National Library of Energy BETA

Sample records for kraft pulping bleaching

  1. Pollution prevention for the kraft pulp and paper industry

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The document is an annotated bibliography of publications related to pollution prevention in the Kraft segment of the pulp and paper industry. It is organized by process area as follows: chip preparation, chemical pulping, pulp washing, bleaching, chemical recovery, recausticizing, power generation, wastewater treatment, papermaking, and general plant. The document contains 269 citations.

  2. Control of the Accumulation of Non-Process Elements in Pulp Mills with Bleach Filtrate Reuse: A Chemical Equilibrium Approach to Predicting the Partitioning of Metals in Pulp Mill and Bleach Plant Streams

    SciTech Connect (OSTI)

    Frederick, W.J. Jr.; Rudie, A.W.; Schmidl, G.W.; Sinquefield, S.A.; Rorrer, G.L.; Laver, M.L.; Yantasee, W.; Ming, D.

    2000-08-01

    The overall goal of this project was to develop fundamental, experimentally based methods for predicting the solubility or organic and inorganic matter and their interactions in recycled effluent from kraft pulp mills and bleach plants. This included: characterizing the capacity of wood pulp and dissolved organic matter to bind metal ions, developing a thermodynamic database of properties needed to describe the solubility of inorganic matter in pulp mill streams, incorporation of the database into equilibrium calculation software for predicting the solubility of the metals of interest, and evaluating its capability to predict the distribution of the metals between pulp fibers, inorganic precipitates, and solution.

  3. Producing a True Lignin Depolymerase for Biobleaching Softwood Kraft Pulp

    SciTech Connect (OSTI)

    Simo Sarkanen

    2002-02-04

    This project constituted an intensive effort devoted to producing, from the white-rot fungus Tramets Cingulata, a lignin degrading enzyme (lignin depolymerase) that is directly able to biobleach or delignify softwood kraft pulp brownstock. To this end, the solutions in which T. cingulata was grown contained dissolved kraft lignin which fulfilled two functions; it behaved as a lignin deploymerase substrate and it also appeared to act as an inducer of enzyme expression. However, the lignin depolymerase isoenzymes (and other extracellular T. cingulata enzymes) interacted very strongly with both the kraft lignin components and the fungal hypae, so the isolating these proteins from the culture solutions proved to be unexpectedly difficult. Even after extensive experimentation with a variety of protein purification techniques, only one approach appeared to be capable of purifying lignin depolymerases to homogeneity. Unfortunately the procedure was extremely laborious; it involved the iso electric focusing of concentrated buffer-exchanged culture solutions followed by electro-elution of the desired protein bands from the appropriate polyacrylamide gel segments

  4. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect (OSTI)

    Yulin Deng; Art Ragauskas

    2012-08-28

    Sponsored by the DOE Industrial Energy Efficiency Grand Challenge program, our research team at the Georgia Institute of Technology conducted laboratory studies and confirmed the concept of making wood pulp using a dry pulping technology. This technology is a new process different from any prior pulping technology used in Kraft and CTMP pulping. Three different kinds of dry pulping methods were investigated. (a) Dry Pulping at Atmospheric Pressure: The first one is to dry and bake the pretreated woodchips in a conventional oven at atmospheric pressure without the use of a catalyst. (b) Dry Pulping at Reduced Pressure: The second method is to dry the pretreated woodchips first in a vacuum oven in the presence of anthraquinone (AQ) as a pulping catalyst, followed by baking at elevated temperature. (c) Liquid Free Chemical Pulping, LFCP. The third method is to first remove the free water of pretreated woodchips, followed by dry pulping using a conventional Kraft pulping digester with AQ and triton as additives. Method one: Experimental results indicated that Dry Pulping at Atmospheric Pressure could produce pulp with higher brightness and lower bulk than conventional Kraft pulp. However, tensile strength of the acquired pulp is much lower than traditional Kraft pulp, and their Kappa number and energy consumption are higher than conventional Kraft pulp. By fully analyzing the results, we concluded that wood fibers might be damaged during the drying process at elevated temperature. The main reason for wood fiber damage is that a long drying time was used during evaporation of water from the woodchips. This resulted in an un-uniform reaction condition on the woodchips: the outside layer of the woodchips was over reacted while inside the woodchips did not reacted at all. To solve this problem, dry pulping at reduced pressure was investigated. Method two: To achieve uniform reaction throughout the entire reaction system, the water inside the pretreated woodchips was evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.

  5. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect (OSTI)

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  6. Waste treatment of kraft effluents by white-rot fungi

    SciTech Connect (OSTI)

    Kondo, R.

    1996-10-01

    The residual lignin in unbleached kraft pulp is commonly removed to afford a fully bleached pulp through a multi-stage bleaching process consisting of chlorination and alkaline-extraction stages. The effluent from such a bleaching process is of growing environmental concern because it shows a dark brown color and contains numerous chlorinated organic substances. Moreover, this effluent is not easily recycled within a mill recovery system because of the potential corrosion problems created by its high chlorine content. White-rot fungi have even heavily modified lignin such as kraft lignin and atoms demonstrated that kraft bleaching effluent can be rot fungi, in particular, Trametes versicolor and this review lecture, the possibility of the application of kraft effluents will be discussed.

  7. A Cost-Benefit Assessment of Gasification-Based Biorefining in the Kraft Pulp and Paper Industry

    SciTech Connect (OSTI)

    Eric D. Larson; Stefano Consonni; Ryan E. Katofsky; Kristiina Iisa; W. James Frederick

    2007-03-31

    Production of liquid fuels and chemicals via gasification of kraft black liquor and woody residues (''biorefining'') has the potential to provide significant economic returns for kraft pulp and paper mills replacing Tomlinson boilers beginning in the 2010-2015 timeframe. Commercialization of gasification technologies is anticipated in this period, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are in most cases already commercially established today in the ''gas-to-liquids'' industry. These conclusions are supported by detailed analysis carried out in a two-year project co-funded by the American Forest and Paper Association and the Biomass Program of the U.S. Department of Energy. This work assessed the energy, environment, and economic costs and benefits of biorefineries at kraft pulp and paper mills in the United States. Seven detailed biorefinery process designs were developed for a reference freesheet pulp/paper mill in the Southeastern U.S., together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. Commercial (''Nth'') plant levels of technology performance and cost were assumed. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which would be refined to vehicle fuels at existing petroleum refineries), dimethyl ether (a diesel engine fuel or LPG substitute), or an ethanol-rich mixed-alcohol product. Compared to installing a new Tomlinson power/recovery system, a biorefinery would require larger capital investment. However, because the biorefinery would have higher energy efficiencies, lower air emissions, and a more diverse product slate (including transportation fuel), the internal rates of return (IRR) on the incremental capital investments would be attractive under many circumstances. For nearly all of the cases examined in the study, the IRR lies between 14% and 18%, assuming a 25-year levelized world oil price of $50/bbl--the US Department of Energy's 2006 reference oil price projection. The IRRs would rise to as high as 35% if positive incremental environmental benefits associated with biorefinery products are monetized (e.g., if an excise tax credit for the liquid fuel is available comparable to the one that exists for ethanol in the United States today). Moreover, if future crude oil prices are higher ($78/bbl levelized price, the US Department of Energy's 2006 high oil price scenario projection, representing an extrapolation of mid-2006 price levels), the calculated IRR exceeds 45% in some cases when environmental attributes are also monetized. In addition to the economic benefits to kraft pulp/paper producers, biorefineries widely implemented at pulp mills in the U.S. would result in nationally-significant liquid fuel production levels, petroleum savings, greenhouse gas emissions reductions, and criteria-pollutant reductions. These are quantified in this study. A fully-developed pulpmill biorefinery industry could be double or more the size of the current corn-ethanol industry in the United States in terms of annual liquid fuel production. Forest biomass resources are sufficient in the United States to sustainably support such a scale of forest biorefining in addition to the projected growth in pulp and paper production.

  8. Mill Designed Bio bleaching Technologies

    SciTech Connect (OSTI)

    Institute of Paper Science Technology

    2004-01-30

    A key finding of this research program was that Laccase Mediator Systems (LMS) treatments on high-kappa kraft could be successfully accomplished providing substantial delignification (i.e., > 50%) without detrimental impact on viscosity and significantly improved yield properties. The efficiency of the LMS was evident since most of the lignin from the pulp was removed in less than one hour at 45 degrees C. Of the mediators investigated, violuric acid was the most effective vis-a-vis delignification. A comparative study between oxygen delignification and violuric acid revealed that under relatively mild conditions, a single or a double LMS{sub VA} treatment is comparable to a single or a double O stage. Of great notability was the retention of end viscosity of LMS{sub VA} treated pulps with respect to the end viscosity of oxygen treated pulps. These pulps could then be bleached to full brightness values employing conventional ECF bleaching technologies and the final pulp physical properties were equal and/or better than those bleached in a conventional ECF manner employing an aggressively O or OO stage initially. Spectral analyses of residual lignins isolated after LMS treated high-kappa kraft pulps revealed that similar to HBT, VA and NHA preferentially attack phenolic lignin moieties. In addition, a substantial decrease in aliphatic hydroxyl groups was also noted, suggesting side chain oxidation. In all cases, an increase in carboxylic acid was observed. Of notable importance was the different selectivity of NHA, VA and HBT towards lignin functional groups, despite the common N-OH moiety. C-5 condensed phenolic lignin groups were overall resistant to an LMS{sub NHA, HBT} treatments but to a lesser extent to an LMS{sub VA}. The inactiveness of these condensed lignin moieties was not observed when low-kappa kraft pulps were biobleached, suggesting that the LMS chemistry is influenced by the extent of delignification. We have also demonstrated that the current generation of laccase has a broad spectrum of operating parameters. Nonetheless, the development of future genetically engineered laccases with enhanced temperature, pH and redox potentials will dramatically improve the overall process. A second challenge for LMS bleaching technologies is the need to develop effective, catalytic mediators. From the literature we already know this is feasible since ABTS and some inorganic mediators are catalytic. Unfortunately, the mediators that exhibit catalytic properties do not exhibit significant delignification properties and this is a challenge for future research studies. Potential short-term mill application of laccase has been recently reported by Felby132 and Chandra133 as they have demonstrated that the physical properties of linerboard can be improved when exposed to laccase without a chemical mediator. In addition, xxx has shown that the addition of laccase to the whitewater of the paper machine has several benefits for the removal of colloidal materials. Finally, this research program has presented important features on the delignification chemistry of LMS{sub NHA} and LMS{sub VA} that, in the opinion of the author, are momentous contributions to the overall LMS chemistry/biochemistry knowledge base which will continue to have future benefits.

  9. Novel Pulping Technology: Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    The general objectives of this new project are the same as those described in the original proposal. Conventional kraft pulping technologies will be modified for significant improvements in pulp production, such as strength, bleachability, and yield by using green liquor, a naturally high, kraft mill-derived sulfidity source. Although split white liquor sulfidity and other high sulfidity procedures have the promise of addressing several of the latter important economic needs of pulp mills, they require considerable engineering/capital retrofits, redesigned production methods, and thus add to overall mill expenditures. Green liquor use, however, possesses the required high sulfidity to obtain in general the benefits attributable to higher sulfidity cooking, without the required capital constraints for implementation. Before introduction of green liquor in our industrial operations, a stronger understanding of its fundamental chemical interaction with the lignin and carbohydrates in US hardwood and softwoods must be obtained. In addition, its effect on bleachability, enhancement of pulp properties, and influence on the overall energy and recovery of the mill requires further exploration before the process witnesses widespread mill use in North America. Thus, proof of principle will be accomplished in this work and the consequent effect of green liquor and other high sulfide sources on the pulping and bleaching operations will be explored for US kraft mills. The first year of this project will generate the pertinent information to validate its ability for implementation in US pulping operations, whereas year two will continue this work while proceeding to analyze pulp bleachability and final pulp/paper properties and develop a general economic and feasibility analysis for its eventual implementation in North America.

  10. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect (OSTI)

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  11. Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping

    Broader source: Energy.gov [DOE]

    This factsheet describes a project that seeks to develop feasible chemical modifications during kraft pulping operations to obtain significant energy and product benefits for U.S. kraft pulp and paper mills.

  12. Highly Energy Efficient Directed Green Liquor Utilization (D-GLU) Pulping

    SciTech Connect (OSTI)

    2007-07-01

    This factsheet describes a project that seeks to develop feasible chemical modifications during kraft pulping operations to obtain significant energy and product benefits for U.S. kraft pulp and paper mills.

  13. Detection and Control of Deposition on Pendant Tubes in Kraft...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Can be used by kraft recovery boilers in the pulp and paper industry and also for boilers in the coal power, cement, steel, and glass industries. Capabilities Produces clear video ...

  14. Detection and Control of Deposition on Pendant Tubes in Kraft Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Boilers | Department of Energy Detection and Control of Deposition on Pendant Tubes in Kraft Chemical Recovery Boilers Detection and Control of Deposition on Pendant Tubes in Kraft Chemical Recovery Boilers Advanced Imaging System Improves Boiler Efficiency, Reduces Sootblowing Costs, and Improves Operational Safety The kraft chemical recovery boilers used for pulp processing are large and expensive and can be the limiting factor for mill capacity. Improvements in boiler efficiency

  15. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    DOE Patents [OSTI]

    Li, Jian (Marietta, GA); Chai, Xin Sheng (Atlanta, GA); Zhu, Junyoung (Marietta, GA)

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  16. A comprehensive program to develop correlations for physical properties of kraft black liquor. Final report

    SciTech Connect (OSTI)

    Fricke, A.L.; Zaman, A.A.

    1998-05-01

    The overall objective of the program was to develop correlations to predict physical properties within requirements of engineering precision from a knowledge of pulping conditions and of kraft black liquor composition, if possible. These correlations were to include those relating thermodynamic properties to pulping conditions and liquor composition. The basic premise upon which the research was based is the premise that black liquor behaves as a polymer solution. This premise has proven to be true, and has been used successfully in developing data reduction methods and in interpreting results. A three phase effort involving pulping, analysis of liquor composition, and measurement of liquor properties was conducted.

  17. Method and apparatus for assaying wood pulp fibers

    DOE Patents [OSTI]

    Gustafson, Richard (Bellevue, WA); Callis, James B. (Seattle, WA); Mathews, Jeffrey D. (Neenah, WI); Robinson, John (Issaquah, WA); Bruckner, Carsten A. (San Mateo, CA); Suvamakich, Kuntinee (Seattle, WA)

    2009-05-26

    Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp fiber. Before the fiber slurry enters the flow cell it is mixed with a dilution water of bleach to reduce background fluorescence. The fluorescent light is collimated and directed through a dichroic filter onto a fluorescence splitting dichroic filter.

  18. Composite tube cracking in kraft recovery boilers: A state-of-the-art review

    SciTech Connect (OSTI)

    Singbeil, D.L.; Prescott, R.; Keiser, J.R.; Swindeman, R.W.

    1997-07-01

    Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.

  19. Method and apparatus for assaying wood pulp fibers (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Patent: Method and apparatus for assaying wood pulp fibers Citation Details In-Document Search Title: Method and apparatus for assaying wood pulp fibers Paper pulp is added to a stain solution. The stain solution and pulp fibers are mixed to form a slurry. Samples are removed from the slurry and are admixed with dilution water and a bleach. Then, the fibers are moved into a flow cell where they are subjected to a light source adapted to stimulate fluorescence from the stained pulp

  20. Fermentation and chemical treatment of pulp and paper mill sludge

    DOE Patents [OSTI]

    Lee, Yoon Y; Wang, Wei; Kang, Li

    2014-12-02

    A method of chemically treating partially de-ashed pulp and/or paper mill sludge to obtain products of value comprising taking a sample of primary sludge from a Kraft paper mill process, partially de-ashing the primary sludge by physical means, and further treating the primary sludge to obtain the products of value, including further treating the resulting sludge and using the resulting sludge as a substrate to produce cellulase in an efficient manner using the resulting sludge as the only carbon source and mixtures of inorganic salts as the primary nitrogen source, and including further treating the resulting sludge and using the resulting sludge to produce ethanol.

