Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy 101: Solar PV  

ScienceCinema (OSTI)

Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

None

2013-05-29T23:59:59.000Z

2

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tucson's Solar Experience: Tucson's Solar Experience: Developing PV with RFPs and PPAs Bruce Plenk Solar Coordinator City of Tucson Office of Conservation and Sustainable Development DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Tucson's Solar Investment (1999- 2008) * $960,000 cumulative solar investment with City general funds. * Over $200,000 leveraged from solar grants & utility rebates. * Bus shelter solar funded through advertising. * System size range: 3 kW- 64 kW (plus some solar hot water systems). * 220 kW total installed on 8 City sites. DOE EERE- January 15, 2013 Developing PV Projects with RFPs and PPAs Pre-RFP Decisions: site selection Plan A * Property owner selects sites; vendor determines details and

3

CPS Energy - Solar PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program CPS Energy - Solar PV Rebate Program < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $25,000 for Residential $80,000 for Schools and Commercial using local installer $100,000 for Commercial not using local installer Program Info Expiration Date STEP extends through 2020, annual program year expiration dates may apply State Texas Program Type Utility Rebate Program Rebate Amount Schools (public and private): $2.00/W for first 25 kW; $1.30/W for any additional capacity Residential using local installer: $1.60/W for first 25 kW Residential not using local installer:$1.30/W for first 25 kW Commercial using local installer: $1.60/W for first 25 kW; $1.30/W for any

4

Solar PV Incentive Programs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar...

5

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Middle School Goes Local for PV Solar Energy System Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

6

Massachusetts Middle School Goes Local for PV Solar Energy System |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System Massachusetts Middle School Goes Local for PV Solar Energy System August 13, 2010 - 11:00am Addthis New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools Lindsay Gsell What are the key facts? Using Recovery Act Funding, Norton Middle School installed a 126 panel solar system. The school expects to save $6,000 in energy costs each year. Materials for solar system came from local Massachusetts companies. When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of

7

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV...

8

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

PV into Utility System Operations System Scheduling APSSolar PV into Utility System Operations and occurs at 5 p.m.Solar PV in Utility System Operations A. Mills 1 , A.

Mills, A.

2014-01-01T23:59:59.000Z

9

Solar Energy International Solar PV 101 Training  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

10

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know that the sun's energy creates heat and light, but it can also be converted to make electricity...and lots of it. The video shows images of building roofs, with and without solar photovoltaic panels. The words "Solar Photovoltaics (PV) appear onscreen over an image of a photovoltaic panel. One technology is called solar photovoltaics, or PV for short. Various images of solar panels appear onscreen, followed by images of photovoltaic manufacturing processes. You've probably seen PV panels around for years... but recent advancements

11

Solar Works! In Seattle: Introduction to Solar Electric (PV)  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

12

Solar Resource and PV Systems Performance  

E-Print Network (OSTI)

Solar Resource and PV Systems Performance at Selected Test Sites Prepared for the U.S. Department Subtask 11.1 Deliverables 2 and 4: Report on Solar Resource and PV Systems Performance at Selected Test agency thereof. #12;1 Solar Resource and PV Systems Performance at Selected Test Sites Contents 1

13

Sandia National Laboratories: European PV Solar Energy Conference...  

NLE Websites -- All DOE Office Websites (Extended Search)

European PV Solar Energy Conference and Exhibition Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

14

EROI of Solar PV  

Science Journals Connector (OSTI)

For example, there has been around a 32 % increase in Germany’s generation capacity over the past 10 years, much of it wind and solar, along with a significant scaling up of...2013). Therefore, the cumulative emb...

Graham Palmer

2014-01-01T23:59:59.000Z

15

solar PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset highlights trends in financing terms for U.S. renewable energy projects that closed financing between Q3 2009 and Q3 2010. Information tracked includes debt interest rates, equity returns, financial structure applied, PPA duration, and other information. NREL's Renewable Energy Finance Tracking Initiative (REFTI) tracks renewable energy project financing terms by technology and project size. The intelligence gathered is intended to reveal industry trends and to inform input assumptions for models. Source NREL Date Released March 27th, 2011 (3 years ago) Date Updated Unknown Keywords biomass financial geothermal project finance solar PV wind onshore Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon RE Project Finance Trends Q3 2009 - Q3 2010 (xlsx, 309.2 KiB)

16

Energy 101: Solar PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar PV Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Duration 2:01 Topic Solar Energy Economy Credit Energy Department Video MR. : All right, we all know that the sun's energy creates heat and light. But it can also be converted to make electricity, and lots of it. One technology is called solar photovoltaics or PV for short. You've probably seen PV panels around for years, but recent advancements have greatly improved their efficiency and electrical output. Enough energy from the sun hits the earth every hour to power the planet for an

17

PNM - Performance-Based Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program PNM - Performance-Based Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate None specified Program Info Start Date 3/1/2006 State New Mexico Program Type Performance-Based Incentive Rebate Amount ''These prices will step down over time as certain MW goals are met Prices below are current as of 09/19/2012; see program website for current prices'' Systems up to 10 kW: $0.04/kWh for RECs >10 kW up to 100 kW: $0.05/kWh for RECs >100 kW up to 1 MW: $0.02/kWh for RECs 1 MW+: Fully subscribed Provider PNM In March 2006, PNM initiated a renewable energy credit (REC) purchase program as part of its plan to comply with [http://www.dsireusa.org/library/includes/incentive2.cfm?Incentive_Code=N...

18

CPS Energy- Solar PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

19

Integrating Solar PV into Energy Services Performance Contracts...  

Energy Savers (EERE)

Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options...

20

Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy  

Open Energy Info (EERE)

Solar PV Corp JSPV aka Solar PV Corporation Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place Xinyu, Jiangxi Province, China Zip 338004 Sector Solar Product Xinyu-based producer of solar cells Coordinates 27.804001°, 114.923317° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.804001,"lon":114.923317,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Description Project Description The Energy Policy Act of 2005 (EPAct 2005), the Energy Independence and Security Act of 2007 (EISA 2007), and Presidential Executive Order 13423 all contain requirements for Federal facilities to decrease energy consumption and increase the use of renewable energy by the year 2015. To provide leadership in meeting these requirements, DOE, in partnership with the General Services Administration (GSA), has installed a rooftop solar electric, or PV, system on the roof of DOE's headquarters in Washington, D.C. The 205 kilowatt (kW) installation is one of the largest of its kind in the Nation's capital. A display in the For- restal building will show the power output of the PV system during the day and the energy produced over

22

Impact of Solar PV Laminate Membrane Systems on Roofs | Department...  

Office of Environmental Management (EM)

Information Resources Impact of Solar PV Laminate Membrane Systems on Roofs Impact of Solar PV Laminate Membrane Systems on Roofs In 2008, CH2M HILL performed a solar site...

23

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

24

Emissions through solar PV systems - a review  

Science Journals Connector (OSTI)

Photovoltaic (PV) system has been quoted for wide range of green house gas (GHG) emissions through life cycle assessment (LCA) studies. There are a variety of solar cell materials available, which vary in conversion efficiency and emission of CO2. This paper is based on the LCA analysis of PV system which starts from the production of these solar cells and goes through the stages known as transportation, installation, operational period to their disposal or recycling and tried to find out the GHG emission in all the stages separately and the environmental impact of this emission. In this paper, different improvement techniques were also suggested to reduce the impact of GHG through solar PV system.

Mohammad Ziaur Rahman

2014-01-01T23:59:59.000Z

25

All Solar PV | Open Energy Information  

Open Energy Info (EERE)

All Solar PV All Solar PV Jump to: navigation, search Logo: All Solar PV Name All Solar PV Address 1407-4-105 Century East,Daliushu Road Place Beijing, China Sector Solar Product Solar Energy Products Year founded 2004 Phone number 86-010-52006592 Website http://www.allsolarpv.com/ Coordinates 39.904667°, 116.408198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.904667,"lon":116.408198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

PV Solar Planet | Open Energy Information  

Open Energy Info (EERE)

Planet Planet Jump to: navigation, search Logo: PV Solar Planet Name PV Solar Planet Address 5856 S. Garland Way Place Littleton, Colorado Zip 80123 Sector Solar Product Sales of solar laminate Website http://www.pvsolarplanet.com/ Coordinates 39.610743°, -105.105245° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.610743,"lon":-105.105245,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

PV Solar Site Assessment (Milwaukee High School)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

28

City of Knoxville, Tennessee City Council Resolution for solar PV system  

Office of Energy Efficiency and Renewable Energy (EERE)

This document is a scan of the resolution, dated July 26, 2011, for the approval of the City of Knoxville, Tennessee to use $250,000 of EECBG funding for finding innovative financing mechanisms for a planned installation of a 90-kW solar PV system.

29

Soiling losses for solar photovoltaic systems in California  

E-Print Network (OSTI)

n efficiency and daily rainfall for a 554 kW dc PV plant inPV sites demonstrated how soiling decreases the efficiency of solar PV plants.

Mejia, Felipe A; Kleissl, Jan

2013-01-01T23:59:59.000Z

30

Gulf Power - Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gulf Power - Solar PV Program Gulf Power - Solar PV Program Gulf Power - Solar PV Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $10,000/installation Program Info State Florida Program Type Utility Rebate Program Rebate Amount $2/watt Provider Energy Efficiency '''''All funding has currently been reserved and new applications are no longer being accepted. See Gulf Power's [http://www.gulfpower.com/renewable/solarElectricity.asp Solar PV] web site for more information.''''' Gulf Power offers a Solar PV rebate to residential and commercial customers. Gulf Power will provide a $2/watt rebate with a $10,000 per system maximum. In addition, Gulf Power has a Solar for Schools program, providing capital funding for PV systems. Gulf Power has worked with the Florida Solar Energy

31

Minnesota Power - Solar-Electric (PV) Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program Minnesota Power - Solar-Electric (PV) Rebate Program < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 or 60% of installed costs, including Minnesota Made, NABCEP, and Nonprofit bonuses Energy Efficiency Bonus: $5,000 or or 15% of installed costs One rebate per customer per year Program Info Start Date 2004 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount Base Rebate: $1,000/kilowatt DC Minnesota Made Bonus: $800/kilowatt NABCEP Bonus: $800/kilowatt Nonprofit Bonus: $500/kilowatt Energy Efficiency Bonus: $800/kilowatt Provider Minnesota Power Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for

32

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar PV at Government Sites with PPAs and Public Debt Financing Solar PV at Government Sites with PPAs and Public Debt Overview of financing solar photovoltaics at government...

33

Novel Control and Harmonics Impact of PV Solar Farms.  

E-Print Network (OSTI)

??This thesis presents a novel application of Photovoltaic (PV) solar system inverter, both during night and day, as a dynamic reactive power compensator STATCOM. This… (more)

Das, Byomakesh

2012-01-01T23:59:59.000Z

34

Distributed and Steady Modeling of the Pv Evaporator in a Pv/T Solar Assisted Heat Pump  

Science Journals Connector (OSTI)

A specially designed direct-expansion evaporator (PV evaporator), which is laminated with PV cells on the front surface is adopted in a photovoltaic/thermal solar assisted heat pump (PV/T SAHP) to obtain both the...

Jie Ji; Hanfeng He; Wei He; Gang Pei…

2009-01-01T23:59:59.000Z

35

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

36

Integrating Solar PV in Utility System Operations  

SciTech Connect

This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the

Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

2013-10-31T23:59:59.000Z

37

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

solar photovoltaics (PV) in traditional electric power systems, Energy Policy,solar, and renewable electricity generators: Technical barrier or rhetorical excuse? , Utilities Policy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

38

NREL: Jobs and Economic Competitiveness - Solar PV Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis Solar PV Manufacturing Cost Analysis Between 2000 and 2010 global shipments of PV cells/modules grew 53% (compound annual growth rate [CAGR]). At the same time, the U.S. market share has slipped from 30% to 7% (30% CAGR) while China/Taiwan has grown from <2% to 54% (115% CAGR) to become the leader in global production. NREL's manufacturing cost analysis has focused on understanding the regional competitiveness of solar PV manufacturing specifically: What factors have led to China's dramatic growth in PV? Is it sustainable? Can the US compete? NREL's manufacturing cost analysis studies show that: U.S. incentives to strengthen access to capital for investment in innovative solar technologies could offset China's current advantage U.S. incentives are dwarfed by the scale of Chinese incentives

39

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

40

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards Maricopa Assn. of Governments - PV and Solar Domestic Water Heating Permitting Standards < Back Eligibility Commercial Construction Installer/Contractor Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Arizona Program Type Solar/Wind Permitting Standards Provider Maricopa Association of Governments In an effort to promote uniformity, the Maricopa Association of Governments (MAG) approved standard procedures for securing necessary electrical/building permits for residential (single-family) and commercial PV systems. These procedures are a part of the MAG Building Code Standards. The standards address requirements for the solar installation, plans,

42

Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008  

SciTech Connect

Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

West, R.

2008-08-01T23:59:59.000Z

43

PV vs. Solar Water Heating- Simple Solar Payback  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy systems hang their hats on payback. Financial payback is as tangible as money in your bank account, while other types of payback—like environmental externalities—are not usually calculated in dollars. There’s no doubt that photovoltaic (PV) and solar hot water (SHW) systems will pay you back. Maybe not as quickly as you’d like, but all systems will significantly offset their cost over their lifetimes. Here we’ll try to answer: Which system will give the quickest return on investment (ROI)?

44

PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information  

Open Energy Info (EERE)

PV Crystalox Solar AG formerly PV Silicon AG PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name PV Crystalox Solar AG (formerly PV Silicon AG) Place Abingdon, England, United Kingdom Zip OX14 4SE Sector Solar Product UK-based manufacturer of multicrystalline ingots and wafers to the solar industry; as of early 2009, to output solar-grade polysilicon. Coordinates 36.71049°, -81.975194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.71049,"lon":-81.975194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

45

Tucson's Solar Experience: Developing PV with RFPs and PPAs  

Office of Energy Efficiency and Renewable Energy (EERE)

This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

46

Solar PV Jobs and Economic Development Impact Model Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Join the DOE SunShot Initiative, in conjunction with the National Renewable Energy Laboratory, for a webinar on August 21, 2013, at 2-3 p.m. EST highlighting the Scenario Solar PV Jobs and Economic...

47

Utility Scale Solar PV Cost Steven SimmonsSteven Simmons  

E-Print Network (OSTI)

Nuclear Generating Station. 4 #12;6/19/2013 3 EVEN MORE SUNNY HEADLINES New solar panels glisten6/19/2013 1 Utility Scale Solar PV Cost Steven SimmonsSteven Simmons Northwest Power Cost Forecast 5. Levelized Costs 1 SOLAR POWER SYSTEM HAS BRIGHT FUTURE 1. Modest environmental impacts

48

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

of Renewable Energy Note that total costs increasedemand and renewable energy to minimize production cost. TheCost of PV . 54 Renewable Energy

Mills, A.

2014-01-01T23:59:59.000Z

49

Distributed Solar PV for Electricity System Resiliency: Policy...  

NLE Websites -- All DOE Office Websites (Extended Search)

supply. Members of the community installed a total of 700 kW of distributed rooftop solar capacity. CES units were added at the substation and distribution circuits, along with...

50

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

T.L. Gibson, Improved photovoltaic energy output for cloudyphotovoltaic panels in Sanliurfa, Turkey, Renewable Energy,to substantial energy production. Solar photovoltaic (PV)

Lave, Matthew S.

2012-01-01T23:59:59.000Z

51

A 40KW ROOF MOUNTED PV THERMAL CONCENTRATOR SYSTEM J.F.H. Smeltink1  

E-Print Network (OSTI)

during 2003-4. The system comprises eight 24 metre long single axis tracking reflective solar collectors and hydronic in-slab floor heating. Equipment associated with the solar collection system was installed during

52

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

54  Solar photovoltaic Distributed Energy Resources (DER) Clearly, solar energy is a sustainable resource, with energyof distributed energy resources such as solar PV, treating

Hill, Steven Craig

2013-01-01T23:59:59.000Z

53

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

adopted a program- the California Solar Initiative (CSI) -of the impact of the California Solar Initiative (CSI), andissues with rooftop solar PV in California are: 1) Utility

Hill, Steven Craig

2013-01-01T23:59:59.000Z

54

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

dispersion of solar energy production sites could mitigatesolar radiation can lead to substantial energy production.production of 100 grid connected PV systems distributed over the area of Germany, Solar Energy,

Lave, Matthew S.

2012-01-01T23:59:59.000Z

55

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

the DC electric energy from the solar panels or modules intosolar energy available is subject to change with irradiance, temperature, and aging of PV panelsrooftop solar panels. While the renewable energy PV

Hill, Steven Craig

2013-01-01T23:59:59.000Z

56

Can Solar PV Rebates Be Funded with Utility Cost Savings? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Can Solar PV Rebates Be Funded with Utility Cost Savings? Can Solar PV Rebates Be Funded with Utility Cost Savings? This presentation was given by Jan Aceti of Concord Light at the...

57

Property:Incentive/PVPbiFitMaxKW | Open Energy Information  

Open Energy Info (EERE)

PVPbiFitMaxKW PVPbiFitMaxKW Jump to: navigation, search Property Name Incentive/PVPbiFitMaxKW Property Type String Description The maximum installed PV capacity in kW that is eligible for the PBI or FIT. Ex: We Energies' FIT maximum eligible PV system size is 100 kW. Format: 100.0 [1] References ↑ DSIRE Pages using the property "Incentive/PVPbiFitMaxKW" Showing 25 pages using this property. (previous 25) (next 25) A Alliant Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 20 + Ameren Missouri - Solar Renewable Energy Credits + 100 + Anaheim Public Utilities - PV Buydown Program (California) + 1000 + Austin Energy - Commercial PV Incentive Program (Texas) + 20 + Austin Energy - Value of Solar Residential Rate (Texas) + 20 +

58

Optimum Operating Conditions for Alkaline Water Electrolysis Coupled with Solar PV Energy System  

Science Journals Connector (OSTI)

This paper investigates theoretically and experimentally the optimum operating conditions for alkaline water electrolysis coupled with a solar photovoltaic (PV)...

Ashraf Balabel; Mohamed S. Zaky; Ismail Sakr

2014-05-01T23:59:59.000Z

59

Pv-Thermal Solar Power Assembly  

DOE Patents (OSTI)

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

60

The following contribution was presented at the 28. European PV Solar Energy Conference and Exhibition  

E-Print Network (OSTI)

The following contribution was presented at the 28. European PV Solar Energy Conference in photovoltaic (PV) modules [1, 2]. This cell cracking may reduce the reliability of the solar modules [3, 4 for the cracking of solar cells in a PV module. Subsequently we create a test to simulate the transport stress

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA  

E-Print Network (OSTI)

INTEGRATION OF HELIOCLIM-1 DATABASE INTO PV-GIS TO ESTIMATE SOLAR ELECTRICITY POTENTIAL IN AFRICA T, the proper configuration of a PV system depends on the knowledge of solar resource, which, although generally service. The PV-GIS approach makes it possible to enhance the spatial resolution of the solar radiation

Paris-Sud XI, Université de

62

Rural electrification cooperative model (Solar-PV) in Madhya Pradesh  

Science Journals Connector (OSTI)

In order to speed up the development of energy supply, involving the local population can be one of the main drivers for the success story of rural electrification. The local community involvement could be crystallised in the form of a cooperative model, ... Keywords: cooperative, electrification, model, renewable energy sources, rural, solar-PV, town

Najib Altawell; Tariq Muneer

2011-12-01T23:59:59.000Z

63

Novel Controls of Photovoltaic (PV) Solar Farms.  

E-Print Network (OSTI)

??Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive… (more)

Rahman, Shah Arifur

2012-01-01T23:59:59.000Z

64

Potential of Securitization in Solar PV Finance  

SciTech Connect

This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets.

Lowder, T.; Mendelsohn, M.

2013-12-01T23:59:59.000Z

65

Property Taxes and Solar PV Systems: Policies,  

E-Print Network (OSTI)

of the SunShot Solar Outreach Partnership: ICLEI-Local Governments for Sustainability; International City: Josh Huneycutt, Monica Andrews, and Ammar Qusaibaty, U.S. Department of Energy SunShot Initiative

66

Going Solar in Record Time with Plug-and-Play PV | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. A plug-and-play PV system is envisioned as a consumer friendly solar technology that uses an automatic detection system to initiate communication between the solar energy system and the utility when plugged into a PV-ready circuit. | Photo by iStock. Kevin Lynn Systems Integration Lead, SunShot Initiative What does this project do? The Energy Department is investing up to $5 million this year to

67

The Solar PV Market Today and the Need for Non-polluting Solar Energy  

Science Journals Connector (OSTI)

In Chap.  1 , it was noted that installed solar PV systems prices have now dropped to approximately $4 per W in the US. What does that mean in terms of cents per kWh and h...

Lewis M. Fraas

2014-01-01T23:59:59.000Z

68

Soiling losses for solar photovoltaic systems in California  

E-Print Network (OSTI)

the fall restore the t PV plant t to the effic ciency observrainfall for a 554 kW dc PV plant in Hanford H Kin ngs, CAthe efficiency of solar PV plants. The accumulated soiling

Mejia, Felipe A; Kleissl, Jan

2013-01-01T23:59:59.000Z

69

Modeling and Simulation of Solar PV Arrays under Changing Illumination Conditions  

E-Print Network (OSTI)

the amount of electric power that may be generated from the solar panel at time of use. To be specificModeling and Simulation of Solar PV Arrays under Changing Illumination Conditions Dzung D Nguyen shadows (a passing cloud) on the output power of solar PV arrays. Each solar array is composed of a matrix

Lehman, Brad

70

Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential  

SciTech Connect

Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

Helm, C.; Burman, K.

2010-04-01T23:59:59.000Z

71

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USE  

E-Print Network (OSTI)

Geothermal, Energy Efficiency, and Solar PV Opportunities at Nissan USA May 21st, 2014 Robinson Ford Justin Ong Jake Reeder Vikram Sridar Rica Zhang ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New... Orleans, LA. May 20-23, 2014 Carbon Goal is Driving Innovation ESL-IE-14-05-04 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Research Areas Geothermal Solar Photovoltaics EE Verification ESL...

Ford, R.; Ong, J.; Reeder, J.; Sridar, V.; Zhang, R.

