National Library of Energy BETA

Sample records for kw kilowatt kwh

  1. ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System

    Broader source: Energy.gov [DOE]

    Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

  2. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  3. FEL Achieves 10 Kilowatts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FEL Achieves 10 Kilowatts Newport News, Va. - The Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, achieved 10 kilowatts of infrared laser light in late July, making it the most powerful tunable laser in the world. The recently upgraded laser's new capabilities will enhance defense and manufacturing technologies, and support advanced studies of chemistry, physics, biology, and more.

  4. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC ...

  5. PROJECT PROFILE: kWh Analytics (Incubator 10)

    Broader source: Energy.gov [DOE]

    About 35% of American citizens hold “non-prime” FICO scores that are less than 680, which restricts their ability to take on a solar lease, power purchase agreement (PPA), or loan that has enabled tens of thousands of other “prime” citizens to go solar. kWh Analytics believes that there is a tremendous opportunity to use data analytics to prove that FICO is merely a contributing factor, rather than the only factor, that influences customer repayment.

  6. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter with New 900 Volt Silicon Carbide MOSFET Technology | Department of Energy 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Presentation given by Cree at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 88 kilowatt automotive inverter with new

  7. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and

  8. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Office of Scientific and Technical Information (OSTI)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of

  9. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phase 1 Preliminary Design Documentation (Technical Report) | SciTech Connect Technical Report: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation Citation Details In-Document Search Title: Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration. CEDT Phase 1 Preliminary Design Documentation The intent of the integral experiment request IER 299 (called KiloPower by NASA) is to assemble and evaluate the operational

  10. Overview of Multi-Kilowatt Free-Piston Stirling Power Conversion Research at GRC

    SciTech Connect (OSTI)

    Geng, Steven M.; Mason, Lee S.; Dyson, Rodger W.; Penswick, L. Barry

    2008-01-21

    As a step towards development of Stirling power conversion for potential use in Fission Surface Power (FSP) systems, a pair of commercially available 1 kW class free-piston Stirling convertors and a pair of commercially available pressure wave generators (which will be plumbed together to create a high power Stirling linear alternator test rig) have been procured for in-house testing at Glenn Research Center. Delivery of both the Stirling convertors and the linear alternator test rig is expected by October, 2007. The 1 kW class free-piston Stirling convertors will be tested at GRC to map and verify performance. The convertors will later be modified to operate with a NaK liquid metal pumped loop for thermal energy input. The high power linear alternator test rig will be used to map and verify high power Stirling linear alternator performance and to develop power management and distribution (PMAD) methods and techniques. This paper provides an overview of the multi-kilowatt free-piston Stirling power conversion work being performed at GRC.

  11. Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPPurchasedEngyPerAreaKwhM2Other Jump to: navigation, search This is a property of type String. Other Pages using the property...

  12. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters...

    Open Energy Info (EERE)

    Datasets Community Login | Sign Up Search Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters Jump to: navigation, search This is...

  13. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg...

    Open Energy Info (EERE)

    Property Edit with form History Property:BuildingSPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg Jump to: navigation, search This is a property of type String. Heat pumps used...

  14. Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open...

    Open Energy Info (EERE)

    rcityUseKwhM2Printers" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.928422444931 + Sweden Building 05K0002 + 1.42372881356 + Sweden...

  15. Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating...

    Open Energy Info (EERE)

    UseKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  16. Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy...

    Open Energy Info (EERE)

    EngyPerAreaKwhM2Total" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 221.549575215 + Sweden Building 05K0002 + 213.701117318 + Sweden...

  17. Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy...

    Open Energy Info (EERE)

    ElctrcityUseKwhM2Misc" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 9.09953195331 + Sweden Building...

  18. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy...

    Open Energy Info (EERE)

    fElctrcityUseKwhM2Pcs" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 26.0998626444 + Sweden Building 05K0002 + 22.2888135593 + Sweden...

  19. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens...

    Open Energy Info (EERE)

    UseKwhM2LargeKitchens" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.763086941039 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  20. Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans...

    Open Energy Info (EERE)

    eKwhM2CirculationFans" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 13.3422495258 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  1. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating |...

    Open Energy Info (EERE)

    reaKwhM2ElctrcHeating" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.915704329247 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  2. Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors...

    Open Energy Info (EERE)

    seKwhM2AirCompressors" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 1.33591087145 + Sweden Building 05K0002 + 0.0 + Sweden Building...

  3. Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open...

    Open Energy Info (EERE)

    lctrcityUseKwhM2Pumps" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 6.37190900733 + Sweden Building 05K0002 + 6.03888185355 + Sweden...

  4. Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler...

    Open Energy Info (EERE)

    Oil-FiredBoiler Jump to: navigation, search This is a property of type String. Oil-fired boiler Pages using the property "BuildingSPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler"...

  5. Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers...

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type String. Large computers servers Pages using the property "BuildingSPBreakdownOfElctrcityUseKwhM2LargeComp...

  6. text in "Max kWh" fields | OpenEI Community

    Open Energy Info (EERE)

    it should as we are trying to prevent users from writing "less than X", "greater than Y", etc. and follow the intention of the "Max kWh" field. Also there should be a warning...

  7. PV VALUE® User Manual v. 1.1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... present value of the energy production. 2. ABBREVIATIONS & DEFINITIONS Solar Nomenclature Watt A unit of power defined as (voltage x current) kW Kilowatt 1000 watts kWh ...

  8. Identifying and Overcoming Critical Barriers to Widespread Second...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... U.S. Energy Information Administration EPRI Electric Power Research Institute ESS energy storage system EV electric vehicle GW gigawatt GWh gigawatt-hour kW kilowatt kWh ...

  9. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen ...

  10. Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open...

    Open Energy Info (EERE)

    PerAreaKwhM2WoodChips" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  11. Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open...

    Open Energy Info (EERE)

    trcityUseKwhM2Laundry" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  12. Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy...

    Open Energy Info (EERE)

    gyPerAreaKwhM2Pellets" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  13. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  14. OSR encapsulation basis -- 100-KW

    SciTech Connect (OSTI)

    Meichle, R.H.

    1995-01-27

    The purpose of this report is to provide the basis for a change in the Operations Safety Requirement (OSR) encapsulated fuel storage requirements in the 105 KW fuel storage basin which will permit the handling and storing of encapsulated fuel in canisters which no longer have a water-free space in the top of the canister. The scope of this report is limited to providing the change from the perspective of the safety envelope (bases) of the Safety Analysis Report (SAR) and Operations Safety Requirements (OSR). It does not change the encapsulation process itself.

  15. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Fuel Cells Workshop Summary Report Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling ...

  16. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  17. NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power - News Releases | NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrated Solar Power The greater the penetration of renewables in California, the greater the value of CSP with thermal storage capacity June 9, 2014 Concentrating Solar Power (CSP) projects would add additional value of 5 or 6 cents per kilowatt hour to utility-scale solar energy in California where 33 percent renewables will be mandated in six years, a new report by the Energy Department's National

  18. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  19. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  20. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE levelized cost of energy NSEDC Norton Sound Economic Development Corporation NREL National Renewable Energy Laboratory REAP Rural Energy for America Program START Strategic Technical Assistance Response Team SWOT strengths, weaknesses, opportunities, threats USDA U.S. Department of Agriculture VAGP Value-Added Grant Program

  1. Aluminum-blade development for the Mod-0A 200-kilowatt wind turbine

    SciTech Connect (OSTI)

    Linscott, B.S.; Shaltens, R.K.; Eggers, A.G.

    1981-12-01

    This report documents the operating experience with two aluminum blades used on the DOE/NASA Mod-0A 200-kilowatt wind turbine located at Clayton, New Mexico. Each Mod-0A aluminum blade is 59.9 feet long and weighs 2360 pounds. The aluminum Mod-0A blade design requirements, the selected design, fabrication procedures, and the blade analyses are discussed. A detailed chronology is presented on the operating experience of the Mod-0A aluminum blades used at Clayton, New Mexico. Blade structural damage was experienced. Inspection and damage assessment were required. Structural modifications that were incorporated to the blades successfully extended the useful operating life of the blades. The aluminum blades completed the planned 2 years of operation of the Clayton wind turbine. The blades were removed from service in August 1980 to allow testing of advanced technology wood composite blades.

  2. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Auxiliary Power Applications | Department of Energy kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Under a cooperative agreement with the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office, Battelle Memorial Institute is providing an independent assessment of fuel cell manufacturing costs at varied volumes and alternative system designs.

  3. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Broader source: Energy.gov [DOE]

    This report provides cost estimates for the manufacture of 10 kW and 25 kW PEM fuel cells designed for material handling applications.

  4. SAS Output

    Gasoline and Diesel Fuel Update (EIA)

    5. Unit of Measure Equivalents Unit Equivalent Kilowatt (kW) 1,000 (One Thousand) Watts Megawatt (MW) 1,000,000 (One Million) Watts Gigawatt (GW) 1,000,000,000 (One Billion) Watts Terawatt (TW) 1,000,000,000,000 (One Trillion) Watts Gigawatt 1,000,000 (One Million) Kilowatts Thousand Gigawatts 1,000,000,000 (One Billion) Kilowatts Kilowatthours (kWh) 1,000 (One Thousand) Watthours Megawatthours (MWh) 1,000,000 (One Million) Watthours Gigawatthours (GWh) 1,000,000,000 (One Billion) Watthours

  5. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  6. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Space Convertor

    SciTech Connect (OSTI)

    Kirby, Raymond L.; Vitale, N.

    2008-01-21

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled 'Affordable Fission Surface Power Study' recommended a 40 kWe, 900 K, NaK-cooled, Stirling conversion for 2020 launch. Use of two of the nominal 5 kW converters allows the system to be dynamically balanced. A group of four dual-converter combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the FSPE convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  7. Property:PotentialBiopowerGaseousCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  8. Property:GeneratingCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  9. Property:GrossProdCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  10. Property:InstalledCapacity | Open Energy Information

    Open Energy Info (EERE)

    1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWA...

  11. Table 10.9 Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts )

    U.S. Energy Information Administration (EIA) Indexed Site

    Photovoltaic Cell and Module Shipments by Sector and End Use, 1989-2010 (Peak Kilowatts 1 ) Year By Sector By End Use Total Residential Commercial 3 Industrial 4 Electric Power 5 Other 6 Grid-Connected 2 Off-Grid 2 Centralized 7 Distributed 8 Domestic 9 Non-Domestic 10 Total Shipments of Photovoltaic Cells and Modules 11<//td> 1989 1,439 6,057 [R] 3,993 785 551 [12] 1,251 [12] 2,620 8,954 12,825 1990 1,701 8,062 [R] 2,817 826 432 [12] 469 [12] 3,097 10,271 13,837 1991 3,624 5,715 [R] 3,947

  12. Photo of the Week: Argonne's 10 kW Wind Turbine | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photo of the Week: Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power...

  13. 1-10 kW Stationary Combined Heat and Power Systems Status and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review 1-10 kW Stationary Combined Heat and Power Systems Status and Technical...

  14. Gas/liquid sampler for closed canisters in KW Basin - test report

    SciTech Connect (OSTI)

    Pitkoff, C.C.

    1995-01-23

    Test report for the gas/liquid sampler designed and developed for sampling closed canisters in the KW Basin.

  15. Kootznoowoos Thayer Lake Hydroelectric Update

    Office of Environmental Management (EM)

    November 16, 2011 Tribal Energy Program The Project - Run of River Project - 200 ft of head - 6 miles North - 1000 kilowatt - 8 miles of road - Underwater crossing Angoon - Angoon and its people - from Time immemorial - Only year round community in Wilderness and National Monument - USDA is the land manager - 400 residents with potential to grow - Current spot demand of 600 kW - Commercial Rate unsubsidized $.60 plus kWh - Centrally located in Panhandle & Tongass - Considerable hydroelectric

  16. 40 kW Stirling engine for solid fuel

    SciTech Connect (OSTI)

    Carlsen, H.; Ammundsen, N.; Traerup, J.

    1996-12-31

    The external combustion in a Stirling engine makes it very attractive for utilization of solid fuels in decentralized combined heat and power (CHP) plants. Only few projects have concentrated on the development of Stirling engines specifically for biomass. In this project a Stirling engine has been designed primarily for utilization of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurized crankcase so that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons Helium is used as working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory, and the results are in agreement with predicted results from simulation programs. The wood chips combustion system has been tested for some time with very promising results. When the laboratory test of the engine is finished, the test of the complete system will be initiated. The paper describes the engine and results from the test program. Expectations to maintenance and operation problems are also discussed.

  17. KW-Basin Sludge Treatment Project - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Projects & Facilities KW-Basin Sludge Treatment Project About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility

  18. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  19. Harbec Plastics: 750kW CHP Application - Project Profile | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Harbec Plastics: 750kW CHP Application - Project Profile Harbec Plastics: 750kW CHP Application - Project Profile This case study profiles Harbec Plastics' 750kW combined heat and power (CHP) project in Ontario, New York to improve plant-wide energy performance. PDF icon Harbec Plastics: 750kW CHP Application - Project Profile (February 2006) More Documents & Publications SEP CASE STUDY WEBINAR: HARBEC SLIDES HARBEC, Inc. Case Study for Superior Energy Performance Harbec: A

  20. Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target

    SciTech Connect (OSTI)

    Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2014-05-15

    The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (?2 10{sup 10} n/s having a peak energy of ?27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

  1. A 10kW photovoltaic/hybrid system for Pinnacles National Monument

    SciTech Connect (OSTI)

    Ball, T.J.; DeNio, D.

    1997-12-31

    Visitors to the Chaparral area of the Pinnacles National Monument now can enjoy this beautiful section of the park without the constant drone of diesel generators, thanks to a recently installed photovoltaic/hybrid system. Electrical power had been supplied by two 100 KW diesel generators operating 24 hours per day. The diesels were running lightly loaded resulting in poor efficiency and high operating cost. Applied Power Corporation under contract with the National Park Service designed and supplied a 10 KW photovoltaic array, 200 KW hr battery bank and 24 KW of inverters to power the maintenance facility, visitor center and ranger residences. A new 20 KW propane generator was installed to provide supplemental power, totally eliminating the storage and transport of diesel fuel at this site. The Pinnacles PV/Hybrid system was brought on line in early 1996 and the park is now benefiting from the cost savings associated with the system.

  2. Table 8.11b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Electric Net Summer Capacity: Electric Power Sector, 1949-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000 [10] NA

  3. Table 8.11c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Electric Net Summer Capacity: Electric Power Sector by Plant Type, 1989-2011 (Breakout of Table 8.11b; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Electricity-Only Plants 9<//td> 1989 296,541,828 77,966,348 119,304,288 364,000 494,176,464 98,160,610 18,094,424 73,579,794

  4. Table 8.11d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    d Electric Net Summer Capacity: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.11a; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 8 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power Biomass Geo- thermal Solar/PV 7 Wind Total Wood 5 Waste 6 Commercial Sector 9<//td> 1989 258,193 191,487 578,797 – 1,028,477 [–] – 17,942 13,144 166,392 [–] – – 197,478 – 1,225,955 1990

  5. North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report

    SciTech Connect (OSTI)

    Mayer, D J; Norton, Jr, J H

    1981-07-01

    Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

  6. Researchers' Hottest New Laser Beams 14.2 kW | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers' Hottest New Laser Beams 14.2 kW For more information: Office of Naval Research press release The linear accelerator portion of the FEL. On Thursday, Oct. 26, Free-Electron Laser (FEL) team members knew they were within reach of a goal they'd pursued for two years. They were aiming to produce 10 kW of laser light at an infrared wavelength of 1.61 microns. On that day, they blew past the milestone to produce 11.7 kW. But the team didn't stop there. They pushed the machine they had

  7. Photo of the Week: Argonne's 10 kW Wind Turbine | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne's 10 kW Wind Turbine Photo of the Week: Argonne's 10 kW Wind Turbine November 9, 2012 - 11:57am Addthis At Argonne National Laboratory, the power generated by this 10 kW wind turbine helps scientists and engineers study the interaction of wind energy, electric vehicle charging and grid technology. The turbine is also estimated to offset more than 10 metric tons of greenhouse gas emissions annually. Learn more about <a href="http://www.anl.gov/energy/renewable-energy"

  8. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PowerBuoy Project | Department of Energy Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility-Scale PowerBuoy Project Office presentation icon 04_pb50_ocean_power_technologies_inc_hart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power

  9. Development of an Underamor 1-kW Thermoelectric Generator Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery System for Military Vehicles | Department of Energy an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology, Inc. PDF icon 2004_deer_bass.pdf More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation

  10. Table 8.11a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Electric Net Summer Capacity: Total (All Sectors), 1949-2011 (Sum of Tables 8.11b and 8.11d; Kilowatts) Year Fossil Fuels Nuclear Electric Power Hydro- electric Pumped Storage Renewable Energy Other 9 Total Coal 1 Petroleum 2 Natural Gas 3 Other Gases 4 Total Conventional Hydroelectric Power 5 Biomass Geo- thermal Solar/PV 8 Wind Total Wood 6 Waste 7 1949 NA NA NA NA 44,887,000 0 [5] 18,500,000 13,000 [10] NA NA NA 18,513,000 NA 63,400,000 1950 NA NA NA NA 49,987,000 0 [5] 19,200,000 13,000

  11. Development of a 10 kW, 2.815 GHz Klystron

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Read, Michael; Patrick, Ferguson

    2015-05-15

    Development of a Periodic Permanent Magnet (PPM) focused klystron is described. The klystron was designed to produce 10 kW CW at 2.815 GHz. The program developed an innovative PPM circuit that provided extremely uniform magnetic fields at the electron beam location while providing unprecedented access to the RF circuit for tuners and water cooling. Simulations indicated the klystron would produce more than 11 kW with an efficiency exceeding 65%. Problems with the mechanical design prevented successful testing of the initial prototype; however, a new design was successfully developed and implemented in a 6 MW klystron developed in a follow-on program. Funding is being pursued to rebuild the 10 kW RF circuit and complete the klystron development.

  12. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Genset | Department of Energy NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary Diesel Genset 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_malyala.pdf More Documents & Publications Two Catalyst Formulations - One Solution for NOx After-treatment Systems Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst

  13. 3kW Stirling engine for power and heat production

    SciTech Connect (OSTI)

    Thorsen, J.E.; Bovin, J.; Carlsen, H.

    1996-12-31

    A new 3 kW Beta type Stirling engine has been developed. The engine uses Natural gas as fuel, and it is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism and the alternator are built into a pressurized crank casing. The engine produce 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW corresponding to a shaft efficiency of 30%, and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as working gas. The crank mechanism is a combination of an upper- and lower yoke, each forming the half of a Ross mechanism. The upper yoke is linked to the displacer piston and the lower yoke is linked to the working piston. The design gives an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket, which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function of mean pressure and hot and cold temperature, and emissions and noise have been measured.

  14. Chapter 16: Retrocommissioning Evaluation Protocol. The Uniform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Verification Protocol kWh Kilowatt-hour M&V Measurement and verification O&M operation and maintenance OAT outdoor air temperature RCx Retrocommissioning TMY typical ...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat Pumps, Programmable Thermostats, Other EE Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production,...

  16. System Description for the KW Basin Integrated Water Treatment System (IWTS) (70.3)

    SciTech Connect (OSTI)

    DERUSSEAU, R.R.

    2000-04-18

    This is a description of the system that collects and processes the sludge and radioactive ions released by the spent nuclear fuel (SNF) processing operations conducted in the 105 KW Basin. The system screens, settles, filters, and conditions the basin water for reuse. Sludge and most radioactive ions are removed before the water is distributed back to the basin pool. This system is part of the Spent Nuclear Fuel Project (SNFP).

  17. 50 kW Power Block for Distributed Energy Applications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Solar Photovoltaic Solar Photovoltaic Industrial Technologies Industrial Technologies Energy Storage Energy Storage Electricity Transmission Electricity Transmission Find More Like This Return to Search 50 kW Power Block for Distributed Energy Applications National Renewable Energy Laboratory Contact NREL About This Technology Actual prototype Actual prototype Technology Marketing Summary Distributed energy (DE) systems have begun to make a significant impact on energy supply and will

  18. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  19. Beyond Kilowatts: Utility Business Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences Through Performance Feedback Joe Miller, Smart Grid Implementation Strategy Team September 15, 2011 Prepared by: National Energy Technology Laboratory This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness,

  20. Beyond Kilowatts: Utility Business Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences Through Performance Feedback Joe Miller, Smart Grid Implementation Strategy Team September 15, 2011 Prepared by: National Energy Technology...

  1. KWhOURS | Open Energy Information

    Open Energy Info (EERE)

    South Hamilton, Massachusetts Zip: 1982 Sector: Services Product: Massachusetts software maker which provides mobile data collection, calculation, and report generation...

  2. max kwh | OpenEI Community

    Open Energy Info (EERE)

    This is likely due to users not understanding the meaning of "Max kWh"--often I see things like: "300, 700, 1000" (derived from "first 300, next 700, greater than 1000") which...

  3. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  4. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect (OSTI)

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  5. Design considerations for a 100 kW c-w, 140 GHz gyrotron oscillator

    SciTech Connect (OSTI)

    Felch, K.; Bier, R.; Fox, L.; Huey, H.; Ives, L.; Jory, H.; Spang, S.