  1. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005

    SciTech Connect (OSTI)

    John E. Pinkerton

    2007-08-15

    Estimates of total SO{sub 2} and NOx emissions from U.S. pulp and paper mills were developed from industry-wide surveys conducted at 5-yr intervals from 1980 to 2005. The following conclusions were drawn from these estimates: (1) Total SO{sub 2} emissions from pulp and paper mills were 340,000 t in 2005. Since 1980, SO{sub 2} emissions have decreased steadily. The decline over the 25-yr period was over 60%. Paper production increased by 50% over the same period. (2) Boilers burning coal and oil are the primary source of SO{sub 2} emissions, with minor contributions from black liquor combustion in kraft recovery furnaces and the burning of noncondensable gases in boilers at kraft pulp mills. Factors contributing to the decline in boiler SO{sub 2} emissions include large reductions in residual oil use, recent decreases in coal use, declines in the average sulfur content of residual oil and coal being burned, and increasing use of flue gas desulfurization systems.(3) NOx emissions from pulp and paper mills were 230,000 t in 2005. NOx emissions were fairly constant through 1995, but then declined by 12% in 2000 and an additional 17% between 2000 and 2005. (4) In 2005, boilers accounted for two-thirds of the NOx emissions, and kraft mill sources approximately 30%. Boiler NOx emissions exhibited very little change through 1995, but decreased by one third in the next 10 yr. The lower emissions resulted from declines in fossil fuel use, a reduction in the EPA emission factors for natural gas combustion in boilers without NOx controls, and more widespread use of combustion modifications and add-on NOx control technologies, particularly on coal-fired boilers subject to EPA's NOx SIP call. Total NOx emissions from kraft mill sources changed little over the 25-yr period. 7 refs., 4 figs., 3 tabs.

  2. HIGHLY ENERGY EFFICIENT D-GLU (DIRECTED-GREEN LIQ-UOR UTILIZATION) PULPING

    SciTech Connect (OSTI)

    Lucia, Lucian A

    2013-04-19

    Purpose: The purpose of the project was to retrofit the front end (pulp house) of a commercial kraft pulping mill to accommodate a mill green liquor (GL) impregna-tion/soak/exposure and accrue downstream physical and chemical benefits while prin-cipally reducing the energy footprint of the mill. A major player in the mill contrib-uting to excessive energy costs is the lime kiln. The project was intended to offload the energy (oil or natural gas) demands of the kiln by by-passing the causticization/slaking site in the recovery area and directly using green liquor as a pulping medium for wood. Scope: The project was run in two distinct, yet mutually compatible, phases: Phase 1 was the pre-commercial or laboratory phase in which NC State University and the Insti-tute of Paper Science and Technology (at the Georgia Institute of Technology) ran the pulping and associated experiments, while Phase 2 was the mill scale trial. The first tri-al was run at the now defunct Evergreen Pulp Mill in Samoa, CA and lead to a partial retrofit of the mill that was not completed because it went bankrupt and the work was no longer the low-hanging fruit on the tree for the new management. The second trial was run at the MeadWestvaco Pulp Mill in Evedale, TX which for all intents and pur-poses was a success. They were able to fully retrofit the mill, ran the trial, studied the pulp properties, and gave us conclusions.

  3. Electrochemical mercerization, souring, and bleaching of textiles

    DOE Patents [OSTI]

    Cooper, J.F.

    1995-10-10

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode. 5 figs.

  4. Electrochemical mercerization, souring, and bleaching of textiles

    DOE Patents [OSTI]

    Cooper, John F. (Oakland, CA)

    1995-01-01

    Economical, pollution-free treatment of textiles occurs in a low voltage electrochemical cell that mercerizes (or scours), sours, and optionally bleaches without effluents and without the purchase of bulk caustic, neutralizing acids, or bleaches. The cell produces base in the cathodic chamber for mercerization and an equivalent amount of acid in the anodic chamber for neutralizing the fabric. Gas diffusion electrodes are used for one or both electrodes and may simultaneously generate hydrogen peroxide for bleaching. The preferred configuration is a stack of bipolar electrodes, in which one or both of the anode and cathode are gas diffusion electrodes, and where no hydrogen gas is evolved at the cathode.

  5. Pulping wastewater treatment: Aeration processes and equipment. (Latest citations from the Paper and Board, Printing, and Packaging Industries Research Associations database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning plant operations and methods, pilot plant and laboratory tests and results of pulping mill wastewater treatment by aeration. Composition of effluent components including condensates, bleaching effluents, and spent liquor are discussed. Foreign and domestic plant efficiency, performance reports, and cost data are considered. Aerator design, lagoon treatment system upgrading considerations, and environmental aspects are included. (Contains a minimum of 88 citations and includes a subject term index and title list.)

  6. Improved Wood Properties Through Genetic Manipulation

    SciTech Connect (OSTI)

    2006-10-01

    This factsheet describes a research project to replacing the more chemically resistant guaiacyl (G) lignin with the less resistant hardwood guaiacyl (G)-syringyl (S) lignin genes. Achieving this genetic change would reduce the energy, chemical, and bleaching required in Kraft pulp production of softwoods.

  7. Fundamental Investigations of C1O2 Delignification - Final Report - 07/10/1996 - 07/09/1999

    SciTech Connect (OSTI)

    Ragauskas, Arthur J.; McDonough, T. J.

    2001-05-18

    The overall objective of this project was to develop a fundamental understanding of the mechanisms of chlorine dioxide delignification of low kappa kraft pulps and identify new methods of improving the efficiency and effectiveness of this bleaching agent. The approach adopted was to investigate the fundamental structural components of lignin that contribute to delignification reactions with chlorine dioxide. These results were then used to examine new bleaching technologies that will permit enhanced delignification while simultaneously reducing the generation of chlorinated organic compounds.

  8. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

  9. Pulp and paper program fact sheets

    SciTech Connect (OSTI)

    1995-07-01

    Summaries are presented of Argonne technology transfer research projects in: sustainable forest management, environmental performance, energy performance, improved capital effectiveness, recycling, and sensors and controls. Applications in paper/pulp industry, other industries, etc. are covered.

  10. Pulp and Paper Mills: Profiting from Efficient Motor System Use |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Pulp and Paper Mills: Profiting from Efficient Motor System Use Pulp and Paper Mills: Profiting from Efficient Motor System Use This 2-page fact sheet describes The Paper and Allied Products Industry spending to operate electric motor systems and opportunities to reduce these costs. PDF icon Pulp and Paper Mills: Profiting from Efficient Motor System Use (January 1999) More Documents & Publications Bandwidth Study U.S. Pulp and Paper Manufacturing United States

  11. Method for rapidly determining a pulp kappa number using spectrophotometry

    DOE Patents [OSTI]

    Chai, Xin-Sheng (Atlanta, GA); Zhu, Jun Yong (Marietta, GA)

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  12. Southern Pine Based on Biorefinery Center

    SciTech Connect (OSTI)

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  13. Coral reef bleaching and sea surface temperature anomalies: 1991-1996 global patterns

    SciTech Connect (OSTI)

    Goreau, T.J.; Hayes, R.L.; Strong, A.

    1997-12-31

    Global spatio-temporal patterns of mass coral reef bleaching during the first half of the 1990s continued to show the strong temperature correlations which first became established in the 1980s. Satellite sea surface temperature data and field observations were used to track thermal bleaching events in real time. Most bleaching events followed warm season sea surface temperature anomalies of around +1 degree celsius above historical means. Global bleaching patterns appear to have been strongly affected by worldwide cooling which followed eruption of Mount Pinatubo in June 1991. High water temperatures and mass coral reef bleaching took place in the Caribbean, Indian Ocean, and South Pacific in 1991, but there were few thermal anomalies or bleaching events in 1992 and 1993, years which were markedly cooler worldwide. Following the settling of Mount Pinatubo aerosols and resumption of global warming trends, extensive ocean thermal hot spots and bleaching events resumed in the South Pacific, South Atlantic, and Indian Oceans in 1994. Bleaching again took place in hot spots in the Indian Ocean and Caribbean in 1995, and in the South Atlantic, Caribbean, South Pacific, North Pacific, and Persian Gulf in 1996. Coral reefs worldwide are now very close to their upper temperature tolerance limits. This sensitivity, and the fact that the warmest ecosystems have no source of immigrant species pre-adapted to warmer conditions, may make coral reef ecosystems the first to be severely impacted if global temperatures and sea levels remain at current values or increase further.

  14. Steam System Opportunity Assessment for the Pulp and Paper, Chemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing, and Petroleum Refining Industries | Department of Energy Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries This report assesses steam generation and use in the pulp and paper, chemical manufacturing, and the petroleum refining industries. The report also estimates the energy savings potential available from

  15. Alabama Pine Pulp Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleAlabamaPinePulpBiomassFacility&oldid397129" Feedback Contact needs updating Image needs updating...

  16. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing....

  17. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Arthur J. Ragauskas Lucian A. Lucia Hasan Jameel

    2005-09-30

    The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

  18. Bioenergy Pumps New Life into Pulp and Paper Mills | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Pumps New Life into Pulp and Paper Mills Bioenergy Pumps New Life into Pulp and Paper Mills December 13, 2011 - 4:12pm Addthis Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Old Town Fuel and Fiber, a former pulp mill, converts a portion of the wood chips used to make pulp to biofuels. | Energy Department photo. Neil Rossmeissl General Engineer What does this project do? Breathes new life into

  19. Wood Pulp Digetster Wall Corrosion Investigation

    SciTech Connect (OSTI)

    Giles, GE

    2003-09-18

    The modeling of the flow in a wood pulp digester is but one component of the investigation of the corrosion of digesters. This report describes the development of a Near-Wall-Model (NWM) that is intended to couple with a CFD model that determines the flow, heat, and chemical species transport and reaction within the bulk flow of a digester. Lubrication theory approximations were chosen from which to develop a model that could determine the flow conditions within a thin layer near the vessel wall using information from the interior conditions provided by a CFD calculation of the complete digester. The other conditions will be determined by coupled solutions of the wood chip, heat, and chemical species transport and chemical reactions. The NWM was to couple with a digester performance code in an iterative fashion to provide more detailed information about the conditions within the NW region. Process Simulations, Ltd (PSL) is developing the digester performance code. This more detailed (and perhaps more accurate) information from the NWM was to provide an estimate of the conditions that could aggravate the corrosion at the wall. It is intended that this combined tool (NWM-PSL) could be used to understand conditions at/near the wall in order to develop methods to reduce the corrosion. However, development and testing of the NWM flow model took longer than anticipated and the other developments (energy and species transport, chemical reactions and linking with the PSL code) were not completed. The development and testing of the NWM are described in this report. In addition, the investigation of the potential effects of a clear layer (layer reduced in concentration of wood chips) near the wall is reported in Appendix D. The existence of a clear layer was found to enhance the flow near the wall.

  20. Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment

    SciTech Connect (OSTI)

    Kevin Whitty

    2008-06-30

    The University of Utah's project 'Investigation of Pressurized Entrained-Flow Kraft Black Liquor Gasification in an Industrially Relevant Environment' (U.S. DOE Cooperative Agreement DE-FC26-04NT42261) was a response to U.S. DOE/NETL solicitation DE-PS36-04GO94002, 'Biomass Research and Development Initiative' Topical Area 4-Kraft Black Liquor Gasification. The project began September 30, 2004. The objective of the project was to improve the understanding of black liquor conversion in high pressure, high temperature reactors that gasify liquor through partial oxidation with either air or oxygen. The physical and chemical characteristics of both the gas and condensed phase were to be studied over the entire range of liquor conversion, and the rates and mechanisms of processes responsible for converting the liquor to its final smelt and syngas products were to be investigated. This would be accomplished by combining fundamental, lab-scale experiments with measurements taken using a new semi-pilot scale pressurized entrained-flow gasifier. As a result of insufficient availability of funds and changes in priority within the Office of Biomass Programs of the U.S. Department of Energy, the research program was terminated in its second year. In total, only half of the budgeted funding was made available for the program, and most of this was used during the first year for construction of the experimental systems to be used in the program. This had a severe impact on the program. As a consequence, most of the planned research was unable to be performed. Only studies that relied on computational modeling or existing experimental facilities started early enough to deliver useful results by the time to program was terminated Over the course of the program, small scale (approx. 1 ton/day) entrained-flow gasifier was designed and installed at the University of Utah's off-campus Industrial Combustion and Gasification Research Facility. The system is designed to operate at pressures as high as 32 atmospheres, and at temperatures as high as 1500 C (2730 F). Total black liquor processing capacity under pressurized, oxygen-blown conditions should be in excess of 1 ton black liquor solids per day. Many sampling ports along the conversion section of the system will allow detailed analysis of the environment in the gasifier under industrially representative conditions. Construction was mostly completed before the program was terminated, but resources were insufficient to operate the system. A system for characterizing black liquor sprays in hot environments was designed and constructed. Silhouettes of black liquor sprays formed by injection of black liquor through a twin fluid (liquor and atomizing air) nozzle were videoed with a high-speed camera, and the resulting images were analyzed to identify overall characteristics of the spray and droplet formation mechanisms. The efficiency of liquor atomization was better when the liquor was injected through the center channel of the nozzle, with atomizing air being introduced in the annulus around the center channel, than when the liquor and air feed channels were reversed. Atomizing efficiency and spray angle increased with atomizing air pressure up to a point, beyond which additional atomizing air pressure had little effect. Analysis of the spray patterns indicates that two classifications of droplets are present, a finely dispersed 'mist' of very small droplets and much larger ligaments of liquor that form at the injector tip and form one or more relatively large droplets. This ligament and subsequent large droplet formation suggests that it will be challenging to obtain a narrow distribution of droplet sizes when using an injector of this design. A model for simulating liquor spray and droplet formation was developed by Simulent, Inc. of Toronto. The model was able to predict performance when spraying water that closely matched the vendor specifications. Simulation of liquor spray indicates that droplets on the order 200-300 microns can be expected, and that higher liquor flow will result in be

  1. ITP Forest Products: Report for AIChE Pulp and Paper Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The difference between today's average and the "practical minimal technologies" represents ... Use of wash presses allows efficient washing with minimal shower water use. Bleach ...

  2. Biological pretreatment for thermomechanical (TMP) and chemithermomechanical (CTMP) pulping processes

    SciTech Connect (OSTI)

    Myers, G.C.; Akhtar, M.; Lentz, M.

    1996-10-01

    Treatment of wood chips with lignin-degrading fungi prior to preparing a refiner mechanical pulp (RMP) has substantially reduced energy consumption and increased paper strength properties. This study reports on thermomechanical (TMP) and chemithermo-mechanical pulping (CTMP) of fungus treated wood chips. Loblolly pine chips were innoculated with Ceriporiopsis subvermispora, strain L14807 SS-3, and incubated two weeks in a chip silo. A pressurized 305 mm diameter disk refiner was used to prepare TMP and CTMP`s from fungal treated and non-treated wood chips. Two procedures were used to prepare the CTMP`s, injecting a sodium hydroxide and hydrogen peroxide solution into the pressurized refiner, and impregnating the wood chips with a sodium sulfite solution. Energy consumption during pulp preparation and handsheet strength and optical properties will be presented and discussed.

  3. Bandwidth Study U.S. Pulp and Paper Manufacturing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing Bandwidth Study U.S. Pulp and Paper Manufacturing Pulp-Paper.jpg Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas,

  4. RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) |

    Energy Savers [EERE]

    Department of Energy RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) A fact sheet detailling a proposal of a biorefinery facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. PDF icon RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) More Documents & Publications Pacific Ethanol, Inc EA-1888:

  5. ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and

    Office of Environmental Management (EM)

    Paper Industry | Department of Energy Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry PDF icon pulppaper_profile.pdf More Documents & Publications ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries

  6. Experimental investigations of beet pulp drying in superheated steam under pressure

    SciTech Connect (OSTI)

    Urbaniec, K.; Malczewski, J. [Warsaw Univ. of Technology, Plock (Poland). Dept. of Process Equipment

    1997-10-01

    Beet pulp drying in superheated steam under pressure makes it possible to save energy in sugar factories. A new concept of a two-stage convective steam drier is presented. To obtain kinetic data on beet pulp drying, an experimental setup was built. Beet pulp samples were dried at steam pressure up to 4 bar and temperature up to 220 C.

  7. Method of treating contaminated HEPA filter media in pulp process

    DOE Patents [OSTI]

    Hu, Jian S.; Argyle, Mark D.; Demmer, Ricky L.; Mondok, Emilio P.

    2003-07-29

    A method for reducing contamination of HEPA filters with radioactive and/or hazardous materials is described. The method includes pre-processing of the filter for removing loose particles. Next, the filter medium is removed from the housing, and the housing is decontaminated. Finally, the filter medium is processed as pulp for removing contaminated particles by physical and/or chemical methods, including gravity, flotation, and dissolution of the particles. The decontaminated filter medium is then disposed of as non-RCRA waste; the particles are collected, stabilized, and disposed of according to well known methods of handling such materials; and the liquid medium in which the pulp was processed is recycled.