2014-01-01T23:59:59.000Z

72

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

73

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

FERC) and the National Electrical Regulatory Corporation (Of Solar PV and CPV Onto The Electrical Grid By Steven Craig24  Electrical, Controls & 

Hill, Steven Craig

2013-01-01T23:59:59.000Z

74

Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)  

SciTech Connect

Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

Not Available

2014-11-01T23:59:59.000Z

75

El Paso Electric Company - Solar PV Pilot Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program El Paso Electric Company - Solar PV Pilot Program < Back Eligibility Commercial Construction Fed. Government Industrial Installer/Contractor Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,500 Non-Residential: $50,000 Per Customer with Multiple Projects: 25% of 2013 incentive budget Per Service Provider with Multiple Projects: 50% of 2013 incentive budget in each category Program Info Start Date March 2010 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $0.75/W DC Non-Residential: $1.00/W DC Provider El Paso Electric Solar PV Pilot Program '''''El Paso Electric's 2013 Solar PV Rebate program will reopen at 12:00

76

Measurement and Modeling of Solar and PV Output Variability: Preprint  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measurement and Modeling of Measurement and Modeling of Solar and PV Output Variability Preprint M. Sengupta To be presented at SOLAR 2011 Raleigh, North Carolina May 17-21, 2011 Conference Paper NREL/CP-5500-51105 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty,

77

PV Basics  

Science Journals Connector (OSTI)

PV systems work by converting sunlight directly into electricity. The conversion process takes place in a solar or PV cell, usually made of silicon, although new materials are being developed. PV cells need to...

2009-01-01T23:59:59.000Z

78

Performance of Solar Assisted Heat Pump Using Pv Evaporator Under ` Different Compressor Frequency  

Science Journals Connector (OSTI)

A novel photovoltaic solar assisted heat pump (PV-SAHP) system was ... -collector plate. So a portion of the solar energy received was converted to electricity and ... pump was also substantially improved because...

Gang Pei; Jie Ji; Chongwei Han; Wen Fan

2009-01-01T23:59:59.000Z

79

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY  

E-Print Network (OSTI)

SOLAR ENERGY (conditionally accepted 1/2010) QUANTIFYING PV POWER OUTPUT VARIABILITY Thomas E create major problems that will require major mitigation efforts. #12;SOLAR ENERGY (conditionally industry believe it could constrain the penetration of gridconnected PV. The U.S. Department of Energy

Perez, Richard R.

80

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together |  

Open Energy Info (EERE)

Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 5 July, 2012 - 13:20 imported OpenEI Article originally published at NREL's Renewable Energy Project Finance website Think of it like Costco or Sam's Club for purchasing solar photovolatics (PV). Some savvy folks in Oregon thought it would be a great idea to buy PV in bulk for their neighborhood to get a big volume discount and share the savings with neighbors. So they created the Solarize campaign, which over the last three years has helped Portland add "[more than] 1.7 MW of distributed PV and [establish] a strong, steady solar installation economy" [1]. In fact, so successful was the Portland model that several other

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

An empirical model for ramp analysis of utility-scale solar PV power  

Science Journals Connector (OSTI)

Abstract Short-term variability in the power generated by utility-scale solar photovoltaic (PV) plants is a cause for concern for power system operators. Without quantitative insights into such variability, system operators will have difficulty in exploiting grid integrated solar power without negatively impacting power quality and grid reliability. In this paper, we describe a statistical method to empirically model the ramping behavior of utility-scale solar PV power output for short time-scales. The general validity of the model is confirmed through the analysis of power output data from a MW-scale solar PV plant located in the state of Karnataka, India. The empirical parameters of the model are investigated for different time-intervals and solar datasets. The proposed model is able to satisfactorily approximate the actual distribution of PV ramp events and can be an effective tool in smartly planning additional resources for PV ramp control.

Bishal Madhab Mazumdar; Mohd. Saquib; Abhik Kumar Das

2014-01-01T23:59:59.000Z

82

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

83

The California Solar Initiative: Cost Trends in Customer-Sited PV  

NLE Websites -- All DOE Office Websites (Extended Search)

The California Solar Initiative: Cost Trends in Customer-Sited PV The California Solar Initiative: Cost Trends in Customer-Sited PV Installations and the Impact of Retail Rate Design on the Economics of PV Systems Speaker(s): Ryan Wiser Date: January 9, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner California's new solar initiative will dedicate over $3 billion of public funds to support the installation of customer-sited solar installations in the state over the next 10 years, principally in the form of residential and commercial photovoltaic (PV) systems. These efforts build from historical programs that have made California the third largest PV market in the world, behind Germany and Japan. This talk will summarize recent efforts at Berkeley Lab to advise the state's energy agencies in the design

84

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

85

Analysis of off-grid hybrid wind turbine/solar PV water pumping systems  

Science Journals Connector (OSTI)

While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic, wind-electric, diesel powered), few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) and solar photovoltaic (PV) array water pumping systems were analyzed individually and combined as a hybrid system. The objectives were to determine: (1) advantages or disadvantages of using a hybrid system over using a WT or a solar PV array alone; (2) if the WT or solar PV array interfered with the output of the other; and (3) which hybrid system was the most efficient for the location. The WT used in the analysis was rated at 900 W alternating current (AC). There were three different solar PV arrays analyzed, and they were rated at 320, 480, and 640 W direct current (DC). A rectifier converted the 3-phase variable voltage AC output from the WT to DC before combining it with the solar PV array DC output. The combined renewable energies powered a single helical pump. The independent variable used in the hybrid WT/PV array analysis was in units of W/m2. The peak pump efficiency of the hybrid systems at Bushland, TX occurred for the 900 W WT combined with the 640 W PV array. The peak pump efficiencies at a 75 m pumping depth of the hybrid systems were: 47% (WT/320 W PV array), 51% (WT/480 W PV array), and 55% (WT/640 W PV array). Interference occurred between the WT and the different PV arrays (likely due to voltage mismatch between WT and PV array), but the least interference occurred for the WT/320 W PV array. This hybrid system pumped 28% more water during the greatest water demand month than the WT and PV systems would have pumped individually. An additional controller with a buck/boost converter is discussed at end of paper for improvement of the hybrid WT/PV array water pumping system.

Brian D. Vick; Byron A. Neal

2012-01-01T23:59:59.000Z

86

Wind and Solar-Electric (PV) Systems Exemption | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Wind and Solar-Electric (PV) Systems Exemption Wind and Solar-Electric (PV) Systems Exemption < Back Eligibility Commercial Industrial Residential Savings Category Solar Buying & Making Electricity Wind Maximum Rebate None Program Info State Minnesota Program Type Property Tax Incentive Rebate Amount Solar: 100% exemption from real property taxes Wind: 100% exemption from real and personal property taxes Provider Minnesota Department of Commerce Minnesota excludes the value added by solar-electric (PV) systems installed after January 1, 1992 from real property taxation. In addition all real and personal property of wind-energy systems is exempt from the state's property tax.* However, the land on which a PV or wind system is located remains taxable.

87

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

88

Loan Guarantees for Three California PV Solar Plants Expected to Create  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Loan Guarantees for Three California PV Solar Plants Expected to Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs Loan Guarantees for Three California PV Solar Plants Expected to Create 1,400 Jobs June 30, 2011 - 2:29pm Addthis Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What will these projects produce? These projects are expected to create 1,400 jobs in California and hundreds along the PV module supply chain across the country. Combined, the projects will produce 1330 Megawatts of installed solar power -- enough electricity to power about 275,000 homes. Building on the momentum of our SunShot Initiative, Secretary Chu announced nearly $4.5 billion in conditional loan guarantees to three California photovoltaic solar power plants today. These projects are expected to

89

ePOWER Seminar AC solar cells: A new breed of PV power generation  

E-Print Network (OSTI)

ePOWER Seminar AC solar cells: A new breed of PV power generation Professor Faisal Khan Assistant dc output which needs to be processed and inverted for ac applications. Using a modern manufacturing facility, PV panels could be mass produced without any apparent issues. Unfortunately, power converters

Abolmaesumi, Purang

90

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network (OSTI)

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

91

Solar Real-Time Pricing: Is Real-Time Electricity Pricing Beneficial to Solar PV in New York City?  

Energy.gov (U.S. Department of Energy (DOE))

The goal of this study is to evaluate the validity of the following statement: “the coincidence of high electric energy prices and peak solar electric photovoltaic (PV) output can improve the economics of PV installations, and can also facilitate the wider use of hourly pricing.” The study is focused on Con Edison electric service territory in New York City.

92

Sundance, Skiing and Solar: Park City to Install New PV System | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System Sundance, Skiing and Solar: Park City to Install New PV System October 25, 2010 - 10:49am Addthis Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Park City, UT has completed several green projects recently. The town is installing a solar energy system on top of the Marsac Building at the end of the month. | Photo courtesy of Park City | Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this project do? 80-panel solar energy system to be installed at Park City's Marsac Building. Recovery Act-funded system to generate up to 15% of the building's

93

Flat Plate PV Module Eligibility Listing Procedure Updated 6/2/14 Senate Bill 1 (SB1) defines the solar incentive programs for California, and flat plate PV  

E-Print Network (OSTI)

programs for investor owned utility (IOU) territories, the California Solar Initiative (CSI) and the New the solar incentive programs for California, and flat plate PV modules 1 must be listed on the SB1 Solar Homes Partnership (NSHP), as well as solar incentive programs administered by publicly owned

94

Progress Energy Florida - SunSense Commercial PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program Progress Energy Florida - SunSense Commercial PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate 130,000 per participant Program Info Start Date 03/15/2011 State Florida Program Type Utility Rebate Program Rebate Amount First 10 kW: 2/watt 11 kW - 50 kW: 1.50/watt 51 kW - 100 kW: 1/watt Provider Business Customer Service '''''Progress Energy Florida will begin accepting applications at 10:00 a.m. October 1, 2012, for customers to apply for the 2013 rebates.''''' In March 2011, Progress Energy Florida began offering incentives to commercial customers who install photovoltaic (PV) systems. Incentive rates are based on a tiered structure:

95

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program Xcel Energy - Solar*Rewards Program and MN Made PV Rebate Program < Back Eligibility Commercial Local Government Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $90,000 (as determined by the incentive level and maximum system size) Program Info Start Date 03/01/2010 State Minnesota Program Type Utility Rebate Program Rebate Amount REC Rebate Program 2010-2012:$2.25/W DC REC Rebate Program 2013:$1.50/W DC Minnesota Made Bonus 2010-2012:Up to an additional $2.75/W DC (paired with REC Rebate) Provider Xcel Energy '''''Note: All 2012 funding for the Solar*Rewards program and Minnesota Made Bonus has been reserved as of July 11, 2012. On October 1, 2012, the

96

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | Minh Le Minh Le

97

Hercules Municipal Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program Hercules Municipal Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Systems 10 kW or less: 10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount '''2012:''' Systems up to 10 kW: 2.25/watt AC Systems larger than 10 kW: 0.17/kWh for 5 years'''''' Provider Hercules Municipal Utility '''''Note: This program has been temporarily suspended. Contact the utility for more information.''''' Hercules Municipal Utility offers a $2.25-per-watt AC rebate (2012 rebate level) to its residential and commercial customers who purchase and install solar photovoltaic (PV) systems smaller than 10 kilowatts (kW). Systems 10

98

Loan Guarantees for Three California PV Solar Plants Expected...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abound Solar -- who are about to get more than 1,000 new colleagues -- make a thin-film solar panel. | Photo courtesy of Abound Solar Former Chrysler Plant Changes Gears to Solar...

99

Impact of increased penetration of wind and PV solar resources on the  

E-Print Network (OSTI)

Impact of increased penetration of wind and PV solar resources on the bulk power system Vijay the impact of increased penetration of wind and solar resources on the bulk energy system (BES) · The BES Vittal Ira A. Fulton Chair Professor School of Electrical, Computer and Energy Engineering Arizona State

100

Novel Control of PV Solar and Wind Farm Inverters as STATCOM for Increasing Connectivity of Distributed Generators.  

E-Print Network (OSTI)

??The integration of distributed generators (DGs) such as wind farms and PV solar farms in distribution networks is getting severely constrained due to problems of… (more)

AC, Mahendra

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Artificial neural network based models for forecasting electricity generation of grid connected solar PV power plant  

Science Journals Connector (OSTI)

This paper presents an artificial neural network (ANN) approach for forecasting the performance of electric energy generated output from a working 25-kWp grid connected solar PV system and a 100-kWp grid connected PV system installed at Minicoy Island of Union Territory of Lakshadweep Islands. The ANN interpolates among the solar PV generation output and relevant parameters such as solar radiation, module temperature and clearness index. In this study, three ANN models are implemented and validated with reasonable accuracy on real electric energy generation output data. The first model is univariate based on solar radiation and the output values. The second model is a multivariate model based on module temperature along with solar radiation. The third model is also a multivariate model based on module temperature, solar radiation and clearness index. A forecasting performance measure such as percentage root mean square error has been presented for each model. The second model, which gives the most accurate results, has been used in forecasting the generation output for another PV system with similar accuracy.

Imtiaz Ashraf; A. Chandra

2004-01-01T23:59:59.000Z

102

Sunshine PV | Open Energy Information  

Open Energy Info (EERE)

PV Jump to: navigation, search Name: Sunshine PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References:...

103

Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology  

SciTech Connect

Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

None

2012-01-30T23:59:59.000Z

104

Can Solar PV Rebates Be Funded with Utility Cost Savings?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jan Aceti Jan Aceti Concord Light February 19, 2013 Concord Municipal Light Plant Photo Credit: K.M. Peterson  7,600 Customers ◦ 6,000 Residential ◦ 1,600 Commercial/Institutional/Governmental  Retail Sales: 180,000,000 kWh per Year  Peak Electrical Demand: 40 MW  Power Purchased from Facilities in Northeast Year # of Installations kW DC kW AC 1999 1 5 5 2008 3 4.2 4.0 2009 5 75.0 74.6 2010 3 158 151 2011 7 36 35 2012 19 143 137 2013 2 8.2 7.7 Total 40 429 414 Residential 35 178 170  $1,000 per kW AC, up to $5,000  Retail Net Metering  Replaced Retail Net Metering with Wholesale Net Metering ◦ Credit at Avg. Monthly Spot Market Energy Price  Rebate: 10 Years Worth of Estimated Cost Savings, Up to 5 kW AC of Installed Capacity  Transmission Cost Savings  Forward Capacity Market Cost Savings

105

November 21, 2000 PV Lesson Plan 2 Solar Electric Arrays  

E-Print Network (OSTI)

and the concept of the photovoltaic IV curve. They will learn how modules are put together to generate the desired electric system A solar cell is a semicondutor device designed to turn solar irradiance into electricity such as lamps can also be used by solar cells to generate electricity if the energy of the photons is high

Oregon, University of

106

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA  

E-Print Network (OSTI)

2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J, The University at Albany, 251 Fuller Rd, Albany, NY 12203, USA 3 University of Oldenburg, Institute of Physics for a half year period (summer 2007) at three different climates in the USA. ECMWF shows the best results

Perez, Richard R.

107

Indirect Benefits (Increased Roof Life and HVAC Savings) from a Solar PV System at the San José Convention Center  

Energy.gov (U.S. Department of Energy (DOE))

The City of San José is considering the installation of a solar photovoltaic (PV) system on the roof of the San José Convention Center. The installation would be on a lower section of the roof covering approximately 21,000 ft2. To assist city staff in making a decision on the PV installation, the Department of Energy Tiger Team has investigated potential indirect benefits of installing a solar PV system on the Convention Center roof. The indirect benefits include potential increase in roof life, as well as potential reduced heating and cooling load in the building due to roof shading from the PV system.

108

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable photovoltaic energy systems and accelerating the integration of PV technology in the...

109

Polymer solar cell as an emerging PV technology  

Science Journals Connector (OSTI)

In the presentation, I will present progresses in polymer solar cell in recent years. Advances in material, device structure, morphology are the focus of the talk. ...

Li, Gang

110

Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria  

Science Journals Connector (OSTI)

Hydrogen fuel can be produced by using solar electric energy from photovoltaic (PV) modules for the electrolysis of water without emitting carbon dioxide or requiring fossil fuels. In this paper, an assessment of the technical potential for producing hydrogen from the PV/proton exchange membrane (PEM) electrolyser system is investigated. The present study estimates the amount of hydrogen produced by this system in six locations using hourly global solar irradiations on horizontal plane and ambient temperature. The system studied in this work is composed of 60 W PV module connected with a commercial 50 W PEM electrolyser via DC/DC converter equipped with a maximum power point tracking. The primary objective is to develop a mathematical model of hydrogen production system, including PV module and PEM electrolyser to analyze the system performance. The secondary aim is to compare the system performance in terms of hydrogen production at seven locations situated in different regions of Algeria. The amount of hydrogen produced is estimated at seven locations situated in different regions. In terms of hydrogen production, the results show that the southern region of Algeria (Adrar, Ghardaia, Bechar and Tamanrasset) is found to have the relatively highest hydrogen production. The total annual production of hydrogen is estimated to be around 20–29 m3 at these sites. The hydrogen production at various sites has been found to vary according to the solar radiation.

Djamila Ghribi; Abdellah Khelifa; Said Diaf; Maïouf Belhamel

2013-01-01T23:59:59.000Z

111

Optimization of a stand?alone Solar PV?Wind?DG Hybrid System for Distributed Power Generation at Sagar Island  

Science Journals Connector (OSTI)

An estimation of a stand?alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV?Wind?DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind?DG compared to Solar PV?DG.

P. C. Roy; A. Majumder; N. Chakraborty

2010-01-01T23:59:59.000Z

112

The Potential of Securitization in Solar PV Finance  

NLE Websites -- All DOE Office Websites (Extended Search)

editorial guidance. The authors would also like to express their gratitude to Brian Danielewicz of U.S. Renewables Group, Albert Luu of SolarCity, and Mary Rottman of...

113

Performance analysis of PV system for maximum utilization of solar radiation  

Science Journals Connector (OSTI)

A detailed analysis of a photovolatic (PV) stand-alone system using a novel battery voltage regulator to maximize the utilization of solar radiation is presented. The basic idea of the novel battery voltage regulator is discussed in a previously published work. The proposed system disconnects the battery rather than the PV array when the battery is fully charged. When the battery is disconnected, the load is supplied through a chopper. Hence, instead of losing available solar energy-by disconnecting the array-the energy is supplied to the load. The analysis presented here shows that the PV array may be disconnected for a variable period, ranging between 4 and 5 h per day during the summer season. This result indicates that a significant energy loss, up to 50% of the available solar energy, may occur during the summer. An elaborate analysis for the chopper circuit is given in this work. The analysis showed that the chopper keeps the load voltage almost constant if the chopper parameters are carefully designed. The novel system preserves the battery charge during periods of high solar insolation, thus the battery state of charge is kept high for long periods during the year. Consequently, the battery lifetime is prolonged. In this work, the climatic conditions of Cairo, the Egyptian capital, are considered. The effects of cloudy days on the system performance were taken into consideration.

Wagdy R. Anis; M.Abdul-Sadek Nour

1994-01-01T23:59:59.000Z

114

Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution  

Science Journals Connector (OSTI)

In this paper we first make a review of the past annual production of electricity and the cumulative installed capacity for photovoltaic (PV) and concentrating solar power (CSP) technologies. This together with the annual costs of PV modules and CSP systems allows us the determination of the experience curves and the corresponding learning rates. Then, we go over a rigorous exposition of the methodology employed for the calculation of the value of the levelized cost of electricity (LCOE) for PV and CSP. Based on this knowledge, we proceed to establish a mathematical model which yields closed-form analytical expressions for the present value of the LCOE, as well as its future evolution (2010–2050) based on the International Energy Agency roadmaps for the cumulative installed capacity. Next, we explain in detail how specific values are assigned to the twelve independent variables which enter the LCOE formula: solar resource, discount and learning rates, initial cost and lifetime of the system, operational and maintenance costs, etc. With all this background, and making use of a simple computer simulation program, we can generate the following: sensitivity analysis curves, graphs on the evolution of the LCOE in the period 2010–2050, and calculations of the years at which grid parities will be reached. These representations prove to be very useful in energy planning policies, like tariff-in schemes, tax exemptions, etc., and in making investment decisions, since they allow, for a given location, to directly compare the costs of PV vs CSP power generation technologies for the period 2010–2050. Among solar technologies, PV seems always more appropriate for areas located in middle to high latitudes of the Earth, while CSP systems, preferably with thermal storage incorporated, yield their best performance in arid areas located at relatively low latitudes.

J. Hernández-Moro; J.M. Martínez-Duart

2013-01-01T23:59:59.000Z

115

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

116

Experience Curves and Solar PV Fred Heutte, Senior Policy Associate  

E-Print Network (OSTI)

of evidence suggests staying with the consensus experience curve estimate ­ a Learning Rate of 20% for solar Market Penetration and Cost Numerous approaches have been tried over time to project changes in market penetration, price and time for technology-oriented products (Junginger 2006). Among them are: · cost per

117

Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners (Revised)  

NLE Websites -- All DOE Office Websites (Extended Search)

23 23 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46723 Revised February 2010 Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners Katharine Kollins Duke University Bethany Speer and Karlynn Cory

118

Supply Curves for Rooftop Solar PV-Generated Electricity for the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

A0-44073 A0-44073 November 2008 Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Supply Curves for Rooftop Solar PV-Generated Electricity for the United States Paul Denholm and Robert Margolis Prepared under Task No. PVB7.6301 Technical Report NREL/TP-6A0-44073 November 2008 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

119

Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

956 956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-7A2-47956 April 2010 Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared under Task No. IDHW.9170 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

120

Solar Survey of PV System Owners: San Diego  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of the survey was to understand the motivation, challenges and benefits perceived by individuals who decided to install solar systems in the City of San Diego. Approximately 2000 surveys were sent, and 641 surveys were completed. The primary response was from the residential sector. Individuals had the option to reply electronically, using Survey Monkey, or to complete a paper survey. All responses were combined and checked to ensure that there were no duplicates.

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Operational results of the 13 kW/50 m sup 3 solar-driven cold store in Khartoum, The Sudan  

SciTech Connect

Experimental test results on a 13-kW solar-driven absorption refrigerator, located at Khartoum, The Sudan, are presented. Design considerations and cost aspects of the solar-driven refrigerator are given as well. The test shows that the solar-driven refrigerator performed satisfactorily during nine months of operation. However, continued tests have to show the ultimate system performance.

Sloetjes, W.; Haverhals, J.; Kerkdijk, K. (Stork Product Engineering, Amsterdam (Netherlands)); Ahmed, I.O.; Saber, H.; Eldin, S.S. (Renewable Energy Research Institute, Khartoum (Sudan)); Porsius, R.; Stolk, A. (Technical Univ. of Delft (Netherlands)); Karib, A.E.; Yousif, K. (Food Research Centre, Khartoum North (Sudan)); Hassan, H.W. (Materials Research Development Centre, Khartoum (Sudan))

1988-01-01T23:59:59.000Z

122

A Wavelet-Based Variability Model (WVM) for Solar PV Power Plants  

E-Print Network (OSTI)

power fluctuations: the pv plant as a low pass filter,"point sensor to the entire PV plant at each timescale isWVM Inputs WVM Outputs PV Plant Footprint Density of PV

Lave, Matthew; Kleissl, Jan; Stein, Joshua S

2013-01-01T23:59:59.000Z

123

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

in the design of larger PV plants. Chapter 2 will discussEdison central station PV plant at Hesperia, California,PV components. When a PV plant or installation is proposed

Hill, Steven Craig

2013-01-01T23:59:59.000Z

124

Florida Power and Light - Solar Rebate Program (Florida) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) Florida Power and Light - Solar Rebate Program (Florida) < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Program Info State Florida Program Type Utility Rebate Program Rebate Amount Solar Water Heater (Residential): $1,000/system Solar Water Heater (Business): $30/1,000 BTUh per day Solar PV (Residential): $2/DC Watt Solar PV (Commercial): $2/DC Watt (Up to 10kW), $1.50/DC Watt (10kW - 25kW), $1/DC Watt (25kW or larger) Provider Customer Service Note:The Florida Power and Light (FPL) 2013 solar PV rebate program is fully subscribed and the limited "standby list" is full. Customers on the

125

San Carlos Apache Tribe Set to Break Ground on New Solar Project...  

