous damping coefficient of the external damper; flywheel dead weight; and torque applied at the turbine.

  13. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh- Without New Dams

    Broader source: Energy.gov [DOE]

    $30.6 million Recovery Act investment by the Department of Energy highlights the additional potential of hydro power

  14. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, Thomas C. (Oakdale, CA)

    1999-01-01

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

  15. Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler

    DOE Patents [OSTI]

    Kuklo, T.C.

    1999-07-20

    A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

  16. Energy Smart Industrial: five years of enormous savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2.5 million kWh a year. JD Hisey, the plant's continuous improvement manager, says Energy Smart Industrial did more than just cut Fitesa's energy costs. "The new equipment reduced...

  17. Property:PotentialRuralUtilityScalePVGeneration | Open Energy...

    Open Energy Info (EERE)

    areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  18. Property:PotentialRooftopPVGeneration | Open Energy Information

    Open Energy Info (EERE)

    PV for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  19. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  20. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  1. Property:PotentialBiopowerSolidGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologies not identified, Wind (Small), Fuel Cells using Renewable Fuels Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yes; specific technologies not identified, Wind (Small), Anaerobic Digestion Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  8. CONTINUED HIGH PERFORMANCE ENERGY MANAGEMENT COMPANY Fitesa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington, which transforms polymer pellets into sheets of non-woven fiber for diapers, wipes and filters, had been consuming about 19 million kWh of energy annually....

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Cost Recovery Incentive Payment Program These multipliers result in production incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Wind (Small), Hydroelectric (Small) Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells using Renewable Fuels, Other Distributed Generation Technologies Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specific technologies not identified, Wind (Small), Anaerobic Digestion Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not identified, Wind (Small), Fuel Cells using Renewable Fuels Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumps Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Delmarva- Green Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  16. STEPHENTOWN SPINDLE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE STEPHENTOWN SPINDLE PROJECT SUMMARY In August 2010, the Department of Energy issued a $43 million loan guarantee to finance Stephentown Spindle, a flywheel energy storage project in Stephentown, New York. The loan guarantee agreement was restructured in March 2012, when Stephentown Spindle, LLC, a

  17. DLA Energy RFP - Deadline: August 19, 2013 - 12:00pm EST | OpenEI...

    Open Energy Info (EERE)

    picture Submitted by Jim.leyshon(5) Member 15 August, 2013 - 12:14 DLA Energy RFP (Sol. SPE600-13-R-0410) seeking 898,504,000 kWh of renewable energy certificates for...

  18. EECBG Success Story: Finding Six-Figure ROI from Energy Efficiency

    Broader source: Energy.gov [DOE]

    Huntington, New York is installing new energy efficient street lights to reduce the city's electricity use by 947,000 kWh, thanks to an Energy Efficiency and Conservation Block Grant. Learn more.

  19. TEP - Commercial EasySave Plus Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Varies Custom: 0.10kWh saved Summary The Commercial Energy Solutions EasySave Plus program (formerly known as the Large Business program) offers rebates to business...

  20. Renewable Energy Cost Recovery Incentive Payment Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    incentives ranging from 0.12 to 0.54kWh, capped at 5,000 per year. Ownership of the renewable-energy credits (RECs) associated with generation remains with the...

  1. Northwest Arctic Sustainable Energy Projects

    Energy Savers [EERE]

    Prov. Conference 2015 Northwest Arctic Sustainable Energy Projects * Efficient * Sustainable * Resilient & * Able to Adapt Whaling Crew Whale or Seal blubber lamp Energy Efficient Coordination 1900 - 1980 Oil for Power 2004 ACIA We are releasing energy into our environment that has been buried for millions of years. 30 years of Ice loss Low oil price NAB Fuel Prices September 9, 2015 Gasoline/G Stove Oil/G Propane/23G Kwh (1-500) KwH (500-700) Kotzebue $5.99 $5.65 $198.28 $0.18 $0.45 Ambler

  2. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  3. Energy Incentive Programs, Maine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maine Energy Incentive Programs, Maine Updated June 2015 What public purpose-funded energy efficiency programs are available in my state? Maine's restructuring law provides for energy efficiency programs through a statewide charge of up to 1.5 mills per kWh. These costs are included in the rates of the local electric distribution utilities. Nearly $25 million was spent in 2014 on electric and gas energy efficiency programs. These funds were augmented, starting in 2009, by Maine's portion of

  4. Opening Remarks, California Energy Commission Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 C A L I F O R N I A E N E R G Y C O M M I S S I O N * Pumped Hydro * Compressed Air Energy Storage (CAES) * Flywheels * Batteries (Na-S, Li-Ion, Redox Flow, etc.) * ...

  5. Energy storage options for space power

    SciTech Connect (OSTI)

    Hoffman, H.W.; Martin, J.F.; Olszewski, M.

    1985-01-01

    Including energy storage in a space power supply enhances the feasibility of using thermal power cycles (Rankine or Brayton) and providing high-power pulses. Review of storage options (superconducting magnets, capacitors, electrochemical batteries, thermal phase-change materials (PCM), and flywheels) suggests that flywheels and phase-change devices hold the most promise. Latent heat storage using inorganic salts and metallic eutectics offers thermal energy storage densities of 1500 to 2000 kJ/kg at temperatures to 1675/sup 0/K. Innovative techniques allow these media to operate in direct contact with the heat engine working fluid. Enhancing thermal conductivity and/or modifying PCM crystallization habit provide other options. Flywheels of low-strain graphite and Kevlar fibers have achieved mechanical energy storage densities of 300 kJ/kg. With high-strain graphite fibers, storage densities appropriate to space power needs (approx. 550 kJ/kg) seem feasible. Coupling advanced flywheels with emerging high power density homopolar generators and compulsators could result in electric pulse-power storage modules of significantly higher energy density.

  6. Entergy Arkansas - Small Business Energy Efficiency Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount Lighting and Lighting Controls: 0.21 per kWh Window Film: .35 per kWh Duct Sealing:.35 per kWh Ceiling Insulation: .35 per kWh Refrigeration:...

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  8. 2009 Template

    Energy Savers [EERE]

    Mike Strasik Flywheel Program Manager J R Hull, J A Mittleider, J F Gonder, P E Johnson, K E McCrary, and C R McIver 2009 Energy Storage Peer Review, October 8, Seattle, WA This work was supported by the U.S. Department of Energy/Sandia National Laboratories Energy Storage Program Contract 598172. Design, Fabrication, and Test of a 5 kWh Flywheel Energy Storage System Utilizing a High Temperature Superconducting Magnetic Bearing - Phase III Engineering, Operations & Technology | Boeing

  9. Fact Sheet: Wind Firming EnergyFarm (August 2013) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Firming EnergyFarm (August 2013) Fact Sheet: Wind Firming EnergyFarm (August 2013) Primus Power is deploying a 25 MW/75 MWh EnergyFarm(TM) in California's Central Valley, comprising an array of 20 kW EnergyCell flow batteries combined with off-the-shelf components and power electronics housed inside a standard shipping container. For more information about how OE performs research and development on a wide variety of storage technologies, including batteries, flywheels, electrochemical

  10. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  11. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  12. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  13. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  14. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  15. Bearing design for flywheel energy storage using high-TC superconductors

    DOE Patents [OSTI]

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  16. Energy Cost Calculator for Electric and Gas Water Heaters | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Electric and Gas Water Heaters Energy Cost Calculator for Electric and Gas Water Heaters Vary equipment size, energy cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to default value). Defaults Type of Water Heater Electric Gas Electric Average Daily Usage (gallons per day)* gallons 64* Energy Factor† 0.92 (electric) 0.61 (gas) Energy Cost $ / kWh $0.06 per kWh $.60 per therm Quantity of

  17. Fort Mojave Tribe - Renewable Energy Feasibility Study

    Energy Savers [EERE]

    Ft Mojave Renewable Energy Feasibility Russell Gum ERCC Analytics LLC russgum@mac.com The Bottom Line 8 cent or less per kWh This number has grown a bit since the beginning of the study due to Oil prices Renewable Energy legislation Increased concern about sustainability of energy supplies Short List Biodigester Wind Energy Crop Waste Concentrated Solar Very Short List Concentrated Solar Concentrated PV Ready for Prime Time? October 29, 2007 PRISM SOLAR TECHNOLOGIES, INC. WINS "MOST

  18. L EONARDO BELTRAN DEPUTY SECRETARY FOR PLANNING AND ENERGY TRANSITION OF MEXICO

    U.S. Energy Information Administration (EIA) Indexed Site

    L EONARDO BELTRAN DEPUTY SECRETARY FOR PLANNING AND ENERGY TRANSITION OF MEXICO MEXICAN ENERGY REFORM 2015 EIA ENERGY CONFERENCE JUNE 15, 2015 * AVERAGE DAILY IRRADIATION IN MEXICO IS ABOUT 5.5 KWH/M 2 /D, AND CAN REACH VALUES HIGHER THAN 8.5KWH/M 2 . ** STUDIES TO CHARACTERIZE THE WIND RESOURCE IN REGIONS OF THE ISTHMUS OF TEHUANTEPEC, THE PENINSULAS OF YUCATAN AND BAJA CALIFORNIA, AND THE NORTHERN REGION OF THE GULF OF MEXICO. *** GEOTHERMAL POTENTIAL BASED ON THE CENSUS OF MORE THAN 1,300

  19. Energy Efficiency UPgrades for Sanitation Facilities in Selawik, Alaska

    Energy Savers [EERE]

    for Sanitation Facilities in Selawik, Alaska DOE Program Review November 2011 Alaska Native Tribal Health Consortium Division of Environmental Health & Engineering Selawik Overview ● Anchorage Selawik Overview Selawik Overview Selawik Overview Selawik Overview: Energy Use & Costs l Electricity * FY 2010 $91,559 * Total = 337,829 kWh * Average = $0.271/kWh l Fuel * FY 2010 $38,902 * Total = 10,514 gal * Average = $3.70/gal l Heat Recovery * FY 2010 $7,688 * Total = 5,125 equiv. gal *

  20. Orange & Rockland Utils Inc | Open Energy Information

    Open Energy Info (EERE)

    kWh Commercial: 0.1230kWh Industrial: 0.0580kWh The following table contains monthly sales and revenue data for Orange & Rockland Utils Inc (New York). Scroll leftright to...

  1. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Schedules Grid-background.png Average Rates Residential: 0.1060kWh Commercial: 0.1120kWh Industrial: 0.0733kWh The following table contains monthly sales and revenue data...

  2. max kwh | OpenEI Community

    Open Energy Info (EERE)

    This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which...

  3. Freescale Semiconductor Successfully Implements an Energy Management System

    Broader source: Energy.gov [DOE]

    This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year.

  4. DOE Zero Energy Ready Home: Montlake Modern- Seattle, Washington

    Broader source: Energy.gov [DOE]

    This DOE Zero Energy Ready Home features structural insulated panel walls and roof, an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, and 9.7 kWh PV for electric car charging station.

  5. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect (OSTI)

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-based cycling within the company as well as throughout the industry.

  6. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  7. IRS Parking Facility Lighting Retrofit Reduces Annual Energy Use by 76%

    Broader source: Energy.gov [DOE]

    Document provides an overview of how the IRS and MC Realty Group, its property management firm, achieved a 76% reduction in lighting energy use at an IRS facility parking garage in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2 million kWh, annual cost savings of over $122,000, and a simple payback of 2.5 years.

  8. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

  9. DOE Global Energy Storage Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

  10. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOE Patents [OSTI]

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  11. City of Sidney, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Average Rates Residential: 0.1070kWh Commercial: 0.0878kWh Industrial: 0.0555kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from...

  12. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.2030kWh Commercial: 0.2160kWh Industrial: 0.1730kWh References "EIA Form EIA-861...

  13. City of Fort Collins, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Average Rates Residential: 0.0926kWh Commercial: 0.0737kWh Industrial: 0.0562kWh The following table contains monthly sales and revenue data for Fort Collins City...

  14. French perspective on diesel engines & emissions | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    | Department of Energy This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. PDF icon Freescale Semiconductor Successfully Implements an Energy Management System (June 2011) More Documents & Publications

  15. Case Study - The Challenge: Saving Energy at a Sewage Lift Station Through

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump System Modifications | Department of Energy Saving Energy at a Sewage Lift Station Through Pump System Modifications Case Study - The Challenge: Saving Energy at a Sewage Lift Station Through Pump System Modifications This case study explores how the City of Milford, Connecticut saved energy at the Welches Point sewage lift station. By adding a small booster pump to the sewage pumping system, the city reduced the station's annual energy consumption by 36,096 kWh, or more than 15

  16. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  17. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  18. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

  19. SEVIL | Open Energy Information

    Open Energy Info (EERE)

    Name: SEVIL Place: France Product: designs, develops and manufactures electricity storage flywheels. References: SEVIL1 This article is a stub. You can help OpenEI by...

  20. Microsoft Word - OE_Energy_Storage_Program_Plan_Feburary_2011v3[2].docx

    Energy Savers [EERE]

    Images-Front cover: 20MW Beacon Power flywheel storage facility; Ameren's 440MW pumped-hydro storage at Taum Sauk, Missouri. Back cover: 8MW SCE / A123 Lithium-ion storage at Tehachapi wind farm; 25MW Primus Power flow battery at Modesto, California; 110MW compressed air energy storage in McIntosh, Alabama. TABLE OF CONTENTS Executive Summary............................................................................................................. 1 1.0 Introduction to the OE Storage Program

  1. Project Profile: Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Systems

    Broader source: Energy.gov [DOE]

    Infinia, under the Thermal Storage FOA, is developing a thermal energy storage (TES) system that, when combined with Infinia's dish-Stirling system, can achieve DOE's CSP cost goals of $0.07/kWh by 2015 for intermediate power and 5¢/kWh by 2020 for baseload power.

  2. Pacific Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator Pacific Power Website http:www.pacificpower.netbusseepi.html State California Program Type Rebate Program Rebate Amount 0.12kWh-0.18kWh...