  8. Optical limiting and bleaching effects in a suspension of onion-like carbon

    SciTech Connect (OSTI)

    Mikheev, Gen M; Bulatov, D L; Mogileva, T N; Kuznetsov, V L; Moseenkov, S I; Ishchenko, A V

    2009-04-30

    We have studied the effect of nanosecond laser pulses ({lambda} = 1064 nm) on the optical properties of onion-like carbon (OLC) prepared by high-temperature vacuum annealing of detonation nanodiamond and dispersed in N,N-dimethylformamide (DMF). The results demonstrate that, under low-intensity irradiation, the OLC suspension displays optical limiting behaviour. Increasing the incident intensity leads to bleaching of the suspension in the visible and near-IR spectral regions. (nanostructures)

  9. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29

    Pre-extractionkraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called near neutral pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the near-neutral green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid fr

  10. ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY AND ENVIRONMENTAL PROFILE OF THE U.S. PULP AND PAPER INDUSTRY Industrial Technologies Program Wood chips from pulp and paper mills Willow tree research plots, Tully, New York Wood gasifier demonstration, Burlington, Vermont Paper drying steam cans, awaiting shipment December 2005 Energy and Environmental Profile of the U.S. Pulp and Paper Industry December 2005 Prepared by Energetics Incorporated Columbia, Maryland for the U.S. Department of Energy Office of Energy Efficiency and

  11. Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 | Department of Energy Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 The purpose of this 1999 paper is to estimate the remaining CHP potential in the chemicals and pulp/paper industries by capacity size, and estimate energy savings and

  12. Energy and Environmental Profile of the U.S. Pulp and Paper Industry

    SciTech Connect (OSTI)

    Miller, Melanie; Justiniano, Mauricio; McQueen, Shawna

    2005-12-01

    This detailed report benchmarks the energy and environmental characteristics of the key technologies used in the major processes of the United States pulp and paper industry.

  13. Cogeneration handbook for the pulp and paper industry. [Contains glossary

    SciTech Connect (OSTI)

    Griffin, E.A.; Moore, N.L.; Fassbender, L.L.; Garrett-Price, B.A.; Fassbender, A.G.; Eakin, D.E.; Gorges, H.A.

    1984-03-01

    The decision of whether to cogenerate involves several considerations, including technical, economic, environmental, legal, and regulatory issues. Each of these issues is addressed separately in this handbook. In addition, a chapter is included on preparing a three-phase work statement, which is needed to guide the design of a cogeneration system. In addition, an annotated bibliography and a glossary of terminology are provided. Appendix A provides an energy-use profile of the pulp and paper industry. Appendices B and O provide specific information that will be called out in subsequent chapters.

  14. Appendices: Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DE P A R T M E N U E N I T E D S T A T S O F A E R IC A M Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Appendices Appendices (This page intentionally left blank.) Steam System Opportunity Assessment for the Pulp and Paper, Chemical

  15. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOE Patents [OSTI]

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  16. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  17. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOE Patents [OSTI]

    Waite, Darrell; Arnold, Richard; St. Pierre, James; Pendse, Hemant P.; Ceckler, William H.

    2015-06-30

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hydrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  18. System and method for conditioning a hardwood pulp liquid hydrolysate

    DOE Patents [OSTI]

    Waite, Darrell M; Arnold, Richard; St. Pierre, James; Pendse, Hemant P; Ceckler, William H

    2013-12-17

    A system and method for hardwood pulp liquid hydrolysate conditioning includes a first evaporator receives a hardwood mix extract and outputting a quantity of vapor and extract. A hydrolysis unit receives the extract, hyrolyzes and outputs to a lignin separation device, which separates and recovers a quantity of lignin. A neutralization device receives extract from the lignin separation device and a neutralizing agent, producing a mixture of solid precipitate and a fifth extract. The solid precipitate is removed from the fifth extract. A second evaporator removes a quantity of acid from the fifth extract in a vapor form. This vapor may be recycled to improve total acid recovery or discarded. A desalination device receives the diluted extract, separates out some of the acid and salt and outputs a desalinated solution.

  19. ITP Forest Products: Report for AIChE Pulp and Paper Industry...

    Broader source: Energy.gov (indexed) [DOE]

    doebandwidth.pdf More Documents & Publications Bandwidth Study U.S. Pulp and Paper Manufacturing AMO PEER REVIEW, MAY 28-29, 2015 Low Cost Carbon Fiber from Renewable Resources...

  20. Method and apparatus for assaying wood pulp fibers (Patent) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Patent: Method and apparatus for assaying wood pulp fibers Citation Details In-Document Search Title: Method and apparatus for assaying wood pulp fibers × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is

  1. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, J.S. Jr.; Westmoreland, C.G.

    1980-08-20

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  2. Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations

    DOE Patents [OSTI]

    Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

    1982-01-01

    The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

  3. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Energy Efficency and Renewable Energy U.S. Department of Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Main Report Main Report Download CD-ROM Zip File (27.3 MB) Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System

  4. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    SciTech Connect (OSTI)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samplesAvicel, bleached softwood, and bacterial celluloseto find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose I? component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose I? component.

  5. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  6. Overview of the government/industry workshop on opportunities for new materials in pulp and paper processing

    SciTech Connect (OSTI)

    Young, J.K.; Fowler, R.A.

    1994-05-01

    This report presents a synopsis of the presentations made at the two-day workshop conducted in Portland, Oregon, on August 12 and 13, 1993, for the Advanced Industrial Concepts division (AICD) of the US Department of Energy (DOE) Office of Industrial Technologies (OIT) and DOE national laboratory representatives from the pulp and paper industry. The information from the presentations is supplemented by additional statistics, as appropriate. The workshop objectives were (1) to develop a strategy and framework for collaboration between the pulp and paper industries and DOE`s national laboratories, (2) to identify major challenges to pulp and paper industry modernization, and (3) to identify research objectives for DOE national laboratories to improve materials and process technology in pulp and paper mills. Prior to the workshop, participants had the opportunity to tour paper mills and gain familiarity with pulp and paper processing methods. During the workshop, research needs for materials and processing that were identified at earlier AICD workshops were reviewed. Major problems of the pulp and paper industry were addressed, and ways in which DOE national laboratories are interacting with other industries to foster innovation and solve problems were presented. As a result of this and other workshops, a Pulp Paper Mill of the future strategy is being developed to address challenges identified in these proceedings. Continued efforts are expected by AICD to match candidate materials and processes from DOE national laboratories with the technology needs of pulp and paper mills.

  7. ENERGY EFFICIENCY OPPORTUNITIES IN THE U.S. PULP AND PAPER INDUSTRY

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Masanet, Eric; Worrell, Ernst

    2009-01-01

    The U.S. pulp and paper industry consumes over $7 billion worth of purchased fuels and electricity per year. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pulp and paper industry to reduce energy consumption in a cost-effective manner. This paper provides a brief overview of the U.S. EPA ENERGY STAR(R) for Industry energy efficiency guidebook (a.k.a. the"Energy Guide") for pulp and paper manufacturers. The Energy Guide discusses a wide range of energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. Also provided is a discussion of the trends, structure, and energy consumption characteristics of the U.S. pulp and paper industry along with a description of the major process technologies used within the industry. Many energy efficiency measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in pulp and paper mills and related industries worldwide. The information in this Energy Guide is intended to help energy and plant managers in the U.S. pulp and paper industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?as well as on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  8. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    SciTech Connect (OSTI)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf; Department of Optometry and Vision Science, College of Applied Medical Science, King Saud University, Riyadh

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all the different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.

  9. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    SciTech Connect (OSTI)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  10. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pulp and Paper Manufacturing i , ii Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing THE U.S. DEPARTMENT OF ENERGY (DOE)'S ADVANCED MANUFACTURING OFFICE PROVIDED FUNDING FOR THIS ANALYSIS AND REPORT The DOE Office of Energy Efficiency and Renewable Energy (EERE)'s Advanced Manufacturing Office works with industry, small business, universities, and other stakeholders to identify and invest in emerging technologies with the potential to

  11. On-line measurement of lignin in wood pulp by color shift of fluorescence

    DOE Patents [OSTI]

    Jeffers, L.A.; Malito, M.L.

    1996-01-23

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method. 6 figs.

  12. On-line measurement of lignin in wood pulp by color shift of fluorescence

    DOE Patents [OSTI]

    Jeffers, Larry A. (Washington Township, Stark County, OH); Malito, Michael L. (Liberty Township, Trumbull County, OH)

    1996-01-01

    Lignin concentrations from wood pulp samples are measured by applying an excitation light at a selected wavelength to the samples in order to cause the lignin to emit fluorescence. A spectral distribution of the fluorescence emission is then determined. The lignin concentration is then calculated based on the spectral distribution signal. The spectral distribution is quantified by either a wavelength centroid method or a band ratio method.

  13. Kraft Rt Kraft Electronics Inc | Open Energy Information

    Open Energy Info (EERE)

    Equipment manufacturer for the clean energy industry, currently focused on thin-film solar cell production equipment. Coordinates: 47.506225, 19.06482 Show Map Loading...

  14. Pulp and paper mill of the future: A workshop. Final report

    SciTech Connect (OSTI)

    Fleischman, E.; Sobczynski, S.F.

    1993-10-01

    This workshop began with sessions to consider where the industry is likely to be, or ideally where it should be, say, by the year 2020. The next sessions considered the `drivers` that motivate the industry to change. These drivers could be motivations towards the vision developed earlier, or they may be forces that tend to prevent the vision of the future form being realized. The final sessions focused on what techniques are being (or should be) developed in four major process areas of a typical manufacturing plant, consistent with the previously identified vision of a future pulp or paper mill.

  15. Development and pilot testing of modular dynamic thermomechanical pulp mill model to develop energy reduction strategies. Final report

    SciTech Connect (OSTI)

    Coffin, D.W.

    1996-10-01

    With the development of on-line and real-time process simulations, one obtains the ability to predict and control the process; thus, the opportunity exists to improve energy efficiency, decrease materials wastes, and maintain product quality. Developing this capability was the objective of the this research program. A thermomechanical pulp mill was simulated using both a first principles model and a neural network. The models made use of actual process data and a model that calculated the mass and energy balance of the mill was successfully implemented and run at the mill on an hourly basis. The attempt to develop a model that accurately predicted the quality of the pulp was not successful. It was concluded that the key fro a successful implementation of a real-time control model, such as a neural net model, is availability of on-line sensors that sufficiently characterize the pulp.

  16. Use of Residual Solids from Pulp and Paper Mills for Enhancing Strength and Durability of Ready-Mixed Concrete

    SciTech Connect (OSTI)

    Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus

    2003-09-18

    This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residual solids.

  17. Changing Trends in the Bulk Chemicals and Pulp and Paper Industries (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Compared with the experience of the 1990s, rising energy prices in recent years have led to questions about expectations of growth in industrial output, particularly in energy-intensive industries. Given the higher price trends, a review of expected growth trends in selected industries was undertaken as part of the production of Annual Energy Outlook 2005 (AEO). In addition, projections for the industrial value of shipments, which were based on the Standard Industrial Classification (SIC) system in AEO2004, are based on the North American Industry Classification System (NAICS) in AEO2005. The change in industrial classification leads to lower historical growth rates for many industrial sectors. The impacts of these two changes are highlighted in this section for two of the largest energy-consuming industries in the U.S. industrial sector-bulk chemicals and pulp and paper.

  18. Borate Autocausticizing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Borate Autocausticizing Borate Autocausticizing New Technology Increases Energy Efficiency of Kraft Chemical Recovery Process and Causticizing Boron-based autocausticizing is a new, cost-effective technology to recover kraft pulping chemicals. Conceptually, the technology can be used to supply part or all of the sodium hydroxide requirements of the kraft process, supplementing or replacing the lime cycle. Because the de-carbonating reactions take place directly in the recovery boiler, instead of

  19. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    SciTech Connect (OSTI)

    Bayr, S. Ojanper, M.; Kaparaju, P.; Rintala, J.

    2014-10-15

    Highlights: Rendering wastes mono-digestion and co-digestion with potato pulp were studied. CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. Free NH{sub 3} inhibited mono-digestion of rendering wastes. CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.

  20. Application of TDR technology to water content monitoring of capillary barriers made of pulp and paper residues

    SciTech Connect (OSTI)

    Cabral, A.R.; Burnotte, F.; Lefebvre, G.

    1999-03-01

    Acid mine drainage (AMD) can be curbed by covering tailings with capillary barriers. The purposes of these barriers is to prevent O{sub 2} from interacting with mine residues. This control can be made by keeping a high degree of moisture inside the cover material. Saturation is thus a key parameter to be monitored. The purpose of this paper is to present how the time domain reflectometry (TDR) technique can be used in order to monitor the volumetric water content for pulp and paper residues that have been used as capillary barriers. Calibration curves for deinking residues are presented and compared to literature data relating to mineral and organic soils.

  1. Trees Containing Built-In Pulping Catalysts - Final Report - 08/18/1997 - 08/18/2000

    SciTech Connect (OSTI)

    Pullman, G.; Dimmel, D.; Peter, G.

    2000-08-18

    Several hardwood and softwood trees were analyzed for the presence of anthraquinone-type molecules. Low levels of anthraquinone (AQ) and anthrone components were detected using gas chromatography-mass spectroscopy and sensitive selected-ion monitoring techniques. Ten out of seventeen hardwood samples examined contained AQ-type components; however, the levels were typically below {approximately}6 ppm. No AQs were observed in the few softwood samples that were examined. The AQs were more concentrated in the heartwood of teak than in the sapwood. The delignification of pine was enhanced by the addition of teak chips ({approximately}0.7% AQ-equivalence content) to the cook, suggesting that endogenous AQs can be released from wood during pulping and can catalyze delignification reactions. Eastern cottonwood contained AQ, methyl AQ, and dimethyl AQ, all useful for wood pulping. This is the first time unsubstituted AQ has been observed in wood extracts. Due to the presence of these pulping catalysts, rapid growth rates in plantation settings, and the ease of genetic transformation, eastern cottonwood is a suitable candidate for genetic engineering studies to enhance AQ content. To achieve effective catalytic pulping activity, poplar and cottonwood, respectively, require {approximately}100 and 1000 times more for pulping catalysts. A strategy to increase AQ concentration in natural wood was developed and is currently being tested. This strategy involves ''turning up'' isochorismate synthase (ICS) through genetic engineering. Isochorismate synthase is the first enzyme in the AQ pathway branching from the shikimic acid pathway. In general, the level of enzyme activity at the first branch point or committed step controls the flux through a biosynthetic pathway. To test if the level of ICS regulates AQ biosynthesis in plant tissues, we proposed to over-express this synthase in plant cells. A partial cDNA encoding a putative ICS was available from the random cDNA sequencing project carried out with Arabidopsis thaliana. We used this putative plant ICS gene fragment to isolate and sequence a full-length ICS cDNA from Arabidopsis thaliana. The putative full-length cDNA encodes for a 569 amino acid protein of {approximately}62kDa. This sequence represents the first full-length ICS cDNA isolated from a plant. When inserted into E. coli, our isolated cDNA over-expressed ICS protein in the insoluble inclusion bodies. A plant expression vector containing the ICS cDNA, NP II for selection on the antibiotic kanamycin, and duplicated 35S-cauliflower mosaic virus promoter were inserted into Agrobacterium tumefaciens strain GV3101. Transformation experiments for insertion of these foreign genes into Populus deltoides 'C175' resulted in eight lines able to regenerate shoots and grow roots in the presence of kanamycin. Plants from these eight lines have acclimated to growth in sterile soil and will be moved to a greenhouse environment in spring 2001. Non rooted shoots from each line are currently being multiplied by shoot culture. When enough shoot tissue and/or greenhouse plant stem tissue is available, AQ analysis will be done and compared with non transformed control tissue.

  2. Overcoming the Recalcitrance of Cellulosic Biomass by Value Prior to Pulping: Cooperative Research and Development Final Report, CRADA Number CRD-07-221

    SciTech Connect (OSTI)

    Lowell, A.