Office of Environmental Management (EM)

its extensive solar resources to power tribal facilities, including this 10-kilowatt (kW) solar PV system, which generates energy to run the tribal radio tower. Photo from San...

126

An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit  

Science Journals Connector (OSTI)

Abstract Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits electricity distributors in maintaining system voltages within acceptable limits. However, without careful coordination, these potential benefits might not be realized. In this paper we propose an optimization-based algorithm for the scheduling of residential battery storage co-located with solar PV, in the context of PV incentives such as feed-in tariffs. Our objective is to maximize the daily operational savings that accrue to customers, while penalizing large voltage swings stemming from reverse power flow and peak load. To achieve this objective we present a quadratic program (QP)-based algorithm. To complete our assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured load and generation data from 145 residential customers located in an Australian distribution network. The results of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow and peak loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of customers exhibited operational savings when QP energy-shifting.

Elizabeth L. Ratnam; Steven R. Weller; Christopher M. Kellett

2015-01-01T23:59:59.000Z

127

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

tracking solar panel. 44and azimuth angles for solar panels were calculated for aannual azimuth for a solar panel, and can be combined with

Lave, Matthew S.

2012-01-01T23:59:59.000Z

128

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer (OSTI)

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

129

Sandia National Laboratories: PV Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

130

Plumas-Sierra REC - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Plumas-Sierra REC - PV Rebate Program < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $6,000 for residential; $12,000 for small commercial, agricultural and non-profit applications; $20,000 for large commercial and industrial applications Program Info State California Program Type Utility Rebate Program Rebate Amount 2012 rebate level: $2.09/watt (AC) Incentives will be adjusted based on expected performance. Provider Plumas-Sierra REC Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25 kW; the rebate amount is based on the installed capacity. The rebate level will decreases

131

Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

Steen, M.; Lisell, L.; Mosey, G.

2013-01-01T23:59:59.000Z

132

Development of a 5 kW Cooling Capacity Ammonia-water Absorption Chiller for Solar Cooling Applications  

Science Journals Connector (OSTI)

The development of a small capacity absorption chiller and the numerical and experimental results are presented in this paper. The prototype is a thermally driven ammonia-water absorption chiller of 5 kW cooling capacity for solar cooling applications. The chiller was developed in an industrial perspective with a goal of overall compactness and using commercially available components. In order to characterize various component technologies and different optimization components, the prototype is monitored with temperature, pressure and mass flow rate accurate sensors. The resulting chiller, characterized by a reduced load in ammonia-water solution and the use of brazed plate heat exchanger, has shown good performance during the preliminary tests. A comparison with the expected numerical results is given.

François Boudéhenn; Hélène Demasles; Joël Wyttenbach; Xavier Jobard; David Chèze; Philippe Papillon

2012-01-01T23:59:59.000Z

133

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

Mexico, and along the Pacific Coastline. A due south azimuth would suggest that equal amounts of solar

Lave, Matthew S.

2012-01-01T23:59:59.000Z

134

Results of I-V Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard (Poster)  

SciTech Connect

The purpose of the PV Service Life Prediction project is to examine and report on how solar modules are holding up after being in the field for 5 or more years. This poster presents the common problems crystalline-silicon and thin-film modules exhibit, including details of modules from three manufactures that were tested January 13-16, 2014.

McNutt, P.; Wohlgemuth, J.; Miller, D.; Stoltenberg, B.

2014-02-01T23:59:59.000Z

135

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

in spatially dispersed wind turbine systems, Solar energy. ,Smoothing effects of distributed wind turbines. Part 2.power output of distant wind turbines, Wind Energy, 7 (2004)

Lave, Matthew S.

2012-01-01T23:59:59.000Z

136

City of Palo Alto Utilities - PV Partners | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Partners PV Partners City of Palo Alto Utilities - PV Partners < Back Eligibility Commercial Local Government Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate Incentives available for first 1 MW Program Info Start Date July 2007 State California Program Type Utility Rebate Program Rebate Amount Systems Systems 30 kW and larger: Performance-based incentive (PBI), based on actual monthly energy produced (kWh) for 60 month term. For current rebate levels, visit the program website below. Provider City of Palo Alto Utilities The City of Palo Alto Utilities (CPAU) PV Partners Program offers incentives to customers that install qualifying PV systems. The program, which has a budget of approximately $13 million over 10 years, is divided

137

Americans for Solar Power PV Manufacturers Alliance ASPv PVMA | Open Energy  

Open Energy Info (EERE)

Manufacturers Alliance ASPv PVMA Manufacturers Alliance ASPv PVMA Jump to: navigation, search Name Americans for Solar Power-PV Manufacturers Alliance ((ASPv-PVMA) Place Tempe, Arizona Zip 85282 Sector Solar Product A non-profit research and education body aimed at creating the right market structures and programs to enable residential, commercial, governmental and industrial electricity consumers to have solar power options. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

138

Consumers Power, Inc. - Solar Energy System Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Solar Energy System Rebate Inc. - Solar Energy System Rebate Consumers Power, Inc. - Solar Energy System Rebate < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $3,000 for PV Program Info State Oregon Program Type Utility Rebate Program Rebate Amount SWH: $500/system PV: $500/kW Provider Consumers Power, Inc. Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The rebate for solar water heaters is $500 for systems with a collector area greater than 31 square feet. Systems used for hot tubs or swimming pools are not eligible. The rebate for solar PV systems is $500 per kilowatt-DC (kW), with a maximum rebate

139

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

PV on WWT plant ponds can be a valuable energy efficiencyPV application for Waste Water Treatment (WWT) plants and its potential role in meeting California’s RPS and energy efficiency

Hill, Steven Craig

2013-01-01T23:59:59.000Z

140

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

with the growth of wind power and PV. TenneT is one ofApril 2011 has shown that wind power alone would extend thethe actual combination of wind power and PV has doubled the

Hill, Steven Craig

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Analyzing and simulating the variability of solar irradiance and solar PV powerplants  

E-Print Network (OSTI)

http://www1.eere.energy.gov/solar/sunshot/vision_study.html,Demand in Puerto Rico, SunShot Initiative High PenetrationNature, 443 (2006) [2] SunShot Vision Study, United States

Lave, Matthew S.

2012-01-01T23:59:59.000Z

142

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

increasing levels of renewable energy production will resultpanels. While the renewable energy PV production that is on

Hill, Steven Craig

2013-01-01T23:59:59.000Z

143

The Themis program and the 2500-KW Themis solar power station at Targasonne  

SciTech Connect

Following the first oil crisis, the French Agency for Energy Conservation (A.E.E.) setup in 1975, devoted its time and efforts towards saving energy both in industry and in housing. This effort was expanded by our government in 1978, when the French solar energy authority, known as COMES, was created: it concentrated on R and D pertaining to new and renewable energy. Early this year, these two agencies were merged together to create the French Agency for the Management of Energy (FAME), which includes geothermal and heat distribution networks. This decision now gives the French government the tool to implement a very ambitious and diversified program, calling at the same time on energy conservation and on new and renewable energies development. An important part of the R and D program set up by FAME is the thermodynamic conversion program. On one side, the program devotes itself to the development of components and systems, among them the THEK program which deals with parabolic dishes. These could be used not only for heat generation purposes or electricity generation but also in stand alone systems, for example to refrigerate and conserve fish, a useful application in the developing countries. On the other side, the program calls for the implementation of pilot plants in order to experiment with these components and thermodynamic cycles. Such a pilot plant is nearing completion near Ajaccio in Corsica, and is due for operation early next year. Partial tests have already been run. It was a distributed collector parabolic trough array and a Rankine cycle turbine.

Drouot, L.P.; Hillairet, M.J.

1984-02-01T23:59:59.000Z

144

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

145

FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter  

E-Print Network (OSTI)

With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

Singh, S N

2010-01-01T23:59:59.000Z

146

Living on PV power in comfort and style  

SciTech Connect

The Solectrogen House near San Francisco was conceived, designed and built by Solar Depot as an off-grid renewable energy house. It is powered by a Solectrogen Hybrid Power System consisting of a 3 kW PV array, two 1 kW wind powered generators, a 50 kWh storage battery bank and a 6.5 kW LP-fueled engine generator for back-up. Two 4kW sinewave DC to AC inverters are utilized, with 24 VDC input and 120/240 VAC 60 Hz output. The inverters are equipped with built-in battery chargers and microprocessors for controlling the engine generator operation. The water supply of the house is a well pumped by a PV powered submersible DC pump. The swimming pool filtration system utilizes a 3/4 HP DC pump powered by a separate dedicated PV array of 640 Watts at 90 V. Energy efficient lighting and refrigeration used in the house minimize the power requirements of the house. The house also utilizes a solar thermal system consisting of 640 sq. ft. of glazed solar collectors and a 500 gallon storage tank. The thermal system is utilized for heating water year round, for space heating in the winter and for swimming pool heating in the summer.

Mizany, A. [Solar Depot Inc., San Rafael, CA (United States)

1994-12-31T23:59:59.000Z

147

Managing solar-PV variability with geographical dispersion: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

Abstract The purpose of this article is to determine whether the geographic dispersion of solar-photovoltaic panels reduces variability in energy production. Following this, three questions are posed: 1) If geographic dispersion reduces variability, how dispersed should the panels be?; 2) What happens during peak price periods?; and 3) How are these insights affected by consideration of system-wide demand? Using measured and modelled weather data on an hourly basis from 16 locations across Ontario (Canada), hourly energy production figures for 1000 kW of solar-photovoltaic panels are generated for 2003, 2004, and 2005. Geographical dispersion of panels across multiple locations (as compared to the deployment of all panels in one location, namely, Toronto, Ontario) leads to, in particular instances, energy production profiles that have lower variability, greater total energy production, and a higher correlation value with the Ontario-wide system. Further research is needed both to isolate particularly-advantageous combinations and to broaden the investigation to consider alternative performance metrics, additional analytical techniques and land-use implications.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2014-01-01T23:59:59.000Z

148

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

149

Off-grid Solar PV Power for Humanitarian Action: From Emergency Communications to Refugee Camp Micro-grids  

Science Journals Connector (OSTI)

Abstract The need for new innovative technologies to support humanitarian action is evident today. Efficient and economic technologies properly deployed and integrated should mitigate some of the potential negative social effects of poor refugee camp infrastructure engineering. The body of the paper identifies off-grid solar Photovoltaic (PV) and solar PV hybrid packaged systems that are applicable to emergency relief activities, refugee camp activities and micro-grid development. The paper's concentration on off-grid power, the description of these engineered systems by humanitarian activity and the identification of the different engineered packaged solutions is aimed at stimulating a discussion to help scale more appropriate technologies for humanitarian action. The paper concludes with a discussion of present and future private sector business strategies to support scalability of this new and growing market.

Joseph Franceschi; Jaron Rothkop; Gabriel Miller

2014-01-01T23:59:59.000Z

150

Modelling PV Deployment: A Tool Developed at CEEP to  

E-Print Network (OSTI)

..............................................................................................................................2 3. CEEP's Solar PV Diffusion Model Overview ..............................................................................................................12 4. Comparison of the CEEP's Solar PV Diffusion Model with Other Models ..................................................................................................................................................18 i #12;List of Figures Figure 1: Overview of CEEP's Bottom-Up Solar PV Diffusion Model

Delaware, University of

151

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

152

Chapter III-2: Standards, Calibration and Testing of PV Modules and Solar Cells  

SciTech Connect

This chapter covers common PV measurement techniques and shows how potential problems and sources of error are minimized through the development and use of common standards. Measurement uncertainty, however, remains a problem for some types of PV cells, and tests continue to be developed to address these issues.

Osterwald, C. R.

2012-01-01T23:59:59.000Z

153

Black Hills Energy - Solar Power Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 7/1/2006 State Colorado Program Type Performance-Based Incentive Rebate Amount Systems up to 10 kW: $0.1267/kWh (only for first 5 kW) Systems larger than 10 kW up to 100 kW: $0.16/kWh Provider Black Hills Energy Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right to the renewable energy credits (RECs) associated with the PV-generated electricity for a period of

154

PV PLANNER A DESIGN AND  

E-Print Network (OSTI)

PV PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS FINAL PLANNER A DESIGN AND ANALYSIS TOOL FOR BUILDING INTEGRATED SOLAR ELECTRIC SYSTEMS Final Report A Renewable............................................................................................................................................26 3. ILLUSTRATIVE OUTPUTS FROM PV PLANNER FOR A BUILDING INTEGRATED (BIPV) PV APPLICATION

Delaware, University of

155

Sandia National Laboratories: Sandia Will Host PV Bankability...  

NLE Websites -- All DOE Office Websites (Extended Search)

ateECEnergyComputational Modeling & SimulationSandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Sandia Will Host PV Bankability Workshop at Solar...

156

Burbank Water and Power - Residential and Commercial Solar Support Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Burbank Water and Power - Residential and Commercial Solar Support Burbank Water and Power - Residential and Commercial Solar Support Program Burbank Water and Power - Residential and Commercial Solar Support Program < Back Eligibility Commercial Industrial Low-Income Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Maximum payment of 400,000 per year for performance-based incentives Program Info Start Date 1/1/2010 Expiration Date 12/31/2016 State California Program Type Utility Rebate Program Rebate Amount PV rebates will be awarded via lottery on August 12, 2013 Residential PV: $1.28/W CEC-AC Commercial PV (less than 30 kW): $0.97/W CEC-AC Commercial PV (30 kW or larger): ineligible at this time Solar Water Heaters (residential domestic hot water only; not pools):

157

Solar Hot Water Heater Augmented with PV-TEM Heat Pump.  

E-Print Network (OSTI)

??Solar assisted heat pumps (SAHPs) can provide higher collector efficiencies and solar fractions when compared against standard solar hot water heaters. Vapour compression (VC) heat… (more)

PRESTON, NATHANIEL

158

Development of an economical model to determine an appropriate feed-in tariff for grid-connected solar PV electricity in all states of Australia  

Science Journals Connector (OSTI)

Australia is a country with a vast amount of natural resources including sun and wind. Australia lies between latitude of 10–45°S and longitude of 112–152°E, with a daily solar exposure of between less than 3 MJ/(m2 day) in winter and more than 30 MJ/(m2 day) in summer. Global solar radiation in Australia varies between minimum of 3285 MJ/(m2 year) in Hobart to 8760 MJ/(m2 year) in Northern Territory. As a result of this wide range of radiation level there will be a big difference between costs of solar PV electricity in different locations. A study we have recently conducted on the solar PV electricity price in all states of Australia. For this purpose we have developed an economical model and a computer simulation to determine the accurate unit price of grid-connected roof-top solar photovoltaic (PV) electricity in A$/kWh for all state of Australia. The benefit of this computer simulation is that we can accurately determine the most appropriate feed-in tariff of grid-connected solar PV energy system. The main objective of this paper is to present the results of this study. A further objective of this paper is to present the details of the unit price of solar PV electricity in the state of Victoria in each month and then to compare with electricity price from conventional power systems, which is currently applied to this state. The state Victoria is located south of Australia and in terms of sun radiation is second lowest compared with the other Australian states. The computer simulation developed for this study makes it possible to determine the cost of grid-connected solar PV electricity at any location in any country based on availability of average daily solar exposure of each month as well as economical factors of the country.

A. Zahedi

2009-01-01T23:59:59.000Z

159

200 kW Stirling Engine for SSP Module Solar Stirling Receiver with Heat Storage System Analysis  

Science Journals Connector (OSTI)

This report describes aspects of Solar Stirling engineering. It is principally concerned with tentative methods of computation, and designs used to further develop, for use in solar farms, the 6-cylinder Stirling engine

H. Michel

1991-01-01T23:59:59.000Z

160

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

the 20 th European Photovoltaic Solar Energy Conference and54  Solar photovoltaic Distributed Energy Resources (DER) M. International Energy Agency Photovoltaic Power Systems

Hill, Steven Craig

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Is Germany?s energy transition a case of successful green industrial policy? Contrasting wind and solar PV  

Science Journals Connector (OSTI)

Abstract In this paper, we address the challenge of Germany?s energy transition (Energiewende) as the centrepiece of the country?s green industrial policy. In addition to contributing to global climate change objectives, the Energiewende is intended to create a leading position for German industry in renewable energy technologies, boost innovative capabilities and create employment opportunities in future growth markets at the least possible cost. The success in reaching these aims, and indeed the future of the entire concept, is hotly debated. The paper aims to provide an up-to-date assessment of what has become a fierce controversy by comparing solar photovoltaic (PV) and wind energy along five policy objectives: (1) competitiveness, (2) innovation, (3) job creation, (4) climate change mitigation, and (5) cost. We find mixed evidence that Germany reaches its green industrial policy aims at reasonable costs. Wind energy seems to perform better against all policy objectives, while the solar PV sector has come under intense pressure from international competition. However, this is only a snapshot of current performance, and the long term and systemic perspective required for the energy sector transformation suggests a need for a balanced mix of a variety of clean energy sources.

Anna Pegels; Wilfried Lütkenhorst

2014-01-01T23:59:59.000Z

162

Sandia National Laboratories: PV Value  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

163

Sandia National Laboratories: PV evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

164

Progress Energy Carolinas - SunSense Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Progress Energy Carolinas - SunSense Residential PV Incentive Program Progress Energy Carolinas - SunSense Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info State North Carolina Program Type Utility Rebate Program Rebate Amount Program is fully subscribed for 2013 $500 per kilowatt AC, plus a monthly bill credit of $4.50 per kW Provider Progress Energy Carolinas '''''Note: This program is budgeted to support a total of 1 MW of residential systems per year. The program is now fully subscribed for 2013. New applications will be accepted starting January 1, 2014. ''''' Progress Energy is offering incentives for their residential customers to install photovoltaics (PV) systems on their homes through their SunSense

165

Comparing solar PV (photovoltaic) with coal-fired electricity production in the centralized network of South Africa  

Science Journals Connector (OSTI)

Abstract South Africa has a highly centralized network, in which almost all electricity is produced in Mpumalanga and transmitted throughout South Africa. In the case of the Western Cape, electricity has to be transmitted over 800–1370 km. This generates losses and entails high transmission costs. Investments in additional production and transmission capacity are needed to cope with the growing demand. Although there is a large potential for solar energy in South Africa, investments are lacking while large investments in new coal-fired power plants are being executed. These coal power plants do not only increase the need for heavier transmission infrastructure, but also have a higher CO2 emission level and a higher pressure on water reserves. This paper performs a more comprehensive cost-analysis between solar energy production and coal production facilities, to make a more elaborate picture of which technologies are more plausible to foresee in the growing demand of electricity. The current centralized electricity infrastructure makes the investment in large production facilities more likely. However, it should be questioned if the investment in large centralized solar parks will be more beneficial than the investments by consumers in smaller solar PV facilities on site.

R.A.F. de Groot; V.G. van der Veen; A.B. Sebitosi

2013-01-01T23:59:59.000Z

166

A current and future state of art development of hybrid energy system using wind and PV-solar: A review  

Science Journals Connector (OSTI)

The wind and solar energy are omnipresent, freely available, and environmental friendly. The wind energy systems may not be technically viable at all sites because of low wind speeds and being more unpredictable than solar energy. The combined utilization of these renewable energy sources are therefore becoming increasingly attractive and are being widely used as alternative of oil-produced energy. Economic aspects of these renewable energy technologies are sufficiently promising to include them for rising power generation capability in developing countries. A renewable hybrid energy system consists of two or more energy sources, a power conditioning equipment, a controller and an optional energy storage system. These hybrid energy systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. Research and development efforts in solar, wind, and other renewable energy technologies are required to continue for, improving their performance, establishing techniques for accurately predicting their output and reliably integrating them with other conventional generating sources. The aim of this paper is to review the current state of the design, operation and control requirement of the stand-alone PV solar–wind hybrid energy systems with conventional backup source i.e. diesel or grid. This Paper also highlights the future developments, which have the potential to increase the economic attractiveness of such systems and their acceptance by the user.

Pragya Nema; R.K. Nema; Saroj Rangnekar

2009-01-01T23:59:59.000Z

167

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

problems are encountered. There are utility concerns that a high penetration of inverter-based solar energyproblem with a non-imaging 2D Fresnel concentrator. Lorenzo (1981) evaluated chromatic aberrations in solar energy

Hill, Steven Craig

2013-01-01T23:59:59.000Z

168

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

solar having a combined 15,000 Gigawatts of potential capacity [1,2]. For the past 30 years, California

Hill, Steven Craig

2013-01-01T23:59:59.000Z

169

Solarize Guidebook: A Community Guide to Collective Purchasing of Residential PV Systems (Book)  

SciTech Connect

This guidebook is intended as a road map for project planners and solar advocates who want to convert 'interest' into 'action,' to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

Not Available

2012-05-01T23:59:59.000Z

170

The Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

Proposition for High Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications Preprint Alan Goodrich, Michael Woodhouse, and Peter Hacke Presented at the 2012 IEEE Photovoltaic Specialists Conference Austin, Texas June 3-8, 2012 Conference Paper NREL/CP-6A20-55477 June 2012 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

171

The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives  

Science Journals Connector (OSTI)

Abstract Net-metering is commonly known as a practice by which owners of distributed generation (DG) units may offset their electricity consumption from the grid with local generation. The increasing number of prosumers (consumers that both produce and consume electricity) with solar photovoltaic (PV) generation combined with net-metering results in reduced incomes for many network utilities worldwide. Consequently, this pushes utilities to increase charges per kW h in order to recover costs. For non-PV owners, this could result into inequality issues due to the fact that also non-PV owners have to pay higher chargers for their electricity consumed to make up for netted costs of PV-owners. In order to provide insight in those inequality issues caused by net-metering, this study presents the effects on cross-subsidies, cost recovery and policy objectives evolving from different applied netmetering and tariff designs for a residential consumer. Eventually this paper provides recommendations regarding tariffs and metering that will result in more explicit incentives for PV, instead of the current implicit incentives which are present to PV owners due to net-metering.