  3. NV Energy (Southern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  4. NV Energy (Northern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  5. Gwichyaa Zhee Gwich'in Tribal Government: Gwich'in Solar and Energy Efficiency in the Arctic

    Energy Savers [EERE]

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO March 26, 2014 Tony Peters - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in

  6. Aleutian Pribilof Islands Wind Feasibility and Energy Weatherization and Training

    Energy Savers [EERE]

    Aleutian Pribilof Islands Wind Feasibility and Energy Weatherization and Training Bruce Wright APIA Senior Scientist 2005 Wind Feasibility Studies: False Pass, Nikolski Sand Point, St. George, and Current Wind Energy Development Status Communities KwH Cost KwH (1,000,000) Diesel Demand (1,000 gals) KwHs Per Gallon King Cove 0.26 3.79 162 23 Akutan 0.32 0.52 44 12 Unalaska 0.36 34.48 2,194 16 False Pass 0.42 N/A N/A N/A St. Paul 0.46 4.59 389 12 Sand Point 0.52 4.03 317 13 AVERAGE 0.53 2.21 177

  7. Measured Energy Savings from the Application of Reflective Roofs in 3 AT and T Regeneration Buildings

    SciTech Connect (OSTI)

    Akbari, Hashen; Rainer, Leo

    2000-11-01

    Energy use and environmental parameters were monitored in three AT and T regeneration buildings during the summer of 2000. These buildings are constructed with concrete and are about 14.9 m2 (160 f2; 10x16 ft)in size. The buildings were initially monitored for about 1 1/2 months to establish a base condition. Then, the roofs of the buildings were painted with a white coating and the monitoring was continued. The original roof reflectances were about 26 percent; after the application of roof coatings the reflectivities increased to about 72 percent. In two of these buildings, we monitored savings of about 0.5kWh per day (8.6 kWh/m2 [0.8 kWh/ft2]). The third building showed a reduction in air-conditioning energy use of about 13kWh per day. These savings probably resulted from the differences in the performance (EER) of the two dissimilar AC units in this building. The estimated annual savings for two of the buildings are about 125kWh per year; at a cost of dollar 0.1/kWh, savings are about dollar 12.5 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote location of the buildings. However, since the prefabricated roofs are already painted green at the factory, painting them with white (reflective) color would bring no additional cost. Hence the payback time for having reflective roofs is nil, and the reflective roofs save an accumulated 370kWh over 30 years of the life of the roof.

  8. California Statewide PEV Infrastructure Assessment; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melaina, Marc; Eichman, Joshua

    2015-06-10

    This presentation discusses how the California Statewide Plug-In Electric Vehicle (PEV) Infrastructure Assessment provides a framework for understanding the potential energy (kWh) and demand (MW) impacts of PEV market growth; how PEV travel simulations can inform the role of public infrastructure in future market growth; and how ongoing assessment updates and Alternative Fuels Data Center outreach can help coordinate stakeholder planning and decision making and reduce uncertainties.

  9. Explore Solar Careers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Careers Explore Solar Careers The Solar Energy Technologies Office, through the national effort of the SunShot Initiative funds research and development, striving to make solar energy technologies fully cost-competitive with traditional energy sources by 2020. Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour (kWh). Since SunShot’s inception, the average price per

  10. Energy Cost Calculator for Faucets and Showerheads | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Faucets and Showerheads Energy Cost Calculator for Faucets and Showerheads Vary utility cost, hours of operation, and /or efficiency level. INPUT SECTION Input the following data (if any parameter is missing, calculator will set to the default value). Defaults Water Saving Product Faucet Showerhead Faucet Showerhead Flow Rate gpm 2.2 gpm 2.5 gpm Water Cost (including waste water charges) $/1000 gal $4/1000 gal $4/1000 gal Gas Cost $/therm 0.60 $/therm 0.60 $/therm Electricity Cost $/kWh 0.06

  11. Velkess Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Velkess Inc. Product: Start-up company developing a novel flywheel technology using a flexible rotor. References: Velkess Inc.1 This article...

  12. BPA Wins Platts Global Energy Award for Grid Optimization | Department of

    Energy Savers [EERE]

    of Energy BPA Headquarters Now "Gold Certified" for Sustainability BPA Headquarters Now "Gold Certified" for Sustainability January 10, 2013 - 11:33am Addthis BPA's efforts to incorporate sustainability into all aspects of its business were recently recognized with a local certification. Overall, the agency demonstrated a 445,000 kWh energy savings at its headquarters building. Joel Scruggs Public Affairs Specialist at the Bonneville Power Administration Who else is

  13. Hawaii Energy

    Broader source: Energy.gov [DOE]

    The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour ($/kWh) basis to meet the target budget. The surcharge ...

  14. LEDs for Interior Office Applications Webcast | Department of Energy

    Energy Savers [EERE]

    Energy LEDs and Specification for Parking Lots Lighten Energy Load LEDs and Specification for Parking Lots Lighten Energy Load March 5, 2013 - 11:17am Addthis At its Supercenter in Leavenworth, Kansas—the first site to implement the LED Site Lighting Specification—Walmart anticipates energy savings of over 125,000 kWh per year and a 30% reduction in maintenance costs. In addition to parking lot lights, LED bollard lights illuminate the pedestrian walkway. Credit: Walmart At its

  15. Gwich'in Solar and Energy Efficiency in the Arctic

    Energy Savers [EERE]

    Tribal Government Dept of Energy Tribal Energy Review Golden, CO May 7 th 2015 Tony Peter - GZGTG Tribal Council Member, Yukon Flats School District O&M Manager Dave P-M - Tanana Chiefs Conference, Rural Energy Coordinator Gwich'in Solar and Energy Efficiency in the Arctic Yukon Flats Yukon Flats Region: * Arctic Village * $10/gal * $.8/kWh * Venetie * Circle * Beaver * Stevens Village * Chalkyitsik * Birch Creek Gwichyaa Zhee Gwich'in Tribal Government (GZGTG) Gwichyaa Zhee Gwich'in Tribal

  16. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Years 11-20: retail electric rate 2014 Premium Rates: Solar: 0.04kWh Wind, Biomass, and Hydro: 0.03kWh Summary Note: Enrollment for 2015 was conducted from January 26th to...

  17. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption

    Broader source: Energy.gov [DOE]

    This case study describes a plant-wide energy assessment conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. The assessment focused on finding ways to reduce the plant's use of steam, electricity, compressed air, and water. Assessment recommendations had a potential total annual energy savings of about 9.6 million kWh for electricity and more than 338,000 MBtu for natural gas, with potential annual cost savings amounting to nearly $3.3 million.

  18. Sodium/sulfur battery engineering for stationary energy storage. Final report

    SciTech Connect (OSTI)

    Koenig, A.; Rasmussen, J.

    1996-04-01

    The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

  19. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national energy security by developing energy sources with limited impacts on environment ... Energy Engineering High Energy Density Plasmas, Fluids Information Science, ...

  20. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    SciTech Connect (OSTI)

    1994-12-31

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies.

  1. DOE Zero Energy Ready Home Case Study: Leganza Residence - Greenbank, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows.

  2. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  3. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Leganza Residence - Greenbank, Washington DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington Case study of a DOE Zero Energy Ready Home in Greenbank, Washington that scored HERS 37 without PV and a -5 with PV. This 1,955 ft2 custom home has 6.5-inch structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. PDF icon

  4. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  5. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Hitec Power Protection | Open Energy Information

    Open Energy Info (EERE)

    search Name: Hitec Power Protection Place: Almelo, Netherlands Zip: 7602 Product: UPS flywheel systems. References: Hitec Power Protection1 This article is a stub. You can help...

  9. Pentadyne Power Corporation | Open Energy Information

    Open Energy Info (EERE)

    Manufactures light, self-contained flywheels designed to provide a long lasting, low maintenance alternative to conventional batteries. Coordinates: 39.817671, -74.533983 Show...

  10. Solar Energy Technologies Office FY 2017 Budget At-A-Glance () | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect : Solar Energy Technologies Office FY 2017 Budget At-A-Glance Citation Details In-Document Search Title: Solar Energy Technologies Office FY 2017 Budget At-A-Glance The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility-scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will

  11. National Assessment of Energy Storage for Grid Balancing and Arbitrage: Phase 1, WECC

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Balducci, Patrick J.; Colella, Whitney G.; Elizondo, Marcelo A.; Jin, Chunlian; Nguyen, Tony B.; Viswanathan, Vilayanur V.; Zhang, Yu

    2012-06-01

    To examine the role that energy storage could play in mitigating the impacts of the stochastic variability of wind generation on regional grid operation, the Pacific Northwest National Laboratory (PNNL) examined a hypothetical 2020 grid scenario in which additional wind generation capacity is built to meet renewable portfolio standard targets in the Western Interconnection. PNNL developed a stochastic model for estimating the balancing requirements using historical wind statistics and forecasting error, a detailed engineering model to analyze the dispatch of energy storage and fast-ramping generation devices for estimating size requirements of energy storage and generation systems for meeting new balancing requirements, and financial models for estimating the life-cycle cost of storage and generation systems in addressing the future balancing requirements for sub-regions in the Western Interconnection. Evaluated technologies include combustion turbines, sodium sulfur (Na-S) batteries, lithium ion batteries, pumped-hydro energy storage, compressed air energy storage, flywheels, redox flow batteries, and demand response. Distinct power and energy capacity requirements were estimated for each technology option, and battery size was optimized to minimize costs. Modeling results indicate that in a future power grid with high-penetration of renewables, the most cost competitive technologies for meeting balancing requirements include Na-S batteries and flywheels.

  12. The Wide-area Energy Management System Phase 2 Final Report

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.

    2010-08-31

    The higher penetration of intermittent generation resources (including wind and solar generation) in the Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) balancing authorities (BAs) raises issue of requiring expensive additional fast grid balancing services in response to additional intermittency and fast up and down power ramps in the electric supply system. The overall goal of the wide-area energy management system (WAEMS) project is to develop the principles, algorithms, market integration rules, a functional design, and a technical specification for an energy storage system to help cope with unexpected rapid changes in renewable generation power output. The resulting system will store excess energy, control dispatchable load and distributed generation, and utilize inter-area exchange of the excess energy between the California ISO and Bonneville Power Administration control areas. A further goal is to provide a cost-benefit analysis and develop a business model for an investment-based practical deployment of such a system. There are two tasks in Phase 2 of the WAEMS project: the flywheel field tests and the battery evaluation. Two final reports, the Wide-area Energy Management System Phase 2 Flywheel Field Tests Final Report and the Wide-area Energy Storage and Management System Battery Storage Evaluation, were written to summarize the results of the two tasks.

  13. Measured energy savings from the application of reflective roofsin 2 small non-residential buildings

    SciTech Connect (OSTI)

    Akbari, Hashem

    2003-01-14

    Energy use and environmental parameters were monitored in two small (14.9 m{sup 2}) non-residential buildings during the summer of 2000. The buildings were initially monitored for about 1 1/2 months to establish a base condition. The roofs of the buildings were then painted with a white coating and the monitoring was continued. The original solar reflectivities of the roofs were about 26%; after the application of roof coatings the reflectivities increased to about 72%. The monitored electricity savings were about 0.5kWh per day (33 Wh/m2 per day). The estimated annual savings are about 125kWh per year (8.4 kWh/m2); at a cost of $0.1/kWh, savings are about $0.86/m2 per year. Obviously, it costs significantly more than this amount to coat the roofs with reflective coating, particularly because of the remote locations of these buildings. However, since the prefabricated roofs are already painted green at the factory, painting them a white (reflective) color would bring no additional cost. Hence, a reflective roof saves energy at no incremental cost.

  14. kWh Analytics: Quality Ratings for PV

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  15. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  16. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  17. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  18. ENERGY

    Energy Savers [EERE]

    U.S. Department of ENERGY Department of Energy Quadrennial Technology Review-2015 Framing Document http:energy.govqtr 2015-01-13 Page 2 The United States faces serious ...

  19. Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy /newsroom/_assets/images/energy-icon.png Energy Research into alternative forms of energy, and improving and securing the power grid, is a major national security imperative. Health Space Computing Energy Earth Materials Science Technology The Lab All Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  20. Cool roofs as an energy conservation measure for federal buildings

    SciTech Connect (OSTI)

    Taha, Haider; Akbari, Hashem

    2003-04-07

    We have developed initial estimates of the potential benefits of cool roofs on federal buildings and facilities (building scale) as well as extrapolated the results to all national facilities under the administration of the Federal Energy Management Program (FEMP). In addition, a spreadsheet ''calculator'' is devised to help FEMP estimate potential energy and cost savings of cool roof projects. Based on calculations for an average insulation level of R-11 for roofs, it is estimated that nationwide annual savings in energy costs will amount to $16M and $32M for two scenarios of increased roof albedo (moderate and high increases), respectively. These savings, corresponding to about 3.8 percent and 7.5 percent of the base energy costs for FEMP facilities, include the increased heating energy use (penalties) in winter. To keep the cost of conserved energy (CCE) under $0.08 kWh-1 as a nationwide average, the calculations suggest that the incremental cost for cool roofs should not exceed $0.06 ft-2, assuming that cool roofs have the same life span as their non-cool counterparts. However, cool roofs usually have extended life spans, e.g., 15-30 years versus 10 years for conventional roofs, and if the costs of re-roofing are also factored in, the cutoff incremental cost to keep CCE under $0.08 kWh-1 can be much higher. In between these two ends, there is of course a range of various combinations and options.

