Sample records for kw peak pulse

  1. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect (OSTI)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China) [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)] [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15T23:59:59.000Z

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  2. A wedged-peak-pulse design with medium fuel adiabat for indirect-drive fusion

    SciTech Connect (OSTI)

    Fan, Zhengfeng; Ren, Guoli; Liu, Bin; Wu, Junfeng [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); He, X. T.; Liu, Jie; Wang, L. F.; Ye, Wenhua [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2014-10-15T23:59:59.000Z

    In the present letter, we propose the design of a wedged-peak pulse at the late stage of indirect drive. Our simulations of one- and two-dimensional radiation hydrodynamics show that the wedged-peak-pulse design can raise the drive pressure and capsule implosion velocity without significantly raising the fuel adiabat. It can thus balance the energy requirement and hydrodynamic instability control at both ablator/fuel interface and hot-spot/fuel interface. This investigation has implication in the fusion ignition at current mega-joule laser facilities.

  3. Peak Doubling in SPDC Coincidence Spectra with a Short-Pulse Pump

    E-Print Network [OSTI]

    Mikhail V. Fedorov; Julia M. Mikhailova; Peter A. Volkov

    2011-12-05T23:59:59.000Z

    We describe a double-peak structure of the coincidence spectrum of biphoton states in the process of spontaneous parametric down-conversion with a pump having the form of short pulses. The effect is shown to arise owing to the obligatory symmetry of bihoton wave functions, as wave functions describing states of two bozons obeying the Bose-Einstein statistics. Parameters of the peaks are found and conditions necessary for experimental observation of the effect are determined.

  4. A low-power, CMOS peak detect and hold circuit for nuclear pulse spectroscopy

    SciTech Connect (OSTI)

    Ericson, M.N.; Simpson, M.L.; Britton, C.L. [Oak Ridge National Lab., TN (United States); Allen, M.D. [Tennessee Univ., Knoxville, TN (United States); Kroeger, R.A. [Naval Research Lab., Washington, DC (United States); Inderhees, S.E. [Alexandria, VA (United States)

    1994-12-31T23:59:59.000Z

    A low-power CMOS peak detecting track and hold circuit optimized for nuclear pulse spectroscopy is presented. The circuit topology eliminates the need for a rectifying diode, reducing the effect of charge injection into the hold capacitor, incorporates a linear gate at the input to prevent pulse pileup, and uses dynamic bias control that minimizes both pedestal and droop. Both positive-going and negative-going pulses are accommodated using a complementary set of track and hold circuits. Full characterization of the design fabricated in 1.2{mu}m CMOS including dynamic range, integral nonlinearity, droop rate, pedestal, and power measurements is presented. Additionally, analysis and design approaches for optimization of operational characteristics are discussed.

  5. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01T23:59:59.000Z

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  6. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. [Los Alamos National Lab., NM (United States); Grippe, J.M.; Marrufo, O. [Superconducting Super Collider Lab., Dallas, TX (United States)

    1993-05-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 {mu}s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  7. Design and test results of a 600-kW tetrode amplifier for the Superconducting Super Collider

    SciTech Connect (OSTI)

    Rees, D.E.; Brittain, D.L. (Los Alamos National Lab., NM (United States)); Grippe, J.M.; Marrufo, O. (Superconducting Super Collider Lab., Dallas, TX (United States))

    1993-01-01T23:59:59.000Z

    This paper describes the design and testing of a pulsed 600-kW tetrode amplifier that will be used to drive a radiofrequency quadrupole (RFQ) for the Superconducting Super Collider (SSC). Three stages of amplification provide a nominal gain of 77 dB and peak output power of 600 kW. The amplifier is operated at a pulse width of 100 [mu]s and a repetition frequency of 10 Hz. This paper presents the rf design and calculated operating conditions for the amplifier. Details of the electrical design are presented, along with test results.

  8. Generation of high peak power pulse using 2 stage erbium-doped fiber amplifier

    E-Print Network [OSTI]

    Lee, Kyung-Woo

    2000-01-01T23:59:59.000Z

    This thesis presents the results obtained from generation of high repetition rate, high power output pulse using an erbium-doped fiber amplifier (EDFA). Two stage amplification was employed. The first stage setup used 980nm pump laser to pump erbium...

  9. 50 KW Stirling engine

    SciTech Connect (OSTI)

    Ishizaki, Y.; Haramura; Kondoh, T.; Yamaguchi, K.; Yamaguchi, S.

    1982-08-01T23:59:59.000Z

    This paper presents an outline of the 50KW Stirling engine (4-189D.A.), called ''MT79'', as well as of its performance which was built by AISIN in 1980. The engine features a newly developed swash plate mechanism with floating plates. The engine, which uses Helium, has been successfully tested for over 1,000 hours, demonstrating a maximum horsepower of 52KW (71PS) /2,500rpm, maximum efficiency of 31% /700rpm, and maximum torque of 30kgf-m /500rpm. The performance of the engine is presented with these experimental results: Engine power, Torque, and Efficiency vs. Revolution; Heat balance; P-V diagram of expansion space and compression space; Noise level. The engine demonstrates the characteristics of a higher torque and a higher efficiency at lower speeds, and with low noise. Therefore, it was found that in a specific area, the engine shows characteristics surpassing those found in internal combustion engines.

  10. Monolithically Integrated Selectable Repetition-Rate Laser Diode Source of Picosecond Optical Pulses

    E-Print Network [OSTI]

    Guo, Xuhan; Olle, Vojtech; Quarterman, Adrian; Wonfor, Adrian; Penty, Richard; White, Ian

    2014-06-15T23:59:59.000Z

    with a record high peak power of 2.5 kW, repetition rate of 330 MHz from a distributed passively mode locked MOPA device followed by an optical isolator, a tapered amplifier and a linear pulse compressor. Ding et al. [12] have reported picosecond...

  11. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power...

  12. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)...

  13. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW...

  14. SOFCSOFC (10kW(10kW )) Stack Stack ( )

    E-Print Network [OSTI]

    Hong, Deog Ki

    & Mitsubishi (band ) 150 kW module Rolls-Royce () 100kW SOFC TOTO, Kyushu () 20kW stack wet process #12;2 SOFC () Mitsubishi Heavy Ind. § SIS § 250kW § 55% Rolls-Royce § SIS § 250kW (micro GT-SOFC) § 53% (125 kW ) Tokyo Gas § SIS § kW (5kW ) / #12

  15. CORRELATION BETWEEN THE ISOTROPIC ENERGY AND THE PEAK ENERGY AT ZERO FLUENCE FOR THE INDIVIDUAL PULSES OF GAMMA-RAY BURSTS: TOWARD A UNIVERSAL PHYSICAL CORRELATION FOR THE PROMPT EMISSION

    SciTech Connect (OSTI)

    Basak, Rupal; Rao, A. R., E-mail: rupalb@tifr.res.in, E-mail: arrao@tifr.res.in [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2012-04-20T23:59:59.000Z

    We find a strong correlation between the peak energy at zero fluence (E{sub peak,0}) and the isotropic energy (E{sub {gamma},iso}) of the 22 pulses of nine gamma-ray bursts (GRBs) detected by the Fermi satellite. The correlation holds for the individual pulses of each GRB, which shows the reality of the correlation. The derived correlation (Spearman correlation coefficient, r, which is 0.96) is much stronger compared to the correlations using E{sub peak} (in place of E{sub peak,0}) determined from the time-integrated spectrum (r = 0.8), the time-resolved spectrum without accounting for broad pulse structures (r = 0.37), or the pulsewise spectrum (r = 0.89). Though the improvement in the E{sub peak}-E{sub {gamma},iso} relation (the Amati relation) for a pulsewise analysis is known earlier, this is the first time a parameter derived from a joint spectral and timing fit to the data is shown to improve the correlation. We suggest that E{sub peak,0}, rather than E{sub peak}, is intrinsic to a GRB pulse and a natural choice as the parameter in pulsewise correlation studies.

  16. The Kauffman Constraint Coefficients Kw

    E-Print Network [OSTI]

    Kenneth A. Griggs

    2011-10-27T23:59:59.000Z

    The Kauffman Constraint Coefficients Kw and their corresponding Elementals Ew are presented as solutions to the construction of the (beta)-derivative of Kauffman's Theta-function. Additionally, a new recursion relation is provided to construct the (beta)-derivative of Theta that requires only operational substitutions and summations; this algorithmically simplifies Kauffman's original technique. To demonstrate Kw, we generate the 30 Kw Coefficients from the corresponding Elementals Ew for the (9)-derivative of Theta and find that our results are in complete agreement with Kauffman's Mathematica\\texttrademark solutions. We further present a calculation of two coefficients for the (12)-derivative of Theta and invite readers to use Mathematica\\texttrademark or any other means to calculate and verify our results. Finally, we present a challenging calculation for a coefficient of the (40)-derivative of Theta; owing to the vast numbers of permutations involved, a Mathematica\\texttrademark approach may require substantial computer resources to obtain the solution in a reasonable time.

  17. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MANUFACTURING COST ANALYSIS OF 1 KW AND 5 KW SOLID OXIDE FUEL CELL (SOFC) FOR AUXILLIARY POWER APPLICATIONS Prepared by: BATTELLE Battelle Memorial Institute 505 King Avenue...

  18. JOURNAL DE PHYSIQUE Colloque C9, suppt6ment au nolZ, Tome 41, novembre 1980, page cg-351 A REPETITIVELY PULSED CARBON DIOXIDE LASER WITH MEAN POWER OUTPUT IN EXCESS OF 3 0 kW

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract.- A pulsed electron beam sustained atmospheric pressure carbon dioxide laser with an active volume of 17 l i t r e s has been incorporated i n a closed cycle gas recirculation system. Gas flow and e l e window design, and the mechanical s t a b i l i t y of the optical cavity. The effect of gas purity, gas

  19. Application of Thermal Storage, Peak Shaving and Cogeneration for Hospitals

    E-Print Network [OSTI]

    McClure, J. D.; Estes, J. M.; Estes, M. C.

    1987-01-01T23:59:59.000Z

    Energy costs of hospitals can be managed by employing various strategies to control peak electrical demand (KW) while at the same time providing additional security of operation in the event that an equipment failure or a disruption of power from...

  20. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    E-Print Network [OSTI]

    Temkin, Richard J.

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE [subscript 06] mode of an overmoded quasi-optical ...

  1. Pulse stretcher

    DOE Patents [OSTI]

    Horton, J.A.

    1994-05-03T23:59:59.000Z

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  2. Oil Peak or Panic?

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

  3. MEDIUM POWER 352 MHZ SOLID STATE PULSED RF AMPLIFIERS FOR THE CERN LINAC4 PROJECT

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MEDIUM POWER 352 MHZ SOLID STATE PULSED RF AMPLIFIERS FOR THE CERN LINAC4 PROJECT J. Broere, J in the CERN Linac4. The amplifiers are water-cooled and can provide up to 33 kW pulsed RF Power, 1.5 ms pulse RF Power for the debuncher cavity. The concept is based on 1.2 kW RF power modules using the latest 6

  4. WECC and Peak Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WECC and Peak Update Transmission B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Pre-decisional. For Discussion Purposes Only. WECC and Peak Background In the...

  5. Peak Power Reduction Strategies for the Lighting Systems in Government Buildings

    E-Print Network [OSTI]

    Al-Nakib, D.; Al-Mulla, A. A.; Maheshwari, G. P.

    2010-01-01T23:59:59.000Z

    fluorescent lamps with ECGs, CFLs, incandescent lamps and light emitting diodes (LEDs). The building has a peak load of around 2900 kW and it is mainly shared by A/C and lighting. Lighting system is controlled by DELMATIC software which controls...

  6. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09T23:59:59.000Z

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  7. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, David A. (Oak Ridge, TN)

    1983-01-01T23:59:59.000Z

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  8. Electron density measurements in a pulse-repetitive microwave discharge in air

    SciTech Connect (OSTI)

    Nikolic, M.; Popovic, S.; Vuskovic, L. [Department of Physics, Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529 (United States); Herring, G. C.; Exton, R. J. [NASA Langley Research Center, Hampton, Virginia 23681 (United States)

    2011-12-01T23:59:59.000Z

    We have developed a technique for absolute measurements of electron density in pulse-repetitive microwave discharges in air. The technique is based on the time-resolved absolute intensity of a nitrogen spectral band belonging to the Second Positive System, the kinetic model and the detailed particle balance of the N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) state. This new approach bridges the gap between two existing electron density measurement methods (Langmuir probe and Stark broadening). The electron density is obtained from the time-dependent rate equation for the population of N{sub 2}C{sup 3}{Pi}{sub u} ({nu} = 0) using recorded waveforms of the absolute C{sup 3}{Pi}{sub u}{yields}B{sup 3}{Pi}{sub g} (0-0) band intensity, the forward and reflected microwave power density. Measured electron density waveforms using numerical and approximated analytical methods are presented for the case of pulse repetitive planar surface microwave discharge at the aperture of a horn antenna covered with alumina ceramic plate. The discharge was generated in air at 11.8 Torr with a X-band microwave generator using 3.5 {mu}s microwave pulses at peak power of 210 kW. In this case, we were able to time resolve the electron density within a single 3.5 {mu}s pulse. We obtained (9.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the peak and (5.0 {+-} 0.6) x 10{sup 13} cm{sup -3} for the pulse-average electron density. The technique presents a convenient, non-intrusive diagnostic method for local, time-defined measurements of electron density in short duration discharges near atmospheric pressures.

  9. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  10. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  11. Idaho_GrousePeak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT | NationalMentoringWindMiller204Grouse Peak

  12. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Todd Romine; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Greg Rush

    2003-08-01T23:59:59.000Z

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  13. 10 kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; Cris DeBellis; Rich Goettler; Kurt Kneidel; Milind Kantak; Steve Kung; Tom Morris; Greg Rush

    2004-02-01T23:59:59.000Z

    The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop a manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the manufacturing cost to a level of $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to provide a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated into the SECA program to develop a mass-producible design at a factory cost of $400/kW with full cross-functional support for unrestricted commercial sales. The path to market for new technology products in the Cummins system involves two processes. The first is called Product Preceding Technology, or PPT. The PPT process provides a methodology for exploring potentially attractive technologies and developing them to the point that they can be reliably scheduled into a new product development program with a manageable risk to the product introduction schedule or product quality. Once a technology has passed the PPT gate, it is available to be incorporated into a Value Package Introduction (VPI) Program. VPI is the process that coordinates the cross-functional development of a fully supported product. The VPI Program is designed to synchronize efforts in engineering, supply, manufacturing, marketing, finance, and product support areas in such a way that the product, when introduced to the market, represents the maximum value to the customer.

  14. Phase Modulator Programming to Get Flat Pulses with Desired Length and Power from the CTF3 Pulse Compressors

    E-Print Network [OSTI]

    Shaker, Seyd Hamed; Skowronski, Piotr; Syratchev, Igor; Tecker, Frank

    2010-01-01T23:59:59.000Z

    The pulse compressor is located after the klystron to increase the power peak by storing the energy at the beginning and releasing it near the end of klystron output pulse. In the CTF3 pulse compressors a doubling of the peak power is achieved according to our needs and the machine parameters. The magnitude of peak power, pulse length and flatness can be controlled by using a phase modulator for the input signal of klystrons. A C++ code is written to simulate the pulse compressor behaviour according to the klystron output pulse power. By manually changing the related parameters in the code for the best match, the quality factor and the filling time of pulse compressor cavities can be determined. This code also calculates and sends the suitable phase to the phase modulator according to the klystron output pulse power and the desired pulse length and peak power

  15. A compact 10 kW, 476 MHz solid state radio frequency amplifier for pre-buncher cavity of free electron laser injector linear accelerator

    SciTech Connect (OSTI)

    Mohania, Praveen; Mahawar, Ashish; Shrivastava, Purushottam; Gupta, P. D. [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)] [Raja Rammana Centre for Advanced Technology (RRCAT), Indore 452013 (India)

    2013-09-15T23:59:59.000Z

    A 10 kW, 476 MHz, 0.1% duty cycle solid state RF amplifier system for driving sub-harmonic, pre-buncher cavity of IR-FEL injector LINAC, has been developed at RRCAT. The 10 kW power is achieved by combining output of eight 1400 W amplifier modules using 8-way planar corporate combiner. The solid state amplifier modules have been developed using 50 V RF LDMOS transistors which although meant for push-pull operation are being used in single ended configuration with matching circuit developed on a thin (25 mils), high dielectric constant (9.7), low loss microwave laminate with an aim to have a compact structure. Ease of fabrication, modularity, small size, and low cost are the important features of this design which could be used as a template for low duty cycle medium to high pulsed power UHF amplifier system.

  16. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01T23:59:59.000Z

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  17. 10kW SOFC POWER SYSTEM COMMERCIALIZATION

    SciTech Connect (OSTI)

    Dan Norrick; Charles Vesely; Todd Romine; Brad Palmer; Greg Rush; Eric Barringer; Milind Kantak; Cris DeBellis

    2003-02-01T23:59:59.000Z

    Participants in the SECA 10 kW SOFC Power System Commercialization project include Cummins Power Generation (CPG), the power generation arm of Cummins, Inc., SOFCo-EFS Holdings, LLC (formerly McDermott Technology, Inc.), the fuel cell and fuel processing research and development arm of McDermott International Inc., M/A-COM, the Multi-Layer Ceramics (MLC) processing and manufacturing arm of Tyco Electronics, and Ceramatec, a materials technology development company. CPG functions in the role of prime contractor and system integrator. SOFCo-EFS is responsible for the design and development of the hot box assembly, including the SOFC stack(s), heat exchanger(s), manifolding, and fuel reformer. M/A-COM and SOFCo-EFS are jointly responsible for development of the MLC manufacturing processes, and Ceramatec provides technical support in materials development. In October 2002, McDermott announced its intention to cease operations at McDermott Technology, Inc. (MTI) as of December 31, 2002. This decision was precipitated by several factors, including the announced tentative settlement of the B&W Bankruptcy which would result in all of the equity of B&W being conveyed to a trust, thereby eliminating McDermott's interest in the company, and the desire to create a separate fuel cell entity to facilitate its commercial development. The new fuel cell entity is named SOFCo-EFS Holdings, LLC. All of McDermott's solid oxide fuel cell and fuel processing work will be conducted by SOFCo-EFS, using personnel previously engaged in that work. SOFCo-EFS will continue to be located in the Alliance, OH facility and use the existing infrastructure and test facilities for its activities. While the effort needed to accomplish this reorganization has detracted somewhat from SOFCo's efficiency during the fourth quarter, we believe the improved focus on the core fuel cell and fuel reformation resulting from the reorganization will have a positive impact on the SECA project in the long run. The program is organized into three developmental periods. In Phase 1 the team will develop and demonstrate a proof-of-concept prototype design and develop the manufacturing plan to substantiate potential producibility at a target cost level of $800/kW factory manufacturing cost. Phase 2 will further develop the design and reduce the projected manufacturing cost to $600 kW. Depending on an assessment of the maturity of the technology at the end of Phase 1, Phase 2 may be structured and supplemented to develop a limited production capability. Finally, in Phase 3, a full Value Package Introduction (VPI) Program will be integrated with the SECA program to develop a mass-producible design, with a factory manufacturing cost of $400/kW, and with full cross-functional support for unrestricted commercial sales.

  18. Peak Oil, Peak Energy Mother Nature Bats Last

    E-Print Network [OSTI]

    Sereno, Martin

    Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) #12;Oil is the Lifeblood of Industrial Civilization · 80 million barrels/day, 1000 barrels/sec, 1 cubicPods to the roads themselves) · we're not "addicted to oil" -- that's like saying a person has an "addiction

  19. 225-kW Dynamometer for Testing Small Wind Turbine Components (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    This fact sheet describes the capabilities, operating envelope, loads and components of the 225-kW dynamometer at the NWTC.

  20. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    Comanche Peak" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  1. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19T23:59:59.000Z

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  2. ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF*

    E-Print Network [OSTI]

    ACHIEVING 800 KW CW BEAM POWER AND CONTINUING ENERGY IMPROVEMENTS IN CEBAF* C. E. Reece Thomas, CEBAF at Jefferson Lab has demonstrated its full capacity of sustained 800 kW beam power. All systems the energy reach of CEBAF, we began a program of processing all installed cryomodules. This processing has

  3. WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

  4. 10 kW SOFC Power System Commercialization

    SciTech Connect (OSTI)

    Dan Norrick; Brad Palmer; Charles Vesely; Eric Barringer; John Budge; Cris DeBellis; Rich Goettler; Milind Kantak; Steve Kung; Zhien Liu; Tom Morris; Keith Rackers; Gary Roman; Greg Rush; Liang Xue

    2006-02-01T23:59:59.000Z

    Cummins Power Generation (CPG) as the prime contractor and SOFCo-EFS Holdings LLC (SOFCo), as their subcontractor, teamed under the Solid-state Energy Conversion Alliance (SECA) program to develop 3-10kW solid oxide fuel cell systems for use in recreational vehicles, commercial work trucks and stand-by telecommunications applications. The program goal is demonstration of power systems that meet commercial performance requirements and can be produced in volume at a cost of $400/kW. This report summarizes the team's activities during the seventh six-month period (July-December 2005) of the four-year Phase I effort. While there has been significant progress in the development of the SOFC subsystems that can support meeting the program Phase 1 goals, the SOFCo ceramic stack technology has progressed significantly slower than plan and CPG consider it unlikely that the systemic problems encountered will be overcome in the near term. SOFCo has struggled with a series of problems associated with inconsistent manufacturing, inadequate cell performance, and the achievement of consistent, durable, low resistance inter-cell connections with reduced or no precious materials. A myriad of factors have contributed to these problems, but the fact remains that progress has not kept pace with the SECA program. A contributing factor in SOFCo's technical difficulties is attributed to their significantly below plan industry cost share spending over the last four years. This has resulted in a much smaller SOFC stack development program, has contributed to SOFCo not being able to aggressively resolve core issues, and clouds their ability to continue into a commercialization phase. In view of this situation, CPG has conducted an independent assessment of the state-of-the-art in planar SOFC's stacks and have concluded that alternative technology exists offering the specific performance, durability, and low cost needed to meet the SECA objectives. We have further concluded that there is insufficient evidence to reliably predict that SOFCo will be able to achieve the SECA performance and cost goals on a schedule consistent with SECA or CPG commercialization goals. CPG believes SOFCo have made a good faith effort consistent with the available resources, but have repeatedly fallen short of achieving the programs scheduled targets. CPG has therefore initiated a process of application for extension of Phase 1 of our SECA program with the intent of transitioning to an alternative stack supplier with more mature SOFC technology, and demonstrating a system meeting the SECA Phase 1 goals by the end of calendar 2006. We have identified an alternative supplier and will be reporting the progress on transition and program planning in monthly technical reports, reviews, and in the next semiannual report.

  5. Low-noise pulse conditioner

    DOE Patents [OSTI]

    Bird, D.A.

    1981-06-16T23:59:59.000Z

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  6. A pulse processing station

    SciTech Connect (OSTI)

    Morgado, A.M.L.S.; Simoes, J.B.; Landeck, J. [Univ. of Coimbra (Portugal)] [and others

    1996-12-31T23:59:59.000Z

    This is the first of two papers concerning the architecture, circuitry design and performance of a pulse processing system based on a digital signal processor. This multifunction system, implemented as a single PC module, incorporates a high performance 16-bit Pulse Height Analyzer (PHA) a Multichannel Scaler (MCS), a Digital Oscilloscope (DSO) and also a Digital Pulse Processor (DPP). This paper presents the PRA architecture with emphasis on the baseline restorer and peak stretcher circuits. Differential nonlinearities (DNL) are corrected by a new implementation of the sliding scale technique and performance ranges from better than 2% (at 16-bit resolution) up to less than 0.2% for 12-bit operation. The DNL correction technique is assessed for different sliding-scale ranges.

  7. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  8. Peak finding using biorthogonal wavelets

    SciTech Connect (OSTI)

    Tan, C.Y.

    2000-02-01T23:59:59.000Z

    The authors show in this paper how they can find the peaks in the input data if the underlying signal is a sum of Lorentzians. In order to project the data into a space of Lorentzian like functions, they show explicitly the construction of scaling functions which look like Lorentzians. From this construction, they can calculate the biorthogonal filter coefficients for both the analysis and synthesis functions. They then compare their biorthogonal wavelets to the FBI (Federal Bureau of Investigations) wavelets when used for peak finding in noisy data. They will show that in this instance, their filters perform much better than the FBI wavelets.

  9. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01T23:59:59.000Z

    geometry of the blades on a wind turbine has, in the past,of the tower and blades of a 900 kW wind turbine (source:per blade). For this portion of the study, the wind turbine

  10. 225-kW Dynamometer for Testing Small Wind Turbine Components: Preprint

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01T23:59:59.000Z

    This paper describes NREL's new 225-kW dynamometer facility that is suitable for testing a variety of components and subsystems for small wind turbines and discusses opportunities for industry partnerships with NREL for use of the facility.

  11. Preferred citation style Axhausen, K.W. (2004) Personal biography, social networks and

    E-Print Network [OSTI]

    Nagurney, Anna

    2004-01-01T23:59:59.000Z

    1 1 Preferred citation style Axhausen, K.W. (2004) Personal biography, social networks and travel child 120 trips / 6 weeks 1201051 #12;6 11 Activity spaces: Commuters to Zürich (2000) 12 Position

  12. Method and apparatus for analog pulse pile-up rejection

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2013-12-31T23:59:59.000Z

    A method and apparatus for pulse pile-up rejection are disclosed. The apparatus comprises a delay value application constituent configured to receive a threshold-crossing time value, and provide an adjustable value according to a delay value and the threshold-crossing time value; and a comparison constituent configured to receive a peak-occurrence time value and the adjustable value, compare the peak-occurrence time value with the adjustable value, indicate pulse acceptance if the peak-occurrence time value is less than or equal to the adjustable value, and indicate pulse rejection if the peak-occurrence time value is greater than the adjustable value.

  13. Method and apparatus for analog pulse pile-up rejection

    DOE Patents [OSTI]

    De Geronimo, Gianluigi

    2014-11-18T23:59:59.000Z

    A method and apparatus for pulse pile-up rejection are disclosed. The apparatus comprises a delay value application constituent configured to receive a threshold-crossing time value, and provide an adjustable value according to a delay value and the threshold-crossing time value; and a comparison constituent configured to receive a peak-occurrence time value and the adjustable value, compare the peak-occurrence time value with the adjustable value, indicate pulse acceptance if the peak-occurrence time value is less than or equal to the adjustable value, and indicate pulse rejection if the peak-occurrence time value is greater than the adjustable value.

  14. DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL

    E-Print Network [OSTI]

    DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL D. Douglas, S. V, Newport News, VA23606, USA Abstract An upgrade of the Jefferson Lab IR FEL [1] is now un- der construction. It will provide 10 kW output light power in a wavelength range of 2­10 µm. The FEL will be driven by a modest

  15. Peak Oil Food Network | Open Energy Information

    Open Energy Info (EERE)

    Butte, Colorado Zip: 81224 Website: http:www.PeakOilFoodNetwork. References: Peak Oil Food Network1 This article is a stub. You can help OpenEI by expanding it. The Peak...

  16. Silver Peak Innovative Exploration Project

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

  17. Peak Oil Awareness Network | Open Energy Information

    Open Energy Info (EERE)

    Awareness Network Jump to: navigation, search Name: Peak Oil Awareness Network Place: Crested Butte, Colorado Zip: 81224 Website: http:www.PeakOilAwarenessNet Coordinates:...

  18. Texas Nuclear Profile - Comanche Peak

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr May Jun1DecadeMonthComanche Peak"

  19. Idaho_LonePinePeak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogenIT |Hot Springs Site #0104 Latitude:Peak Site

  20. Construction of an Ultra-Broad Preamplifier of a 100-TW Ultra-short Pulse Laser System

    E-Print Network [OSTI]

    Construction of an Ultra-Broad Preamplifier of a 100-TW Ultra-short Pulse Laser System duration to obtain ultra-short and high peak power laser pulses. The amplified pulse from the output) (laser preamplifier for contrast improvement) Chirped-pulse amplificationCPA (Pulse stretcher

  1. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01T23:59:59.000Z

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  2. Multi-pulse operation of a super-radiant backward-wave oscillator

    SciTech Connect (OSTI)

    Bandurkin, I. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod, 603950 (Russian Federation); Savilov, A. V. [Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation)

    2014-08-15T23:59:59.000Z

    Theory of a backward-wave electron oscillator operating in the non-stationary regime of super-radiation of short powerful rf pulses is developed. It is shown that there exist multi-frequency regimes of generation of either two-peak or three-peak output signal with different characteristic frequencies in every peak. The use of such regimes allows increasing the duration, the peak power, and the total energy of the output super-radiation rf pulse.

  3. 3kW Stirling engine for power and heat production

    SciTech Connect (OSTI)

    Thorsen, J.E.; Bovin, J.; Carlsen, H. [Technical Univ. of Denmark, Lyngby (Denmark). Inst. of Energy Engineering

    1996-12-31T23:59:59.000Z

    A new 3 kW Beta type Stirling engine has been developed. The engine uses Natural gas as fuel, and it is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism and the alternator are built into a pressurized crank casing. The engine produce 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW corresponding to a shaft efficiency of 30%, and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as working gas. The crank mechanism is a combination of an upper- and lower yoke, each forming the half of a Ross mechanism. The upper yoke is linked to the displacer piston and the lower yoke is linked to the working piston. The design gives an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket, which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function of mean pressure and hot and cold temperature, and emissions and noise have been measured.

  4. Design considerations of a 15kW heat exchanger for the CSPonD Project

    E-Print Network [OSTI]

    Adames, Adrian A

    2010-01-01T23:59:59.000Z

    The objective of this work was to develop a 15 kW heat exchanger model for the CSPonD molten salt receiver that will shuttle the molten salt's thermal energy for conversion to electric power. A heat extraction system ...

  5. 100 kW CC-OTEC Plant and Deep Ocean water Applications

    E-Print Network [OSTI]

    the electric grid for the first time in 15 years in the world. #12;IOES (Institute of Ocean Energy, Saga Univ.) Experiments and Demonstration by IOES (Institute of Ocean Energy, Saga University) 30 kW Electricity Construction, Xenesys, Yokogawa Electric JV Institute of Ocean Energy, Saga University Commission Cooperation

  6. Multiple laser pulse ignition method and apparatus

    DOE Patents [OSTI]

    Early, James W. (Los Alamos, NM)

    1998-01-01T23:59:59.000Z

    Two or more laser light pulses with certain differing temporal lengths and peak pulse powers can be employed sequentially to regulate the rate and duration of laser energy delivery to fuel mixtures, thereby improving fuel ignition performance over a wide range of fuel parameters such as fuel/oxidizer ratios, fuel droplet size, number density and velocity within a fuel aerosol, and initial fuel temperatures.

  7. Radioactive air emissions notice of construction fuel removal for 105-KW Basin

    SciTech Connect (OSTI)

    Hays, C.B.

    1997-05-29T23:59:59.000Z

    This document serves as a Notice of Construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KW Basin. The purpose of the activities described in this NOC is to enable the eventual retrieval and transport of the fuel for processing. The fuel retrieval and transport will require an integrated water treatment system for which performance specifications have been developed. These specifications are currently in the procurement process. Following procurement (and before installation of this system and the handling of fuel) design details will be provided to Washington State Department of Health (WDOH). The 105-K West Reactor (105-KW) and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. Although the 105-KW Basin has not been known to leak, the discharge chute and associated construction joint have been isolated from the rest of the basin by metal isolation barriers. This was a precautionary measure, to mitigate the consequences of a seismic event. The proposed modifications described are scheduled to begin in calendar year 1997.

  8. Peak Travel, Peak Car and the Future of Mobility: Evidence, Unresolved...

    Open Energy Info (EERE)

    Travel, Peak Car and the Future of Mobility: Evidence, Unresolved Issues, Policy Implications, and a Research Agenda Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Peak...

  9. Pulse spectral evolution of GRBs: implication as standard candle

    E-Print Network [OSTI]

    Basak, Rupal

    2012-01-01T23:59:59.000Z

    Using an \\emph{empirical} description of a prompt GRB pulse, we analyze the individual pulses of all Fermi/GBM GRBs with known redshifts, till July 2009. This description is simultaneous in time and energy and allows one to determine the peak energy of Band spectrum at zero fluence ($E_{peak,0}$). We demonstrate, for the first time, that the $E_{peak,0}$ bears a very strong correlation with the isotropic energy of the individual pulses, and hence, each pulse can be used as a luminosity indicator. As a physical description is needed in order to use GRB pulses for cosmological purposes, we explore other physical spectral models. As pulses are the building blocks of a GRB, we choose another sample of Fermi/GBM GRBs having bright, long and single/ separable pulse(s) and fit the time-resolved spectra of the individual pulses with the Band model and a model consisting of a blackbody and a power-law. Both these models give acceptable fits. We find that the peak energy/ temperature always decreases exponentially with...

  10. Pulsed hydrojet

    DOE Patents [OSTI]

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10T23:59:59.000Z

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  11. Capacitor discharge pulse analysis.

    SciTech Connect (OSTI)

    Baker, Michael Sean; Griffiths, Stewart K.; Tanner, Danelle Mary

    2013-08-01T23:59:59.000Z

    Capacitors used in firing sets and other high discharge current applications are discharge tested to verify performance of the capacitor against the application requirements. Parameters such as capacitance, inductance, rise time, pulse width, peak current and current reversal must be verified to ensure that the capacitor will meet the application needs. This report summarizes an analysis performed on the discharge current data to extract these parameters by fitting a second-order system model to the discharge data and using this fit to determine the resulting performance metrics. Details of the theory and implementation are presented. Using the best-fit second-order system model to extract these metrics results in less sensitivity to noise in the measured data and allows for direct extraction of the total series resistance, inductance, and capacitance.

  12. Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds.

    SciTech Connect (OSTI)

    Ellison, Chad M. (Honeywell FM& T, Kansas City, MO); Perricone, Matthew J. (R.J. Lee Group, Inc., Monroeville, PA); Faraone, Kevin M. (BWX Technologies, Inc., Lynchburg, VA); Norris, Jerome T.

    2007-10-01T23:59:59.000Z

    Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

  13. Promoting Employment Across Kansas (PEAK) (Kansas)

    Broader source: Energy.gov [DOE]

    Promoting Employment Across Kansas (PEAK) allows for the retention of employee payroll withholding taxes for qualified companies or third parties performing services on behalf of such companies....