    2012-04-01

    The Value Prior to Pulping (VPP) project goal was to demonstrate the technical and commercial feasibility of introducing a new value stream into existing pulp and paper mills. Essentially the intent was to transfer the energy content of extracted hemicellulose from electricity and steam generated in the recovery boiler to a liquid transportation fuel. The hemicellulose fraction was extracted prior to pulping, fractionated, or conditioned if necessary, and fermented to ethanol. Commercial adaptation of the process to wood hemicelluloses was a prerequisite for using this less currently valued component available from biomass and wood. These hemicelluloses are predominately glucurono-xylan in hardwoods and galactoglucomannan in softwoods (with a significant softwood component of an arabino-xylan) and will yield fermentation substrates different from cellulose. NREL provided its expertise in the area of fermentation host evaluation using its Zymomonas strains on the CleanTech Partner's (CTP) VPP project. The project was focused on the production of fuel ethanol and acetic acid from hemicellulose streams generated from wood chips of industrially important hardwood and softwood species. NREL was one of four partners whose ethanologen was tested on the hydrolyzed extracts. The use of commercially available enzymes to treat oligomeric sugar extracts was also investigated and coupled with fermentation. Fermentations by NREL were conducted with the Zymomonas mobilis organism with most of the work being performed with the 8b strain. The wood extracts hydrolyzed and/or fermented by NREL were those derived from maple, mixed southern hardwoods, and loblolly pine. An unhydrolyzed variant of the mixed southern hardwood extract possessed a large concentration of oligomeric sugars and enzymatic hydrolysis was performed with a number of enzymes, followed by fermentation. The fermentation of the wood extracts was carried out at bench scale in flasks or small bioreactors, with a maximum volume of 500 mL.

  3. Vinyl Kraft Windows and Doors | Open Energy Information

    Open Energy Info (EERE)

    Business and legal services;Consulting;Energy auditsweatherization; Installation; Maintenance and repair;Manufacturing; Retail product sales and distribution Phone Number:...

  4. Self bleaching photoelectrochemical-electrochromic device

    DOE Patents [OSTI]

    Bechinger, Clemens S. (Konstanz, DE); Gregg, Brian A. (Golden, CO)

    2002-04-09

    A photoelectrochemical-electrochromic device comprising a first transparent electrode and a second transparent electrode in parallel, spaced relation to each other. The first transparent electrode is electrically connected to the second transparent electrode. An electrochromic material is applied to the first transparent electrode and a nanoporous semiconductor film having a dye adsorbed therein is applied to the second transparent electrode. An electrolyte layer contacts the electrochromic material and the nanoporous semiconductor film. The electrolyte layer has a redox couple whereby upon application of light, the nanoporous semiconductor layer dye absorbs the light and the redox couple oxidizes producing an electric field across the device modulating the effective light transmittance through the device.

  5. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  6. Proceedings of the black liquor research program review fourth meeting held July 28--30, 1987

    SciTech Connect (OSTI)

    Emerson, D. B.; Whitworth, B. A.

    1987-10-01

    Research programs, presented at the black liquor review meeting are described. Research topics include the following: Cooperative Program in Kraft Recovery; Black Liquor Physical Properties; Viscosity of Strong Black Liquor; Ultrafiltration of Kraft Black Liquor; Molecular Weight Distribution of Kraft Lignin; Black Liquor Droplet Formation Project; Fundamental Studies of Black Liquor Combustion; Black Liquor Combustion Sensors; Flash X-ray Imagining of Black Liquor Sprays; Laser Induced Fluorescence For Process Control In The Pulp and Paper Industry; Recovery Boiler Optimization; Black Liquor Gasification and Use of the Products in Combined-Cycle Cogeneration; Black Liquor Steam Plasma Automization; The B and W Pyrosonic 2000R System; Monsteras Boiler Control System; and Cooperative Program Project Reviews. Individual projects are processed separately for the data bases.

  7. Preliminary analysis of the state of the art of robotics and precision engineering and evaluation of potential for improved energy utilization in the pulp, paper, and related energy-consuming processes. Final report

    SciTech Connect (OSTI)

    None

    1982-01-01

    This study was undertaken to conduct a preliminary analysis of the state of the art of two technologies, robotics and precision engineering, and to evaluate their potential for improved energy utilization in the pulp, paper, and related energy consuming processes. Activity in the robotics field is growing rapidly, most activity being related to the development of smart robots rather than to systems. There is a broad base of support, both in industry and the universities, for upgrading robot machine capabilities. A large part of that support is associated with visualization and tactile sensors which facilitate assembly, placement, inspection, and tracking. Progress in this area is relatively rapid and development times are short for specifically engineered applications. The critical path in the development of robotic systems lies in the generation of reliable sensor signals. Robotic systems require a broad spectrum of sensors from which hierarchical logic systems can draw decision making information. This requirement resulted in the establishment of a program at the National Bureau of Standards which is attempting to develop a spectrum of sensor capabilities. Such sensors are applicable to robotic system automatic process control in a variety of energy-intensive industries. Precision engineering is defined as the generation or manufacture of components wherein geometry, dimension, and surface finish are controlled to within several hundred Angstroms in single point turning operations. Investigation into the state of the art of precision engineering in the United States finds that this capability exists in several national laboratories and is intended to be used exclusively for the development of weapons. There is an attempt at the present time by Lawrence Livermore Laboratory to expand its capability into industry. Several corporations are now beginning to develop equipment to support the precision engineering field.

  8. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 1 (Main text and Appendix I, sections 1--4)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 1 contains the main body of the report and the first 4 sections of Appendix 1: Modeling of black liquor recovery boilers -- summary report; Flow and heat transfer modeling in the upper furnace of a kraft recovery boiler; Numerical simulation of black liquor combustion; and Investigation of turbulence models and prediction of swirling flows for kraft recovery furnaces.

  9. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 2 (Appendices I, section 5 and II, section 1)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 2 contains the last section of Appendix I, Radiative heat transfer in kraft recovery boilers, and the first section of Appendix II, The effect of temperature and residence time on the distribution of carbon, sulfur, and nitrogen between gaseous and condensed phase products from low temperature pyrolysis of kraft black liquor.

  10. Bandwidth Study U.S. Pulp and Paper Manufacturing

    Broader source: Energy.gov [DOE]

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study...

  11. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 4 (Appendix IV)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 4 contains the following appendix sections: Radiative heat transfer properties for black liquor combustion -- Facilities and techniques and Spectral absorbance and emittance data; and Radiate heat transfer determination of the optical constants of ash samples from kraft recovery boilers -- Calculation procedure; Computation program; Density determination; Particle diameter determination; Optical constant data; and Uncertainty analysis.

  12. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect (OSTI)

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts? or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually. If the new technology could be implemented for bleaching process a total annual estimated energy savings potential of 64 trillion buts? or 11 million barrel of oil equivalent (BOE) equal to 3% of the paper industries energy demand could be realized. This could lead to a increase of renewable energy usage from 56% to close to 60% for the industry. CO{sub 2} emissions could be lowered by over 7.4 million tons annually. It is estimated that an installed system could also yield a 75 to 100% return of investment (ROI) rate for the capital equipment that need to be installed for the fiber filler composite manufacturing process.

  13. ITP Forest Products: Report for AIChE Pulp and Paper Industry Energy Bandwidth Study Report

    Broader source: Energy.gov [DOE]

    The American Institute of Chemical Engineers (AIChE) has been requested to manage a project to develop estimates of the present energy consumption.

  14. Preparation of brightness stabilization agent for lignin containing pulp from biomass pyrolysis oils

    DOE Patents [OSTI]

    Agblevor, Foster A. (Blacksburg, VA); Besler-Guran, Serpil (Flemington, NJ)

    2001-01-01

    A process for producing a brightness stabilization mixture of water-soluble organic compounds from biomass pyrolysis oils comprising: a) size-reducing biomass material and pyrolyzing the size-reduced biomass material in a fluidized bed reactor; b) separating a char/ash component while maintaining char-pot temperatures to avoid condensation of pyrolysis vapors; c) condensing pyrolysis gases and vapors, and recovering pyrolysis oils by mixing the oils with acetone to obtain an oil-acetone mixture; d) evaporating acetone and recovering pyrolysis oils; e) extracting the pyrolysis oils with water to obtain a water extract; f) slurrying the water extract with carbon while stirring, and filtering the slurry to obtain a colorless filtrate; g) cooling the solution and stabilizing the solution against thermally-induced gelling and solidification by extraction with ethyl acetate to form an aqueous phase lower layer and an organic phase upper layer; h) discarding the upper organic layer and extracting the aqueous layer with ethyl acetate, and discarding the ethyl acetate fraction to obtain a brown-colored solution not susceptible to gelling or solidification upon heating; i) heating the solution to distill off water and other light components and concentrating a bottoms fraction comprising hydroxyacetaldehyde and other non-volatile components having high boiling points; and j) decolorizing the stabilized brown solution with activated carbon to obtain a colorless solution.

  15. Black liquor combustion validated recovery boiler modeling: Final year report. Volume 3 (Appendices II, sections 2--3 and III)

    SciTech Connect (OSTI)

    Grace, T.M.; Frederick, W.J.; Salcudean, M.; Wessel, R.A.

    1998-08-01

    This project was initiated in October 1990, with the objective of developing and validating a new computer model of a recovery boiler furnace using a computational fluid dynamics (CFD) code specifically tailored to the requirements for solving recovery boiler flows, and using improved submodels for black liquor combustion based on continued laboratory fundamental studies. The key tasks to be accomplished were as follows: (1) Complete the development of enhanced furnace models that have the capability to accurately predict carryover, emissions behavior, dust concentrations, gas temperatures, and wall heat fluxes. (2) Validate the enhanced furnace models, so that users can have confidence in the predicted results. (3) Obtain fundamental information on aerosol formation, deposition, and hardening so as to develop the knowledge base needed to relate furnace model outputs to plugging and fouling in the convective sections of the boiler. (4) Facilitate the transfer of codes, black liquid submodels, and fundamental knowledge to the US kraft pulp industry. Volume 3 contains the following appendix sections: Formation and destruction of nitrogen oxides in recovery boilers; Sintering and densification of recovery boiler deposits laboratory data and a rate model; and Experimental data on rates of particulate formation during char bed burning.

  16. Rayana Paper Board Industries Ltd RPBIL | Open Energy Information

    Open Energy Info (EERE)

    Pradesh, India Zip: 272175 Product: Manufacturer of media and kraft paper with cogeneration activities References: Rayana Paper Board Industries Ltd. (RPBIL)1 This article...

  17. Ohio's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    LLC The Utilities Group Inc Ultimate Best Buy LLC Vinyl Kraft Windows and Doors Vision Energy Energy Generation Facilities in Ohio's 2nd congressional district Melink Solar...

  18. The South Karelia Air Pollution Study. The effects of malodorous sulfur compounds from pulp mills on respiratory and other symptoms

    SciTech Connect (OSTI)

    Jaakkola, J.J.; Vilkka, V.; Marttila, O.; Jaeppinen, P.H.; Haahtela, T. )

    1990-12-01

    The paper mills in South Karelia, the southeast part of Finland, are responsible for releasing a substantial amount of malodorous sulfur compounds such as hydrogen sulfide (H2S), methyl mercaptan (CH3SH), and methyl sulfides ((CH3)2S and (CH3)2S2), into ambient air. In the most polluted residential area the annual mean concentrations of hydrogen sulfide and methyl mercaptan are estimated to be 8 and 2 to 5 micrograms/m3 and the highest daily average concentration 100 and 50 micrograms/m3. The annual mean and highest daily concentrations of sulfur dioxide (SO2) are very low. We studied the effects of malodorous sulfur compounds on eye, nasal and respiratory symptoms, and headache in adults. A cross-sectional self-administered questionnaire was distributed in February 1987 and responded to by 488 adults living in a severely (n = 198), a moderately (n = 204), and a nonpolluted community (n = 86). This included questions about occurrence of the symptoms of interest during the previous 4 wk and 12 months and individual, behavioral, and other environmental determinants of the symptoms. The response rate was 83%. The odds ratios (OR) for symptoms experienced often or constantly in severely versus nonpolluted and moderately versus nonpolluted communities were estimated in logistic regression analysis controlling potential confounders. The odds ratios for eye (moderate exposure OR 11.70, Cl95% 2.33 to 58.65; severe exposure OR 11.78, Cl95% 2.35 to 59.09) and nasal symptoms (OR 2.01, Cl95% 0.97 to 4.15; OR 2.19, Cl95% 1.06 to 4.55) and cough (OR 1.89, Cl95% 0.61 to 5.86; OR 3.06, Cl95% 1.02 to 9.29) during the previous 12 months were increased, with a dose-response pattern.

  19. Continuous-flow wood chip reactor for biodegradation of 2,4-DCP

    SciTech Connect (OSTI)

    Yum, K.J.; Peirce, J.J.

    1998-02-01

    Chlorinated phenols are by-products of chlorine bleaching in numerous industries including pulp and paper mills and can be emitted from a variety of incineration processes. This research investigates the ability and efficiency of continuous-flow wood chip reactors seeded with a white-rot fungus to degrade 2,4-dichlorophenol (2,4-DCP) using wood chips as a carbon source. When 2,4-DCP was the only substrate (nonglucose treatment conditions), the wood chip reactor system had a high degradation efficiency and operated continuously without excessive fungal biomass buildup on the wood chips. In the presence of added glucose, a clogging problem and an effluent contamination problem of fungal cells are found during the reactor operating period. In addition, 2,4-DCP is degraded effectively both under low-nitrogen as well as high-nitrogen treatment conditions. The 2,4-DCP is degraded to a greater extent with small-size wood chips and hardwood chips as a carbon source. The results of this research demonstrate a potential application of wood chip reactor systems for the treatment of contaminated water while expanding the use of wasted forest products.

  20. Green alternatives to toxic release inventory (TRI) chemicals in the process industry

    SciTech Connect (OSTI)

    Ahmed, I.; Baron, J.; Hamilton, C.

    1995-12-01

    Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

  1. ITP Forest Products: Energy and Environmental Profile of the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study Report Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Bandwidth Study U.S. Pulp and Paper...

  2. Pacific Ethanol, Inc | Department of Energy

    Energy Savers [EERE]

    RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC)

  3. Design of Refractory Linings for Balanced Energy Efficiency, Uptime, and Capacity in Lime Kilns

    SciTech Connect (OSTI)

    Gorog, John Peter; Hemrick, James Gordon; Walker, Harold; Leary, William R; Ellis, Murray

    2014-01-01

    The rotary kilns used by the pulp and paper industry to regenerate lime in the Kraft process are very energy intensive. Throughout the 90 s, in response to increasing fuel prices, the industry used back up insulation in conjunction with the high alumina brick used to line the burning zones of their kilns. While this improved energy efficiency, the practice of installing insulating brick behind the working lining increased the inner wall temperatures. In the worst case, due to the increased temperatures, rapid brick failures occurred causing unscheduled outages and expensive repairs. Despite these issues, for the most part, the industry continued to use insulating refractory linings in that the energy savings were large enough to offset any increase in the cost of maintaining the refractory lining. Due to the dramatic decline in the price of natural gas in some areas combined with mounting pressures to increasing production of existing assets, over the last decade, many mills are focusing more on increasing the uptime of their kilns as opposed to energy savings. To this end, a growing number of mills are using basic (magnesia based) brick instead of high alumina brick to line the burning zone of the kiln since the lime mud does not react with these bricks at the operating temperatures of the burning zone of the kiln. In the extreme case, a few mills have chosen to install basic brick in the front end of the kiln running a length equivalent to 10 diameters. While the use of basic brick can increase the uptime of the kiln and reduce the cost to maintain the refractory lining, it does dramatically increase the heat losses resulting from the increased operating temperatures of the shell. Also, over long periods of time operating at these high temperatures, damage can occur in the shell. There are tradeoffs between energy efficiency, capacity and uptime. When fuel prices are very high, it makes sense to insulate the lining. When fuel prices are lower, trading some thermal efficiency for increased uptime and capacity seems reasonable. This paper considers a number of refractory linings in an effort to develop optimized operating strategies that balance these factors. In addition to considering a range of refractory materials, the paper examines other factors such as the chain area, discharge dams and other operating variables that impact the service life of the refractory lining. The paper provides recommendations that will help mill personnel develop a strategy to select a refractory lining that is optimized for their specific situation.

  4. Glossary - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Pulp chips: Timber or residues processed into small pieces of wood of more or less uniform dimensions with minimal amounts of bark. Pulp wood: Roundwood, whole-tree chips, or wood ...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential bleaching' of heavy atoms. This paper investigates the effects...

  6. A Key Enzyme to the Potency of an Anticancer Agent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enzyme Speeds Things Up The smell of chlorine is unmistakable. It's in the swimming pool, in household bleach, and sometimes the faint odor of chlorine rises up from...