Cherrelle Eid; Javier Reneses Guillén; Pablo Frías Marín; Rudi Hakvoort

2014-01-01T23:59:59.000Z

172

Cobb EMC - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cobb EMC - Solar Rebate Program Cobb EMC - Solar Rebate Program Cobb EMC - Solar Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $4,500 SWH: $450 per system Program Info State Georgia Program Type Utility Rebate Program Rebate Amount PV: $450/kW-AC SWH: $450 per system Provider Cobb EMC Beginning in February 2008, Cobb Energy Management Corporation (EMC) offers rebates for residential solar photovoltaic (PV) systems. Cobb EMC is offering members $450 per kilowatt-AC (kW-AC) installed, up to a maximum of 10 kW. In order to receive the rebate, PV systems must be interconnected to the grid. A rebate of $450 per system is also offered to solar water heating systems installed. For more information and application forms, see the

173

Financing Solar PV at Government Sites with PPAs and Public Debt...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for goods and services may be structured. Analysis of Replicability in 10 Key Solar Markets The replicability of the hybrid model was evaluated in 10 states: Arizona,...

174

Japan's Solar Photovoltaic (PV) Market: An Analysis of Residential System Prices (Presentation)  

SciTech Connect

This presentation summarizes market and policy factors influencing residential solar photovoltaic system prices in Japan, and compares these factors to related developments in the United States.

James, T.

2014-03-01T23:59:59.000Z

175

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

176

Full Steam Ahead for PV in US Homes?  

E-Print Network (OSTI)

state, local, and utility rebate programs targeting solar –implications for PV rebate program administrators, PV systemReduce the Size of the Rebates They Provide Without

Bolinger, Mark A

2009-01-01T23:59:59.000Z

177

Sandia National Laboratories: PV bankability  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined representatives of Sandia, IBM, and the DOE...

178

Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance  

SciTech Connect

As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

Dunn, L.; Gostein, M.; Emery, K.

2012-09-01T23:59:59.000Z

179

Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)  

SciTech Connect

This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

Lee, S. J.; George, R.; Bush, B.

2009-04-29T23:59:59.000Z

180

Snohomish County PUD No 1 - Solar Express Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Program Snohomish County PUD No 1 - Solar Express Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Residential PV: $2,500 Commercial PV: $10,000 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount PV: $500/kW-DC SWH: $500/system Provider Snohomish County PUD In March 2009, Snohomish County PUD introduced the Solar Express Program. This program provides rebates to support residential and commercial installations of solar photovoltaics (PV) and solar water heating (SWH). The program also provides loans to support residential installations. This rebate program provides $500 per kilowatt (kW) of installed PV, up to

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Planning for PV: The Value and Cost of Solar Electricity (Fact Sheet)  

SciTech Connect

This is a brochure developed specifically for residential home builders. It provides information on basic financial factors and additional resources to consider when incorporating solar technologies into building plans.

Not Available

2008-01-01T23:59:59.000Z

182

Japans Solar Photovoltaic (PV) Market: An Analysis of Residential...  

NLE Websites -- All DOE Office Websites (Extended Search)

David Feldman, and Robert Margolis DOE - Solar Program Washington, D.C. October 23, 2013 Contract No. 25814 NRELPR-6A20-60419 2 Disclaimer DISCLAIMER AGREEMENT These...

183

EECBG Success Story: Massachusetts Middle School Goes Local for PV Solar Energy System  

Energy.gov (U.S. Department of Energy (DOE))

When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of new - 126 solar panels on the school's roof. Learn more.

184

Approaches To Integrating A HIgh Penertration Of Solar PV and CPV Onto The Electrical Grid  

E-Print Network (OSTI)

Workshop on Renewable Energy Costs for the 2012 Integrated renewable portfolio standards (RPS) and energy efficiency goals in a costcost of installing rooftop solar panels. While the renewable energy

Hill, Steven Craig

2013-01-01T23:59:59.000Z

185

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

186

Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform  

SciTech Connect

High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

2014-10-11T23:59:59.000Z

187

CoServ - Solar Energy Rebate (Texas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CoServ - Solar Energy Rebate (Texas) CoServ - Solar Energy Rebate (Texas) CoServ - Solar Energy Rebate (Texas) < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Funding Source CoServ Start Date 01/01/2011 State Texas Program Type Utility Rebate Program Rebate Amount $2/W Provider CoServ Electric Cooperative '''''NOTE: Available funding for fiscal year 2012 has been exhausted for the CoServ Solar PV Rebate Program.''''' CoServ Electric Cooperative provides a variety of "Think Green Rebates" to its members, including a solar energy rebate. The solar photovoltaic (PV) system must be less than or equal to 50 kW, but the rebate is available only on the first 2.5 kW. Customers must sign an interconnection agreement

188

Minimizing the Lead-Acid Battery Bank Capacity through a Solar PV - Wind Turbine Hybrid System for a high-altitude village in the Nepal Himalayas  

Science Journals Connector (OSTI)

Abstract Of the estimated 1.6-2 billion people who lacked access to electricity at the end of the last millennium, millions have gained access to basic indoor lighting through off grid solar PV home systems with lead acid battery storage over the last decade. In Nepal, through government subsidy programs and INGO/NGO projects, around 350,000 solar PV home systems have been installed since 2001, mainly in remote, high altitude Himalayan communities. The author's field experience shows that within 6-24 months, 50-70% of the solar PV home systems are either not properly functioning, or not working at all. This is mainly due to substandard equipment, lack of user awareness, inability to maintain their systems, as well as the nonexistence of after sales services. Thus, an estimated 250,000 “dead”, flooded lead-acid batteries are either unsafely disposed of or lying around, posing huge potential hazards for people and the unique yet fragile Himalayan ecosystem. The research conducted demonstrates that by tapping into more than one renewable energy resource, converting the local available solar and wind resources into electricity through a solar PV - wind turbine hybrid RAPS (Remote Area Power Supply) system, the lead-acid battery bank capacity can be minimized by 57%, compared to an equivalent energy generating solar PV RAPS system, without jeopardizing, or reducing the village's load demands. This project shows that wind and solar resources are complimentary to each other over several hours in an average day. Thus, by utilizing both of the local wind and solar resources and converting them into electricity to meet the loads directly or to store into the lead-acid battery bank, it allows an average of 3-4 hours longer electricity generation per day. This enables the design of smaller battery bank capacities for hybrid RAPS systems without limiting the end users’ energy services. Hence, long-term health risks to the people, as well as environmental damage to the delicate and exceptional Himalayan flora and fauna through disposed “dead” lead-acid batteries, is reduced.

Zahnd Alex; Angel Clark; Wendy Cheung; Linda Zou; Jan Kleissl

2014-01-01T23:59:59.000Z

189

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

190

Austin Energy - Value of Solar Residential Rate (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info Start Date 10/01/2012 State Texas Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and approved by Austin City Council in June 2012, will be available for all past, present and future residential solar customers beginning October 1, 2012. This tariff replaces net billing for residential solar PV systems no larger than 20 kilowatts (kW). Under this new tariff, residential customers will be credited monthly for their solar generation based on the Value of Solar energy generated from

191

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

NLE Websites -- All DOE Office Websites (Extended Search)

SOLARIZE GUIDEBOOK: SOLARIZE GUIDEBOOK: A community guide to collective purchasing of residential PV systems 1 ACKNOWLEDGEMENTS This guide is an updated version of the original The Solarize Guidebook, published in February 2011 (see www.nrel.gov/docs/fy11osti/50440.pdf), which was developed for the National Renewable Energy Laboratory and the City of Portland. The original Solarize campaigns were initiated and replicated by Portland's Neighborhood Coalition network with help from the Energy Trust of Oregon, City of Portland, and Solar Oregon. AUTHORS Linda Irvine, Alexandra Sawyer and Jennifer Grove, Northwest Sustainable Energy for Economic Development (Northwest SEED). Northwest SEED is solely responsible for errors and omissions. CONTRIBUTORS Lee Rahr, Portland Bureau of Planning and Sustainability

192

Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study  

Science Journals Connector (OSTI)

The purpose of this article is to determine the tilt angle and azimuth for a photovoltaic panel in Ontario (Canada) at which revenue is maximised. Measured and modelled solar radiation data, simulated photovoltaic panel performance, hourly electricity market data and details regarding pricing regimes from 2003 to 2008 are used to study two different locations. In all instances, the desired tilt angle is slightly less than latitude (depending upon the particular pricing regime, between 36° and 38° for Ottawa, which is at a latitude of 45°N, and between 32° and 35° for Toronto, which is at a latitude of 44°N), and the desired azimuth is close to due south (depending upon the particular pricing regime, between 4° west of due south and 6° east of due south for Ottawa, and between 1° west of due south and 2° east of due south for Toronto). In conclusion, the importance of solar electricity – particularly valuable because of when it is produced and where it can be produced – is highlighted, as are future priorities for research.

Ian H. Rowlands; Briana Paige Kemery; Ian Beausoleil-Morrison

2011-01-01T23:59:59.000Z

193

Sandia National Laboratories: Solar Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * solar * Solar Energy * Solar Research * Solar Resource Assessment Comments are closed. Renewable...

194

Sandia National Laboratories: flexible PV substrate  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

195

Sandia National Laboratories: integrate PV into clothing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed glitter-sized photovoltaic (PV) cells that have the...

196

Pennsylvania Sunshine Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Sunshine Solar Rebate Program Pennsylvania Sunshine Solar Rebate Program Pennsylvania Sunshine Solar Rebate Program < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Water Heating Maximum Rebate Residential PV: lesser of $7,500 or 35% of installed costs Commercial PV: lesser of $52,500 or 35% of installed costs Residential Battery Backup (1-10 kW only): $140/kW (maximum of 400 amp-hrs/kW) Solar Thermal: $5,000 for residential, $50,000 for commercial Program Info Funding Source Pennsylvania Energy Independence Fund (state bonds) Start Date 05/18/2009 (date of program opening); 09/01/2010 (battery back addition) Expiration Date 12/31/2013 State Pennsylvania

197

Results from measurements on the PV-VENT systems  

E-Print Network (OSTI)

Results from measurements on the PV-VENT systems at Lundebjerg Solar Energy Centre Denmark Danish from measurements on the PV-VENT systems at Lundebjerg Søren �stergaard Jensen Solar Energy Centre with (Jensen, 2000a) Solar Energy Centre Denmark's (Danish Technological Institute) measuring work in the PV

198

EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar Cells...

199

Inner Mongolia Dunan PV power | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar project developer...

200

An analysis of feed’in tariffs for solar PV in six representative countries of the European Union  

Science Journals Connector (OSTI)

Abstract In this paper, after a brief review on the main support policies for Photovoltaic (PV) systems in Europe, the specific situations of six representative countries (France, Germany, Greece, Italy, Spain and the U.K.) are examined, with the purpose of highlighting the main differences in the implementation of the feed’in tariff (FiT) support policies adopted for PV systems. In particular, a comparison based on the calculation of economic indexes, as the Discounted Cash Flows (DCF), the Pay-Back-Period (PBP), the Net Present Value (NPV) and the Internal Rate of Return (IRR), for different sized PV systems shows that a specific FiT can sometimes be inconvenient for the producer and that the different ways of implementing FiT support policies in the various countries can lead to significantly different results. The analysis carried out in this paper could help to assess the impact of PV energy policies in the main European markets, to make a prediction of how PV market could evolve in the selected EU member states, to gain an insight into the future of possible energy policies.

A. Campoccia; L. Dusonchet; E. Telaretti; G. Zizzo

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Solar Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights Photovoltaics (PV)...

202

Grid integrated distributed PV (GridPV).  

SciTech Connect

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle [Georgia Institute of Technology, Atlanta, GA

2013-08-01T23:59:59.000Z

203

Draft Transcript on Municipal PV Systems  

Energy.gov (U.S. Department of Energy (DOE))

Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

204

Analysis of International Policies In The Solar Electricity Sector: Lessons for India  

E-Print Network (OSTI)

of solar cells and PV systems, as well as future technology.solar PV installation and PV cell production Figure 8: Electricity generation by technology

Deshmukh, Ranjit

2011-01-01T23:59:59.000Z

205

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

D I. Introduction The California Solar Initiative (CSI) wasnal cost. First, the California Solar Initiative o?ers aActually Undermine the California Solar Initiative? The

Borenstein, Severin

2007-01-01T23:59:59.000Z

206

End-users' experiences with electricity supply from stand-alone mini-grid solar PV power stations in rural areas of western China  

Science Journals Connector (OSTI)

Abstract The aim of this study is to understand electricity supply from stand-alone mini-grid solar PV power stations in remote rural areas of western China from the perspective of ‘end-users’ including: their satisfaction, evaluation of sufficiency of electricity supply, positive experiences, negative experiences, behaviors, and needs. The methodology used for this study adopts the approach of an in-depth case study with field research. Two townships, Saierlong Township in Qinghai Province and Namcuo Township in Tibet Autonomous Region (AR), were selected for the case studies. The methods for collecting data are interviews and household surveys in the field. Based on end-users' experiences, the households in both investigated townships were not satisfied with the electricity service. The main concerns were the insufficiency of electricity supply and unreliable electricity service. The insufficiency of the electricity supply was due to lack of information about local household electricity needs. As for the issue of unreliable electricity service, electricity was not regularly supplied on a daily basis. The duration of daily electricity supply was also not stable. The households were unable to predict the starting and ending times of daily electricity supply. Hence, when planning rural electrification with stand-alone mini-grid solar PV power stations, end-users' electricity demand approach should be taken into consideration, instead of only electricity supply approach.

Chian-Woei Shyu

2013-01-01T23:59:59.000Z

207

Solar Policy Environment: Philadelphia  

Energy.gov (U.S. Department of Energy (DOE))

The project will identify promising locations for photovoltaic installations and create a roadmap for commercial and residential system developers. The roadmap, published as the Solar Developers Guide to Philadelphia, will be used to promote and attract solar energy investment. Philadelphia’s long-term goal for solar energy is to fully utilize the potential of solar energy to safely, reliably, and cost-effectively displace the use of energy generated by fossil fuels. To achieve its solar energy goals, the City of Philadelphia must add large commercial scale (> 500 kW) solar installations to its ongoing efforts on the smaller scale (we note that a new 1 MW PV installation will be installed at the Philadelphia Navy Yard by the end of 2008).

208

Desert Sunlight is Shining Example of How DOE Loan Guarantees Helped Launch Utility-scale PV Solar Market  

Energy.gov (U.S. Department of Energy (DOE))

LPO helped finance the first five utility-scale PV projects larger than 100 MW in the U.S. With Desert Sunlight now fully operational, all five projects are online, generating clean electricity and repaying loans. The initial investments made by LPO helped build a market that subsequently financed an additional 17 projects larger than 100 MW without help from the Department.

209

pv land use | OpenEI Community  

Open Energy Info (EERE)

pv land use pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. Files: application/pdf icon solar_rfi_complete.pdf Sfomail's picture Submitted by Sfomail(48) Member 25 June, 2013 - 12:10 Solar Land Use Data on OpenEI acres csp land use how much land land requirements pv land use solar land use square miles I'm happy to announce that a new report on Solar+Land+Use was just released by the National+Renewable+Energy+Laboratory. You can find a brief summary

210

Kenmos PV | Open Energy Information  

Open Energy Info (EERE)

Kenmos PV Kenmos PV Jump to: navigation, search Name Kenmos PV Place Tainan, Taiwan Sector Solar Product Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV cells. Coordinates 22.99721°, 120.180862° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.99721,"lon":120.180862,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

in crystalline silicon solar technologies have occurred overthe current solar PV technology, even after adjusting forde?cit of the current solar PV technology with the potential

Borenstein, Severin

2008-01-01T23:59:59.000Z

212

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

of PV Energy Production System Conversion Solar EnergySolar & Small Wind Incentive Program Washington Renewable Energy Productionof actual energy production. Two programs, LADWP’s Solar

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

213

The Economic Value of PV and Net Metering to Residential Customers in California  

E-Print Network (OSTI)

incentives under the California Solar Initiative takeRates Undermine California’s Solar Photovoltaic Subsidies? ”Solar PV and Retail Rate Design”, Unpublished draft report for the California

Darghouth, Naim

2010-01-01T23:59:59.000Z

214

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network (OSTI)

changes in federal solar policy and, if financing programsto the new federal solar policy landscape, PV programchanges in federal solar policy: • Most obviously, program

Bolinger, Mark

2008-01-01T23:59:59.000Z

215

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

216

Sandia National Laboratories: help U.S. PV industry expand  

NLE Websites -- All DOE Office Websites (Extended Search)

help U.S. PV industry expand Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News &...

217

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

into e?ect for solar-rebate recipients. By June, CaliforniaTOU mandate makes the solar rebate program less attractive ?of California’s solar rebate databases indicates that there

Borenstein, Severin

2007-01-01T23:59:59.000Z

218

Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint  

SciTech Connect

With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

Mather, B. A.; Kromer, M. A.; Casey, L.

2013-01-01T23:59:59.000Z

219

NREL: Technology Deployment - Portland, Oregon Grassroots Solarize...  

NLE Websites -- All DOE Office Websites (Extended Search)

30% News Watch a video on the Solarize movement Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Solarize Portland Solarize New York Solarize...

220

Solar2 | Open Energy Information  

Open Energy Info (EERE)

Solar2 Jump to: navigation, search Name: Solar2 Place: Cuxhaven, Germany Zip: 27472 Sector: Solar Product: Sells and installs PV, solar thermal and wood pellet powered heating...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Solar Wind | Open Energy Information  

Open Energy Info (EERE)

Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind manufactures solar modules and cells. References: Solar...

222

Apex Solar | Open Energy Information  

Open Energy Info (EERE)

Name: Apex Solar Place: Sofia, Bulgaria Zip: 1616 Sector: Solar Product: Bulgarian PV and solar thermal project developer and installer. References: Apex Solar1 This article is a...

223

San Diego Solar Panels Generate Clean Electricity Along with Clean Water |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Diego Solar Panels Generate Clean Electricity Along with Clean Diego Solar Panels Generate Clean Electricity Along with Clean Water San Diego Solar Panels Generate Clean Electricity Along with Clean Water May 26, 2010 - 12:11pm Addthis San Diego’s Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison San Diego's Otay Water Treatment Plant is generating clean electricity along with clean water, with a total capacity of 945 KW | Photo courtesy of SunEdison Just north of the U.S.-Mexican border, San Diego's Otay Water Treatment Plant processes up to 34 million gallons of water a day. Thanks to the city's ambitious solar energy program, the facility may soon be able to do that with net zero electricity consumption. In early April, workers activated a 945-kW solar photovoltaic (PV) energy

224

NREL: Photovoltaics Research - PV News  

NLE Websites -- All DOE Office Websites (Extended Search)

PV News PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. November 8, 2013 New Solar Cell Is More Efficient, Less Costly Innovation by NREL and First Solar acquisition TetraSun wins a 2013 R&D 100 Award. November 6, 2013 NREL's Energy Systems Integration Facility Garners LEED® Platinum The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in Golden, Colo., has earned a LEED® Platinum designation for new construction from the U.S. Green Building Council (USGBC), a non-profit organization dedicated to sustainable building design and construction.

225

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

photovoltaic (PV) solar cell technology. It is defined asWEIGHT SOLAR CELLS Current solar array technologies provide

Shao, Qinghui

2009-01-01T23:59:59.000Z

226

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

constrained load pockets, solar PV policies seldom if everFor a broad-based solar PV policy, the relevant question isexogenous to the solar PV subsidy policy, then it is more

Borenstein, Severin

2008-01-01T23:59:59.000Z

227

NREL: Performance and Reliability R&D - PV Module Reliability...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can...

228

Sandia National Laboratories: Sandian Presents on PV Failure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation, Energy, Facilities, News, News & Events,...

229

Distributed PV Permitting and Inspection Processes  

Energy.gov (U.S. Department of Energy (DOE))

This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

230

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

net metering, and policies for supporting solar deployment.net metering, and policies for supporting solar deployment.Energy Policy, 36: MRW & Associates. 2007. Solar PV and

Darghouth, Naim

2010-01-01T23:59:59.000Z

231

Sandia National Laboratories: Solar Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

232

Sandia National Laboratories: solar thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

233

Sandia National Laboratories: Solar Mirrors  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

234

Sandia National Laboratories: Solar Tower  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

235

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

(PV) Photovoltaics (PV) is a method of generating electrical power by converting solar light into electricity. Sandia photovoltaic work is centered on developing...

236

Definition: PV array | Open Energy Information  

Open Energy Info (EERE)

PV array PV array Jump to: navigation, search Dictionary.png PV array An interconnected system of PV modules that function as a single electricity-producing unit. In smaller systems, an array can consist of a single module.[1][2] View on Wikipedia Wikipedia Definition A Photovoltaic system (informally, PV system) is an arrangement of components designed to supply usable electric power for a variety of purposes, using the Sun (or, less commonly, other light sources) as the power source. PV systems may be built in various configurations: Off-grid without battery (Array-direct) Off-grid with battery storage for DC-only appliances Off-grid with battery storage for AC & DC appliances Grid-tie without battery Grid-tie with battery storage A photovoltaic array (also called a solar array) consists of multiple photovoltaic modules, casually

237

Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open Energy  

Open Energy Info (EERE)

Photovoltaics Cooperative aka PV Squared Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place New Britain, Connecticut Zip 6051 Sector Solar Product Solar PV system installer. References Pioneer Valley Photovoltaics Cooperative (aka PV Squared)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pioneer Valley Photovoltaics Cooperative (aka PV Squared) is a company located in New Britain, Connecticut . References ↑ "Pioneer Valley Photovoltaics Cooperative (aka PV Squared)" Retrieved from "http://en.openei.org/w/index.php?title=Pioneer_Valley_Photovoltaics_Cooperative_aka_PV_Squared&oldid=349764"

238

Silicon Valley Power - Solar Electric Buy Down Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Electric Buy Down Program Solar Electric Buy Down Program Silicon Valley Power - Solar Electric Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentives step down over time as installed capacity goals are met. Check program web site for current incentive level. '''Rebate levels as of 9/20/12:''' Residential: $2.00/watt AC Commercial (up to 100 kW): $1.10/watt AC Commercial (>100 kW to 1 MW): $0.15/kWh for 5 years Provider Silicon Valley Power Silicon Valley Power (SVP) offers incentives for the installation of new grid-connected solar electric (photovoltaic, or PV) systems. Incentive levels will step down over the life of the program as certain installed

239

Optimal Residential Solar Photovoltaic Capacity in Grid Connected Applications  

Science Journals Connector (OSTI)

Abstract Microgeneration using solar photovoltaic systems is becoming increasingly popular in residential households as such systems allow households to use a renewable energy source, while also reducing their reliance on the electricity grid, to fulfill their electricity demand. In this study, we explore the attractiveness of PV microgeneration systems of different capacities in the absence of incentives and net metering options and under both flat and variable tariff scenarious. Smaller systems that are below 1 kW in capacity are more attractive under such conditions, however, at current cost levels, they still remain economically unattractive. The cost levels which allow for these PV systems to be economically viable are also determined.