  14. Adaptive architectures for peak power management

    E-Print Network [OSTI]

    Kontorinis, Vasileios

    2013-01-01T23:59:59.000Z

    load – in fact, we almost completely flatten the power profilepower profiles, we investigate a number of policies for peak power shaving which react to the observed load

  15. Powerful, pulsed, THz radiation from laser accelerated relativistic electron bunches

    E-Print Network [OSTI]

    Geddes, Cameron Guy Robinson

    by strongly focused ( 6 µm), high peak power (up to 10 TW), ultra-short ( 50 fs) laser pulses of a 10 Hz at the exit of the plasma accelerator. Keywords: ultrahigh-fields, ultra-short, laser-plasma, wakefieldPowerful, pulsed, THz radiation from laser accelerated relativistic electron bunches Cs. T´otha, J

  16. Compensated pulsed alternator

    DOE Patents [OSTI]

    Weldon, William F. (Austin, TX); Driga, Mircea D. (Austin, TX); Woodson, Herbert H. (Austin, TX)

    1980-01-01T23:59:59.000Z

    This invention relates to an electromechanical energy converter with inertial energy storage. The device, a single phase, two or multi-pole alternator with stationary field coils, and a rotating armature is provided. The rotor itself may be of laminated steel for slower pulses or for faster pulses should be nonmagnetic and electrically nonconductive in order to allow rapid penetration of the field as the armature coil rotates. The armature coil comprises a plurality of power generating conductors mounted on the rotor. The alternator may also include a stationary or counterrotating compensating coil to increase the output voltage thereof and to reduce the internal impedance of the alternator at the moment of peak outout. As the machine voltage rises sinusoidally, an external trigger switch is adapted to be closed at the appropriate time to create the desired output current from said alternator to an external load circuit, and as the output current passes through zero a self-commutating effect is provided to allow the switch to disconnect the generator from the external circuit.

  17. Testing and performance characteristics of a 1-kW free piston Stirling engine

    SciTech Connect (OSTI)

    Schreiber, J.

    1983-04-01T23:59:59.000Z

    A 1 kW single cylinder free piston Stirling engine, configured as a research engine, was tested with helium working gas. The engine features a posted displacer and dashpot load. The test results show the engine power output and efficiency to be lower than those observed during acceptance tests by the manufacturer. Engine tests results are presented for operation at the two heater head temperatures and with two regenerator porosities, along with flow test results for the heat exchangers.

  18. Enertech 15-kW wind-system development. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Zickefoose, C.R.

    1982-12-01T23:59:59.000Z

    This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

  19. 110 kW Stationary Combined Heat and Power Systems Status and

    E-Print Network [OSTI]

    the status of 1­10 kW CHP stationary fuel cell systems and to comment on the achievability of cost-temperature proton exchange membrane (LT-PEM) fuel cell systems operating, for the most part, in a temperature range of 60°­90°C; high temperature PEM (HT-PEM) fuel cell systems operating in a temperature range of 130

  20. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18T23:59:59.000Z

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  1. Tapered pulse tube for pulse tube refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W. (Sante Fe, NM); Olson, Jeffrey R. (San Mateo, CA)

    1999-01-01T23:59:59.000Z

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  2. Load sharing operation of a 14kW photovoltaic/wind hybrid power system

    SciTech Connect (OSTI)

    Kim, S.; Kim, C. [Kongju National Univ., Chungnam (Korea, Republic of). Dept. of Electrical Engineering; Song, J.; Yu, G.; Jung, Y. [Korea Inst. of Energy Research, Taejon (Korea, Republic of). Photovoltaic Research Team

    1997-12-31T23:59:59.000Z

    In this paper, a design procedure for photovoltaic/wind hybrid power generation system is presented. The hybrid system is composed of a DC/DC converter for a photovoltaic energy conversion, a DC/DC converter for a wind energy conversion, a four switch IGBT inverter converting the combined DC power to the AC power and a backup power battery. Here, it is very important to select the desired battery size to meet the stable output and economic cost aspect since this system utilizes fluctuating and finite energy resource. The purpose of this paper is to develop a sizing method for the PV/Wind energy hybrid system with load sharing operation. The method demonstrates a simple tool to determine the desired battery size that satisfies the energy demand from the user with the photovoltaic and wind natural source. The proposed method is verified on a 14kW hybrid power system including a 10kW PV generator and a 4kW wind generator established in Cheju island, Korea.

  3. Preliminary Assumptions for Natural Gas Peaking

    E-Print Network [OSTI]

    plants and capital cost estimates for peaking technologies Frame, Aeroderivative, Intercooled, Reciprocating Engines Next steps 2 #12;Definitions Baseload Energy: power generated (or conserved) across a period of time to serve system demands for electricity Peaking Capacity: capability of power generating

  4. Method and apparatus for providing pulse pile-up correction in charge quantizing radiation detection systems

    DOE Patents [OSTI]

    Britton, Jr., Charles L. (Alcoa, TN); Wintenberg, Alan L. (Knoxville, TN)

    1993-01-01T23:59:59.000Z

    A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.

  5. The Boson peak in supercooled water

    E-Print Network [OSTI]

    Pradeep Kumar; K. Thor Wikfeldt; Daniel Schlesinger; Lars G. M. Pettersson; H. E. Stanley

    2013-05-19T23:59:59.000Z

    We perform extensive molecular dynamics simulations of the TIP4P/2005 model of water to investigate the origin of the Boson peak reported in experiments on supercooled water in nanoconfined pores, and in hydration water around proteins. We find that the onset of the Boson peak in supercooled bulk water coincides with the crossover to a predominantly low-density-like liquid below the Widom line $T_W$. The frequency and onset temperature of the Boson peak in our simulations of bulk water agree well with the results from experiments on nanoconfined water. Our results suggest that the Boson peak in water is not an exclusive effect of confinement. We further find that, similar to other glass-forming liquids, the vibrational modes corresponding to the Boson peak are spatially extended and are related to transverse phonons found in the parent crystal, here ice Ih.

  6. Tunable THz Generation by the Interaction of a Super-luminous Laser Pulse with Biased Semiconductor Plasma

    SciTech Connect (OSTI)

    Papadopoulos, K. [BAE Systems-ATI, University of Maryland, College Park MD 20742 (United States); Zigler, A. [BAE Systems-ATI, Hebrew University (Israel)

    2006-01-03T23:59:59.000Z

    Terahertz (THz) radiation is electromagnetic radiation in the range between several hundred and a few thousand GHz. It covers the gap between fast-wave electronics (millimeter waves) and optics (infrared). This spectral region offers enormous potential for detection of explosives and chemical/biological agents, non-destructive testing of non-metallic structural materials and coatings of aircraft structures, medical imaging, bio-sensing of DNA stretching modes and high-altitude secure communications. The development of these applications has been hindered by the lack of powerful, tunable THz sources with controlled waveform. The need for such sources is accentuated by the strong, but selective absorption of THz radiation during transmission through air with high vapor content. The majority of the current experimental work relies on time-domain spectroscopy using fast electrically biased photoconductive sources in conjunction with femto-second mode-locked Ti:Sapphire lasers. These sources known as Large Aperture Photoconductive Antennas (LAPA) have very limited tunability, relatively low upper bound of power and no bandwidth control. The paper presents a novel source of THz radiation known as Miniature Photoconductive Capacitor Array (MPCA). Experiments demonstrated tunability between .1 - 2 THz, control of the relative bandwidth {delta}f/f between .5-.01, and controlled pulse length and pulse waveform (temporal shape, chirp, pulse-to-pulse modulation etc.). Direct scaling from the current device indicates efficiency in excess of 30% at 1 THz with 1/f2 scaling at higher frequencies, peak power of 100 kW and average power between .1-1 W. The physics underlying the MPCA is the interaction of a super-luminous ionization front generated by the oblique incidence of a Ti:Sapphire laser pulse on a semiconductor crystal (ZnSe) biased with an alternating electrostatic field, similar to that of a frozen wave generator. It is shown theoretically and experimentally that the interaction results in the emission of an electromagnetic wave at the plasma frequency of the ionization front. The device resembles the well-known DARC plasma device with two significant differences. First, the frozen wave is on a semiconductor crystal and not on a gas (Azulene Vapor). Second, the ionizing front is super-luminous. These differences result in a device with superior tunability, efficiency, compactness and flexibility. The paper concludes with examples of THz imaging using the MPCA.

  7. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect (OSTI)

    S. Merrill Skeist; Richard H. (Dick) Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21T23:59:59.000Z

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.

  8. Literature Cited and Selected Bibliography Able, K.W. 1999. Measures of juvenile fish habitat quality: examples from a

    E-Print Network [OSTI]

    Chen, Changsheng

    . Rutgers University Press. New Brunswick, NJ. 342 p. Able, K.W., J.P. Manderson, and A.L. Studholme. 1999 in Hydraulic Computations. 1988. Turbulence modeling of surface flow and transport. Journal of Hydraulic

  9. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01T23:59:59.000Z

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  10. Fault tolerant pulse synchronization

    E-Print Network [OSTI]

    Deconda, Keerthi

    2009-05-15T23:59:59.000Z

    Pulse synchronization is the evolution of spontaneous firing action across a network of sensor nodes. In the pulse synchronization model all nodes across a network produce a pulse, or "fire", at regular intervals even without access to a shared...

  11. QER- Comment of Cloud Peak Energy Inc

    Broader source: Energy.gov [DOE]

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  12. LNG production for peak shaving operations

    SciTech Connect (OSTI)

    Price, B.C.

    1999-07-01T23:59:59.000Z

    LNG production facilities are being developed as an alternative or in addition to underground storage throughout the US to provide gas supply during peak gas demand periods. These facilities typically involved a small liquefaction unit with a large LNG storage tank and gas sendout facilities capable of responding to peak loads during the winter. Black and Veatch is active in the development of LNG peak shaving projects for clients using a patented mixed refrigerant technology for efficient production of LNG at a low installed cost. The mixed refrigerant technology has been applied in a range of project sizes both with gas turbine and electric motor driven compression systems. This paper will cover peak shaving concepts as well as specific designs and projects which have been completed to meet this market need.

  13. A perspective on the CMB acoustic peak

    E-Print Network [OSTI]

    T. A. Marriage

    2002-03-11T23:59:59.000Z

    CMB angular spectrum measurements suggest a flat universe. This paper clarifies the relation between geometry and the spherical harmonic index of the first acoustic peak ($\\ell_{peak}$). Numerical and analytic calculations show that $\\ell_{peak}$ is approximately a function of $\\Omega_K/\\Omega_M$ where $\\Omega_K$ and $\\Omega_M$ are the curvature ($\\Omega_K > 0$ implies an open geometry) and mass density today in units of critical density. Assuming $\\Omega_K/\\Omega_M \\ll 1$, one obtains a simple formula for $\\ell_{peak}$, the derivation of which gives another perspective on the widely-recognized $\\Omega_M$-$\\Omega_\\Lambda$ degeneracy in flat models. This formula for near-flat cosmogonies together with current angular spectrum data yields familiar parameter constraints.

  14. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  15. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01T23:59:59.000Z

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  16. Plasma Switch for High-Power Active Pulse Compressor

    SciTech Connect (OSTI)

    Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

    2013-11-04T23:59:59.000Z

    Results are presented from experiments carried out at the Naval Research Laboratory X-band magnicon facility on a two-channel X-band active RF pulse compressor that employed plasma switches. Experimental evidence is shown to validate the basic goals of the project, which include: simultaneous firing of plasma switches in both channels of the RF circuit, operation of quasi-optical 3-dB hybrid directional coupler coherent superposition of RF compressed pulses from both channels, and operation of the X-band magnicon directly in the RF pulse compressor. For incident 1.2 ?s pulses in the range 0.63 ? 1.35 MW, compressed pulses of peak powers 5.7 ? 11.3 MW were obtained, corresponding to peak power gain ratios of 8.3 ? 9.3. Insufficient bakeout and conditioning of the high-power RF circuit prevented experiments from being conducted at higher RF input power levels.

  17. Initial test results from a prototype, 20 kW helium charged Stirling engine

    SciTech Connect (OSTI)

    Clarke, M.A.; Taylor, D.R.

    1984-08-01T23:59:59.000Z

    An alpha-configuration, helium charged Stirling engine with a predicted output of 20 kW indicated power has been developed by a British consortium of universities and industrial companies. The work performed by the Royal Naval Engineering College has been in computer assisted design and component testing, with future plans for full engine trials during 1984/85. The scope of this paper is to outline the data obtained during motoring trials of the engine block and crankcase assembly, together with details of modifications incorporated in the various components.

  18. High Temperature Electrolysis 4 kW Experiment Design, Operation, and Results

    SciTech Connect (OSTI)

    J.E. O'Brien; X. Zhang; K. DeWall; L. Moore-McAteer; G. Tao

    2012-09-01T23:59:59.000Z

    This report provides results of long-term stack testing completed in the new high-temperature steam electrolysis multi-kW test facility recently developed at INL. The report includes detailed descriptions of the piping layout, steam generation and delivery system, test fixture, heat recuperation system, hot zone, instrumentation, and operating conditions. This facility has provided a demonstration of high-temperature steam electrolysis operation at the 4 kW scale with advanced cell and stack technology. This successful large-scale demonstration of high-temperature steam electrolysis will help to advance the technology toward near-term commercialization.

  19. 100-kW class applied-field MPD thruster component wear

    SciTech Connect (OSTI)

    Mantenieks, M.A.; Myers, R.M.

    1993-01-01T23:59:59.000Z

    Component erosion and material deposition sites were identified and analyzed during tests of various configurations of 100 kW class, applied-field, water-cooled magnetoplasmadynamic (MPD) thrusters. Severe erosion of the cathode and the boron nitride insulator was observed for the first series of tests, which was significantly decreased by reducing the levels of propellant contamination. Severe erosion of the copper anode resulting from sputtering by the propellant was also observed. This is the first observation of this phenomenon in MPD thrusters. The anode erosion indicates that development of long life MPD thrusters requires the use of light gas propellants such as hydrogen, deuterium, or lithium.

  20. 100-kW class applied-field thruster component wear

    SciTech Connect (OSTI)

    Mantenieks, M.A. (M.S. SPTD-1, NASA Lewis Research Center, Cleveland, Ohio 44135 (United States)); Myers, R.M. (M.S. SPTD-1, Sverdrup Technology Inc., NASA Lewis Research Center, Cleveland, Ohio 44135 (United States))

    1993-01-20T23:59:59.000Z

    Component erosion and material deposition sites were identified and analyzed during tests of various configurations of 100 kW class, applied-field, water-cooled magnetoplasmadynamic (MPD) thrusters. Severe erosion of the cathode and the boron nitride insulator was observed for the first series of tests, which was significantly decreased by reducing the levels of propellant contamination. Severe erosion of the copper anode resulting from sputtering by the propellant was also observed. This is the first observation of this phenomenon in MPD thrusters. The anode erosion indicates that development of long life MPD thrusters requires the use of light gas propellants such as hydrogen, deuterium, or lithium.

  1. A 3kW PV-thermal system for home use

    SciTech Connect (OSTI)

    Yang, M.J.; Sato, Mikihiko; Tsuzuki, Kouye; Amono, Takashi; Yamaguchi, Masafumi [Toyota Technical Inst., Tempaku, Nagoya (Japan); Izumi, Hisao [IDEX, Seto, Aichi (Japan); Takamoto, Tatsuya [Japan Energy Corp., Saitama (Japan); Matsunaga, Shigenobu

    1997-12-31T23:59:59.000Z

    A combined 3kW PV-thermal system has been proposed for home use. Combining PV and thermal conversion makes this system economically efficient and competitive with traditional power supplies. GaAs and Si concentrator solar cells have been measured under concentration as candidate for use in this system. InGaP/GaAs tandem solar cells designed for 1-sun operation have been examined under concentration. The potential use of GaInP/GaAs tandem solar cells has been analyzed for this application. The properties of the thermal transfer unit of this system has been evaluated including the cooling of the solar cell holder.

  2. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma: EnergyMARECInformation kW grid connected

  3. Power Scaling of Tm:fiber Lasers to the kW Level Peter F. Moulton

    E-Print Network [OSTI]

    Van Stryland, Eric

    -06-D-0009 and FA9451-08-D-0199 Technical work: Q-Peak: Glen Rines, Evgueni Slobodtchikov, Kevin Wall

  4. Long pulse production from short pulses

    DOE Patents [OSTI]

    Toeppen, John S. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A method of producing a long output pulse (SA) from a short pump pulse (P), using an elongated amplified fiber (11) having a doped core (12) that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding 13. A seed beam (S) of the longer wavelength is injected into the core (12) at one end of the fiber (11) and a pump pulse (P) of the shorter wavelength is injected into the cladding (13) at the other end of the fiber (11). The counter-propagating seed beam (S) and pump pulse (P) will produce an amplified output pulse (SA) having a time duration equal to twice the transit time of the pump pulse (P) through the fiber (11) plus the length of the pump pulse (P).

  5. Long pulse production from short pulses

    DOE Patents [OSTI]

    Toeppen, J.S.

    1994-08-02T23:59:59.000Z

    A method of producing a long output pulse from a short pump pulse is disclosed, using an elongated amplified fiber having a doped core that provides an amplifying medium for light of one color when driven into an excited state by light of a shorter wavelength and a surrounding cladding. A seed beam of the longer wavelength is injected into the core at one end of the fiber and a pump pulse of the shorter wavelength is injected into the cladding at the other end of the fiber. The counter-propagating seed beam and pump pulse will produce an amplified output pulse having a time duration equal to twice the transit time of the pump pulse through the fiber plus the length of the pump pulse. 3 figs.

  6. Green Bank Telescope Studies of Giant Pulses from Millisecond Pulsars

    E-Print Network [OSTI]

    H. S. Knight; M. Bailes; R. N. Manchester; S. M. Ord; B. A. Jacoby

    2005-12-13T23:59:59.000Z

    We have conducted a search for giant pulses from four millisecond pulsars using the 100m Green Bank Telescope. Coherently dedispersed time-series from PSR J0218+4232 were found to contain giant pulses of very short intrinsic duration whose energies follow power-law statistics. The giant pulses are in phase with the two minima of the radio integrated pulse profile but are phase aligned with the peaks of the X-ray profile. Historically, individual pulses more than 10-20 times the mean pulse energy have been deemed to be ``giant pulses''. As only 4 of the 155 pulses had energies greater than 10 times the mean pulse-energy, we argue the emission mechanism responsible for giant pulses should instead be defined through: (a) intrinsic timescales of microsecond or nanosecond duration; (b) power-law energy statistics; and (c) emission occurring in narrow phase-windows coincident with the phase windows of non-thermal X-ray emission. Four short-duration pulses with giant-pulse characteristics were also observed from PSR B1957+20. As the inferred magnetic fields at the light cylinders of the millisecond pulsars that emit giant pulses are all very high, this parameter has previously been considered to be an indicator of giant pulse emissivity. However, the frequency of giant pulse emission from PSR~B1957+20 is significantly lower than for other millisecond pulsars that have similar magnetic fields at their light cylinders. This suggests that the inferred magnetic field at the light cylinder is a poor indicator of the rate of emission of giant pulses.

  7. Generation of Stable (3+1)-dimensional High-intensity Ultrashort Light Pulses

    SciTech Connect (OSTI)

    Todorov, T. P.; Koprinkov, I. G. [Department of Applied Physics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorova, M. E. [College of Energetics and Electronics, Technical University of Sofia, 1000 Sofia (Bulgaria); Todorov, M. D. [Faculty of Appl. Math. and Informatics, Technical University of Sofia, 1000 Sofia (Bulgaria)

    2010-11-25T23:59:59.000Z

    The spatiotemporal dynamics of high-intensity femtosecond laser pulses is studied within a rigorous physical model. The pulse propagation is described by the nonlinear envelope equation. The propagation and the material equations are solved self-consistently at realistic physical conditions. Self-compression of the pulse around single-cycle regime and dramatic increase of the pulse intensity is found. At certain conditions, the peak intensity, transversal width, time duration, and the spatiotemporal pulse shape remain stable with the propagation of the pulse, resembling a soliton formation process. This, to our knowledge, is the first simulation of high-intensity ultrashort soliton formation dynamics in the (3+1)-dimensional case.

  8. Preliminary Assumptions for Natural Gas Peaking

    E-Print Network [OSTI]

    ; adjusted to 2012$, state construction cost index, vintage of cost estimate, scope of estimate to extent's Discussion Aeroderivative Gas Turbine Technology Proposed reference plant and assumptions Preliminary cost Robbins 2 #12;Peaking Power Plant Characteristics 6th Power Plan ($2006) Unit Size (MW) Capital Cost ($/k

  9. AUTOMATED CRITICAL PEAK PRICING FIELD TESTS

    E-Print Network [OSTI]

    ) for development of the DR Automation Server System This project could not have been completed without extensive: Greg Watson and Mark Lott · C&C Building Automation: Mark Johnson and John Fiegel · Chabot Space AUTOMATED CRITICAL PEAK PRICING FIELD TESTS: 2006 PROGRAM DESCRIPTION AND RESULTS

  10. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22T23:59:59.000Z

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  11. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01T23:59:59.000Z

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  12. (Acceptance testing of the 150-kW electron-beam furnace)

    SciTech Connect (OSTI)

    Ohriner, E.K.; Howell, C.R.

    1990-09-18T23:59:59.000Z

    The travelers observed the acceptance testing of the 150-kW electron-beam (EB) furnace constructed by Leybold (Hanau) Technologies prior to disassembly and shipping. The testing included: (1) operation of the mold withdrawal system (2) vacuum pumping and vacuum chamber leak-up rates, (3) power stability at full power, (4) x-radiation monitoring at full power, and (5) demonstration of system interlocks for loss of water cooling, loss of vacuum, loss of power, and emergency shutdown. Preliminary training was obtained in furnace operation, EB gun maintenance, and use of the programmable logic controller for beam manipulation. Additional information was obtained on water-cooling requirements and furnace platform construction necessary for the installation. The information gained and training received will greatly assist in minimizing the installation and startup operation costs of the furnace.

  13. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  14. Enertech 2-kW high-reliability wind system. Phase II. Fabrication and testing

    SciTech Connect (OSTI)

    Cordes, J A; Johnson, B A

    1981-06-01T23:59:59.000Z

    A high-reliability wind machine rated for 2 kW in a 9 m/s wind has been developed. Activities are summarized that are centered on the fabrication and testing of prototypes of the wind machine. The test results verified that the wind machine met the power output specification and that the variable-pitch rotor effectively controlled the rotor speed for wind speeds up to 50 mph. Three prototypes of the wind machine were shipped to the Rocky Flats test center in September through November of 1979. Work was also performed to reduce the start-up wind speed. The start-up wind speed to the Enertech facility has been reduced to 4.5 m/s.

  15. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28T23:59:59.000Z

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  16. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26T23:59:59.000Z

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  17. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30T23:59:59.000Z

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  18. Proposal to negotiate a contract, without competitive tendering, for the overhaul of screw compressors for the LHC 18 kW helium refrigeration plants

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Proposal to negotiate a contract, without competitive tendering, for the overhaul of screw compressors for the LHC 18 kW helium refrigeration plants

  19. Proposal to negotiate two contracts, without competitive tendering, for the supply and the repair of compressors for the LHC 18 kW helium refrigeration plants

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    Proposal to negotiate two contracts, without competitive tendering, for the supply and the repair of compressors for the LHC 18 kW helium refrigeration plants

  20. Neutron production enhancements for the Intense Pulsed Neutron Source.

    SciTech Connect (OSTI)

    Iverson, E. B.

    1999-01-04T23:59:59.000Z

    The Intense Pulsed Neutron Source (IPNS) was the first high energy spallation neutron source in the US dedicated to materials research. It has operated for sixteen years, and in that time has had a very prolific record concerning the development of new target and moderator systems for pulsed spallation sources. IPNS supports a very productive user program on its thirteen instruments, which are oversubscribed by more than two times, meanwhile having an excellent overall reliability of 95%. Although the proton beam power is relatively low at 7 kW, the target and moderator systems are very efficient. The typical beam power which gives an equivalent flux for long-wavelength neutrons is about 60 kW, due to the use of a uranium target and liquid and solid methane moderators, precluded at some sources due to a higher accelerator power. The development of new target and moderator systems is by no means stagnant at IPNS. They are presently considering numerous enhancements to the target and moderators that offer prospects for increasing the useful neutron production by substantial factors. Many of these enhancements could be combined, although their combined benefit has not yet been well established. Meanwhile, IPNS is embarking on a coherent program of study concerning these improvements and their possible combination and implementation. Moreover, any improvements accomplished at IPNS would immediately increase the performance of IPNS instruments.

  1. Nerve-pulse interactions

    SciTech Connect (OSTI)

    Scott, A.C.

    1982-01-01T23:59:59.000Z

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  2. Laser pulse stacking method

    DOE Patents [OSTI]

    Moses, E.I.

    1992-12-01T23:59:59.000Z

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  3. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza [ORNL; Petrov, Andrei Y [ORNL; Linkous, Randall Lee [ORNL; Vineyard, Edward Allan [ORNL

    2007-01-01T23:59:59.000Z

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  4. A prototype 7.5 MHz Finemet(Trademark) loaded RF cavity and 200kW amplifier for the Fermilab proton driver

    SciTech Connect (OSTI)

    David W. Wildman et al.

    2001-07-09T23:59:59.000Z

    A 7.5 MHz RF cavity and power amplifier have been built and tested at Fermilab as part of the proton Driver Design Study. The project goal was to achieve the highest possible 7.5 MHz accelerating gradient at 15 Hz with a 50% duty cycle. To reduce beam loading effects, a low shunt impedance (500{Omega}) design was chosen. The 46 cm long single gap cavity uses 5 inductive cores, consisting of the nanocrystalline soft magnetic alloy Finemet, to achieve a peak accelerating voltage of 15 kV. The 95 cm OD tape wound cores have been cut in half to increase the cavity Q and are cooled from both sides using large water-cooled copper heat sinks. The prototype cavity has a shunt impedance of 550{Omega}, Q = 11, and is powered by a 200 kW cw cathode driven tetrode amplifier. Both cavity and amplifier designs are described. Results from recent cavity tests coalescing beam in the Fermilab Main Injector is also presented.

  5. On the role of terahertz field acceleration and beaming of surface plasmon generated ultrashort electron pulses

    SciTech Connect (OSTI)

    Greig, S. R., E-mail: sgreig@ualberta.ca; Elezzabi, A. Y., E-mail: elezzabi@ece.ualberta.ca [Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada)

    2014-07-28T23:59:59.000Z

    A mechanism for control of the energy and pitch angle of surface plasmon accelerated electron pulses is proposed. Electrons generated via multi-photon absorption in a silver film on a glass prism are ponderomotively accelerated in the surface plasmon field excited by a 30 fs, 800?nm optical pulse. Through introduction of a single-cycle terahertz (THz) pulse, the energy spectrum and trajectory of the generated electron pulse can be controlled via the THz field strength. Generated electron pulses achieve peak kinetic energies up to 1.56?keV, while utilizing an incident optical field strength five times less than comparable plasmon accelerated electron pulses. These results demonstrate that THz pulses can be utilized to achieve tunable, high energy, trajectory controlled electron pulses necessary for various applications that require ultrafast electron pulse manipulation.

  6. Broadband 180 degree universal rotation pulses for NMR spectroscopy designed by optimal control

    E-Print Network [OSTI]

    Skinner, Thomas E; Nimbalkar, Manoj; Bermel, Wolfgang; Luy, Burkhard; Glaser, Steffen J

    2011-01-01T23:59:59.000Z

    Broadband inversion pulses that rotate all magnetization components 180 degrees about a given fixed axis are necessary for refocusing and mixing in high-resolution NMR spectroscopy. The relative merits of various methodologies for generating pulses suitable for broadband refocusing are considered. The de novo design of 180 degree universal rotation pulses using optimal control can provide improved performance compared to schemes which construct refocusing pulses as composites of existing pulses. The advantages of broadband universal rotation by optimized pulses (BURBOP) are most evident for pulse design that includes tolerance to RF inhomogeneity or miscalibration. We present new modifications of the optimal control algorithm that incorporate symmetry principles and relax conservative limits on peak RF pulse amplitude for short time periods that pose no threat to the probe. We apply them to generate a set of pulses suitable for widespread use in Carbon-13 spectroscopy on the majority of available probes.

  7. Peak power tracking for a solar buck charger

    E-Print Network [OSTI]

    Cohen, Jeremy Michael, M. Eng. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    This thesis discusses the design, implementation, and testing of a buck converter with peak power tracking. The peak power tracker uses a perturb and observe algorithm to actively track the solar panel's peak power point ...

  8. Central peaking of magnetized gas discharges

    SciTech Connect (OSTI)

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States)] [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Curreli, Davide [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)] [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States)

    2013-05-15T23:59:59.000Z

    Partially ionized gas discharges used in industry are often driven by radiofrequency (rf) power applied at the periphery of a cylinder. It is found that the plasma density n is usually flat or peaked on axis even if the skin depth of the rf field is thin compared with the chamber radius a. Previous attempts at explaining this did not account for the finite length of the discharge and the boundary conditions at the endplates. A simple 1D model is used to focus on the basic mechanism: the short-circuit effect. It is found that a strong electric field (E-field) scaled to electron temperature T{sub e}, drives the ions inward. The resulting density profile is peaked on axis and has a shape independent of pressure or discharge radius. This “universal” profile is not affected by a dc magnetic field (B-field) as long as the ion Larmor radius is larger than a.

  9. Triangle Singularities and XYZ Quarkonium Peaks

    E-Print Network [OSTI]

    Adam P. Szczepaniak

    2015-01-26T23:59:59.000Z

    We discuss analytical properties of partial waves derived from projection of a 4-legged amplitude with crossed-channel exchanges in the kinematic region of the direct channel that corresponds to the XYZ peaks in charmonium and bottomonium. We show that in general partial waves can develop anomalous branch points in the vicinity of the direct channel physical region. In a specific case, when these branch points lie on the opposite side of the unitary cut they pinch the integration contour in a dispersion relation and if the pinch happens close to threshold, the normal threshold cusp is enhanced. We show that this effect only occurs if masses of resonances in the crossed channel are in a specific, narrow range. We estimate the size of threshold enhancements originating from these anomalous singularities in reactions where the Zc(3900) and the Zb(10610) peaks have been observed.

  10. Triangle Singularities and XYZ Quarkonium Peaks

    E-Print Network [OSTI]

    Szczepaniak, Adam P

    2015-01-01T23:59:59.000Z

    We discuss analytical properties of partial waves derived from projection of a 4-legged amplitude with crossed-channel exchanges in the kinematic region of the direct channel that corresponds to the XYZ peaks in charmonium and bottomonium. We show that in general partial waves can develop anomalous branch points in the vicinity of the direct channel physical region. In a specific case, when these branch points lie on the opposite side of the unitary cut they pinch the integration contour in a dispersion relation and if the pinch happens close to threshold, the normal threshold cusp is enhanced. We show that this effect only occurs if masses of resonances in the crossed channel are in a specific, narrow range. We estimate the size of threshold enhancements originating from these anomalous singularities in reactions where the Zc(3900) and the Zb(10610) peaks have been observed.

  11. A Self-Biasing Pulsed Depressed Collector

    SciTech Connect (OSTI)

    Kemp, Mark A.; Jensen, Aaron; Neilson, Jeff; /SLAC

    2014-05-29T23:59:59.000Z

    Depressed collectors have been utilized successfully for many years to improve the electrical efficiency of vacuum electron devices. Increasingly, pulsed, high-peak power accelerator applications are placing a premium on electrical efficiency. As RF systems are responsible for a large percentage of the overall energy usage at accelerator laboratories, methods to improve upon the state-of-the-art in pulsed high-power sources are desired. This paper presents a technique for self-biasing the stages in a multistage depressed collector. With this technique, the energy lost during the rise and fall times of the pulse can be recovered, separate power supplies are not needed, and existing modulators can be retrofitted. Calculations show that significant cost savings can be realized with the implementation of this device in high-power systems. In this paper, the technique is described along with experimental demonstration. (auth)

  12. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  13. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  14. Residential implementation of critical-peak pricing of electricity

    E-Print Network [OSTI]

    Herter, Karen

    2006-01-01T23:59:59.000Z

    L.R. Modeling alternative residential peak-load electricitydemand response to residential critical peak pricing (CPP)analysis of California residential customer response to

  15. Development and testing of 100-kW/ 1-minute Li-ion battery systems for energy storage applications.

    SciTech Connect (OSTI)

    Doughty, Daniel Harvey; Clark, Nancy H.

    2004-07-01T23:59:59.000Z

    Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.

  16. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01T23:59:59.000Z

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  17. STUDY OF THERMAL INTERACTION BETWEEN A 150 KW CW POWER COUPLER AND A SUPERCONDUCTING 704 MHZ ELLIPTICAL CAVITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    us also to perform in-situ measurements of thermal parameters needed in the thermal model without degradation of its RF performance. · Determine, by in situ measurements, some unknown thermal) Specification Frequency (MHz) 704 RF power (kW) 150 - CW Impedance () 50 Outer Conductor (OC) material

  18. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  19. 220,000-r/min, 2-kW Permanent Magnet Motor Drive for Turbocharger Toshihiko Noguchi, Yosuke Takata *

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    motor (PMSM) drive, into the turbochargers, and describes computer simulation and experimental results such as 220,000 r/min at over 2-kW inverter output with the PMSM and how to raise power density of the motor

  20. Hybrid chirped pulse amplification system

    DOE Patents [OSTI]

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29T23:59:59.000Z

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  1. Method for the Production of Ultrashort Peak Power Laser Pulses and System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergyMethod forEnergyFor Putting

  2. Equivalence Principle and the Baryon Acoustic Peak

    E-Print Network [OSTI]

    Baldauf, Tobias; Simonovi?, Marko; Zaldarriaga, Matias

    2015-01-01T23:59:59.000Z

    We study the dominant effect of a long wavelength density perturbation $\\delta(\\lambda_L)$ on short distance physics. In the non-relativistic limit, the result is a uniform acceleration, fixed by the equivalence principle, and typically has no effect on statistical averages due to translational invariance. This same reasoning has been formalized to obtain a "consistency condition" on the cosmological correlation functions. In the presence of a feature, such as the acoustic peak at $l_{\\rm BAO}$, this naive expectation breaks down for $\\lambda_Lpower spectrum. Finally, the success of BAO reconstruction schemes is argue...

