National Library of Energy BETA

Sample records for kw kilowatt kwh

  1. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  2. 1 KILOWATT = 1,000 WATTS 1 MEGAWATT = 1,000,000 WATTS

    E-Print Network [OSTI]

    Hochberg, Michael

    microwave for 1 hour uses 1.2 kW-h of energy. That's 4.3 megajoules or 4,300,000 joules. Power is how fast production of 150 hp. human body base metabolism 80 watts 1 kilowatt microwave 26 cu ft. refrigerator (annual solar panel array (peak production) 1.5 kilowatt ~10 m2 space shuttle lifto hand-cranked generator 10

  3. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    and amortization ERCOT Electric Reliability Council of Texas kW kilowatt kWh kilowatt-hour LCOE levelized cost

  4. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt...

  5. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  6. max kwh | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan)data book Homefuelleasing Homemaps Home Jweers'smax kwh

  7. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  8. Sustainable Energy in Remote Indonesian Grids: Accelerating Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of return kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy LED light-emitting diode MW megawatt MWe megawatt electric NAL Nirmala Agro Lestari NGOs...

  9. ELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA -A 250 AND 10KW CASE STUDY

    E-Print Network [OSTI]

    Vermont, University of

    electricity at US$ 0.18 and 0.34/kWh, respectively. A stable electricity demand close to the rated capacityELECTRICITY FROM WOOD-FIRED GASIFICATION IN UGANDA - A 250 AND 10KW CASE STUDY Thomas Buchholza their potential to compete economically with diesel generated electricity when operating close to the rated

  10. Kilowatts From Waste Wood In The Furniture Industry 

    E-Print Network [OSTI]

    Nailen, R. L.

    1981-01-01

    recently, the Singer Furniture Co., Lenoir, N. Carolina, purchased a 450 kilowatt steam turbine/induction generator set to use extra steam - produced by 'free' waste wood fuel - in generating 15% of the plant's electrical energy demand. The turbine...

  11. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW

  12. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power...

  13. SOFCSOFC (10kW(10kW )) Stack Stack ( )

    E-Print Network [OSTI]

    Hong, Deog Ki

    & Mitsubishi (band ) 150 kW module Rolls-Royce () 100kW SOFC TOTO, Kyushu () 20kW stack wet process #12;2 SOFC () Mitsubishi Heavy Ind. § SIS § 250kW § 55% Rolls-Royce § SIS § 250kW (micro GT-SOFC) § 53% (125 kW ) Tokyo Gas § SIS § kW (5kW ) / #12

  14. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  15. Design and cost analysis of a 20-kWh bipolar zinc-bromine battery

    SciTech Connect (OSTI)

    Einstein, H.; Bellows, R.J.; Grimes, P.; Kantner, E.; Malachesky, P.; Newby, K.

    1981-01-01

    Zinc-Bromine secondary batteries are attractive systems for electric vehicles and energy storage (off-peak and photovoltaic) applications because of low cost raw materials, relatively high energy density, and ambient temperature operation. Exxon's approach to the system uses conductive carbon plastic electrodes in a bipolar configuration, separable bromine complexes, and selective membranes in a circulating electrolyte design. The 20 kWh battery design consists of two 10 kWh battery stacks placed back-to-back with a common center electrolyte feed block. Each of the two battery stacks consists of 78 cells for a system voltage of 120 volt output. Active electrode area per electrode is 12 dm/sup 2/. Cell-to-cell spacing is 0.25 cm. The two-stack module is assembled over a tray serving as a cover for the plastic electrolyte reservoir. Unit cells are comprised of alternating bipolar electrodes and separator assemblies. For various applications, accessories and controls are built into the system. The projected battery factory price of $28./kWh is discussed, along with the manufacturing, materials, and labor costs.

  16. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    successful product commercialization. This report provides cost estimates for the manufacture of 10 kW and 25 kW polymer electrolyte membrane (PEM) fuel cells designed for...

  17. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  18. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  19. A market and engineering study of a 3-kilowatt class gas turbine generator

    E-Print Network [OSTI]

    Monroe, Mark A. (Mark Alan)

    2003-01-01

    Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

  20. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  1. Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers

    E-Print Network [OSTI]

    Yang, Jianlong; Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Thermal effects are critical constrains for developing high-power thulium-doped fiber lasers (TDFLs). In this paper, we numerically investigate the lasing and thermal characteristics of the TDFLs under different pump transitions. Our results show, the widely-used pump transition $^3H_6\\rightarrow^3H_4$, taking advantages of high-power high-efficiency laser diodes at $\\sim$0.8 $\\mu$m, may not be a superior choice for directly outputting multi-kilowatt at 2 $\\mu$m because of severe thermal problems. Meanwhile, using other pump transitions resulting 2-$\\mu$m emissions, especially the in-band pump transition $^3H_6\\rightarrow^3F_4$, will decrease the generated heat to a large extent. By optimizing the power filling factor of the gain fiber, we find a 2-$\\mu$m TDFL cladding-pumped at 1.9 $\\mu$m will lead to the laser slope efficiency close to its quantum efficiency (95\\%). The induced ultra-low quantum defect would be of great importance for power scaling. We thus propose tandem-pumped TDFLs for reducing the heat ...

  2. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor

    SciTech Connect (OSTI)

    Kirby, Raymond L.; Vitale, N.

    2008-01-21

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled 'Affordable Fission Surface Power Study' recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  3. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  4. The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report

    SciTech Connect (OSTI)

    Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

    2006-07-21

    This project was selected by the U.S. Department of Energy under a DOE solicitation “Low Wind Speed Technology for Small Turbine Development.” The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 ¢/kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 ¢/kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 ¢/kWh is still competitive with retail rates in many regions of the country with high electricity costs. The study further concludes that several design changes could shave 10-14% from the cost of energy determined in the preliminary design. These changes include a new tower design that offers tilt-up capability without guy wires and takes better advantage of the lowered loads produced by pitch control; design a family of airfoils more appropriate for pitch regulation on a turbine of this size; tune the pitch controller properly to minimize shedding of power during turbulent operation in the transition from Region 2 to 3; value engineer the pitch system to shave costs, including consideration of a collective pitch system; and refine the design of the hub and main frame castings to minimize weight and cost. We are generally encouraged by the results. These preliminary numbers show that we can produce a turbine that is competitive with retail electric rates at relatively windy IEC Class II sites. With further improvements in the design, we believe the turbine could be competitive at sites with lesser wind resource.

  5. Photo of the Week: Argonne's 10 kW Wind Turbine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo of the Week: Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power...

  6. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  7. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  8. 40 kW Stirling engine for solid fuel

    SciTech Connect (OSTI)

    Carlsen, H.; Ammundsen, N.; Traerup, J.

    1996-12-31

    The external combustion in a Stirling engine makes it very attractive for utilization of solid fuels in decentralized combined heat and power (CHP) plants. Only few projects have concentrated on the development of Stirling engines specifically for biomass. In this project a Stirling engine has been designed primarily for utilization of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurized crankcase so that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons Helium is used as working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory, and the results are in agreement with predicted results from simulation programs. The wood chips combustion system has been tested for some time with very promising results. When the laboratory test of the engine is finished, the test of the complete system will be initiated. The paper describes the engine and results from the test program. Expectations to maintenance and operation problems are also discussed.

  9. Property:Incentive/PVPbiFitMaxKW | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc JumpPVPbiFitMaxKW Jump

  10. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  11. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (?2 × 10{sup 10} n/s having a peak energy of ?27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  12. WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 WIND TURBINE SITING IN AN URBAN ENVIRONMENT: THE HULL, MA 660 KW TURBINE J. F. Manwell, J. G. Mc turbine at Windmill Point in Hull, Massachusetts represents a high point in the long history of wind, through the installation of a 40 kW Enertech machine in the 1980's to the installation of the new turbine

  13. A 10kW photovoltaic/hybrid system for Pinnacles National Monument

    SciTech Connect (OSTI)

    Ball, T.J. [Applied Power Corp., Lacey, WA (United States); DeNio, D. [National Park Service, Denver, CO (United States). Denver Service Center

    1997-12-31

    Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and ranger residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.

  14. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    chiller (kW) solar thermal collector (kW) electricalchiller, 722 kW of solar thermal collectors, 1100 kWh of

  15. Researchers' Hottest New Laser Beams 14.2 kW | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past the milestone to produce 11.7 kW. But the team didn't stop there. They pushed the machine they had spent years designing, crafting and tweaking to surpass the record they had...

  16. DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL

    E-Print Network [OSTI]

    DRIVER ACCELERATOR DESIGN FOR THE 10 KW UPGRADE OF THE JEFFERSON LAB IR FEL D. Douglas, S. V, Newport News, VA23606, USA Abstract An upgrade of the Jefferson Lab IR FEL [1] is now un- der construction. It will provide 10 kW output light power in a wavelength range of 2­10 µm. The FEL will be driven by a modest

  17. Development of a 10 kW, 2.815 GHz Klystron

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Read, Michael; Patrick, Ferguson

    2015-05-15

    Development of a Periodic Permanent Magnet (PPM) focused klystron is described. The klystron was designed to produce 10 kW CW at 2.815 GHz. The program developed an innovative PPM circuit that provided extremely uniform magnetic fields at the electron beam location while providing unprecedented access to the RF circuit for tuners and water cooling. Simulations indicated the klystron would produce more than 11 kW with an efficiency exceeding 65%. Problems with the mechanical design prevented successful testing of the initial prototype; however, a new design was successfully developed and implemented in a 6 MW klystron developed in a follow-on program. Funding is being pursued to rebuild the 10 kW RF circuit and complete the klystron development.

  18. Technical Report NREL/TP-7A2-48267

    E-Print Network [OSTI]

    -conditioning KIUC Kauai Island Utility Cooperative kWh kilowatt-hour LCOE levelized cost of energy M&V measurement

  19. Kaman 40-kW wind system. Phase II. Fabrication and tests. Volume II. Technical report

    SciTech Connect (OSTI)

    Howes, H; Perley, R

    1981-01-01

    A program is underway to design, fabricate and test a horizontal axis Wind Turbine Generator (WTG) capable of producing 40 kW electrical output power in a 20 mph wind. Results are presented of the program effort covering fabrication and testing of the Wing Turbine Generator designed earlier. A minimum of difficulties were experienced during fabrication and, after successful completion of Contractor tests through 20 mph winds, the WTG was shipped to Rocky Flats, assembled and operated there. The 40 kW WTG is presently undergoing extended tests at Rockwell's Rocky Flats test facility.

  20. Design Aspects of a 250 kW SOFC SystemDesign Aspects of a 250 kW SOFC System Strategies to Counteract Stack DegradationStrategies to Counteract Stack Degradation

    E-Print Network [OSTI]

    -supported Metallic Interconnect Operates at 750 °C Low degradation Currently tested at pilot test facilities Extensive fuel processing experience #12;Conceptual Study 250 kW SystemConceptual Study 250 kW System · Decrease fuel utilisation Higher Nernst potential but lower electric efficiency · Decrease Cell Voltage

  1. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    kW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermalkW elec. ) solar thermal (kW) electric storage (kWh) thermal

  2. Design considerations of a 15kW heat exchanger for the CSPonD Project

    E-Print Network [OSTI]

    Adames, Adrian A

    2010-01-01

    The objective of this work was to develop a 15 kW heat exchanger model for the CSPonD molten salt receiver that will shuttle the molten salt's thermal energy for conversion to electric power. A heat extraction system ...

  3. Development of a 55 kW 3X DC-DC Converter for HEV Systems

    E-Print Network [OSTI]

    Tolbert, Leon M.

    efficiency provide the great potential for the very high temperature operation. The circuit parameter design converter and a traction motor to drive the vehicle. In most commercial HEV systems, the power converter, 37996 Abstract--The design of a 55 kW 3X dc-dc converter is presented for hybrid electric vehicle (HEV

  4. FRPs for Strengthening and Rehabilitation: Durability Issues K.W. Neale1

    E-Print Network [OSTI]

    Labossière, Pierre

    1 FRPs for Strengthening and Rehabilitation: Durability Issues K.W. Neale1 , P. Labossière2 and M) strengthening and rehabilitation technologies are addressed. A brief overview of some recent research activities accelerated tests, is emphasized. Introduction The needs for civil engineering infrastructure rehabilitation

  5. Demonstration of a 140-GHz 1-kW Confocal Gyro-Traveling-Wave Amplifier

    E-Print Network [OSTI]

    Temkin, Richard J.

    The theory, design, and experimental results of a wideband 140-GHz 1-kW pulsed gyro-traveling-wave amplifier (gyro-TWA) are presented. The gyro-TWA operates in the HE [subscript 06] mode of an overmoded quasi-optical ...

  6. 5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive

    E-Print Network [OSTI]

    Tolbert, Leon M.

    5 kW Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H) for future hybrid electric vehicle and fuel cell automotive applications will be presented in this paper will impact if the 42V/14V dual bus system will be a successful and cost effective solution for future

  7. 3kW Stirling engine for power and heat production

    SciTech Connect (OSTI)

    Thorsen, J.E.; Bovin, J.; Carlsen, H.

    1996-12-31

    A new 3 kW Beta type Stirling engine has been developed. The engine uses Natural gas as fuel, and it is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism and the alternator are built into a pressurized crank casing. The engine produce 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW corresponding to a shaft efficiency of 30%, and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as working gas. The crank mechanism is a combination of an upper- and lower yoke, each forming the half of a Ross mechanism. The upper yoke is linked to the displacer piston and the lower yoke is linked to the working piston. The design gives an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket, which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function of mean pressure and hot and cold temperature, and emissions and noise have been measured.

  8. 100 kW CC-OTEC Plant and Deep Ocean water Applications

    E-Print Network [OSTI]

    100 kW CC-OTEC Plant and Deep Ocean water Applications in Kumejima, Okinawa, Japan Katsuya Furugen in Kumejima (Okinawa) Okinawa Prefectural Deep Sea Water Research Center, since 2000 OTEC Demonstration. / 1st Power Generation Test Succeeded Surface Water: 23.5 oC, 330t/h Deep Water: 9.3 oC, 250t/h Power

  9. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    kW and 300 kW Molten Carbonate Fuel Cells (MCFC), four 200kilovolt kilowatt molten carbonate fuel cell megawatt

  10. Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor). Coal-firing and biomass-firing in a 150kW swirl stabilized burner flow reactor. Poster session-fired boiler could be far more challenging beca se b rner aerod namicsmore challenging, because burner

  11. Design of a high efficiency 30 kW boost composite converter

    SciTech Connect (OSTI)

    Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan; Erickson, Robert W.