    1984-01-01

    A gyrotron oscillator capable of generating 100 kW of c-w power is currently under development at Varian. The tube is being designed for operation in the TE/sup 0//sub 031/ cavity mode with the electron beam located at the second radial electric field maximum in the cavity. The electron beam will be produced by a magnetron injection gun and the 56 kG magnetic field required for 140 GHz operation will be provided by a superconducting magnet. Initial design calculations for the important elements of the tube are reported and the various technology issues of the tube design are discussed.

  6. Aerodynamic analysis of a 10 kW horizontal-axis windmill

    SciTech Connect (OSTI)

    Figard, R.L.

    1980-01-01

    An aerodynamic study of the performance and the flowfield in the vicinity of the rotor of a three bladed 10 kW, horizontal-axis windmill is presented. The windmill has a 6.38 m (20.92 ft) diameter rotor and is rated at 10 kW in a 13.41 m/s (44.0 fps) wind. Three basic approaches are utilized. First, field measurements of the performance and the axial velocity and turbulence behind the rotor were conducted. Second, wind tunnel tests of a 1:5 scale model were performed. Third, theoretical analyses of the windmill were made. This included performance predictions with a computerized, modified blade element (vortex theory) analysis and the development and utilization of a numerical procedure employing the full Navier-Stokes equations in axi-symmetric form to examine the wake development in detail. In that effort the rotor is modeled by an actuator disk in a uniform flow, a simple turbulence transport model based on an integrated TKE equation is applied, and the equations of motion are taken in terms of the stream function, one vorticity component, and the peripheral velocity. The results of each of the three approaches shows agreement within 10 to 15% with the other two approaches.

  7. Verification test of a 25kW class SOFC cogeneration system

    SciTech Connect (OSTI)

    Yokoyama, H.; Miyahara, A.; Veyo, S.E.

    1997-12-31

    Osaka Gas and Tokyo Gas have high expectations for natural-gas-fueled Solid Oxide Fuel Cell (SOFC) cogeneration systems. SOFC offers many advantages for on-site cogeneration systems, such as high electrical efficiency, high quality by-product heat and low emissions. They are now executing a joint development program with Westinghouse Electric Corporation (hereinafter called as WELCO). This program is aimed to verify a 25kW class SOFC cogeneration system. This system, which was modified by replacing previous zirconia porous support tube cells (PST cells) with newly designed air electrode supported cells (AES cells), commenced operation on March 21, 1995. The system has been successfully operated for 13,100 hours as of February 7, 1997. This paper presents the performance evaluation of the new AES cells and the results of system operation at WELCO.

  8. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  9. Design of a 1 kW class gamma type Stirling engine

    SciTech Connect (OSTI)

    Raggi, L.; Katsuta, Masafumi; Sekiya, Hiroshi

    1997-12-31

    The study for a design on a kinematic drive gamma type Stirling engine is reported. This unit enters in the 1kW class and it is conceived to move a portable electric generator. The peculiarity of this unit is basically to use components taken from the line production, and also for the parts designed specifically for this application all the efforts are directed to simplicity in terms of material and manufacture. At first the engine performance targets are defined in compatibility with the components taken from a large scale production compressor and then the new components like the heat exchangers and the crank mechanism are designed. Two pre-tests are effected: one to define the performances of the induction motor in the electric regenerative mode and another running the machine as a refrigerator.

  10. High-power beam injectors for 100 KW free-electron lasers

    SciTech Connect (OSTI)

    Todd, A. M.; Wood R. L.; Bluem, H.; Young, L. M.; Wiseman, M.; Schultheiss, T.; Schrage, D. L.; Russell, S. J.; Rode, C. H.; Rimmer, R.; Nguyen, D. C.; Kelley, J. P.; Kurennoy, S.; wood, r

    2003-01-01

    A key technology issue on the path to high-power FEL operation is the demonstration of reliable, high-brightness, high-power injector operation. We describe two ongoing programs to produce 100 mA injectors as drivers for 100 kW free-electron lasers. In one approach, in collaboration with the Thomas Jefferson National Accelerator Facility, we are fabricating a 750 MHz superconducting RF cryomodule that will be integrated with a room-temperature DC photocathode gun and tested at the Laboratory. In the other approach, in collaboration with Los Alamos National Laboratory, a high-current 700 MHz, normal-conducting, RF photoinjector is being designed and will undergo thermal management testing at the Laboratory. We describe the design, the projected performance and the status of both injectors.

  11. Plasma and Electrode Emissions from a 1 kW Hydrogen-Nitrogen Arcjet Thruster

    SciTech Connect (OSTI)

    Huang Heji; Pan Wenxia; Meng Xian; Wu Chengkang

    2010-05-21

    Arc root behavior affects the energy transfer and nozzle erosion in an arcjet thruster. To investigate the development of arc root attachment in 1 kW class N{sub 2} and H{sub 2}-N{sub 2} arcjet thrusters from the time of ignition to the stably working condition, a kinetic series of end-on view images of the nozzle obtained by a high-speed video camera was analyzed. The addition of hydrogen leads to higher arc voltage levels and the determining factor for the mode of arc root attachment was found to be the nozzle temperature. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures.

  12. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  13. A 350 MHz, 200 kW CW, Multiple Beam Inductive Output Tube - Final Report

    SciTech Connect (OSTI)

    R.Lawrece Ives; George Collins; David Marsden Michael Read; Edward Eisen; Takuchi Kamura, Philipp Borchard

    2012-11-28

    This program developed a 200 kW CW, 350 MHz, multiple beam inductive output tube (MBIOT) for driving accelerator cavities. The MBIOT operates at 30 kV with a gain of 23 dB. The estimated efficiency is 70%. The device uses seven electron beams, each transmitting 1.4 A of current. The tube is approximately six feet long and weighs approximately 400 lbs. The prototype device will be evaluated as a potential RF source for the Advanced Photon Source at Argonne National Laboratory (ANL). Because of issues related to delivery of the electron guns, it was not possible to complete assembly and test of the MBIOT during the Phase II program. The device is being completed with support from Calabazas Creek Research, Inc., Communications & Power Industries, LLC. and the Naval Surface Weapons Center (NSWC) in Dahlgren, VA. The MBIOT will be initially tested at NSWC before delivery to ANL. The testing at NSWC is scheduled for February 2013.

  14. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  15. Development of a 402.5 MHz 140 kW Inductive Output Tube

    SciTech Connect (OSTI)

    R. Lawrence Ives; Michael Read, Robert Jackson

    2012-05-09

    This report contains the results of Phase I of an SBIR to develop a Pulsed Inductive Output Tube (IOT) with 140 kW at 400 MHz for powering H-proton beams. A number of sources, including single beam and multiple beam klystrons, can provide this power, but the IOT provides higher efficiency. Efficiencies exceeding 70% are routinely achieved. The gain is typically limited to approximately 24 dB; however, the availability of highly efficient, solid state drivers reduces the significance of this limitation, particularly at lower frequencies. This program initially focused on developing a 402 MHz IOT; however, the DOE requirement for this device was terminated during the program. The SBIR effort was refocused on improving the IOT design codes to more accurately simulate the time dependent behavior of the input cavity, electron gun, output cavity, and collector. Significant improvement was achieved in modeling capability and simulation accuracy.

  16. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    SciTech Connect (OSTI)

    none,

    2015-10-14

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phase I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.

  17. Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System

    SciTech Connect (OSTI)

    Howell, Thomas Russell

    2013-04-30

    The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

  18. 2-kW d-c instantaneous uninterruptible power-supply description. Interim report, 1 October 1987-1 October 1989

    SciTech Connect (OSTI)

    Northup, R.L.; Hammond, R.E.

    1989-11-01

    A 2-kW uninterruptible power supply was designed, built, and tested to demonstrate the feasibility of using uninterruptible power supplies (UPSs) to sustain critical loads onboard U.S. Navy ships. Performance requirements were met or exceeded. The design approach is modular and is shown to be expandable from its present 2-kW implementation to 10-kW or more. Implementation would be on Navy ships being newly constructed.

  19. 1?10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    SciTech Connect (OSTI)

    Maru, H. C.; Singhal, S. C.; Stone, C.; Wheeler, D.

    2010-11-01

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  20. 1–10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review

    Broader source: Energy.gov [DOE]

    This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

  1. Development of a 75-kW heat-pipe receiver for solar heat-engines

    SciTech Connect (OSTI)

    Adkins, D.R.; Andraka, C.E.; Moss, T.A.

    1995-05-01

    A program is now underway to develop commercial power conversion systems that use parabolic dish mirrors in conjunction with Stirling engines to convert solar energy to electric power. In early prototypes, the solar concentrator focused light directly on the heater tubes of the Stirling engine. Liquid-metal heat-pipes are now being developed to transfer energy from the focus of the solar concentrator to the heater tubes of the engine. The dome-shaped heat-pipe receivers are approximately one-half meters in diameter and up to 77-kW of concentrated solar energy is delivered to the absorber surface. Over the past several years, Sandia National Laboratories, through the sponsorship of the Department of Energy, has conducted a major program to explore receiver designs and identify suitable wick materials. A high-flux bench-scale system has been developed to test candidate wick designs, and full-scale systems have been tested on an 11-meter test-bed solar concentrator. Procedures have also been developed in this program to measure the properties of wick materials, and an extensive data-base on wick materials for high temperature heat pipes has been developed. This paper provides an overview of the receiver development program and results from some of the many heat-pipe tests.

  2. Status of the Advanced Stirling Conversion System Project for 25 kW dish Stirling applications

    SciTech Connect (OSTI)

    Shaltens, R.K.; Schreiber, J.G.

    1991-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising heat engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting technology development for Stirling convertors directed toward a dynamic power source for space applications. Space power requirements include high reliability with very long life, low vibration and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. NASA Lewis is providing management of the Advanced Stirling Conversion System (ASCS) Project through an Interagency Agreement (IAA) with the DOE. Parallel contracts continue with both Cummins Engine Company (CEC), Columbus, Indiana, and Stirling Technology Company (STC), Richland, Washington for the designs of an ASCS. Each system'' design features a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to a utility grid while meeting DOE's performance and long-term'' cost goals. The Cummins free- piston Stirling convertor incorporates a linear alternator to directly provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both the Cummins and STC ASCS designs will use technology which can reasonably be expected to be available in the early 1990's. 17 refs., 7 figs., 3 tabs.

  3. Solar Volumetric Incentive and Payments Program

    Broader source: Energy.gov [DOE]

    In June 2009, Oregon established a pilot solar volumetric incentive rate and payment program.* Under this incentive program, systems of up to 500 kilowatts (kW) are paid for the kilowatt-hours (k...

  4. Development of a Low Cost 10kW Tubular SOFC Power System

    SciTech Connect (OSTI)

    Bessette, Norman; Litka, Anthony; Rawson, Jolyon; Schmidt, Douglas

    2013-06-06

    The DOE program funded from 2003 through early 2013 has brought the Acumentrics SOFC program from an early stage R&D program to an entry level commercial product offering. The development work started as one of the main core teams under the DOE Solid State Energy Conversion Alliance (SECA) program administered by the National Energy Technology Laboratory (NETL) of the DOE. During the first phase of the program, lasting approximately 3-4 years, a 5kW machine was designed, manufactured and tested against the specification developed by NETL. This unit was also shipped to NETL for independent verification testing which validated all of the results achieved while in the laboratory at Acumentrics. The Acumentrics unit passed all criteria established from operational stability, efficiency, and cost projections. Passing of the SECA Phase I test allowed the program to move into Phase II of the program. During this phase, the overall objective was to further refine the unit meeting a higher level of performance stability as well as further cost reductions. During the first year of this new phase, the NETL SECA program was refocused towards larger size units and operation on coal gasification due to the severe rise in natural gas prices and refocus on the US supply of indigenous coal. At this point, the program was shifted to the U.S. DOEs Energy Efficiency and Renewable Energy (EERE) division located in Golden, Colorado. With this shift, the focus remained on smaller power units operational on gaseous fuels for a variety of applications including micro combined heat and power (mCHP). To achieve this goal, further enhancements in power, life expectancy and reductions in cost were necessary. The past 5 years have achieved these goals with machines that can now achieve over 40% electrical efficiency and field units that have now operated for close to a year and a half with minimal maintenance. The following report details not only the first phase while under the SECA program and the key achievements but also the results while under EEREs leadership and the transition to an early commercial product offering.

  5. Advanced, High-Reliability, System-Integrated 500kW PV Inverter Development: Final Subcontract Report, 29 September 2005 - 31 May 2008

    SciTech Connect (OSTI)

    West, R.

    2008-08-01

    Xantrex Technology accomplished subcontract goals of reducing parts cost, weight, and size of its 500-kW inverter by 25% compared to state-of-the-art PV inverters, while extending reliability by 25%.

  6. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  7. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    SciTech Connect (OSTI)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    2012-01-01

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems. Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).

  8. SAND2012-1395

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    95 Unlimited Release Printed March 2012 Solar Energy Grid Integration Systems: Final Report ... added value beyond the simple kilowatt hour (kWh) production of energy 3-4. ...

  9. Renewable Energy Production Tax Credit

    Office of Energy Efficiency and Renewable Energy (EERE)

    This annual corporate tax credit is equal to $0.01 per kilowatt-hour (kWh) of electricity produced and sold by the taxpayer to an unrelated party during a given tax year. For new facilities (plac...

  10. Energy Efficiency Fund

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Fund is funded by a surcharge of $0.003 per kilowatt-hour (3 mills per kWh) on Connecticut Light and Power (CL&P) and United Illuminating (UI) customers' electric bills....

  11. Rhode Island Renewable Energy Fund (RIREF)

    Broader source: Energy.gov [DOE]

    Rhode Island's PBF is supported by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at $0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mandatory Photovoltaic System Cost Estimate If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to...

  13. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Power Providers program contract term is 20 years. For years 1-10, TVA will purchase 100% of the output from qualifying systems at a premium of 0.02** per kilowatt-hour (kWh)...

  14. Hawaii Energy

    Broader source: Energy.gov [DOE]

    The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour ($/kWh) basis to meet the target budget. The surcharge ...

  15. Property:PotentialRuralUtilityScalePVGeneration | Open Energy...

    Open Energy Info (EERE)

    areas of a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  16. Property:PotentialRooftopPVGeneration | Open Energy Information

    Open Energy Info (EERE)

    PV for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  17. Property:PotentialHydropowerGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  18. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  19. Property:PotentialBiopowerSolidGeneration | Open Energy Information

    Open Energy Info (EERE)

    for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  20. Property:PotentialCSPGeneration | Open Energy Information

    Open Energy Info (EERE)

    CSP for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http:...

  1. Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Connecticut electricity customers that install energy efficiency equipment and reduce their energy use during peak hours may be eligible for a rebate based on the amount of kilowatt-hours (kWh) s...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by a surcharge on electric and gas customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility:...

  3. Chelan County PUD - Sustainable Natural Alternative Power Producers...

    Broader source: Energy.gov (indexed) [DOE]

    on the system's production. The PUD distributes SNAP payments annually, on or around Earth Day. The amount paid per kilowatt-hour (kWh) to SNAP Producers is determined by...

  4. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energy Consumers of America kWh Kilowatt-Hour LNG ... nations with which the United States has not entered a free ... to rebut Sierra Club's critique of DCP's claimed ...

  5. Net Metering

    Broader source: Energy.gov [DOE]

    Net excess generation (NEG) is treated as a kilowatt-hour (kWh) credit or other compensation on the customer's following bill.* At the beginning of the calendar year, a utility will purchase any...

  6. Fact #766: February 11, 2013 Electricity Prices are More Stable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    comparing the national average retail price for a gallon of regular gasoline and a kilowatt-hour (kWh) for residential electricity, the pricing for gasoline is far more volatile. ...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hawaii Energy The percentage of total utility revenue is used to establish a target budget for the PBF. The surcharge is set on a cents per kilowatt-hour (kWh) basis to meet the...

  8. Orcas Power & Light- MORE Green Power Program

    Broader source: Energy.gov [DOE]

    Incentive payments will be paid per kilowatt hour (kWh) of production, with a rate based on the year in which the system is interconnected. In 2014, incentive rates were adjusted to accommodate f...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    customers' bills. Initially, the surcharge was was set at 0.0023 per kilowatt-hour (2.3 mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned...

  10. Fan System Optimization Improves Production and Saves Energy at Ash Grove Cement Plant

    SciTech Connect (OSTI)

    2002-05-01

    This case study describes an optimization project implemented on a fan system at Ash Grove Cement Company, which led to annual energy and maintenance savings of $16,000 and 175,000 kilowatt-hours (kWh).

  11. Making Strides to Boost the Use of Solar Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of...

  12. Advanced Photovoltaic Inverter Functionality using 500 kW Power Hardware-in-Loop Complete System Laboratory Testing: Preprint

    SciTech Connect (OSTI)

    Mather, B. A.; Kromer, M. A.; Casey, L.

    2013-01-01

    With the increasing penetration of distribution connected photovoltaic (PV) systems, more and more PV developers and utilities are interested in easing future PV interconnection concerns by mitigating some of the impacts of PV integration using advanced PV inverter controls and functions. This paper describes the testing of a 500 kW PV inverter using Power Hardware-in-Loop (PHIL) testing techniques. The test setup is described and the results from testing the inverter in advanced functionality modes, not commonly used in currently interconnected PV systems, are presented. PV inverter operation under PHIL evaluation that emulated both the DC PV array connection and the AC distribution level grid connection are shown for constant power factor (PF) and constant reactive power (VAr) control modes. The evaluation of these modes was completed under varying degrees of modeled PV variability.

  13. Review of the State-of-the-Art in Power Electronics Suitable for 10-KW Military Power Systems

    SciTech Connect (OSTI)

    Staunton, R.H.

    2003-12-19

    The purpose of this report is to document the technological opportunities of integrating power electronics-based inverters into a TEP system, primarily in the 10-kW size range. The proposed enhancement offers potential advantages in weight reduction, improved efficiency, better performance in a wider range of generator operating conditions, greater versatility and adaptability, and adequate reliability. In order to obtain strong assurance of the availability of inverters that meet required performance and reliability levels, a market survey was performed. The survey obtained positive responses from several manufacturers in the motor drive and distributed generation industries. This study also includes technology reviews and assessments relating to circuit topologies, reliability issues, vulnerability to pulses of electromagnetic energy, potential improvements in semiconductor materials, and potential performance improvement through cryogenics.

  14. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    SciTech Connect (OSTI)

    Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  15. Self-Generation Incentive Program

    Broader source: Energy.gov [DOE]

    Systems less than 30 kW will receive their full incentive upfront. Systems with a capacity of 30 kilowatts (kW) or greater will receive half the incentive upfront, and the the other half will be...

  16. Energy Transition Initiative: Island Energy Snapshot - Bonaire; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Bonaire, a special municipality of the Kingdom of the Netherlands located off the coast of Venezuela. Bonaire’s utility rates are approximately $0.35 per kilowatt-hour (kWh), above the Caribbean regional average of $0.33/kWh.

  17. Energy Transition Initiative: Island Energy Snapshot - Barbados; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Barbados, an independent nation in the Lesser Antilles island chain in the eastern Caribbean. Barbados’ electricity rates are approximately $0.28 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  18. Energy Transition Initiative: Island Energy Snapshot - Trinidad and Tobago; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Trinidad and Tobago, a two-island nation located off the coast of Venezuela. Trinidad and Tobago’s electricity rates are some of the lowest in the Caribbean at approximately $0.04 per kilowatt-hour (kWh), well below the regional average of $0.33/kWh.

  19. Energy Transition Initiative: Island Energy Snapshot - Curacao; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Curacao, an autonomous member of the Kingdom of the Netherlands located off the coast of Venezuela. Curacao’s utility rates are approximately $0.26 per kilowatt-hour (kWh), below the Caribbean regional average of $0.33/kWh.

  20. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  1. Property:Incentive/PVNPFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  2. Property:Incentive/PVResFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  3. Property:Incentive/PVComFitDolKWh | Open Energy Information

    Open Energy Info (EERE)

    Energy (Wisconsin Power and Light) - Advanced Renewables Tariff (Wisconsin) + 0.25 + C CPS Energy - Solartricity Producer Program (Texas) + 0.27 + N NC GreenPower Production...

  4. kWh Analytics: Quality Ratings for PV

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  5. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    SciTech Connect (OSTI)

    J. M. Capron

    2005-09-28

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

  6. United Parcel Service Evaluates Hybrid Electric Delivery Vans...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    brushless, permanent magnet motor (26-kW continuous power, 44-kW peak power) and lithium-ion batteries that provide 340 VDC and 1.8 kWh of energy storage. UPS is satisfied...

  7. Project Startup: Evaluating Coca-Cola's Class 8 Hybrid-Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    magnet motor (26-kW continuous power, 44-kW peak power); regenerative braking; and lithium-ion batteries that provide 340 volts direct current and 1.8 kWh of energy storage....

  8. Simple cost model for EV traction motors

    SciTech Connect (OSTI)

    Cuenca, R.M.