  3. Storm Peak Lab Cloud Property Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochastic WeeklyStores Catalog The AmesPeak

  4. Pilot Peak Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal Project Jump to:Pilot Peak

  5. Mt Peak Utility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinutemanVistaZephyr)Mountain AirPeak Utility Jump

  6. DESIGN CONSIDERATIONS ON PEAK POWER CLIPPING THRESHOLDS IN MICROGRIDS

    E-Print Network [OSTI]

    Paderborn, Universität

    the utility grid. This kind of operating strategy is called e.g. "peak load shaving", "peak power reduction. This method is broadly applicable to similar applications, e.g. for peak-shaving of PV power to limit" or just "peak shaving" and is applied to diverse applications and systems. This paper presents a method

  7. Peak Oil and REMI PI+: State Fiscal Implications

    E-Print Network [OSTI]

    Johnson, Eric E.

    the possibility of multiple maxima (peaks) · There is no particular reason why peak oil in New Mexico or some to assume that these peaks will not occur at the same time. #12;The Oil Peak in New Mexico Source: Starbuck are Proved Reserves? "Proved reserves of crude oil are the estimated quantities which geological

  8. Capacitor charging FET switcher with controller to adjust pulse width

    DOE Patents [OSTI]

    Mihalka, Alex M. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  9. High-performance laser processing using manipulated ultrafast laser pulses

    SciTech Connect (OSTI)

    Sugioka, Koji; Cheng Ya; Xu Zhizhan; Hanada, Yasutaka; Midorikawa, Katsumi [RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan); State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (China); RIKEN - Advanced Science Institute, Wako, Saitama 351-0198 (Japan)

    2012-07-30T23:59:59.000Z

    We employ manipulated ultrafast laser pulses to realize microprocessing with high-performance. Efficient microwelding of glass substrates by irradiation by a double-pulse train of ultrafast laser pulses is demonstrated. The bonding strength of two photostructurable glass substrates welded by double-pulse irradiation was evaluated to be 22.9 MPa, which is approximately 22% greater than that of a sample prepared by conventional irradiation by a single pulse train. Additionally, the fabrication of hollow microfluidic channels with a circular cross-sectional shape embedded in fused silica is realized by spatiotemporally focusing the ultrafast laser beam. We show both theoretically and experimentally that the spatiotemporal focusing of ultrafast laser beam allows for the creation of a three-dimensionally symmetric spherical peak intensity distribution at the focal spot.

  10. Dynamic simulation of 10 kW Brayton cryocooler for HTS cable

    SciTech Connect (OSTI)

    Chang, Ho-Myung; Park, Chan Woo [Hong Ik University, Department of Mechanical Engineering, Seoul, 121-791 (Korea, Republic of); Yang, Hyung Suk; Hwang, Si Dole [KEPCO Research Institute, Daejeon, 305-760 (Korea, Republic of)

    2014-01-29T23:59:59.000Z

    Dynamic simulation of a Brayton cryocooler is presented as a partial effort of a Korean governmental project to develop 1?3 km HTS cable systems at transmission level in Jeju Island. Thermodynamic design of a 10 kW Brayton cryocooler was completed, and a prototype construction is underway with a basis of steady-state operation. This study is the next step to investigate the transient behavior of cryocooler for two purposes. The first is to simulate and design the cool-down process after scheduled or unscheduled stoppage. The second is to predict the transient behavior following the variation of external conditions such as cryogenic load or outdoor temperature. The detailed specifications of key components, including plate-fin heat exchangers and cryogenic turbo-expanders are incorporated into a commercial software (Aspen HYSYS) to estimate the temporal change of temperature and flow rate over the cryocooler. An initial cool-down scenario and some examples on daily variation of cryocooler are presented and discussed, aiming at stable control schemes of a long cable system.

  11. High voltage pulse conditioning

    DOE Patents [OSTI]

    Springfield, Ray M. (Sante Fe, NM); Wheat, Jr., Robert M. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    Apparatus for conditioning high voltage pulses from particle accelerators in order to shorten the rise times of the pulses. Flashover switches in the cathode stalk of the transmission line hold off conduction for a determinable period of time, reflecting the early portion of the pulses. Diodes upstream of the switches divert energy into the magnetic and electrostatic storage of the capacitance and inductance inherent to the transmission line until the switches close.

  12. Critical pulse power components

    SciTech Connect (OSTI)

    Sarjeant, W.J.; Rohwein, G.J.

    1981-01-01T23:59:59.000Z

    Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

  13. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01T23:59:59.000Z

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  14. Analytical modeling of pulse-pileup distortion using the true pulse shape; applications to Fermi-GBM

    E-Print Network [OSTI]

    Vandiver Chaplin; Narayana Bhat; Michael Briggs; Valerie Connaughton

    2013-04-29T23:59:59.000Z

    Pulse-pileup affects most photon counting systems and occurs when photon detections occur faster than the detector's registration and recovery time. At high input rates, shaped pulses interfere and the source spectrum, as well as intensity information, get distorted. For instruments using bipolar pulse shaping there are two aspects to consider: `peak' and `tail' pileup effects, which raise and lower the measured energy, respectively. Peak effects have been extensively modeled in the past. Tail effects have garnered less attention due to the increased complexity: bipolar tails mean the tail pulse-height measurement depends on events in more than one time interval. We leverage previous work to derive an accurate, semi-analytical prediction for peak and tail pileup, up to high orders. We use the true pulse shape from the detectors of the Fermi Gamma-ray Burst Monitor. The measured spectrum is calculated by writing exposure time as a state-space expansion of overlapping pileup states and is valid up to very high rates. This expansion models losses due to fixed and extendable deadtime by averaging overlap configurations. Additionally, the model correctly predicts energy-dependent losses due to tail subtraction (sub-threshold) effects. We discuss pileup losses in terms of the true rate of photon detections versus the recorded count rate.

  15. Design and RF measurements of a 5 GHz 500 kW window for the ITER LHCD system

    E-Print Network [OSTI]

    Hillairet, Julien; Dechambre, N; Delpech, L; Ekedahl, A; Faure, N; Goniche, M; Kim, J; Larroque, S; Magne, R; Marfisi, L; Namkung, W; Park, H; Park, S; Poli, S; Vulliez, K

    2015-01-01T23:59:59.000Z

    CEA/IRFM is conducting R\\&D efforts in order to validate the critical RF components of the 5 GHz ITER LHCD system, which is expected to transmit 20 MW of RF power to the plasma. Two 5 GHz 500 kW BeO pill-box type window prototypes have been manufactured in 2012 by the PMB Company, in close collaboration with CEA/IRFM. Both windows have been validated at low power, showing good agreement between measured and modeling, with a return loss better than 32 dB and an insertion loss below 0.05 dB. This paper reports on the window RF design and the low power measurements. The high power tests up to 500kW have been carried out in March 2013 in collaboration with NFRI. Results of these tests are also reported. In the current ITER LHCD design, 20 MW Continuous Wave (CW) of Radio-Frequency power at 5 GHz are expected to be generated and transmitted to the plasma. In order to separate the vacuum vessel pressure from the cryostat waveguide pressure, forty eight 5 GHz 500kW CW windows are to be assembled on the waveguide...

  16. STUDENT PULSE Spring 2013

    E-Print Network [OSTI]

    SF STATE STUDENT PULSE SURVEY Spring 2013 Academic Planning and Development Academic Institutional Research (air.sfsu.edu) March 2013 #12;SF State Student Pulse Survey, Spring 2013 Page 1 Table of Contents is most effective. 79% of all respondents reported spending most of their time in class listening while

  17. Pulsed electrodeposition. Final report

    SciTech Connect (OSTI)

    Stimetz, C.J.

    1985-02-01T23:59:59.000Z

    Pulse plating of cobalt-hardened gold alloys increases the cobalt content in the alloy. At lower duty cycles, the electrodeposits become dull. Little change in the microhardness was observed between pulsed and direct current electrodeposits. The TEM and electron diffraction analyses indicated no significant difference in microstructure between pulsed and conventional gold alloy electrodeposits. Pulse plated and conventional nickel deposits have been compared for differences in morphology, mechanical properties, and microstructure. The deposits were obtained from nickel sulfamate, nickel chloride, and Watts nickel plating solutions. No significant differences were found in the direct and pulse current deposits from the sulfamate and chloride solutions; however, significant differences in microstructure, yield strength, and microhardness were observed in deposits from the Watts nickel solution.

  18. Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Desert Peak Area (Wisian & Blackwell, 2004) Exploration Activity...

  19. GTA P.M. PEAK MODEL Version 2.0

    E-Print Network [OSTI]

    Toronto, University of

    WORKING DRAFT GTA P.M. PEAK MODEL Version 2.0 And HALTON REGION SUB-MODEL Documentation & Users' Guide Prepared by Peter Dalton July 2001 #12;GTA P.M. Model Page 2 30/05/2002 Contents 1.0 P.M. Peak ................................................................................................ 4 Table 1 - Features of the P.M. Peak Period Model

  20. The University of Oklahoma Peak People Temporary Services Appointment Notification

    E-Print Network [OSTI]

    Oklahoma, University of

    The University of Oklahoma Peak People Temporary Services Appointment Notification Please read of Oklahoma. Peak Appointment -This section is to be completed by the hiring department. Print Peak Person will not be eligible for any of the University of Oklahoma's benefit programs except for the 403(b) and 457(b

  1. Reduced Peak Power Requirements in FDM and Related Systems

    E-Print Network [OSTI]

    Richardson, Thomas J.

    Reduced Peak Power Requirements in FDM and Related Systems Rajiv Laroia, Tom Richardson, R. This is especially true of communication systems for which the cost of peak transmitted power is critical. Often by the peak power required of the amplifier. On the other hand, the capacity of the system is proportional

  2. Experimental Study of RF Pulsed Heating

    SciTech Connect (OSTI)

    Laurent, Lisa; Tantawi, Sami; Dolgashev, Valery; Nantista, Christopher; /SLAC; Higashi, Yasuo; /KEK, Tsukuba; Aicheler, Markus; Heikkinen, Samuli; Wuensch, Walter; /CERN

    2011-11-04T23:59:59.000Z

    Cyclic thermal stresses produced by rf pulsed heating can be the limiting factor on the attainable reliable gradients for room temperature linear accelerators. This is especially true for structures that have complicated features for wakefield damping. These limits could be pushed higher by using special types of copper, copper alloys, or other conducting metals in constructing partial or complete accelerator structures. Here we present an experimental study aimed at determining the potential of these materials for tolerating cyclic thermal fatigue due to rf magnetic fields. A special cavity that has no electric field on the surface was employed in these studies. The cavity shape concentrates the magnetic field on one flat surface where the test material is placed. The materials tested in this study have included oxygen free electronic grade copper, copper zirconium, copper chromium, hot isostatically pressed copper, single crystal copper, electroplated copper, Glidcop(reg. sign), copper silver, and silver plated copper. The samples were exposed to different machining and heat treatment processes prior to rf processing. Each sample was tested to a peak pulsed heating temperature of approximately 110 C and remained at this temperature for approximately 10 x 10{sup 6} rf pulses. In general, the results showed the possibility of pushing the gradient limits due to pulsed heating fatigue by the use of copper zirconium and copper chromium alloys.

  3. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01T23:59:59.000Z

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  4. Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC Davis 1

    E-Print Network [OSTI]

    Tate, Kenneth

    Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC Davis 1, L.M. Roche, M.R. George, UC Davis 2 · Offstream attractants such as water tanks and supplement in runoff #12;Presented at SRM Annual Conference, OKC, OK 2/5/2013 K.W. Tate, L.M. Roche, M.R. George, UC

  5. Single-cycle terahertz pulses with >0.2 V/A field amplitudes via coherent transition radiation

    E-Print Network [OSTI]

    Source (LCLS) free-electron laser,17 using electron bunches as short as 50 fs. We observe THz pulses at half maximum (FWHM), corresponding to peak currents of up to 7 kA. After being passed through the LCLS

  6. Pulse measurement apparatus and method

    DOE Patents [OSTI]

    Marciante, John R. (Webster, NY); Donaldson, William R. (Pittsford, NY); Roides, Richard G. (Scottsville, NY)

    2011-10-25T23:59:59.000Z

    An embodiment of the invention is directed to a pulse measuring system that measures a characteristic of an input pulse under test, particularly the pulse shape of a single-shot, nano-second duration, high shape-contrast optical or electrical pulse. An exemplary system includes a multi-stage, passive pulse replicator, wherein each successive stage introduces a fixed time delay to the input pulse under test, a repetitively-gated electronic sampling apparatus that acquires the pulse train including an entire waveform of each replica pulse, a processor that temporally aligns the replicated pulses, and an averager that temporally averages the replicated pulses to generate the pulse shape of the pulse under test. An embodiment of the invention is directed to a method for measuring an optical or an electrical pulse shape. The method includes the steps of passively replicating the pulse under test with a known time delay, temporally stacking the pulses, and temporally averaging the stacked pulses. An embodiment of the invention is directed to a method for increasing the dynamic range of a pulse measurement by a repetitively-gated electronic sampling device having a rated dynamic range capability, beyond the rated dynamic range of the sampling device; e.g., enhancing the dynamic range of an oscilloscope. The embodied technique can improve the SNR from about 300:1 to 1000:1. A dynamic range enhancement of four to seven bits may be achieved.

  7. Planar repetitively pulsed microwave-pumped CO{sub 2} laser

    SciTech Connect (OSTI)

    Mineev, A P; Nefedov, S M; Pashinin, Pavel P [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-02-28T23:59:59.000Z

    A planar repetitively pulsed microwave-pumped CO{sub 2} laser with discharge channel lengths of 250 and 470 mm is experimentally investigated. An average laser power of 60 W at a wavelength of 10.6 {mu}m is attained. A peak power of 1300 W is reached in the repetitively pulsed regime. The dependences of the shape and energy of CO{sub 2} laser pulse on the introduced power, working gas mixture composition and pressure, and pump-pulse repetition rate and width are analysed. (lasers)

  8. Pulse compression in plasma: generation of femtosecond pulses without CPA

    E-Print Network [OSTI]

    ­frequency laser beam into the energy of a short lower­frequency laser pulse. The standard approach to generating high­intensity ultra­short laser pulses is Chirped Pulse Amplification [1] (CPA), in which a laser Garching, Germany Abstract: Laser pulses can be e#ciently compressed to femto­ second duration when

  9. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, Jr., Herbert A. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  10. Pulsed-neutron monochromator

    DOE Patents [OSTI]

    Mook, H.A. Jr.

    1984-01-01T23:59:59.000Z

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  11. Pulsed Zeeman spectroscopy

    E-Print Network [OSTI]

    Cullen, Raymond Paul

    1967-01-01T23:59:59.000Z

    PULSED ZEEMAN SPECTROSCOPY A Thesis Raymond P. Cullen Submitted to the Graduate Collepe of the Texas MM University in partial fulfillment of the requirements for the degree of MASTER OE SCIENCE August 1967 Major Subject: Chemistry PULSRD... ZEEHA&'I SPRCTPOSC::)Py A The. ", is by Raymond P. Cullen Approved es to style and content by: (Chairman o~ Commi. tee) August 1967 Pulsed Zceman Spectroscopy (August 1967) Raymond P. Cullen, B. S. , Texas A6M University Directed by: Dr...

  12. Pulse magnetic welder

    DOE Patents [OSTI]

    Christiansen, D.W.; Brown, W.F.

    1984-01-01T23:59:59.000Z

    A welder is described for automated closure of fuel pins by a pulsed magnetic process in which the open end of a length of cladding is positioned within a complementary tube surrounded by a pulsed magnetic welder. Seals are provided at each end of the tube, which can be evacuated or can receive tag gas for direct introduction to the cladding interior. Loading of magnetic rings and end caps is accomplished automatically in conjunction with the welding steps carried out within the tube.

  13. Performance of an efficient 6 kW helium refrigerator for the LEP 200 project at CERN

    SciTech Connect (OSTI)

    Erdt, W.K.; Frandsen, P.; Guesewell, D.; Solheim, N.O.; Winkler, G. [CERN, Geneva (Switzerland); Kurtcuoglu, K.; Loehlein, K.; Senn, A.E.; Wagner, U.; Ziegler, B. [LINDE KRYOTECHNIK, Pfungen (Switzerland)

    1994-12-31T23:59:59.000Z

    CERN has installed helium refrigeration plants for the LEP 200 project in 1991 with an equivalent refrigeration capacity of 6 kW at 4.5 K. The cold boxes of the plants were specified to be installed in the LEP tunnel and were therefore limited regarding their physical size. The LINDE helium refrigeration plant combines an extremely compact construction with a remarkably good cycle efficiency. It was in part achieved by arranging 3 expansion turbines in the temperature region below 20 K, one of which expands to roughly saturated liquid. The paper describes the system, the results of performance measurements, and the experience obtained during more than one year of operation.

  14. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, Emanuel M. (Los Alamos, NM)

    1987-01-01T23:59:59.000Z

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  15. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1987-02-10T23:59:59.000Z

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  16. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOE Patents [OSTI]

    Honig, E.M.

    1984-06-05T23:59:59.000Z

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  17. CORRELATION BETWEEN PEAK ENERGY AND PEAK LUMINOSITY IN SHORT GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Zhang, Z. B.; Chen, D. Y. [Department of Physics, College of Sciences, Guizhou University, Guiyang 550025 (China); Huang, Y. F., E-mail: sci.zbzhang@gzu.edu.cn, E-mail: hyf@nju.edu.cn [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

    2012-08-10T23:59:59.000Z

    A correlation between the peak luminosity and the peak energy has been found by Yonetoku et al. as L{sub p} {proportional_to}E{sup 2.0}{sub p,i} for 11 pre-Swift long gamma-ray bursts (GRBs). In this study, for a greatly expanded sample of 148 long GRBs in the Swift era, we find that the correlation still exists, but most likely with a slightly different power-law index, i.e., L{sub p} {proportional_to} E{sup 1.7}{sub p,i}. In addition, we have collected 17 short GRBs with necessary data. We find that the correlation of L{sub p} {proportional_to} E{sup 1.7}{sub p,i} also exists for this sample of short events. It is argued that the radiation mechanism of both long and short GRBs should be similar, i.e., of quasi-thermal origin caused by the photosphere, with the dissipation occurring very near the central engine. Some key parameters of the process are constrained. Our results suggest that the radiation processes of both long and short bursts may be dominated by thermal emission, rather than by the single synchrotron radiation. This might put strong physical constraints on the theoretical models.

  18. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, Russell B. (Oakland, CA)

    1987-01-01T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  19. Pulse shaping with transmission lines

    DOE Patents [OSTI]

    Wilcox, R.B.

    1985-08-15T23:59:59.000Z

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  20. Efficient optical pulse stacker system

    DOE Patents [OSTI]

    Seppala, Lynn G. (Pleasanton, CA); Haas, Roger A. (Pleasanton, CA)

    1982-01-01T23:59:59.000Z

    Method and apparatus for spreading and angle-encoding each pulse of a multiplicity of small area, short pulses into several temporally staggered pulses by use of appropriate beam splitters, with the optical elements being arranged so that each staggered pulse is contiguous with one or two other such pulses, and the entire sequence of stacked pulses comprising a single, continuous long pulse. The single long pulse is expanded in area, and then doubly passed through a nonstorage laser amplifier such as KrF. After amplification, the physically separated, angle-encoded and temporally staggered pulses are recombined into a single pulse of short duration. This high intensity output beam is well collimated and may be propagated over long distance, or used for irradiating inertial confinement fusion targets.

  1. Effect of asymmetry in peak profiles on solar oscillation frequencies

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    1999-11-02T23:59:59.000Z

    Most helioseismic analyses are based on solar oscillations frequencies obtained by fitting symmetric peak profiles to the power spectra. However, it has now been demonstrated that the peaks are not symmetric. In this work we study the effects of asymmetry of the peak profiles on the solar oscillations frequencies of p-modes for low and intermediate degrees. We also investigate how the resulting shift in frequencies affects helioseismic inferences.

  2. Photoconductive circuit element pulse generator

    DOE Patents [OSTI]

    Rauscher, Christen (Alexandria, VA)

    1989-01-01T23:59:59.000Z

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  3. Microgrid Dispatch for Macrogrid Peak-Demand Mitigation

    E-Print Network [OSTI]

    DeForest, Nicholas

    2013-01-01T23:59:59.000Z

    on-peak rates from time-of-use (TOU) tariffs while enhancingTable 1 Time of Use Electricity Tariff at SRJ Period Summer

  4. affect peak oxidative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    establish a monotonicity result that indicates fuel supply Todd, Michael J. 119 Potential Peak Load Reductions From Residential Energy Efficient Upgrades Texas A&M University -...

  5. assisting daytime peaking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models are deterministic Minnesota, University of 105 Distributed Battery Control for Peak Power Shaving in Datacenters Computer Technologies and Information Sciences Websites...

  6. artery peak systolic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power spectrum. Michael P. Hobson 1996-11-26 69 COMMITTEE FINAL REPORT REVISED SHORTTERM PEAK Energy Storage, Conversion and Utilization Websites Summary: , weather adjustment,...

  7. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Conference Paper: Structural Analysis of the Desert Peak-Brady Geothermal Fields, Northwestern Nevada: Implications for...

  8. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant...

  9. Residential implementation of critical-peak pricing of electricity

    E-Print Network [OSTI]

    Herter, Karen

    2006-01-01T23:59:59.000Z

    to time-of-day electricity pricing: first empirical results.S. The trouble with electricity markets: understandingresidential peak-load electricity rate structures. Journal

  10. annihilation coincidence peak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Fedorov; Julia M. Mikhailova; Peter A. Volkov 2011-12-05 3 (2013) 128 Data Center Demand Response: Avoiding the Coincident Peak via Computer Technologies and Information...

  11. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar [ORNL] [ORNL; West, David L [ORNL] [ORNL; Mallow, Anne M [ORNL] [ORNL

    2012-01-01T23:59:59.000Z

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  12. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator

    E-Print Network [OSTI]

    650-nJ pulses from a cavity-dumped Yb:fiber- pumped ultrafast optical parametric oscillator Tobias.p.lamour@hw.ac.uk Abstract: Sub-250-fs pulses with energies of up to 650 nJ and peak powers up to 2.07 MW were generated from a cavity-dumped optical parametric oscillator, synchronously-pumped at 15.3 MHz with sub-400-fs pulses from

  13. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, C.

    1998-03-24T23:59:59.000Z

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera. 5 figs.

  14. Laser pulse sampler

    DOE Patents [OSTI]

    Vann, Charles (Fremont, CA)

    1998-01-01T23:59:59.000Z

    The Laser Pulse Sampler (LPS) measures temporal pulse shape without the problems of a streak camera. Unlike the streak camera, the laser pulse directly illuminates a camera in the LPS, i.e., no additional equipment or energy conversions are required. The LPS has several advantages over streak cameras. The dynamic range of the LPS is limited only by the range of its camera, which for a cooled camera can be as high as 16 bits, i.e., 65,536. The LPS costs less because there are fewer components, and those components can be mass produced. The LPS is easier to calibrate and maintain because there is only one energy conversion, i.e., photons to electrons, in the camera.

  15. Pulse shaping system

    DOE Patents [OSTI]

    Skeldon, M.D.; Letzring, S.A.

    1999-03-23T23:59:59.000Z

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses. 8 figs.

  16. Pulse shaping system

    DOE Patents [OSTI]

    Skeldon, Mark D. (Penfield, NY); Letzring, Samuel A. (Jemez Springs, NM)

    1999-03-23T23:59:59.000Z

    Temporally shaped electrical waveform generation provides electrical waveforms suitable for driving an electro-optic modulator (EOM) which produces temporally shaped optical laser pulses for inertial confinement fusion (ICF) research. The temporally shaped electrical waveform generation is carried out with aperture coupled transmission lines having an input transmission line and an aperture coupled output transmission line, along which input and output pulses propagate in opposite directions. The output electrical waveforms are shaped principally due to the selection of coupling aperture width, in a direction transverse to the lines, which varies along the length of the line. Specific electrical waveforms, which may be high voltage (up to kilovolt range), are produced and applied to the EOM to produce specifically shaped optical laser pulses.

  17. Pulse power linac

    DOE Patents [OSTI]

    Villa, Francesco (Alameda, CA)

    1990-01-01T23:59:59.000Z

    A linear acceleration for charged particles is constructed of a plurality of transmission line sections that extend between a power injection region and an accelerating region. Each line section is constructed of spaced plate-like conductors and is coupled to an accelerating gap located at the accelerating region. Each gap is formed between a pair of apertured electrodes, with all of the electrode apertures being aligned along a particle accelerating path. The accelerating gaps are arranged in series, and at the injection region the line sections are connected in parallel. At the injection region a power pulse is applied simultaneously to all line sections. The line sections are graduated in length so that the pulse reaches the gaps in a coordinated sequence whereby pulse energy is applied to particles as they reach each of the gaps along the accelerating path.

  18. Pulsed neutron detector

    DOE Patents [OSTI]

    Robertson, deceased, J. Craig (late of Albuquerque, NM); Rowland, Mark S. (Livermore, CA)

    1989-03-21T23:59:59.000Z

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  19. On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    On Transforming Spectral Peaks in Voice Conversion Elizabeth Godoy 1 , Olivier Rosec1 , Thierry.chonavel@telecom-bretagne.eu Abstract This paper explores the benefits of transforming spectral peaks in voice conversion. First, in examining classic GMM- based transformation with cepstral coefficients, we show that the lack of transformed

  20. Distributed Battery Control for Peak Power Shaving in Datacenters

    E-Print Network [OSTI]

    Simunic, Tajana

    Distributed Battery Control for Peak Power Shaving in Datacenters Baris Aksanli and Tajana Rosing-physical systems with continuous performance and power measurements, and real-time control decisions related to shave peak power demands. Our novel distributed battery control design has no performance impact

  1. PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT

    E-Print Network [OSTI]

    Laughlin, Robert B.

    PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC OF WORLD OIL PRODUCTION III. WHY TRANSITION WILL BE TIME CONSUMING IV. LESSONS FROM PAST EXPERIENCE V REMARKS APPENDICES #12;4 EXECUTIVE SUMMARY The peaking of world oil production presents the U

  2. Peaks of Otter Soil and Water Conservation District

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    leadership and education to sustain and utilize Bedford's natural resources in a manner that will enhancePeaks of Otter Soil and Water Conservation District Annual Report FY 2014 1071ATurnpikeRd.Bedford,VA24523 "The Peaks of Otter Soil and Water Con- servation District, with its partners, will provide

  3. Bunch Compressor for small Emittances and high Peak Currents

    E-Print Network [OSTI]

    Bunch Compressor for small Emittances and high Peak Currents the VUV Free­Electron Laser Frank Stulle University Hamburg #12; #12; Bunch Compressor for small Emittances and high Peak Currents the VUV longitudinally in two magnetic chicanes. first chicane modified version bunch compressor (BC2) which TTF1

  4. TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

  5. P3DDT Peak Profile Analysis 4.1 Introduction

    E-Print Network [OSTI]

    Winokur, Michael

    81 Chapter 4 P3DDT Peak Profile Analysis 4.1 Introduction The increasing molecular level complexity of paracrystal order are given in Ref. [36]. #12; 82 CHAPTER 4. P3DDT PEAK PROFILE ANALYSIS The well are the primary reasons why few have attempted apply­ ing this methodology to polymer systems. P3DDT is a polymer

  6. Smoothing the Energy Consumption: Peak Demand Reduction in Smart Grid

    E-Print Network [OSTI]

    Li, Xiang-Yang

    for autonomous demand side management within one house. The DRS devices are able to sense and control the peak energy consumption or demand. We assume that several appliances within one building access to oneSmoothing the Energy Consumption: Peak Demand Reduction in Smart Grid Shaojie Tang , Qiuyuan Huang

  7. SNMR pulse sequence phase cycling

    DOE Patents [OSTI]

    Walsh, David O; Grunewald, Elliot D

    2013-11-12T23:59:59.000Z

    Technologies applicable to SNMR pulse sequence phase cycling are disclosed, including SNMR acquisition apparatus and methods, SNMR processing apparatus and methods, and combinations thereof. SNMR acquisition may include transmitting two or more SNMR pulse sequences and applying a phase shift to a pulse in at least one of the pulse sequences, according to any of a variety cycling techniques. SNMR processing may include combining SNMR from a plurality of pulse sequences comprising pulses of different phases, so that desired signals are preserved and indesired signals are canceled.

  8. Intense terahertz pulses from SLAC electron beams using coherent transition radiation

    SciTech Connect (OSTI)

    Wu Ziran; Fisher, Alan S.; Hogan, Mark; Loos, Henrik [Accelerator Directorate, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Goodfellow, John [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Fuchs, Matthias [Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Daranciang, Dan [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Lindenberg, Aaron [Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2013-02-15T23:59:59.000Z

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/A) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  9. Active high-power RF switch and pulse compression system

    DOE Patents [OSTI]

    Tantawi, Sami G. (San Mateo, CA); Ruth, Ronald D. (Woodside, CA); Zolotorev, Max (Mountain View, CA)

    1998-01-01T23:59:59.000Z

    A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.

  10. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01T23:59:59.000Z

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  11. Evaluation of Light-Triggered Thyristors for Pulsed Power Applications

    SciTech Connect (OSTI)

    Tully, L K; Fulkerson, E S; Goerz, D A; Speer, R D

    2008-05-20T23:59:59.000Z

    Lawrence Livermore National Laboratory has many needs for high reliability, high peak current, high di/dt switches. Solid-state switch technology offers the demonstrated advantage of reliability under a variety of conditions. Light-triggered switches operate with a reduced susceptibility to electromagnetic interference commonly found within pulsed power environments. Despite the advantages, commercially available solid-state switches are not typically designed for the often extreme pulsed power requirements. Testing was performed to bound the limits of devices for pulsed power applications beyond the manufacturers specified ratings. To test the applicability of recent commercial light-triggered solid-state designs, an adjustable high current switch test stand was assembled. Results from testing and subsequent selected implementations are presented.

  12. HIGH ENERGY PULSED POWER SYSTEM FOR AGS SUPER NEUTRINO FOCUSING HORN.

    SciTech Connect (OSTI)

    ZHANG, S.Y.; SANDBERG, J.; WENG, W.-T.

    2005-05-16T23:59:59.000Z

    This paper present a preliminary design of a 300 kA, 2.5 Hz pulsed power system. This system will drive the focusing horn of proposed Brookhaven AGS Neutrino Super Beam Facility for Very Long Baseline Neutrino Oscillation Experiment. The peak output power of the horn pulsed power system will reach Giga-watts, and the upgraded AGS will be capable of delivering 1 MW in beam power.

  13. An analysis of peak traffic demand at signalized urban intersections

    E-Print Network [OSTI]

    Drew, Donald R

    1961-01-01T23:59:59.000Z

    (3 LANES) 350 705 7:15 725 7:35 7:45 7:55 805 TIME INTERVAL TYPICAL PEAK HOUR 5 MIN. TRAFFIC FLOWS 3 ? LANE FREEWAY 100 90 80 UI Z 3 70 0 PEAK RATES OF FLOW FORT WORTH UNIFORM ARRIVALS 0 ~ o170 EQUIVALENT RATE OF FLOW 60 50 O... {Figure 3), it is seen thai from 7:10 A. M. to 7:45 A. Lvf . the average hourly rate of flow is exceeded. If the mid-points of the five-minute ordinates are connected, a polygon is formed which:ntersects the PHV at the extremities of the peak period...

  14. Control system analysis for off-peak auxiliary heating of passive solar systems

    SciTech Connect (OSTI)

    Murray, H.S.; Melsa, J.L.; Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    A computer simulation method is presented for the design of an electrical auxiliary energy system for passive solar heated structures. The system consists of electrical mats buried in the ground underneath the structure. Energy is stored in the ground during utility off-peak hours and released passively to the heated enclosure. An optimal control strategy is used to determine the system design parameters of depth of mat placement and minimum instaled electrical heating capacity. The optimal control applies combinations of fixed duration energy pulses to the heater, which minimize the room temperature error-squared for each day, assuming advance knowledge of the day's weather. Various realizable control schemes are investigated in an attempt to find a system that approaches the performance of the optimal control system.

  15. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18T23:59:59.000Z

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. Specific energy for pulsed laser rock drilling.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Kornecki, G.; Gahan, B. C.; Parker, R. A.; Batarseh, S.; Graves, R. M.; Figueroa, H.; Skinner, N.; Technology Development

    2003-02-01T23:59:59.000Z

    Application of advanced high power laser technology to oil and gas well drilling has been attracting significant research interests recently among research institutes, petroleum industries, and universities. Potential laser or laser-aided oil and gas well drilling has many advantages over the conventional rotary drilling, such as high penetration rate, reduction or elimination of tripping, casing, and bit costs, and enhanced well control, perforating and side-tracking capabilities. The energy required to remove a unit volume of rock, namely the specific energy (SE), is a critical rock property data that can be used to determine both the technical and economic feasibility of laser oil and gas well drilling. When a high power laser beam is applied on a rock, it can remove the rock by thermal spallation, melting, or vaporization depending on the applied laser energy and the way the energy is applied. The most efficient rock removal mechanism would be the one that requires the minimum energy to remove a unit volume of rock. Samples of sandstone, shale, and limestone were prepared for laser beam interaction with a 1.6 kW pulsed Nd:yttrium-aluminum-garnet laser beam to determine how the beam size, power, repetition rate, pulse width, exposure time and energy can affect the amount of energy transferred to the rock for the purposes of spallation, melting, and vaporization. The purpose of the laser rock interaction experiment was to determine the optimal parameters required to remove a maximum rock volume from the samples while minimizing energy input. Absorption of radiant energy from the laser beam gives rise to the thermal energy transfer required for the destruction and removal of the rock matrix. Results from the tests indicate that each rock type has a set of optimal laser parameters to minimize specific energy (SE) values as observed in a set of linear track and spot tests. As absorbed energy outpaces heat diffusion by the rock matrix, local temperatures can rise to the melting points of the minerals and quickly increase observed SE values. Tests also clearly identified the spallation and melting zones for shale samples while changing the laser power. The lowest SE values are obtained in the spalling zone just prior to the onset of mineral melt. The laser thermally spalled and saw mechanically cut rocks show similarity of surface microstructure. The study also found that increasing beam repetition rate within the same material removal mechanism would increase the material removal rate, which is believed due to an increase of maximum temperature, thermal cycling frequency, and intensity of laser-driven shock wave within the rock.

  17. Quantifying pharmaceutical film coating with optical coherence tomography and terahertz pulsed imaging: an evaluation

    E-Print Network [OSTI]

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J. Axel

    2015-06-11T23:59:59.000Z

    thickness within the thickness tolerance. However, when the leap between neighbouring peaks becomes too large leading to diverging coating thickness, the algorithm backtracks to a previously identified peak with a thickness value that is closest... -release tablet film coating. Eur J Pharm Biopharm 71(1):117-123. 18. Shen YC, Taday PF 2008. Development and Application of Terahertz Pulsed Imaging for Nondestructive Inspection of Pharmaceutical Tablet. Selected Topics in Quantum Electronics, IEEE...