  7. Continuous Digester Control Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Digester Control Technology Continuous Digester Control Technology Pulp Process Model Identifies Improvements that Save Energy and Improve Productivity The pulp digester is known as the bottleneck unit in the pulp mill flow sheet because it can require 5% to 50% of typical on-line operation time, making this component of the pulping process very capital intensive. Improving digester performance can significantly reduce production losses, operating costs, and negative environmental

  8. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  9. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  10. Advanced Recombinant Manganese Peroxidase for Biosynthesis of Lignin Bioproducts, Phase I Final Report, STTR Grant #: DE-SC0007503.

    SciTech Connect (OSTI)

    Beatty, Christopher; Kitner, Joshua; Lajoie, Curtis; McClain, Sean; Potochnik, Steve

    2012-12-13

    The core purpose of this Phase I STTR was to evaluate the feasibility of a new method of producing a recombinant version of manganese peroxidase (MnP) enzyme. MnP is a potentially valuable enzyme for producing high value lignin products and also for industrial de-coloring operations such as biobleaching of pulp and color removal from textile dye effluents. This lignin-modifying enzyme is produced in small amounts by the native host, a white rot fungus. Previous work by Oregon State University developed a secreted recombinant version of the enzyme in the yeast Pichia pastoris. Unfortunately, the expression is barely moderate and the enzyme is heavily glycosylated, which inhibits purification. In this work, the gene for the enzyme is given a tag which targets production of the enzyme to the peroxisome. This is a promising approach since this location is also where heme and hydrogen peroxide are sequestered, which are both necessary cofactors for MnP. More than ten recombinant strains were constructed, verified, and expressed in the Pichia system. Constitutive (GAP) and methanol-induced promoters (AOX) were tried for peroxisomal targeted, cytosolic, and secreted versions of MnP. Only the secreted strains showed activity. The amount of expression was not significantly changed. The degree of glycosylation was lessened using the AOX (methanol) promotoer, but the resulting enzyme was still not able to be purified using immobilized metal affinity chromatography. Additional work beyond the scope of the defined Phase I project was undertaken to construct, verify, and express Pichia strains that mutated the MnP glycosylation sites to inhibit this process. These strains did not show significant activity. The cause is not known, but it is possible that these sites are important to the structure of the enzyme. Also beyond the scope proposed for our Phase I STTR, the team collaborated with AbSci, a startup with a new E. coli based expression system focused on the production of antibodies and enzymes containing disulfide bonds and requiring folding/post-translational modification. With only limited time remaining in the Phase I schedule, a single construct was made to produce MnP with this system. The enzyme was produced in the soluble fraction of the cell lysate, but no activity was measured. MnP from the existing recombinant source was used to act on lignin. The lignin was from a Kraft process and had a molecular weight of about 10,000 Da. Using 1000 Da dialysis membranes and UV-visible spectroscopy, no modification of either lignin was evident in the dialysate or the retentate. Assays using 2,6 dimethoxy phenol (DMP) as a substrate showed consistent activity throughout the project. In summary, these results fell far short of our expectations. A Phase II proposal was not submitted. Possible reasons for the failure of peroxisomal targeting include destruction by native hydrogen peroxide, native proteases, or unforeseen causes. The AbSci system was only lighted tested and further work may yield a strain with active enzyme. The lack of evidence for lignin modification may be due to the techniques employed. NMR or GC-MS studies may reveal evidence of modification.

  11. CX-004431: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pennsylvania Economic Development Association Sustainable Business Recovery for the Kraft Foods Global, IncorporatedCX(s) Applied: B5.1Date: 11/09/2010Location(s): Allentown, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. Monroe County, Alabama: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alabama Pine Pulp Biomass Facility Places in Monroe County, Alabama Beatrice, Alabama Excel, Alabama Frisco City, Alabama Monroeville, Alabama Vredenburgh, Alabama Retrieved from...

  13. PowerPoint Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plant training in Jinan * Jan 2013: Petrochemical plant training in Beijing; pulp and paper plant training in Suzhou * Sept 2012 and Aug 2013: webinar training on process heating...

  14. Slide 1

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2,000 China (2010) Wood and wood products Transport equipment Non-specified industry Paper, pulp and printing Food and tobacco Textile and leather Petrochemicals Machinery...

  15. Celunol Corp formerly BCI | Open Energy Information

    Open Energy Info (EERE)

    and other value added products from cellulosic waste derived from pulp and paper, wood, agriculture and various other waste streams. References: Celunol Corp (formerly...

  16. Carbon Emissions Reduction Potential in the US Chemicals and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industries by Applying CHP Technologies, June 1999 Carbon Emissions Reduction Potential in the US Chemicals and Pulp and Paper Industries by Applying CHP Technologies, June 1999 ...

  17. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ways to Save Energy Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Forest Products: Report for AIChE...

  18. Characterization of the U.S. Industrial/Commercial Boiler Population...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters, February 2013 Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Recover Heat from Boiler Blowdown...

  19. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Cooling, Heating, and Power for Industry:...

  20. Methods of pretreating comminuted cellulosic material with carbonate-containing solutions

    DOE Patents [OSTI]

    Francis, Raymond

    2012-11-06

    Methods of pretreating comminuted cellulosic material with an acidic solution and then a carbonate-containing solution to produce a pretreated cellulosic material are provided. The pretreated material may then be further treated in a pulping process, for example, a soda-anthraquinone pulping process, to produce a cellulose pulp. The pretreatment solutions may be extracted from the pretreated cellulose material and selectively re-used, for example, with acid or alkali addition, for the pretreatment solutions. The resulting cellulose pulp is characterized by having reduced lignin content and increased yield compared to prior art treatment processes.

  1. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  2. Carbon Emissions: Paper Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994...

  3. ThermoChem Recovery International Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: ThermoChem Recovery International is commercialising proprietary technology for chemical and energy recovery systems for the pulp and paper industry. References:...

  4. Immediate Deployment of Waste Energy Technologies at Multiple Sites

    SciTech Connect (OSTI)

    2011-12-01

    Factsheet overviewing project that will deploy industrial technologies to more efficiently recover and reuse water and steam at pulp and paper facilities.

  5. EA-1888: Draft Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-1888: Final Environmental Assessment RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) ITP Forest Products: Energy and Environmental Profile of the...

  6. FORM EIA-846(F)

    U.S. Energy Information Administration (EIA) Indexed Site

    packing materials, etc.) Pulping or black liquor Waste oils and tars Biomass Hydrogen Other combustible energy sources: (List separately), K? Census use only sv(2) 216...

  7. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    also produce important byproducts such as fresh or dried citrus pulp. SIC 2046-Wet Corn Milling: Establishments primarily engaged in milling corn or sorghum grain (milo) by the...

  8. Department of Energy Awards $2.2 Million to Save Energy in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The research will focus on removing water from pulp in the paper making process and determining the technical and commercial feasibility of next generation manufacturing concepts. ...

  9. Definition:Black Liquor | Open Energy Information

    Open Energy Info (EERE)

    into paper pulp removing lignin, hemicelluloses and other extractives from the wood to free the cellulose fibers. View in Wikipedia Retrieved from "http:en.openei.orgw...

  10. Renewable, Low-Cost Carbon Fiber for Lightweight Vehicles: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    would need to be developed. Previous work has sought to use lignin from pulp and paper mills as a feedstock for carbon fiber, with varying levels of success. Current...

  11. Neil Rossmeissl | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Neil Rossmeissl About Us Neil Rossmeissl - General Engineer Neil Rossmeissl is a General Engineer with the Office of Energy Efficiency and Renewable Energy's Biomass Program. Most Recent Bioenergy Pumps New Life into Pulp and Paper Mills December 13

  12. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... - - - - - - - Thermodyne(tm) Evaporator - A Molded Pulp Products Dryer GLASS High Luminosity, Low-NO X Burner 0.476 - 0.068 - - - 0.002 - - - 0.056 - 7.56 - High Throughput ...

  13. Two-Step Process Converts Lignin into Simple Aromatic Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin is a major component of non-edible biomass. It is a cheap byproduct of pulp and biofuel production and is one of the few naturally occurring sources of valuable aromatic ...

  14. Selective Conversion of Lignin into Simple Aromatic Compounds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lignin is a major component of non-edible biomass (15-30 percent by weight; 40 percent by energy). It is a cheap byproduct of pulp and biofuel production and is one of the few ...

  15. CX-004710: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Highly Energy Efficient Directed-Green Liquor PulpingCX(s) Applied: B3.6Date: 12/14/2010Location(s): ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. Adaption of Machine Fluid Analysis for Manufacturing - Final Report

    SciTech Connect (OSTI)

    Pardini, Allan F.

    2005-08-16

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. Filtration and lubricant suppliers to the pulp and paper industry had noted the recent accomplishments by PNNL and its industrial partners in the DOE OIT Mining Industry of the Future Program, and asked for assistance in adapting this DOE-funded technology to the pulp and paper industry.

  17. Black liquor gasification phase 2D final report

    SciTech Connect (OSTI)

    Kohl, A.L.; Stewart, A.E.

    1988-06-01

    This report covers work conducted by Rockwell International under Amendment 5 to Subcontract STR/DOE-12 of Cooperative Agreement DE-AC-05-80CS40341 between St. Regis Corporation (now Champion International) and the Department of Energy (DOE). The work has been designated Phase 2D of the overall program to differentiate it from prior work under the same subcontract. The overall program is aimed at demonstrating the feasibility of and providing design data for the Rockwell process for gasifying Kraft black liquor. In this process, concentrated black liquor is converted into low-Btu fuel gas and reduced melt by reaction with air in a specially designed gasification reactor.

  18. Apparatus for control of mercury

    DOE Patents [OSTI]

    Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH)

    2001-01-01

    A method and apparatus for reducing mercury in industrial gases such as the flue gas produced by the combustion of fossil fuels such as coal adds hydrogen sulfide to the flue gas in or just before a scrubber of the industrial process which contains the wet scrubber. The method and apparatus of the present invention is applicable to installations employing either wet or dry scrubber flue gas desulfurization systems. The present invention uses kraft green liquor as a source for hydrogen sulfide and/or the injection of mineral acids into the green liquor to release vaporous hydrogen sulfide in order to form mercury sulfide solids.

  19. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M. (Richland, WA)

    2000-01-01

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  20. Q-Switched Raman laser system

    DOE Patents [OSTI]

    George, E. Victor (Livermore, CA)

    1985-01-01

    Method and apparatus for use of a Raman or Brillouin switch together with a conventional laser and a saturable absorber that is rapidly bleached at a predetermined frequency .nu.=.nu..sub.0, to ultimately produce a Raman or Brillouin pulse at frequency .nu.=.nu..sub.0 .+-..nu..sub.Stokes.

  1. Pd/V.sub.2O.sub.5 device for colorimetric H.sub.2 detection

    DOE Patents [OSTI]

    Liu, Ping (San Diego, CA); Tracy, C. Edwin (Golden, CO); Pitts, J. Roland (Lakewood, CO); Smith, II, R. Davis (Golden, CO); Lee, Se-Hee (Lakewood, CO)

    2008-09-02

    A sensor structure for chemochromic optical detection of hydrogen gas over a wide response range, that exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas, comprising: a glass substrate (20); a vanadium oxide layer (21) coated on the glass substrate; and a palladium layer (22) coated on the vanadium oxide layer.

  2. Enhancing activated-peroxide formulations for porous materials :

    SciTech Connect (OSTI)

    Krauter, Paula; Tucker, Mark D.; Tezak, Matthew S.; Boucher, Raymond

    2012-12-01

    During an urban wide-area incident involving the release of a biological warfare agent, the recovery/restoration effort will require extensive resources and will tax the current capabilities of the government and private contractors. In fact, resources may be so limited that decontamination by facility owners/occupants may become necessary and a simple decontamination process and material should be available for this use. One potential process for use by facility owners/occupants would be a liquid sporicidal decontaminant, such as pHamended bleach or activated-peroxide, and simple application devices. While pH-amended bleach is currently the recommended low-tech decontamination solution, a less corrosive and toxic decontaminant is desirable. The objective of this project is to provide an operational assessment of an alternative to chlorine bleach for low-tech decontamination applications activated hydrogen peroxide. This report provides the methods and results for activatedperoxide evaluation experiments. The results suggest that the efficacy of an activated-peroxide decontaminant is similar to pH-amended bleach on many common materials.

  3. Development of a prototype lignin concentration sensor. Final report. Draft

    SciTech Connect (OSTI)

    Jeffers, L.A.

    1994-11-01

    The ultimate objective of the DOE-sponsored program discussed in this report is to commercialize an instrument for real-time, in-situ measurement of lignin in wood pulp at a variety of locations in the pulp process stream. The instrument will be used as a primary sensor for process control in the pulp and paper industry. Work done by B&W prior to the initiation of this program had shown: there is a functional relationship between the fluorescence intensity and the Kappa number as measured at the pulp mill laboratory. Kappa number is a standard wet chemical method for determination of the lignin concentration; the relationship is one of decreasing intensity with Kappa number, indicating operation in the quenched fluorescence regime; a great deal of scatter in the data. Because of the preliminary nature of the study, the origin of the scatter was not identified. This report documents the results of laboratory measurements made on a variety of well defined pulp samples to generate the data necessary to: determine the feasibility of an instrument for on-line lignin concentration measurement using laser fluorescence; identify the preferred measurement strategy; define the range of applicability of the instrument; and to provide background information to guide the design of a field-worthy prototype.

  4. High Selectivity Oxygen Delignification

    SciTech Connect (OSTI)

    Lucian A. Lucia

    2005-11-15

    Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

  5. Profiles in garbage: Old newspaper

    SciTech Connect (OSTI)

    Miller, C.

    1998-08-01

    Newspapers are printed on newsprint. Newsprint is an uncoated groundwood paper that is made by mechanically grinding wood pulp without first removing lignin and other components of wood pulp. This creates a different product than the chemical pulping process used to make office paper and other grades of paper. Old newspaper (ONP) is the term used for scrap newspapers. More than 64.2 million newspapers are sold every day by the 1,664 daily newspapers in North America. The amount of newspapers generated by increased by 5.2 million tons since 1960, but its market share of solid waste decreased by 27%. Newspaper recycling increased by 4.9 million tons and the recycling rate doubled during that period.

  6. Biopulping: A new energy-saving technology for papermaking

    SciTech Connect (OSTI)

    Scott, G.M.; Akhtar, M.; Lentz, M.J.; Kirk, T.K.; Swaney, R.; Shipley, D.F.

    1997-07-01

    Biopulping is defined as the treatment of wood chips with lignin-degrading fungi prior to pulping. Fungal pretreatment prior to mechanical pulping reduces electrical energy requirements during refining or increases mill throughput, improves paper strength, reduces the pitch content, reduces cooking time for sulfite pulping, and reduces the environmental impact of pulping. The recent work involved scaling up the biopulping process towards the industrial level, investigating both the engineering and economic feasibility of the technology. The authors envision the process to be done in either a chip-pile or silo-based system for which several factors need to be considered. These factors include the degree of decontamination, a hospitable environment for the fungus, and the overall process economics. Currently, treatment of the chips with low pressure steam is sufficient for decontamination. Furthermore, a simple, forced ventilation system can be used to maintain the proper temperature, humidity, and moisture content throughout the chip bed, thus promoting uniform growth of the fungus. The pilot-scale trial resulted in the successful treatment of 4 tons, of wood chips (dry weight basis) with results comparable to those on a laboratory scale. For mechanical pulping, a 2-week treatment results in approximately 30% energy savings that, considering the additional equipment and operating costs, results in an overall savings of $9 to $20/ton of pulp in a chip-pile system. The other benefits that biopulping confers improve the economics considerably A larger, 40-ton trial was also successful, with energy savings and paper properties comparable with the laboratory scale.

  7. Profiles in garbage: Office paper

    SciTech Connect (OSTI)

    Miller, C.

    1998-04-01

    The primary markets for recycled office paper are tissue mills, printing and writing paper, and paperboard packaging. Other uses include exports and newsprint. As recently as 1990, more than half of recovered office paper was exported, primarily to paper mills in Pacific Rim countries. This decade has seen an increase in the number of mills using deinked market pulp made from office paper. North American capacity to produce deinked market pulp skyrocketed in the first half of this decade. However, oversupply in the end markets for office paper led to financial problems and shutdown for several of these new mills.

  8. Decontamination formulation with sorbent additive

    DOE Patents [OSTI]

    Tucker; Mark D. (Albuquerque, NM), Comstock; Robert H. (Gardendale, AL)

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  9. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, E.