  1. Recovery Act: Integrated DC-DC Conversion for Energy-Efficient Multicore Processors

    SciTech Connect (OSTI)

    Shepard, Kenneth L

    2013-03-31

    In this project, we have developed the use of thin-film magnetic materials to improve in energy efficiency of digital computing applications by enabling integrated dc-dc power conversion and management with on-chip power inductors. Integrated voltage regulators also enables fine-grained power management, by providing dynamic scaling of the supply voltage in concert with the clock frequency of synchronous logic to throttle power consumption at periods of low computational demand. The voltage converter generates lower output voltages during periods of low computational performance requirements and higher output voltages during periods of high computational performance requirements. Implementation of integrated power conversion requires high-capacity energy storage devices, which are generally not available in traditional semiconductor processes. We achieve this with integration of thin-film magnetic materials into a conventional complementary metal-oxide-semiconductor (CMOS) process for high-quality on-chip power inductors. This project includes a body of work conducted to develop integrated switch-mode voltage regulators with thin-film magnetic power inductors. Soft-magnetic materials and inductor topologies are selected and optimized, with intent to maximize efficiency and current density of the integrated regulators. A custom integrated circuit (IC) is designed and fabricated in 45-nm CMOS silicon-on-insulator (SOI) to provide the control system and power-train necessary to drive the power inductors, in addition to providing a digital load for the converter. A silicon interposer is designed and fabricated in collaboration with IBM Research to integrate custom power inductors by chip stacking with the 45-nm CMOS integrated circuit, enabling power conversion with current density greater than 10A/mm2. The concepts and designs developed from this work enable significant improvements in performance-per-watt of future microprocessors in servers, desktops, and mobile devices. These new approaches to scaled voltage regulation for computing devices also promise significant impact on electricity consumption in the United States and abroad by improving the efficiency of all computational platforms. In 2006, servers and datacenters in the United States consumed an estimated 61 billion kWh or about 1.5% of the nation's total energy consumption. Federal Government servers and data centers alone accounted for about 10 billion kWh, for a total annual energy cost of about $450 million. Based upon market growth and efficiency trends, estimates place current server and datacenter power consumption at nearly 85 billion kWh in the US and at almost 280 billion kWh worldwide. Similar estimates place national desktop, mobile and portable computing at 80 billion kWh combined. While national electricity utilization for computation amounts to only 4% of current usage, it is growing at a rate of about 10% a year with volume servers representing one of the largest growth segments due to the increasing utilization of cloud-based services. The percentage of power that is consumed by the processor in a server varies but can be as much as 30% of the total power utilization, with an additional 50% associated with heat removal. The approaches considered here should allow energy efficiency gains as high as 30% in processors for all computing platforms, from high-end servers to smart phones, resulting in a direct annual energy savings of almost 15 billion kWh nationally, and 50 billion kWh globally. The work developed here is being commercialized by the start-up venture, Ferric Semiconductor, which has already secured two Phase I SBIR grants to bring these technologies to the marketplace.

  2. Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million

  3. Turtle Mountain Band of Chippewa Indians - Development of a Strategic Energy Plan

    Energy Savers [EERE]

    Department of Energy Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind Turkey Hill Dairy: Where Energy is Not Left Flapping in the Wind December 21, 2011 - 11:26am Addthis These two General Electric wind turbines, erected in January 2011 on the Frey Farm landfill adjacent to Turkey Hill Dairy's ice cream and sweet iced tea plant in Lancaster County, Penn., are expected to produce 7.5 million kWh of electricity annually. | Photo courtesy of Lancaster County Solid Waste

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot North- east Mid- west South West North- east Mid- west South West North- east Mid- west...

  5. Nicaragua: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    imported 63.95 million kWh from its neighbours Panama and Honduras.Nicaragua has no oil production; in 2001, its consumption was of 24,500 bblday. There is one oil refinery...

  6. Electric Energy Inc (Kentucky) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5748 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0355kWh...

  7. MHK Technologies/Manchester Bobber | Open Energy Information

    Open Energy Info (EERE)

    Floating mass connected to a ratcheting clutch, gearbox and flywheel to power an induction generator to generate electricity - Constant movement of the waves combined with the...

  8. EA-1631: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    loan guarantee to Beacon Power Corporation for construction and operation of a flywheel-based frequency regulation facility at an undeveloped seven acre site in Stephentown,...

  9. EA-1753: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Beacon Power Corporation Flywheel Frequency Regulation Plant, Chicago Heights, Illinois Based on the analyses in the environmental assessment (EA), DOE determined that its proposed...

  10. Piller Power Systems GmbH | Open Energy Information

    Open Energy Info (EERE)

    Germany Zip: 327520 Product: Manufacturer of high capacity dynamic and static UPS flywheel and converter systems. Coordinates: 53.695599, 19.973301 Show Map Loading map......

  11. Before the Senate Energy and Natural Resources Committee | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the United States Electricity Grid. May 2011 Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August 2013) DOEEPRI 2013 Electricity Storage Handbook...

  12. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering advisor C.Y. Wang - Battery and fuel cell research * Max Ripepi - Masters Engineering Mechanics advisor Charles Bakis - Self levitating flywheel design...

  13. Lighting system replacement brings energy costs down, light levels up

    SciTech Connect (OSTI)

    Radmer, D.J.

    1984-11-08

    The R.J. Frisby Mfg. Co. operates on three shifts and produces precision screw machine products for a variety of industries, including automotive, marine, machine tool, hydraulics and pneumatics, business machines, electrical and electronics, photography, and precision instruments. The required degree of manufacturing precision demands high light levels in manufacturing areas. When the 100,000 sq ft plant was built in 1973, mercury vapor lighting was installed consistent with the current state of the art for lighting such facilities. In the ensuing years, it became apparent that the soaring electric bills that came in the wake of the Arab oil embargo of 1973-74 would have to be controlled. Estimates by the U.S. Department of Energy indicated that electric energy costs were likely to rise by 160 percent over the next 10 yr. Based on this estimate, and the fact that lighting accounted for $70,000, or half of the annual electric bill, it was estimated that $900,000 to $1,000,000 would be spent for lighting energy over the next decade. The concern over the probability of rapidly escalating electrical costs was soon justified when, in three steps over one 12 mo period, the electric energy rate increased from $0.0305/kwh to $0.0416/kwh -more than a 36 percent increase. During that same period, the demand charge was raised in two steps from $3.75/kw to $4.85/kw --more than a 29 percent increase.

  14. Energy

    Office of Legacy Management (LM)

    ..) ".. _,; ,' . ' , ,; Depar?.me.nt ,of.' Energy Washington; DC 20585 : . ' , - $$ o"\ ' ~' ,' DEC ?;$ ;y4,,, ~ ' .~ The Honorable John Kalwitz , 200 E. Wells Street Milwaukee, W~isconsin 53202, . . i :. Dear,Mayor 'Kalwitz: " . " Secretary of Energy Hazel' O'Leary has announceha new,approach 'to,openness in " the Department of Ene~rgy (DOE) and its communications with'the public. In -. support of~this initiative, we areipleased to forward the enclosed information

  15. Fact Sheet: Award-Winning Silicon Carbide Power Electronics ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including batteries, flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems, visit the Energy Storage page. ...

  16. Techni-Cast: Foundry Saves Energy with Compressed Air System Retrofit

    SciTech Connect (OSTI)

    none,

    2004-03-01

    In 2002, Techni-Cast improved its compressed air system at its foundry in Southgate, California. The project allowed the foundry to reduce its compressor capacity by 50%, which greatly reduced the foundry's energy and maintenance costs. The annual energy and maintenance savings from the project implementation are 242,000 kWh and $24,200, and the project's cost was $38,000. Because the plant received a $10,000 incentive payment from the California Public Utilities Commission, the total project cost was reduced to $28,000, yielding a 14-month simple payback.

  17. Energy efficiency study of single-wide manufactured homes

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Andrews, G.J.; Stovall, T.K.; Kelly, T.

    1999-12-01

    This Cooperative Research and Development Agreement (CRADA) was among Tennessee Technological University, Clayton Homes, Inc., and Oak Ridge National Laboratory (ORNL). Manufactured homes now make up a substantial portion of the new home market, and improving the energy efficiency of these homes would save significant amounts of energy. This project explored the impact of differing levels of attic insulation, the use of evacuated insulation panels, and the application of a solar reflective roof coating. The performance of the installed roof cavity insulation compared favorably with that predicted by laboratory measurements. The more heavily insulated of the two units used about 30% less energy over the period of the project than the standard unit. Based on the experimental data, computer simulations for nine cities were completed for a single-wide manufactured home with the solar reflective roof coating. Annual electric power savings ranged from 894 kWh in Rapid City to 2119 kWh for the same roof area in Los Angeles. The field performance of vacuum insulation panels was compared with laboratory performance. The panels will perform as expected if protected from puncture.

  18. Energy

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    M onthly Energy Re< view Ila A a m 0 II 8 IIIW *g U In this issue: New data on nuclear electricity in Eastern Europe (Table 10.4) 9'Ij a - Ordering Information This publication...

  19. TVA - Solar Solutions Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee Valley Authority Website http:www.tva.comrenewablestandardofferssi.htm State Virginia Program Type Performance-Based Incentive Rebate Amount 0.04 kWh for 10...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat Pumps, Programmable Thermostats, Other EE Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production,...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings...

  2. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  3. Rim for rotary inertial energy storage device and method

    DOE Patents [OSTI]

    Knight, Jr., Charles E. (Knoxville, TN); Pollard, Roy E. (Powell, TN)

    1980-01-01

    The present invention is directed to an improved rim or a high-performance rotary inertial energy storage device (flywheel). The improved rim is fabricated from resin impregnated filamentary material which is circumferentially wound in a side-by-side relationship to form a plurality of discretely and sequentially formed concentric layers of filamentary material that are bound together in a resin matrix. The improved rim is provided by prestressing the filamentary material in each successive layer to a prescribed tension loading in accordance with a predetermined schedule during the winding thereof and then curing the resin in each layer prior to forming the next layer for providing a prestress distribution within the rim to effect a self-equilibrating compressive prestress within the windings which counterbalances the transverse or radial tensile stresses generated during rotation of the rim for inhibiting deleterious delamination problems.

  4. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    1 Buildings Sector Water Consumption March 2012 8.1.2 Average Energy Intensity of Public Water Supplies by Location (kWh per Million Gallons) Location United States (2) 627 437 1,363 United States (3) 65 (6) 1,649 Northern California Indoor 111 1,272 1,911 Northern California Outdoor 111 1,272 0 Southern California Indoor (5) 111 1,272 1,911 Southern California Outdoor 111 1,272 0 Iowa (6) 380 1,570 Massachusetts (6) (6) 1,750 Wisconsin Class AB (4) - - Wisconsin Class C (4) - - Wisconsin Class

  5. Buildings Energy Data Book: 8.1 Buildings Sector Water Consumption

    Buildings Energy Data Book [EERE]

    3 Energy Use of Wastewater Treatment Plants by Capacity and Treatment Level (kWh per Million Gallons) 1 - 5 - 10 - 20 - 50 - 100 - Note(s): Source(s): 673 1,028 1,188 1,558 The level of treatment indicates the amount of processing involved before water is released from the treatment facility. Primary treatment removes solids and oils from wastewater. Secondary treatment uses biological processes to remove organic material from the water. Tertiary treatment includes additional processes to

  6. Camp Pendleton Saves 91% in Parking Lot Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Camp Pendleton Saves 91% in Parking Lot Lighting Camp Pendleton Saves 91% in Parking Lot Lighting Case study describes how Camp Pendleton Marine Corps Base replaced high-pressure sodium (HPS) fixtures in one parking lot with high-efficiency induction fixtures for 91% savings in energy use and $5,700 in cost savings annually. This parking lot is estimated to have a simple payback of 2.9 years. Sitewide up-grades yielded annual savings of 1 million kWh. PDF icon Download the Camp Pendleton case

  7. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States

  8. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 977,338 40 22 5,357 21

  9. Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 End Uses of Fuel Consumption, 2006; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION

  10. DOE Zero Energy Ready Home Case Study: Near Zero Maine Home II - Vassalboro, Maine

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready home in Vassalboro, Maine, that scored HERS 35 without PV and HERS 11 with PV. This 1,200 ft2 home has 10.5-inch-thick double-walls with 3 layers of mineral wool batt insulation, an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows.

  11. DOE Zero Energy Ready Home Case Study: Montlake Modern - Seattle, Washington

    SciTech Connect (OSTI)

    none,

    2014-11-01

    This case study describes a DOE Zero Energy Ready Home in Seattle, WA, that scored HERS 42 without PV and a -1 with PV. This 3,192 ft2 custom home has 6-inch SIP walls, a 12-inch SIP roof, an R-28 ICF-insulated foundation slab edge with R-20 rigid foam under the slab; an air-to-water heat pump plus radiant floor heat; 100% LED lighting; filtered-fan-powered fresh air intake; triple-pane windows, 9.7 kWh PV for electric car charging station.

  12. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dr. Michael Strasik

    2007-06-29

    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  13. Active Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Austin, Texas Zip: 78758 Product: Austin-based designer and manufacturer of battery-free power storage products using flywheels. Coordinates: 30.267605, -97.742984 Show Map...

  14. Power Tree Corp | Open Energy Information

    Open Energy Info (EERE)

    Tree Corp Place: Boca Raton, Florida Zip: 33487 Product: Florida-based flywheel power storage systems maker. References: Power Tree Corp1 This article is a stub. You can help...

  15. Energy efficiency at the University of Miami

    SciTech Connect (OSTI)

    Atherton, V.; Anzoategui, F.

    1996-07-01

    The University of Miami (UM) has embarked on a very important and worthwhile mission: ``To make UM one of the most energy efficient universities in the nation by the year 2000``. In order for the University to meet this goal the authors knew they would need to take advantage of all the available technologies and address the freon issues. In June 1990 the Coral Gables Campus had five chilled Water Production Plants, each representing small independent systems serving from four to ten buildings. Because of energy conservation measures of the past, each plant had excess capacity. At that time they also had identified about 600 tons of old falling-apart air conditioning equipment. The Capital Construction Program was beginning design efforts for a new Music Recital Hall and an addition to the Law Library. With all this considered it made sense to develop a common chilled water loop to connect these plants and provide a vehicle to capitalize on available capacity. In early 1991 Florida Power and Light offered a new CILC rate with criteria that the chilled water plants met. It allowed them to produce air conditioning at 5.8 cents a kWh, compared to 7.5 cents a kWh, at the buildings. This, added to the reality of not having to maintain or replace the old systems, made this the number 1 priority project. They were convinced that this could give them a competitive edge over other institutions because it insured that they could produce air conditioning at the least cost per square foot.