Shisheng Huang; Jingjie Xiao; Joseph F. Pekny; Gintaras V. Reklaitis

2012-01-01T23:59:59.000Z

240

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Environmental Management (EM)

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Palo Alto Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Jump to: navigation, search Name: Palo Alto Solar Place: California Sector: Solar Product: PV system installer acquired by SolarCity in Semptember 2006. References: Palo Alto...

242

Scheuten Solar USA Inc | Open Energy Information  

Open Energy Info (EERE)

Scheuten Solar USA, Inc. Place: Rancho Santa Margarita, California Zip: 92688 Sector: Solar Product: Manufacturer of Solar PV systems References: Scheuten Solar USA, Inc.1 This...

243

Solar Depot Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Depot Inc Place: Petaluma, California Zip: 94954 Sector: Solar Product: US-based PV and solar passive system integrator and distributor. References: Solar Depot Inc1 This...

244

Sunerg Solar srl | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: Sunerg Solar srl Place: Italy Sector: Solar Product: Focused on solar thermal and PV system integration. References: Sunerg Solar srl1 This article is a...

245

Anhui Paiya Solar Energy | Open Energy Information  

Open Energy Info (EERE)

Product: Anhui Paiya Solar Energy's products include PV module, solar power system, and solar light systems. References: Anhui Paiya Solar Energy1 This article is a stub. You...

246

Definition: PV module | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: PV module Jump to: navigation, search Dictionary.png PV module A unit comprised of several PV cells, and the principal unit of a PV array; it is intended to generate direct current power under un-concentrated sunlight.[1][2] View on Wikipedia Wikipedia Definition A solar panel is a set of solar photovoltaic modules electrically connected and mounted on a supporting structure. A photovoltaic module is a packaged, connected assembly of photovoltaic cells. The solar module can be used as a component of a larger photovoltaic system to generate and supply electricity in commercial and residential applications. Each module is rated by its DC output power under standard test conditions (STC), and

247

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership  

E-Print Network (OSTI)

CUTTING SOLAR RED TAPECUTTING SOLAR RED TAPE Evergreen State Solar PartnershipEvergreen State Solar Partnership Rooftop Solar Challenge 1 Sunshot #12;WASHINGTON PV CONTEXTWASHINGTON PV CONTEXT 285 cities, 39 Installations happen where process is easier #12;EVERGREEN STATE SOLAR PARTNERSHIP Commerce NWSEEDEdmonds

248

Solar Monkey | Open Energy Information  

Open Energy Info (EERE)

Monkey Jump to: navigation, search Name: Solar Monkey Place: Irvine, California Zip: 92618 Sector: Solar Product: Solar Monkey installs PV systems for commercial and industrial...

249

ESPEE Solar | Open Energy Information  

Open Energy Info (EERE)

Place: Bangalore, Karnataka, India Zip: 560 091 Sector: Solar Product: Distributor of solar thermal water heating systems and PV lights. References: ESPEE Solar1 This article...

250

Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software  

SciTech Connect

This paper addresses the need for electricity of rural areas in southern Iraq and proposes a photovoltaic (PV) solar system to power a health clinic in that region. The total daily health clinic load is 31.6 kW h and detailed loads are listed. The National Renewable Energy Laboratory (NREL) optimization computer model for distributed power, ''HOMER,'' is used to estimate the system size and its life-cycle cost. The analysis shows that the optimal system's initial cost, net present cost, and electricity cost is US$ 50,700, US$ 60,375, and US$ 0.238/kW h, respectively. These values for the PV system are compared with those of a generator alone used to supply the load. We found that the initial cost, net present cost of the generator system, and electricity cost are US$ 4500, US$ 352,303, and US$ 1.332/kW h, respectively. We conclude that using the PV system is justified on humanitarian, technical, and economic grounds. (author)

Al-Karaghouli, Ali; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

2010-04-15T23:59:59.000Z

251

Solar Energy.  

E-Print Network (OSTI)

??This thesis is about Photovoltaic (PV) cells and its stresses in various directions by calculating the power generated using solar cells under different conditions to… (more)

Bafana, Ramzi

2014-01-01T23:59:59.000Z

252

Direct coupling of a solar-hydrogen system in Mexico  

Science Journals Connector (OSTI)

The scope of this article is to show the initial results obtained in the interconnection of a 2.7 kW solar panel system with a solid polymer electrolyte (SPE) electrolyzer. The Non-Conventional Energies Department (ENC) at the Electrical Research Institute (IIE) considers that the storage of this intermittent energy by a chemical element such as hydrogen can be advantageous for certain applications. One of the arguments is that unlike traditional battery systems, hydrogen presents the great advantage of not discharging its energy content as long as it is not used. The solar-hydrogen (S-H) system proposed consists of a commercial electrolyzer stack by Proton Energy Systems and a photovoltaic (PV) solar system of 36 panels (75 W each) of monocrystalline silicon (Siemens) interconnected in a configuration for 2.7 kW power at 48 V DC . The complete electrolyzer (stack plus auxiliaries) has a maximum capacity of 1000 lN / h of hydrogen with a power energy consumption of 8 kVA ( 220 V AC , 32 A) and uses a stack of 25 cells of SPE with an energy consumption of 5.6 kW. We present voltage, current and energy consumption of the electrolyzer as a whole system and of the stack alone, as well as hydrogen quantification for the Hogen 40 operating in laboratory. These results allowed us to estimate the possibilities of coupling the electrolyzer stack alone, i.e. no auxiliaries nor power conditioning, with the solar PV system. Results such as I – E curves of the solar PV system obtained at different irradiances and temperatures, as well as I – E curve of SPE electrolyzer stack, gave direction for confirming that PV system configuration was sufficiently good to have the electrolyzer stack working near the maximum power point at a good range of irradiances ( ? 600– 800 W / m 2 ).

L.G. Arriaga; W. Martínez; U. Cano; H. Blud

2007-01-01T23:59:59.000Z

253

Subsidizing Global Solar Power.  

E-Print Network (OSTI)

?? With national cuts on solar PV subsidies and the current “oversupply” of panels, the global solar market is clearly threatened by a contraction. Yet,… (more)

Arnesson, Daniel

2013-01-01T23:59:59.000Z

254

SOLAR 97 CONFERENCE: MANUSCRIPT PREPARATION INSTRUCTIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

area. PV output datasets generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various...

255

Sandia National Laboratories: solar thermal electric technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

256

Sandia National Laboratories: Solar Electric Propulsion  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

257

HyperSolar Inc | Open Energy Information  

Open Energy Info (EERE)

Zip: 93117 Product: California-based concentrator PV startup which uses flat optical layers to concentrate sunlight onto strips of PV cells. References: HyperSolar Inc1...

258

Results of actinometric measurements at location of LSF with thermal capacity of 1000 kW  

Science Journals Connector (OSTI)

The paper considers the methods of measuring solar radiation and analyzes the long-term data obtained by actinometric measurements of solar radiation at the location of the LSF with a thermal capacity of 1000 kW ...

A. A. Abdurakhmanov; Yu. B. Sobirov; M. S. Paizullakhonov…

2012-07-01T23:59:59.000Z

259

City Water Light and Power - Solar Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City Water Light and Power - Solar Rewards Program City Water Light and Power - Solar Rewards Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 per account Program Info Start Date 01/23/2012 State Illinois Program Type Utility Rebate Program Rebate Amount $1,500/kW Provider City Water Light and Power '''''Note: Funding for the Solar Rewards program has been exhausted. Check the program web site for more information regarding additional funding, expected March 2013.''''' City Water, Light and Power (CWLP) is now offering residential and commercial customers a $1,500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems. Rebates are limited to $15,000 per customer

260

Simulation and analysis of a solar assisted heat pump system with two different storage types for high levels of PV electricity self-consumption  

Science Journals Connector (OSTI)

Abstract The incentives for PV-systems in Europe is being gradually lowered or ended. This makes a higher level of self-consumption interesting for owners of PV-systems. Sweden has an incentive of 35% of the investment cost for PV-systems. Unfortunately not all consumers can get this incentive. Therefore a high level of self-consumption will be necessary if the PV-systems are to be profitable in Sweden. A reference system with two different energy storage technologies is investigated in this paper. One system with 48 kW h of batteries and one system with a hot water storage tank where the electricity is stored as heat. The research questions in this paper are: Which storage system gives the highest level of PV electricity self-consumption? Are the storage systems profitable with the assumptions made in this paper? What are the levelized costs of electricity (LCOE) for the reference system with different storage system? The system with batteries has a self-consumption of 89% of the annual PV-electricity output and the system with a hot water storage tank has 88%. The system with batteries has a levelized cost of electricity two times higher than the system with a hot water storage tank.

Richard Thygesen; Björn Karlsson

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW  

E-Print Network (OSTI)

photovoltaic (PV), wind power, and even diesel generators.are also used in some wind power systems, in which thewas solar, wind, and hydroelectric power, with a significant

Greacen, Chris

2014-01-01T23:59:59.000Z

262

Achieving Rapid Transformation of Utility Resource Portfolios by Developing Markets for Utility Strategic PV  

Science Journals Connector (OSTI)

When solar PV is strategically deployed by utilities, considering issues of location, scale, orientation ... PV can play a key role in driving utilities to design strong, mixed resource portfolios, ... s potentia...

Jill K. Cliburn

2009-01-01T23:59:59.000Z

263

Sandia National Laboratories: PV Value®  

NLE Websites -- All DOE Office Websites (Extended Search)

and PV industry sales staff. For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV...

264

PV Value | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PV Value PV Value PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards...

265

Annual measured performance of building-integrated solar energy systems in demonstration low-energy solar house  

Science Journals Connector (OSTI)

This paper presents the details of the output and efficiency of the annual performance of building-integrated solar energy systems for a solar water heating system and solar photovoltaic (PV) modules of a demonstration near-zero-energy solar house that was constructed on the campus of the Korea Institute of Energy Research. The thermal systems installed in the house were a solar water heating system with building-integrated solar collectors for water heating and for part of the space heating and a ground-coupled heat pump for space cooling and part of the space heating. Solar PV modules were installed on the roof of the house. The performance of these systems was monitored for more than 1 yr. The annual efficiencies of the building's integrated solar collectors and solar PV were 22.8% and 10.9% respectively. The total annual solar fraction of the solar heating system was 69.7% with an annual solar heat production of 248?kW h/m2. This paper also focuses on the efficiency of the house's solar storage based upon intentionally varied drainage of hot water from the storage tank. It was found that the thermal loss from the solar storage tank has a strong functional relationship with the thermal demand of the solar storage tank per unit volume. For example when the hot water consumption was reduced by half during September the thermal loss increased to more than 70% which would otherwise have been around 30%.

2014-01-01T23:59:59.000Z

266

The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California  

E-Print Network (OSTI)

net metering, and policies for supporting solar deployment.Policy 36 (9), 3266-3277. MRW and Associates, 2007. Solar PV

Darghouth, Naim R.

2012-01-01T23:59:59.000Z

267

Solar Energy Power Pte Ltd SEP | Open Energy Information  

Open Energy Info (EERE)

Pte Ltd SEP Jump to: navigation, search Name: Solar Energy Power Pte Ltd (SEP) Place: Singapore, Singapore Sector: Solar Product: Solar PV cell manufacturer. References: Solar...

268

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

269

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

SciTech Connect

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

270

Community Renewable Energy Webinar: Developing PV Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects Community Renewable Energy Webinar: Developing PV Projects January 15, 2013 1:00PM MST Webinar This webinar will take place from 1-2:15 p.m. Mountain Standard Time. It will provide information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. The webinar will feature two presentations, highlighted below. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson will highlight its experiences with city-owned PV projects as well as a PPA

271

Grid Integrated Distributed PV (GridPV) Version 2.  

SciTech Connect

This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

Reno, Matthew J.; Coogan, Kyle

2014-12-01T23:59:59.000Z

272

Smart Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Sector: Solar Product: Was developing concentrator PV modules and a system for monitoring solar panels for maintenance. References: Smart Solar Inc1 This article is a stub. You...

273

Solar Markt Franken | Open Energy Information  

Open Energy Info (EERE)

Markt Franken Jump to: navigation, search Name: Solar Markt Franken Place: Nrnberg, Germany Zip: 90431 Sector: Solar Product: PV project developer, and solar passive system...

274

Teanaway Solar Reserve | Open Energy Information  

Open Energy Info (EERE)

Sector: Solar Product: Washington State-based privately-held developer of the Teanaway Solar Reserve PV plant project. References: Teanaway Solar Reserve1 This article is a...

275

IBC Solar AG | Open Energy Information  

Open Energy Info (EERE)

search Name: IBC Solar AG Place: Bad Staffelstein, Bavaria, Germany Zip: 96231 Sector: Solar Product: PV system integrator focused on turn-key solar power plants, and raising...

276

Algatec Solar AG | Open Energy Information  

Open Energy Info (EERE)

Prsen, Brandenburg, Germany Zip: D-04932 Sector: Solar Product: Germany-based PV solar module manufacturer. References: Algatec Solar AG1 This article is a stub. You...

277

ZEN Eaga Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Newcastle upon Tyne, United Kingdom Zip: NE2 1DB Sector: Solar Product: Distributes solar thermal water heating and PV products. References: ZEN Eaga Solar Ltd1 This...

278

Solar Energy Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Solar Energy Glossary The solar glossary contains definitions for technical terms related to solar power and photovoltaic (PV) technologies, including terms having to do...

279

American Way Solar AWS | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: American Way Solar (AWS) Place: Plzen, Czech Republic Sector: Solar Product: Czech subsidiary of US PV panel manufacturer, American Way Solar (AWS)....

280

Sandia National Laboratories: Solar Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transformation * photovoltaic * Photovoltaics * PV * Renewable Energy * SAND 2011-4654W * Solar Energy * Solar Market Transformation * Solar Research Comments are closed. Renewable...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Pyron Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Solar Address 10237 Flanders Court Place San Diego, California Zip 92121 Sector Solar Product Developed a PV optics system that generates 90 kW peak energy with high-efficiency conversion Website http://www.pyronsolar.com/ Coordinates 32.904315°, -117.174435° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.904315,"lon":-117.174435,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

California Solar Initiative- PV Incentives  

Energy.gov (U.S. Department of Energy (DOE))

'''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both utilities will continue accepting applications for...

283

Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

Drury, E.; Denholm, P.; Margolis, R.

2013-01-01T23:59:59.000Z

284

City of Healdsburg - PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Healdsburg - PV Incentive Program Healdsburg - PV Incentive Program City of Healdsburg - PV Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $3,280 Commercial: $15,600 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $0.82/watt AC Commercial: $0.78/watt AC Provider City of Healdsburg Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California Solar Initiative mandating that utilities put into place programs to assure that 3000 megawatts (MW) of solar installations on homes is in place within 10 years) the incentive level will decrease annually over the 10 year life of the program. The

285

Lessons Learned from the Photovoltaic Manufacturing Technology/PV Manufacturing R&D and Thin Film PV Partnership Projects  

SciTech Connect

As the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program initiates new cost-shared solar energy R&D under the Solar America Initiative (SAI), it is useful to analyze the experience gained from cost-shared R&D projects that have been funded through the program to date. This report summarizes lessons learned from two DOE-sponsored photovoltaic (PV) projects: the Photovoltaic Manufacturing Technology/PV Manufacturing R&D (PVMaT/PVMR&D) project and the Thin-Film PV Partnership project. During the past 10-15 years, these two projects have invested roughly $330 million of government resources in cost-shared R&D and leveraged another $190 million in private-sector PV R&D investments. Following a description of key findings and brief descriptions of the PVMaT/PVMR&D and Thin-Film PV Partnership projects, this report presents lessons learned from the projects.

Margolis, R.; Mitchell, R.; Zweibel, K.

2006-09-01T23:59:59.000Z

286

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

287

Albiasa Solar | Open Energy Information  

Open Energy Info (EERE)

search Name: Albiasa Solar Place: Spain Product: A Spanish project developer for PV and STEG plants. References: Albiasa Solar1 This article is a stub. You can help...

288

Solar Distinction | Open Energy Information  

Open Energy Info (EERE)

Distinction Jump to: navigation, search Name: Solar Distinction Place: Albuquerque, New Mexico Product: New Mexico-based PV module maker. References: Solar Distinction1 This...

289

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined...

290

Sandia National Laboratories: solar power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Assessment Facilities Contacts About Photovoltaics at Sandia Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable...

291

Shengrui Solar | Open Energy Information  

Open Energy Info (EERE)

Shengrui Solar Jump to: navigation, search Name: Shengrui Solar Place: Hong Kong Product: Hong Kong headquartered company with thin-film PV production in China. References:...

292

Scatec Solar | Open Energy Information  

Open Energy Info (EERE)

Scatec Solar Jump to: navigation, search Name: Scatec Solar Place: Norway Product: Norwegian PV system integrator with a parent, Norsun, that manufactures monocrystalline silicon...

293

Sandia National Laboratories: Solar Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the...

294

Gansu PV Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Gansu PV Co Ltd Gansu PV Co Ltd Place Lanzhou, Gansu Province, China Zip 730000 Sector Solar Product Gansu PV Co Ltd is active in manufacturing, installing and servicing SHS and small portable solar lighting systems. Coordinates 36.059299°, 103.756279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.059299,"lon":103.756279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

295

Rooftop Solar Potential Distributed Solar Power in NW  

E-Print Network (OSTI)

6/19/2013 1 Rooftop Solar Potential Distributed Solar Power in NW Massoud Jourabchi June 2013 1 in 2012 4 #12;6/19/2013 3 Regional Growth In Solar Energy Consumption Solar consumption both Thermal and PV h b t d i i lhas been on steady increase since early 1990s. From 2000-2010 Solar PV grow

296

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

297

Designing PV Incentive Programs to Promote System Performance: A Review of Current Practice  

E-Print Network (OSTI)

communication with New York State Energy Research andSolar Pioneer Program New York Energy $mart PV IncentivePower Authority (LIPA) New York State Energy Research and

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2006-01-01T23:59:59.000Z

298

Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint  

SciTech Connect

Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

2001-10-01T23:59:59.000Z

299

Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations  

E-Print Network (OSTI)

interest PV loan programs: a residential solar investmentsolar ITC, it is important to evaluate the financial attractiveness of this specific type of loan

Bolinger, Mark

2008-01-01T23:59:59.000Z

300

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PV Policies and Markets  

Science Journals Connector (OSTI)

The market explosion for PV started actually in 2004 with the introduction of the “feed-in tariff , the FiT” in Germany. Elsewhere...

Dr. Wolfgang Palz Ph.D.

2013-01-01T23:59:59.000Z

302

PV Policies and Markets  

Science Journals Connector (OSTI)

The market explosion for PV started actually in 2004 with the introduction of the “feed-in tariff , the FiT” in Germany. Elsewhere...

Dr. Wolfgang Palz Ph.D.

2012-01-01T23:59:59.000Z

303

November 21, 2000 PV Lesson Plan 2 Sample Questions & Answers  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 2 ­ Sample Questions & Answers Prepared for the Oregon Million Solar Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken your understanding: 1. The typical voltage of a silicon solar cell is about 0.5 volts; where does

Oregon, University of

304

Updating Technical Screens for PV Interconnection: Preprint  

SciTech Connect

Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

2012-08-01T23:59:59.000Z

305

Training on PV Systems: Design, Construction, Operation and Maintenance |  

Open Energy Info (EERE)

Training on PV Systems: Design, Construction, Operation and Maintenance Training on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation and Maintenance Agency/Company /Organization: Leonardo Energy Sector: Energy Focus Area: Renewable Energy, Solar Website: www.leonardo-energy.org/node/5948 Training on PV Systems: Design, Construction, Operation and Maintenance Screenshot References: PV Training [1] Overview "A free series of six webinars will be delivered to provide the required knowledge to design a high performance photovoltaic (PV) installation, entering into economic evaluation and project cash-flow. Additionally, very practical aspects such as the construction, start-up, quality management and testing will be reviewed. Plant operation is described in detail, with

306

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

307

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from OpenPV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Teksun PV Manufacturing Inc | Open Energy Information  

Open Energy Info (EERE)

Teksun PV Manufacturing Inc Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name Teksun PV Manufacturing Inc Address 401 Congress Ave Place Austin, Texas Zip 78701 Sector Solar Product Plan to manufacture large scale PV panels for utility scale solar power parks Website http://www.teksunpv.com/ Coordinates 30.266402°, -97.742959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.266402,"lon":-97.742959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

The Solarize Guidebook: A community guide to collective purchasing of residential PV systems (Book), SunShot, U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE))

This guidebook is intended as a road map for project planners and solar advocates who want to convert "interest" into"action," to break through market barriers and permanently transform the market for residential solar installations in their communities. It describes the key elements of the Solarize campaigns in Portland, and offers several program refinements from projects beyond Portland. The guidebook provides lessons, considerations, and step-by-step plans for project organizers to replicate the success of Solarize Portland.

311

PV array simulator development and validation.  

SciTech Connect

The ability to harvest all available energy from a photovoltaic (PV) array is essential if new system developments are to meet levelized cost of energy targets and achieve grid parity with conventional centralized utility power. Therefore, exercising maximum power point tracking (MPPT) algorithms, dynamic irradiance condition operation and startup and shutdown routines and evaluating inverter performance with various PV module fill-factor characteristics must be performed with a repeatable, reliable PV source. Sandia National Laboratories is collaborating with Ametek Programmable Power to develop and demonstrate a multi-port TerraSAS PV array simulator. The simulator will replicate challenging PV module profiles, enabling the evaluation of inverter performance through analyses of the parameters listed above. Energy harvest algorithms have traditionally implemented methods that successfully utilize available energy. However, the quantification of energy capture has always been difficult to conduct, specifically when characterizing the inverter performance under non-reproducible dynamic irradiance conditions. Theoretical models of the MPPT algorithms can simulate capture effectiveness, but full validation requires a DC source with representative field effects. The DC source being developed by Ametek and validated by Sandia is a fully integrated system that can simulate an IV curve from the Solar Advisor Model (SAM) module data base. The PV simulator allows the user to change the fill factor by programming the maximum power point voltage and current parameters and the open circuit voltage and short circuit current. The integrated PV simulator can incorporate captured irradiance and module temperature data files for playback, and scripted profiles can be generated to validate new emerging hardware embedded with existing and evolving MPPT algorithms. Since the simulator has multiple independent outputs, it also has the flexibility to evaluate an inverter with multiple MPPT DC inputs. The flexibility of the PV simulator enables the validation of the inverter's capability to handle vastly different array configurations.

Kuszmaul, Scott S.; Gonzalez, Sigifredo; Lucca, Roberto (Ametek Programmable Power, San Diego, CA); Deuel, Don (Ametek Programmable Power, San Diego, CA)

2010-06-01T23:59:59.000Z

312

PV Validation and Bankability Workshop: San Jose, California  

SciTech Connect

This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

Granata, J.; Howard, J.