    1995-02-01

    A simple cost model has been developed that allows the calculation of the OEM cost of electric traction motors of three different types, normalized as a function of power in order to accommodate different power and size. The model includes enough information on the various elements integrated in the motors to allow analysis of individual components and to factor-in the effects of changes in commodities prices. A scalable cost model for each of the main components of an electric vehicle (EV) is a useful tool that can have direct application in computer simulation or in parametric studies. For the cost model to have wide usefulness, it needs to be valid for a range of values of some parameter that determines the magnitude or size of the component. For instance, in the case of batteries, size may be determined by energy capacity, usually expressed in kilowatt-hours (kWh), while in the case of traction motors, size is better determined by rated power, usually expressed in kilowatts (kW). The simplest case is when the cost of the component in question is a direct function of its size; then cost is simply the product of its specific cost ($/unit size) and the number of units (size) in the vehicle in question. Batteries usually fall in this category (cost = energy capacity x $/kWh). But cost is not always linear with size or magnitude; motors (and controllers), for instance, become relatively less expensive as power rating increases. Traction motors, one of the main components for EV powertrains are examined in this paper, and a simplified cost model is developed for the three most popular design variations.

  9. The WEI6K, a 6-kW 7-m Small Wind Turbine: Final Technical Report

    SciTech Connect (OSTI)

    Wetzel, Kyle K.; McCleer, Patrick J.; Hahlbeck, Edwin C.; DOE Project Office - Keith Bennett

    2006-07-21

    This project was selected by the U.S. Department of Energy under a DOE solicitation “Low Wind Speed Technology for Small Turbine Development.” The objective of this project has been to design a new small wind turbine with improved cost, reliability and performance in grid-connected residential and small business applications, in order to achieve the overall DOE goal of cost effectiveness in Class 3 wind resources that can now be achieved in Class 5 resources. The scope of work for this project has been to complete the preliminary design of an improved small wind turbine, including preliminary loads and strength analyses; analysis and design of all major components; systems integration and structural dynamic analysis; estimation of life-cycle cost of energy; and design documentation and review. The project did not entail hardware fabrication or testing. The WEI6K Turbine resulting from this project is an upwind horizontal-axis wind turbine rated at 6 kW. It features a 3-blade 7-m diameter rotor. The generator is a direct-drive permanent magnet synchronous machine generating 3-phase power at 240 VAC. The turbine is maintained oriented in to the wind via active yaw control using electromechanical servos. Power is regulated with active blade pitch control. The turbine is presently designed to be placed on a 100-foot (30m) tower. The turbine is predicted to generate electricity at a levelized cost of energy (COE) between 7.3 and 8.9 ¢/kWh at an IEC Class II site, with an average wind speed of 8.5 m/s at hub height, depending upon whether the customer uses a guyed truss tower (the lower figure) or a monopole tower. For the NREL Reference Site, with a mean wind speed of 5.35 m/s at 10 m height, the turbine would generate at a levelized cost of energy of between 9.7 and 11.9 ¢/kWh. The lowest of these numbers is presently competitive with retail electricity rates in most of the country. The 8.9 ¢/kWh is still competitive with retail rates in many regions of the country with high electricity costs. The study further concludes that several design changes could shave 10-14% from the cost of energy determined in the preliminary design. These changes include a new tower design that offers tilt-up capability without guy wires and takes better advantage of the lowered loads produced by pitch control; design a family of airfoils more appropriate for pitch regulation on a turbine of this size; tune the pitch controller properly to minimize shedding of power during turbulent operation in the transition from Region 2 to 3; value engineer the pitch system to shave costs, including consideration of a collective pitch system; and refine the design of the hub and main frame castings to minimize weight and cost. We are generally encouraged by the results. These preliminary numbers show that we can produce a turbine that is competitive with retail electric rates at relatively windy IEC Class II sites. With further improvements in the design, we believe the turbine could be competitive at sites with lesser wind resource.

  10. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  11. The effect of component efficiency and operating conditions on the 50-kW dish Stirling system in Riyadh, Saudia Arabia

    SciTech Connect (OSTI)

    Noyes, G.W. )

    1990-11-01

    This paper deals with the development of a weather data base and the performance prediction of a 50-kW dish Stirling system. An analysis of direct solar insolation data for 1985 from the site in Riyadh, Saudi Arabia was made to determine the available solar energy. A parameter study was done of the effects of component efficiencies and operating conditions on instantaneous and yearly average system efficiency using the prepared weather data. The system performance was found to be most affected by wind, mirror reflectivity, and exact placement of the receiver in the focal point of the mirror.

  12. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  13. EV Explorer: Giving Employers and Employees Better Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    need charging to get home charged anyway 0 2000 4000 6000 8000 10000 12000 Kilowatts Level 1 Work. 30,000 PHEV 40 1.2kW Free Charging 1.2kW Equal to Home Price 1.2kW Double Home...

  14. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  15. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  16. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    simplified interconnection rules for small renewables and separate rules for all other distributed generation (DG). For inverter-based systems up to 10 kilowatts (kW) in ca......

  18. Net Metering | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the limit on individual system size from 100 kilowatts (kW) to 1 MW . Net Excess Generation: The District's net-metering rules specify that metering equipment must be capable...

  19. Distributed Wind Market Report: Small Turbines Lead to Big Growth...

    Office of Environmental Management (EM)

    Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as Italy, ...

  20. Large Commercial Wind Exemption and Alternative Taxes

    Broader source: Energy.gov [DOE]

    The alternative taxation method has two components. The first component is an annual tax equal to $3 per kilowatt (kW) of capacity of the wind farm, prorated according to when the wind farm begins...

  1. Tax Credits for Renewable Energy Facilities

    Broader source: Energy.gov [DOE]

    A renewable energy facility is defined as one that generates at least 50 kilowatts (kW) of electricity from solar power or at least 1 megawatt (MW) from wind power, biomass resources, landfill ga...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the...

  3. Farmington Electric Utility System- Net Metering

    Broader source: Energy.gov [DOE]

    Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity. This option is available for photovoltaic (PV), wind, hydro...

  4. Forest County Potawatomi Recognized for Renewable Energy Achievements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... energy projects to help meet its sustainability goals, including: A 30-kilowatt (kW) ... biogas generation facility that converts food waste into electricity to power 1,500 ...

  5. Grays Harbor PUD- Net Metering

    Broader source: Energy.gov [DOE]

    Washington's original net-metering law, which applies to all electric utilities, was enacted in 1998 and amended in 2006. Individual systems are limited to 100 kilowatts (kW) in capacity. Net...

  6. Forest County Potawatomi Community- 2014 Project

    Broader source: Energy.gov [DOE]

    Forest County Potawatomi Community (FCPC), in collaboration with a selected contractor, will install and operate approximately 875 kilowatts (kW) of solar photovoltaic (PV) systems at a minimum of eight tribal facilities in Milwaukee and Forest Counties.

  7. Project Reports for Forest County Potawatomi Community- 2014 Project

    Broader source: Energy.gov [DOE]

    Forest County Potawatomi Community (FCPC), in collaboration with a selected contractor, will install and operate approximately 875 kilowatts (kW) of solar photovoltaic (PV) systems at a minimum of eight tribal facilities in Milwaukee and Forest Counties.

  8. Project Reports for Agua Caliente Band of Cahuilla Indians-2015 Project

    Broader source: Energy.gov [DOE]

    Under this grant, Agua Caliente Band of Cahuilla Indians will install a 76.9-kilowatt (kW) SunEdison solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices.

  9. Small Wind Innovation Zone Program and Model Ordinance

    Broader source: Energy.gov [DOE]

    Under this program, small wind is considered to be any turbine with a rated capacity of 100 kilowatts (kW) or less. The model ordinance requirements include, but are not limited to:

  10. City Water Light and Power- Solar Rewards Program

    Broader source: Energy.gov [DOE]

    City Water, Light and Power  (CWLP) is offering residential and commercial customers a $500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems with a maximum rebate of up to $2...

  11. Tonto Apache Tribe – 2015 Project

    Broader source: Energy.gov [DOE]

    The Tonto Apache Tribe (TAT) continues to enact its renewable energy initiative in building a 249-kilowatt (kW) solar photovoltaic (PV) system on the Tribe’s Mazatzal Hotel on the Tonto Apache Indian Reservation.

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Property Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for...

  13. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  14. El Paso Electric Company - Small System Renewable Energy Certificate

    Open Energy Info (EERE)

    energy certificates (RECs) from its New Mexico customers who install small photovoltaic (PV) systems and wind systems up to 10 kilowatts (kW) in capacity and medium systems...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the exemption...

  16. Central Georgia EMC- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fuels Renewable Energy Property Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems...

  18. Renewable Energy Property Tax Exemption

    Broader source: Energy.gov [DOE]

    North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are not eligible for the exemption described above.

  19. Missouri: EERE Funds Help Offset City Electricity Expenses |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    residential homes for one year. The City of Ballwin planned to install a 40-kilowatt (kW) solar panel array. However, due to lower-than-expected installation costs, the undertaking...

  20. Net Metering

    Broader source: Energy.gov [DOE]

    With these regulations, renewable energy systems with a capacity up to 25 kilowatts (kW) are eligible for net metering. Overall enrollment is limited to 1.5% of a utility's retail sales from the...

  1. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  2. Project Reports for Tonto Apache Tribe – 2015 Project

    Broader source: Energy.gov [DOE]

    Under this grant, Tonto Apache Tribe plans to build a 249-kilowatt (kW) solar photovoltaic (PV) system on the tribe’s Mazatzal Hotel on the Tonto Apache Indian Reservation.

  3. Interconnection Standards

    Broader source: Energy.gov [DOE]

    Hawaii has established simplified interconnection rules for small renewables and separate rules for all other distributed generation (DG). For inverter-based systems up to 10 kilowatts (kW) in ca...

  4. Snohomish County PUD No 1- Solar Express Rebate Program

    Broader source: Energy.gov [DOE]

    This rebate program provides $300 per kilowatt (kW) of installed PV, up to a cap of $2,000 for residential premises and $8,000 for commercial premises (as determined by the PUD rate class). A flat...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Property Tax Exemption North Dakota also offers a property tax reduction for centrally-assessed* wind turbines larger than 100 kilowatts (kW). These systems are...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    average of 110 kilowatts (kw) per month. These small business customers may schedule a free energy assessment and then receive up to 70% off of the installed cost of recommended...

  7. Kilowatt Reactor Using Stirling TechnologY (KRUSTY) Demonstration...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE; NASA, Washington, DC (United States) Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS; 30 ...

  8. Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives Vehicle Technologies Office...

  9. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  10. Making Strides to Boost the Use of Solar Energy | Department of Energy

    Office of Environmental Management (EM)

    Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy November 12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of

  11. AEP (SWEPCO) - Residential Energy Efficiency Programs | Department...

    Broader source: Energy.gov (indexed) [DOE]

    CLEAResult Consulting Website http:www.swepcogridsmart.comtexashomes-overview.html State Texas Program Type Rebate Program Rebate Amount Standard: 280kW, 0.09kWh...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    individual customers, and retail electric providers. Generally, incentives are paid based on the kW and kWh saved and verified through a measurement and verification process....

  13. Project Results: Evaluating FedEx Express Hybrid-Electric Delivery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hybrid system manufactured by Azure Dynamics, including a 100-kW alternating current induction motor, regenerative braking, and a 2.45-kWh nickel-metal- hydride battery pack. This...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    paid based on the kW and kWh saved and verified through a measurement and verification process. However, certain types of improvement projects have been assigned pre-determined...

  15. Solar Deployment on Tribal Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Darker color means better wind resource Turtle School Gym 14 Solar Deployment 15 16 Facility Usage Size PV Cost % of Usage Turtle School 1,373,600 kWh 550 kw 1.65 million 49% ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-In Electric Vehicle (PEV) Rebates The Driving Rhode Island to Vehicle Electrification (DRIVE) rebate program offers rebates of up to $2,500 for the purchase or lease of qualified PEVs. Rebates are offered on a sliding scale based on battery capacity, providing $2,500 for any vehicle with a battery capacity of 18 kilowatt-hours (kWh) or greater, $1,500 for any vehicle with a battery capacity between 7 and 18 kWh, and $500 for any vehicle with a battery capacity less than 7 kWh. Applicants

  17. Energy Transition Initiative: Island Energy Snapshot - Haiti; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Haiti, an independent nation that occupies the western portion of the island of Hispaniola in the northern Caribbean Sea. Haiti’s utility rates are roughly $0.35 U.S. dollars (USD) per kilowatt-hour (kWh), above the Caribbean regional average of $0.33 USD/kWh.

  18. Energy Transition Initiative: Island Energy Snapshot - Guadeloupe; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-27

    This profile provides a snapshot of the energy landscape of Guadeloupe, an overseas region of France located in the eastern Caribbean Sea. Guadeloupe’s utility rates are approximately $0.18 U.S. dollars (USD) per kilowatt-hour (kWh), below the Caribbean regional average of $0.33 USD/kWh.

  19. Energy Transition Initiative: Island Energy Snapshot - American Samoa; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of American Samoa, the southernmost territory of the United States. American Samoa’s residential electricity rates are approximately $0.29 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  20. Energy Transition Initiative: Island Energy Snapshot - Palau; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Palau, an independent island nation geographically located in the Micronesia region. Palau’s residential electricity rates are approximately $0.28 U.S. dollars (USD) per kilowatt-hour (kWh), more than twice the average U.S. residential rate of $0.13 USD/kWh.

  1. Energy Transition Initiative: Island Energy Snapshot - Antigua and Barbuda; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-05-20

    This profile provides a snapshot of the energy landscape of Antigua and Barbuda, an independent nation in the Leeward Islands in the eastern Caribbean Sea. Antigua and Barbuda’s utility rates are approximately $0.37 U.S. dollars (USD) per kilowatt-hour (kWh), which is above the Caribbean regional average of $0.33 USD/kWh.

  2. Freescale Semiconductor Successfully Implements an Energy Management System

    Broader source: Energy.gov [DOE]

    This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year.

  3. Renewable Energy Production Tax Credit (Personal)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  4. Renewable Energy Production Tax Credit (Corporate)

    Broader source: Energy.gov [DOE]

    The maximum tax credit that can be claimed for a qualified system in any one year is $2 million. The tax credit for wind and biomass* systems equals $0.01 per kilowatt-hour (kWh) for the first 200...

  5. Mandatory Photovoltaic System Cost Estimate

    Broader source: Energy.gov [DOE]

    If the customer has a ratio of estimated monthly kilowatt-hour (kWh) usage to line extension mileage that is less than or equal to 1,000, the utility must provide the comparison at no cost. If the...

  6. System Impact Study of the Eastern Grid of Sumba Island, Indonesia: Steady-State and Dynamic System Modeling for the Integration of One and Two 850-kW Wind Turbine Generators

    SciTech Connect (OSTI)

    Oswal, R.; Jain, P.; Muljadi, Eduard; Hirsch, Brian; Castermans, B.; Chandra, J.; Raharjo, S.; Hardison, R.

    2016-01-01

    The goal of this project was to study the impact of integrating one and two 850-kW wind turbine generators into the eastern power system network of Sumba Island, Indonesia. A model was created for the 20-kV distribution network as it existed in the first quarter of 2015 with a peak load of 5.682 MW. Detailed data were collected for each element of the network. Load flow, short-circuit, and transient analyses were performed using DIgSILENT PowerFactory 15.2.1.

  7. Minnesota Power- SolarSense Solar Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a rebate of $750 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a bonus incentive of $250 per kW if the system is installed by a North American...

  8. Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas...

    Open Energy Info (EERE)

    M2DigesterLandfillGas" Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0...

  9. Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open...

    Open Energy Info (EERE)

    Showing 25 pages using this property. (previous 25) (next 25) S Sweden Building 05K0001 + 0.0 + Sweden Building 05K0002 + 0.0 + Sweden Building 05K0003 + 0.0 + Sweden Building...

  10. Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open...

    Open Energy Info (EERE)

    + 53.5026548673 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  11. Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open...

    Open Energy Info (EERE)

    + 65.5403331042 + Sweden Building 05K0008 + 41.6418235453 + Sweden Building 05K0009 + 56.5413268466 + Sweden Building 05K0010 + 150.269021739 + Sweden Building 05K0011 +...

  12. Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open...

    Open Energy Info (EERE)

    + 54.2477876106 + Sweden Building 05K0006 + 58.7608028994 + Sweden Building 05K0007 + 61.5607534672 + Sweden Building 05K0008 + 40.3846153846 + Sweden Building 05K0009 +...

  13. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  14. Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open...

    Open Energy Info (EERE)

    + 49.0472118426 + Sweden Building 05K0023 + 125.55033781 + Sweden Building 05K0024 + 100.666666667 + Sweden Building 05K0025 + 99.0384615385 + (previous 25) (next 25)...

  15. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNLs research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $1519,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.

  16. Minnesota Power- Power Grant Program

    Broader source: Energy.gov [DOE]

    Grants are ranked and awarded based on least grant cost per kW (annually) and/or kWh (lifetime). Design assistance grants are awarded on a case-by-case basis. All improvements qualify for a $200/kW...

  17. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient temperature with 40 C (104 F) cooling water temperature. This is in close agreement with the manufacturer data of 0.60 for COP and 3.9 kW for cooling capacity. This study resulted in a complete performance map of RAC which will be used to evaluate the potential benefits of rotating heat exchangers in making the "next-generation" absorption chillers more compact and cost effective without any significant degradation in the performance. In addition, the feasibility of using rotating heat exchangers in other applications will be evaluated.

  18. Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP | Department of Energy Maintenance-Free Stirling Engine for High-Performance Dish CSP Project Profile: Maintenance-Free Stirling Engine for High-Performance Dish CSP Image of a prototype 30-kW Stirling engine on test. A prototype 30-kW Stirling engine on test. Infinia, under the CSP R&D FOA, is developing a 30 kW CSP system that utilizes a multi-cylinder, free-piston Stirling engine to achieve the goal LCOE of $0.07-$0.10/kWh by 2015 and $0.05-$0.07/kWh by 2020. Approach Infinia is

  19. Kokhanok Wind-Diesel System Update

    Office of Environmental Management (EM)

    Lyons Marsh Creek Energy Systems AK Native Village Energy Development Workshop April 29, 2014 Kokhanok Electric Utility System 470 kW of diesel power 2 refurbished Vestas wind turbines rated at 90 kW each Power Generation Peak Demand Population Served 459,251 kWh in 2013 (17% wind - down from 30% 2012) 106 kW 170 System Overview System Overview  Grid forming inverter  336 kWh nominal battery storage  Synchronous condenser  Thermal electric heat recovery system and secondary load

  20. Tax Incentives

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Incentives of 1992, allows owners of qualified over a 10-year period. Qualified wind wind turbines (indexed for inflation). - The federal Renewable Electricity Production Tax Credit (PTC), established by the Energy Policy Act renewable energy facilities to receive tax credits for each kilowatt-hour (kWh) of electricity generated by the facility power projects are eligible to receive 2.3 cents per kWh for the produc - tion of electricity from utility-scale dsireusa.org/incentives/incentive.

  1. Energy Intensity Indicators: Electricity Generation Energy Intensity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity Generation Energy Intensity Energy Intensity Indicators: Electricity Generation Energy Intensity A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various categories of electricity generators to produce a kWh of electricity (i.e., the heat rate). As shown in the figure, in 1950, central power plants producing only

  2. Fort Mojave Tribe - Feasibility Study

    Office of Environmental Management (EM)

    Feasibility Study Bill Cyr AHA MACAV POWER SERVICE Russell Gum ERCC Analytics QuickTime(tm) and a TIFF (Uncompressed) decompressor are needed to see this picture. Bottom Line * Biodigester for Dairy * 10 MW wind farm * Concentrated Solar 1.5 MW modules * 200kw at 6 cents per kwh until the loan is paid off, essentially free power for the remaining life of the project. * 3.2 mw at 9 cents per kwh until the loan is paid off in 15 years and 2 cents per kwh for the remaining life of the project *

  3. Energy Transition Initiative: Island Energy Snapshot - Federated States of Micronesia; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Federated States of Micronesia, a sovereign nation and U.S.-associated state in the western Pacific Ocean. The Federated States of Micronesia’s electricity rates for residential customers exceed $0.48 U.S. dollars (USD)/per kilowatt-hour (kWh), nearly four times the average U.S. residential rate of $0.13 USD/kWh.

  4. Quadrennial Technology Review Acronyms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    71 Acronyms $/km dollars per kilometer $/kWh dollars per kilowatt-hour $/MJ dollars per megajoule $/MMBtu dollars per million British thermal units 3D 3-dimensional AC alternating current ACCEL Accelerating Competitiveness through Computational Excellence Program ACTT Advanced Computing Tech Team AM additive manufacturing AEO Annual Energy Outlook (of the EIA) AEP annual energy production AER all-electric range AERI atmospheric emitted radiance interferometers AHT absorption heat transformer Al

  5. Recovery Act Incentives for Wind Energy Equipment Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009, the U.S. had 29,440 MW of installed wind power capacity. continued > Tax incentives The federal government uses several tax-based policy incentives to stimulate the deployment of wind power. The Department of the Treasury's Internal Revenue Service administers these incentives. The federal renewable energy Production Tax Credit (PTC), established by the Energy Policy Act of 1992, allows owners of qualified renewable energy facilities to receive tax credits for each kilowatt-hour (kWh)

  6. Energy Transition Initiative: Island Energy Snapshot - Commonwealth of the Northern Mariana Islands; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of the Commonwealth of the Northern Mariana Islands (CNMI), a commonwealth in political union with the United States that is located in the northern Pacific Ocean. CNMI’s electricity rates for residential customers range from $0.19 to $0.33 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. residential rate of $0.13 USD/kWh.