  16. NAS battery demonstration at American Electric Power:a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Newmiller, Jeff; Norris, Benjamin L. (Norris Energy Consulting Company, Martinez, CA); Peek, Georgianne Huff

    2006-03-01

    The first U.S. demonstration of the NGK sodium/sulfur battery technology was launched in August 2002 when a prototype system was installed at a commercial office building in Gahanna, Ohio. American Electric Power served as the host utility that provided the office space and technical support throughout the project. The system was used to both reduce demand peaks (peak-shaving operation) and to mitigate grid power disturbances (power quality operation) at the demonstration site. This report documents the results of the demonstration, provides an economic analysis of a commercial sodium/sulfur battery energy storage system at a typical site, and describes a side-by-side demonstration of the capabilities of the sodium/sulfur battery system, a lead-acid battery system, and a flywheel-based energy storage system in a power quality application.

  17. Strategic Energy LLC (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 18193 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0729kWh...

  18. Constellation NewEnergy, Inc (District of Columbia) | Open Energy...

    Open Energy Info (EERE)

    861 Data Utility Id 13374 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0937kWh...

  19. Texas Retail Energy, LLC (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 50046 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0507kWh...

  20. MxEnergy Electric, Inc. (Pennsylvania) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 50149 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0819kWh...

  1. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  2. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 5.3 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS for Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Code(a) End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons)

  3. SunShot Summit to be Featured in May 7th #SolarChat | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to be Featured in May 7th #SolarChat SunShot Summit to be Featured in May 7th #SolarChat March 28, 2014 - 2:39pm Addthis Did you know that more than half of all solar cell efficiency records have been directly funded by the U.S. Department of Energy (DOE)? Only three years into the Department's decade-long SunShot Initiative, the solar industry is already more than 60% of the way to achieving SunShot's aggressive cost targets -$0.06 per kilowatt hour (kWh) for utility-scale PV solar electricity

  4. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  5. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  6. Property:Incentive/QuantNotes | Open Energy Information

    Open Energy Info (EERE)

    kWh if offsetting electric water heater or 60 therms if the offsetting natural gas or propane. California Solar Initiative - Solar Thermal Program (California) + This program...

  7. Evaluation of Savings in Energy-Efficient Public Housing in the Pacific Northwest

    SciTech Connect (OSTI)

    2013-10-01

    This report presents the results of an energy performance and cost-effectiveness analysis. The Salishan phase 7 and demonstration homes were compared to Salishan phase 6 homes built to 2006 Washington State Energy Code specifications 2. Predicted annual energy savings (over Salishan phase 6) was 19% for Salishan phase 7, and between 19-24% for the demonstration homes (depending on ventilation strategy). Approximately two-thirds of the savings are attributable to the DHP. Working with the electric utility provider, Tacoma Public Utilities, researchers conducted a billing analysis for Salishan phase 7. Median energy use for the development is 11,000 kWh; annual energy costs are $780, with a fair amount of variation dependent on size of home. Preliminary analysis of savings between Salishan 7 and previous phases (4 through 6) suggest savings of between 20 and 30 percent. A more comprehensive comparison between Salishan 7 and previous phases will take place in year two of this project.

  8. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  9. Form EIA-860M MONTHLY UPDATE TO ANNUAL ELECTRIC GENERATOR REPORT

    Gasoline and Diesel Fuel Update (EIA)

    ... Prime Mover Code Description BA Energy Storage, Battery CE Energy Storage, Compressed Air CP Energy Storage, Concentrated Solar Power FW Energy Storage, Flywheel ES Energy Storage, ...

  10. Guest Editorial: Electric Machines in Renewable Energy Applications

    SciTech Connect (OSTI)

    Aliprantis, Dionysios; El-Sharkawi, Mohamed; Muljadi, Eduard; Brown, Ian; Chiba, Akira; Dorrell, David; Erlich, Istvan; Kerszenbaum, Isidor; Levi, Emil; Mayor, Kevin; Mohammed, Osama; Papathanassiou, Stavros; Popescu, Mircea; Qiao, Wei; Wu, Dezheng

    2015-12-01

    The main objective of this special issue is to collect and disseminate publications that highlight recent advances and breakthroughs in the area of renewable energy resources. The use of these resources for production of electricity is increasing rapidly worldwide. As of 2015, a majority of countries have set renewable electricity targets in the 10%-40% range to be achieved by 2020-2030, with a few notable exceptions aiming for 100% generation by renewables. We are experiencing a truly unprecedented transition away from fossil fuels, driven by environmental, energy security, and socio-economic factors.Electric machines can be found in a wide range of renewable energy applications, such as wind turbines, hydropower and hydrokinetic systems, flywheel energy storage devices, and low-power energy harvesting systems. Hence, the design of reliable, efficient, cost-effective, and controllable electric machines is crucial in enabling even higher penetrations of renewable energy systems in the smart grid of the future. In addition, power electronic converter design and control is critical, as they provide essential controllability, flexibility, grid interface, and integration functions.

  11. Bayer Polymers: Plant Identifies Numerous Projects Following Plant-Wide Energy-Efficient Assessment

    SciTech Connect (OSTI)

    2003-08-01

    The Bayer Corporation undertook a plant-wide energy efficiency assessment of its New Martinsville, West Virginia, plant in 2001. The objectives were to identify energy saving projects in the utilities area. The projects, when complete, will save the company the loss of an estimated 236,000 MMBtu ($1.16 million) annually in energy from burning and leaking fossil fuels. Certain other projects will save the company 6,300,000 kWh ($219,000) of electrical energy each year. All of the projects could be duplicated in other chemical manufacturing facilities and most of the projects could be duplicated in other industries utilizing steam, pumps, and/or compressed air.

  12. Southern company energy storage study : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Ellison, James; Bhatnagar, Dhruv; Black, Clifton; Jenkins, Kip

    2013-03-01

    This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

  13. The CUNY Energy Institute Electrical Energy Storage Development for Grid Applications

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2013-03-31

    1. Project Objectives The objectives of the project are to elucidate science issues intrinsic to high energy density electricity storage (battery) systems for smart-grid applications, research improvements in such systems to enable scale-up to grid-scale and demonstrate a large 200 kWh battery to facilitate transfer of the technology to industry. 2. Background Complex and difficult to control interfacial phenomena are intrinsic to high energy density electrical energy storage systems, since they are typically operated far from equilibrium. One example of such phenomena is the formation of dendrites. Such dendrites occur on battery electrodes as they cycle, and can lead to internal short circuits, reducing cycle life. An improved understanding of the formation of dendrites and their control can improve the cycle life and safety of many energy storage systems, including rechargeable lithium and zinc batteries. Another area where improved understanding is desirable is the application of ionic liquids as electrolytes in energy storage systems. An ionic liquid is typically thought of as a material that is fully ionized (consisting only of anions and cations) and is fluid at or near room temperature. Some features of ionic liquids include a generally high thermal stability (up to 450 °C), a high electrochemical window (up to 6 V) and relatively high intrinsic conductivities. Such features make them attractive as battery or capacitor electrolytes, and may enable batteries which are safer (due to the good thermal stability) and of much higher energy density (due to the higher voltage electrode materials which may be employed) than state of the art secondary (rechargeable) batteries. Of particular interest is the use of such liquids as electrolytes in metal air batteries, where energy densities on the order of 1-2,000 Wh / kg are possible; this is 5-10 times that of existing state of the art lithium battery technology. The Energy Institute has been engaged in the development of flow-assisted nickel zinc battery technology. This technology has the promise of enabling low-cost (<$250 / kWh) energy storage, while overcoming the historical poor cycle-life drawback. To date, the results have been promising, with a cycle life of 1,500 cycles demonstrated in small laboratory cells – an improvement of approximately 400%. Prior state of the art nickel zinc batteries have only demonstrated about 400 cycles to failure.

  14. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  15. On the Use of Energy Storage Technologies for Regulation Services in Electric Power Systems with Significant Penetration of Wind Energy

    SciTech Connect (OSTI)

    Yang, Bo; Makarov, Yuri V.; DeSteese, John G.; Vishwanathan, Vilanyur V.; Nyeng, Preben; McManus, Bart; Pease, John

    2008-05-27

    Energy produced by intermittent renewable resources is sharply increasing in the United States. At high penetration levels, volatility of wind power production could cause additional problems for the power system balancing functions such as regulation. This paper reports some partial results of a project work, recently conducted by the Pacific Northwest National Laboratory (PNNL) for Bonneville Power Administration (BPA). The project proposes to mitigate additional intermittency with the help of Wide Area Energy Management System (WAEMS) that would provide a two-way simultaneous regulation service for the BPA and California ISO systems by using a large energy storage facility. The paper evaluates several utility-scale energy storage technology options for their usage as regulation resources. The regulation service requires a participating resource to quickly vary its power output following the rapidly and frequently changing regulation signal. Several energy storage options have been analyzed based on thirteen selection criteria. The evaluation process resulted in the selection of flywheels, pumped hydro electric power (or conventional hydro electric power) plant and sodium sulfur or nickel cadmium batteries as candidate technologies for the WAEMS project. A cost benefit analysis should be conducted to narrow the choice to one technology.

  16. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  17. Department of Energy and Beacon Power Finalize $43 Million Loan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... a 20 megawatt flywheel-based frequency regulation plant will reduce carbon dioxide emissions up to 82 percent over its 20-year life compared to a coal, gas or pumped hydro plant. ...

  18. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  19. Economic Analysis Case Studies of Battery Energy Storage with SAM

    SciTech Connect (OSTI)

    DiOrio, Nicholas; Dobos, Aron; Janzou, Steven

    2015-11-01

    Interest in energy storage has continued to increase as states like California have introduced mandates and subsidies to spur adoption. This energy storage includes customer sited behind-the-meter storage coupled with photovoltaics (PV). This paper presents case study results from California and Tennessee, which were performed to assess the economic benefit of customer-installed systems. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued. Different dispatch strategies, including manual scheduling and automated peak-shaving were explored to determine ideal ways to use the storage system to increase the system value and mitigate demand charges. Incentives, complex electric tariffs, and site specific load and PV data were used to perform detailed analysis. The analysis was performed using the free, publically available System Advisor Model (SAM) tool. We find that installation of photovoltaics with a lithium-ion battery system priced at $300/kWh in Los Angeles under a high demand charge utility rate structure and dispatched using perfect day-ahead forecasting yields a positive net-present value, while all other scenarios cost the customer more than the savings accrued.

  20. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  1. The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop

    SciTech Connect (OSTI)

    Gordon, S.P.; Falcone, P.K.

    1995-06-01

    This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

  2. Rhode Island Renewable Energy Fund (RIREF)

    Broader source: Energy.gov [DOE]

    Rhode Island's PBF is supported by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at $0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Initiative The program offers performance based incentive of 0.04kWh for the first 10 years after the project is operational. This incentive is additional to the seasonal...

  4. Energy Department Recognizes Organizations for Leadership in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Arby's Restaurant Group, Inc. made 238 high-efficiency RTU replacements across 900 stores, resulting in an estimated savings of 1.4 million kWh, worth 140,000 annually. It's the ...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    paid based on the kW and kWh saved and verified through a measurement and verification process. However, certain types of improvement projects have been assigned pre-determined...

  7. Renewables Portfolio Goal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the kWh attributable to nuclear power plants, demand-side management measures, and fossil fuel power plants that sequester their carbon emissions. For example, if a utility has...

  8. Photovoltaics Research and Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The figure below illustrates different technology pathways to reaching the SunShot goal of 0.06kWh for subsidy-free utility-scale solar power. All points on the iso-LCOE curves ...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mandatory Photovoltaic System Cost Estimate If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to...

  10. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Power Providers program contract term is 20 years. For years 1-10, TVA will purchase 100% of the output from qualifying systems at a premium of 0.02** per kilowatt-hour (kWh)...

  11. AEP (SWEPCO) - Residential Energy Efficiency Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    CLEAResult Consulting Website http:www.swepcogridsmart.comtexashomes-overview.html State Texas Program Type Rebate Program Rebate Amount Standard: 280kW, 0.09kWh...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility:...

  13. Florida Power & Light Co. | Open Energy Information

    Open Energy Info (EERE)

    was awarded 200,000,000 Recovery Act Funding with a total project value of 578,347,232. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    individual customers, and retail electric providers. Generally, incentives are paid based on the kW and kWh saved and verified through a measurement and verification process....

  15. Morris Cogeneration LLC | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 54755 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0336kWh...

  16. University of Illinois | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 19528 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1470kWh...

  17. Coral Power LLC (Washington) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4410 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0221kWh...

  18. Winner Municipal Utility | Open Energy Information

    Open Energy Info (EERE)

    Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  19. Energy conserving site design: Greenbrier case study, Chesapeake, Virginia. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    A specific case study of project planning for energy conservation for a major planned unit development at the 3000-acre Greenbrier development site in Chesapeake, Virginia, is summarized. The research suggests that very considerable reductions in energy conservation can be achieved within the confines of private-sector land development and residential construction with increased incremental costs of $200.00 to $3150.00 per dwelling unit. It is hypothesized that energy consumption at Greenbrier can be reduced by one-half with an average annual savings of 21,275 kWh per residential unit, using state-of-the-art technology with careful planning and control. This represents an annual savings $750.00 per unit at the current utility rate of 3.5 cents per kWh. These savings can be achieved through reduction in heating and cooling loads and application of more-efficient heating and cooling of the remaining loads. The reduction in loads are achieved by redesign of the land plan to include a higher percentage of south-facing lots, use of vegetation to modify microclimate, decreases in air infiltration, the use of 2 x 6 framing, better insulation, and the use of an insulated slab-on-grade foundation. Further energy savings can be expected by increased efficiencies in mechanical systems used for space heating and cooling and domestic hot water. When applied to the single-family portion of Greenbrier, containing 541 dwelling units, these options reduce the total end-use energy consumption 54.7%. This reduction represents an annual savings of $432,800.00 for an initial capital investment of $1.7 million.