  18. Rapidly pulsed TRIGA reactor: an intense source for neutron scattering experiments

    SciTech Connect (OSTI)

    Whittemore, William L. [General Atomics, San Diego, CA (United States)

    1994-07-01T23:59:59.000Z

    The need for ever increasing intensities of thermal neutron beams for neutron scattering experiments has stimulated the development of intense steady state research reactors such as the 53-MW ILL reactor at Grenoble. The source flux at the reactor end of the beam ports is typically 10{sup 15}n/cm{sup 2}.s for its thermal neutron beams. To achieve still higher source fluxes of neutrons, the family of pulsing IBR was developed. In this type of facility the pulse repetition rate is low ({approx}5/sec) typically but the instantaneous peak fluxes are high, ranging up to 5 x 10{sup 15}n/cm{sup 2}.s at the surface of the moderator. Another type of intense neutron source is that exemplified by the proton synchrotron accelerators with their spallation targets. The first of these has been the IPNS at Argonne National laboratory. This neutron source produces 30 pulses per second with an individual peak thermal neutron intensity of 4 x 10{sup 14}n/cm{sup 2}.s from the moderator. An equivalent, alternative intense neutron source can be based on a rapidly pulsed TRIGA reactor. With a pulsed thermal neutron intensity of more than 10{sup 15}n/cm{sup 2}.s occurring 50 times per second at the source end of beam ports, the rapidly pulsed TRIGA reactor combines some of the best features of the pulsed fast reactors such as IBR-2 and the spallation neutron sources but with the safety of a thermal neutron reactor with a large, prompt, negative temperature coefficient of reactivity. The initial concept of the rapidly pulsed TRIGA reactor was developed and initially reported in 1966. Subsequently, the standard fuel format for U-ZrH{sub x} fuel has been developed to include a small diameter fuel particularly well suited for the rapidly pulsed application. This fuel is LEU, satisfying all the requirements for non proliferation, and has a very long core life time. In the proposed application, the peak fuel temperature does not vary more than 1 deg. C from the average peak fuel temperatures during each pulse. Hence long term metallurgical stability is thus assured. With a core lifetime that can be designed for up to 10,000 MWD, operation at an average power of 10 MW (with peak pulsed powers of {approx}50 MW) with an equilibrium core can be conducted for 1000 full power days. (author)

  19. artificial extra peaks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Gas Units Peaking Hydro from manufacturer Regional utility IRPs Gas Turbine World (2013 Handbook) Black & Veatch analysis First Page Previous Page 1 2 3 4 5 6 7...

  20. Optimization of Demand Response Through Peak Shaving , D. Craigie

    E-Print Network [OSTI]

    Todd, Michael J.

    Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

  1. Off peak cooling using an ice storage system

    E-Print Network [OSTI]

    Quinlan, Edward Michael

    1980-01-01T23:59:59.000Z

    The electric utilities in the United States have entered a period of slow growth due to a combination of increased capital costs and a staggering rise in the costs for fuel. In addition to this, the rise in peak power ...

  2. Potential Peak Load Reductions From Residential Energy Efficient Upgrades

    E-Print Network [OSTI]

    Meisegeier, D.; Howes, M.; King, D.; Hall, J.

    2002-01-01T23:59:59.000Z

    the potential peak load reductions from residential energy efficiency upgrades in hot and humid climates. First, a baseline scenario is established. Then, the demand and consumption impacts of individual upgrade measures are assessed. Several of these upgrades...

  3. artery peak velocity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The time series analysis of Doppler velocity maps show enhanced power in the sunspot umbra at higher frequencies and in the penumbra at lower frequencies. We find that the peak...

  4. Peak thrust operation of linear induction machines from parameter identification

    SciTech Connect (OSTI)

    Zhang, Z.; Eastham, T.R.; Dawson, G.E. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical and Computer Engineering

    1995-12-31T23:59:59.000Z

    Various control strategies are being used to achieve high performance operation of linear drives. To maintain minimum volume and weight of the power supply unit on board the transportation vehicle, peak thrust per unit current operation is a desirable objective. True peak thrust per unit current through slip control is difficult to achieve because the parameters of linear induction machines vary during normal operation. This paper first develops a peak thrust per unit current control law based on the per-phase equivalent circuit for linear induction machines. The algorithm for identification of the variable parameters in induction machines is then presented. Application to an operational linear induction machine (LIM) demonstrates the utility of this algorithm. The control strategy is then simulated, based on an operational transit LIM, to show the capability of achieving true peak thrust operation for linear induction machines.

  5. Observation of low magnetic field density peaks in helicon plasma

    SciTech Connect (OSTI)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.; Kumar, Sunil; Saxena, Y. C. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2013-04-15T23:59:59.000Z

    Single density peak has been commonly observed in low magnetic field (<100 G) helicon discharges. In this paper, we report the observations of multiple density peaks in low magnetic field (<100 G) helicon discharges produced in the linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. Experiments are carried out using argon gas with m = +1 right helical antenna operating at 13.56 MHz by varying the magnetic field from 0 G to 100 G. The plasma density varies with varying the magnetic field at constant input power and gas pressure and reaches to its peak value at a magnetic field value of {approx}25 G. Another peak of smaller magnitude in density has been observed near 50 G. Measurement of amplitude and phase of the axial component of the wave using magnetic probes for two magnetic field values corresponding to the observed density peaks indicated the existence of radial modes. Measured parallel wave number together with the estimated perpendicular wave number suggests oblique mode propagation of helicon waves along the resonance cone boundary for these magnetic field values. Further, the observations of larger floating potential fluctuations measured with Langmuir probes at those magnetic field values indicate that near resonance cone boundary; these electrostatic fluctuations take energy from helicon wave and dump power to the plasma causing density peaks.

  6. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01T23:59:59.000Z

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  7. Laser pulse detector

    DOE Patents [OSTI]

    Mashburn, Douglas N. (Knoxville, TN); Akerman, M. Alfred (Knoxville, TN)

    1981-01-01T23:59:59.000Z

    A laser pulse detector is provided which is small and inexpensive and has the capability of detecting laser light of any wavelength with fast response (less than 5 nanoseconds rise time). The laser beam is focused onto the receiving end of a graphite rod coaxially mounted within a close-fitting conductive, open-end cylindrical housing so that ablation and electric field breakdown of the resulting plasma occurs due to a bias potential applied between the graphite rod and housing. The pulse produced by the breakdown is transmitted through a matched impedance coaxial cable to a recording device. The cable is connected with its central lead to the graphite rod and its outer conductor to the housing.

  8. Energy-Dependent Gamma-Ray Burst Peak Durations and Blast-Wave Deceleration

    E-Print Network [OSTI]

    James Chiang

    1998-05-22T23:59:59.000Z

    Temporal analyses of the prompt gamma-ray and X-ray light curves of gamma-ray bursts reveal a tendency for the burst pulse time scales to increase with decreasing energy. For an ensemble of BATSE bursts, Fenimore et al. (1995) show that the energy dependence of burst peak durations can be represented by $\\Delta t \\propto E^{-\\gamma}$ with $\\gamma \\simeq 0.4$--0.45. This power-law dependence has led to the suggestion that this effect is due to radiative processes, most notably synchrotron cooling of the non-thermal particles which produce the radiation. Here we show that a similar power-law dependence occurs, under certain assumptions, in the context of the blast-wave model and is a consequence of the deceleration of the blast-wave. This effect will obtain whether or not synchrotron cooling is important, but different degrees of cooling will cause variations in the energy dependence of the peak durations.

  9. Ptychographic ultrafast pulse reconstruction

    E-Print Network [OSTI]

    Spangenberg, D; Brügmann, M H; Feurer, T

    2014-01-01T23:59:59.000Z

    We demonstrate a new ultrafast pulse reconstruction modality which is somewhat reminiscent of frequency resolved optical gating but uses a modified setup and a conceptually different reconstruction algorithm that is derived from ptychography. Even though it is a second order correlation scheme it shows no time ambiguity. Moreover, the number of spectra to record is considerably smaller than in most other related schemes which, together with a robust algorithm, leads to extremely fast convergence of the reconstruction.

  10. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16T23:59:59.000Z

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  11. Compression of ultrashort UV pulses in a self-defocusing gas

    SciTech Connect (OSTI)

    Berge, Luc [CEA-DAM, DIF, F-91297 Arpajon (France); Koehler, Christian [Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden (Germany); Skupin, Stefan [Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden (Germany); Friedrich Schiller University, Institute of Condensed Matter Theory and Optics, D-07743 Jena (Germany)

    2010-01-15T23:59:59.000Z

    Compression of UV femtosecond laser pulses focused into a gas cell filled with Xe is reported numerically. With a large negative Kerr index and normal dispersion, Xe promotes temporal modulational instability (MI), which can be monitored to shorten approx100 fs pulses to robust, singly peaked waveforms exhibiting a fourfold compression factor. Combining standard MI theory with a variational approach allows us to predict the beam parameters suitable for efficient compression. At powers <=30 MW, nonlinear dispersion is shown to shift the pulse temporal profile to the rear zone.

  12. Laser beam pulse formatting method

    DOE Patents [OSTI]

    Daly, T.P.; Moses, E.I.; Patterson, R.W.; Sawicki, R.H.

    1994-08-09T23:59:59.000Z

    A method for formatting a laser beam pulse using one or more delay loops is disclosed. The delay loops have a partially reflective beam splitter and a plurality of highly reflective mirrors arranged such that the laser beam pulse enters into the delay loop through the beam splitter and circulates therein along a delay loop length defined by the mirrors. As the laser beam pulse circulates within the delay loop a portion thereof is emitted upon each completed circuit when the laser beam pulse strikes the beam splitter. The laser beam pulse is thereby formatted into a plurality of sub-pulses. The delay loops are used in combination to produce complex waveforms by combining the sub-pulses using additive waveform synthesis. 8 figs.

  13. High-speed pulse-shape generator, pulse multiplexer

    DOE Patents [OSTI]

    Burkhart, Scott C. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    The invention combines arbitrary amplitude high-speed pulses for precision pulse shaping for the National Ignition Facility (NIF). The circuitry combines arbitrary height pulses which are generated by replicating scaled versions of a trigger pulse and summing them delayed in time on a pulse line. The combined electrical pulses are connected to an electro-optic modulator which modulates a laser beam. The circuit can also be adapted to combine multiple channels of high speed data into a single train of electrical pulses which generates the optical pulses for very high speed optical communication. The invention has application in laser pulse shaping for inertial confinement fusion, in optical data links for computers, telecommunications, and in laser pulse shaping for atomic excitation studies. The invention can be used to effect at least a 10.times. increase in all fiber communication lines. It allows a greatly increased data transfer rate between high-performance computers. The invention is inexpensive enough to bring high-speed video and data services to homes through a super modem.

  14. Control and generation of localized pulses in passively mode-locked semiconductor lasers

    E-Print Network [OSTI]

    Marconi, M; Camelin, P; Chaparro, D; Balle, S; Giudici, M

    2015-01-01T23:59:59.000Z

    We show experimentally and theoretically that localized pulses can be generated from an electrically biased $200\\,\\mu$m multi-transverse mode Vertical-Cavity Surface-Emitting Laser. The device is passively mode-locked using optical feedback from a distant Resonant Saturable Absorber Mirror and it is operated below threshold. We observe multistability between the off solution and a large variety of pulsating solutions with different number and arrangements of pulses per round-trip, thus indicating that the mode-locked pulses are localized, i.e. mutually independent. We show that a modulation of the bias current allows controlling the number of the pulses travelling within the cavity, thus suggesting that our system can be operated as an arbitrary pattern generator of 10 ps pulses and 1 W peak power.

  15. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect (OSTI)

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H. [Cryogenic Engineering Division, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Shushanhu Road 350, Hefei, Anhui 230031 (China)

    2014-01-29T23:59:59.000Z

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  16. OBSERVATIONS OF CRAB GIANT PULSES IN 20-84 MHz USING LWA1

    SciTech Connect (OSTI)

    Ellingson, S. W.; Wolfe, C. N. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24060 (United States); Clarke, T. E.; Hicks, B. C.; Wilson, T. L. [US Naval Research Laboratory, Code 7213, Washington, DC 20375 (United States); Craig, J.; Taylor, G. B. [Department of Physics and Astronomy, University of New Mexico, Albuquerque NM 87131 (United States); Lazio, T. J. W. [Jet Propulsion Laboratory, California Institute of Technology, MS 138-308, 4800 Oak Grove Dr., Pasadena, CA 91109 (United States)

    2013-05-10T23:59:59.000Z

    We report the detection and observed characteristics of giant pulses from the Crab Nebula pulsar (B0531+21) in four frequency bands covering 20-84 MHz using the recently completed Long Wavelength Array Station 1 (LWA1) radio telescope. In 10 hr of observations distributed over a 72 day period in fall of 2012, 33 giant pulses having peak flux densities between 400 Jy and 2000 Jy were detected. Twenty-two of these pulses were detected simultaneously in channels of 16 MHz bandwidth centered at 44 MHz, 60 MHz, and 76 MHz, including one pulse which was also detected in a channel centered at 28 MHz. We quantify statistics of pulse amplitude and pulse shape characteristics, including pulse broadening. Amplitude statistics are consistent with expectations based on extrapolations from previous work at higher and lower frequencies. Pulse broadening is found to be relatively high, but not significantly greater than expected. We present procedures that have been found to be effective for observing giant pulses in this frequency range.

  17. Pulse transformer R and D for NLC klystron pulse modulator

    SciTech Connect (OSTI)

    Akemoto, M.; Gold, S.; Krasnykh, A.; Koontz, R.

    1997-07-01T23:59:59.000Z

    The authors have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and requires a larger core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and a pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests using a klystron load are also presented.

  18. Development of the pulse transformer for NLC klystron pulse modulator

    SciTech Connect (OSTI)

    Akemoto, M.; Gold, S.; Koontz, R.; Krasnykh, A.

    1997-05-01T23:59:59.000Z

    We have studied a conventional pulse transformer for the NLC klystron pulse modulator. The transformer has been analyzed using a simplified lumped circuit model. It is found that a fast rise time requires low leakage inductance and low distributed capacitance and can be realized by reducing the number of secondary turns, but it produces larger pulse droop and core size. After making a tradeoff among these parameters carefully, a conventional pulse transformer with a rise time of 250ns and pulse droop of 3.6% has been designed and built. The transmission characteristics and pulse time-response were measured. The data were compared with the model. The agreement with the model was good when the measured values were used in the model simulation. The results of the high voltage tests are also presented.

  19. SEPARATION OF OVERLAPPED ELECTROCHEMICAL PEAKS USING THE KALMAN FILTER

    SciTech Connect (OSTI)

    Brown, T.F.; Brown, S.D.

    1981-01-01T23:59:59.000Z

    A major limitation in the use of electrochemical techniques for the quantitative analysis of mixtures is the difficulty of resolving overlapped peaks. This problem is further complicated by the low signal-to-noise ratios often encountered in trace analysis and by the use of electrochemical techniques that produce broad, asymmetric waveforms. This paper demonstrates the use of the Kalman Filter for multi-component analysis of linear sweep voltammograms. Even with the broad, asymmetric LSV waveform, synthetic data runs show that a peak separation of as little as 2.5 mV is sufficient for peak deconvolution in the presence of random noise. Besides separating overlapped peaks, the methods also filters the noise from the signal and can be used to separate the capacitive current component from the faradaic current component. The method is validated further using the Cd(II)/In(III) and Cd(II)/In(III)/Pb(II) systems which show peak separations of 40 to 200 mV. The use of the techniques with two other voltammetric waveforms is also demonstrated.

  20. Wavelet Approach for Operational Gamma Spectral Peak Detection - Preliminary Assessment

    SciTech Connect (OSTI)

    ,

    2012-02-01T23:59:59.000Z

    Gamma spectroscopy for radionuclide identifications typically involves locating spectral peaks and matching the spectral peaks with known nuclides in the knowledge base or database. Wavelet analysis, due to its ability for fitting localized features, offers the potential for automatic detection of spectral peaks. Past studies of wavelet technologies for gamma spectra analysis essentially focused on direct fitting of raw gamma spectra. Although most of those studies demonstrated the potentials of peak detection using wavelets, they often failed to produce new benefits to operational adaptations for radiological surveys. This work presents a different approach with the operational objective being to detect only the nuclides that do not exist in the environment (anomalous nuclides). With this operational objective, the raw-count spectrum collected by a detector is first converted to a count-rate spectrum and is then followed by background subtraction prior to wavelet analysis. The experimental results suggest that this preprocess is independent of detector type and background radiation, and is capable of improving the peak detection rates using wavelets. This process broadens the doors for a practical adaptation of wavelet technologies for gamma spectral surveying devices.

  1. Coiled transmission line pulse generators

    DOE Patents [OSTI]

    McDonald, Kenneth Fox (Columbia, MO)

    2010-11-09T23:59:59.000Z

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  2. Plasma dynamics in a discharge produced by a pulsed dual frequency inductively coupled plasma source

    SciTech Connect (OSTI)

    Mishra, Anurag; Lee, Sehan [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Yeom, Geun Y., E-mail: gyyeom@skku.edu [Department of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746, South Korea and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of)

    2014-11-01T23:59:59.000Z

    Using a Langmuir probe, time resolved measurements of plasma parameters were carried out in a discharge produced by a pulsed dual frequency inductively coupled plasma source. The discharge was sustained in an argon gas environment at a pressure of 10 mTorr. The low frequency (P{sub 2} {sub MHz}) was pulsed at 1 kHz and a duty ratio of 50%, while high frequency (P{sub 13.56} {sub MHz}) was maintained in the CW mode. All measurements were carried out at the center of the discharge and 20?mm above the substrate. The results show that, at a particular condition (P{sub 2} {sub MHz}?=?200 W and P{sub 13.56} {sub MHz?}=?600 W), plasma density increases with time and stabilizes at up to ?200 ?s after the initiation of P{sub 2} {sub MHz} pulse at a plasma density of (2?×?10{sup 17} m{sup ?3}) for the remaining duration of pulse “on.” This stabilization time for plasma density increases with increasing P{sub 2} {sub MHz} and becomes ?300 ?s when P{sub 2} {sub MHz} is 600 W; however, the growth rate of plasma density is almost independent of P{sub 2} {sub MHz}. Interestingly, the plasma density sharply increases as the pulse is switched off and reaches a peak value in ?10 ?s, then decreases for the remaining pulse “off-time.” This phenomenon is thought to be due to the sheath modulation during the transition from “pulse on” to “pulse off” and partly due to RF noise during the transition period. The magnitude of peak plasma density in off time increases with increasing P{sub 2} {sub MHz}. The plasma potential and electron temperature decrease as the pulse develops and shows similar behavior to that of the plasma density when the pulse is switched off.

  3. SLIM, Short-pulse Technology for High Gradient Induction Accelerators

    SciTech Connect (OSTI)

    Arntz, Floyd; /Diversified Tech., Bedford; Kardo-Sysoev, A.; /Ioffe Phys. Tech. Inst.; Krasnykh, A.; /SLAC

    2008-12-16T23:59:59.000Z

    A novel short-pulse concept (SLIM) suited to a new generation of a high gradient induction particle accelerators is described herein. It applies advanced solid state semiconductor technology and modern microfabrication techniques to a coreless induction method of charged particle acceleration first proven on a macro scale in the 1960's. Because this approach avoids use of magnetic materials there is the prospect of such an accelerator working efficiently with accelerating pulses in the nanosecond range and, potentially, at megahertz pulse rates. The principal accelerator section is envisioned as a stack of coreless induction cells, the only active element within each being a single, extremely fast (subnanosecond) solid state opening switch: a Drift Step Recovery Diode (DSRD). Each coreless induction cell incorporates an electromagnetic pulse compressor in which inductive energy developed within a transmission-line feed structure over a period of tens of nanoseconds is diverted to the acceleration of the passing charge packet for a few nanoseconds by the abrupt opening of the DSRD switch. The duration of this accelerating output pulse--typically two-to-four nanoseconds--is precisely determined by a microfabricated pulse forming line connected to the cell. Because the accelerating pulse is only nanoseconds in duration, longitudinal accelerating gradients approaching 100 MeV per meter are believed to be achievable without inciting breakdown. Further benefits of this approach are that, (1) only a low voltage power supply is required to produce the high accelerating gradient, and, (2) since the DSRD switch is normally closed, voltage stress is limited to a few nanoseconds per period, hence the susceptibility to hostile environment conditions such as ionizing radiation, mismatch (e.g. in medical applications the peak beam current may be low), strong electromagnetic noise levels, etc is expected to be minimal. Finally, we observe the SLIM concept is not limited to linac applications; for instance, it could be employed to both accelerate the beam and to stabilize the superbunch mode of operation in circular track machines.

  4. Estimating market potential for reducing customer peak loads through photovoltaics

    SciTech Connect (OSTI)

    Bryan, J. [Citizens Advisory Panel, Central Islip, NY (United States); Perez, R. [Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

    1996-11-01T23:59:59.000Z

    Past studies have quantified photovoltaics` (PV) peak load matching capability on a utility-wide scale. The purpose of this paper is to estimate the number of utility subloads (e.g., customers, substations) whose peak loads are well matched with solar availability. A simple tool based on the utility scale load-PV match is developed to estimate the market size of customer scale PV applications with high load-PV matches. Illustrative examples of customer owned PV economics are also provided. The authors show that (1) the market size of high load matching PV applications on the subload scale is significant even within utility systems whose load requirements are not particularly well matched with PV output; and (2) the cost of PV as a peak shaving resource for utility customers is approaching competitive levels.

  5. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    SciTech Connect (OSTI)

    Miller, Clay

    2010-01-01T23:59:59.000Z

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  6. Silver Peak Innovative Exploration Project (Ram Power Inc.)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Miller, Clay

    Data generated from the Silver Peak Innovative Exploration Project, in Esmeralda County, Nevada, encompasses a “deep-circulation (amagmatic)” meteoric-geothermal system circulating beneath basin-fill sediments locally blanketed with travertine in western Clayton Valley (lithium-rich brines from which have been mined for several decades). Spring- and shallow-borehole thermal-water geochemistry and geothermometry suggest that a Silver Peak geothermal reservoir is very likely to attain the temperature range 260- 300oF (~125-150oC), and may reach 300-340oF (~150-170oC) or higher (GeothermEx, Inc., 2006). Results of detailed geologic mapping, structural analysis, and conceptual modeling of the prospect (1) support the GeothermEx (op. cit.) assertion that the Silver Peak prospect has good potential for geothermal-power production; and (2) provide a theoretical geologic framework for further exploration and development of the resource. The Silver Peak prospect is situated in the transtensional (regional shearing coupled with extension) Walker Lane structural belt, and squarely within the late Miocene to Pliocene (11 Ma to ~5 Ma) Silver Peak-Lone Mountain metamorphic core complex (SPCC), a feature that accommodated initial displacement transfer between major right-lateral strike- slip fault zones on opposite sides of the Walker Lane. The SPCC consists essentially of a ductiley-deformed lower plate, or “core,” of Proterozoic metamorphic tectonites and tectonized Mesozoic granitoids separated by a regionally extensive, low-angle detachment fault from an upper plate of severely stretched and fractured structural slices of brittle, Proterozoic to Miocene-age lithologies. From a geothermal perspective, the detachment fault itself and some of the upper-plate structural sheets could function as important, if secondary, subhorizontal thermal-fluid aquifers in a Silver Peak hydrothermal system.

  7. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward (Oldsmar, FL)

    1998-11-03T23:59:59.000Z

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  8. Short-Pulse Lasers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-OrganicPulse Beam Transport Tube

  9. L: Shape-based peak identification for ChIPSeq

    E-Print Network [OSTI]

    Valerie Hower; Steven N. Evans; Lior Pachter

    Abstract. We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events.

  10. Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center

    SciTech Connect (OSTI)

    Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

    1996-07-01T23:59:59.000Z

    In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

  11. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01T23:59:59.000Z

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  12. Thermally Simulated 32kW Direct-Drive Gas-Cooled Reactor: Design, Assembly, and Test

    SciTech Connect (OSTI)

    Godfroy, Thomas J.; Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, TD40, Huntsville, Alabama, 35812 (United States); University of Michgan, Dept. of Nuclear Engineering and Radiological Sciences, Ann Arbor MI 48109 (United States); Kapernick, Richard J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2004-02-04T23:59:59.000Z

    One of the power systems under consideration for nuclear electric propulsion is a direct-drive gas-cooled reactor coupled to a Brayton cycle. In this system, power is transferred from the reactor to the Brayton system via a circulated closed loop gas. To allow early utilization, system designs must be relatively simple, easy to fabricate, and easy to test using non-nuclear heaters to closely mimic heat from fission. This combination of attributes will allow pre-prototypic systems to be designed, fabricated, and tested quickly and affordably. The ability to build and test units is key to the success of a nuclear program, especially if an early flight is desired. The ability to perform very realistic non-nuclear testing increases the success probability of the system. In addition, the technologies required by a concept will substantially impact the cost, time, and resources required to develop a successful space reactor power system. This paper describes design features, assembly, and test matrix for the testing of a thermally simulated 32kW direct-drive gas-cooled reactor in the Early Flight Fission - Test Facility (EFF-TF) at Marshall Space Flight Center. The reactor design and test matrix are provided by Los Alamos National Laboratories.

  13. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, R.S.; Todd, R.A.

    1985-04-09T23:59:59.000Z

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  14. Pulsed helium ionization detection system

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  15. LANSCE | News & Media | The Pulse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Pulse September 2012 September | In This Issue From Alex's desk Biennial national neutron scattering conference features strong Lujan Center presence Development of high...

  16. Fast pulse nonthermal plasma reactor

    DOE Patents [OSTI]

    Rosocha, Louis A.

    2005-06-14T23:59:59.000Z

    A fast pulsed nonthermal plasma reactor includes a discharge cell and a charging assembly electrically connected thereto. The charging assembly provides plural high voltage pulses to the discharge cell. Each pulse has a rise time between one and ten nanoseconds and a duration of three to twenty nanoseconds. The pulses create nonthermal plasma discharge within the discharge cell. Accordingly, the nonthermal plasma discharge can be used to remove pollutants from gases or break the gases into smaller molecules so that they can be more efficiently combusted.

  17. Bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2008-10-21T23:59:59.000Z

    A bipolar pulse forming transmission line module for linear induction accelerators having first, second, third, fourth, and fifth planar conductors which form an interleaved stack with dielectric layers between the conductors. Each conductor has a first end, and a second end adjacent an acceleration axis. The first and second planar conductors are connected to each other at the second ends, the fourth and fifth planar conductors are connected to each other at the second ends, and the first and fifth planar conductors are connected to each other at the first ends via a shorting plate adjacent the first ends. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short a high voltage from the first end of the third planar conductor to the first end of the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  18. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, K.

    1983-08-09T23:59:59.000Z

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  19. Systematic Effects in Pulse Shape Analysis of HPGe Detector Signals for Neutrinoless Double-Beta Decay

    E-Print Network [OSTI]

    Victor M Gehman; Steven R Elliott; Dongming Mei

    2010-03-05T23:59:59.000Z

    Pulse shape analysis is an important background reduction and signal identification technique for next generation of neutrinoless double-beta decay experiments examining 76Ge. We present a study of the systematic uncertainties in one such parametric pulse-shape analysis technique for separating multi-site backgrounds from single-site signal events. We examined systematic uncertainties for events in full-energy gamma peaks (predominantly multi-site), double escape peaks (predominantly single-site) and the Compton continuum near double-beta decay endpoint (which will be the dominant background for most neutrinoless double-beta decay searches). In short, we find total (statistical plus systematic) fractional uncertainties in the pulse shape cut survival probabilities of: 6.6%, 1.5% and 3.8% for double-escape, continuum and gamma-ray events respectively.

  20. Doppler cooling with coherent trains of laser pulses and a tunable velocity comb

    SciTech Connect (OSTI)

    Ilinova, Ekaterina; Ahmad, Mahmoud; Derevianko, Andrei [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States)

    2011-09-15T23:59:59.000Z

    We explore the possibility of decelerating and Doppler cooling an ensemble of two-level atoms by a coherent train of short, nonoverlapping laser pulses. We derive analytical expressions for mechanical force exerted by the train. In frequency space the force pattern reflects the underlying frequency comb structure. The pattern depends strongly on the ratio of the atomic lifetime to the repetition time between the pulses and pulse area. For example, in the limit of short lifetimes, the frequency-space peaks of the optical force wash out. We propose to tune the carrier-envelope offset frequency to follow the Doppler-shifted detuning as atoms decelerate; this leads to compression of atomic velocity distribution about comb teeth and results in a ''velocity comb''--a series of narrow equidistant peaks in the velocity space.

  1. The pulsed light curves of Her X-1 as observed by BeppoSAX

    E-Print Network [OSTI]

    D. Dal Fiume; M. Orlandini; G. Cusumano; S. Del Sordo; M. Feroci; F. Frontera; T. Oosterbroek; E. Palazzi; A. N. Parmar; A. Santangelo; A. Segreto

    1997-12-01T23:59:59.000Z

    We report on the timing analysis of the observation of the X-ray binary pulsar Her X-1 performed during the BeppoSAX Science Verification Phase. The observation covered more that two full orbital cycles near the maximum of the main-on in the 35 day cycle of Her X-1. We present the pulse profiles from 0.1 to 100 keV. Major changes are present below 1 keV, where the appearance of a broad peak is interpreted as re-processing from the inner part of the accretion disk, and above 10 keV, where the pulse profile is less structured and the main peak is appreciably harder. The hardness ratios show complex changes with pulse phase at different energies.

  2. Revised Manuscript Estimation of Peak Power Dissipation in VLSI Circuits

    E-Print Network [OSTI]

    Pedram, Massoud

    and a gate-level circuit structure. Last, but not least, the proposed method produces maximum power estimatesRevised Manuscript 1 Estimation of Peak Power Dissipation in VLSI Circuits Using the Limiting Qiu, Massoud Pedram Department of EE-Systems Univ. of Southern California Los Angeles, CA 90089 Email

  3. Firing Excess Refinery Butane in Peaking Gas Turbines

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  4. Piton Peaks, St. Lucia 515 Caribbean Discovery V1

    E-Print Network [OSTI]

    Connor, Ed

    · · · · · #12;V1 Piton Peaks, St. Lucia 515 Caribbean Discovery V1 PRSRTSTD U.S.POSTAGE PERMIT cruise the turquoise waters of the Caribbean. Sail from Miami to the beautiful island of Tortola, home beaches, and explore colorful towns as you discover the Caribbean. Cruise to celebrated ports aboard

  5. Firing Excess Refinery Butane in Peaking Gas Turbines 

    E-Print Network [OSTI]

    Pavone, A.; Schreiber, H.; Zwillenberg, M.

    1989-01-01T23:59:59.000Z

    normal butane production, which will reduce refinery normal butane value and price. Explored is an opportunity for a new use for excess refinery normal butane- as a fuel for utility peaking gas turbines which currently fire kerosene and #2 oil. Our paper...

  6. Disturbance and Landscape Dynamics The Rocky Mountains, Lander's Peak, 1863

    E-Print Network [OSTI]

    Hansen, Andrew J.

    environment. (Pickett and White 1985) Defining and Quantifying Disturbance #12;Frequency - number a specified time. Defining and Quantifying Disturbance #12;Frequency: none Frequency: 250-500 yrs SeverityBioe 515 Disturbance and Landscape Dynamics #12;The Rocky Mountains, Lander's Peak, 1863 Albert

  7. acoustic absorption peak: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic absorption peak First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 On the variations of acoustic...

  8. Peak Dose Assessment for Proposed DOE-PPPO Authorized Limits

    SciTech Connect (OSTI)

    Maldonado, Delis [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States). Independent Environmental Assessment and Verification Program

    2012-06-01T23:59:59.000Z

    The Oak Ridge Institute for Science and Education (ORISE), a U.S. Department of Energy (DOE) prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct a peak dose assessment in support of the Authorized Limits Request for Solid Waste Disposal at Landfill C-746-U at the Paducah Gaseous Diffusion Plant (DOE-PPPO 2011a). The peak doses were calculated based on the DOE-PPPO Proposed Single Radionuclides Soil Guidelines and the DOE-PPPO Proposed Authorized Limits (AL) Volumetric Concentrations available in DOE-PPPO 2011a. This work is provided as an appendix to the Dose Modeling Evaluations and Technical Support Document for the Authorized Limits Request for the C-746-U Landfill at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky (ORISE 2012). The receptors evaluated in ORISE 2012 were selected by the DOE-PPPO for the additional peak dose evaluations. These receptors included a Landfill Worker, Trespasser, Resident Farmer (onsite), Resident Gardener, Recreational User, Outdoor Worker and an Offsite Resident Farmer. The RESRAD (Version 6.5) and RESRAD-OFFSITE (Version 2.5) computer codes were used for the peak dose assessments. Deterministic peak dose assessments were performed for all the receptors and a probabilistic dose assessment was performed only for the Offsite Resident Farmer at the request of the DOE-PPPO. In a deterministic analysis, a single input value results in a single output value. In other words, a deterministic analysis uses single parameter values for every variable in the code. By contrast, a probabilistic approach assigns parameter ranges to certain variables, and the code randomly selects the values for each variable from the parameter range each time it calculates the dose (NRC 2006). The receptor scenarios, computer codes and parameter input files were previously used in ORISE 2012. A few modifications were made to the parameter input files as appropriate for this effort. Some of these changes included increasing the time horizon beyond 1,050 years (yr), and using the radionuclide concentrations provided by the DOE-PPPO as inputs into the codes. The deterministic peak doses were evaluated within time horizons of 70 yr (for the Landfill Worker and Trespasser), 1,050 yr, 10,000 yr and 100,000 yr (for the Resident Farmer [onsite], Resident Gardener, Recreational User, Outdoor Worker and Offsite Resident Farmer) at the request of the DOE-PPPO. The time horizons of 10,000 yr and 100,000 yr were used at the request of the DOE-PPPO for informational purposes only. The probabilistic peak of the mean dose assessment was performed for the Offsite Resident Farmer using Technetium-99 (Tc-99) and a time horizon of 1,050 yr. The results of the deterministic analyses indicate that among all receptors and time horizons evaluated, the highest projected dose, 2,700 mrem/yr, occurred for the Resident Farmer (onsite) at 12,773 yr. The exposure pathways contributing to the peak dose are ingestion of plants, external gamma, and ingestion of milk, meat and soil. However, this receptor is considered an implausible receptor. The only receptors considered plausible are the Landfill Worker, Recreational User, Outdoor Worker and the Offsite Resident Farmer. The maximum projected dose among the plausible receptors is 220 mrem/yr for the Outdoor Worker and it occurs at 19,045 yr. The exposure pathways contributing to the dose for this receptor are external gamma and soil ingestion. The results of the probabilistic peak of the mean dose analysis for the Offsite Resident Farmer indicate that the average (arithmetic mean) of the peak of the mean doses for this receptor is 0.98 mrem/yr and it occurs at 1,050 yr. This dose corresponds to Tc-99 within the time horizon of 1,050 yr.