2011-12-01T23:59:59.000Z

313

Solar Energy Initiatives Inc | Open Energy Information  

Open Energy Info (EERE)

US-based PV and solar thermal and PV project developer and installer. References: Solar Energy Initiatives Inc1 This article is a stub. You can help OpenEI by expanding...

314

Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability  

SciTech Connect

Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

Li, Huijuan [ORNL] [ORNL; Xu, Yan [ORNL] [ORNL; Adhikari, Sarina [ORNL] [ORNL; Rizy, D Tom [ORNL] [ORNL; Li, Fangxing [ORNL] [ORNL; Irminger, Philip [ORNL] [ORNL

2012-01-01T23:59:59.000Z

315

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

Solar Photovoltaics (PV) in Electric Power Systems Utilizing Energy StorageEnergy Storage Enhances the Economic Viability of Concentrating Solar

Mills, Andrew D.

2014-01-01T23:59:59.000Z

316

PV Strom | Open Energy Information  

Open Energy Info (EERE)

Strom Strom Jump to: navigation, search Name PV Strom Place Kirchheim, Germany Zip 74366 Sector Biomass, Hydro, Renewable Energy, Solar, Wind energy Product Germany-based renewable energy project developer, focused mainly on solar, but also active in wind, hydro and biomass generation. Coordinates 50.881988°, 11.019413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.881988,"lon":11.019413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Shannon Moynahan, “The California Solar Initiative — TriumphRates Undermine California’s Solar Photovoltaic Subsidies? ”to the fact that solar PV in California has not been focused

Borenstein, Severin

2008-01-01T23:59:59.000Z

318

India Solar Resource Data: Enhanced Data for Accelerated Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires...

319

Full Steam Ahead for PV in US Homes?  

SciTech Connect

In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

2009-01-15T23:59:59.000Z

320

Solel och solvärme ur LCC-perspektiv för ett passiv-flerbostadshus; PV and solar thermal for a multiple dwelling passive house under a LCC-perspective.  

E-Print Network (OSTI)

?? This master’s degree project concerns the combination of a multi dwelling passive house with solar energy for the generation of electricity and domestic hot… (more)

Böhme Florén, Simon

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solar Radiation and Meteorological Data Support  

E-Print Network (OSTI)

Characterize the solar resource potential for feasibility assessment of centralized PV solarfeasibility assessment of centralized PV solar gene ating facilities in the No theastgene ating facilities in the No theastgenerating facilities in the Northeastgenerating facilities in the Northeast ·· Expansion of the national PV solar data

Homes, Christopher C.

322

Solar | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's...

323

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

324

Sandia National Laboratories: solar  

NLE Websites -- All DOE Office Websites (Extended Search)

solar PV Arc-Fault and Ground Fault Detection and Mitigation Program On April 4, 2012, in Background Program Goals IndustryCollaboration FutureCollaborations Publications Contacts...

325

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare...

326

Net PV Value by location and building type | Open Energy Information  

Open Energy Info (EERE)

location and building type Jump to: navigation, search Impact of Utility Rates on PV Economics Solar value table: The following table shows the solar value (in kWh) found for...

327

Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint  

SciTech Connect

Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a limited set of advanced inverter functions.

Mather, B.; Neal, R.

2012-08-01T23:59:59.000Z

328

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network (OSTI)

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV (MWh) (First year output, each year thereafter degrades 0.5%) 6 #12;6/19/2013 4 Shape of PNW Solar PV

329

Solar Infra Inc | Open Energy Information  

Open Energy Info (EERE)

Infra Inc Jump to: navigation, search Name: Solar Infra Inc Place: Santa Clara, California Zip: 95054 Product: Manufacturer of crystalline PV modules. References: Solar Infra...

330

City Solar AG | Open Energy Information  

Open Energy Info (EERE)

City Solar AG Place: Bad Kreuznach, Germany Zip: D-55543 Sector: Services, Solar Product: Provides turnkey construction services for large-scale PV power plants, also has a...

331

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

332

The Open PV Project | Open Energy Information  

Open Energy Info (EERE)

The Open PV Project The Open PV Project Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project Agency/Company /Organization: NREL Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator, Software/modeling tools User Interface: Website Website: openpv.nrel.gov/about Country: United States Web Application Link: openpv.nrel.gov/ Cost: Free OpenEI Keyword(s): Featured UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Project Profile: Development and Productization of High-Efficiency, Low-Cost Building-Integrated PV Shingles Using Monocrystalline Silicon Thin-Film Solar Cells  

Energy.gov (U.S. Department of Energy (DOE))

The Solexel-OC team is developing a BIPV roofing shingle product that includes low-profile solar modules and a unique attachment system that will be fastened directly to the roof and incorporates...

334

2013 ISES Solar World Congress Review of satellite-based surface solar irradiation databases for  

E-Print Network (OSTI)

, either photovoltaic (PV) or thermal solar. This paper focuses on PV but can surely be extended to thermal solar technology such as concentrating solar power (CSP). PV project developers first need to identify. For that purpose, simulation software such as PVSyst (www.pvsyst.com) considers the behavior of the whole system

Recanati, Catherine

335

IID Energy - PV Solutions Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Solutions Rebate Program PV Solutions Rebate Program IID Energy - PV Solutions Rebate Program < Back Eligibility Commercial Industrial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate PBI Incentive max: 550,000 for the 5-year period (110,000/year) Program Info State California Program Type Utility Rebate Program Rebate Amount 2013 program is closed Provider Imperial Irrigation District '''''IID accepted applications for the 2013 PV Solutions Program from Jan. 2, 2013 - Jan. 31, 2013. Winners were determined via lottery. The program is now closed for the remainder of 2013, but another funding round is expected in 2014. ''''' Through the PV Solutions Rebate Program, Imperial Irrigation District (IID) provides rebates to its residential and commercial customers who install

336

Ukiah Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program Ukiah Utilities - PV Buydown Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 7,000; Commercial: 20,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Incentive Rate for systems installed between 7/1/12 and 6/30/13: $1.40/watt AC; incentive may be reduced based on expected performance Provider City of Ukiah Through Ukiah Utilities' PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of 1 MW. In keeping with SB1, the incentive level will decrease annually on July 1 over the 10 year life of the program. Rebates are available on a first come, first

337

Solar Energy Market Forecast | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Market Forecast Solar Energy Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Resource Type: Publications Website: giffords.house.gov/DOE%20Perspective%20on%20Solar%20Market%20Evolution References: Solar Energy Market Forecast[1] Summary " Energy markets / forecasts DOE Solar America Initiative overview Capital market investments in solar Solar photovoltaic (PV) sector overview PV prices and costs PV market evolution Market evolution considerations Balance of system costs Silicon 'normalization' Solar system value drivers Solar market forecast Additional resources"

338

Solar Projects to Reduce Non-Hardware Balance of System Costs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV through the creation and adoption of innovative approaches to utility regulation, rate design, and business models that enable high penetration of solar PV onto the utility...

339

City of San Diego RFP for Power Purchase (PV)  

NLE Websites -- All DOE Office Websites (Extended Search)

City of San Diego City of San Diego Environmental Services Department Energy Conservation and Management Division Request for Proposal For Power Purchase of Renewable Energy (Photovoltaics) For City Facilities The City of San Diego is seeking a firm, or a team of firms, to provide cost effective solar photovoltaic electric generating systems at eight City sites. The City intends to enter into power purchase agreement(s) for terms up to twenty years with solar PV developer(s) at these sites. The developers may also be asked to assist the City with identifying implementing solar PV projects at other sites depending upon the success of the initial program. The City evaluated twenty four facilities that appear to have potential of accommodating solar PV systems ranging in size from 30 kilowatts to 1

340

NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Projects PV Projects FUPWG Meeting: "Going Costal for Energy Efficiency" Bob Westby, NREL FEMP Program Manager and Sustainable NREL Lead April 14-16, 2008 Contents * Mesa Top PV project - CO/utility incentive program - Deal structure/agreements * NREL Phase II proposed projects * Proposal evaluation considerations * Evaluation tools Mesa Top PV Project Mesa Top PV Project * 750 kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones  Agreements: January 2008  Operation: August 2008 Solar Rewards Program * CO statute requires solar resource acquisitions by IOU of 20% renewables by 2020 (4% solar "carve out") * Xcel acquisitions made through RFP (bid) process - Selection based on SO-REC* price

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Lassen Municipal Utility District - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program Lassen Municipal Utility District - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $5,000 or 50% of system cost, whichever is less Commercial: $23,000 or 50% of system cost, whichever is less. Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $3.00/W-AC Commercial: $2.10/W-AC Provider Lassen Municipal Utility District Lassen Municipal Utility District (LMUD) is providing incentives for its customers to purchase solar electric photovoltaic (PV) systems. Rebate levels will decrease annually over the life of the program. Through June 30, 2014, rebates of $3.00 per watt-AC up to $5,000 are available for

342

Merced Irrigation District - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program Merced Irrigation District - PV Buydown Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: 8,400 Commercial: $70,000 Program Info State California Program Type Utility Rebate Program Rebate Amount 2.80/W AC, adjusted based on expected performance Provider Merced Irrigation District Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. The rebate is $2.80 per watt (adjusted based on the expected performance of the system) with a maximum of $8,400 for residential systems and $70,000 for non-residential systems.

343

SMUD - Non-Residential PV Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program SMUD - Non-Residential PV Incentive Program < Back Eligibility Commercial Industrial Nonprofit Savings Category Solar Buying & Making Electricity Maximum Rebate $650,000 for up-front incentives at current $0.65/W incentive level. Program Info State California Program Type Utility Rebate Program Rebate Amount Expected Performance Based Incentive (for systems up to 1 MW): 0.65/watt AC; incentive adjusted based on expected performance Performance Based Incentive: 0.10/kWh for 5 years or 0.06/kWh for 10 years Incentives are decreased for systems > 1 MW Provider Sacramento Municipal Utility District SMUD offers cash incentives to commercial, industrial, and non-profit customers who install solar photovoltaic (PV) systems. Customers have the

344

High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009  

SciTech Connect

Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

Not Available

2009-06-01T23:59:59.000Z

345

Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return  

Energy.gov (U.S. Department of Energy (DOE))

In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

346

Homebuilder's Guide to Going Solar  

DOE R&D Accomplishments (OSTI)

This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

2008-12-00T23:59:59.000Z

347

LaSolar | Open Energy Information  

Open Energy Info (EERE)

LaSolar Jump to: navigation, search Name: LaSolar Place: Argentina Sector: Solar Product: Manufactures and distributes solar passive water heating systems and PV systems in Spain,...

348

Amper Central Solar SA | Open Energy Information  

Open Energy Info (EERE)

Solar SA Place: Moura, Portugal Zip: 7860 231 Sector: Solar Product: Portugal-based solar PV project developer. References: Amper Central Solar SA1 This article is a stub....

349

GA SNC Solar | Open Energy Information  

Open Energy Info (EERE)

GA SNC Solar Jump to: navigation, search Name: GA-SNC Solar Place: Nevada Sector: Solar Product: Nevada-based PV project developer and joint venture of GA-Solar North America and...

350

HiTech Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place: Uherske Hradiste, Czech Republic Zip: 686 01 Sector: Solar Product: HiTech Solar is a PV equiptment distributor and solar project developer. They are a division of...

351

PV | OpenEI  

Open Energy Info (EERE)

PV PV Dataset Summary Description This dataset is from the report Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature (J. Macknick, R. Newmark, G. Heath and K.C. Hallett) and provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. Source National Renewable Energy Laboratory Date Released August 28th, 2012 (2 years ago) Date Updated Unknown Keywords coal consumption csp factors geothermal PV renewable energy technologies Water wind withdrawal Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Operational water consumption and withdrawal factors for electricity generating technologies (xlsx, 77.7 KiB)

352

CT Solar Loan  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Finance and Investment Authority is offering a pilot loan program, CT Solar Loan, to provide homeowners with 15-year loans for solar PV equipment. The loans are administered...

353

Open PV Project: Unlocking PV Installation Data (Brochure)  

SciTech Connect

This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

Not Available

2012-04-01T23:59:59.000Z

354

Ultra Accelerated Testing of PV Module Components  

SciTech Connect

Using concentrated natural sunlight at the NREL High Flux Solar Furnace, we have exposed several materials to acceleration factors of up to 400 times the normal outdoor UV exposure dose. This accelerated rate allows the exposure of materials such that a year of outdoor exposure can be simulated in about 5 hours. We have studied the solarization of cerium containing glass, the degradation of ethylene vinyl acetate laminated between borosilicate glass, and the yellowing of standard polystyrene test coupons. The first two candidates are of interest to the photovoltaics (PV) program, and the last candidate material is a widely used dosimeter for ultra violet (UV) exposure in accelerated weathering chambers

Pitts, J. R.; King, D. E.; Bingham, C.; Czanderna, A. W.

1998-10-28T23:59:59.000Z

355

PV World Co Ltd | Open Energy Information  

Open Energy Info (EERE)

PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a stub. You can help OpenEI by expanding it. PV...

356

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

Storage Enhances the Economic Viability of Concentrating SolarSolar Photovoltaics (PV) in Electric Power Systems Utilizing Energy Storagestorage and/or natural gas augmentation to concentrating solar

Mills, Andrew D.

2014-01-01T23:59:59.000Z

357

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network (OSTI)

installations. This California Solar Initiative has the2. CALIFORNIA’S SOLAR PROGRAMS California’s PV market isramifications, both for California’s new solar programs and

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

358

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network (OSTI)

of photovoltaic (PV) solar panels, grows increasingly more Currently there are  solar panels on one percent of technology.   The number of solar panel installations maybe 

Fedman, Anna

2011-01-01T23:59:59.000Z

359

Testing for PV Reliability (Presentation)  

SciTech Connect

The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

Kurtz, S.; Bansal, S.

2014-09-01T23:59:59.000Z

360

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Small Solar Electric Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Solar Electric Systems Small Solar Electric Systems Small Solar Electric Systems July 15, 2012 - 4:11pm Addthis A small solar electric or photovoltaic system can be a reliable and pollution-free producer of electricity for your home or office. What are the key facts? Because PV technologies use both direct and scattered sunlight to create electricity, the solar resource across the United States is ample for home solar electric systems. Solar cells-the basic building blocks of a PV system -- consist of semiconductor materials. A typical home solar electric, or PV, system consists solar cells, modules or panels (which consist of solar cells), arrays (which consist of modules), and balance-of-system parts. A small solar electric or photovoltaic (PV) system can be a reliable and pollution-free producer of electricity for your home or office. Small PV

362

January 15, 2013: Developing PV Projects with RFPs and PPAs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs January 15, 2013: Developing PV Projects with RFPs and PPAs This webinar was held January 15, 2013, and provided information on how the cities of Tucson, Arizona, and Minneapolis, Minnesota, utilized requests for proposals (RFPs) and power purchase agreements (PPAs) to develop photovoltaic (PV) projects. Download the presentations below, watch the webinar (WMV 200 MB), or view the text version. RFIs, RFPs, and RFQs for PV: Finding the Right Solar Contractors for Your Community Choosing vendors for solar projects requires a careful look since you may well be dealing with them for 20 years ... or more. The City of Tucson highlighted its experiences with city-owned PV projects as well as a PPA project while discussing some potential pitfalls along the way.

363

Solar News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

lower labor costs, drives China's current advantage in manufacturing photovoltaic (PV) solar energy systems, according to a new report released today by the Energy Department's...

364

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

PV systems evaluations and ... Renewable Energy On November 10, 2010, in Renewable Energy Wind Solar Water Geothermal Biomass Renewable Energy Events Renewable News...

365

U.S. Department of Energy PV Roadmaps | Open Energy Information  

Open Energy Info (EERE)

PV Roadmaps PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Resource Type Publications, Guide/manual Website http://www1.eere.energy.gov/so References U.S. Department of Energy PV Roadmaps[1] Abstract Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from universities and private industry. "Ten photovoltaic (PV) technology roadmaps were developed in 2007 by staff at the National Renewable Energy Laboratory (NREL), Sandia National Laboratories, U.S. Department of Energy (DOE), and experts from

366

Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006  

SciTech Connect

The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

Wohlgemuth, J.; Narayanan, M.

2006-07-01T23:59:59.000Z

367

Review of PV Inverter Technology Cost and Performance Projections  

SciTech Connect

The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

Navigant Consulting Inc.

2006-01-01T23:59:59.000Z

368

Kauai Island Utility Co-op (KIUC) PV integration study.  

SciTech Connect

This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

Ellis, Abraham; Mousseau, Tom (Knoxville, TN)

2011-08-01T23:59:59.000Z

369

Ambiental PV | Open Energy Information  

Open Energy Info (EERE)

Ambiental PV Ambiental PV Jump to: navigation, search Name Ambiental PV Place Bahia, Brazil Zip 40140-380 Sector Carbon Product Bahia-based carbon consultancy firm. References Ambiental PV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ambiental PV is a company located in Bahia, Brazil . References ↑ "Ambiental PV" Retrieved from "http://en.openei.org/w/index.php?title=Ambiental_PV&oldid=342095" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 186306960

370

CuIn{sub 1{minus}{ital x}}Ga{sub {ital x}}Se{sub 2} and CdTe PV solar cells  

SciTech Connect

Higher indium proportion in the first precursor was employed to eliminate pits in CuIn{sub 1{minus}{ital x}}Ga{sub {ital x}}Se{sub 2} films prepared by two Se-vapor selenizations of metallic precursors. CuIn{sub 1{minus}{ital x}}Ga{sub {ital x}}Se{sub 2} films had large, faceted grains, and a near-optimum composition Cu:In:Ga:Se 24.25:22.21:4.40:49.14. Ga incorporated using a Cu-Ga(22 at. {percent}) alloy target was enhanced by optimizing the time-temperature profiles of selenizations. CuIn{sub 1{minus}{ital x}}Ga{sub {ital x}}Se{sub 2} solar cells gave {ital V}{sub oc} of 451.8 mV, {ital J}{sub sc} of 34.5 mA, FF of 57.87{percent}, total area efficiency of 9.02{percent}. CdTe thin films were prepared by heat treatment of magnetron-sputtered elemental Cd/Te stacks. Formation of extraneous oxide phases was avoided by optimizing ambients, temperature, and CdCl{sub 2} treatment. CdTe solar cells gave maximum {ital V}{sub oc} of {approximately}600 mV, {ital J}{sub sc} of {approximately}5 mA.cm{sup {minus}2}, very low FF and efficiency probably due to blocking layer or junction away from CdS{backslash}CdTe interface. {copyright} {ital 1996 American Institute of Physics.}

Dhere, N.G. [Florida Solar Energy Center, 300 State Rd 401, Cape Canaveral, Florida 32920-4099 (United States)

1996-01-01T23:59:59.000Z

371

Low Cost High Concentration PV Systems for Utility Power Generation Amonix,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amonix, Inc. Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain Partnership to Accelerate U.S. Photovoltaic Industry Growth,AC Module PV System,Flexible Organic Polymer-Based PV For Building Integrated Commercial Applications,Flexable Integrated PV System,Delivering Grid-Parity Solar Electricity On Flat Commercial Rooftops,Fully Automated Systems Technology, Concentrating Solar Panels: Bringing the Highest Power and Lowest Cost to

372

Pacific Power - PV Rebate Program (California) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) Pacific Power - PV Rebate Program (California) < Back Eligibility Agricultural Commercial Fed. Government Industrial Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Commercial: $90,000 Tax-exempt Entities: $277,500 Program Info Start Date 07/01/2011 Expiration Date 07/1/2015 State California Program Type Utility Rebate Program Rebate Amount Incentives may be adjusted based on expected performance. Incentive amounts below are current as of 12/14/12. See program website for current status. Residential: $1.13/W CEC-AC Commercial: $0.36/W CEC-AC Tax-exempt Entities: $1.11/W CEC-AC Pacific Power is providing rebates to their customers who install photovoltaic (PV) systems on their homes and facilities. These rebates step

373

Riverside Public Utilities - Non-Residential PV Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Non-Residential PV Incentive Program Non-Residential PV Incentive Program Riverside Public Utilities - Non-Residential PV Incentive Program < Back Eligibility Commercial Savings Category Solar Buying & Making Electricity Maximum Rebate Whichever is less: 50% of project cost or specific dollar limits which vary according to the rate schedule of the applicant Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold. See below for more information. Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014.''''' The non-residential photovoltaic (PV) rebate program provides financial incentives for Riverside Public Utilities' business customers to install

374

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

375

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

376

City of Lompoc Utilities - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program City of Lompoc Utilities - PV Rebate Program < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 50% the system cost, up to $50,000 Program Info Funding Source utility surcharge State California Program Type Utility Rebate Program Rebate Amount $2.00 per watt Provider Customer Service City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $2.00 per watt-AC. The incentive amount may not exceed 50% the cost of the system, up to a maximum of $50,000. To qualify for the rebate the system must meet all the criteria as defined by the Lompoc City Electric interconnection agreement for self-generating electric systems and the requirements set forth by the California Energy

377

Riverside Public Utilities - Residential PV Incentive Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Incentive Program PV Incentive Program Riverside Public Utilities - Residential PV Incentive Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate 13,000 or 50% of project cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Program is on hold Provider Riverside Public Utilities '''''Note: Funding for this program has been exhausted for the remainder of the fiscal year. The program is scheduled to reopen on July 1, 2014. ''''' The Residential Photovoltaic (PV) System rebate program provides incentives to Riverside Public Utilities customers who purchase and install qualifying photovoltaic systems on their homes. For Fiscal Year 2013, the rebate amount was $2.00 per watt AC and cannot exceed 50% of the total system cost

378

A key review on present status and future directions of solar energy studies and applications in Saudi Arabia  

Science Journals Connector (OSTI)

Renewable energy is accepted as a key source for the future, not only for Saudi Arabia, but also for the world. Saudi Arabia has abundant potential for exploiting solar energy, which is renewable, clean, and freely available. The average annual solar radiation falling on the Arabian Peninsula is about 2200 kWh/m2. Applications of solar energy in Saudi Arabia have been growing since 1960. Solar hydrogen production plant situated at the Solar Village, Riyadh, Saudi Arabia, could have been considered as the world's first 350 kW solar-powered hydrogen-generation plant at the time of its inception. The development of solar energy, however, has been relatively low due to several obstacles although utilization of solar energy in its various aspects is very attractive for the country. The main objectives of this study are to address current applications and future aspects of solar energy along with studies conducted in this field and to assess them in the light of available sustainable energy technologies towards establishing energy policies. The solar energy-related topics reviewed include various types of solar radiation correlations, exergetic solar radiation, solar collectors, solar photovoltaic (PV) systems, solar stills, solar-powered irrigation, solar energy-related greenhouses, solar hydrogen, solar water desalination and solar energy education. Some barriers, scenarios and constraints are also covered. The utilization of solar energy could cover a significant part of the energy demand in the country. If a major breakthrough is achieved in the field of solar-energy conversion, Saudi Arabia can be a leading producer and exporter of solar energy in the form of electricity. The geographical location of the country, its widespread unused desert land, and year-round clear skies, all make it an excellent candidate for this.