    2015-09-20

    An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module and system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.

  12. Case History of Reapplication of a 2500 KW Steam Turbine/Gear Drive Generator 

    E-Print Network [OSTI]

    Smith, S.

    1991-01-01

    OF REAPPLICATION OF A 2500 KW STEAM TURBINE/GEAR DRIVE GENERATOR SAMUEL V. SMITH Manager, Technical Sales and ~ervice Revak Turbomachinery SerVlces La Porte, Texas Abstract In today' s equipment market more and more projects are turning toward..., naphtha and a high grade of wax. The plant requires a steam turbine generator set to produce electrical power for its base load operation. This paper covers the history of how the turbine, gear and generator were selected, along with the highlights...

  13. McDonnell 40-kW Giromill Wind System. Phase II. Fabrication and test

    SciTech Connect (OSTI)

    Brulle, R

    1980-06-01

    A 40 kW vertical axis windmill called a ''Giromill'' was fabricated, erected, and tested. The system design is described as well as some design changes made during fabrication. Manufacturing cost estimates are updated. Fabrication of the turbine blades, support arms, and fixed and rotating tower is described as well as the tests. Testing included control systems acceptance tests; Giromill system acceptance tests; structural, mechanical, control system and electric generation operational tests; and performance tests connected to the utility grid. (LEW)

  14. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  15. Beyond Kilowatts: Utility Business Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences Through Performance Feedback Joe Miller, Smart Grid Implementation Strategy Team September 15, 2011 Prepared by: National Energy Technology...

  16. Beyond Kilowatts: Utility Business Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura| National2.11DESERTWaterSharing Smart Grid Experiences

  17. 100kW Energy Transfer Multiplexer Power Converter Prototype Development Project

    SciTech Connect (OSTI)

    S. Merrill Skeist; Richard H. (Dick) Baker; Anthony G.P. Marini; DOE Project Officer - Keith Bennett

    2006-03-21

    Project Final Report for "100kW Energy Transfer Multiplexer Power Converter Prototype Development Project" prepared under DOE grant number DE-FG36-03GO13138. This project relates to the further development and prototype construction/evaluation for the Energy Transfer Multiplexer (ETM) power converter topology concept. The ETM uses a series resonant link to transfer energy from any phase of a multiphase input to any phase of a multiphase output, converting any input voltage and frequency to any output voltage and frequency. The basic form of the ETM converter consists of an eight (8)-switch matrix (six phase power switches and two ground power switches) and a series L-C resonant circuit. Electronic control of the switches allows energy to be transferred in the proper amount from any phase to any other phase. Depending upon the final circuit application, the switches may be either SCRs or IGBTs. The inherent characteristics of the ETM converter include the following: Power processing in either direction (bidirectional); Large voltage gain without the need of low frequency magnetics; High efficiency independent of output load and frequency; Wide bandwidth with fast transient response and; Operation as a current source. The ETM is able to synthesize true sinusoidal waveforms with low harmonic distortions. For a low power PM wind generation system, the ETM has the following characteristics and advantages: It provides voltage gain without the need of low frequency magnetics (DC inductors) and; It has constant high efficiency independent of the load. The ETM converter can be implemented into a PM wind power system with smaller size, reduced weight and lower cost. As a result of our analyses, the ETM offers wind power generation technology for the reduction of the cost and size as well as the increase in performance of low power, low wind speed power generation. This project is the further theoretical/analytical exploration of the ETM converter concept in relationship to PM wind power generator applications in the 100kW and under power range. The theoretical/analytical and bench scale work focuses on simplifying the basic ETM converter topology (in terms of parts count and complexity) for the specific application of the low power PM system. The project goals and objectives were for Spellman HV will develop a 100kW prototype ETM power converter based on paralleled lower ratings converters. The proposed configuration of this prototype is a 100kW rated converter comprised of four (4) 34kW rated modules connected in parallel (the fourth converter is included to demonstrate N+1 fault tolerance). This approach is more viable as there is lower technological risk involved in developing a 34kW-rated converter than a single 100kW unit. The modular system approach should have a lower deployment and service cost over a single unit system, because of the economics of scale (smaller units at a higher volume means lower manufacturing cost) and because of improved serviceability (a non-redundant power system with one failed module will still operate at a lower power level). There is also the added benefit that greater commercial application and acceptance should be achieved by having a modular system available in which fault tolerance (N+1 or 2N) is a feature. This modular approach would allow the output power to be increased by adding more paralleled converters. Thus, the maximum output power of the overall power system is a function of the interconnection medium (the hot swap connection subsystem), rather than the ratings of a single module. The project was implemented with Spellman HV acting as the program management and production assembly and test facility; The Baker Company acting as a technical consultant and resource when required; and dtm Associates acting as the design/development resource for the hardware development of the 100kW ETM converter prototype.

  18. Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus

    E-Print Network [OSTI]

    Michael, Stadler

    2011-01-01

    $/yr) Battery Capacity Installed (kWh) Flow Battery PowerInstalled (kW) Flow Battery Energy Installed (kWh) PV326.7 kW as well as a flow battery with a rated peak power

  19. Literature Cited and Selected Bibliography Able, K.W. 1999. Measures of juvenile fish habitat quality: examples from a

    E-Print Network [OSTI]

    Chen, Changsheng

    . Rutgers University Press. New Brunswick, NJ. 342 p. Able, K.W., J.P. Manderson, and A.L. Studholme. 1999 in Hydraulic Computations. 1988. Turbulence modeling of surface flow and transport. Journal of Hydraulic

  20. Low-Cost 63% Efficient 2.5-kW UHF Power Amplifier for a Wind Profiler Radar

    E-Print Network [OSTI]

    Popovic, Zoya

    Low-Cost 63% Efficient 2.5-kW UHF Power Amplifier for a Wind Profiler Radar Brad Lindseth1,2 , Tom describes a low-cost 449-MHz 2.5-kW peak pulse amplifier for use in a wind profiling radar. New high- powerW cost upwards of US$30,000 [2,3]. The goal of this work is to develop a low-cost UHF power amplifier

  1. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  2. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  3. Conceptual engineering design of a 50-kW rechargeable alkaline zinc/redox battery

    SciTech Connect (OSTI)

    Selman, J.R.; Hollansworth, R.P.

    1984-08-01

    The zinc/ferro-ferricyanide battery has been advanced over the past 6 years from a concept to a working unit of demonstrated high energy efficiency. A conceptual engineering design for a 50-kW solar storage battery system has been formulated, based upon performance data of 60, 200, and 1000 cm/sup 2/ cells and physical property data collected from the literature or determined earlier. Starting with a cell performance model and a crystallizer model, mass and energy balances are analyzed using a modular design. Isothermal and adiabatic operations are considered, and thermal storage requirements estimated

  4. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  5. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  6. Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility

    SciTech Connect (OSTI)

    Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

    2009-07-01

    A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

  7. Plasma and Electrode Emissions from a 1 kW Hydrogen-Nitrogen Arcjet Thruster

    SciTech Connect (OSTI)

    Huang Heji; Pan Wenxia; Meng Xian; Wu Chengkang

    2010-05-21

    Arc root behavior affects the energy transfer and nozzle erosion in an arcjet thruster. To investigate the development of arc root attachment in 1 kW class N{sub 2} and H{sub 2}-N{sub 2} arcjet thrusters from the time of ignition to the stably working condition, a kinetic series of end-on view images of the nozzle obtained by a high-speed video camera was analyzed. The addition of hydrogen leads to higher arc voltage levels and the determining factor for the mode of arc root attachment was found to be the nozzle temperature. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures.

  8. Verification test of a 25kW class SOFC cogeneration system

    SciTech Connect (OSTI)

    Yokoyama, H.; Miyahara, A.; Veyo, S.E.

    1997-12-31

    Osaka Gas and Tokyo Gas have high expectations for natural-gas-fueled Solid Oxide Fuel Cell (SOFC) cogeneration systems. SOFC offers many advantages for on-site cogeneration systems, such as high electrical efficiency, high quality by-product heat and low emissions. They are now executing a joint development program with Westinghouse Electric Corporation (hereinafter called as WELCO). This program is aimed to verify a 25kW class SOFC cogeneration system. This system, which was modified by replacing previous zirconia porous support tube cells (PST cells) with newly designed air electrode supported cells (AES cells), commenced operation on March 21, 1995. The system has been successfully operated for 13,100 hours as of February 7, 1997. This paper presents the performance evaluation of the new AES cells and the results of system operation at WELCO.

  9. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  10. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  11. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  12. Design of a 1 kW class gamma type Stirling engine

    SciTech Connect (OSTI)

    Raggi, L.; Katsuta, Masafumi; Sekiya, Hiroshi

    1997-12-31

    The study for a design on a kinematic drive gamma type Stirling engine is reported. This unit enters in the 1kW class and it is conceived to move a portable electric generator. The peculiarity of this unit is basically to use components taken from the line production, and also for the parts designed specifically for this application all the efforts are directed to simplicity in terms of material and manufacture. At first the engine performance targets are defined in compatibility with the components taken from a large scale production compressor and then the new components like the heat exchangers and the crank mechanism are designed. Two pre-tests are effected: one to define the performances of the induction motor in the electric regenerative mode and another running the machine as a refrigerator.

  13. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  14. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York:Just Hot ResourcesEnergy JumpKLDKSLKWhOURS

  15. OpenEI Community - max kwh

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart Grid Data available for download onst,/0 enBigWater

  16. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  17. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  18. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    a) thermal storage 1 absorption chiller solar thermal flowSolar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (solar thermal (kW) PV (kW) lead-acid batteries (kWh) thermal storage (

  19. Development of a 75-kW heat-pipe receiver for solar heat-engines

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moss, T.A.

    1995-05-01

    A program is now underway to develop commercial power conversion systems that use parabolic dish mirrors in conjunction with Stirling engines to convert solar energy to electric power. In early prototypes, the solar concentrator focused light directly on the heater tubes of the Stirling engine. Liquid-metal heat-pipes are now being developed to transfer energy from the focus of the solar concentrator to the heater tubes of the engine. The dome-shaped heat-pipe receivers are approximately one-half meters in diameter and up to 77-kW of concentrated solar energy is delivered to the absorber surface. Over the past several years, Sandia National Laboratories, through the sponsorship of the Department of Energy, has conducted a major program to explore receiver designs and identify suitable wick materials. A high-flux bench-scale system has been developed to test candidate wick designs, and full-scale systems have been tested on an 11-meter test-bed solar concentrator. Procedures have also been developed in this program to measure the properties of wick materials, and an extensive data-base on wick materials for high temperature heat pipes has been developed. This paper provides an overview of the receiver development program and results from some of the many heat-pipe tests.

  20. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    DER available include solar thermal, photovoltaics (PV) and1 absorption chiller solar thermal flow battery 220$/kWh andabsorption chiller (kW) Solar thermal (kW) PV (kW) lead-acid

  1. Status of the Advanced Stirling Conversion System Project for 25 kW dish Stirling applications

    SciTech Connect (OSTI)

    Shaltens, R.K.; Schreiber, J.G.

    1991-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising heat engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting technology development for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. NASA Lewis is providing management of the Advanced Stirling Conversion System (ASCS) Project through an Interagency Agreement (IAA) with the DOE. Parallel contracts continue with both Cummins Engine Company (CEC), Columbus, Indiana, and Stirling Technology Company (STC), Richland, Washington for the designs of an ASCS. Each system'' design features a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to a utility grid while meeting DOE's performance and long-term'' cost goals. The Cummins free- piston Stirling convertor incorporates a linear alternator to directly provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both the Cummins and STC ASCS designs will use technology which can reasonably be expected to be available in the early 1990's. 17 refs., 7 figs., 3 tabs.

  2. Wind Turbinie Generator System Power Performance Test Report for the Mariah Windspire 1-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2009-12-01

    This report summarizes the results of a power performance test that NREL conducted on the Mariah Windspire 1-kW wind turbine. During this test, two configurations were tested on the same turbine. In the first configuration, the turbine inverter was optimized for power production. In the second configuration, the turbine inverter was set for normal power production. In both configurations, the inverter experienced failures and the tests were not finished.

  3. Development of a Low Cost 10kW Tubular SOFC Power System

    SciTech Connect (OSTI)

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon; Schmidt, Douglas

    2013-06-06

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all of the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOE’s Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EERE’s leadership and the transition to an early commercial product offering.

  4. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  5. Aalborg Universitet Tvindkraft: Implementing a 500 kW 21-IGBT-Based Frequency Converter for a 1.7 MW

    E-Print Network [OSTI]

    Schaltz, Erik

    Rotor Synchronous Generator (WRSG), installed in the windmill's hub, to the grid, by operating-filterRectifier SG 500 kW 21-IGBT-based frequency converter Generator and step- down transformer Step-up transformer

  6. Making Strides to Boost the Use of Solar Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of...

  7. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power

    SciTech Connect (OSTI)

    Wu, Y. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China) [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xie, H. Q. [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China)] [College of Science, Southwestern University of Science and Technology, Mianyang 621010 (China); Li, Z. H.; Zhang, Y. J.; Ma, Q. S. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)] [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2013-11-15

    An S-band high gain relativistic klystron amplifier driven by kW-level RF power is proposed and studied experimentally. In the device, the RF lossy material is introduced to suppress higher mode excitation. An output power of 1.95 GW with a gain of 62.8 dB is obtained in the simulation. Under conditions of an input RF power of 1.38 kW, a microwave pulse with power of 1.9 GW, frequency of 2.86 GHz, and duration of 105 ns is generated in the experiment, and the corresponding gain is 61.4 dB.

  8. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  9. Freescale Semiconductor Successfully Implements an Energy Management...

    Broader source: Energy.gov (indexed) [DOE]

    projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  11. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  12. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* When an annual period ends, a utility will purchase unused credits...

  13. LM to Meet Energy Metering Goals Through Enhanced Data Collection...

    Broader source: Energy.gov (indexed) [DOE]

    water each day. The pumps used in these wells consumed 3,899,472 kilowatt-hours (kWh) of electricity in FY 2013, causing the preserve site to account for more than 88 percent of...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is...

  15. Arizona: Solar Panels Replace Inefficient Fossil Fuel-Powered...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    saving over 30,000 gallons of gasoline, 37,242 gallons of diesel, 9,820 gallons of propane, and producing 217,350 kilowatt-hours (kWh) of electricity each year. The...