  9. Time of flight emission spectroscopy of laser produced nickel plasma: Short-pulse and ultrafast excitations

    SciTech Connect (OSTI)

    Smijesh, N.; Chandrasekharan, K. [Laser and Nonlinear Optics Laboratory, Department of Physics, National Institute of Technology Calicut, Calicut 673601 (India); Joshi, Jagdish C.; Philip, Reji, E-mail: reji@rri.res.in [Ultrafast and Nonlinear Optics Lab, Light and Matter Physics Group, Raman Research Institute, Bangalore 560080 (India)

    2014-07-07T23:59:59.000Z

    We report the experimental investigation and comparison of the temporal features of short-pulse (7?ns) and ultrafast (100 fs) laser produced plasmas generated from a solid nickel target, expanding into a nitrogen background. When the ambient pressure is varied in a large range of 10{sup ?6?}Torr to 10{sup 2?}Torr, the plume intensity is found to increase rapidly as the pressure crosses 1?Torr. Time of flight (TOF) spectroscopy of emission from neutral nickel (Ni I) at 361.9?nm (3d{sup 9}({sup 2}D) 4p ? 3d{sup 9}({sup 2}D) 4s transition) reveals two peaks (fast and slow species) in short-pulse excitation and a single peak in ultrafast excitation. The fast and slow peaks represent recombined neutrals and un-ionized neutrals, respectively. TOF emission from singly ionized nickel (Ni II) studied using the 428.5?nm (3p{sup 6}3d{sup 8}({sup 3}P) 4s? 3p{sup 6}3d{sup 9} 4s) transition shows only a single peak for either excitation. Velocities of the neutral and ionic species are determined from TOF measurements carried out at different positions (i.e., at distances of 2?mm and 4?mm, respectively, from the target surface) on the plume axis. Measured velocities indicate acceleration of neutrals and ions, which is caused by the Coulomb pull of the electrons enveloping the plume front in the case of ultrafast excitation. Both Coulomb pull and laser-plasma interaction contribute to the acceleration in the case of short-pulse excitation. These investigations provide new information on the pressure dependent temporal behavior of nickel plasmas produced by short-pulse and ultrafast laser pulses, which have potential uses in applications such as pulsed laser deposition and laser-induced nanoparticle generation.

  10. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement

    SciTech Connect (OSTI)

    Nagy, Peter B. [School of Aerospace Systems, University of Cincinnati, Cincinnati, Ohio 45221 (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jacobs, Laurence J. [College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, Republic of Georgia (Georgia)

    2014-02-18T23:59:59.000Z

    A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In this paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.

  11. Operating and maintenance experience with a 6-kW wind energy conversion system at Naval Station, Treasure Island, California. Technical note Sep 79-Jun 81

    SciTech Connect (OSTI)

    Pal, D.

    1982-07-01T23:59:59.000Z

    The experience gained and lessons learned from the 6-kW grid-integrated Wind Energy Conversion System (WECS) demonstration at Naval Station, Treasure Island, San Francisco Bay are detailed. The objective of this demonstration was to develop operating experience and maintenance information on the 6-kW WECS using a combination of permanent magnet alternator with a line commutated synchronous inverter. The on-site measurements conducted during the demonstation indicate that the WECS site has annual average windspeeds of about 8 to 10 mph. The test results to data indicate a satisfactory performance of the WECS except for two failures involving arcing at the electrical terminals located on the yaw shaft. Due to wind characteristics encountered at the site, the performance data collected to date are at windspeeds of 20 mph or lower. For evaluating the WECS performance at all windspeeds, location at a windier site with annual average windspeeds of 14 mph or higher is recommended.

  12. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, John B. (Lansing, NY)

    1997-01-01T23:59:59.000Z

    An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.

  13. Switching power pulse system

    DOE Patents [OSTI]

    Aaland, Kristian (Livermore, CA)

    1983-01-01T23:59:59.000Z

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  14. Long Pulse EBW Start-up Experiments in MAST

    E-Print Network [OSTI]

    Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G

    2015-01-01T23:59:59.000Z

    The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...

  15. The determination of neutron flux in the Texas A & M triga reactor during pulse and steady-state operations

    E-Print Network [OSTI]

    O'Donnell, John Joseph

    1983-01-01T23:59:59.000Z

    . Core VIIi Diagram mith 90 FLIP clemente The NSC reactor technical specification and license approved by the United States Nuclear Regulatory Commission (NRC) limits reactor operations so that a temperature of 830 Celsius is not reached anywhere... is significantly more than that allowed for operation with Core VIII. However, a small reactivity insertion in Core VIII will produce approximately the same peak power in a pulse as the much larger reactivity insertion produced during pulse operation of Core...

  16. RF modulation studies on the S band pulse compressor

    E-Print Network [OSTI]

    Shu, G; Pei, S; Xiao, O

    2015-01-01T23:59:59.000Z

    An S band SLED-type pulse compressor has been manufactured by IHEP to challenge the 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. In order to deal with the RF breakdown problem, the dual side-wall coupling irises model was used. To further improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output were taken into account. The RF modulation studies on an S-band SLED are presented in this paper. Furthermore, a method is developed by using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can be a verification of the modulate theory. In addition, the experimental setup was constructed and the flat-top output is obtained in the low power tests.

  17. RF modulation studies on the S band pulse compressor

    E-Print Network [OSTI]

    G. Shu; F. Zhao; S. Pei; O. Xiao

    2015-05-28T23:59:59.000Z

    An S band SLED-type pulse compressor has been manufactured by IHEP to challenge the 100 MW maximum input power, which means the output peak power is about 500 MW at the phase reversal time. In order to deal with the RF breakdown problem, the dual side-wall coupling irises model was used. To further improve the reliability at very high power, amplitude modulation and phase modulation with flat-top output were taken into account. The RF modulation studies on an S-band SLED are presented in this paper. Furthermore, a method is developed by using the CST Microwave Studio transient solver to simulate the time response of the pulse compressor, which can be a verification of the modulate theory. In addition, the experimental setup was constructed and the flat-top output is obtained in the low power tests.

  18. Long-laser-pulse method of producing thin films

    DOE Patents [OSTI]

    Balooch, Mehdi (Berkeley, CA); Olander, Donald K. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA)

    1991-01-01T23:59:59.000Z

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  19. Highly efficient second-harmonic generation of intense femtosecond pulses with a significant effect of cubic nonlinearity

    SciTech Connect (OSTI)

    Mironov, S Yu; Ginzburg, V N; Lozhkarev, V V; Luchinin, G A; Kirsanov, Aleksei V; Yakovlev, I V; Khazanov, Efim A; Shaykin, A A [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod (Russian Federation)

    2011-11-30T23:59:59.000Z

    A highly efficient (73%) second-harmonic generation of femtosecond pulses in a 1-mm-thick KDP crystal at a fundamentalharmonic peak intensity of 2 TW cm{sup -2} has been demonstrated experimentally. In a 0.5-mm-thick KDP crystal, a 50% efficiency has been reached at a peak intensity of 3.5 TW cm{sup -2}. We examine the key factors that limit the conversion efficiency and present numerical simulation results on further temporal compression of second-harmonic pulses.

  20. Saving Power at Peak Hours (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Piette, Mary Ann

    2011-04-28T23:59:59.000Z

    California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.

  1. Note on the set of Bragg peaks with high intensity

    E-Print Network [OSTI]

    Daniel Lenz; Nicolae Strungaru

    2014-12-23T23:59:59.000Z

    We consider diffraction of Delone sets in Euclidean space. We show that the set of Bragg peaks with high intensity is always Meyer (if it is relatively dense). We use this to provide a new characterization for Meyer sets in terms of positive and positive definite measures. Our results are based on a careful study of positive definite measures, which may be of interest in its own right.

  2. Laser rock drilling by a super-pulsed CO{sub 2} laser beam.

    SciTech Connect (OSTI)

    Xu, Z.; Reed, C. B.; Parker, R. A.; Gahan, B. C.; Graves, R. M.; Figueroa, H.

    2002-08-12T23:59:59.000Z

    High power carbon dioxide lasers have successfully been used in drilling or cutting engineering materials such as metals, polymers and ceramics over the years. Can a carbon dioxide laser be used to efficiently drill different rocks in a deep gas well? Research sponsored by US Department of Energy has been carried out to answer this question. This paper will report the study results of using a super-pulsed CO{sub 2} laser beam to drill rocks. A 6 kW CO{sub 2} laser operated at superpulse mode was used to carry out the tests. Both linear tracks and deep holes were produced on the rocks. The energy required to remove a unit volume of rock, specific energy, was determined. Test results show that superpulsed CO{sub 2} laser beam can be efficiently used to drill deep, large diameter holes in petroleum rocks with the assistance of purging gas.

  3. Two-stage high frequency pulse tube cooler for refrigeration at 25 K

    E-Print Network [OSTI]

    Dietrich, M

    2009-01-01T23:59:59.000Z

    A two-stage Stirling-type U-shape pulse tube cryocooler driven by a 10 kW-class linear compressor was designed, built and tested. A special feature of the cold head is the absence of a heat exchanger at the cold end of the first stage, since the intended application requires no cooling power at an intermediate temperature. Simulations where done using Sage-software to find optimum operating conditions and cold head geometry. Flow-impedance matching was required to connect the compressor designed for 60 Hz operation to the 40 Hz cold head. A cooling power of 12.9 W at 25 K with an electrical input power of 4.6 kW has been achieved up to now. The lowest temperature reached is 13.7 K.

  4. Deconvolution of mixed gamma emitters using peak parameters

    SciTech Connect (OSTI)

    Gadd, Milan S [Los Alamos National Laboratory; Garcia, Francisco [Los Alamos National Laboratory; Magadalena, Vigil M [Los Alamos National Laboratory

    2011-01-14T23:59:59.000Z

    When evaluating samples containing mixtures of nuclides using gamma spectroscopy the situation sometimes arises where the nuclides present have photon emissions that cannot be resolved by the detector. An example of this is mixtures of {sup 241}Am and plutonium that have L x-ray emissions with slightly different energies which cannot be resolved using a high-purity germanium detector. It is possible to deconvolute the americium L x-rays from those plutonium based on the {sup 241}Am 59.54 keV photon. However, this requires accurate knowledge of the relative emission yields. Also, it often results in high uncertainties in the plutonium activity estimate due to the americium yields being approximately an order of magnitude greater than those for plutonium. In this work, an alternative method of determining the relative fraction of plutonium in mixtures of {sup 241}Am and {sup 239}Pu based on L x-ray peak location and shape parameters is investigated. The sensitivity and accuracy of the peak parameter method is compared to that for conventional peak decovolution.

  5. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25T23:59:59.000Z

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  6. Pulsed plasma treatment of polluted gas using wet-/low-temperature corona reactors

    SciTech Connect (OSTI)

    Shimizu, Kazuo; Kinoshita, Katsuhiro; Yanagihara, Kenya; Rajanikanth, B.S.; Katsura, Shinji; Mizuno, Akira [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering] [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering

    1997-09-01T23:59:59.000Z

    Application of pulsed plasma for gas cleaning is gaining prominence in recent years, mainly from the energy consideration point of view. Normally, the gas treatment is carried out at or above room temperature by the conventional dry-type corona reactor. However, this treatment is still inadequate for the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report here some interesting results of treatment of such stable gases like N{sub 2}O with pulsed plasma at subambient temperature. Also reported in this paper are improvements in DeNO/DeNO{sub x} efficiency using unconventional wet-type reactors, designed and fabricated by us, and operating at different subambient temperatures. DeNO/DeNO{sub x} by the pulsed-plasma process is mainly due to oxidation, but reduction takes place at the same time. When the wet-type reactor was used, the NO{sub 2} product was absorbed by water film and higher DeNO{sub x} efficiency could be achieved. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of an 8-kW diesel engine. A comparative analysis of the various tests are presented, together with a note on the energy consideration.

  7. A high voltage pulsed power supply for capillary discharge waveguide applications

    SciTech Connect (OSTI)

    Abuazoum, S.; Wiggins, S. M.; Issac, R. C.; Welsh, G. H.; Vieux, G.; Jaroszynski, D. A. [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Ganciu, M. [Low Temperature Plasma Department, National Institute of Lasers, Plasma and Radiation Physics, 077125, Magurele, Bucharest (Romania)

    2011-06-15T23:59:59.000Z

    We present an all solid-state, high voltage pulsed power supply for inducing stable plasma formation (density {approx}10{sup 18} cm{sup -3}) in gas-filled capillary discharge waveguides. The pulser (pulse duration of 1 {mu}s) is based on transistor switching and wound transmission line transformer technology. For a capillary of length 40 mm and diameter 265 {mu}m and gas backing pressure of 100 mbar, a fast voltage pulse risetime of 95 ns initiates breakdown at 13 kV along the capillary. A peak current of {approx}280 A indicates near complete ionization, and the r.m.s. temporal jitter in the current pulse is only 4 ns. Temporally stable plasma formation is crucial for deploying capillary waveguides as plasma channels in laser-plasma interaction experiments, such as the laser wakefield accelerator.

  8. Deconvolving the temporal response of photoelectric x-ray detectors for the diagnosis of pulsed radiations

    SciTech Connect (OSTI)

    Zou, Shiyang; Song, Peng; Pei, Wenbing [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)] [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Guo, Liang [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)] [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900 (China)

    2013-09-15T23:59:59.000Z

    Based on the conjugate gradient method, a simple algorithm is presented for deconvolving the temporal response of photoelectric x-ray detectors (XRDs) to reconstruct the resolved time-dependent x-ray fluxes. With this algorithm, we have studied the impact of temporal response of XRD on the radiation diagnosis of hohlraum heated by a short intense laser pulse. It is found that the limiting temporal response of XRD not only postpones the rising edge and peak position of x-ray pulses but also smoothes the possible fluctuations of radiation fluxes. Without a proper consideration of the temporal response of XRD, the measured radiation flux can be largely misinterpreted for radiation pulses of a hohlraum heated by short or shaped laser pulses.

  9. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06T23:59:59.000Z

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers will respond to this form of automation for CPP. (4) Evaluate what type of DR shifting and shedding strategies can be automated. (5) Explore how automation of control strategies can increase participation rates and DR saving levels with CPP. (6) Identify optimal demand response control strategies. (7) Determine occupant and tenant response.

  10. Hyper dispersion pulse compressor for chirped pulse amplification systems

    DOE Patents [OSTI]

    Barty, Christopher P. J. (Hayward, CA)

    2011-11-29T23:59:59.000Z

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  11. A new approach for modeling the peak utility impacts from a proposed CUAC standard

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Gumerman, Etan; Marnay, Chris; Chan, Peter; Coughlin, Katie

    2004-01-01T23:59:59.000Z

    47 6.5 The 11 Blocks that Represent the LDC in28 Figure 17. The LDC from 6x TSL 4 for ECAR Region in YearCUAC DOE EIA EMM GW kW LCC LDC LDSM MEF NEMS NERC NES PNNL

  12. Prefire identification for pulse power systems

    DOE Patents [OSTI]

    Longmire, Jerry L. (Los Alamos, NM); Thuot, Michael E. (Espanola, NM); Warren, David S. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    Prefires in a high-power, high-frequency, multi-stage pulse generator are detected by a system having an EMI shielded pulse timing transmitter associated with and tailored to each stage of the pulse generator. Each pulse timing transmitter upon detection of a pulse triggers a laser diode to send an optical signal through a high frequency fiber optic cable to a pulse timing receiver which converts the optical signal to an electrical pulse. The electrical pulses from all pulse timing receivers are fed through an OR circuit to start a time interval measuring device and each electrical pulse is used to stop an individual channel in the measuring device thereby recording the firing sequence of the multi-stage pulse generator.

  13. Final Technical Report for the Development of a Low Cost 10kW Tubular SOFC Power System

    SciTech Connect (OSTI)

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon; Schmidt, Douglas

    2013-06-06T23:59:59.000Z

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all of the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.

  14. Pulsed ion beam source

    DOE Patents [OSTI]

    Greenly, J.B.

    1997-08-12T23:59:59.000Z

    An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.

  15. Electrodeless short pulse laser

    SciTech Connect (OSTI)

    Proud, J.M.; Baird, D.H.; Kramer, J.M.; Lester, J.E.

    1986-06-03T23:59:59.000Z

    A system is described for the generation of coherent beams of radiation, which consists of: a tube defining a resonant cavity containing a discharge plasma capable of producing coherent radiation, the tube having an elongated shape along an optical axis along the longitudinal axis of the tube, the tube having end portions and an elongated constricted portion connecting the end portions, and the tube having laser windows sealing the end portions to form a closed envelope containing the discharge plasma, a mirror on the optical axis near at least one end of the tube, first and second external electrode means on the outside surfaces of the tube adjacent the opposite ends of the tube, the external electrode means being capacitively coupled to the discharge plasma, and means for providing a source of short pulses electrically to the first external electrode means and means for coupling the second external electrode means to a point of reference potential, further characterized by first and second internal electrode means respectively adjacent the first and second external electrode means and capacitively coupled thereto, the tube having end portions sealed to form a closed envelope containing the discharge plasma and the internal electrode means.

  16. A 1 MEGAWATT POLYPHASE BOOST CONVERTER-MODULATOR FOR KLYSTRON PULSE APPLICATION

    SciTech Connect (OSTI)

    W.A. REASS; J.D. DOSS; R.F. GRIBBLE

    2001-06-01T23:59:59.000Z

    This paper describes electrical design criteria and first operational results a 140 kV, 1 MW average, 11 MW peak, zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three ''H-Bridge'' Insulated Gate Bipolar Transistor (IGBT) switching networks are used to generate the polyphase 20 kHz transformer primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt-peaking is used on the transformer secondary to boost output voltage and resonate transformer leakage inductance. With the appropriate transformer leakage inductance and peaking capacitance, zero-voltage-switching of the IGBT's is attained, minimizing switching losses. A review of these design parameters and the first results of the performance characteristics will be presented.

  17. Ultrasonic flowmetering with reflected pulses

    E-Print Network [OSTI]

    Hoyle, David C.

    1984-01-01T23:59:59.000Z

    A transit time type ultrasonic flowmeter was tested with two different reflected pulse trajectories in flowing air at ambient conditions against an orifice meter. The flowmeter was designed to be highly accurate, to require ...

  18. Methods and apparatus for reducing peak wind turbine loads

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2007-02-13T23:59:59.000Z

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  19. Geothermometry At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008) | OpenSilver Peak Area (DOE GTP)

  20. Wanxiang Silicon Peak Electronics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthall County,Wanxiang America CorporationPeak

  1. Silver Peak, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, New York:SiG Solar GmbH JumpSilicium de(Redirected fromPeak,

  2. Jiminy Peak Ski Resort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Wind FarmJeffersonJiminy Peak Ski Resort Wind

  3. Silver Peak, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey JumpAirPowerSilcio SA JumpProject Jump to:Peak,

  4. Development of Modulator Pulse Stability Measurement Device and Test Results at SLAC

    SciTech Connect (OSTI)

    Huang, C.; Burkhart, C.; Kemp, M.; Morris, B.; Beukers, T.; Ciprian, R.; Nguyen, M.; /SLAC

    2011-08-19T23:59:59.000Z

    In this paper, the development of a pulse stability measurement device is presented. The measurement accuracy is better than 250uV, about 4.2ppm of a typical 60V input pulse. Pulse signals up to +/- 80V peak can be measured. The device works together with an oscilloscope. The primary function of the measurement device is to provide a precision offset, such that variations in the flattop of the modulator voltage pulse can be accurately resolved. The oscilloscope records the difference between the pulse flattop and the reference for a series of waveforms. The scope math functions are utilized to calculate the rms variations over the series. The frequency response of the device is characterized by the measured cutoff frequency of about 6.5MHz. In addition to detailing the design and calibration of the precision pulse stability device, measurements of SLAC line-type linac modulators and recently developed induction modulators will be presented. Factors affecting pulse stability will be discussed.

  5. The Near-UV Pulse Profile and Spectrum of the Pulsar PSR B0656+14

    E-Print Network [OSTI]

    Shibanov, Y A; Lundqvist, P; Gull, T R; Lindler, D; Shibanov, Yu.A.

    2005-01-01T23:59:59.000Z

    We have observed the middle-aged pulsar PSR B0656+14 with the prism and the NUV MAMA detector of the Space Telescope Imaging Spectrograph (STIS) to measure the pulsar spectrum and periodic pulsations in the near-ultraviolet (NUV). The pulsations are clearly detected, double-peaked and very similar to the optical pulse profile. The NUV pulsed fraction is 70 +/- 12%. The spectral slope of the dereddened phase-integrated spectrum in the 1800 - 3200 A range is 0.35 +/- 0.5 which together with the high pulse fraction indicates a non-thermal origin for the NUV emission. The total flux in the range 1700-3400 A is estimated to be 3.4 +/- 0.3e-15 erg/s/cm2 when corrected for E(B-V)=0.03. At a distance of 288 pc this corresponds to a luminosity 3.4e28 erg/s assuming isotropy of the emission. We compare the NUV pulse profile with observations from radio to gamma-rays. The first NUV sub-pulse is in phase with the gamma-ray pulse marginally detected with the EGRET, while the second NUV sub-pulse is similar both in shape a...

  6. Influence of laser pulse duration on laser drilled hole quality in nickel based super alloy

    SciTech Connect (OSTI)

    Rockstroh, T.J. [GE Aircraft Engines, Cincinnati, OH (United States); Chen, Xiangli; Lotshaw, W.T. [GE Corporate Research and Development, Schenectady, NY (United States)

    1996-12-31T23:59:59.000Z

    Studies on the title subject have been performed using different commercial and research Nd:YAG laser systems. These systems represent a large range of pulse durations from sub-nanosecond to millisecond (conventional YAG {open_quotes}driller{close_quotes} pulse durations). Correspondingly, the peak powers range from a few kilowatts to over 1 megawatt, which dramatically affect processing times, hole quality and preservation of parent material properties. The different laser systems used to generate the data have similar beam qualities ({le}3X diffraction limited), and were selected primarily to contrast peak power effects in a nominally conventional drilling application. The results show that hole quality (taper, recast, and parent metal damage) is significantly affected by the laser pulse duration as varied in these tests. The pulse energy and repetition rate also vary between the test lasers on account of their operational designs, and the effects of these parameters must also be reckoned. However, many of the marked affects can be reasonably attributed to peak power or pulse duration uniquely, and these will be discussed in greater detail below. Depending upon the thermophysical properties of the workpiece material and the design specifications for finished parts, there is probably a pulse duration/repetition rate saddle region where specifications for hole quality and process speed are simultaneously satisfied. In drilling the GE Aircraft Engines (GEAE) N5 alloy an upper bound on the pulsewidth range of {approximately}300 nanoseconds is so identified. In this paper the authors present results and photomicrographs of these tests, and review the processing potential of {open_quotes}high-performance{close_quotes} lamp and diode pumped Nd:YAG laser devices.

  7. Parameter sensitivity analysis of tailored-pulse loading stimulation of Devonian gas shale

    SciTech Connect (OSTI)

    Barbour, T.G.; Mihalik, G.R.

    1980-11-01T23:59:59.000Z

    An evaluation of three tailored-pulse loading parameters has been undertaken to access their importance in gas well stimulation technology. This numerical evaluation was performed using STEALTH finite-difference codes and was intended to provide a measure of the effects of various tailored-pulse load configurations on fracture development in Devonian gas shale. The three parameters considered in the sensitivity analysis were: loading rate; decay rate; and sustained peak pressures. By varying these parameters in six computations and comparing the relative differences in fracture initiation and propagation the following conclusions were drawn: (1) Fracture initiation is directly related to the loading rate aplied to the wellbore wall. Loading rates of 10, 100 and 1000 GPa/sec were modeled. (2) If yielding of the rock can be prevented or minimized, by maintaining low peak pressures in the wellbore, increasing the pulse loading rate, to say 10,000 GPa/sec or more, should initiate additional multiple fractures. (3) Fracture initiation does not appear to be related to the tailored-pulse decay rate. Fracture extension may be influenced by the rate of decay. The slower the decay rate, the longer the crack extension. (4) Fracture initiation does not appear to be improved by a high pressure plateau in the tailored-pulse. Fracture propagation may be enhanced if the maintained wellbore pressure plateau is of sufficient magnitude to extent the range of the tangential tensile stresses to greater radial distances. 26 figures, 2 tables.

  8. Magnetar Driven Shock Breakout and Double Peaked Supernova Light Curves

    E-Print Network [OSTI]

    Kasen, Daniel; Bildsten, Lars

    2015-01-01T23:59:59.000Z

    The light curves of some luminous supernovae are suspected to be powered by the spindown energy of a rapidly rotating magnetar. Here we describe a possible signature of the central engine: a burst of shock breakout emission occurring several days after the supernova explosion. The energy input from the magnetar inflates a high-pressure bubble that drives a shock through the pre-exploded supernova ejecta. If the magnetar is powerful enough, that shock will near the ejecta surface and become radiative. At the time of shock breakout, the ejecta will have expanded to a large radius (~10^{14} cm) so that the radiation released is at optical/ultraviolet wavelengths (T ~ 20,000 K) and lasts for several days. The luminosity and timescale of this magnetar driven shock breakout are similar to the first peak observed recently in the double-peaked light curve of SN-LSQ14BDQ. However, for a large region of model parameter space, the breakout emission is predicted to be dimmer than the diffusive luminosity from direct magn...

  9. Short pulse free electron laser amplifier

    DOE Patents [OSTI]

    Schlitt, Leland G. (Livermore, CA); Szoke, Abraham (Fremont, CA)

    1985-01-01T23:59:59.000Z

    Method and apparatus for amplification of a laser pulse in a free electron laser amplifier where the laser pulse duration may be a small fraction of the electron beam pulse duration used for amplification. An electron beam pulse is passed through a first wiggler magnet and a short laser pulse to be amplified is passed through the same wiggler so that only the energy of the last fraction, f, (f<1) of the electron beam pulse is consumed in amplifying the laser pulse. After suitable delay of the electron beam, the process is repeated in a second wiggler magnet, a third, . . . , where substantially the same fraction f of the remainder of the electron beam pulse is consumed in amplification of the given short laser pulse in each wiggler magnet region until the useful electron beam energy is substantially completely consumed by amplification of the laser pulse.

  10. The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report

    SciTech Connect (OSTI)

    Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

    2006-07-21T23:59:59.000Z

    This project was selected by the U.S. Department of Energy under a DOE solicitation “Low Wind Speed Technology for Small Turbine Development.” The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 ¢/kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 ¢/kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 ¢/kWh is still competitive with retail rates in many regions of the country with high electricity costs. The study further concludes that several design changes could shave 10-14% from the cost of energy determined in the preliminary design. These changes include a new tower design that offers tilt-up capability without guy wires and takes better advantage of the lowered loads produced by pitch control; design a family of airfoils more appropriate for pitch regulation on a turbine of this size; tune the pitch controller properly to minimize shedding of power during turbulent operation in the transition from Region 2 to 3; value engineer the pitch system to shave costs, including consideration of a collective pitch system; and refine the design of the hub and main frame castings to minimize weight and cost. We are generally encouraged by the results. These preliminary numbers show that we can produce a turbine that is competitive with retail electric rates at relatively windy IEC Class II sites. With further improvements in the design, we believe the turbine could be competitive at sites with lesser wind resource.

  11. A 10-kW SiC Inverter with A Novel Printed Metal Power Module With Integrated Cooling Using Additive Manufacturing

    SciTech Connect (OSTI)

    Chinthavali, Madhu Sudhan [ORNL; Ayers, Curtis William [ORNL; Campbell, Steven L [ORNL; Wiles, Randy H [ORNL; Ozpineci, Burak [ORNL

    2014-01-01T23:59:59.000Z

    With efforts to reduce the cost, size, and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs), wide band gap semiconductors including silicon carbide (SiC) have been identified as possibly being a partial solution. This paper focuses on the development of a 10-kW all SiC inverter using a high power density, integrated printed metal power module with integrated cooling using additive manufacturing techniques. This is the first ever heat sink printed for a power electronics application. About 50% of the inverter was built using additive manufacturing techniques.

  12. Smirnov-SSDLTR2005 Chirped bulk Bragg gratings in PTR glass for ultrashort pulse stretching and compression

    E-Print Network [OSTI]

    Glebov, Leon

    laser applications boosted the development of optical components capable of withholding high power along with beam transformation. Especially, it related to high power femtosecond pulses where high peak power Arbor, MI 48109-2122 Tel.: (734)615-7166, Fax: (734)763-4876, e-mail: almantas@eecs.umich.edu High power

  13. Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of

    E-Print Network [OSTI]

    Keeling, Stephen L.

    are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims ----------------------------------------------------------------------------------------------------------- 5 - 1) INTRODUCTION ­ PEAKING OF WORLD OIL PRODUCTION-------------------------------------------------------------------------------------------------- - 25 - 7) PEAK OIL NETHERLANDS OIL PRODUCTION & PEAKING OUTLOOK ---------------------------------- - 26

  14. High peak power test of S-band waveguide switches

    SciTech Connect (OSTI)

    Nassiri, A.; Grelick, A.; Kustom, R.L.; White, M.

    1997-08-01T23:59:59.000Z

    The injector and source of particles for the Advanced Photon Source (APS) is a 2856-MHz S-band electron-positron linear accelerator (linac) which produces electrons with energies up to 650 MeV or positrons with energies up to 450 MeV. To improve the linac rf system availability, an additional modulator-klystron subsystem is being constructed to provide a switchable hot spare unit for each of the five existing S-band transmitters. The switching of the transmitters will require the use of SF6-pressurized waveguide switches at a peak operating power of 35 MW. A test stand was set up at the Stanford Linear Accelerator Center (SLAC) Klystron-Microwave laboratory to conduct tests characterizing the power handling capability of these waveguide switches. Test results are presented.

  15. Implications of "peak oil" for atmospheric CO2 and climate

    E-Print Network [OSTI]

    Kharecha, P A

    2007-01-01T23:59:59.000Z

    Peaking of global oil production may have a large effect on future atmospheric CO2 amount and climate change, depending upon choices made for subsequent energy sources. We suggest that, if estimates of oil and gas reserves by the Energy Information Administration are realistic, it is feasible to keep atmospheric CO2 from exceeding approximately 450 ppm, provided that future exploitation of the huge reservoirs of coal and unconventional fossil fuels incorporates carbon capture and sequestration. Existing coal-fired power plants, without sequestration, must be phased out before mid-century to achieve this limit on atmospheric CO2. We also suggest that it is important to "stretch" oil reserves via energy efficiency, thus avoiding the need to extract liquid fuels from coal or unconventional fossil fuels. We argue that a rising price on carbon emissions is probably needed to keep CO2 beneath the 450 ppm ceiling.

  16. Off-peak air conditioning; A major energy saver

    SciTech Connect (OSTI)

    MacCracken, C.D.

    1991-12-01T23:59:59.000Z

    Today, the mission given to manufacturers is changing to include saving energy (kWh). Until now, saving energy was ignored because the utilities were happy to fill their night valley to reach a higher load factor. There also was a general feeling that making ice was much less efficient than standard air conditioning, and that anyone saying otherwise was a dreamer. This article discusses the energy savings based on the more prevalent ice storage technology, the similar suction temperatures of the various types of ice storage, and how storage is applied. Included are baseload power generation, partial storage with chiller priority, using air cooled condensers when making ice at night, colder duct air, heat recovery, central rooftop systems, smart controls, electric/gas combinations, supply side transmission and distribution losses, and cooling of air entering gas turbine generators during peak conditions.

  17. Obtaining two attosecond pulses pulses for x-ray stimulated Raman spectroscopy

    E-Print Network [OSTI]

    Zholents, Alexander

    2010-01-01T23:59:59.000Z

    delay between two ultra-short laser pulses obtained from theto the timing of the ultra-short laser pulse and can easilybunch interacting with ultra-short laser pulses. Here, we

  18. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect (OSTI)

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24T23:59:59.000Z

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  19. Simulation of Double-Pulse Laser Ablation

    SciTech Connect (OSTI)

    Povarnitsyn, Mikhail E.; Khishchenko, Konstantin V.; Levashov, Pavel R. [Joint Institute for High Temperatures of RAS, Izhorskaya 13 Bldg 2, Moscow, 125412 (Russian Federation); Itina, Tatian E. [Laboratoire Hubert Curien, UMR CNRS 5516, 18 rue Benoit Lauras, Bat. F, 42000, St-Etienne (France)

    2010-10-08T23:59:59.000Z

    We investigate the physical reasons of a strange decrease in the ablation depth observed in femtosecond double-pulse experiments with increasing delay between the pulses. Two ultrashort pulses of the same energy produce the crater which is less than that created by a single pulse. Hydrodynamic simulation shows that the ablation mechanism is suppressed when the delay between the pulses exceeds the electron-ion relaxation time. In this case, the interaction of the second laser pulse with the expanding target material leads to the formation of the second shock wave suppressing the rarefaction wave created by the first pulse. The modeling of the double-pulse ablation for different delays between pulses confirms this explanation.

  20. Control of high power pulse extracted from the maximally compressed pulse in a nonlinear optical fiber

    E-Print Network [OSTI]

    Yang, Guangye; Jia, Suotang; Mihalache, Dumitru

    2013-01-01T23:59:59.000Z

    We address the possibility to control high power pulses extracted from the maximally compressed pulse in a nonlinear optical fiber by adjusting the initial excitation parameters. The numerical results show that the power, location and splitting order number of the maximally compressed pulse and the transmission features of high power pulses extracted from the maximally compressed pulse can be manipulated through adjusting the modulation amplitude, width, and phase of the initial Gaussian-type perturbation pulse on a continuous wave background.

  1. Pulse combustor with controllable oscillations

    DOE Patents [OSTI]

    Richards, George A. (Morgantown, WV); Welter, Michael J. (Columbiana, OH); Morris, Gary J. (Morgantown, WV)

    1992-01-01T23:59:59.000Z

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  2. Radial flow pulse jet mixer

    DOE Patents [OSTI]

    VanOsdol, John G.