Arif Hepbasli; Zeyad Alsuhaibani

2011-01-01T23:59:59.000Z

379

Solar Adoption and Energy Consumption in the Residential Sector.  

E-Print Network (OSTI)

??This dissertation analyzes the energy consumption behavior of residential adopters of solar photovoltaic systems (solar-PV). Based on large data sets from the San Diego region… (more)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

380

Goldbeck Solar GmbH | Open Energy Information  

Open Energy Info (EERE)

an der Bergstrae, Germany Zip: 69493 Sector: Solar Product: A daughter company of German construction- and service company Goldbeck, Goldbeck Solar installs and maintains PV...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: State and Local Governments - DIY Solar Market Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory (NREL). The following sessions are available: Scenario Solar PV Jobs and Economic Development Impact (JEDI) Model Top Solar Tools: What are they...

382

Sandia National Laboratories: fundamental physics of CIGS solar...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

383

2 IAEI NEWS November. December 2012 www.iaei.org pv systems in unusual locations  

E-Print Network (OSTI)

the circulating pump. The combination of a PV- powered pump with a solar collector works well since bright sun they be permit- ted and inspected? Here are some examples of such systems. Electric Gate Openers PV-powered at night and during cloudy weather. Normally the prod- ucts are sold as a kit and installed by the building

Johnson, Eric E.

384

Environmental impacts of large-scale grid-connected ground-mounted PV installations  

E-Print Network (OSTI)

deployment and solar energy use are developing rapidly in Europe. In particular, Austria, Switzerland the higher external environmental costs of PV compared to those of nuclear energy and natural-gas-fuel power,6]. They highlighted the photovoltaic potential for a low carbon energy supply and the environmental benefits of PV

Paris-Sud XI, Université de

385

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

SciTech Connect

General Electric’s (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energy’s cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

386

Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment  

SciTech Connect

The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

Farhar, B. C.; Buhrmann, J.

1998-07-01T23:59:59.000Z

387

Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics  

SciTech Connect

Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

None

2012-02-23T23:59:59.000Z

388

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

389

Shanghai JTU PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

JTU PV Technology Co Ltd JTU PV Technology Co Ltd Jump to: navigation, search Name Shanghai JTU PV Technology Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200240 Sector Solar Product Spun off from Shanghai Jiaotong University, the company manufactures control systems and testing equipments for solar water heaters. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Cineng PV Science Technology Co Ltd Cineng PV Science Technology Co Ltd Jump to: navigation, search Name Zhejiang Cineng PV Science & Technology Co Ltd Place Cixi, Zhejiang Province, China Sector Solar Product A Chinese tandem thin-film solar cell manufacturer Coordinates 30.168501°, 121.235023° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.168501,"lon":121.235023,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Tianfu PV Guangxian Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Tianfu PV Guangxian Co Ltd Tianfu PV Guangxian Co Ltd Jump to: navigation, search Name Tianfu PV Guangxian Co Ltd Place Shihezi, Xinjiang Autonomous Region, China Sector Solar Product Chinese company who planned to produce flexiable a-Si thin-film solar cells but the project finanly abandoned. Coordinates 44.299709°, 86.03791° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.299709,"lon":86.03791,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Northeast Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Northeast Solar Energy Northeast Solar Energy Research Center (NSERC) A multi-purpose research facility on the BNL campus Solar PV Array Size and Type * ~1.0 MW total - Area 1 sized for testing utility-scale inverters * System voltage level of 1,000V * Connected to BNL electrical distribution system * Capability to test multiple panel technologies with crystalline silicon PV modules making up the bulk of the array * Capability to re-configure the array into

393

New York Sun Competitive PV Program (New York) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sun Competitive PV Program (New York) Sun Competitive PV Program (New York) New York Sun Competitive PV Program (New York) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools Systems Integrator Tribal Government Utility Savings Category Solar Buying & Making Electricity Program Info State New York Program Type Renewables Portfolio Standards and Goals Provider New York State Energy Research and Development Authority The New York Sun Competitive Photovoltaic (PV) Program is an expansion of the Renewable Portfolio Standard (RPS) Customer-Sited Tier Regional Program

394

Boston, Massachusetts: Solar in Action (Brochure)  

SciTech Connect

This brochure provides an overview of the challenges and successes of Boston, MA, a 2007 Solar America City awardee, on the path toward becoming a solar-powered community. Accomplishments, case studies, key lessons learned, and local resource information are given. The City of Boston and its Solar America Cities program, Solar Boston, are helping to debunk the myth that solar energy is only feasible in the southern latitudes. Boston has some of the highest energy prices in the country and will likely be one of the first locations where solar power achieves grid parity with conventional energy technologies. Solar Boston is facilitating the rapid development of solar energy projects and infrastructure in the short-term, and is preparing for the rapid market growth that is expected with the imminent arrival of grid parity over the long-term. Solar Boston developed the strategy for achieving Mayor Menino's goal of installing 25 MW of solar energy throughout Boston by 2015. Through Solar Boston, the city has developed a strategy for the installation of solar technology throughout Boston, including mapping feasible locations, preparing a permitting guide, and planning the citywide bulk purchase, financing, and installation of solar technology. The city has also worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing initiatives. The resulting accomplishments include the following: (1) Created an online map of current local renewable energy projects with a tool to allow building owners to calculate their rooftop solar potential. The map is currently live at http://gis.cityofboston.gov/solarboston/. (2) Supported the city's Green Affordable Housing Program (GAHP), in partnership with the Department of Neighborhood Development (DND). Under GAHP, the city is installing more than 150 kW of PV on 200 units of affordable housing. DND requires that all new city-funded affordable housing be LEED silver certified and built solar-ready. (3) Defined solar's role in emergency preparedness with the Boston Mayor's Office of Emergency Preparedness. (4) Worked with local organizations to maximize Boston's participation in state incentive programs and innovative financing mechanisms. Solar Boston partners include DOE, MTC, local utilities and unions, an anonymous foundation, and a broad range of local, regional, and national clean-energy stakeholders. Solar Boston kicked off its partner program on January 10, 2008, sponsoring a workshop on 'Thinking BIG about Boston's Solar Energy Future,' to discuss how state, utility, and municipal programs can work together. Presentations were given by Solar Boston, Keyspan/National Grid, NSTAR, and MTC.

Not Available

2011-10-01T23:59:59.000Z

395

Homebuilder's Guide to Going Solar (Brochure)  

SciTech Connect

This 8-page brochure describes the steps a builder would take to install solar electricity (photovoltaics or PV), solar water heating, or how to build a home solar ready.

Not Available

2008-12-01T23:59:59.000Z

396

Southern Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Place: Offham, East Sussex, United Kingdom Sector: Solar Product: Installer of PV and solar passive hot water systems in the UK. References: Southern Solar Ltd1 This article...

397

Sun Bear Solar Ltd | Open Energy Information  

Open Energy Info (EERE)

Sun Bear Solar Ltd Place: Hong Kong Sector: Solar Product: Hong Kong-based firm that manufactures solar product equipment, such as PV glass, coatings and mirrors. References: Sun...

398

SetSolar | Open Energy Information  

Open Energy Info (EERE)

SetSolar Jump to: navigation, search Name: SetSolar Place: Cape Town, South Africa Zip: 7460 Sector: Solar Product: South African company that specialises in the manufacture of PV...

399

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

E-Print Network (OSTI)

Energy Commission’s PV Rebate Levels” (forthcoming from theHerig. 2004. “Are Solar Rebates and Grants for Homeownersa manufacturer or dealer rebate of the purchase price; (3) a

Bolinger, Mark; Wiser, Ryan; Ing, Edwin

2006-01-01T23:59:59.000Z

400

Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC  

E-Print Network (OSTI)

the Section 48 investment tax credit (ITC) for commercial30% of the project’s “tax credit basis” (i.e. , the dollarof EPAct 2005’s solar tax credits on PV system owners, in

Bolinger, Mark

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Opportunities and Challenges for Solar Minigrid Development in Rural India  

SciTech Connect

The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

2012-09-01T23:59:59.000Z

402

Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection  

E-Print Network (OSTI)

PV), solar thermal, stationary batteries, thermal storage,thermal storage, AC - absorption cooling, ST-solar thermal,solar thermal collector (kW) PV (kW) stationary electric storage (

Stadler, Michael

2012-01-01T23:59:59.000Z

403

Outdoor PV Degradation Comparison  

SciTech Connect

As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

2011-02-01T23:59:59.000Z

404

Solar Kabel GmbH | Open Energy Information  

Open Energy Info (EERE)

Kabel GmbH Jump to: navigation, search Name: Solar-Kabel GmbH Place: Germany Sector: Solar Product: Germany-based solar PV cable manufacturer. References: Solar-Kabel GmbH1 This...

405

GWU Solar GmbH | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: GWU Solar GmbH Place: Germany Sector: Solar Product: Solar PV and thermal system manufacturers. References: GWU Solar GmbH1 This article is a...

406

SolarCraft Services Inc | Open Energy Information  

Open Energy Info (EERE)

Name: SolarCraft Services Inc Place: Novato, California Zip: 94949 Sector: Solar Product: Solar thermal and PV system installer. References: SolarCraft Services Inc1 This article...

407

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

http://www.seia.org/cs/solar_policies/solar_investment_tax_how to design optimal solar policy as this market continuesWith favorable state policies, solar-PV finds itself on a

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

408

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Expertise Guides New Photovoltaic Requirements On January 8, 2013, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Systems Analysis Sandia's...

409

RETI Phase 1B Final Report Update NET SHORT RECALCULATION AND NEW PV ASSUMPTIONS  

E-Print Network (OSTI)

of distributed PV capacity by the year 2016.8 In response to the California Solar Initiative, a component,7 However, California has established the Go Solar California program with a goal of installing 3,000 MW of the Go Solar California program, 158 MW were installed in 2008 alone.9 The reasonableness of the CEC

410

A New Race For Solar  

Science Journals Connector (OSTI)

This fall, three new solar power plants came to life on large tracts of undeveloped, remote lands in the western U.S. Although solar, these three installations are huge when compared with familiar, traditional rooftop photovoltaic (PV) systems. Combined, ...

JEFF JOHNSON

2013-12-16T23:59:59.000Z

411

Quantum Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Place: Santa Fe, New Mexico Zip: 87507 Product: New Mexico-based PV cell technology company. References: Quantum Solar1 This article is a stub. You can help OpenEI by...

412

PV Analyst: Coupling ArcGIS with TRNSYS to assess distributed photovoltaic potential in urban areas  

Science Journals Connector (OSTI)

This study presents a means to extend the functionality of Geographic Information Systems (GIS) in assessing distributed photovoltaic (PV) potential in urban areas, via the new ArcGIS extension: PV Analyst. A methodology is proposed for coupling ArcGIS with TRNSYS that enables the PV Analyst extension to use the capabilities of 4 and 5-parameter PV array performance models and the irradiance components in TRNSYS for solar energy simulations in geospatial contexts. Because PV Analyst is embedded within the ArcMap environment, part of ArcGIS software package, the strong capabilities of ArcGIS and other ArcGIS extensions such as 3D Analyst, Spatial Analyst and Tracking Analyst can be fully utilized with PV Analyst’s functionalities. This paper describes the concept and details of the extension development, as well as its application to the Pollock Commons area at the Pennsylvania State University.

Yosoon Choi; Jeffrey Rayl; Charith Tammineedi; Jeffrey R.S. Brownson

2011-01-01T23:59:59.000Z

413

Interconnecting PV on New York City's Secondary Network Distribution System  

SciTech Connect

The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ���¢��������networks���¢������� in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1���¢��������PV Deployment Analysis for New York City���¢��������we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2���¢��������A Briefing for Policy Makers on Connecting PV to a Network Grid���¢��������presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3���¢��������Technical Review of Concerns and Solutions to PV Interconnection in New Y

K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

2009-11-30T23:59:59.000Z

414

Viability analysis of PV power plants in Egypt  

Science Journals Connector (OSTI)

This paper investigates, from techno-economical and environmental points of view, the feasible sites in Egypt to build a 10 MW PV-grid connected power plant. Available PV-modules are assessed and a module is selected for this study. The long-term meteorological parameters for each of the 29 considered sites in Egypt from NASA renewable energy resource website (Surface meteorology and Solar Energy) are collected and analyzed in order to study the behaviors of solar radiations, sunshine duration, air temperature, and humidity over Egypt, and also to determine the compatibility of the meteorological parameters in Egypt with the safety operating conditions (SOC) of PV-modules. The project viability analysis is performed using \\{RETScreen\\} version 4.0 software through electric energy production analysis, financial analysis, and GHG emission analysis. The study show that placement of the proposed 10 MW PV-grid connected power plant at Wahat Kharga site offers the highest profitability, energy production, and GHG emission reduction. The lowest profitability and energy production values are offered at Safaga site. Therefore, it is recommended to start building large-scale PV power plants projects at Wahat Kharga site.

M. EL-Shimy

2009-01-01T23:59:59.000Z

415

Fault Current Contribution from Single-Phase PV Inverters  

SciTech Connect

A significant increase in photovoltaic (PV) system installations is expected to come on line in the near future and as the penetration level of PV increases, the effect of PV may no longer be considered minimal. One of the most important attributions of additional PV is what effect this may have on protection systems. Protection engineers design protection systems to safely eliminate faults from the electric power system. One of the new technologies recently introduced into the electric power system are distributed energy resources (DER). Currently, inverter-based DER contributes very little to the power balance on all but a few utility distribution systems. As DER become prevalent in the distribution system, equipment rating capability and coordination of protection systems merit a closer investigation. A collaborative research effort between the National Renewable Energy Laboratory (NREL) and Southern California Edison (SCE) involved laboratory short-circuit testing single-phase (240 VAC) residential type (between 1.5 and 7kW) inverters. This paper will reveal test results obtained from these short-circuit tests.

Keller, J.; Kroposki, B.; Bravo, R.; Robles, S.

2011-01-01T23:59:59.000Z

416

Why Are Residential PV Prices in Germany So Much Lower Than in the United  

NLE Websites -- All DOE Office Websites (Extended Search)

Why Are Residential PV Prices in Germany So Much Lower Than in the United Why Are Residential PV Prices in Germany So Much Lower Than in the United States? Speaker(s): Joachim Seel Date: April 11, 2013 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ryan Wiser The installed price of residential PV is significantly lower in Germany than in the United States - in Q3 2012 German systems were priced on average at $2.50/W while U.S. systems were priced nearly twice as high around $5.20/W. These pricing differences accumulate to about $13,500 for a 5kW residential system and stem primarily from differences in "soft" costs, but little detail is known about how soft cost components differ between the two countries, or why. In order to better characterize the nature of these differences, LBNL fielded surveys of German PV installers,

417

Site Visit Report, Hanford Sludge Treatment Project 105-KW -...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 Site Visit Report, Hanford Sludge Treatment Project 105-KW - August 2011 August 2011 Hanford Sludge...

418

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 09 · Photovoltaic Systems 1Montana State University: Solar Cells Lecture 9: PV Systems Several types of operating modes · Centralized power plant or wanted Montana State University: Solar Cells Lecture 9: PV Systems 2 Residential Side Mounted Montana

Kaiser, Todd J.

419

Analysis of the Potential Applications of Solar Termal and Photovoltaic Systems for Northwest Vista College  

E-Print Network (OSTI)

the following RE technologies as viable: ground source heat pump (GSHP) systems, closed loop solar thermal system and photovoltaic (PV)....

Ugursal, A.; Martinez, J.; Baltazar, J. C.; Zilbershtein, G.

2013-01-01T23:59:59.000Z

420

Sandia National Laboratories: Photovoltaic (PV) Regional Test...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyPhotovoltaic (PV) Regional Test Center (RTC) Website Goes Live Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Hope Michelsen named to Alameda County...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Summary World Solar Energy Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Solar Energy Data (from World on the Edge) Solar Energy Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This solar energy dataset includes the following: World solar PV production (1975 - 2009); Annual solar PV production by country (1995 - 2009); Solar PV production in the US (1976 - 2009); World cumulative solar PV installations (1998 - 2009); Annual solar PV installations in selected countries and the world (1998 - 2009); Cumulative solar PV installations in the US (1998 - 2009) and EU (1998 - 2009); World installed concentrating solar thermal power capacity (1980 - 2009); solar water and space heating area in selected countries (2008) and top ten countries (2008).

422

Solar Photovoltaics Technology: The Revolution Begins  

Science Journals Connector (OSTI)

The prospects of solar-photovoltaic (PV) technologies are envisioned, arguing this electricity source is at a tipping point in the complex, worldwide energy outlook. The emphasis of...

Kazmerski, Lawrence L

423

Solar Schools Assessment and Implementation Project: Financing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

California public school districts. 51815.pdf More Documents & Publications Financing Solar PV at Government Sites with PPAs and Public Debt Financing Energy Upgrades for K-12...

424

Sandia National Laboratories: Solar Power International  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 On September 24, 2013, in Conferences, Energy, Events, News & Events, Renewable Energy, Seminars & Conferences, Solar, Workshops Sandia will host PV Bankability workshop...

425

Sandia National Laboratories: Solar Power International (SPI...  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop On September 10, 2012, in Energy, News, Partnership, Photovoltaic, Renewable Energy, Solar Achieving High Penetrations of PV: Streamlining Interconnection and Managing...

426

Arontis Solar Concentrator AB | Open Energy Information  

Open Energy Info (EERE)

Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating, one axis sun tracking PV system that also produces hot water. References: Arontis Solar Concentrator...

427

A solar concentrating photovoltaic/thermal collector .  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

428

ATERSA Electridad Solar | Open Energy Information  

Open Energy Info (EERE)

Name: ATERSA Electridad Solar Place: Madrid, Spain Zip: 28045 Product: Madrid-based manufacturer of PV modules and balance of plant such as mounting and inverters; commercial and...

429

PV for Designers  

Science Journals Connector (OSTI)

Here are two examples that exemplify the extremes of challenges for BIPV placement on a building. The Solar Office, Doxford International Business Park, a 73 kWP BIPV façade (Fig. 3.3), is highly optimised for so...

2009-01-01T23:59:59.000Z

430

Integrating Solar PV in Utility System Operations  

Office of Energy Efficiency and Renewable Energy (EERE)

Webinar presenting findings from the recent report, authored jointly by researchers at Argonne National Laboratory, Berkeley Lab, and the National Renewable Energy Laboratory and entitled, ...

431

Sacramento Ordinance to Waive Solar PV Fees  

Energy.gov (U.S. Department of Energy (DOE))

This is an ordinance by the city of Sacramento to suspend for the calendar years 2007-2009 all fees related to installation of photovoltaic systems on existing residences.

432

Supplementing Electrical Power Through Solar PV Systems  

Science Journals Connector (OSTI)

Dhaka megacity is home to more than 14 million inhabitants. However, the adequate supply of urban utilities, particularly electricity to city dwellers, has ... supply in Dhaka, electricity generation through roof...

Md. Humayun Kabir; Wilfried Endlicher

2014-01-01T23:59:59.000Z

433

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

normal distribution. Bonneville Power Administration BPA2009 BPA separately quantifies following reserve andand system operators). BPA picks a single reserve quantity

Mills, A.

2014-01-01T23:59:59.000Z

434

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

to $4.00/MMBtu and coal price increases from $1.96/MMBtu togas prices and higher coal prices, while the highest is $by the assumed increase in coal price in that case. Perfect

Mills, A.

2014-01-01T23:59:59.000Z

435

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

System Operator combined cycle Control Performance Standardstart-up times such as combined cycle plants. However, we do4 steam turbines, 9 combined cycle, and 41 combustion

Mills, A.

2014-01-01T23:59:59.000Z

436

Integrating Solar PV in Utility System Operations  

E-Print Network (OSTI)

Fuel Prices .24 Generator Capacity and Fuel Price byIntegration Costs in Fuel Price Sensitivity Cases of the

Mills, A.

2014-01-01T23:59:59.000Z

437

Exploring the Economic Value of EPAct 2005's PV Tax Credits  

SciTech Connect

This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions.1 We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs.

Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

2009-08-01T23:59:59.000Z

438

Life-cycle assessment of multi-crystalline photovoltaic (PV) systems in China  

Science Journals Connector (OSTI)

Abstract This study performs a life-cycle assessment for a photovoltaic (PV) system with multi-crystalline silicon (multi-Si) modules in China. It considers the primary energy demand, energy payback time (EPBT), and environmental impacts, such as global warming potential and eutrophication, over the entire life cycle of the PV system, including the upstream process, ranging from silica extraction to the multi-Si purification, the midstream process, involving crystalline silicon ingot growth and wafering; and the downstream process, consisting of cell and module fabrication. The data were collected with recommendations provided by the ISO norms and acquired from typical PV companies in China. The results show that the most critical phase of life cycle of Chinese PV system was the transformation of metallic silicon into solar silicon, which was characterized by high electricity consumption, representing most of the environmental impact. The other electricity generation systems were compared to PV. Considering that Chinese electricity is mainly produced by coal-fired power plants, the installation of multi-Si PV systems is recommended over exporting them from China. Furthermore, being higher solar radiation areas, areas in western China, such as the Tibet Autonomous Region, northeastern Qinghai, and the western borders of Gansu, are best suited for the installation of the PV systems even if the long distance of transportation. Finally, recommendations were provided with respect to the sustainable development of the Chinese PV industry and environmental protection.