  7. Energy Transition Initiative: Island Energy Snapshot - Guam; U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This profile provides a snapshot of the energy landscape of Guam, an island territory of the United States located in the western Pacific Ocean. Guam’s electricity rates for residential customers start at $0.21 U.S. dollars (USD) per kilowatt-hour (kWh), above the average U.S. rate of $0.13 USD/kWh.1,2 Like

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Plug-in Electric Vehicle (PEV) Rebate - JEA JEA offers rebates for new PEVs purchased or leased on or after September 18, 2014. PEVs with a battery less than 15 kilowatt-hours (kWh) in capacity receive $500, and PEVs with larger battery capacity are eligible for $1,000. A copy of a valid Florida vehicle registration, proof of sale, and a recent JEA Electric bill are required. For more information, see JEA's Electric Vehicle Incentives page

  9. Department of Veterans Affairs Medical Center, San Francisco, California |

    Office of Environmental Management (EM)

    Department of Energy Department of Veterans Affairs Medical Center, San Francisco, California Department of Veterans Affairs Medical Center, San Francisco, California San Francisco VA Medical Center The San Francisco VA Medical Center is saving more than $500,000 and almost 3 million kWh every year through a retrofit financed by FEMP's Super ESPC Program. Overview The Veterans Affairs (VA) Medical Center in San Francisco is saving almost 3 million kilowatt-hours of electricity, more than

  10. Increasing the Market Acceptance of Smaller CHP Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Packaged Combined Heat and Power System ADVANCED MANUFACTURING OFFICE Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged combined heat and power (CHP) system that produces 330 kilowatts (kW) of electrical power output and 410 kW of thermal output while increasing efficiency and reducing total cost of ownership. Introduction Many CHP systems less than 1 megawatt (MW) use reciprocat- ing internal combustion engines. Unfortunately, reductions in

  11. Low-Cost Packaged Combined Heat and Power System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Increasing the Market Acceptance of Smaller CHP Systems This project is developing a flexible, packaged combined heat and power (CHP) system that produces 330 kilowatts (kW) of electrical power output and 410 kW of thermal output while increasing efficiency and reducing total cost of ownership. Introduction Many CHP systems less than 1 megawatt (MW) use reciprocating internal combustion engines.

  12. Bishop Paiute Tribe – 2015 Project

    Broader source: Energy.gov [DOE]

    The Bishop Paiute Tribe Residential Solar Program project consists of the design, installation, inspection, and interconnection of 22 grid-tied solar electric systems, with rated capacity totaling at least 58 kilowatts (kW), on qualified existing low-income single-family homes within the Bishop Paiute Reservation.

  13. Agua Caliente Band of Cahuilla Indians- 2015 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians is seeking to install a 76.9-kilowatt (kW) solar photovoltaic (PV) system to offset the energy costs of the Tribal Education and Family Services offices located at the Heritage Plaza office building.

  14. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOE’s Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  15. Pala Band of Mission Indians – 2015 Project

    Broader source: Energy.gov [DOE]

    The Pala Fire Station Solar Project involves the installation of an approximately 94.8-kilowatt (kW) DC solar system. The system will use a combination of rooftop PV and ground-mounted panels that will be installed on land adjacent to the Pala Indian Reservation’s fire station.

  16. Rooftop Photovoltaic Panels at Premier Gardens

    Broader source: Energy.gov [DOE]

    This photograph features an aerial view of rooftops in the Premier Gardens Zero Energy Home Community. As part of the DOEs Zero Energy Homes Initiative, Premier Homes built 95 entry-level houses in Rancho Cordova near Sacramento, California, in 2004. Each is built with advanced energy-saving features and a 2.2-kilowatt (kW) photovoltaic system.

  17. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  18. Project Reports for Pala Band of Mission Indians – 2015 Project

    Broader source: Energy.gov [DOE]

    Under this grant, the Pala Band of Mission Indians plan on building a 94.8-kilowatt (kW) DC solar system on its fire station. The system will use a combination of rooftop PV and ground-mounted panels that will be installed on land adjacent to the Pala Indian Reservation’s fire station.

  19. Southern Ute Indian Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    The proposed project is a roughly 800-kilowatt (kW) photovoltaic (PV) system that will interconnect to the grid and provide solar energy to 10 tribal buildings on the Southern Ute Indian Reservation through an agreement with the local electric cooperative, La Plata Electric Association.

  20. Project Reports for Southern Ute Indian Tribe- 2014 Project

    Broader source: Energy.gov [DOE]

    The proposed project is a roughly 800-kilowatt (kW) photovoltaic (PV) system that will interconnect to the grid and provide solar energy to 10 tribal buildings on the Southern Ute Indian Reservation through an agreement with the local electric cooperative, La Plata Electric Association.

  1. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect (OSTI)

    Busch, J.F. Jr.

    1990-08-01

    This document contains Appendix A, B, and C. In Appendix A, we are working as part of a research project with King Monkut's Institute of Technology, Thonburi, and the University of California, Berkeley (USA) to determine how people respond to the thermal environment inside buildings. We have prepared a short questionnaire which will survey thermal comfort. Our plan is to survey each building during each of three seasons over this year (e.g. hot, rainy, and cool seasons). Appendix B contains supporting technical documentation on conservation potential and Appendix C contains documentation on utility impacts.

  2. From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector

    SciTech Connect (OSTI)

    Busch, J.F. Jr.

    1990-08-01

    Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

  3. Progress in Developing a New 5 Kilowatt Free-Piston Stirling Space Convertor

    SciTech Connect (OSTI)

    Brandhorst, Henry W. Jr.; Kirby, Raymond L.; Chapman, Peter A.

    2008-01-21

    The NASA Vision for Exploration of the Moon envisions a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kWe. In the 1990s, Mechanical Technology, Inc.'s Stirling Engine Systems Division (now a part of Foster-Miller, Inc.) developed a 25 kWe free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kWe engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 We and 80 We Stirling convertor systems for use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kWe, single convertor for use in the Lunar power system. Goals of this development program include a specific power in excess of 140 We/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kWe Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  4. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  5. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  6. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  7. Oneida Nation Energy Team: Energy Strategy for Our Community

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Lighting 51,489 Jun-12 183,311 16,498 Turtle School Big Gym upgrade 34,096 Jun-12 ... Facility Usage Size PV Cost % of Usage Turtle School 1,373,600 kWh 550 kw 1.65 million ...

  8. Aleutian Pribilof Islands Wind Feasibility and Energy Weatherization and Training

    Office of Environmental Management (EM)

    Aleutian Pribilof Islands Wind Feasibility and Energy Weatherization and Training Bruce Wright APIA Senior Scientist 2005 Wind Feasibility Studies: False Pass, Nikolski Sand Point, St. George, and Current Wind Energy Development Status Communities KwH Cost KwH (1,000,000) Diesel Demand (1,000 gals) KwHs Per Gallon King Cove 0.26 3.79 162 23 Akutan 0.32 0.52 44 12 Unalaska 0.36 34.48 2,194 16 False Pass 0.42 N/A N/A N/A St. Paul 0.46 4.59 389 12 Sand Point 0.52 4.03 317 13 AVERAGE 0.53 2.21 177

  9. Northwest Arctic Sustainable Energy Projects

    Energy Savers [EERE]

    Prov. Conference 2015 Northwest Arctic Sustainable Energy Projects * Efficient * Sustainable * Resilient & * Able to Adapt Whaling Crew Whale or Seal blubber lamp Energy Efficient Coordination 1900 - 1980 Oil for Power 2004 ACIA We are releasing energy into our environment that has been buried for millions of years. 30 years of Ice loss Low oil price NAB Fuel Prices September 9, 2015 Gasoline/G Stove Oil/G Propane/23G Kwh (1-500) KwH (500-700) Kotzebue $5.99 $5.65 $198.28 $0.18 $0.45 Ambler

  10. Residential lighting: Use and potential savings

    SciTech Connect (OSTI)

    1996-09-01

    The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatt hours (kWh) used for lighting. The survey contained more detailed questions about the number of indoor lights used for specific amounts of time and more detailed questions about the use of outdoor lights than did previous surveys. In addition to these basic questions on the Household Questionnaire, the 1993 RECS also included a supplementary questionnaire, administered to a subset of households, that contained more detailed information about the types of lights used in the household, the rooms in which they were located, and the amount of time they were used.

  11. Feasibility Study of Biomass Electrical Generation on Tribal Lands

    SciTech Connect (OSTI)

    Tom Roche; Richard Hartmann; Joohn Luton; Warren Hudelson; Roger Blomguist; Jan Hacker; Colene Frye

    2005-03-29

    The goals of the St. Croix Tribe are to develop economically viable energy production facilities using readily available renewable biomass fuel sources at an acceptable cost per kilowatt hour ($/kWh), to provide new and meaningful permanent employment, retain and expand existing employment (logging) and provide revenues for both producers and sellers of the finished product. This is a feasibility study including an assessment of available biomass fuel, technology assessment, site selection, economics viability given the foreseeable fuel and generation costs, as well as an assessment of the potential markets for renewable energy.

  12. Fact #766: February 11, 2013 Electricity Prices are More Stable than

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gasoline Prices | Department of Energy 6: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices Fact #766: February 11, 2013 Electricity Prices are More Stable than Gasoline Prices All energy prices vary from month to month and year to year. However, when comparing the national average retail price for a gallon of regular gasoline and a kilowatt-hour (kWh) for residential electricity, the pricing for gasoline is far more volatile. In the two year period shown in the

  13. Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles use More Battery Capacity | Department of Energy 3: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs but Plug-in Vehicles use More Battery Capacity Of the battery packs used for electrified vehicle powertrains in model year 2013, the greatest number went into conventional hybrid vehicles which use battery packs that average about 1.3 kilowatt-hours (kWh). However, far

  14. Feed-in Tariff Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Feed-in Tariff Resources Feed-in Tariff Resources A feed-in tariff (FIT) is an energy-supply policy focused on supporting the development of new renewable power generation. In the United States, FIT policies provide a guarantee to eligible renewable generators that their utility will be required to purchase either electricity, or both electricity and the renewable energy attributes. The FIT contract provides a guarantee of payments in dollars per kilowatt hour ($/kWh) for the full output of the

  15. Freescale Semiconductor Successfully Implements an Energy Management System

    SciTech Connect (OSTI)

    2011-06-30

    Through the Superior Energy Performance (SEP) plant certification program, Freescale Semiconductor implemented projects at the company's Oak Hill Fab plant that reduced annual energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year. The plant is now certified at the SEP silver level, and has a management system in place to proactively manage the facility's energy resources in the future.

  16. Briggs & Stratton: Putting All Energy Efficiency Options on the Table - Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Briggs & Stratton: Putting All Energy Efficiency Options on the Table Briggs & Stratton manufactures internal combustion engines, as well as yard and home power products for customers in more than 100 countries on 6 continents. 1 Briggs & Stratton is also a company that makes full use of any and all available resources to reduce energy intensity. To date, Briggs & Stratton has been successful in reducing its energy use by 37.1 million kilowatt hours (kWh)*. The company was able

  17. SunShot Summit to be Featured in May 7th #SolarChat | Department of Energy

    Energy Savers [EERE]

    to be Featured in May 7th #SolarChat SunShot Summit to be Featured in May 7th #SolarChat March 28, 2014 - 2:39pm Addthis Did you know that more than half of all solar cell efficiency records have been directly funded by the U.S. Department of Energy (DOE)? Only three years into the Department's decade-long SunShot Initiative, the solar industry is already more than 60% of the way to achieving SunShot's aggressive cost targets -$0.06 per kilowatt hour (kWh) for utility-scale PV solar electricity

  18. High-Efficiency Parking Lighting in Federal Facilities

    Energy Savers [EERE]

    High-Efficiency Parking Lighting in Federal Facilities FEdEraL EnErgy ManagEMEnt PrograM MC Realty Group Saving Energy and Money with the IRS MC Realty Group, LLC, won a 2014 LEEP Award for cutting energy use by 76% at the Internal Revenue Service (IRS) Facility Parking Garage in Kansas City, Missouri. MC Realty replaced 1,500 metal halide fxtures with an equal number of T8 fuorescent fxtures in the fve-story parking structure to cut energy use by 2 million kilowatt-hours (kWh) annually, which

  19. Explore Solar Careers | Department of Energy

    Office of Environmental Management (EM)

    Solar Careers Explore Solar Careers The Solar Energy Technologies Office, through the national effort of the SunShot Initiative funds research and development, striving to make solar energy technologies fully cost-competitive with traditional energy sources by 2020. Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour (kWh). Since SunShot’s inception, the average price per

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Qualified Two-Wheeled Plug-in Electric Drive Motor Vehicle Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2016, by H.R. 2029. A credit is available for the purchase of a new qualified two-wheeled plug-in electric drive vehicle that draws propulsion using a traction battery that has at least 2.5 kilowatt hours (kWh) of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Qualified Plug-In Electric Drive Motor Vehicle Tax Credit A tax credit is available for the purchase of a new qualified plug-in electric drive motor vehicle that draws propulsion using a traction battery that has at least five kilowatt-hours (kWh) of capacity, uses an external source of energy to recharge the battery, has a gross vehicle weight rating of up to 14,000 pounds, and meets specified emission standards. The minimum credit amount is $2,500, and the credit may be up to $7,500, based on

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen and Plug-In Electric Vehicle (PEV) Rebate The Hydrogen and Electric Automobile Purchase Rebate Program (CHEAPR) offers up to $3,000 for the incremental cost of the purchase or lease of a hydrogen fuel cell electric vehicle (FCEV), all-electric vehicle, or plug-in hybrid electric vehicle. Rebates are offered on a sliding scale based on battery capacity, providing $3,000 for any FCEV or vehicle with a battery capacity of 18 kilowatt-hours (kWh) or greater, $1,500 for any vehicle with a

  3. The Chena Hot Springs 400kw Geothermal Power Plant: Experience...

    Open Energy Info (EERE)

    Low efficiency requiresincreased power plant equipment size (turbine, condenser,pump and boiler) that can ordinarily become cost prohibitive.One of the main goals for the...

  4. Property:Incentive/PVPbiFitMaxKW | Open Energy Information

    Open Energy Info (EERE)

    P Palmetto Clean Energy (PaCE) Program (South Carolina) + 6 + Preston Municipal Electric Utility - Renewable Energy Rebates (Iowa) + 20 + Progress Energy Carolinas - SunSense...

  5. Biogas electric power generation: 25 kW or greater

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A biogas cogeneration system consists basically of: an anaerobic digester to produce the gas, a prime mover which burns the gas and makes power, and recovery devices which capture engine waste heat. Guidance is given through the exercise of determining whether biogas cogeneration is worthwhile. Design, construction, and operation are covered in general. Theoretical and practical background on biogas cogeneration are given, and directions for collecting site data and a method for performing a preliminary economic analysis for a given operation are given. (LEW)

  6. Distributed Generation Study/615 kW Waukesha Packaged System...

    Open Energy Info (EERE)

    PHE-Type SL140-TM-EE-190, Sondex PHE-Type SL140-TM-EE-150, Cain UTR1-810A17.5SSP Fuel Natural Gas System Installer GTI System Enclosure Outdoor System Application Combined Heat...

  7. Magnet power supply regulation comments: 240 kW and 500 kW magnet power supplies

    SciTech Connect (OSTI)

    Visser, A.T.

    1993-03-01

    This note is written for users who need better than about 100 ppm regulated magnet fields in electromagnets. A magnet excitation current regulation of 100 ppm is generally specified to obtain this field regulation, but there are many other variables, in addition to magnet excitation that can change the magnet field. The effects of these other variables are often overlooked or underestimated. If things do not work out, the power supply often gets blamed. A field regulation of 100 ppm requires that the power supply regulates substantially better than 100 ppm and that the effects of other variables are limited. Before we can talk about regulation we must define what regulation is. Power supplies can be regulated for current or voltage. We will only talk about current regulation, since that is the regulation mode used to establish precisely regulated magnetic fields in electromagnets. It is assumed that the same current value will always produce the same corresponding magnetic field value. Later on we will discuss that this assumption is not correct.

  8. CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CHP Integrated with Burners for Packaged Boilers - Fact Sheet, April 2014 CMCE, Inc., in collaboration with Altex Technologies Corporation, developed the Boiler Burner Energy System Technology (BBEST), a CHP assembly of a gas-fired simple-cycle 100 kilowatt (kW) microturbine and a new ultra-low NOx gas-fired burner, to increase acceptance of small CHP systems. PDF icon

  9. Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Efficiency Microturbine with Integral Heat Recovery ADVANCED MANUFACTURING OFFICE Improving the Operating Efficiency of Microturbine-Based Distributed Generation at an Affordable Price This project is developing a clean, cost-effective 370 kilowatt (kW) microturbine with 42% net electrical effciency and 85% total combined heat and power (CHP) effciency. Introduction The U.S. economic market potential for distributed generation is signifcant. This market, however, remains mostly untapped in

  10. Market Potential for Advanced Thermally Activated BCHP in Five National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account Sectors, May 2003 | Department of Energy Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Potential distributed generation (DG) and combined heat and power (CHP) applications in the United States cover a broad spectrum of market segments, from nursing homes requiring a few hundred kilowatts (kW) of power and an economical hot water source

  11. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Integrated with Burners for Packaged Boilers ADVANCED MANUFACTURING OFFICE Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fred, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NO x ) gas-fred burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve signifcant

  12. Utilizing Supplemental Ultra-Low-NO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supplemental Ultra-Low-NO x Burner Technology to Meet Emissions Standards and Improve System Efficiency This project developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates new burner technology into a 65-kilowatt (kW) microturbine and 100-horsepower (HP) heat recovery boiler. Introduction A combined heat and power (CHP) system can be a fnancially attractive energy option for many industrial and commercial facilities. This is particularly the case in areas of the country

  13. EA-1916: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Environmental Assessment EA-1916: Draft Environmental Assessment Hydropower Project Pilot License, Cobscook Bay Tidal Energy Project-FERC Project No. 12711-005 On September 1, 2011, Ocean Renewable Power Company Maine, LLC (ORPC Maine) filed an application for an 8-year pilot license to construct and operate its proposed Cobscook Bay Tidal Energy Project (Cobscook Bay Project or project). The 300-kilowatt (kW) hydrokinetic project would be located in Cobscook Bay in Washington County,

  14. Categorical Exclusion Determinations: B3.10 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Categorical Exclusion Determinations: B3.10 Existing Regulations B3.10: Particle accelerators Siting, construction, modification, operation, and decommissioning of particle accelerators, including electron beam accelerators, with primary beam energy less than approximately 100 million electron volts (MeV) and average beam power less than approximately 250 kilowatts (kW), and associated beamlines, storage rings, colliders, and detectors, for research and medical purposes (such as proton

  15. Microhydropower Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Hydropower » Microhydropower Basics Microhydropower Basics August 15, 2013 - 3:09pm Addthis Microhydropower systems are small hydroelectric power systems of less than 100 kilowatts (kW) used to produce mechanical energy or electricity for farms, ranches, homes, and villages. How a Microhydropower System Works All hydropower systems use the energy of flowing water to produce electricity or mechanical energy. Although there are several ways to harness moving water to produce

  16. California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    PV 246,008 GWh246,008,000,000 kWh 246,008,000,000,000 Wh 246,008,000 MWh 8.856288e+17 J 111 GW111,000 MW 111,000,000 kW 111,000,000,000 W 111,000,000,000,000 mW 0.111 TW 2,320...

  17. AGENDA (Preliminary)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRESENTATIONS Energy Storage Systems (ESS) PRESENTATION SPEAKER Perspective of Energy Storage Advisory Committee Brad Roberts (S&C Electric) Overview of ESS Program John Boyes (Sandia National Laboratories) Update on the Joint Energy Storage Collaboration Between NYSERDA & DOE Joe Sayer (N.Y. State Energy Research & Development Association) Advanced, Sodium-Sulfur, Battery Energy Storage System Project at MTA Long Island Bus Guy Sliker (N.Y. Power Authority) 300 kW/900 kWh PowerTower

  18. Chaninik Wind Group: Wind Heat Smart Grids

    Office of Environmental Management (EM)

    Systems in Kongiganak, Kwigillingok and Tuntutuliak *95 kW Windmatic wind turbines *Electric Thermal Storage(ETS) devices *Community-wide Smart Metering and Smart Grid control Wind Heat System Components * ETS heat output at high is equivalent to a Toyostove Laser 56 * $.10 per kwh is equivalent to buying diesel at $2.90 per gallon * Current diesel price in Kongiganak: $6.95 per gallon Chaninik Wind Group Wind Heat System SCADA Kongiganak Energy Summary 2013 Example - Kongiganak ETS Fuel

  19. Table 8.2. Cost and performance characteristics of new central station electricity generating technologies

    Gasoline and Diesel Fuel Update (EIA)

    Table 8.2. Cost and performance characteristics of new central station electricity generating technologies Contingency Factors Technology Online Year 1 Size (MW) Lead time (years) Base Overnight Cost in 2014 (2013 $/kW) Project Contin- gency Factor 2 Techno- logical Optimism Factor 3 Total Overnight Cost in 2014 4 (2013 $/kW) Variable O&M 5 (2013 $/mWh) Fixed O&M (2013 $/ kW/yr.) Heatrate 6 in 2014 (Btu/ kWh) nth-of-a- kind Heatrate (Btu/kWh Scrubbed Coal New 2018 1300 4 2,726 1.07 1.00

  20. Critical-fluid extraction of organics from water. Volume I. Engineering analysis. Final report, 1 October 1979-30 November 1983

    SciTech Connect (OSTI)

    Moses, J.M.; de Filippi, R.P.