    2013-06-25T23:59:59.000Z

    The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

  3. Pulse atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The overall objective of the program is the development of a pulsed atmospheric fluidized-bed combustion (PAFBC) technology to burn coal and to provide heat and steam to commercial, institutional, and small industrial applications at a reasonable price in an environmentally acceptable manner. During this reporting period, a total of eight shakedown and debugging coal combustion tests were performed in the AFBC. A start-up procedure was established, system improvements implemented, and preliminary material and heat balances made based on these tests. The pulse combustor for the AFBC system was fabricated and installed and a series of tests was conducted on the system. 17 figs., 5 tabs.

  4. Pulsed electrodeposition of iron-nickel alloys

    SciTech Connect (OSTI)

    Grimmett, D.L.; Schwartz, M.; Nobe, K. (Dept. of Chemical Engineering, Univ. of California, Los Angeles, CA (US))

    1990-11-01T23:59:59.000Z

    This paper reports on the effects of dc, pulse, and pulse reverse current waveforms on deposition of Fe-Ni alloys studied in unagitated solutions and with a rotating cylindrical electrode. A nickel sulfamate/ferrous chloride electrolyte system at pH 2 less than 2 A/dm{sup 2}. Pulse reverse plating led to a decrease in anomalous deposition at low current densities. Rotating cylindrical electrodes indicated significant mass transfer effects at high current densities. During pulse reverse plating an increase in anodic pulse magnitude decreased anomalous deposition; pulse frequency had its greatest effect in reducing anomalous deposition between 100 and 300 Hz.

  5. Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon

    SciTech Connect (OSTI)

    Akturk, Selcuk; D'Amico, Ciro; Franco, Michel; Couairon, Arnaud; Mysyrowicz, Andre [Laboratoire d'Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees-Ecole Polytechnique, CNRS UMR 7639 F-91761 Palaiseau Cedex, France and Centre de Physique Theorique, CNRS UMR 7644, Ecole Polytechnique, F-91128 Palaiseau Cedex (France)

    2007-12-15T23:59:59.000Z

    We performed a comprehensive study of filamentation in xenon. Due to its high nonlinear refraction index, but relatively low ionization potential, xenon can support filamentation at peak powers lower than in air. In our experiments, we studied pulse shortening, spatial mode cleaning, and generation of terahertz radiation. We observed that in xenon, self-compression is easily obtainable and terahertz radiation generation efficiency is significantly stronger as compared to air.

  6. Dynamic Recompartmentalization of Supported Lipid Bilayers Using Focused Femtosecond Laser Pulses

    E-Print Network [OSTI]

    Parikh, Atul N.

    repetition rate of 2.7 kHz at 3 nJ pulse energy for 100 ms produces a dark blurry spot (2 µm fwhm of these applications depend on high peak intensities (>1013 W/cm2) achieved within the focal volume under low-energy Information). The bilayer was maintained wet by sandwiching the sample with a DI water-filled hanging drop

  7. Efficient Spectral Broadening in the 100-W Average Power Regime Using Gas Filled Kagome HC-PCF and Pulse Compression

    E-Print Network [OSTI]

    Emaury, Florian; Debord, Benoit; Ghosh, Debashri; Diebold, Andreas; Gerome, Frederic; Suedmeyer, Thomas; Benabid, Fetah; Keller, Ursula

    2014-01-01T23:59:59.000Z

    We present nonlinear pulse compression of a high-power SESAM-modelocked thin-disk laser (TDL) using an Ar-filled hypocycloid-core Kagome Hollow-Core Photonic Crystal Fiber (HC-PCF). The output of the modelocked Yb:YAG TDL with 127 W average power, a pulse repetition rate of 7 MHz, and a pulse duration of 740 fs was spectrally broadened 16-fold while propagating in a Kagome HC-PCF containing 13 bar of static Argon gas. Subsequent compression tests performed using 8.4% of the full available power resulted in a pulse duration as short as 88 fs using the spectrally broadened output from the fiber. Compressing the full transmitted power through the fiber (118 W) could lead to a compressed output of >100 W of average power and >100 MW of peak power with an average power compression efficiency of 88%. This simple laser system with only one ultrafast laser oscillator and a simple single-pass fiber pulse compressor, generating both high peak power >100 MW and sub-100-fs pulses at megahertz repetition rate, is very int...

  8. Attosecond X-Ray Pulses for Molecular Electronic Dynamics

    E-Print Network [OSTI]

    Abel, Mark Joseph

    2010-01-01T23:59:59.000Z

    techniques for ultrafast laser pulse characterization. Thethe ultrafast evolution of the driver pulse intensity, weisolated pulse production will enable probing of ultrafast

  9. Stabilization of turbulent lifted jet flames assisted by pulsed high voltage discharge

    SciTech Connect (OSTI)

    Criner, K.; Cessou, A.; Louiche, J.; Vervisch, P. [CORIA UMR 6614 CNRS-Universite et INSA de Rouen, University of Rouen, 76801 Saint Etienne du Rouvray (France)

    2006-01-01T23:59:59.000Z

    To reduce fuel consumption or the pollutant emissions of combustion (furnaces, aircraft engines, turbo-reactors, etc.), attempts are made to obtain lean mixture combustion regimes. These lead to poor stability of the flame. Thus, it is particularly interesting to find new systems providing more flexibility in aiding flame stabilization than the usual processes (bluff-body, stabilizer, quarl, swirl, etc.). The objective is to enlarge the stability domain of flames while offering flexibility at a low energy cost. Evidence is presented that the stabilization of a turbulent partially premixed flame of more than 10 kW can be enhanced by pulsed high-voltage discharges with power consumption less than 0.1% of the power of the flame. The originality of this work is to demonstrate that very effective stabilization of turbulent flames is obtained when high-voltage pulses with very short rise times are used (a decrease by 300% in terms of liftoff height for a given exit jet velocity can be reached) and to provide measurements of minimum liftoff height obtained with discharge over a large range of the stability domain of the lifted jet flame.

  10. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect (OSTI)

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H. [Lawrence Berkeley Lab., CA (United States); Bos, W. [Sacramento Municipal Utility District, CA (United States)

    1992-12-01T23:59:59.000Z

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  11. Outliers to the Isotropic Energy - Peak Energy Relation in GRBs

    E-Print Network [OSTI]

    Ehud Nakar; Tsvi Piran

    2006-04-01T23:59:59.000Z

    The peak energy - isotropic energy (EpEi) relation is among the most intriguing recent discoveries concerning GRBs. It can have numerous implications on our understanding of the emission mechanism of the bursts and on the application of GRBs for cosmological studies. However, this relation was verified only for a small sample of bursts with measured redshifts. We propose here a test whether a burst with an unknown redshift can potentially satisfy the EpEi relation. Applying this test to a large sample of BATSE bursts we find that a significant fraction of those bursts cannot satisfy this relation. Our test is sensitive only to dim and hard bursts and therefore this relation might still hold as an inequality (i.e. there are no intrinsically bright and soft bursts). We conclude that the observed relation seen in the sample of bursts with a known redshift might be influenced by observational biases and from the inability to locate and well localize hard and weak bursts that have only a small number of photons. In particular we point out that the threshold for detection, localization and redshift measurement is essentially higher than the threshold for detection alone. We predict that Swift will detect some hard and weak bursts that would be outliers to the EpEi relation. However, we cannot quantify this prediction. We stress the importance of understanding the detection-localization-redshift threshold for the coming Swift detections.

  12. Satisfying winter peak-power demand with phased gasification

    SciTech Connect (OSTI)

    Hall, E.H.; Moss, T.E.; Ravikumar, R.

    1987-01-01T23:59:59.000Z

    The purpose of this study, commissioned by the Bonneville Power Administration, was to investigate application of this concept to the Pacific Northwest. Coal gasification combined-cycle (GCC) plants are receiving serious attention from eastern utilities. Potomac Electric (PEPCO) has engaged Fluor Technology to perform conceptual and preliminary engineering for a nominal 375-MW coal GCC power generation facility to be located in northern Montgomery County, Maryland. Other eastern utilities are engaged in site-specific investigations of satisfying future power requirements employing this alternative, which involves an environmentally superior method of using coal. Coal is combined with oxygen to produce a medium-heating-value fuel gas as an alternative to natural gas. The fuel gas, cleaned to remove sulfur compounds, is burned in gas turbine-generator sets. The hot exhaust gas is used to generate steam for additional power generation. The gasification combined cycle plant is highly efficient and has a high level of flexibility to meet power demands. This study provided background for consideration of one alternative for satisfying winter peak-load demand. The concept is feasible, depending on the timing of the installation of the gasification system, projections of the cost and the availability of natural gas, and restrictions on the use of natural gas. It has the advantage of deferring capacity addition and capital outlay until power is needed and economics are favorable.

  13. EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR

    E-Print Network [OSTI]

    Kleinfeld, David

    Master-8 EIGHT CHANNEL PROGRAMMABLE PULSE GENERATOR Operation Manual A.M.P.I. A.M.P.I. 123Uzlel St and the programming simple and easy to learn. Master-8 is an attractive unit and you will enjoy working with its eight -- Modes of operation 11 -- Setting the parameters 13 -- Triggering 14 -- Eight stored paradigms 14

  14. Design and evaluation of seasonal storage hydrogen peak electricity supply system

    E-Print Network [OSTI]

    Oloyede, Isaiah Olanrewaju

    2011-01-01T23:59:59.000Z

    The seasonal storage hydrogen peak electricity supply system (SSHPESS) is a gigawatt-year hydrogen storage system which stores excess electricity produced as hydrogen during off-peak periods and consumes the stored hydrogen ...

  15. THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND

    E-Print Network [OSTI]

    LBNL-49947 THE ROLE OF BUILDING TECHNOLOGIES IN REDUCING AND CONTROLLING PEAK ELECTRICITY DEMAND? ..................................... 8 What are the seasonal aspects of electric peak demand?............................ 9 What because of the California electricity crisis (Borenstein 2001). Uncertainties surrounding the reliability

  16. Production of Hydrogen at the Forecourt Using Off-Peak Electricity: June 2005 (Milestone Report)

    SciTech Connect (OSTI)

    Levene, J. I.

    2007-02-01T23:59:59.000Z

    This milestone report provides information about the production of hydrogen at the forecourt using off-peak electricity as well as the Hydrogen Off-Peak Electricity (HOPE) model.

  17. Microsoft Word - BUGS_The Next Smart Grid Peak Resource Final...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to engage half of the BUGS for peak reduction during 200 hours a year results in emission reduction compared to natural gas peaking units. Specifically, More than 935,000...

  18. Ultra--low noise differential AC-coupled photodetector for sensitive pulse detection applications

    E-Print Network [OSTI]

    P. J. Windpassinger; M. Kubasik; M. Koschorreck; A. Boisen; N. Kjaergaard; E. S. Polzik; J. H. Mueller

    2009-03-19T23:59:59.000Z

    We report on the performance of ultra low noise differential photodetectors especially designed for probing of atomic ensembles with weak light pulses. The working principle of the detectors is described together with the analysis procedures employed to extract the photon shot noise of light pulses with $\\sim1 \\mu$s duration. As opposed to frequency response peaked detectors, our approach allows for broadband quantum noise measurements. The equivalent noise charge (ENC) for two different hardware approaches is evaluated to 280 and 340 electrons per pulse, respectively which corresponds to a dark noise equivalent photon number of $n_\\mathrm{3dB}=0.8\\cdot 10^5$ and $n_\\mathrm{3dB}=1.2\\cdot 10^5$ in the two approaches. Finally, we discuss the possibility of removing classical correlations in the output signal caused by detector imperfection by using double--correlated sampling methods.

  19. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick [INAC, SBT, UMR-E 9004 CEA/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Alamir, Mazen [Gipsa-Lab, Control Systems Department, CNRS-University of Grenoble, 11, rue des Mathématiques, BP 46, 38402 Saint Martin d'Hères (France); Bradu, Benjamin [CERN, CH-1211 Genève 23 (Switzerland)

    2014-01-29T23:59:59.000Z

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  20. ICE Pulse Oximeter Smart Alarm App Requirements

    E-Print Network [OSTI]

    Huth, Michael

    ICE Pulse Oximeter Smart Alarm App Requirements 6 March 2012 Revision 0 for an Integrated Clinical Environment (ICE) pulse oximetry monitoring app that provides.2 References [Purpose: List all ICE standards, and other standards and references

  1. Novette pulse-power-system description

    SciTech Connect (OSTI)

    Gritton, D.G.; Christie, D.J.; Holloway, R.W.; Merritt, B.T.; Oicles, J.A.; Whitham, K.; Wilcox, R.B.

    1983-01-01T23:59:59.000Z

    This paper is a summary of the pulse power systems for Novette; the flashlamp power system, the pulsers for the various optical shutters and the pulse power control system.

  2. Dispersion compensation in chirped pulse amplification systems

    DOE Patents [OSTI]

    Bayramian, Andrew James; Molander, William A.

    2014-07-15T23:59:59.000Z

    A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.

  3. Voltage controlled MESFET pulse shape generator

    SciTech Connect (OSTI)

    Burkhart, S.C.

    1994-10-26T23:59:59.000Z

    A programmable pulse shape generator capable of producing pulse shapes for Nova and Beamlet has been designed and simulated using the circuit code SPICE. The design utilizes power MESFETS, which are commonly used in microwave amplifiers. The pulse shape is varied by setting a bias voltage on each in a chain of MESFETS with a 200 ps temporal resolution. The electrical pulse then drives an integrated electro-optic modulator similar to what is on Beamlet. Pulse shapes 22 and 25, used on Nova, have been generated by this design. There is no fundamental barrier to making such a pulse generator for use on the National Ignition Facility. In fact, the longer time scales on the NIF pulse will ease the high speed requirements of the pulse shape generator allowing the use of less expensive components. The next step will be to build a prototype circuit for initial testing on Beamlet and Nova.

  4. for Pulsed Power & erElectronics|Texas

    E-Print Network [OSTI]

    Gelfond, Michael

    for Pulsed Power and Power Electronics The Center for Pulsed Power and Power Electronics started as a Plasma research group at Texas Tech University in 1966. The initial work was concerned with har- monic ion

  5. Controlling Peak Power During Scan Testing Ranganathan Sankaralingam and Nur A. Touba

    E-Print Network [OSTI]

    Touba, Nur A.

    Controlling Peak Power During Scan Testing Ranganathan Sankaralingam and Nur A. Touba Computer effective in controlling peak power. 1. Introduction The peak power drawn in a single clock cycle during. The average power dissipation during scan testing can be controlled by reducing the scan clock frequency

  6. Preparing for the Peak: Energy Security and Atlantic Canada 1 Larry Hughes

    E-Print Network [OSTI]

    Hughes, Larry

    region that will be particularly vulnerable to peak oil, since almost all of the region's oil is imported is destined for markets outside the region. This paper examines some of the potential impacts of peak oil the reliance on refined petroleum products for space heating and transportation. When peak oil production

  7. Result Demonstration Report Pigweed Control in Grain Sorghum Using Peak. 1996 to 1999

    E-Print Network [OSTI]

    Mukhtar, Saqib

    74 78 Peak + Methylated Oil 0.75 oz + 1 pt 78 88 93 1) WAT = Weeks after treatment application. #12Result Demonstration Report Pigweed Control in Grain Sorghum Using Peak. 1996 to 1999 Brent Bean Summary Studies were conducted from 1996 to 1999 to evaluate pigweed control in grain sorghum using Peak

  8. Formation Of The Rare Earth Peak: Gaining Insight Into Late-Time r-Process Dynamics

    E-Print Network [OSTI]

    Matthew Mumpower; Gail McLaughlin; Rebecca Surman

    2011-09-16T23:59:59.000Z

    We study the formation and final structure of the rare earth peak ($A\\sim160$) of the $r$-process nucleosynthesis. The rare earth peak forms at late times in the $r$-process after neutron exhaustion (neutron-to-seed ratio unity or R=1) as matter decays back to stability. Since rare earth peak formation does not occur during \

  9. The polyphase resonant converter modulator for pulse power and plasma applications

    SciTech Connect (OSTI)

    Reass, W. A. (William A.); Baca, D. M. (David M.); Doss, James D.; Gribble, R. (Robert F.); North, W. R.

    2002-01-01T23:59:59.000Z

    This paper describes a new technique to generate high voltage pulses (100 kV and up) with high peak power (10 MW and up) and high average power (1 MW and up) from a low voltage input source (e.g. +/- 1.2 kV). This technology is presently being used to provide cathode pulse modulation for the Spallation Neutron Source (SNS) accelerator klystron RF amplifiers, which operate to 140 kV 11 MW peak power and 1.1 MW average power. The design of the modulator, referred to as the Polyphase Resonant Converter-Modulator takes advantage of high-power component advances, in response to the needs of the traction motor industry (in particular, railroad locomotives), such as Insulated Gate Bipolar Transistors (IGBT's) and self-clearing metallized hazy polypropylene capacitors. In addition, the use of amorphous nanocrystalline transformer core alloy permits high frequency voltage and current transformation with low loss and small size. Other unique concepts embodied in the converter-modulator topology are polyphase resonant voltage multiplication and resonant rectification. These techniques further reduce size and improve electrical efficiency. Because of the resonant conversion techniques, electronic 'crowbars' and other load protective networks are not required. A shorted load detunes the circuit resonance and little power transfer can occur. This yields a high-power, high-voltage system that is inherently self-protective. To provide regulated output voltages, Pulse Width Modulation (PWM) of the individual IGBT pulses is used. A Digital signal Processor (DSP) is used to control the IGBT's, with adaptive feed forward and feedback control algorithms that improve pulse fidelity. The converter-modulator has many attributes that make it attractive to various pulse power and plasma applications such as high power RF sources, neutral beam modulators, and various plasma applications. This paper will review the design as used for the SNS accelerator and speculate on related plasma applications.

  10. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach

    SciTech Connect (OSTI)

    Sudhir, Dass; Bandyopadhyay, M., E-mail: mainak@ter-india.org; Chakraborty, A. [ITER-India, Institute for Plasma Research, A-29, GIDC, Sector-25, Gandhinagar, Gujarat 382 025 (India)] [ITER-India, Institute for Plasma Research, A-29, GIDC, Sector-25, Gandhinagar, Gujarat 382 025 (India); Kraus, W. [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, 85740 Garching (Germany)] [Max-Planck-Institut für Plasmaphysik, Boltzmannstrasse 2, 85740 Garching (Germany); Gahlaut, A.; Bansal, G. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)] [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382 428 (India)

    2014-01-15T23:59:59.000Z

    Impedance matching circuit between radio frequency (RF) generator and the plasma load, placed between them, determines the RF power transfer from RF generator to the plasma load. The impedance of plasma load depends on the plasma parameters through skin depth and plasma conductivity or resistivity. Therefore, for long pulse operation of inductively coupled plasmas, particularly for high power (?100 kW or more) where plasma load condition may vary due to different reasons (e.g., pressure, power, and thermal), online tuning of impedance matching circuit is necessary through feedback. In fusion grade ion source operation, such online methodology through feedback is not present but offline remote tuning by adjusting the matching circuit capacitors and tuning the driving frequency of the RF generator between the ion source operation pulses is envisaged. The present model is an approach for remote impedance tuning methodology for long pulse operation and corresponding online impedance matching algorithm based on RF coil antenna current measurement or coil antenna calorimetric measurement may be useful in this regard.

  11. Femtosecond pulse imaging: ultrafast optical oscilloscope

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    Femtosecond pulse imaging: ultrafast optical oscilloscope P. C. Sun, Y. T. Mazurenko,* and Y as well as our ability to detect the shape of the ul- trashort pulses that can be seen as an ultrafast 12, 1996 A nonlinear optical processor that is capable of real-time conversion of a femtosecond pulse

  12. High-Pulse-Energy Ultrafast Laser for

    E-Print Network [OSTI]

    Painter, Kevin

    High-Pulse-Energy Ultrafast Laser for Spectroscopy & Micromachining PROBLEM THIS TECHNOLOGY SOLVES. In addition to the OPO, a custom designed ultrafast pump source, provides high pulse energy (.res.hw.ac.uk Professor Derryck Reid (Principal Investigator) www.ultrafast.hw.ac.uk BENEFITS & APPLICATIONS: · High pulse

  13. Optical precursor fields in nonlinear pulse dynamics

    E-Print Network [OSTI]

    Oughstun, Kurt

    . Oughstun and G. C. Sherman, Electromagnetic Pulse Propagation in Causal Dielectrics (Springer-Verlag, Berlin-Heidelberg, 1994). 7. K. E. Oughstun, Electromagnetic and Optical Pulse Propagation1: Spectral, 2009). 9. K. E. Oughstun and G. C. Sherman, "Propagation of electromagnetic pulses in a linear

  14. The Near-UV Pulse Profile and Spectrum of the Pulsar PSR B0656+14

    E-Print Network [OSTI]

    Yu. A. Shibanov; J. Sollerman; P. Lundqvist; T. Gull; D. Lindler

    2005-06-07T23:59:59.000Z

    We have observed the middle-aged pulsar PSR B0656+14 with the prism and the NUV MAMA detector of the Space Telescope Imaging Spectrograph (STIS) to measure the pulsar spectrum and periodic pulsations in the near-ultraviolet (NUV). The pulsations are clearly detected, double-peaked and very similar to the optical pulse profile. The NUV pulsed fraction is 70 +/- 12%. The spectral slope of the dereddened phase-integrated spectrum in the 1800 - 3200 A range is 0.35 +/- 0.5 which together with the high pulse fraction indicates a non-thermal origin for the NUV emission. The total flux in the range 1700-3400 A is estimated to be 3.4 +/- 0.3e-15 erg/s/cm2 when corrected for E(B-V)=0.03. At a distance of 288 pc this corresponds to a luminosity 3.4e28 erg/s assuming isotropy of the emission. We compare the NUV pulse profile with observations from radio to gamma-rays. The first NUV sub-pulse is in phase with the gamma-ray pulse marginally detected with the EGRET, while the second NUV sub-pulse is similar both in shape and in phase with the non- thermal pulse in hard X-rays. This indicates a single origin of the non-thermal emission in the optical-NUV and in the X-rays. This is also supported by the observed NUV spectral slope, which is compatible with a blackbody plus power-law fit extended from the X-ray range, but dominated by the power-law component in most of the NUV range.

  15. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    SciTech Connect (OSTI)

    Forsberg, C.W.

    2005-01-20T23:59:59.000Z

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen. These characteristics make it an ideal early market for nuclear hydrogen.

  16. Pulse transmission receiver with higher-order time derivative pulse correlator

    DOE Patents [OSTI]

    Dress Jr., William B.; Smith, Stephen F.

    2003-09-16T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a higher-order time derivative pulse correlator; a demodulation decoder coupled to the higher-order time derivative pulse correlator; a clock coupled to the demodulation decoder; and a pseudorandom polynomial generator coupled to both the higher-order time derivative pulse correlator and the clock. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  17. Progress on the Construction of the 100 MeV / 100 kW Electron Linac for the NSC KIPT Neutron Source

    E-Print Network [OSTI]

    Yun-Long, Chi; Guo-Xi, Pei; Shu-Hong, Wang; Jian-She, Cao; Mi, Hou; Wei-Bin, Liu; Zu-Sheng, Zhou; Feng-Li, Zhao; Rong, Liu; Xiang-Cheng, Kong; Jing-Xia, Zhao; Chang-Dong, Deng; Hong, Song; Jin-Tong, Liu; Xu-Wen, Dai; Jun-Hui, Yue; Qi, Yang; Da-Yong, He; Xiang, He; Qi, Le; Xiao-Ping, Li; Lin, Wang; Xiang-Jian, Wang; Hui-Zhou, Ma; Xiao-Yan, Zhao; Yan-Feng, Sui; Hai-Sheng, Guo; Chuang-Xin, Ma; Jian-Bing, Zhao; Peng, Chen

    2013-01-01T23:59:59.000Z

    IHEP, China is constructing a 100 MeV / 100 kW electron Linac for NSC KIPT, Ukraine. This linac will be used as the driver of a neutron source based on a subcritical assembly. In 2012, the injector part of the accelerator was pre-installed as a testing facility in the experimental hall #2 of IHEP. The injector beam and key hardware testing results were met the design goal. Recently, the injector testing facility was disassembled and all of the components for the whole accelerator have been shipped to Ukraine from China by ocean shipping. The installation of the whole machine in KIPT will be started in June, 2013. The construction progress, the design and testing results of the injector beam and key hardware are presented.

  18. Dual amplitude pulse generator for radiation detectors

    DOE Patents [OSTI]

    Hoggan, Jerry M. (Idaho Falls, ID); Kynaston, Ronnie L. (Blackfoot, ID); Johnson, Larry O. (Island Park, ID)

    2001-01-01T23:59:59.000Z

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  19. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1985-07-29T23:59:59.000Z

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and sway from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch.

  20. Ion Acceleration by Short Chirped Laser Pulses

    E-Print Network [OSTI]

    Li, Jian-Xing; Keitel, Christoph H; Harman, Zoltán

    2015-01-01T23:59:59.000Z

    Direct laser acceleration of ions by short frequency-chirped laser pulses is investigated theoretically. We demonstrate that intense beams of ions with a kinetic energy broadening of about 1 % can be generated. The chirping of the laser pulse allows the particles to gain kinetic energies of hundreds of MeVs, which is required for hadron cancer therapy, from pulses of energies of the order of 100 J. It is shown that few-cycle chirped pulses can accelerate ions more efficiently than long ones, i.e. higher ion kinetic energies are reached with the same amount of total electromagnetic pulse energy.

  1. Intrinsic chirp of single-cycle pulses

    SciTech Connect (OSTI)

    Lin Qiang; Zheng Jian [Institute of Optics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Dai Jianming; Ho, I-Chen; Zhang, X.-C. [Center for Terahertz Research, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2010-04-15T23:59:59.000Z

    The Fourier transform-limited electromagnetic pulse has been regarded to be free of chirps for a long time. This is no longer true if the pulse duration goes down to or less than one optical cycle. We report the experimental observation of intrinsic chirps in such pulses with the sub-single-cycle terahertz (THz) waveforms obtained with a standard THz time-domain spectroscopy system. The results confirm the break down of the carrier-envelope (CE) expression for single-cycle optical pulses, and may influence the experimental measurements and theoretical modeling with single-cycle pulses.

  2. Adaptive control system for pulsed megawatt klystrons

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1992-01-01T23:59:59.000Z

    The invention provides an arrangement for reducing waveform errors such as errors in phase or amplitude in output pulses produced by pulsed power output devices such as klystrons by generating an error voltage representing the extent of error still present in the trailing edge of the previous output pulse, using the error voltage to provide a stored control voltage, and applying the stored control voltage to the pulsed power output device to limit the extent of error in the leading edge of the next output pulse.

  3. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    SciTech Connect (OSTI)

    West, M; Hafner, R

    2008-05-05T23:59:59.000Z

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

  4. Peak CO2? China's Emissions Trajectories to 2050

    SciTech Connect (OSTI)

    Zhou, Nan; Fridley, David G.; McNeil, Michael; Zheng, Nina; Ke, Jing; Levine, Mark

    2011-05-01T23:59:59.000Z

    As a result of soaring energy demand from a staggering pace of economic growth and the related growth of energy-intensive industry, China overtook the United States to become the world's largest contributor to CO{sub 2} emissions in 2007. At the same time, China has taken serious actions to reduce its energy and carbon intensity by setting both short-term energy intensity reduction goal for 2006 to 2010 as well as long-term carbon intensity reduction goal for 2020. This study focuses on a China Energy Outlook through 2050 that assesses the role of energy efficiency policies in transitioning China to a lower emission trajectory and meeting its intensity reduction goals. In the past years, LBNL has established and significantly enhanced the China End-Use Energy Model based on the diffusion of end-use technologies and other physical drivers of energy demand. This model presents an important new approach for helping understand China's complex and dynamic drivers of energy consumption and implications of energy efficiency policies through scenario analysis. A baseline ('Continued Improvement Scenario') and an alternative energy efficiency scenario ('Accelerated Improvement Scenario') have been developed to assess the impact of actions already taken by the Chinese government as well as planned and potential actions, and to evaluate the potential for China to control energy demand growth and mitigate emissions. It is a common belief that China's CO{sub 2} emissions will continue to grow throughout this century and will dominate global emissions. The findings from this research suggest that this will not likely be the case because of saturation effects in appliances, residential and commercial floor area, roadways, railways, fertilizer use, and urbanization will peak around 2030 with slowing population growth. The baseline and alternative scenarios also demonstrate that the 2020 goals can be met and underscore the significant role that policy-driven energy efficiency improvements will play in carbon mitigation along with a decarbonized power supply through greater renewable and non-fossil fuel generation.

  5. Back-Up/ Peak Shaving Fuel Cell System

    SciTech Connect (OSTI)

    Staudt, Rhonda L.

    2008-05-28T23:59:59.000Z

    This Final Report covers the work executed by Plug Power from 8/11/03 – 10/31/07 statement of work for Topic 2: advancing the state of the art of fuel cell technology with the development of a new generation of commercially viable, stationary, Back-up/Peak-Shaving fuel cell systems, the GenCore II. The Program cost was $7.2 M with the Department of Energy share being $3.6M and Plug Power’s share being $3.6 M. The Program started in August of 2003 and was scheduled to end in January of 2006. The actual program end date was October of 2007. A no cost extension was grated. The Department of Energy barriers addressed as part of this program are: Technical Barriers for Distributed Generation Systems: o Durability o Power Electronics o Start up time Technical Barriers for Fuel Cell Components: o Stack Material and Manufacturing Cost o Durability o Thermal and water management Background The next generation GenCore backup fuel cell system to be designed, developed and tested by Plug Power under the program is the first, mass-manufacturable design implementation of Plug Power’s GenCore architected platform targeted for battery and small generator replacement applications in the telecommunications, broadband and UPS markets. The next generation GenCore will be a standalone, H2 in-DC-out system. In designing the next generation GenCore specifically for the telecommunications market, Plug Power is teaming with BellSouth Telecommunications, Inc., a leading industry end user. The final next generation GenCore system is expected to represent a market-entry, mass-manufacturable and economically viable design. The technology will incorporate: • A cost-reduced, polymer electrolyte membrane (PEM) fuel cell stack tailored to hydrogen fuel use • An advanced electrical energy storage system • A modular, scalable power conditioning system tailored to market requirements • A scaled-down, cost-reduced balance of plant (BOP) • Network Equipment Building Standards (NEBS), UL and CE certifications.

  6. Unsplit bipolar pulse forming line

    DOE Patents [OSTI]

    Rhodes, Mark A. (Pleasanton, CA)

    2011-05-24T23:59:59.000Z

    A bipolar pulse forming transmission line module and system for linear induction accelerators having first, second, third, and fourth planar conductors which form a sequentially arranged interleaved stack having opposing first and second ends, with dielectric layers between the conductors. The first and second planar conductors are connected to each other at the first end, and the first and fourth planar conductors are connected to each other at the second end via a shorting plate. The third planar conductor is electrically connectable to a high voltage source, and an internal switch functions to short at the first end a high voltage from the third planar conductor to the fourth planar conductor to produce a bipolar pulse at the acceleration axis with a zero net time integral. Improved access to the switch is enabled by an aperture through the shorting plate and the proximity of the aperture to the switch.

  7. Pulsed Power Driven Fusion Energy

    SciTech Connect (OSTI)

    SLUTZ,STEPHEN A.

    1999-11-22T23:59:59.000Z

    Pulsed power is a robust and inexpensive technology for obtaining high powers. Considerable progress has been made on developing light ion beams as a means of transporting this power to inertial fusion capsules. However, further progress is hampered by the lack of an adequate ion source. Alternatively, z-pinches can efficiently convert pulsed power into thermal radiation, which can be used to drive an inertial fusion capsule. However, a z-pinch driven fusion explosion will destroy a portion of the transmission line that delivers the electrical power to the z-pinch. They investigate several options for providing standoff for z-pinch driven fusion. Recyclable Transmission Lines (RTLs) appear to be the most promising approach.

  8. Solid state pulsed power generator

    DOE Patents [OSTI]

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11T23:59:59.000Z

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  9. FERROELECTRIC SWITCH FOR A HIGH-POWER Ka-BAND ACTIVE PULSE COMPRESSOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L. [Omega-P, Inc.] [Omega-P, Inc.

    2013-12-18T23:59:59.000Z

    Results are presented for design of a high-power microwave switch for operation at 34.3 GHz, intended for use in an active RF pulse compressor. The active element in the switch is a ring of ferroelectric material, whose dielectric constant can be rapidly changed by application of a high-voltage pulse. As envisioned, two of these switches would be built into a pair of delay lines, as in SLED-II at SLAC, so as to allow 30-MW ?s-length Ka-band pulses to be compressed in time by a factor-of-9 and multiplied in amplitude to generate 200 MW peak power pulses. Such high-power pulses could be used for testing and evaluation of high-gradient mm-wave accelerator structures, for example. Evaluation of the switch design was carried out with an X-band (11.43 GHz) prototype, built to incorporate all the features required for the Ka-band version.

  10. Pulse Tidal formerly Pulse Generation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History Facebook icon TwitterZip JumpProwindPuda Coal IncPulse Tidal

  11. Pulse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: Shale natural gas proved reserves,Enter

  12. Integration of neutron time-of-flight single-crystal Bragg peaks in reciprocal space

    SciTech Connect (OSTI)

    Schultz, Arthur J [ORNL] [ORNL; Joergensen, Mads [ORNL] [ORNL; Wang, Xiaoping [ORNL] [ORNL; Mikkelson, Ruth L [ORNL] [ORNL; Mikkelson, Dennis J [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Peterson, Peter F [ORNL] [ORNL; Green, Mark L [ORNL] [ORNL; Hoffmann, Christina [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    The intensity of single crystal Bragg peaks obtained by mapping neutron time-of-flight event data into reciprocal space and integrating in various ways are compared. These include spherical integration with a fixed radius, ellipsoid fitting and integrating of the peak intensity and one-dimensional peak profile fitting. In comparison to intensities obtained by integrating in real detector histogram space, the data integrated in reciprocal space results in better agreement factors and more accurate atomic parameters. Furthermore, structure refinement using integrated intensities from one-dimensional profile fitting is demonstrated to be more accurate than simple peak-minus-background integration.