  16. Assessment of SEAD Global Efficiency Medals for Televisions

    E-Print Network [OSTI]

    Young, Park, Won

    2013-01-01

    cost IND India IEA International Energy Agency kWh kilowatt-Index (EEI) A, India 5 Stars, or ENERGY STAR Version 6India (IND) star rating requirements are based on annual energy

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind (All), Biomass, Wind (Small), Hydroelectric (Small) Net Metering Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the...

  18. Renewable Energy Production Tax Credit

    Broader source: Energy.gov [DOE]

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  19. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  20. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW

    SciTech Connect (OSTI)

    Li Wei [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Science, Kunming University of Science and Technology, Kunming 650093 (China); Peng Jinhui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)], E-mail: jhpeng_ok@yeah.net; Zhang Libo; Yang Kunbin; Xia Hongying; Zhang Shimin; Guo Shenghui [Faculty of Materials and Metallurgical Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2009-02-15

    Experiments to prepare activated carbon by microwave heating indicated that microwave energy can decrease reaction temperature, save the energy and shorten processing time remarkably compared to conventional heating, owing to its internal and volumetric heating effects. The above results were based on the laboratory-scale experiments. It is desirable to develop a pilot-scale microwave heating equipment and investigate the parameters with the aim of technological industrialization. In the present study, the components and features of the self-invented equipment were introduced. The temperature rise curves of the chars were obtained. Iodine numbers of the activated carbons all exceed the state standard of China under the following conditions: 25 kg/h charging rate, 0.42 rev/min turning rate of ceramic tube, flow rate of steam at pressure of 0.01 MPa and 40 kW microwave heating power after 60 kW pre-activation for 30 min. Pore structure of the sample obtained at a time point of 46 h, which contained BET surface area, and pore size distributions of micropores and total pores, was tested by nitrogen adsorption at 77 K.

  1. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  2. DTE Energy- Solar Currents Program

    Broader source: Energy.gov [DOE]

    DTE Energy offers incentives through the Solar Currents program to its electric customers that install photovoltaic systems with a capacity of 1 kilowatt (kW) to 20 kW. For residential customers,...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Self-Generation Incentive Program Systems less than 30 kW will receive their full incentive upfront. Systems with a capacity of 30 kilowatts (kW) or greater will receive half the...

  4. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  5. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  6. Design and development of a 6 MW peak, 24 kW average power S-band klystron

    SciTech Connect (OSTI)

    Joshi, L.M.; Meena, Rakesh; Nangru, Subhash; Kant, Deepender; Pal, Debashis; Lamba, O.S.; Jindal, Vishnu; Jangid, Sushil Kumar, E-mail: joslm@rediffmail.com [Central Electronics Engineering Research Institute, Council of Scientific and Industrial Research, Pilani (India); Chakravarthy, D.P.; Dixit, Kavita [Bhabha Atomic Research Centre, Mumbai (India)

    2011-07-01

    A 6 MW peak, 24 kW average power S-band Klystron is under development at CEERI, Pilani under an MoU between BARC and CEERI. The design of the klystron has been completed. The electron gun has been designed using TRAK and MAGIC codes. RF cavities have been designed using HFSS and CST Microwave Studio while the complete beam wave interaction simulation has been done using MAGIC code. The thermal design of collector and RF window has been done using ANSYS code. A Gun Collector Test Module (GCTM) was developed before making actual klystron to validate gun perveance and thermal design of collector. A high voltage solid state pulsed modulator has been installed for performance valuation of the tube. The paper will cover the design aspects of the tube and experimental test results of GCTM and klystron. (author)

  7. [Article 1 of 7: Motivates and Includes the Consumer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electric system more options for solutions and resources, from home energy management and demand response to participating in the energy market using its KWH, KW, and ancillary...

  8. ReRack: Power Simulation for Data Centers with Renewable Energy Generation

    E-Print Network [OSTI]

    Renau, Jose

    -voltaic capacity, 250kW of wind turbine capacity, 400kWh of vanadium redox flow battery storage, and local grid

  9. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    gas-fired genset, solar thermal collectors, an absorptionchiller, 722 kW of solar thermal collectors, 1100 kWh of

  10. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  11. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  12. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  13. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  14. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  15. 60 KEV 30 KW ELECTRON BEAM FACILITY FOR ELECTRON BEAM Yu.I.Semenov, V.E.Akimov, M.A.Batazova, B.A.Dovzhenko, V.V.Ershov, A.R.Frolov,

    E-Print Network [OSTI]

    Kozak, Victor R.

    60 KEV 30 KW ELECTRON BEAM FACILITY FOR ELECTRON BEAM TECHNOLOGY Yu.I.Semenov, V.E.Akimov, M Abstract At the Budker Institute of Nuclear Physics, Novosibirsk, the 60 keV 30 kW electron beam facility for electron beam technology has been developed. The electron gun provides continuous or modulated beam within

  16. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    SciTech Connect (OSTI)

    J. M. Capron

    2005-09-28

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

  17. Optimal Technology Selection and Operation of Microgrids in Commercial Buildings

    E-Print Network [OSTI]

    Marnay, Chris; Venkataramanan, Giri; Stadler, Michael; Siddiqui, Afzal; Firestone, Ryan; Chandran, Bala

    2008-01-01

    kW) 9 hour CHP heat solar thermal thermal storage Fig. 3.is replaced by storage and solar thermal collection, but thechiller, 722 kW of solar thermal collectors, 1100 kWh of

  18. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  19. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  20. kWh Analytics: Quality Ratings for PV

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  1. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump to:MaxInc

  2. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv Jump to:FundSrc Jump

  3. EV Explorer: Giving Employers and Employees Better Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    need charging to get home charged anyway 0 2000 4000 6000 8000 10000 12000 Kilowatts Level 1 Work. 30,000 PHEV 40 1.2kW Free Charging 1.2kW Equal to Home Price 1.2kW Double Home...

  4. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  5. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    SciTech Connect (OSTI)

    West, M; Hafner, R

    2008-05-05

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

  6. Energy Department Announces $5 Million to Develop Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Foundation (Arctic Program at Thule Air Base in Greenland)-This 30 kilowatt (kW) CHP system will serve as a model for NSF facilities and assist agencies in evaluating the...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Solar Power Program Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the exemption...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a...

  10. Net Metering

    Office of Energy Efficiency and Renewable Energy (EERE)

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  11. Central Georgia EMC- Photovoltaic Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  12. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  13. OG&E- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    OG&E offers lighting and custom rebates to commercial customers in Oklahoma to improve the energy efficiency of facilities. A rebate of $250 per kilowatt (kW) reduced is available for a wide...

  14. Snohomish County PUD No 1- Solar Express Rebate Program

    Broader source: Energy.gov [DOE]

    This rebate program provides $300 per kilowatt (kW) of installed PV, up to a cap of $2,000 for residential premises and $8,000 for commercial premises (as determined by the PUD rate class). A flat...

  15. DOE Announces Energy Assistance for New Orleans Public Schools...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    P.A. Capdau is also one of many local schools vying to install 25-kilowatt (kW) solar panel systems. These installations are expected to offset a sizable portion of schools'...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the...

  17. Utilizing Supplemental Ultra-Low-NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technology into a 65-kilowatt (kW) microturbine and 100-horsepower (HP) heat recovery boiler. Introduction A combined heat and power (CHP) system can be a financially attractive...

  18. Tax Credits for Renewable Energy Facilities

    Broader source: Energy.gov [DOE]

    A renewable energy facility is defined as one that generates at least 50 kilowatts (kW) of electricity from solar power or at least 1 megawatt (MW) from wind power, biomass resources, landfill ga...

  19. Large Commercial Wind Exemption and Alternative Taxes

    Office of Energy Efficiency and Renewable Energy (EERE)

    The alternative taxation method has two components. The first component is an annual tax equal to $3 per kilowatt (kW) of capacity of the wind farm, prorated according to when the wind farm begins...

  20. SaskPower Small Power Producers Program (Saskatchewan, Canada)

    Broader source: Energy.gov [DOE]

    The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

  1. OTEC- Residential Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

  2. Expedited Permitting Process for Solar Photovoltaic Systems (Vermont)

    Broader source: Energy.gov [DOE]

    Vermont has established an expedited permitting process for solar photovoltaic systems that are 10 kilowatts-AC (kW) or less. In order to interconnect and net meter, electric customers in Vermont...

  3. Sawnee EMC- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

  4. Forest County Potawatomi Community- 2014 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Forest County Potawatomi Community (FCPC), in collaboration with a selected contractor, will install and operate approximately 875 kilowatts (kW) of solar photovoltaic (PV) systems at a minimum of eight tribal facilities in Milwaukee and Forest Counties.

  5. Market Potential for Advanced Thermally Activated BCHP in Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat and power (CHP) applications in the United States cover a broad spectrum of market segments, from nursing homes requiring a few hundred kilowatts (kW) of power and an...

  6. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  7. Plug-In Electric Vehicles' Charging Dr. Alireza Khaligh

    E-Print Network [OSTI]

    Zeng, Ning

    type Price Battery On-Board Charger E-Range Connector type Level 2 Nissan leaf EV $21,300 24kWh LiWh Li-ion 3.3 kW OBC 68 mi SAE J1772 6 hrs Tesla Model S 60kWh EV $71,000 60 kWh Li-ion 10 kW OBC 208 mi battery voltage 320 V ~ 420 V Maximum output power 1 kW Output voltage ripple

  8. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Parameter FedEx HEV C d 0.7 Frontal area (m 2 ) 7.02 Vehicle mass (kg) 4,472 Engine power (kW) 182 Motor power (kW) 100 Battery power (kW) 60 Battery capacity (kWh) 2.45...

  9. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul (Princeton Power Systems, Inc., Princeton, NJ); Sena-Henderson, Lisa; Hammell, Darren (Princeton Power Systems, Inc., Princeton, NJ); Holveck, Mark (Princeton Power Systems, Inc., Princeton, NJ); David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  10. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  11. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  12. Design and Construction of a 500 KW CW, 400 MHZ Klystron To Be Used As RF Power Source For LHC/RF Component Tests

    SciTech Connect (OSTI)

    Pearson, Chris

    2003-05-05

    A 500 kW cw klystron operating at 400 MHz was developed and constructed jointly by CERN and SLAC for use as a high-power source at CERN for testing LHC/RF components such as circulators, RF absorbers and superconducting cavities with their input couplers. The design is a modification of the 353 MHz SLAC PEP-I klystron. More than 80% of the original PEP-I tube parts could thus be incorporated in the LHC test klystron which resulted in lower engineering costs as well as reduced development and construction time. The physical length between cathode plane and upper pole plate was kept unchanged so that a PEP-I tube focusing solenoid, available at CERN, could be re-used. With the aid of the klystron simulation codes JPNDISK and CONDOR, the design of the LHC tube was accomplished, which resulted in a tube with noticeably higher efficiency than its predecessor, the PEP-I klystron. The integrated cavities were redesigned using SUPERFISH and the output coupling circuit, which also required redesigning, was done with the aid of MAFIA. Details of the tube development and test results are presented.

  13. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    the flight unit to be used by NASA to execute a deep space exploration mission. The reactor design will include heat pipes coupled to Stirling engines to demonstrate how one...

  14. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  15. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols in(JournalTechnicalConnect KPiXSciTechPhase 1

  16. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And Statistics » USAJobs Search USAJobsAdvanced Engine Combustion SimulationDepartment ofInverter

  17. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand Cubic Feet) SoldDepartmentGOES-10PV GridPhase 1 Preliminary

  18. AEP Ohio - Commercial New Construction Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    0.02 - 0.04kWh annualized savings Interior Controls: 0.08Watt controlled Lighting Power Density Incentive: 400kW below ASHRAE 90.1-2004 allowed wattage Unitary and Split...

  19. Utility Rate Structures and the Impact of Energy Efficiency and...

    Energy Savers [EERE]

    FL Energy Efficiency Calculations * Rates: most common are energy only rates, or a demand rate (kVa or kW) * Demand Rate - Can't use the average cost per kWh for calculations -...

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    FERC GE GW G&T HTS ICE IOU IPP IREC IRS ISO ITC kW kWh LADWPwind Source: EIA, Ventyx, AWEA, IREC, Berkeley Lab Figure 2.Renewable Energy Council (IREC) and Berkeley Lab. Data on

  1. Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions

    E-Print Network [OSTI]

    Feng, Wei

    2013-01-01

    photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

  2. Solar Adoption and Energy Consumption in the Residential Sector

    E-Print Network [OSTI]

    McAllister, Joseph Andrew

    2012-01-01

    kW kWh IEPR IOU IPCC ITC LADWP LCOE LSE LTEESP MASH Assemblylevelized cost of energy (LCOE) for PV-based electricitygeneration systems. The LCOE for each system is calculated

  3. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    E-Print Network [OSTI]

    Vine, Edward

    2002-01-01

    greenhouse gas GWh HERS HVAC IPMVP kW kWh MW MWh NASEOand Verification Protocol (IPMVP) for quantifying emissionsand Verification Protocol (IPMVP) was listed as one of the

  4. Optimizing Distributed Energy Resources and Building Retrofits with the Strategic DER-CAModel

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01

    p, €/kW volumetric demand response costs, €/kWh thickness ofof end-use u removed by demand response measures in month m,measures such as demand response are also included, as well

  5. Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT) 

    E-Print Network [OSTI]

    Sfeir, R. A.; Kanungo, A.; Liou, S.

    2005-01-01

    Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high ...

  6. Minimization of Impact from Electric Vehicle Supply Equipment...

    Office of Scientific and Technical Information (OSTI)

    of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest...

  7. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    capacity electrical flow battery thermal n/a n/a source:a) thermal storage 15 flow battery 220$/kWh and 2125$/kW 18

  8. Control of Greenhouse Gas Emissions by Optimal DER Technology Investment and Energy Management in Zero-Net-Energy Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2010-01-01

    and energy ratings of a flow battery are independent of eachcapacity electrical flow battery thermal n/a n/a source:$/kWh) thermal storage 30 flow battery 220$/kWh and 2125$/kW

  9. Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP

    Broader source: Energy.gov [DOE]

    Infinia, under the CSP R&D FOA, is developing a 30 kW CSP system that utilizes a multi-cylinder, free-piston Stirling engine to achieve the goal LCOE of $0.07–$0.10/kWh by 2015 and $0.05–$0.07/kWh by 2020.