    1984-06-01

    Critical-fluid extraction of several organic solutes from water was investigated analytically and experimentally to determine the energy conservation potential of the technology relative to distillation. This Volume gives the results of an engineering analysis. The process uses condensed or supercritical carbon dioxide as an extracting solvent to separate aqueous solutions of common organics such as ethanol, isopropanol and sec-butanol. Energy input to the systems is electric power to drive compressors. A detailed process analysis included evaluation and correlation of thermophysical properties and phase equilibria for the two- and three-component systems involved. The analysis showed that a plant fed with 10 weight percent ethanol feed would consume 0.65 kilowatt-hours (kwh) of power for compression energy per gallon of alcohol. This energy consumption would be 5300 Btu of steam-equivalent, or 6500 Btu of fossil-fuel-equivalent energy. The extraction product, however, would require additional energy to produce high-purity alcohol. Doubling the ethanol feed concentration to 20 weight percent would reduce the energy required to about 0.30 kwh per gallon. Halving the ethanol feed concentration to 5 weight percent would increase the energy required to about 1.35 kwh per gallon. For the same feed composition, isopropanol can be separated with 48% of the energy required for ethanol. The same separation of sec-butanol can be done with 25% of the ethanol energy requirement.

  1. Itaipu: never underestimate the Latins. [Paraguay/Brazil binational project

    SciTech Connect (OSTI)

    Not Available

    1983-04-06

    The Itaipu hydroelectric project, a joint effort of Brazil and Paraguay (with a cost of US $16 to 18 billion), will be finished in December 1989. The project is situated on the Parana River, 14 km beyond the Puente de da Amistad (Friendship Bridge), which connects the city Presidente Stroessner, in Paraguay, with Foz do Iguacu, in Brazil. It is considered today not only the biggest hydroelectric plant in the world, but also a great socio-economic boom in the making. Itaipu will add a total of 12.6-million kilowatt-hours (kWh) of hydroelectricity to the region, an equivalent of 600,000 barrels of oil daily (b/d). This issue of Energy Detente reviews the progress of Itaipu. Also appearing in this issue is the fuel price/tax series and the principal industrial fuel prices for April 1983 for countries of the Eastern Hemisphere.

  2. 2006 - 11 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2006 Thu, 11/16/2006 - 1:00am Jefferson Lab attracts record numbers to Geant4 workshop (Cern Courier) Sun, 11/12/2006 - 1:00am Jefferson Lab laser sets power record (Richmond Times-Dispatch) Fri, 11/10/2006 - 1:00am Goal: To make Hampton Roads a center for the cutting edge (The Virginian-Pilot) Fri, 11/10/2006 - 1:00am Free-electron laser shines at over 14 kilowatts in the infrared (Innovations Report) Thu, 11/09/2006 - 10:27am Free Electron Laser exceeds 14 kW in the infrared Thu,

  3. The Use of a Solid State Analog Television Transmitter as a Superconducting Electron Gun Power Amplifier

    SciTech Connect (OSTI)

    J.G. Kulpin, K.J. Kleman, R.A. Legg

    2012-07-01

    A solid state analog television transmitter designed for 200 MHz operation is being commissioned as a radio frequency power amplifier on the Wisconsin superconducting electron gun cavity. The amplifier consists of three separate radio frequency power combiner cabinets and one monitor and control cabinet. The transmitter employs rugged field effect transistors built into one kilowatt drawers that are individually hot swappable at maximum continuous power output. The total combined power of the transmitter system is 33 kW at 200 MHz, output through a standard coaxial transmission line. A low level radio frequency system is employed to digitally synthesize the 200 MHz signal and precisely control amplitude and phase.

  4. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  5. WINDExchange: How Do I Get Wind Power?

    Wind Powering America (EERE)

    How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

  6. NREL: Photovoltaics Research - Pholtovoltaic System Performance Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pholtovoltaic System Performance Data Photo looking north-northwest at solar panels aligned in rows on the roof of a commercial building. The Terry Sanford Federal Building in Raleigh, North Carolina, hosts a roof-mounted 564.5 kilowatt (kW) PV array made up of 2,352 monocrystalline silicon modules in 168 strings of 14 modules. Image from Ryan Smith/NREL Photo looking east at solar panels aligned in rows on the roof of a commercial building. The General Services Administration partnered with

  7. Distributed Wind Turbines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Turbines Distributed Wind Turbines Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as Italy, United Kingdom, Germany, Greece, China, Japan, Korea, Mexico, and Nigeria. Image: Northern Power Systems 2 of 11 A 1.65 megawatt (MW) wind turbine is installed at Carleton College, Minnesota. Since 2003, nearly 72,000 wind turbines have been deployed

  8. CX-010248: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    48: Categorical Exclusion Determination CX-010248: Categorical Exclusion Determination Hawaii Renewable Energy Development Venture CX(s) Applied: B5.18 Date: 03/25/2013 Location(s): Hawaii Offices(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to the Hawaii Renewable Energy Development Venture, sub-recipient Gen-X Energy Development, to design, engineer, develop, build and commission a scalable 100 kilowatt (kW) wind turbine connected to a 100

  9. San Carlos Apache Tribe Set to Break Ground on New Solar Project |

    Energy Savers [EERE]

    Department of Energy San Carlos Apache Tribe Set to Break Ground on New Solar Project San Carlos Apache Tribe Set to Break Ground on New Solar Project March 13, 2014 - 1:05pm Addthis The San Carlos Apache Tribe is making use of its extensive solar resources to power tribal facilities, including this 10-kilowatt (kW) solar PV system, which generates energy to run the tribal radio tower. Photo from San Carlos Apache Tribe, NREL 29202 The San Carlos Apache Tribe is making use of its extensive

  10. Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers

    Office of Environmental Management (EM)

    | Department of Energy Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fired, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NOx) gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy

  11. Distributed Wind Market Report: Small Turbines Lead to Big Growth in

    Office of Environmental Management (EM)

    Exports | Department of Energy Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports August 18, 2014 - 12:13pm Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than 50 countries, with top export markets identified as Italy, United Kingdom, Germany, Greece, China, Japan, Korea, Mexico, and Nigeria. Image:

  12. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  13. Entergy Arkansas - Small Business Energy Efficiency Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount Lighting and Lighting Controls: 0.21 per kWh Window Film: .35 per kWh Duct Sealing:.35 per kWh Ceiling Insulation: .35 per kWh Refrigeration:...

  14. Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Dr. Michael Strasik

    2007-06-29

    Boeing Phantom Works and its team originally proposed a three-year Phase III SPI project to develop a 30-kWh flywheel with a 100 kW power capability as a power risk management system (RMS) for power users and providers. The chief objectives for the Risk Management System Flywheel were to (1) demonstrate its ability to protect a critical load such as a small data center from swings in power availability, cost, and power factor and (2) show that the RMS flywheel can perform these functions with reduced noise, emissions, and operating costs when compared with non-HTS competitors including batteries, diesel generators, and microturbines.

  15. Streamlined energy-savings calculations for heat-island reduction strategies

    SciTech Connect (OSTI)

    Akbari, Hashem; Konopacki, Steven J.

    2003-03-15

    We have developed summary tables (sorted by heating- and cooling-degree-days) to estimate the potential of Heat-Island Reduction (HIR) strategies (i.e., solar-reflective roofs, shade trees, reflective pavements, and urban vegetation) to reduce cooling-energy use in buildings. The tables provide estimates of savings for both direct effect (reducing heat gain through the building shell) and indirect effect (reducing the ambient air temperature). In this analysis, we considered three building types that offer the most savings potential : residences, offices, and retail stores. Each building type was characterized in detail by Pre-1980 (old) or 1980+ (new) construction vintage and with natural gas or electricity as heating fuel. We defined prototypical-building characteristics for each building type and simulated the effects of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.1E model and weather data for about 240 locations in the U.S. A statistical analysis of previously completed simulations for five cities was used to estimate the indirect savings. Our simulations included the effect of (1) solar-reflective roofing material on building [direct effect], (2) placement of deciduous shade trees near south and west walls of building [direct effect], and (3) ambient cooling achieved by urban reforestation and reflective building surfaces and pavements [indirect effect]. Upon completion of estimating the direct and indirect energy savings for all the selected locations, we integrated the results in tables arranged by heating- and cooling-degree-days. We considered 15 bins for heating-degree-days, and 11 bins for cooling-degree-days. Energy use and savings are presented per 1000 ft2 of roof area. In residences heated with gas and in climates with greater than 1000 cooling-degree-days, the annual electricity savings in Pre-1980 stock ranged from 650 to 1300 kWh/1000ft2; for 1980+ stock savings ranged 300 to 600 kWh/1000 ft2. For residences heated with electricity, the savings ranged from 350 to 1300 kWh/1000ft2 for Pre-1980 stock and 190-600 kWh/1000ft2 for 1980+ stocks. In climates with less than 1000 cooling-degree-days, the electricity savings were not significantly higher than winter heating penalties. For gas-heated office buildings, simulations indicated electricity savings in the range of 1100-1500 kWh/1000ft2 and 360-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated office buildings, simulations indicated electricity savings in the range of 700-1400 kWh/1000ft2 and 100-700 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. Similarly, for gas-heated retail store buildings, simulations indicated electricity savings in the range of 1300-1700 kWh/1000ft2 and 370-750 kWh/1000ft2, for Pre-1980 and 1980+ stocks, respectively. For electrically heated retail store buildings, simulations indicated electricity savings in the range of 1200-1700 kWh/1000ft2 and 250-750 kW h/1000ft2, for Pre-1980 and 1980 + stocks, respectively.

  16. Miniaturized Air to Refrigerant Heat Exchangers

    Broader source: Energy.gov [DOE]

    This project is developing a miniaturized air-to-refrigerant heat exchanger that is more compact and more energy efficient than current market designs. The heat exchanger will feature at least 20% less volume, material volume, and approach temperature compared to current multiport flat tube designs, and it will be in production within five years. The heat exchanger, which acts as both an evaporator and a condenser, can be applied to commercial and residential air-conditioning or heat pump systems with various capacity scales. Prototype 1-kilowatt (kW) and 10 kW designs will be tested and then improved as necessary for final tests and demonstration in a 3-ton heat pump.

  17. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  18. Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J.; Brooker, A.

    2012-09-01

    The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

  19. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

  20. High Efficiency 370kW Microturbine with Integral Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise...

  1. 400kW Geothermal Power Plant at Chena Hot Springs, Alaska | Open...

    Open Energy Info (EERE)

    the cost of powerfrom 30 per kWhr to 5 per kWhr, with further reductions expected once loans to fundproject infrastructure are repaid. Maintenance cost for the power plant is...

  2. The CPG 5-kW sub e Dish-Stirling Development Program

    SciTech Connect (OSTI)

    Bean, J.R. ); Diver, R.B. )

    1991-01-01

    Through a program sponsored by the US Department of Energy (DOE), Cummins Power Generation, Inc. (CPG) and Sandia National Laboratories (SNL) have entered into a joint venture to develop and commercialize economically competitive dish-Stirling systems for remote power applications. CPG plans to commercialize 5-kW{sub e} systems that can be used in remote locations for water pumping and village electrification or connected to an existing utility grid. The $14 million Dish-Stirling Joint Venture Program (JVP) is being conducted in three phases over a 3 1/2-year period in accordance with the Cummins Total Quality System (TQS) for new product development. Sixteen systems representing three generations of technology will be fielded and tested. The JVP is being funded equally by CPG, including its industrial partners, and the DOE. Following completion of the program, CPG's commercialization effort will continue with limited production expected to start about 1995. In this paper, the program plan and technical approach for the JVP is presented. A technical description and current status of the key components and discussions of the key technical issues are also provided. 7 refs.

  3. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  4. MHK Projects/AHERC 5kW deployment | Open Energy Information

    Open Energy Info (EERE)

    New Energy Vertical Axis turbine in summers 2014 and 2015 behind its "research debris diversion platform" Was This Project DOE Funded? No Number of Devices Deployed 1 Number of...

  5. Ocean Power Technologies (TRL 5 6 System) - PB500, 500 kW Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...powertechnologiesinchart.ppt More Documents & Publications Advanced, High Power, Next Scale, Wave Energy Conversion Device Ocean Power Technologies (TRL 7 8 System) - Reedsport ...

  6. High Efficiency 370kW Microturbine with Integral Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    Dickey Director Advanced Technology Capstone Turbine Corporation U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 28-29, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objectives  Design a small turbine power generation system with the following:  42% Engine Efficiency  85% Total System Efficiency with CHP  2007 CARB-level emissions without combustion after treatment  Improved

  7. MHK Projects/Evopod E35 35kW grid connected demonstrator | Open...

    Open Energy Info (EERE)

    Enterprise, the business development arm of the Scottish Government. *112011 Extensive environmental monitoring programme at the proposed site commences. Includes seabed...

  8. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology, Inc. PDF icon 2004deerbass.pdf More Documents & Publications...

  9. Evaluation of structural issues related to isolation of the 100-KE/100-KW discharge chute

    SciTech Connect (OSTI)

    Winkel, B.V.; Hyde, L.L.

    1995-03-10

    The issue of excessive post-seismic leakage in the discharge chute of the K East and K West fuel storage basins was resolved by designing isolation barriers to maintain basin water levels if the discharge chute should drain. This report addresses the structural issues associated with isolation of the discharge chute. The report demonstrates the structural adequacy of the components associated with chute isolation for normal and seismic loading. Associated issues, such as hardware drop accidents and seismic slosh heights are also addressed.

  10. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  11. PB500, 500kW Utility-Scale PowerBuoy Project

    SciTech Connect (OSTI)

    Hart, Philip R.

    2011-09-27

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics device development projects in which Ocean Power Technologies will advance the current PowerBuoy design for commercial readiness.

  12. Evaluation of NH3-SCR Catalyst Technology on a 250-kW Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine and Reactor Evaluations of HC-SCR for Diesel NOx Reduction Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems...

  13. Design of a high efficiency 30 kW boost composite converter ...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: EE0006921 Resource Type: Conference Resource Relation: Conference: IEEE Energy Conversion Conference and Expo, Montreal CA, Sept 20-24 2015 Research Org: Univ. ...

  14. Recovery Act: Nanoengineered Ultracapacitor Material Surpasses the $/kW Threshold for Use in EDVs

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Qualified Energy Property Tax Exemption for Projects over 250 kW (Payment in Lieu)

    Broader source: Energy.gov [DOE]

    Note: According to the Ohio Development Services Agency website, the owner or lessee subject to sale leaseback transaction must apply to Development Services Agency on or before December 31, 2015 ...

  16. Qualified Energy Property Tax Exemption for Projects 250 kW or Less

    Broader source: Energy.gov [DOE]

    Note: According to the Ohio Development Services Agency website, the owner or lessee subject to sale leaseback transaction must apply to Development Services Agency on or before December 31, 2015 ...

  17. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  18. Recovery Act:Nanoengineered Ultracapacitor Material Surpasses the $/kW Threshold for Use in EDVs

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. High Efficiency 370kW Microturbine with Integral HeatRecovery

    Office of Environmental Management (EM)

    Vicario Sr. Program Manager Capstone Turbine Corporation U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objectives  Demonstrate a Microturbine-based distributed generation system with the following:  42% Electrical Efficiency  85% Total System Efficiency with CHP  CARB-level emissions without combustion after treatment  Improved

  20. Opportunities and Challenges for Solar Minigrid Development in Rural India

    SciTech Connect (OSTI)

    Thirumurthy, N.; Harrington, L.; Martin, D.; Thomas, L.; Takpa, J.; Gergan, R.

    2012-09-01

    The goal of this report is to inform investors about the potential of solar minigrid technologies to serve India's rural market. Under the US-India Energy Dialogue, the US Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) is supporting the Indian Ministry of New and Renewable Energy (MNRE)'s Jawaharlal Nehru National Solar Mission (JNNSM) in performing a business-case and policy-oriented analysis on the deployment of solar minigrids in India. The JNNSM scheme targets the development of 2GW of off-grid solar power by 2022 and provides large subsidies to meet this target. NREL worked with electricity capacity and demand data supplied by the Ladakh Renewable Energy Development Agency (LREDA) from Leh District, to develop a technical approach for solar minigrid development. Based on the NREL-developed, simulated solar insolation data for the city of Leh, a 250-kW solar photovoltaic (PV) system can produce 427,737 kWh over a 12-month period. The business case analysis, based on several different scenarios and JNNSM incentives shows the cost of power ranges from Rs. 6.3/kWh (US$0.126) to Rs. 9/kWh (US$0.18). At these rates, solar power is a cheaper alternative to diesel. An assessment of the macro-environment elements--including political, economic, environmental, social, and technological--was also performed to identify factors that may impact India?s energy development initiatives.

  1. Draft nuclear energy policy statement for DOE report to the International Energy Agency: long version

    SciTech Connect (OSTI)

    1994-12-31

    US national energy policy recognizes that the continued development of commercial nuclear power in the United States is vital to US national security and energy stability since it is a significant domestic energy resource that is relatively free from international pressures. As of this writing (August 1989) the United States had 108 nuclear power reactors in commercial status. In January 1989 nuclear energy produced 46 billion KwH or 20% of total US electricity generated in contrast to 45 billion KwH (18.8%) produced in January 1988. The US Federal Government has been engaged in a variety of activities to ensure that nuclear energy remains a safe, economically competitive and environmentally acceptable option. Much of the federal effort in recent months has been devoted to developing initiatives designed to remove institutional and regulatory obstacles to the continued use of nuclear power as part of the US energy system. Within this context, the following paragraphs summarize the major features of the current status of the US nuclear energy program and policies.

  2. MUNI Ways and Structures Building Integrated Solar Membrane Project

    SciTech Connect (OSTI)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by late October 2013. The interconnection with PG&E utility grid was completed and the system began generating power on November 21, 2013. The projected annual energy generation for the system is estimated at 127,120 kWh/year.

  3. Output Performance and Payback Analysis of a Residential Photovoltaic System in Colorado: Preprint

    SciTech Connect (OSTI)

    Johnston, S.

    2012-06-01

    Cost of installation and ownership of a 9.66-kilowatt (kW) residential photovoltaic system is described, and the performance of this system over the past 3 years is shown. The system is located in Colorado at 40 degrees latitude and consists of arrays on two structures. Two arrays are installed on a detached garage, and these are each composed of 18 Kyocera 130-W modules strung in series facing south at an angle of 40 degrees above horizontal. Each 18-panel array feeds into a Xantrex/Schneider Electric 2.8-kW inverter. The other two arrays are installed on the house and face south at an angle of 30 degrees. One of these arrays has twelve 205-W Kyocera panels in series, and the other is made up of twelve 210-Kyocera panels. Each of these arrays feeds into Xantrex/Schneider Electric 3.3-kW inverters. Although there are various shading issues from trees and utility poles and lines, the overall output resembles that which is expected from PVWatts, a solar estimate program. The array cost, which was offset by rebates from the utility company and federal tax credits, was $1.17 per watt. Considering measured system performance, the estimated payback time of the system is 9 years.

  4. City of Sidney, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Average Rates Residential: 0.1070kWh Commercial: 0.0878kWh Industrial: 0.0555kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from...

  5. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.2030kWh Commercial: 0.2160kWh Industrial: 0.1730kWh References "EIA Form EIA-861...

  6. City of Fort Collins, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Average Rates Residential: 0.0926kWh Commercial: 0.0737kWh Industrial: 0.0562kWh The following table contains monthly sales and revenue data for Fort Collins City...

  7. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cost of 125kWh by 2022 Currently, about 300-500kWh 24-85 kWh in today's PEV batteries 200+ mile range for EVs in the 2018 timeframe, comparable to today's cost ...

  8. Orange & Rockland Utils Inc | Open Energy Information

    Open Energy Info (EERE)

    kWh Commercial: 0.1230kWh Industrial: 0.0580kWh The following table contains monthly sales and revenue data for Orange & Rockland Utils Inc (New York). Scroll leftright to...

  9. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Schedules Grid-background.png Average Rates Residential: 0.1060kWh Commercial: 0.1120kWh Industrial: 0.0733kWh The following table contains monthly sales and revenue data...

  10. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  11. Performance assessment of the PNM Prosperity electricity storage project :

    SciTech Connect (OSTI)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv; Schoenwald, David A.