  20. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Source(s): Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of

  1. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    SciTech Connect (OSTI)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oil and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.

  2. Energy requirements of the switchable polarity solvent forward osmosis (SPS-FO) water purification process

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wendt, Daniel S.; Orme, Christopher J.; Mines, Gregory L.; Wilson, Aaron D.

    2015-08-01

    A model was developed to estimate the process energy requirements of a switchable polarity solvent forward osmosis (SPS FO) system for water purification from aqueous NaCl feed solution concentrations ranging from 0.5 to 4.0 molal at an operational scale of 480 m3/day (feed stream). The model indicates recovering approximately 90% of the water from a feed solution with NaCl concentration similar to seawater using SPS FO would have total equivalent energy requirements between 2.4 and 4.3 kWh per m3 of purified water product. The process is predicted to be competitive with current costs for disposal/treatment of produced water from oilmore » and gas drilling operations. As a result, once scaled up the SPS FO process may be a thermally driven desalination process that can compete with the cost of seawater reverse osmosis.« less

  3. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect (OSTI)

    Hadley, SW

    2003-12-10

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  4. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will exceed this initial performance estimates. In advancing the Technology Readiness Level (TRL) of this type of wave energy converter from 3 to 4, we find the CycWEC to exceed our initial estimates in terms of hydrodynamic performance. Once fully developed and optimized, it has the potential to not just outperform all other WEC technologies, but to also deliver power at a lower LCOE than competing conventional renewables like wind and solar. Given the large wave power resource both domestically and internationally, this technology has the potential to lead to a large improvement in our ability to produce clean electricity at affordable cost.

  5. Energy Systems High Pressure Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems High Pressure Test Laboratory at the Energy Systems Integration Facility. The purpose of the Energy Systems High Pressure Test Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to provide space where high pressure hydrogen components can be safely tested. High pressure hydrogen storage is an integral part of energy storage technology for use in fuel cell and in other distributed energy scenarios designed to effectively utilize the variability inherent with renewable energy sources. The high pressure storage laboratory is co-located with energy storage activities such as ultra-capacitors, super conducting magnetic flywheel and mechanical energy storage systems laboratories for an integrated approach to system development and demonstration. Hazards associated with hydrogen storage at pressures up to 10,000 psi include oxygen displacement, combustion, explosion, and pressurization of room air due to fast release and physical hazards associated with burst failure modes. A critical understanding of component failure modes is essential in developing reliable, robust designs that will minimize failure risk beyond the end of service life. Development of test protocol for accelerated life testing to accurately scale to real world operating conditions is essential for developing regulations, codes and standards required for safe operation. NREL works closely with industry partners in providing support of advanced hydrogen technologies. Innovative approaches to product design will accelerate commercialization into new markets. NREL works with all phases of the product design life cycle from early prototype development to final certification testing. High pressure tests are performed on hydrogen components, primarily for the validation of developing new codes and standards for high pressure hydrogen applications. The following types of tests can be performed: Performance, Component and system level efficiency, Strength of materials and hydrogen compatibility, Safety demonstration, Model validation, and Life cycle reliability.

  6. Soboba Band of Luiseno Indians

    Office of Environmental Management (EM)

    Meter 2 16) S.W. 1 oaks Energy Evaluation Energy Consumption Planning Areas & Meters 2 Year kwh Usage Average Annual kwh Usage MW DC PV Size For 100% Offset MW AC PV Size For ...

  7. Soboba Band of Luiseno Indians

    Office of Environmental Management (EM)

    Oaks Meter 2 16) S.W. 1 oaks Energy Evaluation Energy Consumption Planning Areas & Meters 2 Year kwh Usage Average Annual kwh Usage MW DC PV Size For 100% Offset MW AC PV ...

  8. California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    PV 246,008 GWh246,008,000,000 kWh 246,008,000,000,000 Wh 246,008,000 MWh 8.856288e+17 J 111 GW111,000 MW 111,000,000 kW 111,000,000,000 W 111,000,000,000,000 mW 0.111 TW 2,320...

  9. Compact portable electric power sources (Technical Report) |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIND TURBINES; FLYWHEEL ENERGY STORAGE; MICRO-SCALE HYDROELECTRIC POWER PLANTS; PIEZOELECTRICITY; RADIOISOTOPE BATTERIES NESDPS Office of Nuclear Energy Space and Defense Power ...

  10. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  11. CX-012519: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  12. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  13. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, News, News & Events, Renewable Energy, Systems Analysis, Systems Engineering,...

  14. United States Wind Energy Growth and Policy Framework: Preprint

    SciTech Connect (OSTI)

    Calvert, S. D.; Hock, S. M.

    2001-07-01

    Wind is the fastest growing source for electricity in the United States. During 2001, U.S. wind power plant installations are expected to increase by 1,850 megawatts (MW), resulting in a total installed capacity of about 4,400 MW. The market expansion is supported by a variety of Federal and state incentives in the form of production tax credits, renewable energy production incentives, renewable energy portfolio standards, and others. New mechanisms include green power offerings, green tags, and government power purchases. Deregulation of the electric power industry is continuing. In some cases this is allowing higher electricity rates that may increase the rate of wind plant development. Power shortages, natural gas price increases, and enforcement of clean air laws are increasingly important wind market drivers in some regions. Continuing research and technology development has reduced wind energy costs dramatically to less than $0.04/kWh for large projects at sites with ave rage wind speeds higher than 7.0 m/s, making wind the least-cost option in some power markets. The recently published National Energy Policy contains recommendations to increase wind energy development and improve the power transmission system.

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open...

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building...

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open...

    Open Energy Info (EERE)

    + 49.0472118426 + Sweden Building 05K0023 + 125.55033781 + Sweden Building 05K0024 + 100.666666667 + Sweden Building 05K0025 + 99.0384615385 + (previous 25) (next 25)...

  17. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  18. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  19. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open...

    Open Energy Info (EERE)

    + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open...

    Open Energy Info (EERE)

    + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 +...

  1. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open...

    Open Energy Info (EERE)

    + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  2. Comprehensive Renewable Energy Feasibility Study for the Makah Indian Tribe

    SciTech Connect (OSTI)

    RobertLynette; John Wade; Larry Coupe

    2005-03-31

    The purpose of this project was to determine the technical feasibility, economic viability, and potential impacts of installing and operating a wind power station and/or small hydroelectric generation plants on the Makah reservation. The long-term objective is to supply all or a portion of Tribe's electricity from local, renewable energy sources in order to reduce costs, provide local employment, and reduce power outages. An additional objective was for the Tribe to gain an understanding of the requirements, costs, and benefits of developing and operating such plants on the reservation. The Makah Indian Reservation, with a total land area of forty-seven square miles, is located on the northwestern tip of the Olympic Peninsula in Washington State. Four major watersheds drain the main Reservation areas and the average rainfall is over one hundred inches per year. The reservation's west side borders the Pacific Ocean, but mostly consists of rugged mountainous terrain between 500 and 1,900 feet in elevation. Approximately 1,200 tribal members live on the Reservation and there is an additional non-Indian residential population of about 300. Electric power is provided by the Clallam County PUD. The annual usage on the reservation is approximately 16,700 mWh. Project Work Wind Energy--Two anemometer suites of equipment were installed on the reservation and operated for a more than a year. An off-site reference station was identified and used to project long-term wind resource characteristics at the two stations. Transmission resources were identified and analyzed. A preliminary financial analysis of a hypothetical wind power station was prepared and used to gauge the economic viability of installation of a multi-megawatt wind power station. Small Hydroelectric--Two potential sites for micro/small-hydro were identified by analysis of previous water resource studies, topographical maps, and conversations with knowledgeable Makah personnel. Field trips were conducted to collect preliminary site data. A report was prepared by Alaska Power & Telephone (Larry Coupe) including preliminary layouts, capacities, potential environmental issues, and projected costs. Findings and Conclusions Wind Energy The average wind resources measured at both sites were marginal, with annual average wind speeds of 13.6-14.0 mph at a 65-meter hub height, and wind shears of 0.08-0.13. Using GE 1.5 MW wind turbines with a hub height of 65 meters, yields a net capacity factor of approximately 0.19. The cost-of-energy for a commercial project is estimated at approximately 9.6 cents per kWh using current costs for capital and equipment prices. Economic viability for a commercial wind power station would require a subsidy of 40-50% of the project capital cost, loans provided at approximately 2% rate of interest, or a combination of grants and loans at substantially below market rates. Recommendations: Because the cost-of-energy from wind power is decreasing, and because there may be small pockets of higher winds on the reservation, our recommendation is to: (1) Leave one of the two anemometer towers, preferably the 50-meter southern unit MCC, in place and continue to collect data from this site. This site would serve as an excellent reference anemometer for the Olympic Peninsula, and, (2) If funds permit, relocate the northern tower (MCB) to a promising small site closer to the transmission line with the hope of finding a more energetic site that is easier to develop. Small Hydroelectric There are a very limited number of sites on the reservation that have potential for economical hydroelectric development, even in conjunction with water supply development. Two sites emerged as the most promising and were evaluated: (1) One utilizing four creeks draining the north side of the Cape Flattery peninsula (Cape Creeks), and (2) One on the Waatch River to the south of Neah Bay. The Cape Creeks site would be a combination water supply and 512 kW power generation facility and would cost a approximately $11,100,000. Annual power generation would be approximately 1,300,000 kWh and the plant would have a cost-of-energy of approximately 65 cents per kWh, substantially above market rates. The Waatch site would also be a combination water supply and power generation facility. It would have a rated capacity of 935 kW and would cost approximately $16,400,000. Annual power generation would be approximately 3,260,000 kWh and the plant would have a cost-of-energy of approximately 38 cents per kWh, also substantially above market rates. Recommendation: Stand-alone hydroelectric development is not commercially viable. The Tribal Council should not pursue development of hydroelectric facilities on the Makah Reservation unless they are an adjunct to a water supply development, and the water supply systems absorbs almost all the capital cost of the project.

  3. Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    Coke and Shipments Net Residual Distillate Natural LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) Gas(e) NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) (billion cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States RSE Column Factors: 0.9 1 1.2 1.8 1 1.6 0.8 0.9 1.2 0.4 311 Food 1,123 67,521 2 3 567 1 8 * 89 0 311221 Wet

  4. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  5. Advanced Power Electronic Interfaces for Distributed Energy Systems Part 1: Systems and Topologies

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Thomas, H.

    2008-03-01

    This report summarizes power electronic interfaces for DE applications and the topologies needed for advanced power electronic interfaces. It focuses on photovoltaic, wind, microturbine, fuel cell, internal combustion engine, battery storage, and flywheel storage systems.

  6. Electrical Energy and Demand Savings from a Geothermal Heat Pump ESPC at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. Fifteen-minute interval data were also taken on energy use from a sample of the residences. The analysis presented in this paper shows that for a typical meteorological year, the retrofits result in an electrical energy savings of approximately 25.6 million kWh, or 32.4% of the pre-retrofit electrical use in family housing. Peak electrical demand has also been reduced by about 6.8 MW, which is 40% of pre-retrofit peak demand. In addition, the retrofits save about 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and are not to be mistaken for the 'contracted' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in indoor temperature performance criteri, addition of ceiling fans, and other factors.

  7. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  8. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  9. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  10. An Assessment of Envelope Measures in Mild Climate Deep Energy Retrofits

    SciTech Connect (OSTI)

    Walker, Iain; Less, Brennan

    2014-06-01

    Energy end-uses and interior comfort conditions have been monitored in 11 Deep Energy Retrofits (DERs) in a mild marine climate. Two broad categories of DER envelope were identified: first, bringing homes up to current code levels of insulation and airtightness, and second, enhanced retrofits that go beyond these code requirements. The efficacy of envelope measures in DERs was difficult to determine, due to the intermingled effects of enclosure improvements, HVAC system upgrades and changes in interior comfort conditions. While energy reductions in these project homes could not be assigned to specific improvements, the combined effects of changes in enclosure, HVAC system and comfort led to average heating energy reductions of 76percent (12,937 kWh) in the five DERs with pre-retrofit data, or 80percent (5.9 kWh/ft2) when normalized by floor area. Overall, net-site energy reductions averaged 58percent (15,966 kWh; n=5), and DERs with code-style envelopes achieved average net-site energy reductions of 65percent (18,923 kWh; n=4). In some homes, the heating energy reductions were actually larger than the whole house reductions that were achieved, which suggests that substantial additional energy uses were added to the home during the retrofit that offset some heating savings. Heating system operation and energy use was shown to vary inconsistently with outdoor conditions, suggesting that most DERs were not thermostatically controlled and that occupants were engaged in managing the indoor environmental conditions. Indoor temperatures maintained in these DERs were highly variable, and no project home consistently provided conditions within the ASHRAE Standard 55-2010 heating season comfort zone. Thermal comfort and heating system operation had a large impact on performance and were found to depend upon the occupant activities, so DERs should be designed with the occupants needs and patterns of consumption in mind. Beyond-code building envelopes were not found to be strictly necessary for the achievement of deep energy savings in existing uninsulated homes in mild marine climates, provided that other energy end-uses were comprehensively reduced. We recommend that mild climate DERs pursue envelopes in compliance with the 2012 International Energy Conservation Code (IECC) and pair these with high efficiency, off-the-shelf HVAC equipment. Enhanced building envelopes should be considered in cases where very low heating energy use (<1,000 kWh/year or <0.5 kWh/ft2-year) and enhanced thermal comfort (ASHRAE 55-2010) are required, as well as in those situations where substantial energy uses are added to the home, such as decorative lighting, cooling or smart home A/V and communication equipment.