    1982-06-16

    Efficiency of process for producing H/sub 2/ by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  10. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H{sub 2}O and HOD water at charged interfaces

    SciTech Connect (OSTI)

    Inoue, Ken-ichi; Singh, Prashant C.; Nihonyanagi, Satoshi; Tahara, Tahei; Yamaguchi, Shoichi

    2015-06-07

    Two-dimensional heterodyne-detected vibrational sum-frequency generation (2D HD-VSFG) spectroscopy is applied to study the ultrafast vibrational dynamics of water at positively charged aqueous interfaces, and 2D HD-VSFG spectra of cetyltrimethylammonium bromide (CTAB)/water interfaces in the whole hydrogen-bonded OH stretch region (3000 cm{sup ?1} ? ?{sub pump} ? 3600 cm{sup ?1}) are measured. 2D HD-VSFG spectrum of the CTAB/isotopically diluted water (HOD-D{sub 2}O) interface exhibits a diagonally elongated bleaching lobe immediately after excitation, which becomes round with a time constant of ?0.3 ps due to spectral diffusion. In contrast, 2D HD-VSFG spectrum of the CTAB/H{sub 2}O interface at 0.0 ps clearly shows two diagonal peaks and their cross peaks in the bleaching region, corresponding to the double peaks observed at 3230 cm{sup ?1} and 3420 cm{sup ?1} in the steady-state HD-VSFG spectrum. Horizontal slices of the 2D spectrum show that the relative intensity of the two peaks of the bleaching at the CTAB/H{sub 2}O interface gradually change with the change of the pump frequency. We simulate the pump-frequency dependence of the bleaching feature using a model that takes account of the Fermi resonance and inhomogeneity of the OH stretch vibration, and the simulated spectra reproduce the essential features of the 2D HD-VSFG spectra of the CTAB/H{sub 2}O interface. The present study demonstrates that heterodyne detection of the time-resolved VSFG is critically important for studying the ultrafast dynamics of water interfaces and for unveiling the underlying mechanism.

  11. Method for producing hydrogen and oxygen by use of algae

    DOE Patents [OSTI]

    Greenbaum, Elias (Oak Ridge, TN)

    1984-01-01

    Efficiency of process for producing H.sub.2 by subjecting algae in an aqueous phase to light irradiation is increased by culturing algae which has been bleached during a first period of irradiation in a culture medium in an aerobic atmosphere until it has regained color and then subjecting this algae to a second period of irradiation wherein hydrogen is produced at an enhanced rate.

  12. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond sequestration Topic Carbon Sequestration - Helping to Save Our Beautiful World by Kathy Chambers 17 Apr, 2014 in Warmer winters are changing bird migratory patterns, warmer seawater is linked to coral reef bleaching in the Florida Keys and Puerto Rico, and more extreme climate events are affecting society and ecosystems. According to the Department of Energy (DOE), the increasing air and water temperatures, decreasing water

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond dioxide Topic Carbon Sequestration - Helping to Save Our Beautiful World by Kathy Chambers 17 Apr, 2014 in Warmer winters are changing bird migratory patterns, warmer seawater is linked to coral reef bleaching in the Florida Keys and Puerto Rico, and more extreme climate events are affecting society and ecosystems. According to the Department of Energy (DOE), the increasing air and water temperatures, decreasing water availability

  14. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Carbon Sequestration - Helping to Save Our Beautiful World by Kathy Chambers on Thu, Apr 17, 2014 Warmer winters are changing bird migratory patterns, warmer seawater is linked to coral reef bleaching in the Florida Keys and Puerto Rico, and more extreme climate events are affecting society and ecosystems. According to the Department of Energy (DOE), the increasing air and water temperatures, decreasing water availability across

  15. Modified Yeast Show Improved Xylose Fermentation and Toxin Tolerance -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Show Improved Xylose Fermentation and Toxin Tolerance Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Bleaching plant material with alkaline hydrogen peroxide (AHP) is an old process used for papermaking. Several decades ago researchers suggested that this method also could be used in biofuel production. The method involves treating switchgrass or corn stover with hydrogen peroxide under basic conditions.

  16. Electrochromic window with high reflectivity modulation

    DOE Patents [OSTI]

    Goldner, Ronald B. (Lexington, MA); Gerouki, Alexandra (Medford, MA); Liu, Te-Yang (Arlington, MA); Goldner, Mark A. (Cambridge, MA); Haas, Terry E. (Southborough, MA)

    2000-01-01

    A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments. Typical colored-state reflectivity of the multi-layered device is greater than 50% in the near infrared, bleached-state reflectivity is less than 40% in the visible, bleached-state transmissivity is greater than 60% in the near infrared and greater than 40% in the visible, and spectral absorbance is less than 50% in the range from 0.65-2.5 .mu.m.

  17. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  18. Mangroves - what are they worth

    SciTech Connect (OSTI)

    Christensen, B.

    1983-01-01

    This paper is based on a study for FAO and on the management and utilization of mangroves in Asia and the Pacific. Land use options are examined in relation to the different roles which mangroves play (provision of firewood, charcoal, timber and pulp; wildlife; fisheries and aquaculture; and agriculture). Special attention is paid to mangrove management in Malaysia. (Refs 26)

  19. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NewPage Demonstration-Scale Biorefinery NewPage Demonstration-Scale Biorefinery The NewPage biorefinery will be added to an existing pulp and paper mill to create renewable biofuels. PDF icon ibr_demonstration_newpage.pdf More Documents & Publications Flambeau River Biofuels Demonstration-Scale Biorefinery NewPage Corporation Stora Enso, North America

  20. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Flambeau River Biofuels Demonstration-Scale Biorefinery Flambeau River Biofuels Demonstration-Scale Biorefinery The Flambeau River biorefinery will be added to an existing pulp and paper mill to create green diesel. PDF icon ibr_demonstration_flambeau.pdf More Documents & Publications NewPage Demonstration-Scale Biorefinery Flambeau_River_Biofuels.pdf Pacific Ethanol, Inc

  1. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 0.000 -0.456 Mechanical Pulping-Electricity 0.794 1.006 -0.767 0.021 0.931 0.613 1.215 -1.380 0.893 September 2015 U.S. Energy Information Administration | Assumptions to the ...

  2. CIP1 polypeptides and their uses

    DOE Patents [OSTI]

    Foreman, Pamela (Los Altos, CA); Van Solingen, Pieter (Naaldwijk, NL); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (San Francisco, CA)

    2011-04-12

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  3. Trichoderma genes

    DOE Patents [OSTI]

    Foreman, Pamela (Los Altos, CA); Goedegebuur, Frits (Vlaardingen, NL); Van Solingen, Pieter (Naaldwijk, NL); Ward, Michael (San Francisco, CA)

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  4. Treatment of Lignin Precursors to Improve their Suitability for Carbon Fibers: A Literature Review

    SciTech Connect (OSTI)

    Paul, Ryan; Naskar, Amit; Gallego, Nidia; Dai, Xuliang; Hausner, Andrew

    2015-04-17

    Lignin has been investigated as a carbon fiber precursor since the 1960s. Although there have been a number of reports of successful lignin-based carbon fiber production at the lab scale, lignin-based carbon fibers are not currently commercially available. This review will highlight some of the known challenges, and also the reported methods for purifying and modifying lignin to improve it as a precursor. Lignin can come from different sources (e.g. hardwood, softwood, grasses) and extraction methods (e.g. organosolv, kraft), meaning that lignin can be found with a diversity of purity and structure. The implication of these conditions on lignin as carbon fiber precursor is not comprehensively known, especially as the lignin landscape is evolving. The work presented in this review will help guide the direction of a project between GrafTech and ORNL to develop lignin carbon fiber technology, as part of a cooperative agreement with the DOE Advanced Manufacturing Office.

  5. Chronic disease and early exposure to air-borne mixtures. 2. Exposure assessment

    SciTech Connect (OSTI)

    James Argo

    2007-10-15

    This work is part of a larger study of the impact of early exposure to releases from industry on the etiology of cancer. Releases from all kraft and sulfite mills, coke ovens, oil refineries, copper, nickel, and lead/zinc smelters operating in Canada during the exposure period of 1967-1970 have been determined. All plumes have been expressed in g BaP eq/d using the RASH methodology. The releases have been divided into process, boiler fuel, dioxin, and SO{sub 2} emissions. Combustion sources have been defined with FIREv6.23. Dioxin congenors are expected in all source types when the boiler fuel is heavy fuel oil, wood or wood bark, or coal. All about 90 communities examined have an inverted sex ratio. 53 refs., 2 figs., 4 tabs.

  6. Potential role of lignin in tomorrow's wood utilization technologies

    SciTech Connect (OSTI)

    Glasser, W.G.

    1981-03-01

    Low-grade timber supplies and wood processing residues are presently converted into paper products, used for fuel, or remain totally unused. Competition for this resource will continue to mount, particularly when manufacturers of chemicals and liquid fuels enter the market with new technologies now under development. The type of technology that concentrates on depolymerization of carbohydrates will generate large quantities of lignin-rich residues. The potential of these lignins to contribute to the economic feasibility of new chemical wood process technologies may involve degradative depolymerization to phenols and benzene, or polymer conversion into a wide variety of dispersants, binders, reinforcing and antioxidizing agents, etc. Where lignin's fuel value lies around 3 to 4 cents/lb. (fall of 1979), its raw material value for phenol is reported to be almost 5 cents/lb., and the value of the polymeric materials is estimated to be between 6 and 20 cents/lb. At the lower end of this range of raw material values are ligninsulfonates, which contribute nearly 98 percent to the approximately 1.5 billion lb./yr. U.S. market for lignin products. Kraft lignins are located at the opposite end of this range. Novel bioconversion-type lignins are expected to be more similar in structure and properties to kraft than to sulfite lignins. Whereas application of the dispersant properties of ligninsulfonates in tertiary oil recovery operations is expected to constitute the most significant use of lignin in terms of volume, adhesive and resin applications hold the greatest promise in terms of value. Both utilization schemes seem to require pretreatments in the form of either polymeric fractionation or chemical modification. Potential savings from the use of polymeric lignins in material systems are great.

  7. Modified approaches for high pressure filtration of fine clean coal

    SciTech Connect (OSTI)

    Yang, J.; Groppo, J.G.; Parekh, B.K. [Center for Applied Energy Research, Lexington, KY (United States)

    1995-12-31

    Removal of moisture from fine (minus 28 mesh) clean coal to 20% or lower level is difficult using the conventional vacuum dewatering technique. High pressure filtration technique provides an avenue for obtaining low moisture in fine clean coal. This paper describes a couple of novel approaches for dewatering of fine clean coal using pressure filtration which provides much lower moisture in fine clean coal than that obtained using conventional pressure filter. The approaches involve (a) split stream dewatering and (b) addition of paper pulp to the coal slurry. For Pittsburgh No. 8 coal slurry, split stream dewatering at 400 mesh provided filter cake containing 12.9% moisture compared to 24.9% obtained on the feed material. The addition of paper pulp to the slurry provided filter cake containing about 17% moisture.

  8. Process modeling and industrial energy use

    SciTech Connect (OSTI)

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  9. Microbial desulphurization of Turkish lignites by White Rot Fungi

    SciTech Connect (OSTI)

    Pinar Aytar; Mesut Sam; Ahmet Cabuk

    2008-03-15

    Biodesulphurization experiments were carried out with Tuncbilek lignite, characterized by high sulfur content (2.59%) by using Trametes versicolor ATCC 200801 and Phanerochaete chrysosporium ME 446. At fungal biomass studies, the effects of various parameters on fungal desulphurization of coals such as pH, temperature, pulp density, incubation time, and sterilization were investigated for both microorganisms. The maximum desulphurization (40%) was observed after 6 days of incubation at 35{sup o}C for T. versicolor. The optimum pH was measured at 6, and the agitation rate was fixed at 125 rpm. The pulp density was found as 5% (w/v) for the high extent of desulphurization. Also, calorific value did not change during this experiment. However, the ash and metal contents of coal were eliminated. 30 refs., 6 figs., 2 tabs.

  10. Method for the preparation of photochromic insulating crystals

    DOE Patents [OSTI]

    Abraham, Marvin M.; Boldu, Jose L.; Chen, Yok; Orera, Victor M.

    1986-01-01

    A method for preparing reversible-photochromic magnesium oxide (MgO) crystals. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater than 1000.degree. K. in a hydrogen atmosphere. Alternate irradiation with UV and visible light result in rejuvenation and bleaching of the amber coloration, respectively.

  11. Solitary pulse-on-demand production by optical injection locking of passively Q-switched InGaN diode laser near lasing threshold

    SciTech Connect (OSTI)

    Zeng, X. E-mail: dmitri.boiko@csem.ch; Stadelmann, T.; Grossmann, S.; Hoogerwerf, A. C.; Boko, D. L. E-mail: dmitri.boiko@csem.ch; Sulmoni, L.; Lamy, J.-M.; Grandjean, N.

    2015-02-16

    In this letter, we investigate the behavior of a Q-switched InGaN multi-section laser diode (MSLD) under optical injection from a continuous wave external cavity diode laser. We obtain solitary optical pulse generation when the slave MSLD is driven near free running threshold, and the peak output power is significantly enhanced with respect to free running configuration. When the slave laser is driven well above threshold, optical injection reduces the peak power. Using standard semiconductor laser rate equation model, we find that both power enhancement and suppression effects are the result of partial bleaching of the saturable absorber by externally injected photons.

  12. Decontamination formulations for disinfection and sterilization

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Engler, Daniel E. (Albuquerque, NM)

    2007-09-18

    Aqueous decontamination formulations that neutralize biological pathogens for disinfection and sterilization applications. Examples of suitable applications include disinfection of food processing equipment, disinfection of areas containing livestock, mold remediation, sterilization of medical instruments and direct disinfection of food surfaces, such as beef carcasses. The formulations include at least one reactive compound, bleaching activator, inorganic base, and water. The formulations can be packaged as a two-part kit system, and can have a pH value in the range of 7-8.

  13. Lanthanide and actinide doped glasses as reference standards for dye doped systems

    SciTech Connect (OSTI)

    Pope, E.J.A.; Hentschel, A.

    1996-12-31

    Organic dye molecules are well known to be subject to chemical and optical bleaching damage, temperature instability, and other forms of optical degradation. Currently recognized methods of referencing rely upon fluorescent salt solutions, such as quinine sulfate. In this paper, optically-active lanthanide and actinide doped gel-glasses are compared as reference standards for dye doped polymers. Samples are subjected to continuous illumination by 254 nm UV radiation. While dye-doped polymers exhibited approximately 65 percent decline in fluorescence intensity after 96 hours of irradiation, glass samples and glass powder in resin showed no decline in fluorescence intensities.

  14. Method for the preparation of photochromic insulating crystals

    DOE Patents [OSTI]

    Abraham, M.M.; Boldu, J.L.; Chen, Y.; Orera, V.M.

    1984-09-28

    A method for preparing reversible-photochromic magnesium oxide (MgO) crystals is disclosed. Single crystals of MgO doped with both lithium (Li) and nickel (Ni) are grown by a conventional arc fusion method. The as-grown crystals are characterized by an amber coloration. The crystals lose the amber coloration and become photochromic when they are thermochemically reduced by heating at temperatures greater then 1000/sup 0/K in a hydrogen atmosphere. Alternate irradiation with uv and visible light result in rejuvenation and bleaching of the amber coloration, respectively.

  15. Compositional trends of ?-induced optical changes observed in chalcogenide glasses of binary As-S system

    SciTech Connect (OSTI)

    Shpotyuk, M.; Shpotyuk, O.; Golovchak, Roman; McCloy, John S.; Riley, Brian J.

    2014-01-23

    Compositional trends of ?-induced optical changes in chalcogenide glasses are studied with the binary As-S system. Effects of ?-irradiation and annealing are compared using the changes measured in the fundamental optical absorption edge region. It is shown that annealing near the glass transition temperature leads to bleaching of As-S glasses, while ?-irradiation leads to darkening; both depend on the glass composition and thermal history of the specimens. These results are explained in terms of competitive destructionpolymerization transformations and physical aging occurring in As-S chalcogenide glasses under the influence of ?-irradiation.