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shifting system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  13. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  14. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  15. Monitoring and evaluating ground-source heat pump. Final report

    SciTech Connect (OSTI)

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  16. Optimisation of a multistage pulsed dye laser system

    SciTech Connect (OSTI)

    Vasil'ev, S V; Kuz'mina, M A; Mishin, V A

    2001-06-30

    A multistage narrow-band dye laser amplifying system with an output power of up to several kilowatts is considered as a whole. Such systems became necessary due to the development of the method of laser isotope separation (the AVLIS method). The use of the simplified model of an amplifying cell allowed us to solve analytically the equations describing the laser system and to determine optimal parameters of each stage. The dye laser system with an output power of 1 kW is optimised based on the model proposed. The accuracy of the obtained estimates was verified by a direct numerical simulation of the system based on a rigorous solution of the equations describing the interaction of radiation with the dye solution. (lasers, active media)

  17. Installation of 200 kW UTC PC-25 Natural Gas Fuel Cell At City of Anaheim Police Station

    SciTech Connect (OSTI)

    Dina Predisik

    2006-09-15

    The City of Anaheim Public Utilities Department (Anaheim) has been providing electric service to Anaheim residents and businesses for over a century. As a city in a high-growth region, identifying sources of reliable energy to meet demand is a constant requirement. Additionally, as more power generation is needed, locating generating stations locally is a difficult proposition and must consider environmental and community impacts. Anaheim believes benefits can be achieved by implementing new distributed generation technologies to supplement central plants, helping keep pace with growing demand for power. If the power is clean, then it can be delivered with minimal environmental impact. Anaheim started investigating fuel cell technology in 2000 and decided a field demonstration of a fuel cell power plant would help determine how the technology can best serve Anaheim. As a result, Anaheim completed the project under this grant as a way to gain installation and operating experience about fuel cells and fuel cell capabilities. Anaheim also hopes to help others learn more about fuel cells by providing information about this project to the public. Currently, Anaheim has hosted a number of requested tours at the project site, and information about the project can be found on Anaheim Public Utilities RD&D Project website. The Anaheim project was completed in four phases including: research and investigation, purchase, design, and construction. The initial investigative phase started in 2000 and the construction of the project was completed in February 2005. Since acceptance and startup of the fuel cell, the system has operated continuously at an availability of 98.4%. The unit provides an average of about 4,725 kilowatthours a day to the Utilities' generation resources. Anaheim is tracking the operation of the fuel cell system over the five-year life expectancy of the fuel stack and will use the information to determine how fuel cells can serve Anaheim as power generators.

  18. Test report on the Abacus 30 kW bimode{reg_sign} inverter and maximum power tracker (MPT)

    SciTech Connect (OSTI)

    Bonn, R.; Ginn, J.; Zirzow, J.

    1995-06-01

    Sandia National Laboratories conducts the photovoltaic balance of systems (BOS) program, which is sponsored by the US Department of Energy`s Office of Energy Management. Under this program, SNL lets commercialization contracts and conducts a laboratory program designed to advance BOS technology, improve BOS component reliability, and reduce the BOS life-cycle-cost. This report details the testing of the first large US manufactured hybrid inverter and its associated maximum power tracker.

  19. Model based multivariable controller for large scale compression stations. Design and experimental validation on the LHC 18KW cryorefrigerator

    SciTech Connect (OSTI)

    Bonne, François; Bonnay, Patrick; Bradu, Benjamin

    2014-01-29

    In this paper, a multivariable model-based non-linear controller for Warm Compression Stations (WCS) is proposed. The strategy is to replace all the PID loops controlling the WCS with an optimally designed model-based multivariable loop. This new strategy leads to high stability and fast disturbance rejection such as those induced by a turbine or a compressor stop, a key-aspect in the case of large scale cryogenic refrigeration. The proposed control scheme can be used to have precise control of every pressure in normal operation or to stabilize and control the cryoplant under high variation of thermal loads (such as a pulsed heat load expected to take place in future fusion reactors such as those expected in the cryogenic cooling systems of the International Thermonuclear Experimental Reactor ITER or the Japan Torus-60 Super Advanced fusion experiment JT-60SA). The paper details how to set the WCS model up to synthesize the Linear Quadratic Optimal feedback gain and how to use it. After preliminary tuning at CEA-Grenoble on the 400W@1.8K helium test facility, the controller has been implemented on a Schneider PLC and fully tested first on the CERN's real-time simulator. Then, it was experimentally validated on a real CERN cryoplant. The efficiency of the solution is experimentally assessed using a reasonable operating scenario of start and stop of compressors and cryogenic turbines. This work is partially supported through the European Fusion Development Agreement (EFDA) Goal Oriented Training Program, task agreement WP10-GOT-GIRO.

  20. Field evaluation of advanced controls for the retrofit of packaged air conditioners and heat pumps

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2015-09-01

    This paper documents the magnitude of energy savings achievable in the field by retrofitting existing packaged rooftop units (RTUs) with advanced control strategies not ordinarily used for RTUs. A total of 66 RTUs on 8 different buildings were retrofitted with a commercially available advanced controller for improving RTU operational efficiency. The controller features enhanced air-side economizer control, multi-speed fan control, and demand controlled ventilation. Of the 66 RTUs, 18 are packaged heat pumps and the rest are packaged air conditioners with gas heat. The eight buildings cover four building types and four climate conditions. Based on the data collected for about a whole year, the advanced controller reduced the normalized annual RTU energy consumption between 22% and 90%, with an average of 57% for all RTUs. The average fractional savings uncertainty was 12% at 95% confidence level. Normalized annual electricity savings were in the range between 0.47 kWh/h (kWh per hour of RTU operation) and 7.21 kWh/h, with an average of 2.39 kWh/h. RTUs greater than 53 kW and runtime greater than 14 hours per day had payback periods less than 3 years even at $0.05/kWh.

  1. Geographic Variation in Potential of Rooftop Residential Photovoltaic Electric Power Production in the United States

    Broader source: Energy.gov [DOE]

    This paper describes a geographic evaluation of Zero Energy Home (ZEH) potential, specifically an assessment of residential roof-top solar electric photovoltaic (PV) performance around the United States and how energy produced would match up with very-efficient and super-efficient home designs. We performed annual simulations for 236 TMY2 data locations throughout the United States on two highly-efficient one-story 3-bedroom homes with a generic grid-tied solar electric 2kW PV system. These annual simulations show how potential annual solar electric power generation (kWh) and potential energy savings from PV power vary geographically around the U.S. giving the user in a specific region an indication of their expected PV system performance.

  2. Bexar County Parking Garage Photovoltaic Panels

    SciTech Connect (OSTI)

    Golda Weir

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimated annual electricity production of the PV system is 147,000 kWh per year.

  3. Interval Data Analysis with the Energy Charting and Metrics Tool (ECAM)

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Katipamula, Srinivas; Koran, William

    2011-07-07

    Analyzing whole building interval data is an inexpensive but effective way to identify and improve building operations, and ultimately save money. Utilizing the Energy Charting and Metrics Tool (ECAM) add-in for Microsoft Excel, building operators and managers can begin implementing changes to their Building Automation System (BAS) after trending the interval data. The two data components needed for full analyses are whole building electricity consumption (kW or kWh) and outdoor air temperature (OAT). Using these two pieces of information, a series of plots and charts and be created in ECAM to monitor the buildings performance over time, gain knowledge of how the building is operating, and make adjustments to the BAS to improve efficiency and start saving money.

  4. Carousel Trackers with 1-Sun or 3-Sun Modules for Commercial Building Rooftops

    SciTech Connect (OSTI)

    Gehl, Anthony C; Maxey, L Curt; Fraas, Dr. Lewis; Avery, James E.; Minkin, Leonid M; Huang, H,

    2008-01-01

    The goal is lower cost solar electricity. Herein, two evolutional steps are described toward achieving this goal. The first step is to follow the sun with a solar tracker. Herein, a carousel tracker is described for mounting on commercial building flat rooftops in order to produce more kWh per kW relative to fixed PV modules. The second evolutionary improvement is to produce lower cost 3-sun CPV modules where two thirds of the expensive single crystal silicon material is replaced by less expensive mirror material. This paper describes the performance and durability of two prototype installations demonstrating these evolutionary innovations. In the first case, the installation and operation of 2 carousels equipped with traditional flat plate modules is described. In the second case, the operation of a carousel equipped with new 3-sun CPV modules is described. Both systems have been operating as expected for several months through the winter of 2007.

  5. Performance of a grid connected residential photovoltaic system with energy storage

    SciTech Connect (OSTI)

    Palomino, G.E. [SRP, Phoenix, AZ (United States); Wiles, J. [Southwest Technology Development Institute, Las Cruces, NM (United States); Stevens, J. [Sandia National Labs., Albuquerque, NM (United States); Goodman, F. [EPRI, Palo Alto, CA (United States)

    1997-11-01

    In 1995, Salt River Project (SRP), a public power utility located in Phoenix, Arizona, collaborated with the Electric Power Research Institute (EPRI) and Sandia National Laboratories (Sandia) to initiate a photovoltaic (PV) power system with battery energy storage to match PV output with residential customer peak energy demand periods. The PV power system, a 2.4kW PV array with 25.2kWh of energy storage, was designed and installed by Southwest Technology Development Institute (SWTDI) at an SRP-owned facility, known as the Chandler Research House during August 1995. This paper presents an overview of the system design, operation and performance. 3 refs., 2 figs., 2 tabs.

  6. 2004 - 07 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2004 Fri, 07/30/2004 - 3:58pm FEL Achieves 10 Kilowatts

  7. 2004 | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2004 Fri, 07/30/2004 - 3:58pm FEL Achieves 10 Kilowatts

  8. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect (OSTI)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  9. Hidden benefits of electric vehicles for addressing climate change

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought bymore » the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94°C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO₂ emissions by 10,686 tonnes.« less

  10. A reliability and availability sensitivity study of a large photovoltaic system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Granata, Jennifer E.; Mundt, Michael Joseph; Miller, Steven P.; Quintana, Michael A.; Collins, Elmer W.; Sorensen, Neil Robert

    2010-08-01

    A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

  11. Hidden benefits of electric vehicles for addressing climate change

    SciTech Connect (OSTI)

    Li, Canbing; Cao, Yijia; Zhang, Mi; Wang, Jianhui; Liu, Jianguo; Shi, Haiqing; Geng, Yinghui

    2015-03-19

    There is an increasingly hot debate on whether the replacement of conventional vehicles (CVs) by electric vehicles (EVs) should be delayed or accelerated since EVs require higher cost and cause more pollution than CVs in the manufacturing process. Here we reveal two hidden benefits of EVs for addressing climate change to support the imperative acceleration of replacing CVs with EVs. As EVs emit much less heat than CVs within the same mileage, the replacement can mitigate urban heat island effect (UHIE) to reduce the energy consumption of air conditioners, benefitting local and global climates. To demonstrate these effects brought by the replacement of CVs by EVs, we take Beijing, China, as an example. EVs emit only 19.8% of the total heat emitted by CVs per mile. The replacement of CVs by EVs in 2012 could have mitigated the summer heat island intensity (HII) by about 0.94C, reduced the amount of electricity consumed daily by air conditioners in buildings by 14.44 million kilowatt-hours (kWh), and reduced daily CO? emissions by 10,686 tonnes.

  12. Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300

    SciTech Connect (OSTI)

    Gray, M. H.

    2014-01-01

    The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

  13. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  14. Airborne Tactical Free-Electron Laser

    SciTech Connect (OSTI)

    Roy Whitney; George Neil

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  15. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  16. Adaptive Environmentally Contained Power and Cooling IT Infrastructure for the Data Center

    SciTech Connect (OSTI)

    Mann, Ron; Chavez, Miguel, E.

    2012-06-27

    The objectives of this program were to research and develop a fully enclosed Information Technology (IT) rack system for 100 kilowatts (KW) of IT load that provides its own internal power and cooling with High Voltage Alternating Current (HVAC defined as 480 volt) and chilled water as the primary inputs into the system and accepts alternative energy power sources such as wind and solar. For maximum efficiency, internal power to the IT equipment uses distributed High Voltage Direct Current power (HVDC defined as 360-380 volt) from the power source to the IT loads. The management scheme aggressively controls energy use to insure the best utilization of available power and cooling resources. The solution incorporates internal active management controls that not only optimizes the system environment for the given dynamic IT loads and changing system conditions, but also interfaces with data center Building Management Systems (BMS) to provide a complete end-to-end view of power and cooling chain. This technology achieves the goal of a Power Usage Effectiveness (PUE) of 1.25, resulting in a 38% reduction in the total amount of energy needed to support a 100KW IT load compared to current data center designs.

  17. CX-004955: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beacon Power -Development of a 100 Kilowatt Hour/1100 Kilowatt Flywheel Energy Storage ModuleCX(s) Applied: B3.6Date: 08/09/2010Location(s): Tyngsboro, MassachusettsOffice(s): Advanced Research Projects Agency - Energy

  18. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  19. Gearbox Modeling and Load Simulation of a Baseline 750-kW Wind Turbine Using State-of-the-Art Simulation Codes

    SciTech Connect (OSTI)

    Oyague, F.

    2009-02-01

    This report discusses the causes for premature wind turbine gearbox failure and determining a method for revealing the missing loading conditions relevant to the gearbox design process.

  20. Resolution of Surveillance Report No. PAD-BDW-95-004 for suspect bolts installed in the 105 KW roof addition structure

    SciTech Connect (OSTI)

    Frier, W.A.

    1995-04-14

    A DOE RL surveillance determined that a test report (WHC-SD-NR-TRP-020) was less than adequate. As a result, WHC removed nine of the previous in-situ tested A325 suspect bolts and contracted with Koon-Hall Testing Corporation to perform hardness and tensile testing and chemical composition analysis of the removed bolts. WHC also contracted with ADVENT Engineering, Inc., to perform an evaluation of the Koon-Hall test results and to respond to the concerns identified in the DOE RL surveillance. The Koon-Hall Laboratory test results and the assessments strongly support the conclusion that the suspect bolts are indeed the equivalent of A325 high-strength, Type-1 bolts and have been properly heat-treated.

  1. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect (OSTI)

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  2. CLIMATE CHANGE FUEL CELL PROGRAM 200 kW - PC25C FUEL CELL POWER PLANT FOR THE ST.-AGNES-HOSPITAL, BOCHOLT, GERMANY

    SciTech Connect (OSTI)

    Dipl.-Ing. Knut Stahl

    2002-01-31

    Since the beginning of the Year 2001, the Saint-Agnes-Hospital in Bocholt, Germany, operates a phosphoric acid fuel cell (PAFC) to provide the base load of electrical power as well as heat in Winter and air conditioning in Summer. The project was made possible by federal funding from the U.S. Department of Energy as well as by a strategic alliance with the local utility company, the Bocholter Energie- und Wasserversorgung GmbH (BEW), and with the gas supplier of BEW, the Thyssengas GmbH. The fuel cell power plant is combined with an absorption chiller. It is highly efficient and has an excellent power to heat ratio. The operation during the first Year went smoothly and nearly free of trouble.

  3. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    SciTech Connect (OSTI)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  4. SunShot Concentrating Solar Power Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fast growing industry." -Energy Secretary Steven Chu 25 20 15 10 5 0 Current Technology Solar Field 21 kWh 6 kWh Power ... and eventual commercial production for this renewable and ...

  5. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  6. Pacific Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator Pacific Power Website http:www.pacificpower.netbusseepi.html State California Program Type Rebate Program Rebate Amount 0.12kWh-0.18kWh...

  7. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  8. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  9. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  10. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Years 11-20: retail electric rate 2014 Premium Rates: Solar: 0.04kWh Wind, Biomass, and Hydro: 0.03kWh Summary Note: Enrollment for 2015 was conducted from January 26th to...

  11. ATVM Webinar (Mar. 15, 2012)

    Broader source: Energy.gov (indexed) [DOE]

    generation-weighted average of publicly available data for independent large-scale solar generators (PV & CSP). 18.0kwh 7.5kwh 10 LPO's Public-Private Partnerships...

  12. NV Energy (Southern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  13. NV Energy (Northern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  14. Nyseg non-residential adjustment fees? | OpenEI Community

    Open Energy Info (EERE)

    MFC on Nyseg's site and each is less than 0.005kWh. That being said, the posted value matches my expectations more for high New York electricity rates (0.16kWh). Am I missing...

  15. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  16. Presidential Permit Holders - Annual Reports | Department of...

    Energy Savers [EERE]

    of the 200,000,000 kwh it purchased, and the cost of the 100,000,000 kwh it wheeled to utility B. Holders of electricity export authorizations are required to report the gross...

  17. U.S. Virgin Islands Feed-In Tariff

    Broader source: Energy.gov [DOE]

    In May of 2014, AB 7586 created a feed-in-tariff that would allow owners of solar photovotaic systems ranging between 10 kWh and 500 kWh to sell their energy for approximately 26 cents per kWh. Two...

  18. Lessons learned in implementing a demand side management contract at the Presidio of San Francisco

    SciTech Connect (OSTI)

    Sartor, D.; Munn, M.

    1998-06-01

    The National Park Service (NSP) recently completed the implementation phase of its Power Saving Partners (PSP) Demand Side Management (DSM) contract with the local utility, Pacific Gas and Electric (PG&E). Through the DSM contract, NPS will receive approximately $4.1 million over eight years in payment for saving 61 kW of electrical demand, 179,000 km of electricity per year, and 1.1 million therms of natural gas per year. These payments are for two projects: the installation of high-efficiency lighting systems at the Thoreau Center for Sustainability and the replacement of an old central boiler plant with new, distributed boilers. Although these savings and payments are substantial, the electrical savings and contract payments fall well short of the projected 1,700 kW of electrical demand, 8 million kwh of annual electricity savings, and $11 million in payments, anticipated at the project's onset. Natural gas savings exceeded the initial forecast of 800,000 therms per year. The DSM contract payments did not meet expectations for a variety of reasons which fall into two broad categories: first, many anticipated projects were not constructed, and second, some of the projects that were constructed were not included in the program because the cost of implementing the DSM program's measurement and verification (M&V) requirements outweighed anticipated payments. This paper discusses the projects implemented, and examines the decisions made to withdraw some of them from the DSM contract. It also presents the savings that were realized and documented through M&V efforts. Finally, it makes suggestions relative to M&V protocols to encourage all efficiency measures, not just those that are easy to measure.

  19. Utilization of a fuel cell power plant for the capture and conversion of gob well gas. Final report, June--December, 1995

    SciTech Connect (OSTI)

    Przybylic, A.R.; Haynes, C.D.; Haskew, T.A.; Boyer, C.M. II; Lasseter, E.L.

    1995-12-01

    A preliminary study has been made to determine if a 200 kW fuel cell power plant operating on variable quality coalbed methane can be placed and successfully operated at the Jim Walter Resources No. 4 mine located in Tuscaloosa County, Alabama. The purpose of the demonstration is to investigate the effects of variable quality (50 to 98% methane) gob gas on the output and efficiency of the power plant. To date, very little detail has been provided concerning the operation of fuel cells in this environment. The fuel cell power plant will be located adjacent to the No. 4 mine thermal drying facility rated at 152 M British thermal units per hour. The dryer burns fuel at a rate of 75,000 cubic feet per day of methane and 132 tons per day of powdered coal. The fuel cell power plant will provide 700,000 British thermal units per hour of waste heat that can be utilized directly in the dryer, offsetting coal utilization by approximately 0.66 tons per day and providing an avoided cost of approximately $20 per day. The 200 kilowatt electrical power output of the unit will provide a utility cost reduction of approximately $3,296 each month. The demonstration will be completely instrumented and monitored in terms of gas input and quality, electrical power output, and British thermal unit output. Additionally, real-time power pricing schedules will be applied to optimize cost savings. 28 refs., 35 figs., 13 tabs.

  20. Advanced Stirling conversion systems for terrestrial applications

    SciTech Connect (OSTI)

    Shaltens, R.K.

    1987-01-01

    Sandia National Laboratories (SNLA) is developing heat engines for terrestrial Solar distributed Heat Receivers. SNLA has identified the Stirling to be one of the most promising candidates for the terrestrial applications. The free-piston Stirling engine (FPSE) has the potential to meet the DOE goals for both performance and cost. Free-piston Stirling activities which are directed toward a dynamic power source for the space application are being conducted. Space power system requirements include high efficiency, very long life, high reliability and low vibration. The FPSE has the potential for future high power space conversion systems, either solar or nuclear powered. Generic free-piston technology is currently being developed for use with a residential heat pump under an Interagency Agreement. Also, an overview is presented of proposed conceptual designs for the Advanced Stirling Conversion System (ASCS) using a free-piston Stirling engine and a liquid metal heat pipe receiver. Power extraction includes both a linear alternator and hydraulic output capable of delivering approximately 25 kW of electrical power to the electric utility grid. Target cost of the engine/alternator is 300 dollars per kilowatt at a manufacturing rate of 10,000 units per year. The design life of the ASCS is 60,000 h (30 y) with an engine overhaul at 40,000 h (20 y). Also discussed are the key features and characteristics of the ASCS conceptual designs.