  11. Sandia Energy - Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security, Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART...

  12. Glendale Water and Power- Large Business Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Glendale Water and Power (GWP) offers a rebate to its medium and large business customers with electric bills of more than $3000 per month (electric usage of 250,000 kWh annually ~ $36,000 per year...

  13. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program Type Rebate Program Rebate Amount Interior Lighting: 0.08kWh annual savings Induction Fixture (Exterior): 125unit LED OutdoorRoadway Fixture (Exterior): 100unit CFL...

  14. Office of Electricity Delivery and Energy Reliability (OE) National...

    Office of Scientific and Technical Information (OSTI)

    This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype ...

  15. Building Retrofit and DSM Study in Jiangsu | Open Energy Information

    Open Energy Info (EERE)

    (data?) EPP (?) allocates 35 million in government incentives (verify) Results: reduced electricity consumption by 2 billion KWh annually; 1.84 MM tons CO2e verify Future If...

  16. Energy Efficiency for the Nunamiut People of Anaktuvuk Pass,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Wal-Mart Hardware Store, Bank, Grocery Store, Restaurant, Hotel, Gas Station, radio station Electric Rate: .35kWh, 9.25gal oil Reduce ElectricalHeating Fuel ...

  17. Cass County Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Twitter: @CassCountyElec Facebook: https:www.facebook.comCassCountyElectric Outage Hotline: 701-356-4499 or 1-888-277-4424 Outage Map: outage.kwh.com References: EIA...

  18. DOE Zero Energy Ready Home: Leganza Residence - Greenbank, Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    structural insulated panel (SIPs) walls, a 10.25-inch SIPS roof, an R-20 insulated slab, a 2-ton ground source heat pump, radiant floor heat, 7.1 kWh PV, and triple-pane windows. ...

  19. Tenaska Power Services Co (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 18995 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Industrial: 0.0534kWh...

  20. Liberty Power Corp. (District of Columbia) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 55781 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0866kWh...

  1. Dominion Retail Inc (New York) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 3763 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.0593kWh...

  2. Integrys Energy Services, Inc. (District of Columbia) | Open...

    Open Energy Info (EERE)

    861 Data Utility Id 21795 This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Commercial: 0.0780kWh...

  3. Terrebonne Parish Consol Gov't | Open Energy Information

    Open Energy Info (EERE)

    kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from "http:en.openei.orgwindex.php?titleTerrebonneParishConsolGov%27t&oldid881745...

  4. Sandia Energy Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE International Energy Storage Database Has Logged 420 Energy Storage Projects Worldwide with 123 GW of Installed Capacity http:energy.sandia.govdoe-international-energy-stora...

  5. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  6. EAC 2012 Storage Report: Progress and Prospects - Recommendations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Energy Storage Activities in the United States Electricity Grid. May 2011 Fact Sheet: Beacon Power 20 MW Flywheel Frequency Regulation Plant (August ...

  7. Beacon Power Corporation Smart Grid Demonstration Project | Open...

    Open Energy Info (EERE)

    Design, build, test, commission, and operate a utility-scale 20 MW flywheel energy storage frequency regulation plant in Chicago, Illinois, and provide frequency regulation...

  8. Alternative energy sources in Iran: the state-of-the-art

    SciTech Connect (OSTI)

    Sabzevari, A.; Yaghoubi, M.A.

    1983-12-01

    Iran, the country well known for its enormous proven reserves of oil (fourth largest in the world), natural gas (second largest), and coal (considerable) is also one of the most favourable countries for utilization of solar, wind and other alternative energy sources. Depsite an average of 5 KWh/m/sup 2//day of solar energy over a large land area, and sites with frequent wind velocities of 7 m/s, very little attention has been paid to non-fossil fuels. Petroleum, on the other hand, has not only been the main fuel for Iran, but has also provided the country with its major revenue. Furthermore, the low cost of oil and gas has pushed the alternative energy sources into an unfavorable position. The main question is, for how long can such an energy picture go on. To answer this important question, the authors have attempted, firstly, to draw a concise energy picture (fuel and power production, distribution, demands and policies), and secondly, to list the potentials of the alternative energy sources. The paper also includes a critical review of the work done and the programs in connection with alternative energies in Iran.

  9. Enhanced Efficiency of Otto and Diesel Cycles by Employing Spinning Gas and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Flywheel. | Princeton Plasma Physics Lab Enhanced Efficiency of Otto and Diesel Cycles by Employing Spinning Gas and a Flywheel. In conventional internal combustion engines gas spinning is either not used at all, or used only with the purpose of increasing turbulence and better fuel -air mixing. In this method, rotation is used for energy storage, hence it allows the improvement of thermal cycle efficiency. A flywheel is used to transfer the energy into rotation of the gas and extract it

  10. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    SciTech Connect (OSTI)

    J.S. Tumuluru; L.G. Tabil; Y. Song; K.L. Iroba; V. Meda

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.130.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barley and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.984.22 mm, 3680 kg m-3, 49119 kg m-3, 6001220 kg m-3, and 0.90.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 8890 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).

  11. U.S. Virgin Islands Feed-In Tariff

    Broader source: Energy.gov [DOE]

    In May of 2014, AB 7586 created a feed-in-tariff that would allow owners of solar photovotaic systems ranging between 10 kWh and 500 kWh to sell their energy for approximately 26 cents per kWh. Two...

  12. Sandia Energy - Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Surety, Facilities, Global Climate & Energy, Grid Integration, Mesa del Sol, Microgrid, News, News & Events, Renewable Energy, SMART Grid, Solar Mesa del Sol Unveils First...

  13. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Brayton-Cycle Turbine Boosts Small Nuclear Reactor Efficiency Energy, Energy Efficiency, News, News & Events, Nuclear Energy Sandia's Brayton-Cycle Turbine Boosts Small...

  14. Sandia Energy Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Participates in Preparation of New Mexico Renewable Energy Storage Report http:energy.sandia.govsandia-participates-in-preparation-of-new-mexico-renewable-energy-storage-...

  15. Sandia Energy Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia's Energy Program Wins Two Federal Laboratory Consortium 2015 Awards http:energy.sandia.govsandias-energy-program-wins-two-federal-laboratory-consortium-2015-awards...

  16. Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO)

    SciTech Connect (OSTI)

    McIntosh, Jane; Schumacher, Leon

    2014-10-23

    The Missouri Agricultural Energy Saving Team-A Revolutionary Opportunity (MAESTRO) program brought together a team of representatives from government, academia, and private industry to enhance the availability of energy efficiency services for small livestock producers in the State of Missouri. The Missouri Department of Agriculture (MDA) managed the project via a subcontract with the University of Missouri (MU), College of Agriculture Food and Natural Resources, MU Extension, the MU College of Human Environmental Sciences, the MU College of Engineering, and the Missouri Agricultural and Small Business Development Authority (MASBDA). MU teamed with EnSave, Inc, a nationally-recognized expert in agricultural energy efficiency to assist with marketing, outreach, provision of farm energy audits and customer service. MU also teamed with independent home contractors to facilitate energy audits of the farm buildings and homes of these livestock producers. The goals of the project were to: (1) improve the environment by reducing fossil fuel emissions and reducing the total energy used on small animal farms; (2) stimulate the economy of local and regional communities by creating or retaining jobs; and (3) improve the profitability of Missouri livestock producers by reducing their energy expenditures. Historically, Missouri scientists/engineers conducted programs on energy use in agriculture, such as in equipment, grain handling and tillage practices. The MAESTRO program was the first to focus strictly on energy efficiency associated with livestock production systems in Missouri and to investigate the applicability and potential of addressing energy efficiency in animal production from a building efficiency perspective. A. Project Objectives The goal of the MAESTRO program was to strengthen the financial viability and environmental soundness of Missouri's small animal farms by helping them implement energy efficient technologies for the production facility, farm buildings, and the homes on these farms. The expected measurable outcomes of the project were to improve the environment and stimulate the economy by: • Reducing annual fossil fuel emissions by 1,942 metric tons of carbon dioxide equivalent, reducing the total annual energy use on at least 323 small animal farms and 100 farm homes by at least 8,000 kWh and 2,343 therms per farm. • Stimulating the economy by creating or retaining at least 69 jobs, and saving small animal farmers an average of $2,071 per farm in annual energy expenditures. B. Project Scope The MAESTRO team chose the target population of small farms because while all agriculture is traditionally underserved in energy efficiency programs, small farms were particularly underserved because they lack the financial resources and access to energy efficiency technologies that larger farms deploy. The MAESTRO team reasoned that energy conservation, financial and educational programs developed while serving the agricultural community could serve as a national model for other states and their agricultural sectors. The target population was approximately 2,365 small animal farm operations in Missouri, specifically those farms that were not by definition a confined animal feeding operation (CAFO). The program was designed to create jobs by training Missouri contractors and Missouri University Extension staff how to conduct farm audits. The local economy would be stimulated by an increase in construction activity and an increasing demand for energy efficient farm equipment. Additionally, the energy savings were deemed critical in keeping Missouri farms in business. This project leveraged funds using a combination of funds from the Missouri Department of Natural Resources’ Missouri Energy Center and its Soil and Water Conservation Program, from the state's Linked Deposits, MASBDA's agricultural loan guarantee programs, and through the in-kind contribution of faculty and staff time to the project from these agencies and MU. Several hundred Missouri livestock producers were contacted during the MAESTRO project. Of the livestock producers, 254 invited the team to conduct a farm energy assessment which complied with ASABE 612. A total of 147 livestock farm upgrades were implemented, representing 57.5 percent of the farms for which a farm energy assessment was completed. This represented a statewide average annual savings of 1,088,324 kWh and 75,516 therms. The team also reviewed the condition of the livestock producer’s home(s). A total of 106 home energy assessments were completed and 48 individual homes implemented their recommended upgrades, representing 45 percent of the farm homes for which an energy assessment was completed. This represented a statewide average annual savings of 323,029 kWh, and 769.4 therms. More of these farmers likely would have updated their homes but the funding to incentivize them fell short. In spite of the shortfall in incentive funds, some farmers still updated their homes as they saw the value in making these changes to their home.

  17. Energy generation from cotton gin trash: an economic analysis

    SciTech Connect (OSTI)

    Lacewell, R.D.; Taylor, C.R.; Hiler, E.A.

    1981-01-01

    This study consists of economic analyses of electric power generation and low-Btu (British thermal unit) gas generation from cotton gin trash. Both analyses consider the use of a large gin, sized at 40,000 bales per year. A fluidized-bed combustor is used to produce the low Btu gas and in conjunction with a boiler and turbine to produce electricity. For this case study, the consideration of economic feasibility involves the saving of the cost of energy not purchased, the sale of surplus electricity, and the saving of the cost of gin trash disposal eliminated; all are results of on-site energy generation. Electricity requirements will be satisfied, and waste heat will be used for cotton drying. The savings that would result from these two measures total about $126,000 (based on a 300,000 Btu per bale requirement for cotton drying with natural gas priced at $2.50 per thousand cubic feet and electricity priced at 4 cents per kWh). (MCW)

  18. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  19. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Over Five Years Computational Modeling & Simulation, Energy, News, News & Events, Nuclear Energy, Partnership, Systems Analysis Consortium for Advanced Simulation of...

  20. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    SciTech Connect (OSTI)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  1. Improving Energy Efficiency of Compressed Air System Based onSystem Audit

    SciTech Connect (OSTI)

    Shanghai, Hongbo Qin; McKane, Aimee

    2007-06-01

    Industrial electric motor systems consume more than 600billion kWh annually, accounting for more than 50 percent of China selectricity use. The International Energy Agency estimates thatoptimizing motor systems results in an improvement of 20-25 percent,which is well-supported by experience in both the U.S. and China.Compressed air systems in China use 9.4 percent of all electricity.Compressed air use in China is growing rapidly, as new industrial plantsare built and the production processes of existing plants expand andchange. Most of these systems, whether existing or new, are not optimizedfor energy efficiency. This paper will present a practitioner'sperspective on theemergence of compressed air auditing services inChina, specifically as it pertains to Shanghai and surrounding areas.Both the methodology used and the market development of these compressedair system services will be addressed. Finally, the potential for energysaving opportunities will be described based on highlights from over 50compressed air system energy audits completed by Shanghai EnergyConservation Service Center, both during the United Nations IndustrialDevelopment Organization (UNIDO) China Motor System Energy ConservationProgram, and after this training program was completed.

  2. Quantifying the value that energy efficiency and renewable energy provide as a hedge against volatile natural gas prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Bachrach, Devra; Golove, William

    2002-05-15

    Advocates of energy efficiency and renewable energy have long argued that such technologies can mitigate fuel price risk within a resource portfolio. Such arguments--made with renewed vigor in the wake of unprecedented natural gas price volatility during the winter of 2000/2001--have mostly been qualitative in nature, however, with few attempts to actually quantify the price stability benefit that these sources provide. In evaluating this benefit, it is important to recognize that alternative price hedging instruments are available--in particular, gas-based financial derivatives (futures and swaps) and physical, fixed-price gas contracts. Whether energy efficiency and renewable energy can provide price stability at lower cost than these alternative means is therefore a key question for resource acquisition planners. In this paper we evaluate the cost of hedging gas price risk through financial hedging instruments. To do this, we compare the price of a 10-year natural gas swap (i.e., what it costs to lock in prices over the next 10 years) to a 10-year natural gas price forecast (i.e., what the market is expecting spot natural gas prices to be over the next 10 years). We find that over the past two years natural gas users have had to pay a premium as high as $0.76/mmBtu (0.53/242/kWh at an aggressive 7,000 Btu/kWh heat rate) over expected spot prices to lock in natural gas prices for the next 10 years. This incremental cost to hedge gas price risk exposure is potentially large enough - particularly if incorporated by policymakers and regulators into decision-making practices - to tip the scales away from new investments in variable-price, natural gas-fired generation and in favor of fixed-price investments in energy efficiency and renewable energy.