  10. William Lloyd Bircher Dissertation Committee for William Lloyd Bircher

    E-Print Network [OSTI]

    John, Lizy Kurian

    data center energy usage in the United States reached 61 billion kilowatt-hours (KWh) at an annual cost USD. The nature of energy usage in these systems provides an opportunity to reduce consumption.S.E.E.; M.S.E. Dissertation Presented to the Faculty of the Graduate School of The University of Texas

  11. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  12. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  13. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  14. GreenCharge: Managing Renewable Energy in Smart Buildings

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    and changing environmental conditions. Since the energy consumption density, in kilowatt-hours (kWh) per square foot, is higher than the energy generation density of solar and wind deployments at most locations on both the total number of participating consumers and the total amount of energy contributed per

  15. Seventh Northwest Conservation and Electric Power Plan nwcouncil.org/7thplan O-1

    E-Print Network [OSTI]

    credit kWh LCOE Kilowatt-hour Levelized cost of energy LED lighting Light-emitting diode - solid state Public Utility Regulatory Policies Act of 1978 PV Photovoltaics REC RPM Renewable energy credit Regional resource cost VRF Variable refrigerant flow WECC Western Electricity Coordinating Council WEPT Web

  16. Sustainable Energy without the hot air David J.C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    person in kilowatt-hours (kWh), the same units that appear on household energy bills; and powers1 Sustainable Energy ­ without the hot air David J.C. MacKay Synopsis We have an addiction energy from fossil fuels; Britain, 90%. And this is unsustainable for three reasons. First, easily

  17. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  18. Mathematics and Energy With the exception of humans and some chemosynthetic ecosystems powered

    E-Print Network [OSTI]

    Russo, Bernard

    an argument for the fol- lowing claim: The most economical (as in "cheapest"), fastest, and most reli- able various forms of energy: electric, mechanical, chemical, 151 #12;152 Mathematics for the Environment heat are no doubt familiar with is the kWh, i.e., the kilowatt-hour. For electric energy you pay about 10 cents

  19. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  20. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  1. Michael Klepinger, Extension Specialist Michigan State University

    E-Print Network [OSTI]

    electricity continues to rise. The aver- age end-user price of electricity in the United States was 8 cents projects are voicing concerns to township, city and county officials. The most common concerns are about per kilowatt hour (kWh) in 2005 (EIA, 2006a). Since the early 1980s, the price of wind-generated elec

  2. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  3. Energy Efficiency in the Microelectronics Industry 

    E-Print Network [OSTI]

    Bhatti, B.

    1998-01-01

    Distnbution and how a system approach to understanding these can result in developing energy efficient sites for this industry. OVERVIEW Almost all sites trend and trdck their electric demand KW and KWH profile along with their electric utility bill... selected buildings with utility rdtes and air and plant system simulated data generdting a variety of outputs to display total energy use information. We will use this to generdte KW, KWH profIles and then component annual electric costs. igure 3...

  4. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01

    that pre-cool, rebound, or otherwise shift energy use to theexhibit almost no rebound and save some energy on DR days,kW) Rebound (kW) Daily Peak Demand (kW) Daily Energy (kWh) a

  5. Research and development of a 3 MW power plant from the design, development, and demonstration of a 100 KW power system utilizing the direct contact heat exchanger concept for geothermal brine recovery project. Final report

    SciTech Connect (OSTI)

    Huebner, A.W.; Wall, D.A.; Herlacher, T.L.

    1980-09-01

    The design phase for the 100 KW unit consumed the months of May through November 1978, with the final design selected as having a direct contact boiler and condenser, a single-stage radial inflow induction turbine-generator using isopentane as the working fluid, and a single cell ejector-type cooling tower. The unit was constructed on two, forty-foot flatbed trailers between the months of October 1978 and June 1979. Systems start-up testing, in-field modifications, unit operation, and performance testing were performed between July and December 1979. AP and L (Arkansas Power and Light) personnel assumed responsibility of the unit at that time and conducted further maintenance, operations, and testing through August 1980.

  6. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  7. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy Information

  8. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergy

  9. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy InformationEnergyEnergy

  10. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergy

  11. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation HeatPumps

  12. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen Energy

  13. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformationOpen

  14. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a property

  16. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is a

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This is

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search This

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterlyInformation Misc Jump to: navigation, search

  20. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to: navigation,

  1. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:

  2. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump to:Information

  3. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas Jump

  4. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas JumpInformation

  5. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGas

  6. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information DigesterLandfillGasInformation

  7. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy Information

  8. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to: navigation,

  9. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceIIInformationEnergy InformationInformation Total Jump to:

  10. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EEREPlateauFolsom LabsSunPower (IncubatorSunrunkWh

  11. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  12. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  13. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  14. Energy Unit Conversion Factors / 1Joule (J) equals 1 2.78 x lO-7 9.49 x 1o-4

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    kilowatt hour (kWh) equals 3.60 x lo6 1 3413 1 calorie (Cal) equals 4.184 1.19 x lO+j 3.97 x lo-3 1 British electron volt (eV) equals 1.60 x lo-l9 4.45 x lo-26 1.52 x 1o-22 Energy Equivalents Crude petroleum (42

  15. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  16. Rooftop Photovoltaic Panels at Premier Gardens

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOE’s Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  17. Petroleum Service Projects in the Gulf of Guinea 

    E-Print Network [OSTI]

    Ken-Worgu, Kenneth Chukwumeka

    2011-10-21

    Liquefied Natural Gas Company FPSO Floating Production Storage and Offloading Vessel GMD Group Managing Director GOG Gulf of Guinea KRW Korean Won KW Kilowatts LNG Liquefied Natural Gas TAMU Texas A&M University MMIE Ministry of Mines, Industry... .............................................................. 103 6.7 Nontechnical Challenges .......................................................... 104 VII INSULATION PROJECT ON AGBAMI FPSO ................................. 106 7.1 Background on Envirocage...

  18. Minnesota Power- SolarSense Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  19. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect (OSTI)

    Busch, J.F. Jr.

    1990-08-01

    Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

  20. Heat pipe cooled reactors for multi-kilowatt space power supplies

    SciTech Connect (OSTI)

    Ranken, W.A.; Houts, M.G.

    1995-01-01

    Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

  1. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    SciTech Connect (OSTI)

    Brandhorst, Henry W. Jr.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-21

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  2. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at theNavalSolaroffor Auxiliary

  3. Pavement Recycling Machine 

    E-Print Network [OSTI]

    Raiford Stripling Associates, Inc.; Stripling, Raiford L.

    2011-08-29

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  4. Kenneth S. Kurani (knkurani@ucdavis.edu) Jonn Axsen (jaxsen@sfu.ca)

    E-Print Network [OSTI]

    California at Davis, University of

    of their monthly consumption 2. Green electricity production lease Household leases an amount of green electricity utility or third-party retailer to pay for investments in green electricity production Per kWh premium production capability at a specific production facility · For example, 100KW blocks of production at a solar

  5. Retrofit Savings for Brazos County 

    E-Print Network [OSTI]

    Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

    2001-01-01

    This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

  6. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    of 2.5$/W & low solar thermal costs (minus 10% of originalof 2.5$/W & low solar thermal costs (minus 10% of originalcosts ($/kW or $/kWh) lifetime ( a) thermal storage 11 flow battery absorption chiller solar

  7. LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX

    E-Print Network [OSTI]

    and purge ports. #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX 3' x 5' Solar Panels 191 watts per panel 600 KW Solar Array 2,988 Solar Panels 850,000 kWh Annual Output Solar Classroom Deck SOLAR PV SYSTEM #12 in the United States #12;LADY BIRD JOHNSON MIDDLE SCHOOL IRVING, TX THE LAYOUT AFTER HOURS GYM ENTRY SOLAR

  8. Danti with Nuclear Magnetic Resonance Machine 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  9. International Business Machines Corporation 

    E-Print Network [OSTI]

    Gumula, M. G.

    1985-01-01

    the peak demand by an effective 12,389 KW and annual energy consumption by approximately 72,938,223 KWH. They have employed both conventional and innovative techniques and have certainly earned their first place award in the 1984 Duke Power Energy...

  10. Field Verification of Energy and Demand Savings of Two Injection Molding Machines Retrofitted with Variable Frequency Drives 

    E-Print Network [OSTI]

    Liou, S. P.; Aguiar, D.

    1999-01-01

    Detailed field measurements of energy consumption (kWh) and demand (kW) are conducted on two injection molding machines (IMMs) used in a typical plastic manufacturing facility in the San Francisco Bay Area, with/without Variable Frequency Drives...

  11. Validation of an Integrated System for a Hydrogen-Fueled Power Park

    E-Print Network [OSTI]

    simulation ­ Efficiency ­ Waste heat availability Develop cost of operation models ­ Capital ­ Fuel costs reformer with equal loads All waste heat can be utilized 3-5 kW commercially available PEM fuel cells Heat and Power Has the Potential to Lower Power Cost by ~$0.01/kWh · CHP Requires Reformer and Fuel

  12. Application of an Energy Management System to a Distribution Center 

    E-Print Network [OSTI]

    Warnick, T.

    1984-01-01

    such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant...

  13. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  14. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  15. Green Pricing Experience and Lessons Learned Edward A. Holt

    E-Print Network [OSTI]

    times the number of kWh offered). In another variant, Detroit Edison charges for increments of capacity in a 28.4 kW photovoltaic demonstration, and then a lower-than- standard energy charge for the output from of renewable energy (or capacity) being purchased. The price charged is unrelated to the amount of energy

  16. Estimated Savings from Turning Off Unnecessary Lights at the Langford Architecture Center During the 1996 Christmas Holidays 

    E-Print Network [OSTI]

    Soebarto, V. I.; Haberl, J. S.; Degelman, L. O.

    1997-01-01

    lights been left on, the building would have consumed 100 kW more electricity every hour. The total electricity savings was about 31,200 kWh over 13 days, which is equivalent to a total cost saving of $936.00. If the College continues to turn off...

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2,InformationAwardeeEnergyInformation

  18. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  19. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  20. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    electric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (kelectric storage (kWh) thermal storage (kWh) annual costs (k

  1. K.W. Gavin Cheng, Ph.D Associate Professor

    E-Print Network [OSTI]

    Manitoba, University of

    in other laboratories of the Spinal Cord Research Centre. Such an model is an essential step in the process. Hochman and L. Jordan). Continue development of co-culture systems for discovery of novel factors which by spinal cord injury. This approach is targeted to discovery of potential therapeutic agents which can

  2. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    Open Energy Info (EERE)

    PureCycle 200product released by UTC in 2004 and designed to operate offindustrial waste heat applications. The PureCycle 200 usescomponents and hardware from the Carrier...

  3. Recovery Act: Nanoengineered Ultracapacitor Material Surpasses the $/kW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of Colorado Ponnequin Wind

  4. KW-Basin Sludge Treatment Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask 4Photo4 | NationalAbout Us Projects

  5. From Comfort to Kilowatts: An Integrated Assessment of Electricity Conservation in Thailand's Commercial Sector. Volume 2: Technical Appendix

    E-Print Network [OSTI]

    Busch Jr., J.F.

    2010-01-01

    the misc. equipment energy use in the public space by taking36% of the total energy costs. The public space bill for the

  6. Magnet power supply regulation comments: 240 kW and 500 kW magnet power supplies

    SciTech Connect (OSTI)

    Visser, A.T.

    1993-03-01

    This note is written for users who need better than about 100 ppm regulated magnet fields in electromagnets. A magnet excitation current regulation of 100 ppm is generally specified to obtain this field regulation, but there are many other variables, in addition to magnet excitation that can change the magnet field. The effects of these other variables are often overlooked or underestimated. If things do not work out, the power supply often gets blamed. A field regulation of 100 ppm requires that the power supply regulates substantially better than 100 ppm and that the effects of other variables are limited. Before we can talk about regulation we must define what regulation is. Power supplies can be regulated for current or voltage. We will only talk about current regulation, since that is the regulation mode used to establish precisely regulated magnetic fields in electromagnets. It is assumed that the same current value will always produce the same corresponding magnetic field value. Later on we will discuss that this assumption is not correct.

  7. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecial Report Management Challenges at theNavalSolaroffor Auxiliary Power

  8. Power translation chart kWh/d each GW / UK TWh/y / UK Mtoe/y / UK

    E-Print Network [OSTI]

    MacKay, David J.C.

    (2004) UK Nuclear (2004) UK Electricity fuel input (2004) 1 kWh/d the same as 1/24 kW `UK' = 60 millionWh/d each kWh(e) /d each t CO2/y each Mt CO2/y / UK MtC/y / UK GtC/y / World World (2005) `Safe'`Safe and fair' UK (1990) UK (2005) 60% target 80% target UK Electricity kWh thermal energy exchange rate: 1 k

  9. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by la

  10. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect (OSTI)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  11. Best Energy Savings Measurement at Texas City Monsanto Plant 

    E-Print Network [OSTI]

    Repschleger, W. E.

    1979-01-01

    "BTU KWH MMBTU MGAL TEXAS CITY PLANT S1725 DEPT 89972 UTILI TY DESCRIPTION STEAM MMBT ELECTRICITY FIL _TR MGAL MAKE UP WTR. C T WATER UNITS MMBTU KWH HGAL "GAL. MGAL HGAL PLANT N02 UNIT -------ACTUAL THIS MO 65,289 11,160. 56... FACTOR DESCRIPTION UNITS 38.521 3.881 30.423 01.3C188~ 5.079 STEAM MM3TU MM8TU 56.789 n2.6~7 S.679.31Cl ClO.OIOClCl 1.32' ElECTRI CIT Y KW H - ---_._.--- -_. 39 1.741 00.02699 5 FIl WH MGAl MGAl 222 6.989 98,332 ..... 678.711 OCl.ClIl9C1 1...

  12. Savings estimates for the ENERGY STAR (registered trademark) voluntary labeling program: 2001 status report

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Mahajan, Akshay; Koomey, Jonathan G.