  16. Efficient room-temperature source of polarized single photons

    DOE Patents [OSTI]

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  17. Control corrosion with new nickel-base alloys

    SciTech Connect (OSTI)

    Schade, J.P. ); Ross, R.W. Jr. )

    1994-07-01

    Nickel plays an important role in many of the alloys developed to withstand corrosive process environments such as those in chemical, petrochemical, power, marine, and pulp and paper industries. It imparts excellent corrosion resistance, toughness, metallurgical stability, and fabricability to alloys containing iron, chromium, tungsten, and other metals. These alloys are valuable in processes with high concentrations of corrosives and high operating temperatures. These alloys and their corrosive environments are discussed here.

  18. System and method for altering the tack of materials using an electrohydraulic discharge

    DOE Patents [OSTI]

    Banerjee, Sujit (Marietta, GA); Corcoran, Howard (Atlanta, GA)

    2007-11-13

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  19. System and method for altering the tack of materials using an electrohydraulic discharge

    DOE Patents [OSTI]

    Banerjee, Sujit (Marietta, GA); Corcoran, Howard (Atlanta, GA)

    2003-01-01

    A system and method for altering the tack of a material, namely a polymer used as an adhesive, also known as stickies, or pitch. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater.

  20. Sponge

    Energy Science and Technology Software Center (OSTI)

    2011-11-15

    Sponge provides a web interface to Pulp (http://pulpproject.org/) that implements a particular workflow as described in the paper “Staging Package Deployment via Repository Management” (http://www.usenix.org/events/lisa11/tech/full_papers/Pierre.pdf). Namely, it implements a process for intensive management of software repositories to apply more deterministic updates to clients of those repositories.

  1. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  2. Save Energy Now Alabama | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alabama Save Energy Now Alabama Map highlighting Alabama With a variety of energy-intensive industries, such as chemicals, metals, pulp, and paper located within the state, Alabama ranks eighth among states as the largest industrial energy user. Due to this high concentration of industry, the Alabama Department of Economic and Community Affairs (ADECA) formed a team, including the Alabama Technology Network (ATN) and the Alabama Industrial Assessment Center (AIAC), to inform industrial

  3. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Table 7.1 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Physical Units. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources

  4. Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected;

    Gasoline and Diesel Fuel Update (EIA)

    Next MECS will be conducted in 2010 Table 7.2 Average Prices of Purchased Energy Sources, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping

  5. Climate Vision Progress Report 2007 | Department of Energy

    Energy Savers [EERE]

    Climate Vision Progress Report 2007 Climate Vision Progress Report 2007 An intensive report on climate change an the establishment of Climate Vision which is a voluntary partnership that stands for (Voluntary Innovative Sector Initiatives: Opportunities Now). PDF icon Climate Vision Progress Report 2007 More Documents & Publications Climate VISION Progress Report 2007 Fact Sheet -- Climate VISION 02-12-031.doc� ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and

  6. The use of a permanent magnet for water content measurements ofwood chips

    SciTech Connect (OSTI)

    Barale, P.J.; Fong, C.G.; Green, M.A.; Luft, P.A.; McInturff,A.D.; Reimer, J.A.; Yahnke, M.

    2001-09-20

    The Lawrence Berkeley National Laboratory has developed a device that measures the water content of wood chips, pulp and brown stock for the paper industry. This device employs a permanent magnet as the central part of a NMR measurement system. This report describes the magnet and the NMR measurement system. The results of water content measurements in wood chips in a magnetic field of 0.47 T are presented.

  7. Center for Nanophase Materials Sciences (CNMS) - ORNL develops lignin-based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermoplastic conversion process ORNL DEVELOPS LIGNIN-BASED THERMOPLASTIC CONVERSION PROCESS (Newswise) Turning lignin, a plant's structural "glue" and a byproduct of the paper and pulp industry, into something considerably more valuable is driving a research effort headed by Amit Naskar of Oak Ridge National Laboratory... Other ORNL authors are Tomonori Saito, Rebecca Brown, Marcus Hunt, Deanna Pickel, Joseph Pickel, Jamie Messman, Frederick Baker and Martin Keller. The research

  8. NREL Helps Industry Partner Commercialize Promising Technology For Forest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Products Industry Industry Partner Commercialize Promising Technology For Forest Products Industry For more information contact: e:mail: Public Affairs Golden, Colo., April 3, 1997 -- The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) recently signed a cooperative research and development agreement (CRADA) with Minerals Technologies, Inc. of Bethlehem, Penn. to conduct research to improve the quality of paper derived from thermomechanical pulp (TMP). The 17-month

  9. Sacrificial Protective Coating Materials That Can Be Regenerated In-Situ to Enable High-Performance Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protective Coating Materials ADVANCED MANUFACTURING OFFICE Protective Coating Materials Sacrificial Protective Coating Materials That Can Be Regenerated In- Situ to Enable High-Performance Membranes Membrane Technology Provides Energy-Efficient Method to Concentrate Weak Black Liquor. Among the various manufacturing processes employed across all U.S. industries, the process of concentrating weak black liquor (WBL) in the pulp and paper industry is identifed as one of the largest energy reduction

  10. Table 7.2 Average Prices of Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 7.2 Average Prices of Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: All Energy Sources Collected; Unit: U.S. Dollars per Million Btu. Selected Wood and Other Biomass Components Coal Components Coke Electricity Components Natural Gas Components Steam Components Total Wood Residues Bituminous Electricity Diesel Fuel Motor Natural Gas Steam and Wood-Related and Electricity from Sources and Gasoline Pulping Liquor Natural Gas from Sources Steam

  11. Originally Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009" "Revised: October 2009" "Next MECS will be conducted in 2010" "Table 3.5 Selected Byproducts in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,,,,,,,,,"Waste" ,,,,"Blast",,,,"Pulping Liquor",,"Oils/Tars"

  12. RSE Table 3.5 Relative Standard Errors for Table 3.5

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 3.5;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," ","

  13. Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    RSE Table 3.6 Relative Standard Errors for Table 3.6;" " Unit: Percents." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," " "NAICS","

  14. Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  15. Released: May 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"Selected Wood and Wood-Related Products" ,,,"Biomass" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," ","

  16. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Inc. St. Helens mill produces nearly 1,000 tons of pulp and specialty paper per day, including a wide variety of light-to-heavy paper and napkin grade tissues. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Annual Energy Savings Exceed $1 Million Industrial Technologies Program Case Study Benefits * Achieved annual energy cost savings of more than $1 million * Achieved annual fuel savings of approximately 154,000 MMBtu * Revealed innovative method to save energy *

  17. Saccrifical Protective Coating Materials that can be Regenerated In-Situ to Enable High Performance and Low Cost Membranes

    Energy Savers [EERE]

    Peter Malati, Rahul Ganguli and Vivek Mehrotra Teledyne Scientific Company U.S. DOE Advanced Manufacturing Office Peer Review Meeting Washington, D.C. May 6-7, 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Objective Pulp and Paper Mill Currently, energy-intensive evaporators * Separate water from Weak Black Liquor (WBL) for reuse * Resulting strong black liquor burned in recovery unit  Develop membrane filtration for

  18. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable Nanomaterials Workshop Washington, DC Mark Watkins Senior Vice President MeadWestvaco Corporation July 26, 2012 Transforming the forest products industry through innovation 2 The U.S. Forest Products Industry's Economic Impact  5% of U.S. manufacturing GDP  Ninth largest manufacturing sector in U.S.  On par with plastics and automotive  Top 10 manufacturing employer in 48 states  418 pulp and

  19. Climate VISION Progress Report 2007 | Department of Energy

    Office of Environmental Management (EM)

    Climate VISION Progress Report 2007 Climate VISION Progress Report 2007 There is a growing recognition that climate change cannot be dealt with effectively in isolation PDF icon Climate VISION Progress Report 2007 More Documents & Publications Climate Vision Progress Report 2007 Fact Sheet -- Climate VISION 02-12-031.doc� ITP Forest Products: Energy and Environmental Profile of the U.S. Pulp and Paper Industry

  20. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  1. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  2. Recent Progress in Producing #11;Lignin-Based Carbon Fibers for Functional Applications

    SciTech Connect (OSTI)

    Paul, Ryan; Burwell, Deanna; Dai, Xuliang; Naskar, Amit; Gallego, Nidia; Akato, Kokouvi

    2015-10-29

    Lignin, a biopolymer, has been investigated as a renewable and low-cost carbon fiber precursor since the 1960s. Although successful lab-scale production of lignin-based carbon fibers has been reported, there are currently not any commercial producers. This paper will highlight some of the known challenges with converting lignin-based precursors into carbon fiber, and the reported methods for purifying and modifying lignin to improve it as a precursor. Several of the challenges with lignin are related to its diversity in chemical structure and purity, depending on its biomass source (e.g. hardwood, softwood, grasses) and extraction method (e.g. organosolv, kraft). In order to make progress in this field, GrafTech and Oak Ridge National Laboratory are collaborating to develop lignin-based carbon fiber technology and to demonstrate it in functional applications, as part of a cooperative agreement with the DOE Advanced Manufacturing Office. The progress made to date with producing lignin-based carbon fiber for functional applications, as well as developing and qualifying a supply chain and value proposition, are also highlighted.

  3. Rotational and radial velocities of 1.3-2.2 M {sub ?} red giants in open clusters

    SciTech Connect (OSTI)

    Carlberg, Joleen K.

    2014-06-01

    This study presents the rotational distribution of red giant (RG) stars in 11 old to intermediate age open clusters. The masses of these stars are all above the Kraft break, so they lose negligible amounts of their birth angular momentum (AM) during the main-sequence (MS) evolution. However, they do span a mass range with quite different AM distributions imparted during formation, with the stars less massive than ?1.6M {sub ?} arriving on the MS with lower rotation rates than the more massive stars. The majority of RGs in this study are slow rotators across the entire red giant branch regardless of mass, supporting the picture that intermediate-mass stars rapidly spin down when they evolve off the MS and develop convection zones capable of driving a magnetic dynamo. Nevertheless, a small fraction of RGs in open clusters show some level of enhanced rotation, and faster rotators are as common in these clusters as in the field RG population. Most of these enhanced rotators appear to be red clump stars, which is also true of the underlying stellar sample, while others are clearly RGs that are above or below the clump. In addition to rotational velocities, the radial velocities (RVs) and membership probabilities of individual stars are also presented. Cluster heliocentric RVs for NGC 6005 and Pismis 18 are reported for the first time.

  4. Energy minimization of separation processes using conventional/membrane hybrid systems

    SciTech Connect (OSTI)

    Gottschlich, D.E.; Roberts, D.L. )

    1990-09-28

    The purpose of this study was to identify the general principles governing the choice of hybrid separation systems over straight membrane or straight nonmembrane systems and to do so by examining practical applications (process design and economics). Our focus was to examine the energy consumption characteristics and overall cost factors of the membrane and nonmembrane technologies that cause hybrid systems to be preferred over nonhybrid systems. We evaluated four cases studies, chosen on the basis of likelihood of commercial viability of a hybrid system and magnitude of energy savings: (1) propane/propylene separation; (2) removal of nitrogen from natural gas; (3) concentration of Kraft black liquor; and (4)solvent deasphalting. For propane/propylene splitting, the membrane proved to be superior to distillation in both thermodynamic efficiency and processing cost (PC) when the product was 95% pure propylene. However, to produce higher purity products, the membrane alone could not perform the separation, and a membrane/distillation hybrid was required. In these cases, there is an optimum amount of separation to be accomplished by the membrane (expressed as the fraction of the total availability change of the membrane/distillation hybrid that takes place in the membrane and defined as {phi}{sub m}, the thermodynamic extent of separation). Qualitative and quantitative guidelines are discussed with regard to choosing a hybrid system. 54 refs., 66 figs., 36 tabs.

  5. Horizontal-flow anaerobic immobilized sludge (HAIS) reactor for paper industry wastewater treatment

    SciTech Connect (OSTI)

    Foresti, E.; Cabral, A.K.A.; Zaiat, M.; Del Nery, V.

    1996-11-01

    Immobilized cell reactors are known to permit the continuous operation without biomass washout and also for increasing the time available for cells` catalytic function in a reaction or in a series of reactions. Several cell immobilization supports have been used in different reactors for anaerobic wastewater treatment, such as: agar gel, acrylamide, porous ceramic, and polyurethane foam besides the self-immobilized biomass from UASB reactors. However, the results are not conclusive as to the advantages of these different reactors with different supports as compared to other anaerobic reactor configurations. This paper describes a new anaerobic attached growth reactor configuration, herein referred as horizontal-flow anaerobic immobilized sludge (HAIS) reactor and presents the results of its performance test treating kraft paper industry wastewater. The reactor configuration was conceived aiming to increase the ratio useful volume/total volume by lowering the volume for gas separation. The HAIS reactor conception would permit also to incorporate the reactor hydrodynamic characteristics in its design criteria if the flow pattern could be approximated as plug-flow.

  6. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1992-12-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  7. Business Development Executive (BDE) Program

    SciTech Connect (OSTI)

    Rice, E.J. "Woody"; Frederick, W. James

    2005-12-05

    The IPST BDE (Institute of Paper Science and Technology Business Development Executive) program was initiated in 1997 to make the paper industry better aware of the new manufacturing technologies being developed at IPST for the U.S. pulp and paper industry's use. In April 2000, the BDE program management and the 20 BDEs, all retired senior level industry manufacturing and research executives, were asked by Ms. Denise Swink of OIT at DOE to take the added responsibility of bringing DOE developed energy conservation technology to the paper industry. This project was funded by a DOE grant of $950,000.

  8. Physical and Numerical Analysis of Extrusion Process for Production of Bimetallic Tubes

    SciTech Connect (OSTI)

    Misiolek, W.Z.; Sikka, V.K.

    2006-08-10

    Bimetallic tubes are used for very specific applications where one of the two metals provides strength and the other provides specific properties such as aqueous corrosion and carburization, coking resistance, and special electrical and thermal properties. Bimetallic tubes have application in pulp and paper industry for heat-recovery boilers, in the chemical industry for ethylene production, and in the petrochemical industry for deep oil well explorations. Although bimetallic tubes have major applications in energy-intensive industry, they often are not used because of their cost and manufacturing sources in the United States. This project was intended to address both of these issues.

  9. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect (OSTI)

    1995-09-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  11. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI Compendex*plus database). NewSearch

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  12. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI Compendex*Plus database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  13. System and method for altering characteristics of materials using an electrohydraulic discharge

    DOE Patents [OSTI]

    Banerjee, Sujit

    2003-06-03

    System and method for oxidizing contaminants to alter specific properties, such as tack, of contaminants. The present invention reduces the tack of the stickies and pitch by exposing the materials for a short duration to low-energy pulsed electrical discharges between a pair of electrodes that are submerged in a liquid medium, such as a fiber stream, water, a pulp slurry, or whitewater. An electrical discharge in the liquid medium oxidizes materials, which may be dissolved or suspended therein, such as stickies, pitch, sulfide, ink, toner, and other substances, thereby reducing tack, odor, and/or zeta potential, as well as producing other desirable effect.

  14. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  15. The American farm: Harnessing the sun to fuel the world

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This NREL publication forecasts the future in energy crops. Tomorrow`s farm will produce crops like corn, soybeans, rapeseed, sunflowers for food and fuel. Farmers will harvest switchgrass and then sell it for feed or to make ethanol. Aspects of planting trees that are beneficial to the environment such as filtering run-off water are discussed. Economic issues of energy crop growth are presented. The harvesting of trees for pulp, paper, and energy and corn for electricity, fuels, and chemicals are both emphasized. Tree harvesting research from breeding programs to high-tech harvesting techniques is presented.

  16. Functional Stability of a Mixed Microbial Consortium Producing PHA From Waste Carbon Sources

    SciTech Connect (OSTI)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs) represent an environmentally-effective alternative to synthetic thermoplastics; however, current production practices are not sustainable. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing real wastewaters and mixed microbial consortia from municipal activated sludge as inoculum. Polymer production reached 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. Employing denaturing gradient gel electrophoresis of 16S-rDNA from PCR-amplified DNA extracts, distinctly different communities were observed between and within wastewaters following enrichment. Most importantly, functional stability was maintained despite differing and contrasting microbial populations.