  3. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  4. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  5. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  6. Small Town Energy Program (STEP) Final Report revised

    SciTech Connect (OSTI)

    Wilson, Charles T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who had a home energy upgrade invested on average $4,500, resulting in a 13% reduction in annual energy use and utility bill savings of $325. Rebates and incentives covered 40%-50% of retrofit cost, resulting in an average simple payback of about 7 years. STEP has created a handbook in which are assembled all the key elements that went into the design and delivery of STEP. The target audiences for the handbook include interested citizens, elected officials and municipal staff who want to establish and run their own efficiency program within a small community or neighborhood, using elements, materials and lessons from STEP.

  7. Sandia Energy - Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Power Clicks with Geochemistry Energy, News, News & Events, Nuclear Energy Computer Power Clicks with Geochemistry Sandia is developing computer models that show how...

  8. Department of Energy - Energy Tomorrow

    Broader source: Energy.gov (indexed) [DOE]

    25 en Indian Energy Blog Archive http:energy.govindianenergylistingsindian-energy-blog-archive energy-blog-archive"...

  9. Energy Information Administration - Energy Efficiency, energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Efficiency Energy Efficiency energy consumption savings households, buildings, industry & vehicles The Energy Efficiency Page reflects EIA's information on energy efficiency and...

  10. Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Permalink Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, ...

  11. Aquion Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage ...

  12. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency ...

  13. Geothermal Heat Pump Energy Savings Performance Contract at Fort Polk, LA: Lessons Learned

    SciTech Connect (OSTI)

    Hughes, Patrick; Shonder, John A; Gordon, Richard; Giffin, Tom

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorecent lights, low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk energy savings performance contract was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by about 6,761 kW, which is 40.2% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the energy savings performance contract has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk performance contract can provide a model for other contracts in both the public and private sectors. The purpose of this paper is to outline the method by which the contract was engineed and implemented, both from the standpoint of the facility owner (the U.S. Army) and the energy services company that is carrying out the contract. The lessons learned from this experience should be useful to other owners, service companies, and investors in the implementation of future service contracts. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and not to be mistaken for the 'contract' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in the indoor temperature performance criteria, additions of ceiling fans, and other factors.

  14. EnergyFit Nevada (formerly known as the Nevada Retrofit Initiative) final report and technical evaluation

    SciTech Connect (OSTI)

    Carvill, Anna; Bushman, Kate; Ellsworth, Amy

    2014-06-17

    The EnergyFit Nevada (EFN) Better Buildings Neighborhood Program (BBNP, and referred to in this document as the EFN program) currently encourages Nevada residents to make whole-house energy-efficient improvements by providing rebates, financing, and access to a network of qualified home improvement contractors. The BBNP funding, consisting of 34 Energy Efficiency Conservation Block Grants (EECBG) and seven State Energy Program (SEP) grants, was awarded for a three-year period to the State of Nevada in 2010 and used for initial program design and implementation. By the end of first quarter in 2014, the program had achieved upgrades in 553 homes, with an average energy reduction of 32% per home. Other achievements included:  Completed 893 residential energy audits and installed upgrades in 0.05% of all Nevada single-family homes1  Achieved an overall conversation rate of 38.1%2  7,089,089 kWh of modeled energy savings3  Total annual homeowner energy savings of approximately $525,7523  Efficiency upgrades completed on 1,100,484 square feet of homes3  $139,992 granted in loans to homeowners for energy-efficiency upgrades  29,285 hours of labor and $3,864,272 worth of work conducted by Nevada auditors and contractors4  40 contractors trained in Nevada  37 contractors with Building Performance Institute (BPI) certification in Nevada  19 contractors actively participating in the EFN program in Nevada 1 Calculated using 2012 U.S. Census data reporting 1,182,870 homes in Nevada. 2 Conversion rate through March 31, 2014, for all Nevada Retrofit Initiative (NRI)-funded projects, calculated using the EFN tracking database. 3 OptiMiser energy modeling, based on current utility rates. 4 This is the sum of $3,596,561 in retrofit invoice value and $247,711 in audit invoice value.

  15. Net PV Value by location and building type | Open Energy Information

    Open Energy Info (EERE)

    location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

  16. DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and triple-pane windows. ...

  17. Best Energy | Open Energy Information

    Open Energy Info (EERE)

    Best Energy Place: Italy Sector: Renewable Energy Product: Italy-based energy company engaged in the development of renewable energy projects. References: Best Energy1 This...

  18. Vision Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Vision Energy Place: Cincinnati, Ohio Zip: 45227 Sector: Wind energy Product: Vision Energy focuses on wind energy development and...

  19. Helium Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Helium Energy Place: Spain Sector: Renewable Energy Product: Spain-based renewable energy development company. References: Helium Energy1...

  20. Semplice Energy | Open Energy Information

    Open Energy Info (EERE)

    Semplice Energy Jump to: navigation, search Name: Semplice Energy Place: Reading, United Kingdom Sector: Efficiency, Renewable Energy Product: Semplice Energy is an energy...

  1. ENERGY PRODUCTIVITY OF THE HIGH VELOCITY ALGAE RACEWAY INTEGRATED DESIGN (ARID-HV)

    SciTech Connect (OSTI)

    Attalah, Said; Waller, Peter; Khawam, G.; Ryan, Randy; Huesemann, Michael H.

    2015-01-31

    The original Algae Raceway Integrated Design (ARID) raceway was an effective method to increase algae culture temperature in open raceways. However, the energy input was high and flow mixing was poor. Thus, the High Velocity Algae Raceway Integrated Design (ARID-HV) raceway was developed to reduce energy input requirements and improve flow mixing in a serpentine flow path. A prototype ARID-HV system was installed in Tucson, Arizona. Based on algae growth simulation and hydraulic analysis, an optimal ARID-HV raceway was designed, and the electrical energy input requirement (kWh ha-1 d-1) was calculated. An algae growth model was used to compare the productivity of ARIDHV and conventional raceways. The model uses a pond surface energy balance to calculate water temperature as a function of environmental parameters. Algae growth and biomass loss are calculated based on rate constants during day and night, respectively. A 10 year simulation of DOE strain 1412 (Chlorella sorokiniana) showed that the ARID-HV raceway had significantly higher production than a conventional raceway for all months of the year in Tucson, Arizona. It should be noted that this difference is species and climate specific and is not observed in other climates and with other algae species. The algae growth model results and electrical energy input evaluation were used to compare the energy productivity (algae production rate/energy input) of the ARID-HV and conventional raceways for Chlorella sorokiniana in Tucson, Arizona. The energy productivity of the ARID-HV raceway was significantly greater than the energy productivity of a conventional raceway for all months of the year.

  2. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  3. Sandia Energy Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  4. Sandia Energy Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  5. Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Gordon, R.; Giffin, T.

    1997-08-01

    At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  6. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO`s Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power & Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM`s expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  7. Impact evaluation of an energy savings plan project at ARCO Petroleum Products Company

    SciTech Connect (OSTI)

    Spanner, G.E.; Sullivan, G.P.; Dixon, D.R.

    1992-08-01

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at ARCO Petroleum Products Company (ARCO) was conducted for the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy $avings Plan (E$P) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial procsses. The objective of this impact evaluation was to assess how much electrical energy is being saved at ARCO as a result of the E$P and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, interviews, and submittal reviews (ARCO's Proposal and Completion Report). The ECM itself consists of removing one stage of a six-stage compressor so that its inlet control valve can be opened wider, thereby saving the energy that was previously lost at the valve due to pressure drop. Energy savings resulting from this ECM are expected to be 2,112,800 kwh/yr. The ECM cost $367,650 to install, and ARCO received a payment of $158,460 from Bonneville and $82,902 from its serving utility, Puget Sound Power Light Company, for the acquisition of energy savings. The ECM would not have been installed without the acquisition payment offered under the E$P Program. The levelized cost of these energy savings to Bonneville will be 6.3 mills/kWh over the ECM's expected 15-year life, and the levelized cost to the region will be 15.8 mills/kWh.

  8. Energy 101: Energy Efficient Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficient Commercial Buildings Energy 101: Energy Efficient Commercial Buildings

  9. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy Addthis Description See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity. Topic Geothermal Text Version Below is the text version for the Energy 101: Geothermal Energy video. The words "Energy 101: Geothermal Energy"

  10. Transportation Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  11. Energy Planning

    Energy Savers [EERE]

    Energy Planning Agenda * What is energy planning? * The process * The plan * Strategic Energy Planning (SEP) Workbook * Other resources 2 What is Energy Planning? * Brings desired ...

  12. Power applications of high-temperature superconductivity: Variable speed motors, current switches, and energy storage for end use

    SciTech Connect (OSTI)

    Hawsey, R.A. [Oak Ridge National Lab., TN (United States); Banerjee, B.B.; Grant, P.M. [Electric Power Research Inst., Palo Alto, CA (United States)

    1996-08-01

    The objective of this project is to conduct joint research and development activities related to certain electric power applications of high-temperature superconductivity (HTS). The new superconductors may allow development of an energy-efficient switch to control current to variable speed motors, superconducting magnetic energy storage (SMES) systems, and other power conversion equipment. Motor types that were considered include induction, permanent magnet, and superconducting ac motors. Because it is impractical to experimentally alter certain key design elements in radial-gap motors, experiments were conducted on an axial field superconducting motor prototype using 4 NbTi magnets. Superconducting magnetic energy storage technology with 0.25--5 kWh stored energy was studied as a viable solution to short duration voltage sag problems on the customer side of the electric meter. The technical performance characteristics of the device wee assembled, along with competing technologies such as active power line conditioners with storage, battery-based uninterruptible power supplies, and supercapacitors, and the market potential for SMES was defined. Four reports were prepared summarizing the results of the project.

  13. Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  14. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education | Department of Energy Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education Energy Literacy: Essential Principles and Fundamental Concepts for Energy Education News and Updates Check out our new Energy Literacy video series! The Energy Literacy Framework is also available in Spanish: Conocimiento de Energía. What is Energy Literacy? Energy Literacy is an understanding

  15. Solgal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Solgal Energy Name: Solgal Energy Address: Israel Place: Alon Hagalil Zip: 17920 Product: Renewable energy solutions Year Founded: 2008...

  16. Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 Energy Department Announces Six Clean Energy Projects through Partnership with Israel U.S. Department of Energy and Israel's Ministry of National Infrastructure, Energy and...

  17. Solar Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Resource Library Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit ...

  18. Conexia Energy | Open Energy Information

    Open Energy Info (EERE)

    Conexia Energy Jump to: navigation, search Name: Conexia Energy Place: Aix-en-Provence, France Zip: 13857 Sector: Renewable Energy Product: French renewable energy consulting and...

  19. Raz Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Raz Energy Place: Carolles, France Zip: 50740 Sector: Renewable Energy Product: Carolles-based renewable energy consultancy and project...

  20. Simple Energy | Open Energy Information

    Open Energy Info (EERE)

    Summary LAUNCH TOOL Name: Simple Energy AgencyCompany Organization: Simple Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Softwaremodeling tools User...

  1. Energy Insight | Open Energy Information

    Open Energy Info (EERE)

    Energy Insight Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Insight AgencyCompany Organization: Tendril Connect Sector: Energy Focus Area: Energy Efficiency...

  2. JMB Energie | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: JMB Energie Place: Marseilles, France Sector: Solar, Wind energy Product: JMB Energie is producer of green energy primarily through the...

  3. Energy Efficiency | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Energy Efficiency Below are resources for Tribes on energy efficiency. ... Source: Northwest SEED. Home and Building Technologies Basics Learn about energy ...

  4. Land Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Land Energy Place: North Yorkshire, United Kingdom Zip: YO62 5DQ Sector: Biomass, Renewable Energy Product: A renewable-energy company...

  5. EVZA Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: EVZA Energy Place: Germany Sector: Renewable Energy Product: Waste disposal comapany involved with renewable energy in the form of...

  6. Also Energy | Open Energy Information

    Open Energy Info (EERE)

    Also Energy Jump to: navigation, search Logo: Also Energy Name: Also Energy Address: PO Box 17877 Place: Boulder, Colorado Zip: 80308 Region: Rockies Area Product: Renewable Energy...

  7. Leonardo Energy | Open Energy Information

    Open Energy Info (EERE)

    Area: Energy Efficiency, Renewable Energy, Transportation Resource Type: Webinar, Training materials Website: www.leonardo-energy.org References: Leonardo Energy 1 "Leonardo...

  8. Nature Energie | Open Energy Information

    Open Energy Info (EERE)

    Nature Energie Jump to: navigation, search Name: Nature Energie Place: France Sector: Solar, Wind energy Product: French developer of wind and solar energy projects. References:...

  9. U.S. Energy Information Administration (EIA) - Pub

    Gasoline and Diesel Fuel Update (EIA)

    Electricity generation Total electricity use in the AEO2015 Reference case, including both purchases from electric power producers and on-site generation, grows by an average of 0.8%/year, from 3,836 billion kilowatthours (kWh) in 2013 to 4,797 billion kWh in 2040. The relatively slow rate of growth in demand, combined with rising natural gas prices, environmental regulations, and continuing growth in renewable generation, leads to tradeoffs between the fuels used for electricity generation.

  10. Elk Valley Rancheria Energy Efficiency and Alternatives Analysis

    SciTech Connect (OSTI)

    Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

    2011-11-30

    Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

  11. Duke Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Duke Energy - U.S. Operations 55 % 38 % Franchised Electric & Gas Duke Energy Renewables 2

  12. Kodak: MotorMaster+ Is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant (Revised)

    SciTech Connect (OSTI)

    Not Available

    2007-02-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  13. Kodak: MotorMaster+ is the Foundation for Energy Efficiency at a Chemical and Imaging Technologies Plant

    SciTech Connect (OSTI)

    2006-10-01

    This DOE Industrial Technologies Program spotlight describes how Kodak is saving 5.8 million kWh and $664,000 annually after upgrading or replacing inefficient motors in its Rochester, New York, plant.