    2002-01-01

    Electricity Price Price 1998$/kWh 1998$/kWh Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t ? The carbon

  13. 2004 status report: Savings estimates for the Energy Star(R) voluntarylabeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  14. 2003 status report savings estimates for the energy star(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-01-01

    Electricity Price Price 2000$/kWh 2000$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  15. 2005 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-01-01

    Electricity Price Price 2003$/kWh 2003$/kWh Carbon Electricenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  16. 2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

    2003-01-01

    Price Price 2000$/kWh 2000$/kWh Electric Carbon Emissionsenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  17. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  18. TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 Acceleration power Measured in kilowatts. Pulse power obtainable from a battery used to accelerate a

    E-Print Network [OSTI]

    Pennycook, Steve

    G­1 TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 GLOSSARY Acceleration power ­ Measured TRANSPORTATION ENERGY DATA BOOK: EDITION 34--2015 Anthropogenic ­ Human made. Usually used in the context

  19. Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace 

    E-Print Network [OSTI]

    Lawrence, Benjamin Daniel

    2013-08-01

    , gas analyses can be adapted to estimate RQ values. The LNB was modified and cofiring experiments were performed at various equivalence ratios (phi) with pure coal and blends of PRB-DB. Standard emissions from solid fuel combustion were measured...

  20. Case Study of Stratified Chilled Water Storage Utilization for Comfort and Process Cooling in a Hot, Humid Climate 

    E-Print Network [OSTI]

    Bahnfleth, W. P.; Musser, A.

    1998-01-01

    , the nominal tank storage capacity is 60,500 ton-hr (2 13,000 kwh) and the instantaneous output at the maximum discharge flow rate is 5,600 tons (19,700 kW). The tank can discharge at this rate for nearly 11 hours. At design flow rates, the inlet Froude... on-peak hours that run from noon to 8 p.m. Controls are configured to obtain maximum efficiency from refrigerant equipment on- line by maintaining each on-line chiller at its peak capacity. During the on-peak period the tank is discharged...

  1. Gas -Fueled Engine-Driven Air Conditioning Systems for Commercial Buildings 

    E-Print Network [OSTI]

    Lindsay, B. B.

    1987-01-01

    .9 is targeted. A.G.A. Laboratories is wor!cin~ with Thermo King Corporation to develop a 15-ton rooftop package based on Thermo King's truck-trailer refrigeration system. Thermo King has manufactured engine- driven tefrigeration systems for 48 years and has.../kw) Summor, 1985 Rator, Largo Commorclal Bulldlngr. No Taxor or Surchargor Includod L-W3211.08 Ratchet Charger Applicable SENSITIVITY TO GAS PRICE Electric Energy Cost (*/kwh) - - ~pp Sb Boas Cora Aaaumptlona: Fhrt Cort Premlum: S30/Ton Gar Englne...

  2. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dr. Michael Strasik

    2007-06-29

    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  3. DOE/NREL Advanced Wind Turbine Development Program

    SciTech Connect (OSTI)

    Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

    1993-05-01

    The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

  4. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  5. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  6. --No Title--

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6222015 14:27 SLCAIP Hydro Generation Estimates Month Forecast Generation less losses (kWh) Less Proj. Use (kWh) Net Generation (kWh) SHP Deliveries (kWh) Firming Purchases...

  7. Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs

    E-Print Network [OSTI]

    Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

    2008-01-01

    7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oil Baseload Coal7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oi Baseload Coalof Supply Technologies CT Combined- Cycle Oil Baseload Coal

  8. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

  9. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  10. Development of vanadium redox flow battery for photovoltaic generation system

    SciTech Connect (OSTI)

    Shibata, Akira; Sato, Kanji; Nakajima, Masato

    1994-12-31

    Photovoltaic power generation system (PV) requires a battery for night and rainy day. A redox flow battery has advantage over a lead acid one on this application for the capability of deep discharge and needlessness of equalized charge. The authors have developed the high performance vanadium redox flow battery for this purpose and inexpensive production technology of electrolyte which occupies the majority in the battery cost by chemical reduction from boiler plant by-product. The 2 kW (10 kWh) battery, the minimum unit for practical size battery (50 kW x 50 h), achieved 1.2 kW/cm{sup 2}-electrode area at the 100 mA/cm{sup 2} current density.

  11. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  12. The Chena Hot Springs 400kw Geothermal Power Plant: Experience Gained

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |Information 5th congressionalNIESLook at theDuring the

  13. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01

    Conference on Soil Mechanics & Geotechnical Engineering,Conference on Soil Mechanics & Geotechnical Engineering,Conference on Soil Mechanics & Geotechnical Engineering,

  14. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Two Catalyst Formulations - One Solution for NOx After-treatment Systems...

  15. 3,000 kW Suginoi Hotel geothermal power plant

    SciTech Connect (OSTI)

    Kudo, Kisumi [Beppu Suginoi Hotel, Beppu (Japan)

    1996-05-01

    The Suginoi Hotel is located 200 m above sea level, in Beppu City, which is one of the largest hot spring resort area in Japan. In this hotel, there are some unique hot spring baths, which are interesting to visitors. In Beppu, there are numerous hot springs, some are call {open_quotes}Jigoku{close_quotes} (Hells). The main attraction in Beppu are the hell-like spots created by hot springs such as the Torando Hell, which erupt to a heights of more than 50 meters, The Blood Pond Hell which is bloody red due to red clay content. In yield, these hot springs rank second in the world next to those of Yellowstone National Park in the USA.

  16. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01

    Simulations of Wind Turbine Dynamics Including Soil-Modeling the Wind Turbine . . . . . . . . . . . . 5.2.2 SoilFigure 5.3: A “wind turbine” built in a modified version of

  17. A 40KW ROOF MOUNTED PV THERMAL CONCENTRATOR SYSTEM J.F.H. Smeltink1

    E-Print Network [OSTI]

    thermal (PV-T) concentrator system. This system is based on its Combined Heat and Power Solar (CHAPS called Combined Heat and Power Solar (CHAPS) Systems. During 2002 the Australian Greenhouse Office made of 37x. Heat is removed from the solar cells using a fluid, which flows through a passage in the cell

  18. Power Scaling of Tm:fiber Lasers to the kW Level Peter F. Moulton

    E-Print Network [OSTI]

    Van Stryland, Eric

    -06-D-0009 and FA9451-08-D-0199 Technical work: Q-Peak: Glen Rines, Evgueni Slobodtchikov, Kevin Wall

  19. Reducing Pump Power Consumption by 40% (1000 KW) Through Improved Pump Management in a Central Plant 

    E-Print Network [OSTI]

    Deng, S.; Liu, M.; Turner, W. D.

    1998-01-01

    Plant Descri~tion. At the Central Utility Plant, the chilled water system does not have secondary pumps. Primary pumps are used to serve both the in-plant chilled water system (chillers and other components) and the loops at required pump head... chillers 1 - 4 inlet sub-common header and centrifugal chillers 9 - 12 inlet sub-common header (this common header can be enabled or disabled by manual valves on it). Four chilled water loops (East, South, Central and West) serving the main campus...

  20. Development of a Low Cost 3-10kW Tubular SOFC Power System

    Broader source: Energy.gov (indexed) [DOE]

    desulfurizer Collaborations - EFESO Program Enviromentally Friendly Energy from Solid Oxide fuel cell Italian government program granted to Ariston thermal group and 15 partners...

  1. Development of a Low Cost 3-10kW Tubular SOFC Power System |...

    Broader source: Energy.gov (indexed) [DOE]

    -- Washington D.C. fc032bessette2010oweb.pdf More Documents & Publications Solid Oxide Fuel Cell Balance of Plant and Stack Component Integration The Micro-CHP Technologies...

  2. PB500, 500kW Utility-Scale PowerBuoy Project

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device development projects in which Ocean Power Technologies will advance the current PowerBuoy design for commercial readiness.

  3. Characterization of a 5 kW solid oxide fuel cell stack using power electronic excitation

    E-Print Network [OSTI]

    Seger, Eric

    Fuel cells have attracted great interest as a means of clean, efficient conversion of chemical to electrical energy. This paper demonstrates the identification of both non-parametric and lumped circuit models of our stack ...

  4. High Efficiency 370kW Microturbine with Integral Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    Design a small turbine power generation system with the following: 42% Engine Efficiency 85% Total System Efficiency with CHP 2007 CARB-level emissions without...

  5. Performance Characteristics of a Cluster of 5-kW Laboratory Hall Thrusters

    E-Print Network [OSTI]

    Walker, Mitchell

    thrust changes within 4% to 2%, significantly better than a simple random flux calculation that uses power is increasing. Recent satellite designs suggest that electric propulsion (EP) systems will have [2]. If the tank pressure is too high, the background gas can artificially modify the exhaust plume

  6. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01

    powered by wind energy, wind turbines themselves stillWind Energy and Earthquake Activity Wind Turbines areTested wind turbine provided courtesy of Oak Creek Energy

  7. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  8. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  9. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01

    1.1 Wind Energy and Earthquake Activity 1.2 Brief LiteratureNorsk Veritas, Copen- hagen and Wind Energy Department, Risøpowered by wind energy, wind turbines themselves still

  10. Numerical simulations of a 2kW Hall thruster I. Maqueda,

    E-Print Network [OSTI]

    Carlos III de Madrid, Universidad

    Aeronáuticos(ETSIA), eduardo.ahedo@upm.es, AIAA Mem- ber. Student, ETSIA. Student, ETSIA. 1 of 10 American

  11. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    technologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150...

  12. Wasserbau und Wasserkraft32 Fachbeitrge KWKorrespondenz Wasserwirtschaft 2009 (2) Nr. 1 www.dwa.de/KW

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    with a flood event and also influences the routing and configu- ration of the road alongside the barrage dam of this classification and the design of the weir systems as well as the existence of roads alongside barrage dams and comments the results. Key words: hydraulic engineering, barrage system, barrage, weir system

  13. Evaluation of structural issues related to isolation of the 100-KE/100-KW discharge chute

    SciTech Connect (OSTI)

    Winkel, B.V.; Hyde, L.L.

    1995-03-10

    The issue of excessive post-seismic leakage in the discharge chute of the K East and K West fuel storage basins was resolved by designing isolation barriers to maintain basin water levels if the discharge chute should drain. This report addresses the structural issues associated with isolation of the discharge chute. The report demonstrates the structural adequacy of the components associated with chute isolation for normal and seismic loading. Associated issues, such as hardware drop accidents and seismic slosh heights are also addressed.

  14. Qualified Energy Property Tax Exemption for Projects 250 kW or Less |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: Julia Hammand DistributionDepartment of Energy <

  15. Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary From: Julia Hammand DistributionDepartment of Energy <in

  16. Distributed Generation Study/615 kW Waukesha Packaged System | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)Displacement Transfer Zone

  17. MHK Projects/AHERC 5kW deployment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK ISDB/Sensors/SmartMHKInformation5 < MHKAHERC

  18. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 < MHK Projects JumpDevelopment of

  19. Microsoft Word - EXTERNAL BPA classroom presentations CA and KW editsSES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGE OF PAGESpersonal MarchBoardJune 1, 2015 1 ProcedureJRC6 13

  20. 50 kW Power Block for Distributed Energy Applications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 News Below are4B Drawings 4B Chamber

  1. Recovery Act:Nanoengineered Ultracapacitor Material Surpasses the $/kW

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service of Colorado Ponnequin

  2. 1-10 kW Stationary Combined Heat and Power Systems Status and Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergy 1:AskEnergy:30QA: NA Root

  3. 400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie,InformationSpeciesRegister2008§ 261 Jump

  4. Harbec Plastics: 750kW CHP Application - Project Profile | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWN STRUCTUREDepartment offor

  5. High Efficiency 370kW Microturbine with Integral Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM& Industry

  6. High Efficiency 370kW Microturbine with Integral HeatRecovery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to TappingWORK BREAKDOWNEnergy how toEM& IndustryVicario Sr.

  7. Photo of the Week: Argonne's 10 kW Wind Turbine | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|inWest Kentucky RegionalAt Argonne National Laboratory, the

  8. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    SciTech Connect (OSTI)

    1994-12-31

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies.

  9. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01

    Total Variable: Urban: Useful Energy Intensity (MegajouleUse Variable: Office: Useful Energy Intensity (Kilowatt-HourCooling Variable: Retail: Useful Energy Intensity (Kilowatt-

  10. Bright Future NW Energy Coalition

    E-Print Network [OSTI]

    as coal or natural-gas generation. Wind and biomass nearly twice as many. Solar PV job potential is huge on natural gas. Energy Efficiency 3¢/kWh Energy Efficiency 3¢/kWh RPS 2020 10¢/kWh RPS 2020 10¢/kWh New Natural Gas 10¢/kWh Repower Existing Coal Plants 6¢/kWh New Renewables 2020-2050 10¢/kWh Repower

  11. Output Performance and Payback Analysis of a Residential Photovoltaic System in Colorado: Preprint

    SciTech Connect (OSTI)

    Johnston, S.

    2012-06-01

    Cost of installation and ownership of a 9.66-kilowatt (kW) residential photovoltaic system is described, and the performance of this system over the past 3 years is shown. The system is located in Colorado at 40 degrees latitude and consists of arrays on two structures. Two arrays are installed on a detached garage, and these are each composed of 18 Kyocera 130-W modules strung in series facing south at an angle of 40 degrees above horizontal. Each 18-panel array feeds into a Xantrex/Schneider Electric 2.8-kW inverter. The other two arrays are installed on the house and face south at an angle of 30 degrees. One of these arrays has twelve 205-W Kyocera panels in series, and the other is made up of twelve 210-Kyocera panels. Each of these arrays feeds into Xantrex/Schneider Electric 3.3-kW inverters. Although there are various shading issues from trees and utility poles and lines, the overall output resembles that which is expected from PVWatts, a solar estimate program. The array cost, which was offset by rebates from the utility company and federal tax credits, was $1.17 per watt. Considering measured system performance, the estimated payback time of the system is 9 years.