  1. Defining a Standard Metric for Electricity Savings

    SciTech Connect (OSTI)

    Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

    2009-03-01

    The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

  2. Microturbines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Microturbines are small combustion turbines, approximately the size of a refrigerator, with outputs of 25-500 kilowatt (kW). They evolved from automotive and truck turbochargers, auxiliary power units for airplanes, and small jet engines and are composed of a compressor, a combustor, a turbine, an alternator, a recuperator, and a generator. Microturbines offer a number of potential advantages over other technologies for small-scale power generation. These include their small number of moving parts, compact size, light weight, greater efficiency, lower emissions, lower electricity costs, and ability to use waste fuels. They can be located on sites with space limitations for the production of power, and waste heat recovery can be used to achieve efficiencies of more than 80%. Turbines are classified by the physical arrangement of their component parts: single-shaft or two-shaft, simple-cycle or recuperated, inter-cooled, and reheat. The machines generally rotate more than 40,000 rotations per minute (rpm). Bearing selection, whether the manufacturer uses oil or air, is dependent on use. Single-shaft is the more common design because it is simpler and less expensive to build. Conversely, the split shaft is necessary for machine drive applications because it does not require an inverter to change the frequency of the AC power.

  3. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  4. A device for microwave sintering large ceramic articles

    DOE Patents [OSTI]

    Kimrey, H.D. Jr.

    1987-07-24

    A microwave sintering system is provided for uniform sintering of large and/or irregular shapes ceramic articles at microwave frequencies of at least 28 GHz in the hundreds of kilowatts power range in an untuned cavity. A 28 GHz, 200 kw gyrotron with variable power output is used as the microwave source connected to an untuned microwave cavity formed of an electrically conductive housing. The part to be sintered is placed in the cavity and supported on a removable high temperature table in a central location within the cavity. The part is surrounded by a microwave transparent bulk insulating material to reduce thermal heat loss at the part surfaces and maintain more uniform temperature. The cavity may be operated at a high vacuum to aid in preventing arcing. The system allows controlled increased heating rates of greater than 200/degree/C/min to provide rapid heating of a ceramic part to a selected sintering temperature where it is maintained by regulating the microwave power applied to the part. As a result of rapid heating, the extent on non-isothermal processes such as segregation of impurities to the grain boundaries are minimized and exaggerated grain growth is reduced, thereby strengthening the mechanical properties of the ceramic part being sintered. 1 fig.

  5. Building America Case Study: Community-Scale Energy Modeling (Fact Sheet), Whole-House Solutions for Existing Homes, Energy Efficiency and Renewable Energy Building Technologies Office (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community-Scale Energy Modeling Southeastern United States PROJECT INFORMATION Construction: Existing home Type: Single-family Builder: Not available Size: 1,100 ft 2 to 1,400 ft 2 Number of Homes: 1,166 Price Range: Not available Date completed: 1970s, 2000s Climate Zone: 3A, Hot-humid PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh Standard Deviation: 4,163 kWh 2.5th Percentile: 7,469 kWh 97.5th Percentile: 24,001 kWh Community-scale energy modeling and

  6. Technology Pathway Partnership Final Scientific Report

    SciTech Connect (OSTI)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at the photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.

  7. Swine lagoon biogas utilization system

    SciTech Connect (OSTI)

    Gettier, S.W.; Roberts, M.

    1994-12-31

    A project was conceived to design and build a system to recover methane from pig manure with covered anaerobic lagoon technology. Covered lagoon technology lends itself both to new lagoon construction and to retrofit designs on existing anaerobic lagoons. A two cell passive in-ground digester/lagoon system was designed for a 600 sow feeder pig farm. The digester was covered with a flexible fabric cover made of 30 mil XR-5. The biogas has 1,100 ppm hydrogen sulfide. For the first month of operation 473 cubic feet of biogas per hour has been recovered from the digester 24 hours per day. At this gas flow the engine turns an induction generator to produce 17.1 KW per hour. A little over 80% of the farm`s electrical needs are generated with methane from swine manure. On an annual basis there will be 150,000 KWh of electricity produced from 4.3 million cubic feet of biogas.

  8. Replacement of Lighting Fixtures with LED Energy Efficient Lights at the Parking Facility, Milwaukee, Wisconsin

    SciTech Connect (OSTI)

    David Brien

    2012-06-21

    The Forest County Potawatomi Community (FCPC or Tribe) owns a six-story parking facility adjacent to its Potawatomi Bingo Casino (the Casino) in Milwaukee, Wisconsin, as well as a valet parking facility under the Casino (collectively, the Parking Facility). The Parking Facility contained 205-watt metal halide-type lights that, for security reasons, operated 24 hours per day, 7 days per week. Starting on August 30, 2010, the Tribe replaced these fixtures with 1,760 state-of-the-art, energy efficient 55-Watt LED lights. This project resulted in an immediate average reduction in monthly peak demand of 238 kW over the fourth quarter of 2010. The average reduction in monthly peak demand from October 1 through December 31, 2010 translates into a forecast annual electrical energy reduction of approximately 1,995,000 kWh or 47.3% of the pre-project demand. This project was technically effective, economically feasible, and beneficial to the public not only in terms of long term energy efficiency and associated emissions reductions, but also in the short-term jobs provided for the S.E. Wisconsin region. The project was implemented, from approval by U.S. Department of Energy (DOE) to completion, in less than 6 months. The project utilized off-the-shelf proven technologies that were fabricated locally and installed by local trade contractors.

  9. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  10. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  11. QER- Comment of Janice Kurkoski

    Broader source: Energy.gov [DOE]

    Proposal for Conservation Reward Rate for Electricity First of all, thank you for the time you are taking to hear from the public along with the industry and government officials in this critical matter. I attended the public hearing in Hartford CT two days ago and was able to comment on parts of what we are proposing here. We are writing to open a conversation with you about a proposal that we have been discussing in our past meetings. We would like to see you initiate legislation that would mandate a "stepped rate" for electricity, under which consumers who used less would pay a lower rate per kilowatt hour than those who used more. Background North Quabbin Energy is a community group from the nine North Quabbin towns in north central Massachusetts that focuses on education and local action relating to ways to conserve energy and support local and regional enterprises that reduce our dependence on imported resources. The towns are Athol, Orange, Petersham, Royalston, Warwick, Wendell, New Salem, Erving and Phillipston. Our members include representatives from the appointed Energy Committees of these towns. For the past six years, we have participated in many different types of events and activities, always with an emphasis on the idea that the single best way to address the high financial, social, and environmental costs of our current energy use patterns is to consume less energy in the first place. What we have discovered in our community work is that most people seem aware of the reasons for conserving energy (lowering greenhouse gas emissions, saving money, reducing dependence on oil and other imported resources, etc.). Many are also knowledgeable about the basic weatherization and conservation strategies that utilities, municipalities, and community groups like ours try to promote (for example, adding insulation to homes, turning thermostats down, or using fluorescent or LED lighting rather than incandescent bulbs). Yet except when energy prices are extraordinarily high, it appears that there is a great deal of inertia among the general public about actually making changes in their energy consumption patterns. This proposal would address that issue of inertia by creating a direct incentive program for using less electricity. People could very quickly and easily make changes that would lower their electric use, and would see immediate results on their electric bills. Comparable programs Many utilities are beginning to offer peak and off-peak metering as a way to equalize demand on the electric grid, but although this is useful in making people more aware of their energy use patterns, it does nothing to reduce overall demand and may actually encourage more wasteful consumption at off-peak times. A few utilities are starting to offer the kind of stepped rate or rewards program that we are proposing. For example, Western Massachusetts Electric Company recently inaugurated a program that awards "points" (redeemable for consumer items) for the numbers of kilowatt hours saved. In our opinion, this kind of program sends the wrong message because it encourages people to save in one area (electricity use) in order to consume in another. Examples of programs more in line with what we are proposing already exist. One is British Columbia Hydro's "Conservation Rate," started in April 2010. Under their Residential Conservation Rate, customers pay 7.52 cents per kWh for the first 1,350 kWh they use over an average two-month billing period. Above that amount, customers pay 11.27 cents per kWh for the balance of the electricity used during the billing period. In nearby Vermont, the Washington Electric Cooperative has had stepped or tiered rates for years. They reward residential users with a relatively very low rate of 9.43 cents per kWhr for the first 200 kWhrs, and then charge a significantly higher rate of 21.06 cents thereafter. As a result, their customers use on average about 11% less than the households in our area. Points for discussion What might be a reasonable target figure for the stepped rate? The current Massachusetts average is about 610 kWh/month. Members of North Quabbin Energy have demonstrated that it is quite possible to use a half or even a third of that amount without any decline in standard or quality of living1. In fact, this level of reduction is imperative given the seriousness of climate change and resource depletion. How could this change best be promoted to the public? We would argue that this is not a rate increase, but rather a rate redistribution that rewards lower energy consumption. It seems important to emphasize the positive rewards of this kind of change, rather than framing it as a penalty for higher use2. It also seems crucial to demonstrate from the outset that reducing a household's electric use can be done with surprising ease, given a greater awareness of how much energy waste can be avoided with a change in behavior. How could the concerns of low-income customers, those with large families, or those who heat exclusively with electricity be addressed? The BCHydro and Washington Electric Cooperative programs provide useful models for addressing these questions, and there is a great deal of regional data that shows how these consumers would by no means be penalized in the kind of pricing structure we are proposing. What programs could be funded with the increased revenues? Public outrage would be justified if the money went into the general coffers of the utility companies and fossil fuel energy supply and distribution companies. Enhanced conservation programs should be the target of these revenues. Attachments: 1 NQE individual.pdf, 2 NQE proposed incentive rate Note - if attachments do not go through, see this web page for these documents: http://northquabbinenergy.org/wordpress/?page_id=205

  12. Comprehensive Renewable Energy Feasibility Study for the Makah Indian Tribe

    SciTech Connect (OSTI)

    RobertLynette; John Wade; Larry Coupe

    2005-03-31

    The purpose of this project was to determine the technical feasibility, economic viability, and potential impacts of installing and operating a wind power station and/or small hydroelectric generation plants on the Makah reservation. The long-term objective is to supply all or a portion of Tribe's electricity from local, renewable energy sources in order to reduce costs, provide local employment, and reduce power outages. An additional objective was for the Tribe to gain an understanding of the requirements, costs, and benefits of developing and operating such plants on the reservation. The Makah Indian Reservation, with a total land area of forty-seven square miles, is located on the northwestern tip of the Olympic Peninsula in Washington State. Four major watersheds drain the main Reservation areas and the average rainfall is over one hundred inches per year. The reservation's west side borders the Pacific Ocean, but mostly consists of rugged mountainous terrain between 500 and 1,900 feet in elevation. Approximately 1,200 tribal members live on the Reservation and there is an additional non-Indian residential population of about 300. Electric power is provided by the Clallam County PUD. The annual usage on the reservation is approximately 16,700 mWh. Project Work Wind Energy--Two anemometer suites of equipment were installed on the reservation and operated for a more than a year. An off-site reference station was identified and used to project long-term wind resource characteristics at the two stations. Transmission resources were identified and analyzed. A preliminary financial analysis of a hypothetical wind power station was prepared and used to gauge the economic viability of installation of a multi-megawatt wind power station. Small Hydroelectric--Two potential sites for micro/small-hydro were identified by analysis of previous water resource studies, topographical maps, and conversations with knowledgeable Makah personnel. Field trips were conducted to collect preliminary site data. A report was prepared by Alaska Power & Telephone (Larry Coupe) including preliminary layouts, capacities, potential environmental issues, and projected costs. Findings and Conclusions Wind Energy The average wind resources measured at both sites were marginal, with annual average wind speeds of 13.6-14.0 mph at a 65-meter hub height, and wind shears of 0.08-0.13. Using GE 1.5 MW wind turbines with a hub height of 65 meters, yields a net capacity factor of approximately 0.19. The cost-of-energy for a commercial project is estimated at approximately 9.6 cents per kWh using current costs for capital and equipment prices. Economic viability for a commercial wind power station would require a subsidy of 40-50% of the project capital cost, loans provided at approximately 2% rate of interest, or a combination of grants and loans at substantially below market rates. Recommendations: Because the cost-of-energy from wind power is decreasing, and because there may be small pockets of higher winds on the reservation, our recommendation is to: (1) Leave one of the two anemometer towers, preferably the 50-meter southern unit MCC, in place and continue to collect data from this site. This site would serve as an excellent reference anemometer for the Olympic Peninsula, and, (2) If funds permit, relocate the northern tower (MCB) to a promising small site closer to the transmission line with the hope of finding a more energetic site that is easier to develop. Small Hydroelectric There are a very limited number of sites on the reservation that have potential for economical hydroelectric development, even in conjunction with water supply development. Two sites emerged as the most promising and were evaluated: (1) One utilizing four creeks draining the north side of the Cape Flattery peninsula (Cape Creeks), and (2) One on the Waatch River to the south of Neah Bay. The Cape Creeks site would be a combination water supply and 512 kW power generation facility and would cost a approximately $11,100,000. Annual power generation would be approximately 1,300,000 kWh and the plant would have a cost-of-energy of approximately 65 cents per kWh, substantially above market rates. The Waatch site would also be a combination water supply and power generation facility. It would have a rated capacity of 935 kW and would cost approximately $16,400,000. Annual power generation would be approximately 3,260,000 kWh and the plant would have a cost-of-energy of approximately 38 cents per kWh, also substantially above market rates. Recommendation: Stand-alone hydroelectric development is not commercially viable. The Tribal Council should not pursue development of hydroelectric facilities on the Makah Reservation unless they are an adjunct to a water supply development, and the water supply systems absorbs almost all the capital cost of the project.

  13. EA-1819: Finding of No Significant Impact | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Finding of No Significant Impact EA-1819: Finding of No Significant Impact Kilowatts for Kenston Wind Energy Project, Chagrin Falls, Geauga County, Ohio The Department of Energy's...

  14. National Wind Technology Center | Open Energy Information

    Open Energy Info (EERE)

    ratings of a few hundred kilowatts to several megawatts. Specific capabilities include: Design Review & Analysis Software Development, Modeling, & Analysis Systems & Controls...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large customer-generators...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts) and large...

  18. System Advisor Model (SAM) | Open Energy Information

    Open Energy Info (EERE)

    total electricity production in kilowatt-hours for the first year based on hourly weather data for a particular location, and physical specifications of the power system...

  19. Saving Money in Reno's Wind Tunnels

    Broader source: Energy.gov [DOE]

    Reno, Nevada recently installed 1.5-kilowatt wind turbines on their City Hall -- saving them up to $11,000 each year in energy costs.

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insulation, Windows, Motor VFDs, Comprehensive MeasuresWhole Building, Other EE Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour...

  1. EERE Success Story—Nevada: Geothermal Brine Brings Low-Cost Power with Big Potential

    Broader source: Energy.gov [DOE]

    Utilizing EERE funds, ElectraTherm developed a geothermal technology that will generate electricity for less than $0.06 per kilowatt hour.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics, Wind (All), Biomass, Hydroelectric, Wind (Small), Hydroelectric (Small) Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Low Income Residential Savings Category: Solar Photovoltaics Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind (All), Biomass, Landfill Gas, Tidal, Wave, Wind (Small), Hydroelectric (Small) Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MeasuresWhole Building, Wind (Small), Other Distributed Generation Technologies Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural, Low Income Residential Savings Category: Wind (All), Wind (Small) Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt...

  7. Solar/Wind Construction Permitting Standards | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    to wind turbines in the code) 10 kilowatts or less: Licensing Requirements Any person bidding or contracting for the installation of a solar collector system must possess a...

  8. CX-009907: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    biodigester, and use the biogas produced in the biodigester and the biogas collected from the campus landfill to generate electricity in a 1200 kilowatt internal combustion engine. ...

  9. CX-011402: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Apel Steel) to partially fund the purchase and installation of a 340 kilowatt solar photovoltaic system with 200 Absorbent Glass Mat batteries serving Apel Steel in Cullman,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    pay for business, industrial and agricultural retrofits for customers that have a monthly electrical demand of at least 100 kilowatts. Rebates are... Eligibility: Commercial,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Net Metering The New Hampshire Public Utilities Commission's (PUC) rules for net metering distinguish between small customer-generators (up to 100 kilowatts)...

  12. Energy Technology Cost and Performance Data | Open Energy Information

    Open Energy Info (EERE)

    Performance Data This data indicates the range of recent cost estimates for renewable energy and other technologies. The estimates are shown in dollars per installed kilowatts of...

  13. Oneida Tribe of Indians of Wisconsin RFP

    Broader source: Energy.gov [DOE]

    Oneida Tribe of Wisconsin released a request for proposals (RFP) seeking installer and investor for 700 kilowatts of roof-mounted photovoltaic systems on multiple Oneida tribal facilities.

  14. Microsoft Word - CVRv11 - FINAL OS.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 1,300 kilowatts. An engineer-procure-construct contract has been executed with Renewable Energy Systems (USA) Inc., a Delaware corporation. The turbines will be...

  15. EERE Success Story—Making Wave Power Efficient and Affordable

    Broader source: Energy.gov [DOE]

    Atargis working to demonstrate world's first fully submerged wave energy converter system with 70% efficiency and cost below $0.14 per kilowatt hour.

  16. Department of Energy Announces $8.5 Million to Advance Solar...

    Broader source: Energy.gov (indexed) [DOE]

    ... This project will address finishing details to complete a design for a 100-kilowatt "Demand Response Inverter" based on Princeton's unique circuit designs and the use of new ...

  17. Kenergy- Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    Kenergy offers commercial and industrial customers rebates for energy-efficient lighting and other energy efficient improvements. Customers can receive rebates of $350 per kilowatt of energy...

  18. Energy Department Awards $4.5 Million for Innovative Wind Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The University of North Carolina at Charlotte will receive 500,000 to design and build a 30-kilowatt multistage magnetic gearbox, which will be validated for reliability, ...

  19. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    SciTech Connect (OSTI)

    Barley, C. D.; Flowers, L. T.; Benavidez, P. J.; Abergas, R. L.; Barruela, R. B.

    1999-08-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: (1) Tabulate some important characteristics of all the plants. (2) Group the plants into categories (six classes) with similar characteristics. (3) For each class of system, identify one plant that is representative of the class. (4) For each representative plant, perform a moderately detailed prefeasibility analysis of design options. (5) Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system, expressed in units of U.S. dollars per kWh (US$/kWh) of energy production. This analysis is one phase of a study entitled ''Analysis of Renewable Energy Retrofit Options to Existing Diesel Mini-Grids,'' funded by the Asia-Pacific Economic Cooperation (APEC) and the U.S. Department of Energy (DOE), and performed jointly by NPC, the U.S. National Renewable Energy Laboratory (NREL), and Sustainable Energy Solutions in New York, New York (Morris et al. 1998). A more detailed version of this paper is included in that report.

  20. Bonded Bracket Assmebly for Frameless Solar Panels

    SciTech Connect (OSTI)

    Murray, Todd; Jackson, Nick; Dupont, Luc; Moser, Jeff

    2013-01-30

    In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $$1 per watt for photovoltaic systems would be equivalent to 5-6/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $ .50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics;Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules; Topic 2: Roof and Ground Mount Innovations; Topic 3: Transformational Photovoltaic System Designs; and Topic 4: Development of New Wind Load Codes for PV Systems.The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included; 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations; 2) The development of a composite pultruded rail to replace traditional racking materials; 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs; and 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

  1. Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)

    SciTech Connect (OSTI)

    Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

    2011-12-01

    This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

  2. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiwyomingnfmref.html State Wyoming Program Type Rebate Program Rebate Amount 0.15kWh...

  3. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiutahnfmref.html State Utah Program Type Rebate Program Rebate Amount 0.12kWh annual...

  4. Rocky Mountain Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Administrator Rocky Mountain Power Website http:www.rockymountainpower.netbusseepiidahonfmref.html State Idaho Program Type Rebate Program Rebate Amount 0.12kWh...

  5. Untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    Introduction The 1993 Residential Energy Consumption Survey (RECS) was the first to permit the estimation of annual kilowatthours (kWh) used for lighting. The survey contained more...

  6. Key Concepts in Project Development and Financing in Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...kWh * Calculates present value of the total cost of - ... - Different capital cost - Risk, return, and capacities ... and either production tax credit (PTC) or income tax credit ...

  7. 2009 Template

    Office of Environmental Management (EM)

    Research & Technology AM&STAdvanced Physics Applications System Architecture for ... Research & Technology AM&STAdvanced Physics Applications Energy Storage Program 5 kWh ...

  8. Upgrading the UES Measure List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Present Value of Region Act's 10% Conservation Credit (kWh)" * Sequence of columns (reading left to right) does not follow logical thinking What We Propose * Improve...

  9. Restoring Detroits Street Lighting System

    Energy Savers [EERE]

    once completed in 2016. Table ES.1. Annual savings a from Detroit street lighting transition Annual Energy Savings (kWh) Annual Electric Cost Savings () Annual...

  10. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    saved Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 Lighting Control (Exterior): 70 Air Conditioners and Heat...

  11. Rocky Mountain Power - FinAnswer Express | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Only Interior Lighting: 0.08kwh annual energy savings LED Fixture (Exterior): 100 Induction Fixture (Exterior): 125 CFL Wallpack (Exterior): 30 Lighting Control (Exterior):...

  12. PPL Electric Utilities - Custom Energy Efficiency Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    0.08 per projected first year kWh savings Summary Prospective applicants should contact their PPL Electric Utilities Key Account Manager before beginning any project. If...

  13. Word Pro - Untitled1

    Gasoline and Diesel Fuel Update (EIA)

    heat pump energy and geothermal heat used to generate electricity. 3 Solar thermal and photovoltaic energy. 4 Equals generation in kilowatthours (kWh) multiplied by the energy ...