  14. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  15. Onondaga County Department of Water Environment Protection: Process Optimization Saves Energy at Metropolitan Syracuse Wastewater Treatment Plant

    SciTech Connect (OSTI)

    Not Available

    2005-12-01

    This DOE Industrial Technologies Program spotlight describes how Onondaga County, New York, is saving nearly 3 million kWh and 270 million Btu annually at a wastewater treatment plant after replacing inefficient motors and upgrading pumps.

  16. CX-000760: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Amber Kinetics Flywheel Energy Storage DemonstrationCX(s) Applied: B3.6Date: 02/09/2010Location(s): Freemont, CaliforniaOffice(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory

  17. Sandia Energy Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efforts-during-recent-houston-press-conferencefeed 0 Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments http:energy.sandia.gov...

  18. Sandia Energy Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ss-voucher-pilot-opensfeed 0 Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successf...

  19. Sandia Energy Energy Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandian's Receive Hydrogen and Fuel Cell Program Achievement Award http:energy.sandia.govsandians-receive-hydrogen-and-fuel-cell-program-achievement-award-2 http:...

  20. Sandia Energy Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    afety-expert-elected-to-national-academy-of-engineeringfeed 0 Sandia Teaches Nuclear Safety Course http:energy.sandia.govsandia-teaches-nuclear-safety-course http:...

  1. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  2. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  3. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  5. Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  6. Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  7. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  9. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  13. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  14. Energy Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Energy Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  16. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  20. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  1. Untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatthours (kWh) used for lighting. The survey contained more...

  2. Municipal solid waste fueled power generation in China: a case study of waste-to-energy in Changchun city

    SciTech Connect (OSTI)

    Hefa Cheng; Yanguo Zhang; Aihong Meng; Qinghai Li

    2007-11-01

    With rapid economic growth and massive urbanization in China, many cities face the problem of municipal solid waste (MSW) disposal. With the lack of space for new landfills, waste-to-energy incineration is playing an increasingly important role in waste management. Incineration of MSW from Chinese cities presents some unique challenges because of its low calorific value (3000-6700 kJ/kg) and high water content (about 50%). This study reports a novel waste-to-energy incineration technology based on co-firing of MSW with coal in a grate-circulating fluidized bed (CFB) incinerator, which was implemented in the Changchun MSW power plant. In 2006, two 260 ton/day incinerators incinerated 137,325 tons, or approximately one/sixth of the MSW generated in Changchun, saving more than 0.2 million m{sup 3} landfill space. A total of 46.2 million kWh electricity was generated (38,473 tons lignite was also burned as supplementary fuel), with an overall fuel-to-electricity efficiency of 14.6%. Emission of air pollutants including particulate matters, acidic gases, heavy metals, and dioxins was low and met the emission standards for incinerators. As compared to imported incineration systems, this new technology has much lower capital and operating costs and is expected to play a role in meeting China's demands for MSW disposal and alternative energy. 34 refs., 1 fig., 4 tabs.

  3. Energy 101: Geothermal Energy

    ScienceCinema (OSTI)

    None

    2014-06-23

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  4. Energy 101: Geothermal Energy

    SciTech Connect (OSTI)

    2014-05-27

    See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. The video highlights the basic principles at work in geothermal energy production, and illustrates three different ways the Earth's heat can be converted into electricity.

  5. Energy Sources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sources Energy Sources Renewable Energy Renewable Energy Learn more about energy from solar, wind, water, geothermal and biomass. Read more Nuclear Nuclear Learn more about how we use nuclear energy. Read more Electricity Electricity Learn more about how we use electricity as an energy source. Read more Fossil Fossil Learn more about our fossil energy sources: coal, oil and natural gas. Read more Primary energy sources take many forms, including nuclear energy, fossil energy -- like oil, coal

  6. Energy 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Literacy » Energy 101 Energy 101 What is the Energy 101 Initiative? The Energy 101 Dialogue Series: Dialogue #1: Energy in the Classroom Webinar Slides Increasing opportunities for students learning about energy in the Nation's two-year and four-year colleges and universities The Energy 101 initiative is an effort to support energy education in the post-secondary setting to increase students' opportunities to enter the energy workforce, ensuring that the Nation excels in energy research and

  7. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gov Energy Literacy I want to talk about building a sustainable energy future.... The United States is committed to taking action to meet the energy and climate challenge. Secretary Chu, December 6, 2010 Presenter: Matthew Inman Albert Einstein Distinguished Educator Fellow US Department of Energy, EERE-EEWD matthew.inman@ee.doe.gov 2 | Energy Education and Workforce Development eere.energy.gov Energy Literacy Energy Literacy Promote Energy Literacy The Department will actively participate in

  8. Feasibility Study of Economics and Performance of Solar Photovoltaics at Massachusetts Military Reservation. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Stafford, B.; Robichaud, R.; Mosey, G.

    2011-07-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying photovoltaics (PV) systems on a superfund site located within the Massachusetts Military Reservation (MMR). The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.17/kWh and incentives offered in the State of Massachusetts, such as the solar renewable energy credits. According to calculations, MMR can place 8 MW of ballast-weighted, ground-mounted PV systems on the crowns of the three landfill caps and the borrow pit with the PV modules tilted at 30 degrees.

  9. Building a 40% Energy Saving House in the Mixed-Humid Climate

    SciTech Connect (OSTI)

    Christian, Jeffrey E; Bonar, Jacob

    2011-10-01

    This report describes a home that uses 40% less energy than the energy-efficient Building America standard - a giant step in the pursuit of affordable near-zero-energy housing through the evolution of five near-zero-energy research houses. This four-bedroom, two-bath, 1232-ft2 house has a Home Energy Rating System (HERS) index of 35 (a HERS rating of 0 is a zero-energy house, a conventional new house would have a HERS rating of 100), which qualifies it for federal energy efficiency and solar incentives. The house is leading to the planned construction of a similar home in Greensburg, Kansas, and 21 staff houses in the Walden Reserve, a 7000-unit "deep green" community in Cookville, Tennessee. Discussions are underway for construction of similar houses in Charleston, South Carolina, Seattle, Washington, Knoxville and Oak Ridge, Tennessee, and upstate New York. This house should lead to a 40% and 50% Gate-3, Mixed-Humid-Climate Joule for the DOE Building America Program. The house is constructed with structurally-insulated-panel walls and roof, raised metal-seam roof with infrared reflective coating, airtight envelope (1.65 air changes per hour at 50 Pascal), supply mechanical ventilation, ducts inside the conditioned space, extensive moisture control package, foundation geothermal space heating and cooling system, ZEHcor wall, solar water heater, and a 2.2 kWp grid-connected photovoltaic (PV) system. The detailed specifications for the envelope and the equipment used in ZEH5 compared to all the houses in this series are shown in Tables 1 and 2. Based on a validated computer simulation of ZEH5 with typical occupancy patterns and energy services for four occupants, energy for this all-electric house is predicted to cost only $0.66/day ($0.86/day counting the hookup charges). By contrast, the benchmark house would require $3.56/day, including hookup charges (these costs are based on a 2006 residential rates of $0.07/kWh and solar buyback at $0.15/kWh). The solar fraction for this home located in Lenoir City, Tennessee, is predicted to be as high as 41%(accounting for both solar PV and the solar water heater). This all-electric home is predicted to use 25 kWh/day based on the one year of measured data used to calibrate a whole-building simulation model. Based on two years of measured data, the roof-mounted 2.2 kWp PV system is predicted to generate 7.5 kWh/day. The 2005 cost to commercially construct ZEH5, including builder profit and overhead, is estimated at about $150,000. This cost - for ZEH5's panelized construction, premanufactured utility wall (ZEHcor), foundation geothermal system, and the addition of the walkout lower level, and considering the falling cost for PV - suggests that the construction cost per ft2 for a ZEH5 two-story will be even more cost-competitive. The 2005 construction cost estimate for a finished-out ZEH5 with 2632 ft2 is $222,000 or $85/ft2. The intention of this report is to help builders and homeowners make the decision to build zero-energy-ready homes. Detailed drawings, specifications, and lessons learned in the construction and analysis of data from about 100 sensors monitoring thermal performance for a one-year period are presented. This information should be specifically useful to those considering structural insulated panel walls and roof, foundation geothermal space heating and cooling, solar water heater and roof-mounted, photovoltaic, grid-tied systems.

  10. (Energy Efficiency)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... energy efficiency improvements require conditions that enable investment inflow, such as access to capital, stronger markets for energy services and market-based energy pricing. ...

  11. Energy Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Management Utilize energy efficiency to improve your industrial customer's business performance without the cost of major capital improvements. Energy efficiency is not...

  12. Energy Literacy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Conference Energy Literacy Linda Silverman Education and Workforce Development Department of Energy July 30, 2014 2 | Energy Education and Workforce Development ...

  13. Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the full transcript of the Energy Efficiency video Learn More Cool School Challenge Money Saving Energy Efficiency Tips Alliance to Save Energy: Consumer Tips Bonneville...

  14. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  15. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  16. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  17. Energy Sources: Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Hydrogen? * Fossil fuels release CO 2 , SO X , NO X SO X , NO X * Declining reserves, national security security GM Hydrogen Energy Hydrogen- the use of Hydrogen gas in...

  18. Sandia Energy Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press http:energy.sandia.govinvestigations-on-anti-biofouling-zwitterionic-coatings-for-mhk-is-now-in-p...

  19. Energy Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Energy Analysis Energy Analysis Photo courtesy of Dennis Schroeder, NREL 24348 Photo courtesy of Dennis Schroeder, NREL 24348 Energy analysis informs EERE decision-making by delivering analytical products in four main areas: Data Resources, Market Intelligence, Energy Systems Analysis, and Portfolio Impacts Analysis. The Energy Analysis website is designed to help energy experts and policymakers access energy analysis resources related to renewable energy and energy efficiency. It

  20. SLP Energy | Open Energy Information

    Open Energy Info (EERE)

    Sector: Renewable Energy, Services Product: Focused on the renewable energy sector, SLP Energy offers early to late stage project development services and capabilities....

  1. Dei Energy | Open Energy Information

    Open Energy Info (EERE)

    Place: Bulgaria Sector: Renewable Energy Product: Bulgarian utility engaged in renewable energy project development. References: Dei Energy1 This article is a stub. You can help...

  2. Tenax Energy | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Logo: Tenax Energy Name: Tenax Energy Place: Darwin, NT Country: Australia Zip: 0801 Sector: Marine and Hydrokinetic, Ocean, Renewable Energy Year Founded:...

  3. Ergon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Ergon Energy Place: Rockhampton, Queensland, Australia Zip: 4700 Product: Energy distribution and retailer focused on Queensland....

  4. Refex Energy | Open Energy Information

    Open Energy Info (EERE)

    Refex Energy Jump to: navigation, search Name: Refex Energy Place: Tamil Nadu, India Zip: 600017 Sector: Wind energy Product: Part of the refrigeration major Refex Group, plans to...

  5. Saving Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving Energy Saving Energy Saving Energy Walmart Partnership Brings LEDs to Parking Lots Walmart Partnership Brings LEDs to Parking Lots Read more Refrigerator Standards Save ...

  6. Tioga Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Logo: Tioga Energy Name: Tioga Energy Address: 2755 Campus Drive Place: San Mateo, California Zip: 94403 Region: Bay Area Sector: Solar Product:...

  7. Energy Storage | Open Energy Information

    Open Energy Info (EERE)

    around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size. Benefits Make Renewable Energy Viable Allow for intermittent energy...

  8. Winkra Energie | Open Energy Information

    Open Energy Info (EERE)

    Winkra Energie Jump to: navigation, search Name: Winkra Energie Place: Hannover, Germany Zip: 30175 Sector: Wind energy Product: Hannover-based wind farm developer and operator,...

  9. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Worldwide...

  10. Pfister Energy | Open Energy Information

    Open Energy Info (EERE)

    Product: Pfister Energy is committed to applying the latest technologies in renewable energy so that you reap the benefits of a complete energy-efficient solution. Coordinates:...

  11. Vadxx Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy, Services Product: Energy provider: power production;Energy provider: wholesale; Research and development Phone Number: 440-591-8994 Website: www.vadxx.com Coordinates:...

  12. Valence Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Valence Energy Place: Santa Clara, California Zip: 95050 Sector: Services Product: California-based energy management software and services...

  13. Eshone Energy | Open Energy Information

    Open Energy Info (EERE)

    Eshone Energy Jump to: navigation, search Name: Eshone Energy Place: Santa Clara, California Zip: 95051 Product: California-based PV systems installer. References: Eshone Energy1...

  14. Colexon Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy Jump to: navigation, search Name: Colexon Energy Place: Hamburg, Hamburg, Germany Zip: 20354 Sector: Solar, Wind energy Product: Germany-based PV system integrator and solar...

  15. ENRO Energie | Open Energy Information

    Open Energy Info (EERE)

    Energie Jump to: navigation, search Name: ENRO Energie Place: Essen, Germany Zip: 45128 Sector: Geothermal energy Product: Germany-based company engaged in the design and...

  16. Hiolle Energies | Open Energy Information

    Open Energy Info (EERE)

    Hiolle Energies Jump to: navigation, search Name: Hiolle Energies Place: France Product: French PV system integrator. References: Hiolle Energies1 This article is a stub. You can...

  17. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  18. Geothermal energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal energy Jump to: navigation, search Dictionary.png Geothermal energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other...

  19. Bloom Energy | Open Energy Information

    Open Energy Info (EERE)

    Bloom Energy Jump to: navigation, search Logo: Bloom Energy Name: Bloom Energy Address: 1252 Orleans Drive Place: Sunnyvale, California Zip: 94089 Region: Bay Area Year Founded:...

  20. Proark Energy | Open Energy Information

    Open Energy Info (EERE)

    Proark Energy Place: Copenhagen, Denmark Zip: 1370 Sector: Renewable Energy, Solar, Wind energy Product: Copenhagen-based management company owned by Proark - the Danish real...