  12. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  13. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  14. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  15. Optimisation of a multistage pulsed dye laser system

    SciTech Connect (OSTI)

    Vasil'ev, S V; Kuz'mina, M A; Mishin, V A

    2001-06-30

    A multistage narrow-band dye laser amplifying system with an output power of up to several kilowatts is considered as a whole. Such systems became necessary due to the development of the method of laser isotope separation (the AVLIS method). The use of the simplified model of an amplifying cell allowed us to solve analytically the equations describing the laser system and to determine optimal parameters of each stage. The dye laser system with an output power of 1 kW is optimised based on the model proposed. The accuracy of the obtained estimates was verified by a direct numerical simulation of the system based on a rigorous solution of the equations describing the interaction of radiation with the dye solution. (lasers, active media)

  16. Reconciliation of Retailer Claims, 2005 CommissionReport

    E-Print Network [OSTI]

    operator to also report generation (in kilowatt-hours), generator technology, and fuel type consumed (as

  17. Performance assessment of the PNM Prosperity electricity storage project :

    SciTech Connect (OSTI)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  18. Regional Analysis of Building Distributed Energy Costs and CO2 Abatement: A U.S. - China Comparison

    E-Print Network [OSTI]

    Mendes, Goncalo

    2014-01-01

    0.11 $/kWh, as in San Francisco, Baltimore, Phoenix and Lask) l) Phoenix, AZ Minneapolis, MN Energy ($/kWh) Power ($/Phoenix and Miami, where the average electricity price is 0.05 $/kWh,

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  20. Comparing the risk profiles of renewable and natural gas electricity contracts: A summary of the California Department of Water Resources contracts

    E-Print Network [OSTI]

    Bachrach, Devra; Wiser, Ryan; Bolinger, Mark; Golove, William

    2003-01-01

    per kWh) i f a $10 per metric ton carbon allowance priceper kWh) i f a $100 per metric ton carbon allowance price

  1. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    are waived for solar projects that do not sell power to thethat convert DC power to AC. Since solar PV modules produce

  2. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    of Distributed Resource Island Systems with Electric Powerguidance on operating island systems in these variousof Distributed Resource Island Systems with Electric Power

  3. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    from different sources: wind, solar, and diesel. ” Productsphotovoltaic (PV), wind power, and even diesel generators.

  4. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    James Cale, National Renewable Energy Laboratory (USA) Mr.Coddington, National Renewable Energy Laboratory (USA) Dr.Energy Services Delivery/Renewable Energy for Rural Economic

  5. 18 kW Three Phase Inverter System Using Hermetically Sealed SiC Phase-Leg Power Modules

    E-Print Network [OSTI]

    Tolbert, Leon M.

    to work as power interface with the grid or connected loads, or as the interface for energy storage[2- efficiency power electronics help to save energy and conserve energy resources. Research on silicon carbide.2% is achieved by the initial prototype without optimization, which is higher than most Si inverters. Keywords--Silicon

  6. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    wp-content/uploads/2010/01/IREC-Interconnection-Procedures-investor-owned utility IREC: Interstate Renewable EnergyRenewable Energy Council (IREC) Model Interconnection

  7. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    electrification, part 9-2: Microgrids,” IEC/TS 62257-9-2the role of mini-grids/microgrids is fundamentally differentspecifications addresses microgrids, though it does not

  8. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1985-01-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge, as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  9. Thermal design requirements of a 50-kW zinc/redox flow battery for solar electrical energy storage

    SciTech Connect (OSTI)

    Selman, J.R.; Wu, H.; Hollandsworth, R.P.

    1984-09-01

    The conceptual engineering design of a large-scale zinc/redox battery for solar electrical energy storage involves the management of considerable heat flows. This is due to the large heat-of-crystallization of sodium ferrocyanide decahydrate produced during discharge as well as the usual reversible and irreversible cell-reaction heat effects. A discussion of practical design implications is presented.

  10. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    is connected to a power grid, the frequency is regulated bywith regional or national power grids calls for standardizedisland to the mainland power grid. The solar systems, which

  11. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect (OSTI)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  12. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick [INAC, SBT, UMR-E 9004 CEA/UJF-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Alamir, Mazen [Gipsa-Lab, Control Systems Department, CNRS-University of Grenoble, 11, rue des Mathématiques, BP 46, 38402 Saint Martin d'Hères (France); Bradu, Benjamin [CERN, CH-1211 Genève 23 (Switzerland)

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  13. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    guidance on operating island systems in these variousof Distributed Resource Island Systems with Electric Powerof Distributed Resource Island Systems with Electric Power

  14. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    E-Print Network [OSTI]

    Greacen, Chris

    2014-01-01

    on renewable energy project development in India, includingagency GIZ and India’s Ministry of New and Renewable Energy,indias-grid-expansion-erodes-island-solar-scheme Energy Services Delivery/Renewable

  15. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  16. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  17. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  18. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  19. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  20. RenewableNY - An Industrial Energy Conservation Initiative

    SciTech Connect (OSTI)

    Lubarr, Tzipora

    2009-09-30

    The New York Industrial Retention Network (NYIRN) manages the RenewableNY program to assist industrial companies in New York City to implement energy efficiency projects. RenewableNY provides companies with project management assistance and grants to identify opportunities for energy savings and implement energy efficiency projects. The program helps companies identify energy efficient projects, complete an energy audit, and connect with energy contractors who install renewable energy and energy efficient equipment. It also provides grants to help cover the costs of installation for new systems and equipment. RenewableNY demonstrates that a small grant program that also provides project management assistance can incentivize companies to implement energy efficiency projects that might otherwise be avoided. Estimated savings through RenewableNY include 324,500 kWh saved through efficiency installations, 158 kW of solar energy systems installed, and 945 thm of gas avoided.

  1. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  2. NASA Redox Storage System Development Project. Final report

    SciTech Connect (OSTI)

    Hagedorn, N.H.

    1984-10-01

    The Redox Storage System Technology Project was jointly supported by the US Department of Energy and NASA. The objectives of the project were to develop the Redox flow battery concept and to prove its technical and economic viability. The iron and chromium redox couples were selected as the reactants. Membranes and electrodes were developed for the original mode of operating at 25/sup 0/C with the reactants separated by an ion-exchange membrane. Analytical capabilities and system-level operating concepts were developed and verified in a 1-kW, 13-kWh pre-prototype system. A subsequent change was made in operating mode, going to 65/sup 0/C and using mixed reactants. New membranes and a new electrode catalyst were developed, resulting in single cell operation as high as 80 mA/cm/sup 2/ with energy efficiencies greater than 80%. Studies indicate a likely system cost of about $75/kWh. Standard Oil of Ohio (Sohio) has undertaken further development of the Redox system. An exclusive patent license was obtained from NASA by Sohio. Transfer of Redox technology to Sohio is supported by the NASA Technology Utilization Office. This report covers the full duration of the project.

  3. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect (OSTI)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO? emissions by 10,686 tonnes.

  4. A reliability and availability sensitivity study of a large photovoltaic system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Granata, Jennifer E.; Mundt, Michael Joseph; Miller, Steven P.; Quintana, Michael A.; Collins, Elmer W.; Sorensen, Neil Robert

    2010-08-01

    A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

  5. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  6. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect (OSTI)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  7. Hidden benefits of electric vehicles for addressing climate change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore »the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO? emissions by 10,686 tonnes.« less

  8. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K Area KW Sedimentation Basin KW Sedimentation Basin 100 K Pipeline 100 K Pipeline 183 KW Sedimentation Basin 183 KW Sedimentation Basin 183 KW Debris Removal 183 KW Debris Removal...

  9. Adaptive Environmentally Contained Power and Cooling IT Infrastructure for the Data Center

    SciTech Connect (OSTI)

    Mann, Ron; Chavez, Miguel, E.

    2012-06-27

    The objectives of this program were to research and develop a fully enclosed Information Technology (IT) rack system for 100 kilowatts (KW) of IT load that provides its own internal power and cooling with High Voltage Alternating Current (HVAC defined as 480 volt) and chilled water as the primary inputs into the system and accepts alternative energy power sources such as wind and solar. For maximum efficiency, internal power to the IT equipment uses distributed High Voltage Direct Current power (HVDC defined as 360-380 volt) from the power source to the IT loads. The management scheme aggressively controls energy use to insure the best utilization of available power and cooling resources. The solution incorporates internal active management controls that not only optimizes the system environment for the given dynamic IT loads and changing system conditions, but also interfaces with data center Building Management Systems (BMS) to provide a complete end-to-end view of power and cooling chain. This technology achieves the goal of a Power Usage Effectiveness (PUE) of 1.25, resulting in a 38% reduction in the total amount of energy needed to support a 100KW IT load compared to current data center designs.

  10. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Roy Whitney; George Neil

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  11. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  12. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    photovoltaics and solar thermal collectors; electricalelectricity) solar thermal collector (kW) PV (kW) electricelectricity) solar thermal collector (kW) PV (kW) electric

  13. Integrated Building Energy Systems Design Considering Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    photovoltaics and solar thermal collectors; electricalelectricity) solar thermal collector (kW) PV (kW) electricelectricity) solar thermal collector (kW) PV (kW) electric

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  15. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  16. An Estimate of Energy Use in Laboratories, Cleanrooms, and Data Centers in New York

    E-Print Network [OSTI]

    Mathew, Paul

    2010-01-01

    cost ($/MCF) NY - Labs - Electricty expenditures (Million $)kWh) NY - Data Centers - Electricty expenditures (Million $)

  17. Evaluation of 2004 Toyota Prius Hybrid Electic Drive System Interim Report - Revised

    SciTech Connect (OSTI)

    Ayers, C.W.; Hsu, J.S.; Marlino, L.D.; Miller, C.W.; Ott, G.W., Jr.; Oland, C.B.; Burress, T.A.

    2007-07-31

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery-powered electric motor. Both of these motive power sources are capable of providing mechanical drive power for the vehicle. The engine can deliver a peak power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak power output of 50 kW at 1300 rpm. Together, this engine-motor combination has a specified peak power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. Laboratory tests were conducted to evaluate the electrical and mechanical performance of the 2004 Toyota Prius and its hybrid electric drive system. As a hybrid vehicle, the 2004 Prius uses both a gasoline-powered internal combustion engine and a battery-powered electric motor as motive power sources. Innovative algorithms for combining these two power sources results in improved fuel efficiency and reduced emissions compared to traditional automobiles. Initial objectives of the laboratory tests were to measure motor and generator back-electromotive force (emf) voltages and determine gearbox-related power losses over a specified range of shaft speeds and lubricating oil temperatures. Follow-on work will involve additional performance testing of the motor, generator, and inverter. Information contained in this interim report summarizes the test results obtained to date, describes preliminary conclusions and findings, and identifies additional areas for further study.

  18. Guidelines for Company Reporting on Greenhouse Gas Emissions Annexes updated July 2005

    E-Print Network [OSTI]

    0.32 LPG kWh x 0.214 therms x 6.27 litres x 1.49 Coking Coal tonnes x 2736 kWh x 0.331 Aviation.63 Petrol tonnes x 3135 kWh x 0.24 litres x 2.30 Fuel Oil tonnes x 3223 kWh x 0.27 Coal2 tonnes x 2548 kWh xWh x 0.25 Petroleum Coke tonnes x 3410 kWh x 0.34 Refinery Miscellaneous kWh x 0.24 therms x 7

  19. Recharging U.S. Energy Policy: Advocating for a National Renewable Portfolio Standard

    E-Print Network [OSTI]

    Lunt, Robin J.

    2007-01-01

    $0.40/ kilowatt-hour, and wind power cost $0.60/ kilowatt-hour, then the marginal cost of wind power would be $. 0.20/subsidizes the marginal cost of wind power in the case of

  20. 2011 U.S. Small Wind Turbine Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    production is 100,000 to 130,000 kilowatt-hours per year, and the turbine offsets an energy rate of 10 cents to 12 cents per kilowatt-hour. The turbine is expected to generate...

  1. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    sensors. These relays are specified for the initial test bed5. LB3 Test kW LB4 kW LB6 kW Fault 28kW Zone SS Relay RelayLB3 Test kW LB4 kW LB6 kW Fault 28kW Zone SS Relay Relay

  2. Subcontract Report NREL/SR-7A2-48318

    E-Print Network [OSTI]

    Wh kilowatt-hour LED light emitting diode MECO Maui Electric Company MWh megawatt-hour NAECA National

  3. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    kilowatt LCOE levelized cost of energy MECO Maui Electric Company MSW municipal solid waste MW megawatt MWh

  4. The Daily Gazette Sunday, February 8, 2015 http://www.dailygazette.com/

    E-Print Network [OSTI]

    Radke, Rich

    on electrical energy costs unless they can get them with rebates." Kilowatt-hour prices also have something

  5. Vertical Farrning in the Windy City

    E-Print Network [OSTI]

    Saniie, Jafar

    vegetable and fish waste into fertilizer and biogas to power a heating, cooling, and 280-kilowatt electrical

  6. Lessons Learned from Microgrid Demonstrations Worldwide

    E-Print Network [OSTI]

    Marnay, Chris

    2014-01-01

    kW and three 10 kW PVs, small wind turbines, a 100 kW lead10 kW solar PV systems, small wind turbines, a 100 kW lead-

  7. Way Beyond Widgets: Delivering Integrated Lighting Design in Actionable Solutions

    SciTech Connect (OSTI)

    Myer, Michael; Richman, Eric E.; Jones, Carol C.

    2008-08-17

    Previously, energy-efficiency strategies for commercial spaces have focused on using efficient equipment without providing specific detailed instructions. Designs by experts in their fields are an energy-efficiency product in its own right. A new national program has developed interactive application-specific lighting designs for widespread use in four major commercial sectors. This paper will describe the technical basis for the solutions, energy efficiency and cost-savings methodology, and installations and measurement/verification to-date. Lighting designs have been developed for five types of retail stores (big box, small box, grocery, specialty market, and pharmacy) and are planned for the office, healthcare, and education sectors as well. Nationally known sustainable lighting designers developed the designs using high-performance commercially available products, daylighting, and lighting controls. Input and peer review was received by stakeholders, including manufacturers, architects, utilities, energy-efficiency program sponsors (EEPS), and end-users (i.e., retailers). An interactive web tool delivers the lighting solutions and analyzes anticipated energy savings using project-specific inputs. The lighting solutions were analyzed against a reference building using the space-by-space method as allowed in the Energy Standard for Buildings Except Low-Rise Residential Buildings (ASHRAE 2004) co-sponsored by the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the Illuminating Engineering Society of North America (IESNA). The results showed that the design vignettes ranged from a 9% to 28% reduction in the allowed lighting power density. Detailed control strategies are offered to further reduce the actual kilowatt-hour power consumption. When used together, the lighting design vignettes and control strategies show a modeled decrease in energy consumption (kWh) by 33% to 50% below the baseline design.

  8. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  9. DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2

    E-Print Network [OSTI]

    Engineering, Barber-Nicholas

    2011-01-01

    i t h e r l i q u i d iso- butane or brine. The c o n s t rand thermometers located in d butane temperatures and , and-e t o t h e DCHX 330 + 5OF Butane o u t l e t t e m p e r a

  10. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  11. Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes

    SciTech Connect (OSTI)

    Oyague, F.

    2009-02-01

    This report discusses the causes for premature wind turbine gearbox failure and determining a method for revealing the missing loading conditions relevant to the gearbox design process.