  13. Pulsed Gamma-Rays From PSR J2021 3651 with the Fermi Large Area Telescope

    SciTech Connect (OSTI)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, Marco; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, William B.; /UC, Santa Cruz; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Battelino, Milan; /Royal Inst. Tech., Stockholm; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, Ronaldo; /INFN, Pisa; Berenji, Bijan; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bogaert, G.; /Ecole Polytechnique; Borgland, Anders W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Columbia U. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /George Mason U. /Naval Research Lab, Wash., D.C. /IASF, Milan /IASF, Milan /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /LPCE, Orleans /Montpellier U. /Sonoma State U. /Royal Inst. Tech., Stockholm /Stockholm U. /ASI, Rome /NRAO, Charlottesville /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /UC, Santa Cruz /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Manchester U. /Montpellier U. /Bari U. /INFN, Bari; /more authors..

    2011-11-30T23:59:59.000Z

    We report the detection of pulsed gamma-rays from the young, spin-powered radio pulsar PSR J2021+3651 using data acquired with the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST). The light curve consists of two narrow peaks of similar amplitude separated by 0.468 {+-} 0.002 in phase. The first peak lags the maximum of the 2 GHz radio pulse by 0.162 {+-} 0.004 {+-} 0.01 in phase. The integral gamma-ray photon flux above 100 MeV is (56 {+-} 3 {+-} 11) x 10{sup -8} cm{sup -2} s{sup -1}. The photon spectrum is well-described by an exponentially cut-off power law of the form dF/dE = kE{sup -{Gamma}}e{sup (-E/E{sub c})} where the energy E is expressed in GeV. The photon index is {Gamma} = 1.5 {+-} 0.1 {+-} 0.1 and the exponential cut-off is E{sub c} = 2.4 {+-} 0.3 {+-} 0.5 GeV. The first uncertainty is statistical and the second is systematic. The integral photon flux of the bridge is approximately 10% of the pulsed emission, and the upper limit on off-pulse gamma-ray emission from a putative pulsar wind nebula is < 10% of the pulsed emission at the 95% confidence level. Radio polarization measurements yield a rotation measure of RM = 524 {+-} 4 rad m{sup -2} but a poorly constrained magnetic geometry. Re-analysis of Chandra data enhanced the significance of the weak X-ray pulsations, and the first peak is roughly phase-aligned with the first gamma-ray peak. We discuss the emission region and beaming geometry based on the shape and spectrum of the gamma-ray light curve combined with radio and X-ray measurements, and the implications for the pulsar distance. Gamma-ray emission from the polar cap region seems unlikely for this pulsar.

  14. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01T23:59:59.000Z

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  15. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    1996-01-01T23:59:59.000Z

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted.

  16. PULSE DRYING EXPERIMENT AND BURNER CONSTRUCTION

    SciTech Connect (OSTI)

    Robert States

    2006-07-15T23:59:59.000Z

    Non steady impingement heat transfer is measured. Impingement heating consumes 130 T-BTU/Yr in paper drying, but is only 25% thermally efficient. Pulse impingement is experimentally shown to enhance heat transfer by 2.8, and may deliver thermal efficiencies near 85%. Experimental results uncovered heat transfer deviations from steady theory and from previous investigators, indicating the need for further study and a better theoretical framework. The pulse burner is described, and its roll in pulse impingement is analyzed.

  17. Pulsed source ion implantation apparatus and method

    DOE Patents [OSTI]

    Leung, K.N.

    1996-09-24T23:59:59.000Z

    A new pulsed plasma-immersion ion-implantation apparatus that implants ions in large irregularly shaped objects to controllable depth without overheating the target, minimizing voltage breakdown, and using a constant electrical bias applied to the target. Instead of pulsing the voltage applied to the target, the plasma source, for example a tungsten filament or a RF antenna, is pulsed. Both electrically conducting and insulating targets can be implanted. 16 figs.

  18. Observed Temperature Effects on Hourly Residential Electric Load Reduction in Response to an Experimental Critical Peak Pricing Tariff

    E-Print Network [OSTI]

    Herter, Karen B.; McAuliffe, Patrick K.; Rosenfeld, Arthur H.

    2005-01-01T23:59:59.000Z

    Critical Peak Pricing Tariff Karen Herter ab* , Patrickunder critical peak pricing tariffs tested in the 2003-2004The 15-month experimental tariff gave customers a discounted

  19. Subthreshold pair production in short laser pulses

    E-Print Network [OSTI]

    T. Nousch; D. Seipt; B. Kampfer; A. I. Titov

    2012-06-01T23:59:59.000Z

    The $e^+e^-$ pair production by a probe photon traversing a linearly polarized laser pulse is treated as generalized nonlinear Breit-Wheeler process. For short laser pulses with very few oscillations of the electromagnetic field we find below the perturbative weak-field threshold $\\sqrt{s} = 2m$ a similar enhancement of the pair production rate as for circular polarization. The strong subthreshold enhancement is traced back to the finite bandwidth of the laser pulse. A folding model is developed which accounts for the interplay of the frequency spectrum and the intensity distribution in the course of the pulse.

  20. bia-pulse | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MD PROGRAM PUBLICATIONS Final Reports Pulse Combustor Design Qualification Test and Clean Coal Feedstock Test , Final Report Volume 2: Project Performance and Economics...

  1. Method and apparatus for fast laser-pulse detection using gaseous plasmas

    DOE Patents [OSTI]

    McLellan, E.J.; Webb, J.A.

    1981-06-18T23:59:59.000Z

    The method and device of the instant invention is a detector of pulsed laser radiation which utilizes the electromotive force generated by the plasma formed when such radiation is focused onto a surface. Measurements are made with a 10.6 ..mu..m CO/sub 2/ laser capable of producing peak intensities of 10/sup 13/ W/cm/sup 2/ when directed through a converging lens. Evacuated detector response to such laser intensity if 1 kV signal peak amplitude and subnanosecond risetimes into a 50 ..cap omega.. load. Detector performance is found to be greatly altered with the introduction of a background gas. For example, with one atmosphere of air, the detector produces prompt signals of the order of 1 V with subnanosecond response for pulse trains lasting 100 ns. With argon, krypton, or zenon at pressures of the order of 10 torr, the detector generates trigger pulses of about 250 V amplitude and 0.2 ns risetimes. Such detectors are quite robust when irradiated with high intensity laser radiation and are useful for qualitative laser beam monitoring.

  2. (pulsed laser deposition, PLD) (ultra-short pulsed laser deposition, uPLD)

    E-Print Network [OSTI]

    (ultra-short pulsed laser deposition, uPLD) PLD (Yttrium barium copper oxide , YBa2Cu3O7-, YBCO) YBCO-2-1 YBCO http://en.wikipedia.org/wiki/File:Ybco002.svg #12;3 1-3 (ultra-short pulsed laser #12;i #12;ii #12;iii #12;iv (pulsed laser deposition, PLD) PLD

  3. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01T23:59:59.000Z

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  4. Suggested performance specifications of standard modular controls for the automation of small hydro electric facilities. [Plant capacities from 50 kW to 15 MW

    SciTech Connect (OSTI)

    Beckwith, R.W.

    1980-06-01T23:59:59.000Z

    These specifications are made available by the Department of Energy for the voluntary use by any person, corporation or governmental body in the writing of purchase specifications for the automatic control of small hydro generating stations, i.e., hydro plants ranging in size from 50 kW to 15 MW. It is believed that the use of these specifications will permit competition among capable vendors and, at the same time, assure proper and reliable operation of both the automation hardware and software purchased. The specifications are detailed to a degree which should assure the interchangeability of hardware and software from various suppliers. This also increases the likelihood that spare parts and service will be available for many years. The specifications are written in modules, each of which can be included or excluded for ease of editing to match a particular application. Brief but detailed instructions are included for such editing. An extensive appendix gives the alternatives which were considered and reasons for the various choices specified.

  5. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01T23:59:59.000Z

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  6. Broadband low-dispersion diffraction of femtosecond pulses

    E-Print Network [OSTI]

    Purdue University

    with that of a 100-fs pulse, which is ap- proximately 10 nm (or 5 THz) at 800 nm. The large bandwidths of ultrafast-bit-rate communications.12 Pulse shaping and control of ultrafast pulses are of interest not only from the practical point for femtosecond pulse shaping and ultrafast pulse switch- ing. Bandgap engineered broadband semiconductor MQW

  7. Laser system using ultra-short laser pulses

    DOE Patents [OSTI]

    Dantus, Marcos (Okemos, MI); Lozovoy, Vadim V. (Okemos, MI); Comstock, Matthew (Milford, MI)

    2009-10-27T23:59:59.000Z

    A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.

  8. Peak-to-average power ratio reduction in OFDM based on transformation of partial

    E-Print Network [OSTI]

    Peak-to-average power ratio reduction in OFDM based on transformation of partial transmit sequences number, but T-PTS is less complex. Introduction: To avoid the occurrence of large peak power of signals G. Lu, P. Wu and C. Carlemalm-Logothetis A novel scheme (transformation of partial transmit

  9. Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    price shocks and economic downturns. Over the next 30 years oil demand is expected to grow by 60Energy Policy 34 (2006) 515­531 Have we run out of oil yet? Oil peaking analysis from an optimist of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range

  10. An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System

    E-Print Network [OSTI]

    DRAFT 1 An Approximate Method to Assess the Peaking Capability of the NW Hydroelectric System September 26, 2005 The best way to assess the hydroelectric system's peaking capability is to simulate its. This is an ominous task and requires the use of sophisticated simulation software. The Bonneville Power

  11. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    E-Print Network [OSTI]

    Received 6 May 2005 Availble online 7 February 2006 Abstract The failure of a lava dam 165,000 yr ago dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. FailurePeak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA Cassandra R

  12. Peak production in an oil depletion model with triangular field profiles

    E-Print Network [OSTI]

    Stark, Dudley

    Peak production in an oil depletion model with triangular field profiles Dudley Stark School.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been declining since then. Hubbert used a logistic curve to approximate the rate of oil production. Deffeyes [2

  13. Imminence of peak in US coal production and overestimation of reserves

    E-Print Network [OSTI]

    Khare, Sanjay V.

    1 Imminence of peak in US coal production and overestimation of reserves Nathan G. F. Reaver, coal reserves, coal production forecast, peak coal, USA energy, non- linear fitting #12;3 1 fuels, coal, oil, and natural gas, it is coal that is the most carbon intensive (W. Moomaw, 2011). Due

  14. Journal of Chromatography A, 1086 (2005) 165170 Peak pattern variations related to comprehensive two-dimensional

    E-Print Network [OSTI]

    Reichenbach, Stephen E.

    2005-01-01T23:59:59.000Z

    non-linear pattern variations and changes in gas pressure generate nearly linear pattern variations Abstract Identifying compounds of interest for peaks in data generated by comprehensive two-dimensional gas and inlet gas pressure and evaluates two types of affine transformations for matching peak patterns

  15. Grain size, size-distribution and dislocation structure from diffraction peak profile analysis

    E-Print Network [OSTI]

    Gubicza, Jenõ

    Grain size, size-distribution and dislocation structure from diffraction peak profile analysis T, Budapest, Hungary Abstract Diffraction peak profile analysis (or Line Profile Analysis, LPA) has recently and the strain diffraction profiles. Strain anisotropy is rationalized in terms of the contrast factors

  16. Statistical Analysis and Dynamic Visualization of Travis Peak Production in the Eastern Texas Basin

    E-Print Network [OSTI]

    Ayanbule, Babafemi O.

    2010-10-12T23:59:59.000Z

    , integrating data from various sources. This research will attempt to do just that for wells producing from the Travis Peak formation. Using data from HPDI L.L.C., (www.hpdi.com) a visual representation was created for the areal distribution of peak gas rates...

  17. The Houston Pollution Problem: An analysis of the primary and secondary regional pollution peak

    E-Print Network [OSTI]

    Omiecinski, Curtis

    266 The Houston Pollution Problem: An analysis of the primary and secondary regional pollution peak was conducted in the Houston area to assess the secondary regional pollution peak that occurs at that time pollution episodes, which correlated with stagnant weather patterns and high temperatures. During spring

  18. A Queueing Study of PeakRate Enforcement for Jitter Reduction in ATM Networks \\Lambda

    E-Print Network [OSTI]

    Stavrakakis, Ioannis

    A Queueing Study of Peak­Rate Enforcement for Jitter Reduction in ATM Networks \\Lambda Randall­ induced delay jitter. The adopted service policy regulates the traffic class of interest by enforcing a predetermined peak output rate. Probability distributions for delay and jitter of the regulated traffic class

  19. Jitter in ATM networks and its impact on peak rate enforcement

    E-Print Network [OSTI]

    Guillemin, Fabrice

    Jitter in ATM networks and its impact on peak rate enforcement James ROBERTS FRANCE TELECOM CNET. This is the phenomenon of jitter and the aim of the present paper is to study its in uence on peak rate enforcement. We rst introduce some general characterizations of jitter and then, describe two models of jittered ows

  20. Evaluation of Travis Peak gas reservoirs, west margin of the East Texas Basin

    E-Print Network [OSTI]

    Li, Yamin

    2009-05-15T23:59:59.000Z

    for basinward extension of Travis Peak gas production along the west margin of the East Texas Basin. Along the west margin of the East Texas Basin, southeast-trending Travis Peak sandstones belts were deposited by the Ancestral Red River fluvial-deltaic system...

  1. Submitted to Renewable Energy, 5 December 2009 The technical potential for off-peak electricity

    E-Print Network [OSTI]

    Hughes, Larry

    October 2009 #12;The technical potential for off-peak electricity to serve as backup in wind. This paper examines the technical potential of off-peak electricity to ensure that wind-charged thermalSubmitted to Renewable Energy, 5 December 2009 ERG/200910 The technical potential for off

  2. Stably operating pulse combustor and method

    DOE Patents [OSTI]

    Zinn, Ben T. (Atlanta, GA); Reiner, David (Haifa, IL)

    1990-01-01T23:59:59.000Z

    A pulse combustor apparatus adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation.

  3. Compton Process in Intense Short Laser Pulses

    E-Print Network [OSTI]

    K. Krajewska; J. Z. Kaminski

    2012-06-05T23:59:59.000Z

    The spectra of Compton radiation emitted during electron scattering off an intense laser beam are calculated using the framework of strong-field quantum electrodynamics. We model these intense laser beams as finite length plane-wave-fronted pulses, similar to Neville and Rohrlich [Phys. Rev. D {\\bf 3}, 1692 (1971)], or as trains of such pulses. Expressions for energy and angular distributions of Compton photons are derived such that a comparison of both situations becomes meaningful. Comparing frequency distributions for both an isolated laser pulse and a laser pulse train, we find a very good agreement between the results for long pulse durations which breaks down however for ultrashort laser pulses. The dependence of angular distributions of emitted radiation on a pulse duration is also investigated. Pronounced asymmetries of angular distributions are found for very short laser pulses, which gradually disappear with increasing the number of laser field oscillations. Those asymmetries are attributed to asymmetries of the vector potential describing an incident laser beam.

  4. CenterPulse ContentsDirector's Notes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    to our year-in-review newsletter, CenterPulse. Please forward it to your colleagues to help us improveCenterPulse ContentsDirector's Notes 2012 Year in Review Happy New Year, everyone! The year 2012 that recommended full continuation of funding for years 52-56 of NIH support. While the final funding level

  5. Stably operating pulse combustor and method

    DOE Patents [OSTI]

    Zinn, B.T.; Reiner, D.

    1990-05-29T23:59:59.000Z

    A pulse combustor apparatus is described which is adapted to burn either a liquid fuel or a pulverized solid fuel within a preselected volume of the combustion chamber. The combustion process is substantially restricted to an optimum combustion zone in order to attain effective pulse combustion operation. 4 figs.

  6. A programmable Fresnel transform pulse shaper

    E-Print Network [OSTI]

    Purdue University

    A programmable Fresnel transform pulse shaper G. M´inguez-Vega1, J.D. McKinney2 and A.M. Weiner2 1@purdue.edu Abstract: We demonstrate the first reprogrammable Fresnel transform pulse shaper based on a modified direct a free-space Fresnel transform which causes quadratic dispersion of the output temporal waveform. When

  7. Optimization of the LCLS Single Pulse Shutter

    SciTech Connect (OSTI)

    Adera, Solomon; /Georgia Tech., Atlanta /SLAC

    2010-08-25T23:59:59.000Z

    A mechanical shutter which operates on demand is used to isolate a single pulse from a 120 Hz X-ray source. This is accomplished with a mechanical shutter which is triggered on demand with frequencies ranging from 0 to 10 Hz. The single pulse shutter is an iron blade that oscillates on a pivot in response to a force generated by a pair of pulsed electromagnets (current driven teeter-totter). To isolate an individual pulse from the X-ray beam, the motion of the mechanical shutter should be synchronized in such a way that it allows a single pulse to pass through the aperture and blocks the other incoming pulses. Two consecutive pulses are only {approx} 8 ms apart and the shutter is required to complete one full cycle such that no two pulses pass through the opening. Also the opening of the shutter blade needs to be at least 4 mm so that a 1 mm diameter rms Gaussian beam can pass through without modulation. However, the 4 mm opening is difficult to obtain due to blade rebound and oscillation of the blade after colliding with the electromagnet. The purpose of this project is to minimize and/or totally eliminate the rebound of the shutter blade in pursuit of maximizing the aperture while keeping the open window interval < {approx}12 ms.

  8. High reliability low jitter pulse generator

    DOE Patents [OSTI]

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01T23:59:59.000Z

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  9. Heart Physiology Lab Part 1: Pulse Rate

    E-Print Network [OSTI]

    Loughry, Jim

    Heart Physiology Lab Part 1: Pulse Rate Measure your pulse in each of the following conditions (in in the class. You may use Table 1 in the Heart Physiology Worksheet for this, if you wish. Once you have all of the class averages for each measurement. You may use Graph 1 in the Heart Physiology Worksheet for this

  10. Digital computer analysis of pulse height spectra

    E-Print Network [OSTI]

    Phillips, Herman Roy

    1964-01-01T23:59:59.000Z

    on succeeding pages, a value listed as DFT is printed which indicates the amount of drift, if any, in that spectrum with relation to the plutonium peak which is used for drift control purposes [3]. The plutonium peak count is given for each library under... the heading FLUT. Also given with each library and sample is the peak count for each ele- ment, PKCT, and the per cent live time, PLT, Using the plutonium peaks in the library spectrum for element one and in each sample spectrum, the plutonium "weight...

  11. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect (OSTI)

    Marceau, Claude, E-mail: claude.marceau.2@ulaval.ca; Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd [Centre d'Optique, Photonique et Laser, Pavillon d'optique-photonique Québec (Québec), Université Laval, Québec G1V 0A6 (Canada)

    2014-02-03T23:59:59.000Z

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800?nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400?nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1??m to 18??m. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  12. Ultrafast Pulse Shaping Approaches to Quantum Computing

    E-Print Network [OSTI]

    Debabrata Goswami

    2003-12-24T23:59:59.000Z

    Quantum computing exploits the quantum-mechanical nature of matter to exist in multiple possible states simultaneously. This new approach promises to revolutionize the present form of computing. As an approach to quantum computing, we discuss ultrafast laser pulse shaping, in particular, the acousto-optic modulator based Fourier-Transform pulse-shaper, which has the ability to modulate tunable high power ultrafast laser pulses. We show that optical pulse shaping is an attractive route to quantum computing since shaped pulses can be transmitted over optical hardware and the same infrastructure can be used for computation and optical information transfer. We also address the problem of extending coherence-times for optically induced processes.

  13. AN UPDATE ON NIF PULSED POWER

    SciTech Connect (OSTI)

    Arnold, P A; James, G F; Petersen, D E; Pendleton, D L; McHale, G B; Barbosa, F; Runtal, A S; Stratton, P L

    2009-06-22T23:59:59.000Z

    The National Ignition Facility (NIF) is a 192-beam laser fusion driver operating at Lawrence Livermore National Laboratory. NIF relies on three large-scale pulsed power systems to achieve its goals: the Power Conditioning Unit (PCU), which provides flashlamp excitation for the laser's injection system; the Power Conditioning System (PCS), which provides the multi-megajoule pulsed excitation required to drive flashlamps in the laser's optical amplifiers; and the Plasma Electrode Pockels Cell (PEPC), which enables NIF to take advantage of a fourpass main amplifier. Years of production, installation, and commissioning of the three NIF pulsed power systems are now complete. Seven-day-per-week operation of the laser has commenced, with the three pulsed power systems providing routine support of laser operations. We present the details of the status and operational experience associated with the three systems along with a projection of the future for NIF pulsed power.

  14. 140 GHz pulsed Fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, W.F.; Leskovar, B.

    1987-10-27T23:59:59.000Z

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer, including means for generating a high frequency carrier signal, and means for generating a low frequency modulating signal is disclosed. The carrier signal is continuously fed to a modulator and the modulating signal is fed through a pulse switch to the modulator. When the pulse switch is on, the modulator will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device is controlled by the pulse switch. 5 figs.

  15. 140 GHz pulsed fourier transform microwave spectrometer

    DOE Patents [OSTI]

    Kolbe, William F. (Oakland, CA); Leskovar, Branko (Moraga, CA)

    1987-01-01T23:59:59.000Z

    A high frequency energy pulsing system suitable for use in a pulsed microwave spectrometer (10), including means (11, 19) for generating a high frequency carrier signal, and means (12) for generating a low frequency modulating signal. The carrier signal is continuously fed to a modulator (20) and the modulating signal is fed through a pulse switch (23) to the modulator. When the pulse switch (23) is on, the modulator (20) will produce sideband signals above and below the carrier signal frequency. A frequency-responsive device (31) is tuned to one of the sideband signals and away from the carrier frequency so that the high frequency energization of the frequency-responsive device (31) is controlled by the pulse switch (23).

  16. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    SciTech Connect (OSTI)

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15T23:59:59.000Z

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  17. Extension of harmonic cutoff in a multicycle chirped pulse combined with a chirp-free pulse

    SciTech Connect (OSTI)

    Xu Junjie; Zeng Bin; Yu Yongli [State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, P.O. Box 800-211, Shanghai 201800 (China)

    2010-11-15T23:59:59.000Z

    We demonstrate high-order harmonic generation in a wave form synthesized by a multicycle 800-nm chirped laser pulse and a chirp-free laser pulse. Compared with the case of using only a chirped pulse, both the harmonic cutoff and the extreme ultraviolet supercontinuum can be extended when a weak chirp-free pulse is combined with the chirped pulse. When chirp-free pulse intensity grows, the cutoff energy and bandwidth of the supercontinuum grow as well. It is found that the broad supercontinuum can be achieved for a driving pulse with long duration even though the driving pulse reaches 10 optical cycles. An isolated attosecond pulse with duration of about 59 as is obtained, and after appropriate phase compensation with a duration of about 11 as. In addition, by performing time-frequency analyses and the classical trajectory simulation, the difference in supercontinuum generation between the preceding wave form and a similar wave form synthesized by an 800-nm fundamental pulse and a 1600-nm subharmonic pulse is investigated.

  18. Pulsed-laser heating: a tool for studying degradation of materials subjected to repeated high-temperature excursions

    SciTech Connect (OSTI)

    Goldberg, A.; Cornell, R.H.

    1980-08-21T23:59:59.000Z

    The use of pulsed-laser heating was evaluated as a means to obtain high cyclic peak temperatures with short rise times. A two-stage neodymium glass laser was used which produces a 600-..mu..s pulse with energy outputs of up to 100 J. Small disk-shaped samples of AISI 4340 steel served as targets. Some of these were coated with a tungsten deposit. The rear face of some of the targets was instrumented for evaluation of temperature, strain, and stress response. Post-shot metallographic evaluations were made on a number of targets. We saw evidence of surface melting, cracking, and phase transformation. Surface damage was related to differences in the number of pulse cycles and input energy level, variables in the target materials, and the extent of strain-induced stresses. These experiments were performed in air at 1 atm and ambient laboratory temperature. 36 figures.

  19. Ultrafast optical pulse shaping: A tutorial review Andrew M. Weiner

    E-Print Network [OSTI]

    Purdue University

    Ultrafast optical pulse shaping: A tutorial review Andrew M. Weiner Purdue University, School 2011 Keywords: Ultrafast optics Pulse shaping Femtosecond optics Coherent control Optical signal programmable reshapingof ultrafast pulses, or generation of arbitrary optical waveforms, according to user

  20. Stabilized Ultrafast Pulse Generation and Optical Frequency Combs Techniques

    E-Print Network [OSTI]

    Van Stryland, Eric

    Stabilized Ultrafast Pulse Generation and Optical Frequency Combs ­ Techniques and Applications Diodes ­ Review Ultrafast Dynamics ­ Breathing Mode (Dispersion Managed Cavity) · High Pulse Energy to Make Short Pulses - Review Ultrafast Dynamics- - Dispersion Managed (Breathing Mode) MLL #12

  1. Information processing with longitudinal spectral decomposition of ultrashort pulses

    E-Print Network [OSTI]

    Saperstein, Robert Elliot

    2007-01-01T23:59:59.000Z

    decomposition of ultrafast pulses,” Appl. Opt. , doc. IDdecomposition of ultrafast pulses,” Appl. Opt. 47, A21-A31 (decomposition of ultrafast pulses,” Appl. Opt. 47, A21-A31 (

  2. The Homopolar Generator as a Pulsed Industrial Power Supply

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01T23:59:59.000Z

    power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each...

  3. The Homopolar Generator as a Pulsed Industrial Power Supply 

    E-Print Network [OSTI]

    Weldon, J. M.; Weldon, W. F.

    1979-01-01T23:59:59.000Z

    power supply for numerous industrial applications such as large metal cross section pulsed resistance welding, pulsed billet heating for subsequent hot working processes, pulsed heating for localized forging processes, and magnetic metal forming. Each...

  4. Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered

    E-Print Network [OSTI]

    Oughstun, Kurt

    Reflection and Transmission of Pulsed Electromagnetic Fields through Multilayered Biological Media- cally rigorous, physically correct description of the propagation of pulsed electromagnetic fields pulses through multilayered biological media consisting of three biological tissue layers rep- resenting

  5. Tailoring the surface plasmon resonance of embedded silver nanoparticles by combining nano- and femtosecond laser pulses

    SciTech Connect (OSTI)

    Doster, J.; Baraldi, G.; Gonzalo, J.; Solis, J.; Hernandez-Rueda, J.; Siegel, J., E-mail: j.siegel@io.cfmac.csic.es [Laser Processing Group, Instituto de Optica, Serrano 121, 28006 Madrid (Spain)

    2014-04-14T23:59:59.000Z

    We demonstrate that the broad surface plasmon resonance (SPR) of a single layer of near-coalescence silver nanoparticles (NPs), embedded in a dielectric matrix can be tailored by irradiation with a single nanosecond laser pulse into a distribution featuring a sharp resonance at 435?nm. Scanning electron microscopy studies reveal the underlying mechanism to be a transformation into a distribution of well-separated spherical particles. Additional exposure to multiple femtosecond laser pulses at 400?nm or 800?nm wavelength induces polarization anisotropy of the SPR, with a peak shift that increases with laser wavelength. The spectral changes are measured in-situ, employing reflection and transmission micro-spectroscopy with a lateral resolution of 4??m. Spectral maps as a continuous function of local fluence can be readily produced from a single spot. The results open exciting perspectives for dynamically tuning and switching the optical response of NP systems, paving the way for next-generation applications.

  6. Toward TW-Level, Hard X-Ray Pulses at LCLS

    SciTech Connect (OSTI)

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; /SLAC; Pellegrini, C.; /SLAC /UCLA; Reiche, S.; /PSI, Villigen; Wu, J,; /SLAC

    2011-12-13T23:59:59.000Z

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  7. Short-pulse cross-phase modulation in an electromagnetically-induced-transparency medium

    E-Print Network [OSTI]

    Feizpour, Amir; Steinberg, Aephraim M

    2014-01-01T23:59:59.000Z

    Electromagnetically-induced transparency (EIT) has been proposed as a way to greatly enhance cross-phase modulation, with the possibility of leading to few-photon-level optical nonlinearities. This enhancement grows as the transparency window width, \\Delta_EIT, is narrowed. Decreasing \\Delta_EIT, however, increases the response time of the effect, suggesting that for pulses of a given duration, there could be a fundamental limit to the strength of the nonlinearity. We show that in the regimes of most practical interest - narrow EIT windows perturbed by short signal pulses- the enhancement offered by EIT is not only in the magnitude of the nonlinear phase shift but in fact also in its increased duration. That is, for the case of signal pulses much shorter (temporally) than the inverse EIT bandwidth, the narrow window serves to prolong the effect of the passing signal pulse, leading to an integrated phase shift that grows linearly with \\Delta_EIT even though the peak phase shift may saturate; the continued grow...

  8. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect (OSTI)

    Li, Lee, E-mail: leeli@mail.hust.edu.cn; Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electric and Electronic Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074 (China)

    2014-07-15T23:59:59.000Z

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0?cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  9. Decarbonization and the time-delay between peak CO2 emissions and concentrations

    E-Print Network [OSTI]

    Seshadri, Ashwin K

    2015-01-01T23:59:59.000Z

    Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

  10. RF study and simulations of a C-band Barrel Open Cavity (BOC) pulse compressor

    E-Print Network [OSTI]

    Shu, Guan; He, Xiang

    2014-01-01T23:59:59.000Z

    This paper focuses on the RF study of a C-band(5712MHz) BOC pulse compressor. The operating principle of BOC is presented and the technical specifications are determined. The main components of BOC such as the cavity, the matching waveguide, the coupling slots and the tuning rings were numerically simulated by 3-D codes software HFSS and CST Microwave Studio(MWS). The "whispering gallery" mode TM6,1,1 with an unload Q of 100000 was chosen to oscillate in the cavity. An energy multiplication factor of 1.99 and a peak power gain of 6.34 were achieved theoretically.

  11. Metastable phase diagram for Ni-implanted Al and pulse surface melted Al(Ni)

    SciTech Connect (OSTI)

    Follstaedt, D.M.; Picraux, S.T.

    1984-01-01T23:59:59.000Z

    The microstructure of <110> Al implanted with Ni was examined before and after subsequent electron beam pulsed surface melting (65 ns, 1.7 J/cm/sup 2/). Both processes were done with the Al substrate at room temperature. Implantation at several energies (160 to 15 keV) into a given sample produced a nearly constant measured Ni concentration through a approx. 0.1 ..mu..m region below the surface (7). Such samples with concentrations from 8 to 25 at. % Ni were examined, along with a sample with a peak concentration of 32 at. % Ni.

  12. Radiative Reactions and Coherence Modeling in the High Altitude Electromagnetic Pulse

    E-Print Network [OSTI]

    Charles N. Vittitoe; Mario Rabinowitz

    2003-06-03T23:59:59.000Z

    A high altitude nuclear electromagnetic pulse (EMP) with a peak field intensity of 5 x 10^4 V/m carries momentum that results in a retarding force on the average Compton electron (radiating coherently to produce the waveform) with magnitude near that of the geomagnetic force responsible for the coherent radiation. The retarding force results from a self field effect. The Compton electron interaction with the self generated magnetic field due to the other electrons accounts for the momentum density in the propagating wave; interaction with the self generated electric field accounts for the energy flux density in the propagating wave. Coherent addition of radiation is also quantitatively modeled.

  13. analog pulse shape: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. Digital pulse shaping Krishnapura, Nagendra 2 Dynamic Matter-Wave Pulse Shaping Quantum Physics (arXiv) Summary: In this paper we discuss possibilities...

  14. A Combined Vacuum Ultraviolet Laser and Synchrotron Pulsed Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum Ultraviolet Laser and Synchrotron Pulsed Field Ionization Study of BCl. A Combined Vacuum Ultraviolet Laser and Synchrotron Pulsed Field Ionization Study of BCl. Abstract:...

  15. Spiraling Laser Pulses Could Change Nature of Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spiraling Laser Pulses Could Change Nature of Graphene Spiraling Laser Pulses Could Change Nature of Graphene Simulations Run at NERSC Show It Could Transform from Metal to...

  16. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOE Patents [OSTI]

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23T23:59:59.000Z

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  17. Damage from pulses with arbitrary temporal shapes

    SciTech Connect (OSTI)

    Trenholme, J.B.

    1994-06-06T23:59:59.000Z

    In fusion laser designs, the laser pulse has a complicated temporal shape which undergoes significant change as it passes through the laser. Our damage data, however, was taken with pulses whose temporal shapes were (more or less) Gaussian. We want to determine the damage propensity of a material exposed to a pulse of arbitrary temporal shape , given data taken with Gaussian pulses of different pulse widths. To do so, we must adopt a physical model of damage. This model will contain some number of parameters that depend on material properties, geometry, and so forth. We determine the parameters of the model appropriate to each material by fitting the model to the Gaussian data for that material. The resulting normalized model is then applied, using the appropriate pulse shape, to find the damage level for a specific material subjected to a specific pulse. The model we shall assume is related to diffusion, although (as we shall see) the experimental results do not fit any simple diffusion model. Initially, we will discuss simple diffusion models. We then examine some experimental data, and then develop a modified diffusive model from that data. That modified model is then used to predict damage levels in various portions of the NIF laser design.

  18. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOE Patents [OSTI]

    Skupsky, S.; Kessler, T.J.; Letzring, S.A.

    1993-11-16T23:59:59.000Z

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse. 10 figures.

  19. System for generating shaped optical pulses and measuring optical pulses using spectral beam deflection (SBD)

    DOE Patents [OSTI]

    Skupsky, Stanley (Rochester, NY); Kessler, Terrance J. (Rochester, NY); Letzring, Samuel A. (Honeoye Falls, NY)

    1993-01-01T23:59:59.000Z

    A temporally shaped or modified optical output pulse is generated from a bandwidth-encoded optical input pulse in a system in which the input pulse is in the form of a beam which is spectrally spread into components contained within the bandwidth, followed by deflection of the spectrally spread beam (SBD) thereby spatially mapping the components in correspondence with the temporal input pulse profile in the focal plane of a lens, and by spatially selective attenuation of selected components in that focal plane. The shaped or modified optical output pulse is then reconstructed from the attenuated spectral components. The pulse-shaping system is particularly useful for generating optical pulses of selected temporal shape over a wide range of pulse duration, such pulses finding application in the fields of optical communication, optical recording and data storage, atomic and molecular spectroscopy and laser fusion. An optical streak camera is also provided which uses SBD to display the beam intensity in the focal plane as a function of time during the input pulse.