  14. TVA - Mid-Sized Renewable Standard Offer Program | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kWh Summary The Tennessee Valley Authority (TVA) now compliments the small generation Green Power Providers Program by providing incentives for mid-sized renewable energy...

  15. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  16. Property:Incentive/QuantNotes | Open Energy Information

    Open Energy Info (EERE)

    kWh if offsetting electric water heater or 60 therms if the offsetting natural gas or propane. California Solar Initiative - Solar Thermal Program (California) + This program...

  17. Project Notebook - Makah Indian Nation "Next Steps to Implement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determine financial feasibility Negotiate distribution purchase Negotiate power portfolio Execute on minimal necessity Load Summary Meters % of Total Annual usage kWh Res 1 phase ...

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  19. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  20. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  1. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mills per kWh) and applied only to... Eligibility: Commercial, Industrial, Investor-Owned Utility, Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings...

  4. TVA - Solar Solutions Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tennessee Valley Authority Website http:www.tva.comrenewablestandardofferssi.htm State Virginia Program Type Performance-Based Incentive Rebate Amount 0.04 kWh for 10...

  5. International shipment of light weight radioisotopic heater units (LWRHU) using the USA/9516/B(U)F Mound 1 kW shipping package in support of the {open_quotes}Pluto Express{close_quotes} mission

    SciTech Connect (OSTI)

    Barklay, C.D.; Merten, C.W.

    1997-01-01

    Radioisotopes have provided heat that has been used to maintain specific operating environments within remote satellites and spacecraft. For the {open_quotes}Pluto Express{close_quotes} mission the {sup 238}PuO{sub 2} fueled light weight radioisotopic heater unit (LWRHU) will be used within the spacecraft. Since the current plan for the {open_quotes}Pluto Express{close_quotes} mission incorporates the use of a Russian launch platform for the spacecraft, the LWRHUs must be transported in an internationally certified shipping container. An internationally certified shipping package that is versatile enough to be reconfigured to transport the LWRHUs that will be required to support the {open_quotes}Pluto Express{close_quotes} mission is the Mound USA/9516/B(U)F. {copyright} {ital 1997 American Institute of Physics.}

  6. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect (OSTI)

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  7. Second use of transportation batteries: Maximizing the value of batteries for transportation and grid services

    SciTech Connect (OSTI)

    Viswanathan, Vilayanur V.; Kintner-Meyer, Michael CW

    2010-09-30

    Plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are expected to gain significant market share over the next decade. The economic viability for such vehicles is contingent upon the availability of cost-effective batteries with high power and energy density. For initial commercial success, government subsidies will be highly instrumental in allowing PHEVs to gain a foothold. However, in the long-term, for electric vehicles to be commercially viable, the economics have to be self-sustaining. Towards the end of battery life in the vehicle, the energy capacity left in the battery is not sufficient to provide the designed range for the vehicle. Typically, the automotive manufacturers indicated the need for battery replacement when the remaining energy capacity reaches 70-80%. There is still sufficient power (kW) and energy capacity (kWh) left in the battery to support various grid ancillary services such as balancing, spinning reserve, load following services. As renewable energy penetration increases, the need for such balancing services is expected to increase. This work explores optimality for the replacement of transportation batteries to be subsequently used for grid services. This analysis maximizes the value of an electric vehicle battery to be used as a transportation battery (in its first life) and then as a resource for providing grid services (in its second life). The results are presented across a range of key parameters, such as depth of discharge (DOD), number of batteries used over the life of the vehicle, battery life in vehicle, battery state of health (SOH) at end of life in vehicle and ancillary services rate. The results provide valuable insights for the automotive industry into maximizing the utility and the value of the vehicle batteries in an effort to either reduce the selling price of EVs and PHEVs or maximize the profitability of the emerging electrification of transportation.

  8. Electrical energy and demand savings from a geothermal heat pump energy savings performance contract at Ft. Polk, LA

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-06-01

    At Fort Polk, LA the space conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHP) under an energy savings performance contract. At the same time, other efficiency measures such as compact fluorescent lights (CFLs), low-flow hot water outlets, and attic insulation were installed. Pre- and post-retrofit data were taken at 15-minute intervals on energy flows through the electrical distribution feeders that serve the family housing areas of the post. 15-minute interval data was also taken on energy use from a sample of the residences. This paper summarizes the electrical energy and demand savings observed in this data. Analysis of feeder-level data shows that for a typical year, the project will result in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing. Results from analysis of building-level data compare well with this figure. Analysis of feeder-level data also shows that the project has resulted in a reduction of peak electrical demand of 6,541 kW, which is 39.6% of the pre-retrofit peak electrical demand. In addition to these electrical savings, the facility is also saving an estimated 260,000 therms per year of natural gas. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  9. Geothermal heat pump energy savings performance contract at Fort Polk, LA: Lessons learned

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.; Gordon, R.; Giffin, T.

    1997-08-01

    At Fort Polk, LA the space conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHP) under an energy savings performance contract (ESPC). At the same time, other efficiency measures, such as compact fluorescent lights (CFLs), low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk ESPC was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by 6,541 kW, which is 39.6% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the ESPC has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk ESPC can provide a model for other ESPCs in both the public and the private sectors. The purpose of this paper is to outline the method by which the ESPC was engineered and implemented, both from the standpoint of the facility owner (the US Army) and the energy services company (ESCO) which is carrying out the contract. The lessons learned from this experience should be useful to other owners, ESCOs and investors in the implementation of future ESPCs. It should be noted that the energy savings presented in this document are the apparent energy savings observed in the monitored data, and are not to be confused with the contracted energy savings used as the basis for payments. To determine the contracted energy savings, the apparent energy savings may require adjustments for such things as changes in indoor temperature performance criteria, additions of ceiling fans, and other factors.

  10. Geothermal Heat Pump Energy Savings Performance Contract at Fort Polk, LA: Lessons Learned

    SciTech Connect (OSTI)

    Hughes, Patrick; Shonder, John A; Gordon, Richard; Giffin, Tom

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of 4,003 military family housing units have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorecent lights, low-flow shower heads, and attic insulation, were installed. An independent evaluation of the Fort Polk energy savings performance contract was carried out. Findings indicate that the project has resulted in a 25.6 million kWh savings in electrical energy use, or 32.4% of the pre-retrofit electrical consumption in family housing, for a typical meteorological year. Peak electrical demand has also been reduced by about 6,761 kW, which is 40.2% of the pre-retrofit peak demand. Natural gas savings are about 260,000 therms per year. In addition, the energy savings performance contract has allowed the Army to effectively cap its future expenditures for family housing HVAC maintenance at about 77% of its previous costs. Given these successful results, the Fort Polk performance contract can provide a model for other contracts in both the public and private sectors. The purpose of this paper is to outline the method by which the contract was engineed and implemented, both from the standpoint of the facility owner (the U.S. Army) and the energy services company that is carrying out the contract. The lessons learned from this experience should be useful to other owners, service companies, and investors in the implementation of future service contracts. It should be noted that the energy savings presented in this document are the 'apparent' energy savings observed in the monitored data and not to be mistaken for the 'contract' energy savings used as the basis for payments. To determine the 'contracted' energy savings, the 'apparent' energy savings may require adjustments for such things as changes in the indoor temperature performance criteria, additions of ceiling fans, and other factors.

  11. A NOVEL CONCEPT FOR REDUCING WATER USAGE AND INCREASING EFFICIENCY IN POWER GENERATION

    SciTech Connect (OSTI)

    Shiao-Hung Chiang; Guy Weismantel

    2004-03-01

    The objective of the project is to apply a unique ice thermal storage (ITS) technology to cooling the intake air to gas turbines used for power generation. In Phase I, the work includes theoretical analysis, computer simulation, engineering design and cost evaluation of this novel ITS technology. The study includes two typical gas turbines (an industrial and an aeroderivative type gas turbine) operated at two different geographic locations: Phoenix, AZ and Houston, TX. Simulation runs are performed to generate data for both power output (KW) and heat rate (Btu/KWh) as well as water recovery (acre ft/yr) in terms of intake air temperature and humidity based on weather data and turbine performance curves. Preliminary engineering design of a typical equipment arrangement for turbine inlet air-cooling operation using the ITS system is presented. A cost analysis has been performed to demonstrate the market viability of the ITS technology. When the ITS technology is applied to gas turbines, a net power gain up to 40% and a heat rate reduction as much as 7% can be achieved. In addition, a significant amount of water can be recovered (up to 200 acre-ft of water per year for a 50 MW turbine). The total cost saving is estimated to be $500,000/yr for a 50 MW gas turbine generator. These results have clearly demonstrated that the use of ITS technology to cool the intake-air to gas turbines is an efficient and cost effective means to improve the overall performance of its power generation capacity with an important added benefit of water recovery in power plant operation. Thus, further development of ITS technology for commercial applications in power generation, particularly in coal-based IGCC power plants is warranted.

  12. 1989 CBECS EUI

    U.S. Energy Information Administration (EIA) Indexed Site

    . Peak Electricity Demand Category, Number of Buildings, 1992 (Thousand) Building Characteristics RSE Column Factor: Demand- Metered Buildings 10 kW or Less 11 to 25 kW 26 to 50 kW...

  13. Funding Opportunity: Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program seeks non-prime mover technologies that have the potential to contribute to reducing the levelized cost of electricity from new hydrothermal development to 6/ kWh by 2020 and Enhanced Geothermal Systems (EGS) to 6/ kWh by 2030.

  14. wind_guidance

    Office of Energy Efficiency and Renewable Energy (EERE)

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  15. Eletrovento | Open Energy Information

    Open Energy Info (EERE)

    Eletrovento Jump to: navigation, search Name: Eletrovento Place: Campinas, Brazil Zip: 13082 780 Sector: Wind energy Product: Produces and installs 500W, 2KW, and 5KW wind...

  16. Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind: December 2007 - October 31, 2008

    SciTech Connect (OSTI)

    Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A.

    2008-12-01

    This report examines the status, restrainers, drivers, and estimated development potential of mid-scale (10 kW - 5000 kW) distributed wind energy projects.

  17. Microsoft PowerPoint - 2009 HSC - Power & Cooling Issues rev6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (IT) kW 2 580 1 021 60 Electrical Losses (IT) kW 2,580 1,021 60 Chiller Plant Power kW 2,374 1,677 29 Energy ... Power (kW) * Planning for utility outages * Reliable operations ...

  18. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cents per kWh - Without New Dams | Department of Energy Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh - Without New Dams November 4, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Energy Secretary Steven Chu today announced up to $30.6 million in Recovery Act funding for the selection of seven hydropower projects that modernize hydropower

  19. Conduct an In-Plant Pumping System Survey; Industrial Technologies Program (ITP) Energy Tips - Pumping Systems Tip Sheet #1 (Fact Sheet).

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 * September 2005 Conduct an In-Plant Pumping System Survey In the United States, more than 2.4 million pumps, which consume more than 142 billion kWh annually, are used in industrial manufacturing processes. At an electricity cost of 5 cents per kWh, energy used for fluids transport costs more than $7.1 billion per year. Even one pump can consume substantial energy. A continuously operated centrifugal pump driven by a fully loaded 100-horsepower motor requires 726,000 kWh per year. This costs

  20. Reducing Data Center Loads for a Large-Scale, Net Zero Office Building (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    Case study highlighting the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. In constructing a new research facility for its campus, the National Renewable Energy Laboratory (NREL) project team identified the opportunity to design a world-class, energy-efficient data center to support its operations. NREL's efforts resulted in a highly efficient data center that demonstrated considerable energy savings in its first 11 months of operations. Using legacy data center performance as a baseline, the new facility cut energy use by nearly 1,450,000 kWh, delivering cost savings of approximately $82,000. The data center's average total load was 165 kW less than the legacy center's average total load, resulting in a 60% reduction in overall power. Finally, the limited use of cooling and fan energy enabled the new data center to achieve a 1.16 average power utilization effectiveness (PUE) rating, compared to the legacy data center's PUE of 2.28. The laboratory had been relying on individual servers with an energy utilization rate of less than 5%. NREL employed building best practices, innovative design techniques and energy-efficient technologies to support its energy goals for the new data center. To counteract the extensive heat generated by data center equipment, the laboratory implemented a cooling system using outdoor air and evaporative cooling to meet most of the center's needs. Inside the data center, NREL replaced much of its legacy equipment with new, energy-efficient technology. By exchanging this infrastructure for virtualized blade servers, NREL reduced its server energy footprint by 96%. Additionally, NREL replaced its 80%-efficient uninterruptible power supply (UPS) with a UPS that is 95% efficient; deployed ultra efficient power distribution units (PDU) to handle higher UPS voltages; and implemented vacancy sensors to drive down lighting loads. Using best practices and energy-efficient technology, NREL was able to successfully design an optimized data center with a minimal energy footprint. At 958,000 kWh, the annual energy use for the RSF data center is approximately 60% less than the legacy data center's annual energy use, surpassing the laboratory's project goal. As specified, the building is equipped with enough onsite renewable energy generation to offset annual energy consumption. The facility has achieved a PUE of 1.16 and ERE of 0.91 in its first 11 months of operation and is using PUE to as a metric to gauge success towards its ultimate goal. Based on the status of its RSF data center project, NREL is advising other government organizations on data center efficiency. The laboratory places great emphasis on the use of key metrics - such as PUE and ERE - to track performance. By carefully monitoring these metrics and making adjustments, NREL is able to continuously improve the performance of its data center operations.

  1. Free-electron laser scientist is one of two newly elected American...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first demonstration of lasing at harmonics and of multi-kilowatt lasing with an ... Using the IR Demo machine, Benson demonstrated lasing at both the 2nd and 5th harmonics, ...

  2. Net Metering

    Broader source: Energy.gov [DOE]

    Customer net excess generation (NEG) is carried forward at the utility's retail rate (i.e., as a kilowatt-hour credit) to a customer's next bill for up to 12 months. At the end of a 12-month...

  3. SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-10-01

    Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

  4. Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting

    Broader source: Energy.gov [DOE]

    The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

  5. Windswept Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) provides rebates for the installation of residential and non-residential wind energy systems through the Windswept program. Systems of up to 750 kilowatts ...

  6. Rocky Flats Site Expands Solar Power for Treating Groundwater

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) recently added a 6 kilowatt solar photovoltaic system to provide power to operate an enhanced treatment system that removes volatile organic compounds (VOC) from contaminated groundwater at the Rocky Flats, Colorado, Site.

  7. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the Energy Freedom and Rural Development Act, which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt-h...

  8. Fluidized Bed Technology - An R&D Success Story | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A 500-kilowatt fluidized bed test plant built in Alexandria, Virginia, in 1965 probably ... It provided much of the design data for a 30-megawatt prototype unit at the Monongahela ...

  9. Net Metering

    Broader source: Energy.gov [DOE]

    North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts...

  10. EERE Success Story-Kingston Creek Hydro Project Powers 100 Households...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Kingston Creek Project-benefitting the Young Brothers Ranch-is a 175-kilowatt hydro generation plant on private land that takes advantage of an existing stream and power line. ...

  11. Voltage-matched multijunction solar cell architectures for integrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Voltage-matched multijunction solar cell architectures for integrating PV ... to reduce the total installed cost of solar energy systems to .06 per kilowatt-hour ...

  12. EERE Success Story-Just Plain Cool, the 3D Printed Shelby Cobra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This innovative 3D printing process took just six weeks, and the final result was a glistening roadster fitted with a 100-kilowatt electric motor that can still go zero to 60 mph ...

  13. CX-001213: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Decatur Work Release 10 Kilowatt Photovoltaic ArrayCX(s) Applied: B5.1Date: 03/24/2010Location(s): Decatur, AlabamaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. Federal Government Awards Multi-Agency Solar Power Purchase in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spanning nine federal sites in San Jose, Menlo Park, Sacramento, San Francisco, San Bruno, Santa Rosa, Vallejo, Carson City, and Reno, and sell power by the kilowatt-hour to...

  15. Briggs & Stratton: Putting All Energy Efficiency Options on the Table

    Broader source: Energy.gov [DOE]

    This case study outlines how Briggs & Stratton was able to parlay several energy efficiency projects, including compressed air control upgrades, into 37.1 million kilowatt hours in energy savings between fiscal years 2007 and 2010.

  16. Blue Ridge EMC- Net Metering

    Broader source: Energy.gov [DOE]

    The Blue Ridge Electric Membership Corporation offers net metering to its residential customers with solar photovoltaic, wind, or micro-hydro generators up to 25 kilowatts. There is no aggregate...

  17. National Renewable Energy Laboratory | Open Energy Information

    Open Energy Info (EERE)

    from 40 cents per kilowatt-hour when the lab was founded, to 6-9 cents today. These lower costs have helped wind energy become the fastest growing source of new electricity in...

  18. New AMO Consortium Focuses on Energy Efficient and Environmentally Friendly Materials for Cooling

    Broader source: Energy.gov [DOE]

    At least one out of every five kilowatt-hours of energy in the U.S. is used by cooling systems. Cooling technologies are a vital part of everyday life for Americans including food storage,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Trust Fund The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of 0.0005 per kilowatt-hour (0.5 mill...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Trust Fund The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of 0.0005 per kilowatt-hour (0.5...

  1. Solar Photovoltaic Cell/Module Shipments Report

    Reports and Publications (EIA)

    2016-01-01

    Detailed data on manufacturing, imports, and exports of solar photovoltaic cell modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices.

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fund, is supported by a non-bypassable surcharge of 0.0005 per kilowatt-hour (0.5 millkWh), imposed on customers of... Eligibility: Commercial, Industrial, Investor-Owned...

  3. Renewable Energy Trust Fund

    Broader source: Energy.gov [DOE]

    The renewable energy fund, known as the Massachusetts Renewable Energy Trust Fund, is supported by a non-bypassable surcharge of $0.0005 per kilowatt-hour (0.5 mill/kWh), imposed on customers of...

  4. Y-12 to help create fuel for NASA's long-range space exploration...

    National Nuclear Security Administration (NNSA)

    For the first phase of the project, Y-12 will research materials and manufacturing processes for a physics demonstration of a kilowatt-range nuclear reactor, known as project ...

  5. CX-005445: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercialization of an Advanced 450 Kilowatt Midsize TurbineCX(s) Applied: A9Date: 03/17/2011Location(s): Barre, VermontOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. Austin Energy- Net Metering

    Broader source: Energy.gov [DOE]

    Austin Energy, the municipal utility of Austin Texas, offers net metering to its non-residential retail electricity customers for renewable energy systems up to 20 kilowatts (kW). Austin Energy o...

  7. Residential Network Members Impact More Than 42,000 Households...

    Energy Savers [EERE]

    annual electricity savings of more than 5 million kilowatt-hours; estimated natural gas savings of 71,580 British therms; and 653,245 estimated annual cost savings. In New...

  8. CX-003982: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Town of Fairhaven 500 Kilowatt Photovoltaic SystemCX(s) Applied: B5.1Date: 09/22/2010Location(s): Fairhaven, MassachusettsOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. SDG&E (Electric)- Energy Efficiency Business Rebates

    Broader source: Energy.gov [DOE]

    The Energy Efficiency Business Rebates can help pay for business, industrial and agricultural retrofits for customers that have a monthly electrical demand of at least 100 kilowatts. Rebates are...

  10. Energy Systems Integration: NREL + Solectria (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    This fact sheet describes the collaboration between NREL and Solectria at the Energy Systems Integration Facility (ESIF) to to develop 500- and 750-kilowatt photovoltaic (PV) inverters with advanced features that can support the electric grid.

  11. Interconnection Standards

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission’s (PUC) rules for net metering, which distinguish between small customer-generators (up to 100 kilowatts) and large customer-generators (greater than...

  12. EERE Success Story-Nevada: Geothermal Brine Brings Low-Cost Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Utilizing a 1 million EERE investment, heat from geothermal fluids-a byproduct of gold mining-will be generating electricity this year for less than 0.06 per kilowatt ...

  13. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars, cents per kilowatt-hour)" ,1993,1994,1995,1996,1997,1998,1999,2000,200...

  14. Energy Department Awards $2.2 Million to Drive Innovative Solutions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the end of 2013. According to the Energy Information Administration, the average U.S. electricity price is about 0.12 per kilowatt-hour. Check out a recent Energy.gov graph...

  15. Table 14b. Average Electricity Prices, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Average Electricity Prices, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars, cents per kilowatt-hour) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002...

  16. Microsoft Word - 2003-A B OS_v3.DOC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE that requires the DOE to accept title and dispose of spent nuclear fuel. For this future service, Energy Northwest pays a quarterly fee based on one mill per kilowatt-hour...

  17. Green Supercomputing at Argonne

    ScienceCinema (OSTI)

    Pete Beckman

    2010-01-08

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

  18. CX-008216: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design and Fabrication of 30 Kilowatt Molten Salt Thermal Storage Test Unit CX(s) Applied: B3.6 Date: 04/24/2012 Location(s): Colorado Offices(s): Golden Field Office

  19. CX-003979: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tuscola North Plant 100 Kilowatt Wind Turbine InstallationCX(s) Applied: B5.1Date: 09/22/2010Location(s): Tuscola, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-002814: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Arcola 40 Kilowatt Wind Turbine ProjectCX(s) Applied: B5.1Date: 06/23/2010Location(s): Arcola, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office