  12. DIRECT CONTACT HEAT EXCHANGER 10 kW POWER LOOP. SECTION 1: EXECUTIVE SUMMARY. SECTION 2: TEST SERIES NO. 1. SECTION 3; TEST SERIES NO. 2

    E-Print Network [OSTI]

    Engineering, Barber-Nicholas

    2011-01-01

    high pressure brine to a direct contact heat exchanger whichPRESSURE RATIO Figure ,11. Pure IC4 calibration test (using hairpin heat exchanger).exchanger where heat was extracted from it to isobutane. The high pressure

  13. 1668 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 27, NO. 4, APRIL 2012 55-kW Variable 3X DC-DC Converter for Plug-in

    E-Print Network [OSTI]

    Tolbert, Leon M.

    vehicle (HEV) traction drives. The boost converter used in commercial HEVs meets with obstacles when is shown in Fig. 1. In this system, the dc-dc converter boosts the battery voltage from 244 V to three op series-parallel HEV. speed and power demand of the vehicle. In this traditional dc- dc boost converter

  14. Microprocessor control of power sharing and solar array peak power tracking for high power (2. 5 kW) switching power converters

    SciTech Connect (OSTI)

    Speer, J.H. Jr.

    1981-01-01

    A prototype system of twin power converters for solar array supplement of spacecraft power buses is described. Analog circuits are used for inner control loops and a microprocessor directs power sharing and peak power tracking. 3 refs.

  15. VERSION 2000 S.L. NEITSCH, J.G. ARNOLD, J.R. KINIRY, J.R. WILLIAMS, K.W. KING

    E-Print Network [OSTI]

    EQUATIONS: ENERGY 31 2.1 SUN-EARTH RELATIONSHIPS 32 DISTANCE BETWEEN EARTH AND SUN 32 SOLAR DECLINATION 32 SOLAR NOON, SUNRISE, SUNSET, AND DAYLENGTH 33 2.2 SOLAR RADIATION 34 EXTRATERRESTRIAL RADIATION 34 SOLAR RADIATION UNDER CLOUDLESS SKIES 35 DAILY SOLAR RADIATION 36 HOURLY SOLAR RADIATION 37 DAILY NET RADIATION 38

  16. Flessa, K.W., 2004. Ecosystem services and the value of water in the Colorado River delta and Estuary, USA and Mexico: Guidelines for mitigation and restoration.

    E-Print Network [OSTI]

    Arizona, University of

    in the northern Gulf of California (Figure 1). Since the completion of upstream dams, irrigation projects or indirectly, from ecosystem functions. Table 1 lists some of the services and goods provided to human society

  17. Last revised 25/09/2013 Page 1 of 4 KW Guide to the investigative and disciplinary process: procedure for Chairs of

    E-Print Network [OSTI]

    Keeler, James

    of the meeting are to: determine the extent of the candidate's own work and identify any unattributed sources information and evidence for consideration at the meeting. The Chair of Examiners should summon the candidate with the candidate. The Chair of Examiners should ensure that a formal record of all actions and meetings is kept. 2

  18. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  19. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    SciTech Connect (OSTI)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  20. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  1. Method and device for microwave sintering large ceramic articles

    DOE Patents [OSTI]

    Kimrey, Jr., Harold D. (Knoxville, TN)

    1990-01-01

    A microwave sintering system and method are provided for extremely uniform sintering of large and/or irregular shaped ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing through an overmoded waveguide arrangement which acts in conjunction with a mode promoter within the cavity to achieve unexpected field uniformity. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200.degree. C./min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent of non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered.

  2. Microturbines

    Broader source: Energy.gov [DOE]

    Microturbines are small combustion turbines, approximately the size of a refrigerator, with outputs of 25-500 kilowatt (kW). They evolved from automotive and truck turbochargers, auxiliary power units for airplanes, and small jet engines and are composed of a compressor, a combustor, a turbine, an alternator, a recuperator, and a generator. Microturbines offer a number of potential advantages over other technologies for small-scale power generation. These include their small number of moving parts, compact size, light weight, greater efficiency, lower emissions, lower electricity costs, and ability to use waste fuels. They can be located on sites with space limitations for the production of power, and waste heat recovery can be used to achieve efficiencies of more than 80%. Turbines are classified by the physical arrangement of their component parts: single-shaft or two-shaft, simple-cycle or recuperated, inter-cooled, and reheat. The machines generally rotate more than 40,000 rotations per minute (rpm). Bearing selection, whether the manufacturer uses oil or air, is dependent on use. Single-shaft is the more common design because it is simpler and less expensive to build. Conversely, the split shaft is necessary for machine drive applications because it does not require an inverter to change the frequency of the AC power.

  3. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  4. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  5. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  6. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light-...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    melded rate for this site was 0.056 per kWh for electricity. However, if the national electricity rate of 0.1022kWh was used the payback would change to between four and five...

  8. Alliant Energy Interstate Power and Light - Residential Renewable...

    Broader source: Energy.gov (indexed) [DOE]

    Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Efficient Solar PV: 1.25kWh x estimated first year output Standard Solar PV: 0.75kWh x estimated first...

  9. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    and in the latter, its PV of cost savings is per kWh. NoteDG unit, then it obtains the PV of cost savings relative toremaining terms comprise the PV of cost savings per kWh from

  10. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  11. Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology

    E-Print Network [OSTI]

    Sanchez, Marla

    2010-01-01

    energy price in year t (in $/kWh or $/MBtu) C t = The carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  12. Saving Water Saves Energy

    E-Print Network [OSTI]

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-01-01

    cost per kWh than current energy efficiency procurement programs in California.Energy Down The Drain: The Hidden Costs of California’sCost of Procurement of Electricity Efficiency (Ratio of respective $/Annual KWh) California Energy

  13. Funding Opportunity: Geothermal Technologies Program Seeks Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of electricity from new hydrothermal development to 6 kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6 kWh by 2030. For more information, see this funding...

  14. China Energy Databook -- User Guide and Documentation, Version 7.0

    E-Print Network [OSTI]

    Fridley, Ed., David

    2008-01-01

    Central Changchun East China Energy Databook 7.0 Table 8C.2.Total scoProvRegion East Chapter 4, Energy Consumption kwh/Total scoProvRegion East Chapter 4, Energy Consumption kwh/

  15. PROCEEDINGS OF 1976 SUMMER WORKSHOP ON AN ENERGY EXTENSION SERVICE

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    Hydrologic Area: East Branch Energy 2,97 x 3,25 x 108 KWH =Energy conservation: Family values, household practices, and contextual values, East1974 energy costs were 3,249 KWH/AF for the East Branch and

  16. Compressed Air Energy Savings: SAV-AIR Monitor and Control System and the PNW Compressed Air Challenge 

    E-Print Network [OSTI]

    Anderson, K. J.; Annen, B.; Scott, S.

    2003-01-01

    capital upgrades. As of the end of 2002 the program has saved 16 million kWh annually and by 2010 the region expects to save 320 million kWh a year....

  17. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01

    kwh/gallon X 10- 3 a Waste Water Treatment kwh/gallon X 10-3re- requirements for waste water treatment. This year,requirements for residential waste water treatment have also

  18. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    183 KW Sedimentation Basin 183 KW Debris Removal 183 KW Debris Removal Soil Removal Soil Removal Drilling Groundwater Well 200 West Area Drilling Groundwater Well 200 West Area...

  19. Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores

    E-Print Network [OSTI]

    Mendes, Goncalo

    2013-01-01

    electrical stationary storage. An amount of 371kWh of EV batteries energy, corresponding to around 23 employee cars

  20. Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy

    E-Print Network [OSTI]

    Bezryadina, Anna Sergeyevna

    2012-01-01

    Photovoltaic solar panels which generate electricity directly currently cost around $0.24 per kWh in Central

  1. Energy Storage for Long Endurance AUVs Gwyn Griffiths

    E-Print Network [OSTI]

    Griffiths, Gwyn

    energy batteries · Manganese alkaline 110 Wh.kg-1 £71 per kWh Rayovac · Lithium ion & Lithium polymer 100 - 195 Wh.kg-1 ~£1400 per kWh Capital cost · Lithium manganese dioxide 270 Wh.kg-1 £667 per kWh SAFT LM Eagle Pitcher LCF111 r=6.4 r=108 · Energy & cost for 700 kg energy payload Manganese alkaline: 77 kWh £5

  2. A database of window annual energy use in typical North American residences

    E-Print Network [OSTI]

    Arasteh, Dariush; Huang, Joe; Mitchel, Robin; Clear, Bob; Kohler, Christian

    1999-01-01

    Kwh) Maximum Minimum Madison, WI Denver, CO Washington, DC Seattle, WA Raleigh, NC San Francisco, CA Phoenix,

  3. Selecting Thermal Storage Systems for Schools 

    E-Print Network [OSTI]

    Maxwell, C. L.

    1990-01-01

    per meter + KWH charge. On peak monthly average (June 89 thru September 89) $.0676/KWH. Off peak monthly average (October 89 thru May 90) $.0481/KWH. Natural Gas - Lone Star Gas Company - September 88 thru August 89 monthly average $4.41 MCF...

  4. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  5. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    to change in upstream and downstream wind speed from 850 kW,1650 kW and 3000 kW wind turbinesseJ/J) Transformity of Wind Turbine (1650kW) Latitude

  7. Added Value of Reliability to a Microgrid: Simulations of Three California Buildings

    E-Print Network [OSTI]

    Marnay, Chris

    2009-01-01

    chiller (kW elec. ) solar thermal (kW) electric storage (largely served by solar thermal collection and some NGchiller (kW elec. ) solar thermal (kW) electric storage (

  8. Hydrogen Energy Stations: Poly-Production of Electricity, Hydrogen, and Thermal Energy

    E-Print Network [OSTI]

    Lipman, Timothy; Brooks, Cameron

    2006-01-01

    kW kW Split reformer / electrolyzer / pipeline stream HighSplit reformer / electrolyzer / pipeline stream 4,000/kW5 Split reformer / electrolyzer / pipeline stream 3,000/kW

  9. Optimal Planning and Operation of Smart Grids with Electric Vehicle Interconnection

    E-Print Network [OSTI]

    Stadler, Michael

    2012-01-01

    point are PV, solar thermal collectors, absorption chillerelectricity) solar thermal collector (kW) PV (kW) stationaryelectricity) solar thermal collector (kW) PV (kW) stationary

  10. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characterization 183 KW Aerial 183 KW Aerial Subcontract for characterization work issued Subcontract for characterization work issued...

  11. Technology Pathway Partnership Final Scientific Report

    SciTech Connect (OSTI)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  12. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  13. Cooling season study and economic analysis of a desiccant cooling system 

    E-Print Network [OSTI]

    Lee, James Howard

    1992-01-01

    10 20 30 40 50 60 70 80 Gas Cost (3/GJ) Figure 4. 4 Gas Price vs DINC Cycle Payback Period at Various Electricity Prices SEER = 12 35 20 18 16 ~ 14 ~ 12 D o 10 8 6 o 4 $0. 06/Kwh $0. 09/Kwh $0. 12/Kwh $0. 15/Kwh $0. 'I 8/Kwh 10 20... IV ECONOMIC ANALYSIS V CONCLUSIONS 28 36 NOMENCLATURE 39 REFERENCES 46 APPENDIX A - HOUSE CONSTRUCTION DATA . . APPENDIX B - SECOND LAW COMPARISON 48 53 APPENDIX C - COOLING SEASON AND DINC CYCLE PROGRAM LISTING 72 APPENDIX D - ECONOMIC...

  14. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    E-Print Network [OSTI]

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-01-01

    biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &biogas system converted 130 kW engine 60 kW Capstone microturbine, CHP for space heating &

  15. DOE Office of Indian Energy Project Development and Finance Course...

    Broader source: Energy.gov (indexed) [DOE]

    renewable energy based on the electrical output of the project in kilowatt hours 10 PV - photovoltaic. This is a solar resource converter to electricity. R Remaining Life - the...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large customer-generators...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Interconnection Standards The New Hampshire Public Utilities Commission's (PUC) rules for net metering, which distinguish between small customer-generators (up to 100 kilowatts)...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    New Hampshire Public Utilities Commission's (PUC) rules for net metering, which distinguish between small customer-generators (up to 100 kilowatts) and large customer-generators...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts... Eligibility: Commercial, Industrial, Residential...

  2. PowerSaver Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    utility rebates. Ms. Kidder's upgrades included: solar PV (2 kilowatts), an air source heat pump for space heating, an electric hot water heater, LED lighting replacement kits for...

  3. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    of energy are incident on the Earth per square foot persquare feet per square mile, translating to 12.2 billion kilowatt-hours of energy

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Income Residential Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  5. Oregon State Energy-Efficiency Appliance Rebate Program Helps...

    Broader source: Energy.gov (indexed) [DOE]

    estimated 1,140,000 kilowatt hours of electricity per year-equivalent to the annual electricity consumption of more than 70 homes. The Building Technologies Office (BTO)...

  6. Oneida Tribe of Indians of Wisconsin RFP | Department of Energy

    Energy Savers [EERE]

    proposals (RFP) seeking installer and investor for 700 kilowatts of roof-mounted photovoltaic systems on multiple Oneida tribal facilities. The installation firm and its...

  7. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  8. St. Regis Mohawk Tribe Paves the Way to a Sustainable Future...

    Office of Environmental Management (EM)

    June 12, 2015 - 1:51pm Addthis Six photovoltaic arrays generate 32 kilowatts of energy to power 20 units at the Akwesasne Housing Authoritys (AHA) Sunrise Acres...

  9. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Energy Storage & Power Electronics 2008 Peer Review -...

  10. 2001 Federal Energy and Water Management Award Winners | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    trombe walls, direct solar gain, thermal mass, high efficiency lights, and 7 kilowatts of photovoltaics all work together to nearly eliminate loads. The project resulted in cost...

  11. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01

    well a molten salt thermal storage system could be utilizedof Solar Two [2] Thermal storage in these plants is anper kilowatt goes towards thermal storage[3]. Considering a

  12. Inauguration of Headquarters' Solar Energy System | Department...

    Broader source: Energy.gov (indexed) [DOE]

    us here today. In partnership with the General Services Administration, the Department of Energy has installed this 205 kilowatt photovoltaic solar array here on our main...

  13. Lighting in the Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by your library lights E Kilowatt-hours consumed by your library lights F Annual cost of operating your library lights H Current lighting index for your library ...

  14. Legislative Developments in Solar Energy during 1980

    E-Print Network [OSTI]

    Krueger, Robert B.; Hoffman, Peter C.