  20. Nox reduction system utilizing pulsed hydrocarbon injection

    DOE Patents [OSTI]

    Brusasco, Raymond M. (Livermore, CA); Penetrante, Bernardino M. (San Ramon, CA); Vogtlin, George E. (Fremont, CA); Merritt, Bernard T. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    Hydrocarbon co-reductants, such as diesel fuel, are added by pulsed injection to internal combustion engine exhaust to reduce exhaust NO.sub.x to N.sub.2 in the presence of a catalyst. Exhaust NO.sub.x reduction of at least 50% in the emissions is achieved with the addition of less than 5% fuel as a source of the hydrocarbon co-reductants. By means of pulsing the hydrocarbon flow, the amount of pulsed hydrocarbon vapor (itself a pollutant) can be minimized relative to the amount of NO.sub.x species removed.

  1. Apparatus and method for optical pulse measurement

    DOE Patents [OSTI]

    Trebino, Rick P. (Livermore, CA); Tsang, Thomas (Brooklyn, NY); Fittinghoff, David N. (San Diego, CA); Sweetser, John N. (Livermore, CA); Krumbuegel, Marco A. (Danville, CA)

    1999-12-28T23:59:59.000Z

    Practical third-order frequency-resolved optical grating (FROG) techniques for characterization of ultrashort optical pulses are disclosed. The techniques are particularly suited to the measurement of single and/or weak optical pulses having pulse durations in the picosecond and subpicosecond regime. The relative quantum inefficiency of third-order nonlinear optical effects is compensated for through i) use of phase-matched transient grating beam geometry to maximize interaction length, and ii) use of interface-enhanced third-harmonic generation.

  2. Influence of Ar/Kr ratio and pulse parameters in a Cr-N high power pulse magnetron sputtering process on plasma and coating properties

    SciTech Connect (OSTI)

    Bobzin, Kirsten; Bagcivan, Nazlim; Theiß, Sebastian; Trieschmann, Jan; Brugnara, Ricardo Henrique, E-mail: brugnara@iot.rwth-aachen.de [Surface Engineering Institute, RWTH Aachen University, D-52072 Aachen (Germany); Preissing, Sven; Hecimovic, Ante [Institute of Experimental Physics II, Research Department Plasmas with Complex Interactions, Ruhr-University Bochum, D- 44780 Bochum (Germany)

    2014-03-15T23:59:59.000Z

    Krypton is sometimes used in physical vapor deposition processes due to its greater atomic mass and size compared to argon, which leads to a lower gas incorporation and may have beneficial effects on kinetics of the coating growth. In this paper, the authors investigate the plasma composition and properties of deposited high power pulse magnetron sputtering Cr-N coatings for discharges with various Ar/Kr ratios and for various pulse lengths of 40??s, 80??s, and 200??s, keeping the average discharge power constant. The results show that an addition of Kr influences the discharge process by altering the ignition and peak values of the discharge current. This influences the metal ion generation and growth conditions on the substrate by reducing the nucleation site densities, leading to a predominantly columnar grow. However, the deposition rate is highest for an Ar/Kr ratio of 120/80. The integral of the metal ion and atom emission exhibits the same trend, having a maximum for Ar/Kr ratio of 120/80. By decreasing the pulse length, the deposition rate of coatings decreases, while the hardness increases.

  3. Desert Peak to Humboldt House and Winnemucca, in: Lane, M.A....

    Open Energy Info (EERE)

    and Winnemucca, in: Lane, M.A., (ed) Nevada geothermal areas: Desert Peak, Humboldt House, Beoware: Guidebook for field trip Jump to: navigation, search OpenEI Reference LibraryAdd...

  4. Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs

    E-Print Network [OSTI]

    Todd, Annika

    2014-01-01T23:59:59.000Z

    2014.  Insights from Smart  Meters: The Potential for Peak available data captured by smart meters and other sources,series Insights from Smart Meters. DRAFT – DO NOT CIRCULATE

  5. Dynamical diffraction peak splitting in time-of-flight neutron diffraction

    SciTech Connect (OSTI)

    Uestuendag, E.; Karnesky, R. A.; Daymond, M. R.; Noyan, I. C. [Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Department of Mechanical and Materials Engineering, Queen's University, Kingston, Ontario K7L3N6 (Canada); Department of Applied Physics and Applied Mathematics, Materials Science Program, Columbia University, New York, New York 10027 (United States)

    2006-12-04T23:59:59.000Z

    Time-of-flight neutron diffraction data from 20 and 0.7 mm thick perfect Si single crystal samples, which exhibit dynamical diffraction effects associated with finite crystal size, are presented. This effect is caused by constructive interference occurring solely from thin layers bounded by the front (entry) and back (exit) surfaces of the sample with no scattering originating from the layers in between, resulting in two distinct peaks observed for each reflection. If the sample is thin and/or the instrument resolution is insufficient, these two peaks can convolve and cause peak shape aberrations which can lead to significant errors in the strain and peak-broadening parameters obtained from a kinematical diffraction analysis.

  6. Large scale flows in the solar interior: Effect of asymmetry in peak profiles

    E-Print Network [OSTI]

    Sarbani Basu; H. M. Antia

    1999-06-15T23:59:59.000Z

    Ring diagram analysis can be used to study large scale velocity fields in the outer part of the solar convection zone. All previous works assume that the peak profiles in the solar oscillation power spectrum are symmetric. However, it has now been demonstrated that the peaks are not symmetric. In this work we study how the explicit use of asymmetric peak profiles in ring-diagram analysis influences the estimated velocity fields. We find that the use of asymmetric profiles leads to significant improvement in the fits, but the estimated velocity fields are not substantially different from those obtained using a symmetric profile to fit the peaks. The resulting velocity fields are compared with those obtained by other investigators.

  7. The effect of external magnetic field on the Raman peaks in manganites

    SciTech Connect (OSTI)

    Sahu, A. K., E-mail: ajitsahu@seemantaengg.ac.in [Seemanta Engineering College, Jharpokharia, Mayurbhanj-757086, Odisha (India); Rout, G. C. [School of Applied Sciences (Physics), KIIT University, Bhubaneswar-7561024 (India)

    2014-04-24T23:59:59.000Z

    We report here a microscopic theoretical model study exhibiting the effect of external magnetic field on the Raman excitation peaks in the CMR manganite system. The Hamiltonian consists of Jahn-Teller (J-T) distortion in e{sub g} band, the double exchange interaction and the Heisenberg spin-spin interaction. Further the phonons are coupled to e{sub g} band electrons, J-T distorted e{sub g} band and the double exchange interaction. The Raman spectral intensity is calculated from the imaginary part of the phonon Green function. The spectra exhibits three peaks besides a very weak high energy peak. The magnetic field effect on these peaks are reported.

  8. Sequence Stratigraphy and Detrital Zircon Geochronology of the Swan Peak Quartzite, Southeastern Idaho 

    E-Print Network [OSTI]

    Wulf, Tracy David

    2012-02-14T23:59:59.000Z

    The supermature Middle-Late Ordovician Swan Peak quartz arenite was deposited on the western Laurentia passive margin and is very fine to fine grained, well-rounded, well-sorted, and silica-cemented. Laurentia was positioned ...

  9. On The Portents of Peak Oil (And Other Indicators of Resource Scarcity)

    E-Print Network [OSTI]

    Smith, James L.

    Although economists have studied various indicators of resource scarcity (e.g., unit cost, resource rent, and market price), the phenomenon of “peaking” has largely been ignored due to its connection to non-economic theories ...

  10. Batse observations of gamma-ray burst spectra; 2, peak energy evolution in bright, long bursts

    E-Print Network [OSTI]

    Ford, L A; Matteson, J L; Briggs, M S; Pendleton, G N; Preece, R D; Paciesas, W S; Teegarden, B J; Palmer, D M; Schaefer, B E; Cline, T L; Fishman, G J; Kouveliotou, C; Meegan, C A; Wilson, R B; Lestrade, J P

    1994-01-01T23:59:59.000Z

    Abstract We investigate spectral evolution in 37 bright, long gamma-ray bursts observed with the BATSE Spectroscopy Detectors. High resolution spectra are characterized by the energy of the peak of \

  11. Changes in measured lightning return stroke peak current after the 1994 National Lightning Detection Network upgrade

    E-Print Network [OSTI]

    Wacker, Robert Scott

    1997-01-01T23:59:59.000Z

    Since a comprehensive upgrade of the US National Lightning Detection Network (NLDN) in 1994, the mean peak current of detected cloud-to-ground (CG) lightning flashes has decreased, the number of detected flashes has increased, and the percentage...

  12. Discovery and geology of the Desert Peak geothermal field: a case history. Bulletin 97

    SciTech Connect (OSTI)

    Benoit, W.R.; Hiner, J.E.; Forest, R.T.

    1982-09-01T23:59:59.000Z

    A case history of the exploration, development (through 1980), and geology of the Desert Peak geothermal field is presented. Sections on geochemistry, geophysics, and temperature-gradient drilling are included.

  13. Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned

    E-Print Network [OSTI]

    Skelton, J.

    "To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

  14. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities

    E-Print Network [OSTI]

    Hochberg, Michael

    LETTERS Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities * Positive relationships between species diversity and productivity have been reported for a number of understanding how diversity and productivity are linked over evolutionary timescales. Here, we investigate

  15. How are flat demand charges based on the highest peak over the...

    Open Energy Info (EERE)

    How are flat demand charges based on the highest peak over the past 12 months designated in the database (LADWP does this) Home > Groups > Utility Rate Submitted by Marcroper on 11...

  16. Appropriate Loads for Peak-Power During Resisted Sprinting on a Non-Motorized Treadmill

    E-Print Network [OSTI]

    Andre, Matthew J.; Fry, Andrew C.; Lane, Michael T.

    2013-10-08T23:59:59.000Z

    The purpose of this study was to determine the load which allows the highest peak power for resisted sprinting on a non-motorized treadmill and to determine if other variables are related to individual differences. Thirty ...

  17. An insoluble residue study of the Comanche Peak and Edwards limestones of Kimble County, Texas

    E-Print Network [OSTI]

    Jurik, Paul Peter

    1961-01-01T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . Previous investigations Comanche Peak and Edwards limestones. . Insoluble res idues 1 1 3 5 6 S tratigraphy Wa)nut clay. Conanche Peak limestone Edwards limestone. Georgetown limestone. 8 9 9 12 Paleontology Macropaleontology... on the basis of tha silt?clay insoluble residua y. Tectonic map of Early Cretaceous. Plate I. Vertical variation in insoluble residua content. . . . pocket vertical variation in sand-siss insoluble residue content Vertical vari. stion in sand...

  18. The role of building technologies in reducing and controlling peak electricity demand

    SciTech Connect (OSTI)

    Koomey, Jonathan; Brown, Richard E.

    2002-09-01T23:59:59.000Z

    Peak power demand issues have come to the fore recently because of the California electricity crisis. Uncertainties surrounding the reliability of electric power systems in restructured markets as well as security worries are the latest reasons for such concerns, but the issues surrounding peak demand are as old as the electric utility system itself. The long lead times associated with building new capacity, the lack of price response in the face of time-varying costs, the large difference between peak demand and average demand, and the necessity for real-time delivery of electricity all make the connection between system peak demand and system reliability an important driver of public policy in the electric utility sector. This exploratory option paper was written at the request of Jerry Dion at the U.S.Department of Energy (DOE). It is one of several white papers commissioned in 2002 exploring key issues of relevance to DOE. This paper explores policy-relevant issues surrounding peak demand, to help guide DOE's research efforts in this area. The findings of this paper are as follows. In the short run, DOE funding of deployment activities on peak demand can help society achieve a more economically efficient balance between investments in supply and demand-side technologies. DOE policies can promote implementation of key technologies to ameliorate peak demand, through government purchasing, technology demonstrations, and improvements in test procedures, efficiency standards, and labeling programs. In the long run, R&D is probably the most important single leverage point for DOE to influence the peak demand issue. Technologies for time-varying price response hold great potential for radically altering the way people use electricity in buildings, but are decades away from widespread use, so DOE R&D and expertise can make a real difference here.

  19. A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data

    SciTech Connect (OSTI)

    Gregoire, John M.; Dale, Darren; van Dover, R. Bruce

    2011-01-01T23:59:59.000Z

    Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta–theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.

  20. Detection of Tones and Pulses using a Large, Uncalibrated Array S.W. Ellingson

    E-Print Network [OSTI]

    Ellingson, Steven W.

    ]; and wide- band pulses associated with (for example) gamma ray bursts [2] and intermittent "giant pulses

  1. Ultrafast Optical Pulses: Synthesis and Applications

    E-Print Network [OSTI]

    Wang, Kai

    2013-12-11T23:59:59.000Z

    This dissertation is devoted to ultrafast waveform synthesis using coherent Raman sidebands with the assistance of pulse shapers based on acousto-optic programmable dispersive ?lter (AOPDF) or deformable mirror (DM). Ultrashort optical science has...

  2. Pulse Pressure Forming of Lightweight Materials, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. lm015smith2010o.pdf More Documents & Publications Pulse-Pressure Forming of Lightweight Metals...

  3. Single mode pulsed dye laser oscillator

    DOE Patents [OSTI]

    Hackel, R.P.

    1992-11-24T23:59:59.000Z

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  4. Ultrasonic unipolar pulse/echo instrument

    DOE Patents [OSTI]

    Hughes, M.J.; Hsu, D.K.; Thompson, D.O.; Wormley, S.J.

    1993-04-06T23:59:59.000Z

    An ultrasonic unipolar pulse/echo instrument uses active switches and a timing and drive circuitry to control electrical energy to a transducer, the discharging of the transducer, and the opening of an electrical pathway to the receiving circuitry for the returning echoes. The active switches utilize MOSFET devices along with decoupling circuitry to insure the preservation of the unipolar nature of the pulses, insure fast transition times, and maintain broad band width and time resolution. A housing contains the various circuitry and switches and allows connection to a power supply and a movable ultrasonic transducer. The circuitry maintains low impedance input to the transducer during transmitting cycles, and high impedance between the transducer and the receiving circuit during receive cycles to maintain the unipolar pulse shape. A unipolar pulse is valuable for nondestructive evaluation, a prime use for the present instrument.

  5. Optically controlled delays for broadband pulses

    E-Print Network [OSTI]

    Sun, Q. Q.; Rostovtsev, Y. V.; Dowling, J. P.; Scully, Marlan O.; Zubairy, M. Suhail

    2005-01-01T23:59:59.000Z

    We propose a scheme that provides large controllable delays for broadband optical pulses. The system is based on the steep dispersion of a coherently driven medium, in which the narrow electromagnetically induced transparency (EIT) band is overcome...

  6. Optimal arbitrarily accurate composite pulse sequences

    E-Print Network [OSTI]

    Low, Guang Hao

    Implementing a single-qubit unitary is often hampered by imperfect control. Systematic amplitude errors ?, caused by incorrect duration or strength of a pulse, are an especially common problem. But a sequence of imperfect ...

  7. Post pulse shutter for laser amplifier

    DOE Patents [OSTI]

    Bradley, Laird P. [Livermore, CA; Carder, Bruce M. [Antioch, CA; Gagnon, William L. [Berkeley, CA

    1981-03-17T23:59:59.000Z

    Apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse.

  8. Post pulse shutter for laser amplifier

    DOE Patents [OSTI]

    Bradley, L.P.; Carder, B.M.; Gagnon, W.L.

    1981-03-17T23:59:59.000Z

    Disclosed are an apparatus and method for quickly closing off the return path for an amplified laser pulse at the output of an amplifier so as to prevent damage to amplifiers and other optical components appearing earlier in the chain by the return of an amplified pulse. The apparatus consists of a fast retropulse or post pulse shutter to suppress target reflection and/or beam return. This is accomplished by either quickly placing a solid across the light transmitting aperture of a component in the chain, such as a spatial filter pinhole, or generating and directing a plasma with sufficiently high density across the aperture, so as to, in effect, close the aperture to the returning amplified energy pulse. 13 figs.

  9. LANL: AOT & LANSCE The Pulse February 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supported lipid bilayer (Image for October in APS 2010 calendar). continued on page 4 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and...

  10. Progress on the 140 KV, 10 Megawatt Peak, 1 Megawatt Average Polyphase Quasi-Resonant Bridge, Boost Converter/Modulator for the Spallation Neutron Source (SNS) Klystron Power System

    E-Print Network [OSTI]

    Reass, W A; Gribble, R F; Lynch, M T; Tallerico, P J; Reass, William A.; Doss, James D.; Gribble, Robert F.; Lynch, Michael T.; Tallerico, Paul J.

    2000-01-01T23:59:59.000Z

    This paper describes electrical design and operational characteristics of a zero-voltage-switching 20 kHz polyphase bridge, boost converter/modulator for klystron pulse application. The DC-DC converter derives the buss voltages from a standard 13.8 kV to 2300 Y substation cast-core transformer. Energy storage and filtering is provided by self-clearing metallized hazy polypropylene traction capacitors. Three "H-Bridge" IGBT switching networks are used to generate the polyphase 20 kHz transformers primary drive waveforms. The 20 kHz drive waveforms are chirped the appropriate duration to generate the desired klystron pulse width. PWM (pulse width modulation) of the individual 20 kHz pulses is utilized to provide regulated output waveforms with adaptive feedforward and feedback techniques. The boost transformer design utilizes amorphous nanocrystalline material that provides the required low core loss at design flux levels and switching frequencies. Resonant shunt peaking is used on the transformer secondary to ...

  11. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04T23:59:59.000Z

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  12. Semianalytic model of electron pulse propagation: Magnetic lenses and rf pulse compression cavities

    SciTech Connect (OSTI)

    Berger, Joel A.; Schroeder, W. Andreas [Department of Physics, University of Illinois at Chicago, 845 W. Taylor (M/C 273), Chicago, Illinois 60607 (United States)

    2010-12-15T23:59:59.000Z

    The analytical Gaussian electron pulse propagation model of Michalik and Sipe [J. Appl. Phys. 99, 054908 (2006)] is extended to include the action of external forces on the pulse. The resultant ability to simulate efficiently the effect of electron optical elements (e.g., magnetic lenses and radio-frequency cavities) allows for the rapid assessment of electron pulse delivery systems in time-resolved ultrafast electron diffraction and microscopy experiments.

  13. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02T23:59:59.000Z

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  14. Modeling pulse profiles of accreting millisecond pulsars

    E-Print Network [OSTI]

    Juri Poutanen

    2008-09-14T23:59:59.000Z

    I review the basic observational properties of accreting millisecond pulsars that are important for understanding the physics involved in formation of their pulse profiles. I then discuss main effects responsible for shaping these profiles. Some analytical results that help to understand the results of simulations are presented. Constraints on the pulsar geometry and the neutron star equation of state obtained from the analysis of the pulse profiles are discussed.

  15. Electromagnetic or other directed energy pulse launcher

    DOE Patents [OSTI]

    Ziolkowski, Richard W. (Livermore, CA)

    1990-01-01T23:59:59.000Z

    The physical realization of new solutions of wave propagation equations, such as Maxwell's equations and the scaler wave equation, produces localized pulses of wave energy such as electromagnetic or acoustic energy which propagate over long distances without divergence. The pulses are produced by driving each element of an array of radiating sources with a particular drive function so that the resultant localized packet of energy closely approximates the exact solutions and behaves the same.

  16. Fast pulsed excitation wiggler or undulator

    DOE Patents [OSTI]

    van Steenbergen, Arie (Shoreham, NY)

    1990-01-01T23:59:59.000Z

    A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

  17. Note: Emittance measurements of intense pulsed proton beam for different pulse length and repetition rate

    SciTech Connect (OSTI)

    Miracoli, R. [ESS Bilbao, Vizcaya (Spain); INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Gammino, S.; Celona, L.; Mascali, D. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Castro, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Gobin, R.; Delferriere, O.; Adroit, G.; Senee, F. [CEA-IRFU, Gif sur Yvette Cedex (France); Ciavola, G. [INFN - Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNAO, Str. Pr. Campeggi, Pavia (Italy)

    2012-05-15T23:59:59.000Z

    The high intensity ion source (SILHI), in operation at CEA-Saclay, has been used to produce a 90 mA pulsed proton beam with pulse length and repetition rates suitable for the European Spallation Source (ESS) linac. Typical r-r{sup '} rms normalized emittance values smaller than 0.2{pi} mm mrad have been measured for operation in pulsed mode (0.01 < duty cycle < 0.15 and 1 ms < pulse duration < 10 ms) that are relevant for the design update of the Linac to be used at the ESS in Lund.

  18. Generation of unipolar pulses from nonunipolar optical pulses in a nonlinear medium

    SciTech Connect (OSTI)

    Kozlov, Victor V. [Department of Information Engineering, Universita degli Studi di Brescia, Via Branze 38, I-25123 Brescia (Italy); Department of Physics, St. Petersburg State University, Petrodvoretz, St. Petersburg, 198504 (Russian Federation); Rosanov, Nikolay N. [Institute of Laser Physics, Vavilov State Optical Institute, Birzhevaya liniya, 12, St. Petersburg, 199034 (Russian Federation); St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg, 197101 (Russian Federation); De Angelis, Costantino; Wabnitz, Stefan [Department of Information Engineering, Universita degli Studi di Brescia, Via Branze 38, I-25123 Brescia (Italy)

    2011-08-15T23:59:59.000Z

    A unipolar electromagnetic pulse is a pulse with nonzero value of the static component of the Fourier spectrum of its real electric field (and not its envelope). We show how to efficiently generate unipolar pulses through propagation of an initially nonunipolar pulse in a nonlinear optical medium. One of the major results is the demonstration that the static component can only be generated in equal portions between the forward- and backward-traveling waves in the presence of nonlinear backscattering in a nonlinear medium.

  19. Dissociative ionization of H{sub 2} in an attosecond pulse train and delayed laser pulse

    SciTech Connect (OSTI)

    He Feng; Thumm, Uwe [James R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas 66506-2604 (United States)

    2010-05-15T23:59:59.000Z

    The ionization of H{sub 2} in a single attosecond extreme ultraviolet (XUV) pulse generates a nuclear wave packet in H{sub 2}{sup +}, which is entangled with the emitted photoelectron wave packet. The nuclear wave-packet dynamics can be observed by dissociating H{sub 2}{sup +} in a delayed IR laser pulse. If H{sub 2} is ionized by a sequence of XUV pulses of an attosecond pulse train, whether or not the corresponding sequence of nuclear wave packets in H{sub 2}{sup +} is detected as a coherent or incoherent superposition depends on whether and how the photoelectrons are observed. We simulate the nuclear dynamics in this XUV-pump-IR-probe scenario and analyze our numerical results for both single attosecond pump pulses and pump-pulse trains of different lengths and temporal spacings between individual XUV pulses. By superimposing nuclear wave packets in H{sub 2}{sup +} generated by individual pulses in the pump-pulse train incoherently, we calculate proton kinetic energy release spectra that are in good qualitative agreement with the recent experiment of Kelkensberg et al. [Phys. Rev. Lett. 103, 123005 (2009)].

  20. Tunable pulsed narrow bandwidth light source

    DOE Patents [OSTI]

    Powers, Peter E. (Dayton, OH); Kulp, Thomas J. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.

  1. Pulse width modulation inverter with battery charger

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI)

    1985-01-01T23:59:59.000Z

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  2. Pulsed atmospheric fluidized bed combustion

    SciTech Connect (OSTI)

    Not Available

    1989-11-01T23:59:59.000Z

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  3. Pulse combustion: an assessment of opportunities for increased efficiency

    SciTech Connect (OSTI)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01T23:59:59.000Z

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  4. Time-spatial drift of decelerating electromagnetic pulses

    E-Print Network [OSTI]

    Nerukh, Dmitry

    Time-spatial drift of decelerating electromagnetic pulses Alexander G. Nerukh1* and Dmitry A dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time

  5. Pulse transmission transceiver architecture for low power communications

    DOE Patents [OSTI]

    Dress, Jr., William B.; Smith, Stephen F.

    2003-08-05T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A method of pulse transmission communications includes: generating a modulated pulse signal waveform; transforming said modulated pulse signal waveform into at least one higher-order derivative waveform; and transmitting said at least one higher-order derivative waveform as an emitted pulse. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  6. Injection locked oscillator system for pulsed metal vapor lasers

    DOE Patents [OSTI]

    Warner, Bruce E. (Livermore, CA); Ault, Earl R. (Dublin, CA)

    1988-01-01T23:59:59.000Z

    An injection locked oscillator system for pulsed metal vapor lasers is disclosed. The invention includes the combination of a seeding oscillator with an injection locked oscillator (ILO) for improving the quality, particularly the intensity, of an output laser beam pulse. The present invention includes means for matching the first seeder laser pulses from the seeding oscillator to second laser pulses of a metal vapor laser to improve the quality, and particularly the intensity, of the output laser beam pulse.

  7. Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Jia [Department of Astronomy and Astrophysics, Columbia University, New York, NY, (United States); May, Morgan [Physics Department, Brookhaven National Laboratory, Upton, NY, (United States); Petri, Andrea [Department of Physics, Columbia University, New York, NY, (United States); Haiman, Zoltan [Department of Astronomy and Astrophysics, Columbia University, New York, NY, (United States); Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP), Columbia University, New York, (United States); Hui, Lam [Department of Physics, Columbia University, New York, NY, (United States); Institute for Strings, Cosmology, and Astroparticle Physics (ISCAP), Columbia University, New York, (United States); Kratochvil, Jan M. [Astrophysics and Cosmology Research Unit, University of KwaZulu-Natal, Westville, Durban, (South Africa)

    2015-03-01T23:59:59.000Z

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters ?m, ?8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator that interpolates the power spectrum and the peak counts to an accuracy of ? 5%, and compute the likelihood in the three-dimensional parameter space (?m, ?8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (?m, ?8) plane reduces by a factor of ? two, compared to using the power spectrum alone. For a flat ? cold dark matter model, combining both statistics, we obtain the constraint ?8(?m/0.27)0.63 = 0.85+0.03-0.03.

  8. Cosmology Constraints from the Weak Lensing Peak Counts and the Power Spectrum in CFHTLenS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Jia; May, Morgan; Petri, Andrea; Haiman, Zoltan; Hui, Lam; Kratochvil, Jan M.

    2015-03-01T23:59:59.000Z

    Lensing peaks have been proposed as a useful statistic, containing cosmological information from non-Gaussianities that is inaccessible from traditional two-point statistics such as the power spectrum or two-point correlation functions. Here we examine constraints on cosmological parameters from weak lensing peak counts, using the publicly available data from the 154 deg2 CFHTLenS survey. We utilize a new suite of ray-tracing N-body simulations on a grid of 91 cosmological models, covering broad ranges of the three parameters ?m, ?8, and w, and replicating the galaxy sky positions, redshifts, and shape noise in the CFHTLenS observations. We then build an emulator thatmore »interpolates the power spectrum and the peak counts to an accuracy of ? 5%, and compute the likelihood in the three-dimensional parameter space (?m, ?8, w) from both observables. We find that constraints from peak counts are comparable to those from the power spectrum, and somewhat tighter when different smoothing scales are combined. Neither observable can constrain w without external data. When the power spectrum and peak counts are combined, the area of the error “banana” in the (?m, ?8) plane reduces by a factor of ? two, compared to using the power spectrum alone. For a flat ? cold dark matter model, combining both statistics, we obtain the constraint ?8(?m/0.27)0.63 = 0.85+0.03-0.03.« less

  9. ICRF Power-Deposition Profiles, Heating and Confinement of Monster-Sawtooth and Peaked-Density Profile Discharges in JET

    E-Print Network [OSTI]

    ICRF Power-Deposition Profiles, Heating and Confinement of Monster-Sawtooth and Peaked-Density Profile Discharges in JET

  10. Fact #864: March 16, 2015 Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Imports of Primary Energy have Declined Sharply Since the Peak Reached in 2007

  11. Diode-Pumped Gigahertz Repetition Rate Femtosecond Cr:Lisaf Laser

    E-Print Network [OSTI]

    Li, Duo

    We report a low-cost, 1 GHz repetition-rate, diode-pumped, saturable Bragg reflectors mode-locked Cr:LiSAF laser, which generates nearly transform-limited 103-fs long pulses around 866 nm, with a record high peak power of 1.45 kW.

  12. Fuel Cell R&D Hydrogen & Fuel Cell Program Review

    E-Print Network [OSTI]

    support for hybrid technologies and advanced materials that can dramatically reduce oil consumption*15 years*$30/kW$30/kW45% peak45% peak EngineEngine PowertrainPowertrain System**System** 50% less50W 18 s90%90% Electric EnergyElectric Energy StorageStorage $12/kW peak$12/kW peak 55 kW 18 s 3055 kW 18

  13. Performance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - eters. The radar reflectivity (Z), the radial velocity (Vr) and the spectral width of velocities (W). [1). Generally, the meteorological targets move with speeds lower than 50 m/secs. The Doppler Effect wouldPerformance comparison of pulse-pair and wavelets methods for the pulse Doppler weather radar

  14. Estimating coal production peak and trends of coal imports in China

    SciTech Connect (OSTI)

    Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

    2010-01-15T23:59:59.000Z

    More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

  15. The synchrotron peak shift during high-energy flares of blazars

    E-Print Network [OSTI]

    M. Boettcher

    1999-02-10T23:59:59.000Z

    A prediction for the energy shift of the synchrotron spectrum of flat-spectrum radio quasars (FSRQs) during high-energy flares is presented. If the $\\gamma$-ray emission of FSRQs is produced by Comptonization of external radiation, then the peak of the synchrotron spectrum is predicted to move to lower energies in the flare state. This is opposite to the well-known broadband spectral behavior of high-frequency peaked BL-Lac objects where the external radiation field is believed to be weak and synchrotron-self Compton scattering might be the dominant $\\gamma$-ray radiation mechanism. The synchrotron peak shift, if observed in FSRQs, can thus be used as a diagnostic to determine the dominant radiation mechanism in these objects. I suggest a few FSRQs as promising candidates to test the prediction of the external-Comptonization model.

  16. The Second Peak: The Dark-Energy Density and the Cosmic Microwave Background

    E-Print Network [OSTI]

    Marc Kamionkowski; Ari Buchalter

    2000-01-05T23:59:59.000Z

    Supernova evidence for a negative-pressure dark energy (e.g., cosmological constant or quintessence) that contributes a fraction $\\Omega_\\Lambda\\simeq0.7$ of closure density has been bolstered by the discrepancy between the total density, $\\Omega_{\\rm tot}\\simeq1$, suggested by the location of the first peak in the cosmic microwave background (CMB) power spectrum and the nonrelativistic-matter density $\\Omega_m\\simeq0.3$ obtained from dynamical measurements. Here we show that the impending identification of the location of the {\\it second} peak in the CMB power spectrum will provide an immediate and independent probe of the dark-energy density. As an aside, we show how the measured height of the first peak probably already points toward a low matter density and places upper limits to the reionization optical depth and gravitational-wave amplitude.

  17. Pulse transmission receiver with higher-order time derivative pulse generator

    DOE Patents [OSTI]

    Dress Jr., William B.; Smith, Stephen F.

    2003-08-12T23:59:59.000Z

    Systems and methods for pulse-transmission low-power communication modes are disclosed. A pulse transmission receiver includes: a front-end amplification/processing circuit; a synchronization circuit coupled to the front-end amplification/processing circuit; a clock coupled to the synchronization circuit; a trigger signal generator coupled to the clock; and at least one higher-order time derivative pulse generator coupled to the trigger signal generator. The systems and methods significantly reduce lower-frequency emissions from pulse transmission spread-spectrum communication modes, which reduces potentially harmful interference to existing radio frequency services and users and also simultaneously permit transmission of multiple data bits by utilizing specific pulse shapes.

  18. The Space Density of Galaxy Peaks and the Linear Matter Power Spectrum

    E-Print Network [OSTI]

    Rupert A. C. Croft; Enrique Gaztanaga

    1997-01-22T23:59:59.000Z

    One way of recovering information about the initial conditions of the Universe is by measuring features of the cosmological density field which are preserved during gravitational evolution and galaxy formation. In this paper we study the total number density of peaks in a (galaxy) point distribution smoothed with a filter, evaluating its usefulness as a means of inferring the shape of the initial (matter) power spectrum. We find that in numerical simulations which start from Gaussian initial conditions, the peak density follows well that predicted by the theory of Gaussian density fields, even on scales where the clustering is mildly non-linear. For smaller filter scales, $r \\simlt 4-6 \\hmpc$, we see evidence of merging as the peak density decreases with time. On larger scales, the peak density is independent of time. One might also expect it to be fairly robust with respect to variations in biasing, i.e. the way galaxies trace mass fluctuations. We find that this is the case when we apply various biasing prescriptions to the matter distribution in simulations. If the initial conditions are Gaussian, it is possible to use the peak density measured from the evolved field to reconstruct the shape of the initial power spectrum. We describe a stable method for doing this and apply it to several biased and unbiased non-linear simulations. We are able to recover the slope of the linear matter power spectrum on scales $k \\simlt 0.4 \\hmpc^{-1}$. The reconstruction has the advantage of being independent of the cosmological parameters ($\\Omega$, $\\Lambda$, $H_0$) and of the clustering normalisation ($\\sigma_8$). The peak density and reconstructed power spectrum slope therefore promise to be powerful discriminators between popular cosmological scenarios.

  19. Radiographic X-Ray Pulse Jitter

    SciTech Connect (OSTI)

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15T23:59:59.000Z

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  20. Downstream plasma transport and metal ionization in a high-powered pulsed-plasma magnetron

    SciTech Connect (OSTI)

    Meng, Liang; Szott, Matthew M.; McLain, Jake T.; Ruzic, David N. [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Yu, He [Center for Plasma-Materials Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2014-06-14T23:59:59.000Z

    Downstream plasma transport and ionization processes in a high-powered pulsed-plasma magnetron were studied. The temporal evolution and spatial distribution of electron density (n{sub e}) and temperature (T{sub e}) were characterized with a 3D scanning triple Langmuir probe. Plasma expanded from the racetrack region into the downstream region, where a high n{sub e} peak was formed some time into the pulse-off period. The expansion speed and directionality towards the substrate increased with a stronger magnetic field (B), largely as a consequence of a larger potential drop in the bulk plasma region during a relatively slower sheath formation. The fraction of Cu ions in the deposition flux was measured on the substrate using a gridded energy analyzer. It increased with higher pulse voltage. With increased B field from 200 to 800 Gauss above racetrack, n{sub e} increased but the Cu ion fraction decreased from 42% to 16%. A comprehensive model was built, including the diffusion of as-sputtered Cu flux, the Cu ionization in the entire plasma region using the mapped n{sub e} and T{sub e} data, and ion extraction efficiency based on the measured plasma potential (V{sub p}) distribution. The calculations matched the measurements and indicated the main causes of lower Cu ion fractions in stronger B fields to be the lower T{sub e} and inefficient ion extraction in a larger pre-sheath potential.