Yinyin Fu; Xin Liu; Zengwei Yuan

2014-01-01T23:59:59.000Z

439

Long Island Power Authority - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Rebate Program PV Rebate Program Long Island Power Authority - PV Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential (general customer-owned): Lesser of 50% of installed cost or $18,600; Residential (third-party owned): Lesser of 50% of installed cost or $17,200; Residential (non-profit owned): Lesser of 50% of installed costs or $22,500; Commercial: Lesser of 50% of installed cost or $145,000; Gov't, Schools, Nonprofits: Lesser of 65% of installed cost or $225,000 Program Info Funding Source LIPA Efficiency Long Island Program Start Date 2000 State New York Program Type Utility Rebate Program Rebate Amount

440

New York City - Property Tax Abatement for Photovoltaic (PV) Equipment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Tax Abatement for Photovoltaic (PV) Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures New York City - Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures < Back Eligibility Commercial Industrial Institutional Multi-Family Residential Nonprofit Residential Schools Savings Category Solar Buying & Making Electricity Maximum Rebate $62,500 annually or the amount of real property taxes owed during a year Program Info Start Date 08/05/2008 State New York Program Type Property Tax Incentive Rebate Amount Installed from August 5, 2008 to December 31, 2010: 8.75% of system expenditures per year for 4 years (total of 35%); Installed from January 1, 2011 to December 31, 2012: 5% of system expenditures per year for 4 years (total of 20%); Installed from January 1, 2013 to December 31, 2014: 2.5% of system

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Anaheim Public Utilities - PV Buydown Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program Anaheim Public Utilities - PV Buydown Program < Back Eligibility Commercial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Maximum Rebate The incentives are based on the customer's most recent 12-month electricity usage. Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently closed. Rebate reservation period will reopen in January 2014. Provider Anaheim Public Utilities '''''This Program is currently closed. Rebate reservation period will reopen in January 2014. The summary below describes the program as it existed for Fiscal Year 2012 - 2013. See the web site above for more information. ''''' Anaheim Public Utilities offers a rebate to its residential and business

442

PV Cell and Module Calibration Activities at NREL  

SciTech Connect

The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

2005-11-01T23:59:59.000Z

443

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials by  

E-Print Network (OSTI)

Green Solar In 2009 researchers at Berkeley helped shift research into new solar cell materials also be considered. This project would examine the proposed solar cell materials and designs and create­2077). Given the proposed scales of PV adoption, the health and environmental impacts of PV technology should

Iglesia, Enrique

444

Solar powered desalination system  

E-Print Network (OSTI)

Production Requirements Energy Source Natural Gas Nuclear SolarSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power ProductionSolar Desalination Systems…………………………………………………34 Table 1.20: Energy Requirements of Desalination Methods…………………………….35 Table 1.21: PEC Hydrogen Production………………………………………………….

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

445

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network (OSTI)

Roadmaps. Solar photovoltaic energy”, IEA, (Corlet, France,no longer showed any photovoltaic energy conversion. With 1Photovoltaic (PV) cells convert solar energy (photons) into

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

446

Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches  

Energy.gov (U.S. Department of Energy (DOE))

Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques,...

447

The Social Acceptance of School-based Solar Photovoltaic Projects: An Ontario, Canada Case Study.  

E-Print Network (OSTI)

??The installation of solar photovoltaic (solar PV) technology on elementary and secondary schools has been undertaken around the world in an attempt to tie together… (more)

Beckstead, Claire Louise

2008-01-01T23:59:59.000Z

448

PSCAD Modules Representing PV Generator  

SciTech Connect

Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

Muljadi, E.; Singh, M.; Gevorgian, V.

2013-08-01T23:59:59.000Z

449

Western Wind and Solar Integration Study (Fact Sheet)  

SciTech Connect

Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

Not Available

2012-09-01T23:59:59.000Z

450

The Use of Triangular-Shaped PV Arrays to Better Blend into Historical Structures  

Energy.gov (U.S. Department of Energy (DOE))

When considering the installation of a solar PV array on a designated historical structure, placement of each solar panel requires extra attention to aesthetic considerations. If the solar array cannot be installed behind the structure or “hidden” on a roof plane that is not visible from the public street or sidewalk, it can sometimes be installed as an architectural feature that blends into the historical structure. One way to do this is to utilize triangular-shaped PV panels that conform with the building’s roof lines.

451

An Analysis of Residential PV System Price Differences Between the United States and Germany  

E-Print Network (OSTI)

Impact of State Policy on Deployment and Cost of Solar PV: APolicy Journal, available online at: http://www.sciencedirect.com/science/article/pii/S0301421514001116 http://dx.doi.org/10.1016/j.enpol.2014.02.022 This work was supported by the Solar

Seel, Joachim

2014-01-01T23:59:59.000Z

452

Solar variability of four sites across the state of Colorado  

E-Print Network (OSTI)

dispersion of solar energy production sites could mitigatePRODUCTION VS. LOAD Another important consideration of solar energyproduction of 100 grid connected PV systems distributed over the area of Germany. Solar Energy

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

453

SunLan Solar Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Name: SunLan Solar Co., Ltd Place: Jinan, Shandong Province, China Zip: 251601 Sector: Solar Product: China-based PV manufacturer of the complete solar value chain. References:...

454

Solarmarkt Solar Sued Park GmbH | Open Energy Information  

Open Energy Info (EERE)

GmbH Place: Memmingen, Bavaria, Germany Zip: 87700 Sector: Solar Product: Bavaria-based solar PV system installer. References: Solarmarkt Solar Sued Park GmbH1 This article is...

455

Effects of solar photovoltaic panels on roof heat transfer  

E-Print Network (OSTI)

Itron Inc. , CPUC California Solar Initiative 2009 Impact hot  days found by the California Solar Initiative impact solar photovoltaic (PV) panels were conducted in  San Diego, California.  

Dominguez, Anthony; Kleissl, Jan; Luvall, Jeffrey C

2011-01-01T23:59:59.000Z

456

Sonnen Solar Park GmbH Co KG | Open Energy Information  

Open Energy Info (EERE)

search Name: Sonnen Solar Park GmbH & Co KG Place: Germany Sector: Solar Product: 1.75MW solar PV park in Bavaria, developed by Voltwerk. References: Sonnen Solar Park GmbH & Co...

457

Qualified Energy Property Tax Exemption for Projects 250 kW or Less |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Energy Property Tax Exemption for Projects 250 kW or Less Qualified Energy Property Tax Exemption for Projects 250 kW or Less Qualified Energy Property Tax Exemption for Projects 250 kW or Less < Back Eligibility Commercial Utility Savings Category Bioenergy Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Home Weatherization Water Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Ohio Development Services Agency Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility tangible personal property taxes and real property taxes*. Before passage of S.B. 232, a renewable energy facility in Ohio that sold electricity to a third-party

458

Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Qualified Energy Property Tax Exemption for Projects over 250 kW Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu) Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu) < Back Eligibility Commercial Utility Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info Start Date 01/01/2010 State Ohio Program Type Property Tax Incentive Rebate Amount 100% property tax exemption; payment in lieu of tax required Provider Ohio Development Services Agency Ohio's Renewable and Advanced Energy Project Property Tax Exemption, enacted with the passage of Ohio S.B. 232 in the summer of 2010, exempts qualified energy projects in Ohio from public utility tangible personal

459

Economics Comparison of Building Integrated PV in Different Policy Environments: The Cases of New York and Beijing  

Science Journals Connector (OSTI)

U.S. and China are the world’s two biggest CO2...emitters. Solar PV technology could be an alternative that meets energy needs while reducing environmental impacts in both ... (BIPV) application on typical commer...

John Byrne; Xilin Zhang; Aiming Zhou

2009-01-01T23:59:59.000Z

460

Borrego Solar Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Systems Inc Place: El Cajon, California Zip: 92020 Product: US-based installer of PV systems for commercial and public projects. References: Borrego Solar Systems Inc1 This...

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Utility Scale Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Scale Solar Inc Place: Palo Alto, California Zip: 94301 Product: California-based PV tracker maker. References: Utility Scale Solar Inc1 This article is a stub. You can help...

462

Vanguard Solar Inc | Open Energy Information  

Open Energy Info (EERE)

Vanguard Solar Inc Jump to: navigation, search Name: Vanguard Solar Inc Place: Sudbury, Massachusetts Zip: 01776-3003 Product: Massachusetts-based thin-film PV start up focused on...

463

Policy target, feed-in tariff, and technological progress of PV in Taiwan  

Science Journals Connector (OSTI)

Abstract It is widely recognized that solar energy, a major renewable energy source, can strengthen a country?s energy security and reduce CO2 emissions. For this reason, Taiwan aims to develop its solar power industry by promoting photovoltaic (PV) applications. To meet its PV installation targets, the government is considering adopting feed-in tariffs (FITs), offering subsidies on capital expenditures, and funding research and development. At present, there is a wide gap between the country?s installed capacity and the long-term government targets. Therefore, this study constructs a PV supply curve to demonstrate the potential contribution of PV power to Taiwan?s electricity requirements. Based on this curve, an assessment tool is developed to show the relationship between PV installed capacity and energy cost reductions under a FIT scheme. Using this assessment model, policymakers can simulate the adoption of PV projects at the county level and anticipate possible challenges. Furthermore, the model will also measure the level of cost reductions required for PV technology to reach specific targets under the FIT scheme.

Jin-Xu Lin; Pei-Ling Wen; Chun-Chiang Feng; Shih-Mo Lin; Fu-Kuang Ko

2014-01-01T23:59:59.000Z

464

NREL Mesa Top PV System | Open Energy Information  

Open Energy Info (EERE)

NREL Mesa Top PV System NREL Mesa Top PV System Jump to: navigation, search Name NREL Mesa Top PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable Energy Laboratory Address 15500 Denver West Parkway Location Golden, CO Coordinates 39.744550202°, -105.174608231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.744550202,"lon":-105.174608231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

466

To Own or Lease Solar: Understanding Commercial Retailers Decisions...  

NLE Websites -- All DOE Office Websites (Extended Search)

had installed approximately 11% of all distributed U.S. PV capacity (SEIA and Vote Solar 2013; SEIA and GTM Research 2014). This likely results from several factors:...

467

Concentrator Solar Cell Modules and Systems Developed in Japan  

Science Journals Connector (OSTI)

Dissemination of photovoltaic (PV) systems has advanced, and solar cell module production has also significantly increased in ... Japan organized by the New Energy and Industrial Technology Development Organizati...

2007-01-01T23:59:59.000Z

468

New Ulm Public Utilities- Solar Electric Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

New Ulm Public Utilities provides solar photovoltaic (PV) rebates for residential, commercial, and industrial customers. Rebates are for $1 per nameplate watt, and customers must sign a net...

469

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network (OSTI)

World Conference on Photovoltaic Energy Conversion, 2003,Effects of Residential Photovoltaic Energy Systems on Homeand renewable energy technologies, solar photovoltaic (PV)

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

470

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

for Improvement of Photovoltaic Solar Energy Converters,”drastic improvement in photovoltaic (PV) energy conversionwith photovoltaic devices to improve the energy conversion

Shao, Qinghui

2009-01-01T23:59:59.000Z

471

Advanced Solar Electric Inc ASE | Open Energy Information  

Open Energy Info (EERE)

Inc ASE Jump to: navigation, search Name: Advanced Solar Electric Inc (ASE) Place: Thousand Oaks, California Zip: 91320 Product: US-based PV system installer. References: Advanced...

472

Research Program - Center for Solar and Thermal Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

473

Proceedings of the 1998 American Solar Energy Society annual conference  

SciTech Connect

The 91 papers in these proceedings are arranged under the following topical sections: Renewable energy in Latin America; PV research and development; PV systems and applications; PV array performance; Wind energy; Grid connection and net metering; PV utility issues; Rural and remote electrification; Concentrators and thermal power; Solar water heating systems; Solar water heating programs and evaluation; New concepts in collectors; Water treatment and distillation; Cooling and refrigeration; Cooking and drying; Solar chemistry and alternative fuels; Transportation; Measurement of solar radiation; Government and institutional programs; and Government issues of policy and finance. Papers have been processed separately for inclusion on the data base.

Campbell-Howe, R.; Cortez, T.; Wilkins-Crowder, B. (eds.)

1998-01-01T23:59:59.000Z

474

Sandia National Laboratories: character-izing solar-power-plant...  

NLE Websites -- All DOE Office Websites (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

475

Solar variability of four sites across the state of Colorado  

E-Print Network (OSTI)

solar, and renewable electricity generators: Technical barrier or rhetorical excuse? Utilities Policysolar photovoltaics (PV) in traditional electric power systems. Energy Policy

Lave, Matthew; Kleissl, Jan

2010-01-01T23:59:59.000Z

476

Techno-economic Appraisal of Concentrating Solar Power Systems (CSP).  

E-Print Network (OSTI)

?? The diffusion of Concentrating Solar Power Systems (CSP) systems is currently taking place at a much slower pace than photovoltaic (PV) power systems. This… (more)

Gasti, Maria

2013-01-01T23:59:59.000Z

477

Clark Public Utilities - Solar Energy Equipment Loan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Equipment Loan Energy Equipment Loan Clark Public Utilities - Solar Energy Equipment Loan < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Swimming Pool Heaters Water Heating Maximum Rebate Solar PV: $30,000 Solar Pool Heaters and Solar Water Heaters: $10,000 Program Info State District of Columbia Program Type Utility Loan Program Rebate Amount Solar PV: up to $30,000 Solar Pool Heaters and Solar Water Heaters: up to $10,000 Provider Clark PUD Clark Public Utilities offers financing available to its customers for the purchase and installation of residential solar equipment. Loans up to $10,000 are available for solar pool heaters and solar water heaters and up to $30,000 for photovoltaic systems. Solar water heater loans, solar pool heater loans and solar PV loans under

478

Analysis and Design of Smart PV Module  

E-Print Network (OSTI)

This thesis explores the design of a smart photovoltaic (PV) module- a PV module in which PV cells in close proximity are electrically grouped to form a pixel and are connected to dc-dc converter blocks which reside embedded in the back pane...

Mazumdar, Poornima

2012-12-10T23:59:59.000Z

479

Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid  

E-Print Network (OSTI)

a) thermal storage 1 absorption chiller solar thermal flowSolar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (solar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (

Lasseter, Robert

2010-01-01T23:59:59.000Z

480

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector ( kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kw solar pv" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

capture solar radiation and convert it into thermal energy.solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (solar thermal collector (kW) PV (kW) electric storage (kWh) flow battery - energy (

Stadler, Michael

2009-01-01T23:59:59.000Z

482

Solar BG | Open Energy Information  

Open Energy Info (EERE)

BG - 1784 Sector: Wind energy Product: Bulgarian based company investing into hybrid wind-PV plants. References: Solar BG1 This article is a stub. You can help OpenEI by...

483

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

s largest PV incentive program (Xcel Energy’s Solar Reward’s25% by 2025* MN: 25% by 2025 (Xcel: 30% by 2020) VT: (1) REpartnership between SunEdison and Xcel Energy. – Courtesy of

Price, S.

2010-01-01T23:59:59.000Z

484

THE POTENTIAL OF SOLAR ELECTRIC  

E-Print Network (OSTI)

.5 Energy and the Costs of Production.............................................................5 2 and Local Energy Benefits of PV.......................................15 5. CONCLUSIONS AND DISCUSSIONTHE POTENTIAL OF SOLAR ELECTRIC APPLICATIONS FOR DELAWARE'S POULTRY FARMS FINAL REPORT

Delaware, University of

485

Sensitivity of Concentrating Solar Power Trough Performance, Cost and Financing with Solar Advisor Model  

SciTech Connect

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM) was developed to support the federal R&D community and the solar industry. This model, developed by staff at NREL and Sandia National Laboratory, is able to model the costs, finances, and performance of concentrating solar power and photovoltaics (PV). Currently, parabolic troughs and concentrating PV are the two concentrating technologies modeled within the SAM environment.

Blair, N.; Mehos, M.; Christensen, C.

2008-03-01T23:59:59.000Z

486

The Impact of City-level Permitting Processes on Residential Photovoltaic Installation Prices and Development Times: An Empirical Analysis of Solar Systems in California Cities  

E-Print Network (OSTI)

Doing and the Optimal Solar Policy in California. ” Energysolar technologies - A techno-economics assessment and its policycompetitive solar PV power. ” Energy Policy, 55: 117–127.

Wiser, Ryan

2014-01-01T23:59:59.000Z

487

Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems  

SciTech Connect

This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

Schauder, C.

2014-03-01T23:59:59.000Z

488

City of Gridley Utilities - PV Buy Down Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gridley Utilities - PV Buy Down Program Gridley Utilities - PV Buy Down Program City of Gridley Utilities - PV Buy Down Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Program is currently on hold Program Info State California Program Type Utility Rebate Program Rebate Amount Program is currently on hold Provider City of Gridley Utilities '''''Funding for this program is currently exhausted. The summary below describes incentives as they were in 2010 and 2011. Incentive levels for the next funding round are still unknown.''''' City of Gridley is providing rebates of $2.80/W for their customers installing PV systems. Individual rebates are limited to $5,600 per system, and the utility will award a total of $41,700 in rebates per year. Systems

489

City of Shasta Lake Electric Utility - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $9,050 Commercial: $192,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $1.81/W Commercial: $1.92/W Provider City of Shasta Lake Electric Utility '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. ''''' City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. For fiscal year

490

Shaking Up the Residential PV Market: Implications of Recent Changes to the  

NLE Websites -- All DOE Office Websites (Extended Search)

Shaking Up the Residential PV Market: Implications of Recent Changes to the Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC Title Shaking Up the Residential PV Market: Implications of Recent Changes to the ITC Publication Type Case Study Year of Publication 2008 Authors Bolinger, Mark, Galen L. Barbose, and Ryan H. Wiser Secondary Title Case Studies of State Support for Renewable Energy Publisher LBNL Place Published Berkeley Pagination 12 Date Published 11/2008 Abstract In early 2006, Berkeley Lab published an LBNL/CESA case study that examined the financial impact of EPAct 2005's solar tax credits on PV system owners, in light of the $2,000 cap on the residential credit, as well as the fact that most PV systems in the U.S. also receive cash incentives from state-, local-, or utility-administered PV programs, and that these cash incentives may reduce the value of federal tax credits in certain situations. That case study was subsequently revised in February 2007 to reflect new Internal Revenue Service (IRS) guidance. The findings of that case study, which are briefly recapped in the next section, remained relevant up until October 2008, when the Energy Improvement and Extension Act of 2008 extended both solar credits for an unprecedented eight years, removed the $2,000 cap on the residential credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax (AMT). These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely to spur significant growth in residential, commercial, and utility-scale PV installations in the years ahead. In light of these substantial changes to the solar ITC, this report takes a fresh look at the value of these revised credits, focusing specifically on the Section 25D residential credit. After first setting the stage by briefly reviewing our previous findings, the document proceeds to cover four specific areas in which the removal of the $2,000 cap on the residential ITC will have significant implications for PV program administrators, PV system owners, and the PV industry that go beyond the obvious market growth potential created by these more-lucrative federal incentives. These four areas include:

491

Renewable Energy Concepts Solar Inc REC Solar | Open Energy Information  

Open Energy Info (EERE)

Concepts Solar Inc REC Solar Concepts Solar Inc REC Solar Jump to: navigation, search Name Renewable Energy Concepts Solar Inc (REC Solar) Place San Luis Obispo, California Zip 93401 Sector Solar Product US-based solar system installer, specialising in grid-tied installation and servicing mainly California, Colorado, and New Jersey. Not in any way affiliated with Norwegian integrated PV manufacturer REC, which has a division called REC Solar. References Renewable Energy Concepts Solar Inc (REC Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Concepts Solar Inc (REC Solar) is a company located in San Luis Obispo, California . References ↑ "Renewable Energy Concepts Solar Inc (REC Solar)"

492

Definition: Solar radiation | Open Energy Information  

Open Energy Info (EERE)

radiation radiation Jump to: navigation, search Dictionary.png Solar radiation Electromagnetic energy emitted from the sun.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Solar radiant energy impinging on the earth in any given region or area. Also Known As Solar energy, Solar resource Related Terms Solar energy, Solar cell, Photovoltaics, PV array, PV module, Passive solar, Passive solar heating, energy, bioenergy References ↑ http://www.eere.energy.gov/basics/renewable_energy/solar_resources.html ↑ http://www1.eere.energy.gov/solar/solar_glossary.html#S ↑ http://rredc.nrel.gov/solar/glossary/gloss_s.html Retrieved f LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rom "http://en.openei.org/w/index.php?title=Definition:Solar_radiation&oldid=502602"

493

Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices  

SciTech Connect

Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

None

2012-01-25T23:59:59.000Z

494

Solar Trailer Group EGDSN 297 D  

E-Print Network (OSTI)

Solar Trailer Group EGDSN 297 D Project Recap The objective of the Solar Trailer team was to design and implement a solar PV system for the ToolMaster Trailer HAZ-16 that is used by the Center for Sustainability was constructed. Finally in an all night effort to complete the project the racking and solar panels were

Demirel, Melik C.

495

Solar Instructor Series A PROJECT BY  

E-Print Network (OSTI)

9. NEC ® 2011 Code Updates PV 10. Integra ng Solar into Exis ng Curricula 11. How to Land YourSolar Instructor Series A PROJECT BY: FUNDING PROVIDED BY: The NC Solar Center at NC State University is the Southern Mid Atlan c Provider of Solar Instructor Training (SMAPSIT) a Train

496

Silicon solar cells: state of the art  

Science Journals Connector (OSTI)

...Roberto Amendolia and Can Li Silicon solar cells: state of the art Martin A. Green...majority of photovoltaic (PV) solar cells produced to date have been based...this point are also explored. solar cells|silicon solar cells|silicon...

2013-01-01T23:59:59.000Z

497

Shell Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Solar Jump to: navigation, search Name Shell Solar Place The Hague, Netherlands Zip 2501 AN Sector Solar Product Shell Solar is developing non-crystalline PV technology, notably CIS, following the sale of nearly all its crystalline silicon PV operations to SolarWorld in early 2006. References Shell Solar[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Uses NREL Research Facilities Partnering Center within NREL National Center for Photovoltaics Partnership Year 2006 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Shell Solar is a company located in The Hague, Netherlands . References ↑ "Shell Solar" Retrieved from

498

Solar Congeneration for Commercial Rooftops  

E-Print Network (OSTI)

Solar Cogeneration for Commercial Rooftops Arun Gupta, PhD agupta@skyentechnologies.com ESL-KT-13-12-36 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Introduction What is Solar Cogeneration? ? Fun fact...: Typical photovoltaic (PV) solar panels waste roughly 85% of their energy as heat ? Q: Why not capture that heat and use it to heat water? What is Concentrating Solar? ? Using mirrors or lenses to concentrate sunlight ? Why? Less PV material, higher...

Gupta, A.

2013-01-01T23:59:59.000Z

499

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

LSE considered a solar chimney, and another LSE considered aTrough Trough Power tower Solar chimney Natural gas firingcredit for PV and a solar chimney. Capacity credit for APS

Mills, Andrew D.

2014-01-01T23:59:59.000Z

500

"EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV"  

U.S. Energy Information Administration (EIA) Indexed Site

Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" Regional cost adjustments for technologies modeled by NEMS by Electric Market Modul (EMM) region 10,11" "EMM Region","PC","IGCC","PC","Conv. CT","Adv. CT","Conv. CC","Adv. CC","Adv. CC w/CCS","Fuel Cell","Nuclear","Biomass","MSW","On-shore Wind","Off-shore Wind","Solar Thermal","Solar PV" ,,,"w/CCS" "1 (ERCT)",0.91,0.92,0.92,0.93,0.95,0.91,0.92,0.9,0.96,0.96,0.93,0.93,0.95,0.92,0.86,0.87 "2 (FRCC)",0.92,0.93,0.94,0.93,0.93,0.91,0.92,0.92,0.97,0.97,0.94,0.94,"N/A","N/A",0.89,0.9 "3 (MROE)",1.01,1.01,0.99,0.99,1.01,0.99,0.99,0.97,0.99,1.01,0.99,0.98,0.99,0.97,"N/A",0.96