    1981-01-01

    L. REP. 267 (1979). SOLAR ENERGY DEVELOPMENTS kilowattsIn particular, the Solar Energy and Energy Conservation Bankthermal sytems is the Solar Energy and En- ergy Conservation

  15. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower system costs. Approach Existing thermal energy storage (TES) concepts cost about 27 per kilowatt hour thermal (kWht). The University of South Florida proposes a...

  16. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    E-Print Network [OSTI]

    Lekov, Alex

    2010-01-01

    50 Effluent Hydropower- Kilowatt Output as Function of HeadDepartment of Energy (2003). Hydropower Setting a Course forEnergy Commission). Hydropower: Hydropower turbines for low-

  17. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  18. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    SciTech Connect (OSTI)

    Barley, C. D.; Flowers, L. T.; Benavidez, P. J.; Abergas, R. L.; Barruela, R. B.

    1999-08-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: (1) Tabulate some important characteristics of all the plants. (2) Group the plants into categories (six classes) with similar characteristics. (3) For each class of system, identify one plant that is representative of the class. (4) For each representative plant, perform a moderately detailed prefeasibility analysis of design options. (5) Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system, expressed in units of U.S. dollars per kWh (US$/kWh) of energy production. This analysis is one phase of a study entitled ''Analysis of Renewable Energy Retrofit Options to Existing Diesel Mini-Grids,'' funded by the Asia-Pacific Economic Cooperation (APEC) and the U.S. Department of Energy (DOE), and performed jointly by NPC, the U.S. National Renewable Energy Laboratory (NREL), and Sustainable Energy Solutions in New York, New York (Morris et al. 1998). A more detailed version of this paper is included in that report.

  19. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  20. PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009

    E-Print Network [OSTI]

    Stanford University

    installed) as well as the operations-and-maintenance ("O&M") cost (¢ per kilowatt-hour generated spacing and injection rates that minimize the rate of decline in net generation with time. INTRODUCTION calls for minimizing the levelized cost of power (¢ per kilowatt-hour) over the project life. Minimizing

  1. ENERGY RECOVERY COUNCIL WEEKLY UPDATE

    E-Print Network [OSTI]

    apply to calendar year 2009 sales of kilowatt hours of electricity produced in the United States or one-loop biomass, geothermal energy, and solar energy; and 1.1 cent per kilowatt hour on the sale of electricity the House Education and Labor Committee where he served as Senior Labor Policy Advisor for Health and Safety

  2. IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Took advantage of available rebates to install solar panels ­ Southern Solar Array: 60 panel system (11.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10.9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12

  3. Cost vs. performance ... Gwyn Griffiths email: gxg@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/

    E-Print Network [OSTI]

    Griffiths, Gwyn

    ) Specific energy (Wh.kg-1 ) Cell cost per kWh (£) Cost per kWh inc. assembly & disposal. (£) Mn Alkaline 0@noc.soton.ac.uk http://www.noc.soton.ac.uk/OED/gxg/ Chemistry Cost per cell in quantity (£) Energy per cell (Wh://www.noc.soton.ac.uk/OED/gxg/ Cost & performance of Li-Po secondary batteries Component Capital cost Amortised cost per kWh Cost per

  4. Samuel Sandoval Solis, PhD Assistant Professor

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Samuel Sandoval Solis, PhD Assistant Professor University of California, Davis Department of Land of 10 #12;Hoover Dam 158 m 35.2 Km3 4.2 bill. KWh $49M - 1936 Oroville Dam 230 m 4.4 Km3 2.2 bill. KWh Shasta Dam 159 m 5.6 Km3 1.8 bill. KWh $36M - 1945 #12;· Masonry - Arch Dams · Gravity Dams · Embankment

  5. J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?

    E-Print Network [OSTI]

    Gerwert, Klaus

    ­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

  6. Alvarado MD1, Mackay TM1 De La Rosa EM2, Whitworth KW1, Valerio MA1 Frio Translational Board Members, Atascosa Health Center, Karnes Community Advisory Board Members

    E-Print Network [OSTI]

    Nicholson, Bruce J.

    for a Healthy Community and Environment (PaCE) Project: Exploring Health Literacy, Attitudes, and Behaviors of the impact of oil and gas development in Atascosa, Frio, and Karnes counties. Methods · Research protocol having heard of fracking while only 53.4% of participants reported they understand the process

  7. ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE

    E-Print Network [OSTI]

    Ferrell, G.C.

    2010-01-01

    1969. "Scrubber Survey: a Lime/Limestone Trend," ElectricalMills/Kwh Process Limestone Lime Magnesia Cat-Ox Sodium Tonsto Unsaturated Operation of Lime and Limestone Scrubbers,"

  8. Zero-Emission Vehicle Scenario Cost Analysis Using A Fuzzy Set-Based Framework

    E-Print Network [OSTI]

    Lipman, Timothy E.

    1999-01-01

    Residential Sector Electricity Prices in CaliforniaResidential electricity prices in the Los Angeles area are currently about $0.10 per kWh, but the California

  9. Flow of mantle fluids through the ductile lower crust: Helium isotope trends

    E-Print Network [OSTI]

    Kennedy, B. Mack; van Soest, Matthijs C.

    2008-01-01

    particularly for geothermal energy development. Mantlex 10 kWh of accessible geothermal energy. This is a sizableBasic Energy Sciences and Office of Geothermal Technologies

  10. Emissions of Criteria Pollutants, Toxic Air Pollutants, and Greenhouse Gases, From the Use of Alternative Transportation Modes and Fuels

    E-Print Network [OSTI]

    Delucchi, Mark

    1996-01-01

    36.5 SCF of natural gas per square foot (Energy Information2.5 kWh per square foot for lighting (Energy Information

  11. Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure

    E-Print Network [OSTI]

    Elmer, Vicki; Fraker, Harrison

    2011-01-01

    the very aggressive “passive house” standard of 15 Kwh/m2-yplus energy houses”) which combine a passive solar direct

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  13. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    7. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  14. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  17. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    1A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  18. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

  1. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  2. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot...

  3. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  4. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

  6. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

  7. --No Title--

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8. Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  8. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity remains .... * Achieve parity with natural gas @5-6 kWh * Establish offshore wind deployment * Provide foundational R&D to facilitate wind as a principal...

  9. Determining the Lowest-Cost Hydrogen Delivery Mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2008-01-01

    $0.05 to $0.075/kWh, diesel fuel price increases from $2 toin energy prices (electricity and diesel fuel), and storage

  10. Determining the lowest-cost hydrogen delivery mode

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2007-01-01

    to $0.075/kWh, the diesel fuel price increases from $2 to $in energy prices (electricity and diesel fuel), and storage

  11. Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid

    E-Print Network [OSTI]

    Lasseter, Robert

    2010-01-01

    electric storage thermal storage decoupling by Figure ES 1.by decoupling by thermal storage representative exampleor $/kWh) lifetime (a) thermal storage 1 absorption chiller

  12. Analysis of electric vehicle interconnection with commercial building microgrids

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01

    residences (homes) for EV charging: $0.138/kWh EnvironmentalStorage conclusions EV Charging / discharging pattern mainlythe healthcare facility EV battery charging efficiency EV

  13. Catalog of DC Appliances and Power Systems

    E-Print Network [OSTI]

    Garbesi, Karina

    2012-01-01

    battery storage.grid, the cost of battery storage per unit of load servedalong with 22 kWh of battery storage. This study claims only

  14. Separating myths from reality in PV inverter reliability

    E-Print Network [OSTI]

    Rollins, Andrew M.

    . · This is based upon a LCOE of 5 cents per kWh, so reliability is critical · MTBF of string inverters in 2006: 5

  15. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    E-Print Network [OSTI]

    Xu, Tengfang

    2011-01-01

    6. Solar Power Dish Engine for Wastewater Plant Electricitytreatment plant 4 MGD with 1 MW Solar power generation kWh

  16. Renewable Energy Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind): * Innovation Concepts and Emerging Technologies detail designs to reduce the cost of wind to compete unsubsidized with fossil-based alternatives (projected as .06kWh)....

  17. Following electron flow: From a Gram-positive community to mechanisms of electron transfer

    E-Print Network [OSTI]

    Wrighton, Kelly Catherine

    2010-01-01

    annually to treat food processing waste (3, 4). Moreover,waste alone contains 34 billion kWh of energy (3), while food

  18. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01

    C. McParland, "Open Automated Demand Response Communications2011. Utility & Demand Response Programs Energy ProviderAnnual Consumption (kWh) Demand Response Program Curtailment

  19. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01

    price of electric vehicle electricity exchange at home, $/kWh marginal carboncarbon emissions rate from generation technology j, kg/kWh price

  20. 2006 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program

    E-Print Network [OSTI]

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan, Gregory K.

    2006-01-01

    Price Source Carbon Emissions Factor for Electricity kg C/kWh Carbonenergy price in year t (in $/kWh or $/MBtu) C t = The carbon

  1. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    E-Print Network [OSTI]

    McNeil, Michael A.

    2012-01-01

    Washing Machines Fluorescent Ballasts Electric Water HeatersRoom AC Washing Machines $/kWh Electric Water HeatersWashing Machine) Cooking Products (Electric Induction

  2. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    E-Print Network [OSTI]

    Letschert, Virginie

    2010-01-01

    SAS-PAS Electric Water Heating UEC (kWh) 13 Reference (Jannuzzi G. 2005) (SAS+PAS Other Average Efficiency Base Case Reference Voice Mag. (oct 2005) (

  3. Tariff-based analysis of commercial building electricity prices

    E-Print Network [OSTI]

    Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

    2008-01-01

    Energy and Demand Prices . . . . . . . . . . . . . . . . . . . . . .US DOE 1999. Marginal Energy Prices Report U.S. Departmentmarginal price Marginal energy price in cper kwh Marginal

  4. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    E-Print Network [OSTI]

    Diaz-Elsayed, Nancy

    2013-01-01

    price of electricity charged to industrial customers per kWh was the greatest in Japan ($0.154), followed by Germany (

  5. Conservation Screening Curves to Compare Efficiency Investments to Power Plants

    E-Print Network [OSTI]

    Koomey, J.G.

    2008-01-01

    demand savings, each kWh saved with this efficiency measuresavings with peak demand. Previous analysis indicates that the ClF of efficiency measures

  6. Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007

    E-Print Network [OSTI]

    .498 Coking Coal tonnes x 2810 x 2810 kWh x 0.349 x 0.332 Aviation Spirit tonnes x 3128 x 3128 kWh x 0.250 x 0.281 x 0.267 Burning Oil1 tonnes x 3150 x 3150 kWh x 0.258 x 0.245 litres x 2.518 x 2.518 Coal 2 tonnes xWh x 0.249 x 0.237 Lubricants tonnes x 3171 x 3171 kWh x 0.263 x 0.250 Petroleum Coke tonnes x 3410 x

  7. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    6. Electricity Expenditures by Census Region for Non-Mall Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square...

  8. Peak CO2? China's Emissions Trajectories to 2050

    E-Print Network [OSTI]

    Zhou, Nan

    2012-01-01

    kWh) in 2050 Installed capacity of wind, solar, and biomassTWh in 2050 Installed capacity of wind, solar, and biomass

  9. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01

    kWh) in 2020 Installed capacity of wind, solar, and biomassgce/kWh) in Installed capacity of wind, solar, and biomass

  10. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  11. Golden Valley Electric Association - Sustainable Natural Alternative...

    Broader source: Energy.gov (indexed) [DOE]

    Gas Tidal Wave Wind (Small) Hydroelectric (Small) Maximum Rebate 1.50kWh Program Info Sector Name Utility Administrator Golden Valley Electric Association Website http:...

  12. Energy Impact of Residential Ventilation Norms in the United States

    E-Print Network [OSTI]

    Sherman, Max H.; Walker, Iain S.

    2007-01-01

    house in a Marine climate. Annual Energy Consumptionmarine climate has very little air conditioning - compressor energyEnergy Consumption Relative to Unvented House, kWh Marine -

  13. How Much Can a Campus Save on Utility Bills by Turning a 5-Workday Week Into a 4­Workday Week 

    E-Print Network [OSTI]

    Zhou, J.; Giebler, T.; Wei, G.; Turner, W. D.

    2003-01-01

    average electricity price during this period is $0.0457/kWh from Monday to Friday, and $0.0359/kWh for Saturday and Sunday, based on the current electricity utility contract between the university and the utility company. TAMUCC Whole Campus...) consumption (daily) profiles for weekdays, weekends and holidays. Daily WCE difference between a typical weekday and a typical weekend is around 20,000 kWh; Daily WCE difference between a typical weekend and a typical holiday is around 10,000 kWh; Daily...

  14. Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality

    E-Print Network [OSTI]

    Marnay, Chris; Firestone, Ryan

    2007-01-01

    electric load thermal storage solar thermal storage chargingcombustion solar thermal CHP heat storage charging generateof solar thermal collectors, 1100 kWh of electrical storage,

  15. SunShot Incubator Program | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding rounds. Awardees CURRENT PROJECTS PAST PROJECTS Soft Costs Aurora Solar, Inc. Clean Energy Collective Demeter Power Group EnergySage Faraday Genability kWh Analytics...

  16. Tracking the Sun II: The Installed Cost of Photovoltaics in the U.S. from 1998-2008

    E-Print Network [OSTI]

    Barbose, Galen L

    2010-01-01

    Solar Energy Program Anaheim Solar Advantage Program CECSolar Energy Program Anaheim Solar Advantage Program CECEnergy Program 10-100 kW >100 kW ?10 kW CA Anaheim Solar Advantage

  17. AREAS OF GROUND SUBSIDENCE DUE TO GEO-FLUID WITHDRAWAL

    E-Print Network [OSTI]

    Grimsrud, G. Paul

    2011-01-01

    June 1960, a 12,500 kw generating plant went on line usinga second 12,500 kw generating plant. In 1961, explorationof a 27,500 kw generating plant, completed in 1967. A second

  18. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    . Peak Electricity Demand Category, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: Demand- Metered Buildings 10 kW or Less 11 to 25 kW 26 to 50 kW...

  19. Manufacturing Fuel Cell Manhattan Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like...

  20. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    E-Print Network [OSTI]

    Stadler, Michael

    2009-01-01

    exchangers, solar thermal collectors, absorption chillers,electricity displaced) solar thermal collector (kW) PV (kW)electricity displaced) solar thermal collector (kW) PV ( kW)