  17. Fluorescence analyzer for lignin

    DOE Patents [OSTI]

    Berthold, John W. (Salem, OH); Malito, Michael L. (Hubbard, OH); Jeffers, Larry (Alliance, OH)

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  18. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    Gasoline and Diesel Fuel Update (EIA)

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  19. " Row: Selected SIC Codes; Column: Energy Sources;"

    U.S. Energy Information Administration (EIA) Indexed Site

    S5.1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data; " " Row: Selected SIC Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  20. "RSE Table N5.1. Relative Standard Errors for Table N5.1;"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Relative Standard Errors for Table N5.1;" " Unit: Percents." " "," "," "," "," "," "," "," ","Waste",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS"," "," ","Furnace/Coke","

  1. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, Stuart K. (Denver, CO); Hames, Bonnie R. (Westminster, CO); Myers, Michele D. (Dacono, CO)

    1998-01-01

    A method for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  2. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars

    DOE Patents [OSTI]

    Black, S.K.; Hames, B.R.; Myers, M.D.

    1998-03-24

    A method is described for separating lignocellulosic material into (a) lignin, (b) cellulose, and (c) hemicellulose and dissolved sugars. Wood or herbaceous biomass is digested at elevated temperature in a single-phase mixture of alcohol, water and a water-immiscible organic solvent (e.g., a ketone). After digestion, the amount of water or organic solvent is adjusted so that there is phase separation. The lignin is present in the organic solvent, the cellulose is present in a solid pulp phase, and the aqueous phase includes hemicellulose and any dissolved sugars.

  3. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1995-03-14

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  4. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, R.H.; Adel, G.T.; Luttrell, G.H.

    1998-09-29

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators. 14 figs.

  5. Table 3.5 Selected Byproducts in Fuel Consumption, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  6. Table 3.5 Selected Byproducts in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty

  7. Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0

  8. Table N5.1. Selected Byproducts in Fuel Consumption, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor","

  9. Originally Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009 Revised: October 2009 Next MECS will be conducted in 2010 Table 3.5 Selected Byproducts in Fuel Consumption, 2006; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Waste Blast Pulping Liquor Oils/Tars NAICS Furnace/Coke Petroleum or Wood Chips, and Waste Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Materials Total United States 311 Food 10 0 3 0 0 7 Q 3112 Grain and Oilseed Milling 7 0 1 0 0 6 *

  10. Released: August 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Relative Standard Errors for Table 3.5;" " Unit: Percents." ,,,,,,,,"Waste",," " ,,,"Blast",,,"Pulping Liquor",,"Oils/Tars" "NAICS",,,"Furnace/Coke",,"Petroleum","or","Wood Chips,","and Waste" "Code(a)","Subsector and Industry","Total","Oven Gases","Waste Gas","Coke","Black

  11. Released: March 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Selected Byproducts in Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste" " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars" "NAICS","

  12. table3.6_02

    U.S. Energy Information Administration (EIA) Indexed Site

    Selected Wood and Wood-Related Products in Fuel Consumption, 2002; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. S e l e c t e d W o o d a n d W o o d - R e l a t e d P r o d u c t s B i o m a s s Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and RSE NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Row Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e)

  13. Bioremediation with white rot fungus. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the use of white rot fungus to degrade a variety of hazardous materials. The citations examine the application of the fungus to the remediation of petroleum hydrocarbons, polychlorinated biphenyls, 2,4,6-trinitrotoluene (TNT), pentachlorophenol, herbicides, insecticides, and other environmentally persistent organic compounds. The results of laboratory and field studies are presented. The use of white rot fungus in biological pulping and delignification is also discussed. (Contains a minimum of 50 citations and includes a subject term index and title list.)

  14. Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycled | Department of Energy 3: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled Fact #763: January 21, 2013 Eighty-four Percent of Scrapped Tires Are Recycled There were 263 million tires scrapped in 2009 (latest available data) which amounts to more than 4.7 million tons of waste. Fortunately, 84% of that waste was recycled. Most of the recycled tires were used to make fuel for industries such as pulp and paper mills, cement kilns, and electric utilities. Ground

  15. U.S. Department of Energy Small-Scale Biorefineries: Project Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small-Scale Biorefineries Project Overview Round two selections - Announced April 18, 2008 Applicant Total Cost DOE Share Partner Cost Share Annual Production capacity Project Location Feedstock Technology RSE Pulp $90,000,000 $30,000,000 67% 2,200,000 Old Town, Maine Woodchips (mixed hardwood) Biochemical Ecofin, LLC $77,000,000 $30,000,000 61% 1,300,000 Washington County, Kentucky Corn cobs Biochemical (Solid State Fermentation) Mascoma $136,000,000 $25,000,000 82% 2,000,000 Monroe, TN

  16. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  17. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  18. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, Roe-Hoan (Blacksburg, VA); Adel, Gregory T. (Blacksburg, VA); Luttrell, Gerald H. (Blacksburg, VA)

    1998-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  19. Apparatus for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, Roe-Hoan (Blacksburg, VA); Adel, Gregory T. (Blacksburg, VA); Luttrell, Gerald H. (Blacksburg, VA)

    1995-01-01

    An apparatus is disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal, and minerals so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  20. Apparatus and process for the separation of hydrophobic and hydrophilic particles using microbubble column flotation together with a process and apparatus for generation of microbubbles

    DOE Patents [OSTI]

    Yoon, Roe-Hoan (Blacksburg, VA); Adel, Gregory T. (Blacksburg, VA); Luttrell, Gerald H. (Blacksburg, VA)

    1992-01-01

    A method and apparatus are disclosed for the microbubble flotation separation of very fine and coarse particles, especially coal and minerals, so as to produce high purity and high recovery efficiency. This is accomplished through the use of a flotation column, microbubbles, recycling of the flotation pulp, and countercurrent wash water to gently wash the froth. Also disclosed are unique processes and apparatus for generating microbubbles for flotation in a highly efficient and inexpensive manner using either a porous tube or in-line static generators.

  1. Towards phasing using high X-ray intensity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sébastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; et al

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting schememore » is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.« less

  2. Towards phasing using high X-ray intensity

    SciTech Connect (OSTI)

    Galli, Lorenzo; Son, Sang -Kil; Barends, Thomas R. M.; White, Thomas A.; Barty, Anton; Botha, Sabine; Boutet, Sbastien; Caleman, Carl; Doak, R. Bruce; Nanao, Max H.; Nass, Karol; Shoeman, Robert L.; Timneanu, Nicusor; Santra, Robin; Schlichting, Ilme; Chapman, Henry N.

    2015-09-30

    X-ray free-electron lasers (XFELs) show great promise for macromolecular structure determination from sub-micrometre-sized crystals, using the emerging method of serial femtosecond crystallography. The extreme brightness of the XFEL radiation can multiply ionize most, if not all, atoms in a protein, causing their scattering factors to change during the pulse, with a preferential `bleaching' of heavy atoms. This paper investigates the effects of electronic damage on experimental data collected from a Gd derivative of lysozyme microcrystals at different X-ray intensities, and the degree of ionization of Gd atoms is quantified from phased difference Fourier maps. In conclusion, a pattern sorting scheme is proposed to maximize the ionization contrast and the way in which the local electronic damage can be used for a new experimental phasing method is discussed.

  3. Simultaneous effects of photo- and radio- darkening in ytterbium-doped aluminosilicate fibers

    SciTech Connect (OSTI)

    Duchez, Jean-Bernard Mady, Franck Mebrouk, Yasmine Benabdesselam, Mourad

    2014-10-21

    We present original characterizations of photo-radio-darkening in ytterbium-doped silica optical fibers submitted to the simultaneous action of the pump and of an ionizing radiation. We present the interplay between both radiations, showing e.g. that the pump is able to darken or bleach the fiber depending on the ionizing dose. The photo-resistance of the fiber is shown to play a crucial role on its radio-resistance, and that photo-resistant fibers should be also radio-resistant in low dose rate conditions. All the results are thoroughly explained by a physical model presented in a separate article by Mady et al. (this conference proceeding)

  4. Method and Pd/V2 O5 device for H2 detection

    DOE Patents [OSTI]

    Liu, Ping (San Diego, CA); Tracy, C. Edwin (Golden, CO); Pitts, J. Roland (Lakewood, CO); Smith, II, R. Davis (Golden, CO); Lee, Se-Hee (Lakewood, CO)

    2011-12-27

    Methods and Pd/V.sub.2O.sub.5 devices for hydrogen detection are disclosed. An exemplary method of preparing an improved sensor for chemochromic detection of hydrogen gas over a wide response range exhibits stability during repeated coloring/bleaching cycles upon exposure and removal of hydrogen gas. The method may include providing a substrate. The method may also include depositing a V.sub.20.sub.5 layer that functions as a H.sub.2 insertion host in a Pd/V.sub.20.sub.5 hydrogen sensor to be formed on said substrate. The method may also include depositing a Pd layer onto said V.sub.20.sub.5 layer; said Pd layer functioning as an optical modulator.

  5. Enhanced formulations for neutralization of chemical, biological and industrial toxants

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuqueque, NM) [Albuqueque, NM

    2008-06-24

    An enhanced formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The enhanced formulation according to the present invention is non-toxic and non-corrosive and can be delivered by a variety of means and in different phases. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator and water.

  6. Decontamination formulation with additive for enhanced mold remediation

    DOE Patents [OSTI]

    Tucker, Mark D.; Irvine, Kevin; Berger, Paul; Comstock, Robert

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  7. Donor impurity states and related terahertz range nonlinear optical response in GaN cylindrical quantum wires: Effects of external electric and magnetic fields

    SciTech Connect (OSTI)

    Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.

    2014-06-07

    We report a study on the optical absorption coefficient associated to hydrogenic impurity interstate transitions in zinc-blende GaN quantum wires of cylindrical shape taking into account the effects of externally applied static electric and magnetic fields. The electron states emerge within the effective mass approximation, via the exact diagonalization of the donor-impurity Hamiltonian with parabolic confinement and external field effects. The nonlinear optical absorption is calculated using a recently derived expression for the dielectric susceptibility, obtained via a nonperturbative solution of the density-matrix Bloch equation. Our results show that this treatment eliminates not only the intensity-dependent bleaching effect but also the change in sign of the nonlinear contribution due to the combined effect of asymmetric impurity location and the applied electric field.

  8. High optical and switching performance electrochromic devices based on a zinc oxide nanowire with poly(methyl methacrylate) gel electrolytes

    SciTech Connect (OSTI)

    Chun, Young Tea; Chu, Daping; Neeves, Matthew; Placido, Frank; Smithwick, Quinn

    2014-11-10

    High performance electrochromic devices have been fabricated and demonstrated utilizing a solid polymer electrolyte and zinc oxide (ZnO) nanowire (NW) array counter electrode. The poly(methyl methacrylate) based polymer electrolyte was spin coated upon hydrothermally grown ZnO NW array counter electrodes, while electron beam evaporated NiO{sub x} thin films formed the working electrodes. Excellent optical contrast and switching speeds were observed in the fabricated devices with active areas of 2?cm{sup 2}, exhibiting an optical contrast of 73.11% at the wavelength of 470?nm, combined with a fast switching time of 0.2 s and 0.4 s for bleaching and coloration, respectively.

  9. The production of fuels and chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1991--December 1991

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year`s project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  10. The production of fuels and chemicals from food processing wastes using a novel fermenter separator

    SciTech Connect (OSTI)

    Dale, M.C.; Venkatesh, K.V.; Choi, Hojoon; Moelhman, M.; Saliceti, L.; Okos, M.R.; Wankat, P.C.

    1991-12-01

    During 1991, considerable progress was made on the waste utilization project. Two small Wisconsin companies have expressed an interest in promoting and developing the ICRS technology. Pilot plant sites at (1) Hopkinton, IA, for a sweet whey plant, and Beaver Dam WI, for an acid whey site have been under development siting ICRS operations. The Hopkinton, IA site is owned and operated by Permeate Refining Inc., who have built a batch ethanol plant across the street from Swiss Valley Farms cheddar cheese operations. Permeate from Swiss Valley is piped across to PRI. PRI has signed a contract to site a 300--500,000 gallon/yr to ICRS pilot plant. They feel that the lower labor, lower energy, continuous process offered by the ICRS will substantially improve their profitability. Catalytics, Inc, is involved with converting whey from a Kraft cream cheese operation to ethanol and yeast. A complete project including whey concentration, sterilization, and yeast growth has been designed for this site. Process design improvements with the ICRS focussed on ethanol recovery techniques during this year's project. A solvent absorption/extractive distillation (SAED) process has been developed which offers the capability of obtaining an anhydrous ethanol product from vapors off 3 to 9% ethanol solutions using very little energy for distillation. Work on products from waste streams was also performed. a. Diacetyl as a high value flavor compound was very successfully produced in a Stirred Tank Reactor w/Separation. b. Yeast production from secondary carbohydrates in the whey, lactic acid, and glycerol was studied. c. Lactic acid production from cellulose and lactose studies continued. d. Production of anti-fungal reagents by immobilized plant cells; Gossypol has antifungal properties and is produced by G. arboretum.

  11. Process for making ceramic insulation

    DOE Patents [OSTI]

    Akash, Akash (Salt Lake City, UT); Balakrishnan, G. Nair (Sandy, UT)

    2009-12-08

    A method is provided for producing insulation materials and insulation for high temperature applications using novel castable and powder-based ceramics. The ceramic components produced using the proposed process offers (i) a fine porosity (from nano-to micro scale); (ii) a superior strength-to-weight ratio; and (iii) flexibility in designing multilayered features offering multifunctionality which will increase the service lifetime of insulation and refractory components used in the solid oxide fuel cell, direct carbon fuel cell, furnace, metal melting, glass, chemical, paper/pulp, automobile, industrial heating, coal, and power generation industries. Further, the ceramic components made using this method may have net-shape and/or net-size advantages with minimum post machining requirements.

  12. Potential for cogeneration in Maryland. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    Cogeneration is a name given to energy systems that produce both electric power and useful thermal energy such as steam. While cogeneration markets have flourished in California, Texas, and some states, those in Maryland have not. A primary reason is that the industries that have been targeted in other states--e.g., oil refining, pulp and paper, chemicals, food processing--are not major elements of Maryland's industrial base. The study estimates the potential for future cogeneration in Maryland, both large units and small packaged systems, and assesses the potential impact of cogeneration systems on Maryland's energy needs between now and 2005. The study is presented in three volumes. Because of significant differences between large- and small-scale cogeneration, the analysis of these two systems was performed separately. This volume is a summary document presenting the findings from both studies.

  13. Method for recovering and using lignin in adhesive resins by extracting demethylated lignin

    DOE Patents [OSTI]

    Schroeder, Herbert A.

    1991-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.

  14. Method for recovering and using lignin in adhesive resins

    DOE Patents [OSTI]

    Schroeder, Herbert A.

    1993-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is dissolved in an alkaline solution to which an aldehyde source is added to produce a resol-type resin. The aldehyde source may be formaldehyde in solution, paraformaldehyde, hexamethylenetetramine, or other aldehydes including acetaldehyde, furfural, and their derivatives.

  15. Tappable Pine Trees: Commercial Production of Terpene Biofuels in Pine

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: The University of Florida is working to increase the amount of turpentine in harvested pine from 4% to 20% of its dry weight. While enhanced feedstocks for biofuels have generally focused on fuel production from leafy plants and grasses, the University of Florida is experimenting with enhancing fuel production in a species of pine that is currently used in the paper pulping industry. Pine trees naturally produce around 3-5% terpene content in the woodterpenes are the energy-dense fuel molecules that are the predominant components of turpentine. The team aims to increase the terpene storage potential and production capacity while improving the terpene composition to a point at which the trees could be tapped while alive, like sugar maples. Growth and production from these trees will take years, but this pioneering technology could have significant impact in making available an economical and domestic source of aviation and diesel biofuels.

  16. System and technique for ultrasonic characterization of settling suspensions

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Panetta, Paul D. (Richland, WA); Bamberger, Judith A. (Richland, WA); Pappas, Richard A. (Richland, WA)

    2006-11-28

    A system for determining properties of settling suspensions includes a settling container, a mixer, and devices for ultrasonic interrogation transverse to the settling direction. A computer system controls operation of the mixer and the interrogation devices and records the response to the interrogating as a function of settling time, which is then used to determine suspension properties. Attenuation versus settling time for dilute suspensions, such as dilute wood pulp suspension, exhibits a peak at different settling times for suspensions having different properties, and the location of this peak is used as one mechanism for characterizing suspensions. Alternatively or in addition, a plurality of ultrasound receivers are arranged at different angles to a common transmitter to receive scattering responses at a variety of angles during particle settling. Angular differences in scattering as a function of settling time are also used to characterize the suspension.

  17. Transgenic plants expressing GLK1 and CCA1 having increased nitrogen assimilation capacity

    DOE Patents [OSTI]

    Coruzzi, Gloria (New York, NY); Gutierrez, Rodrigo A. (Santiago, CL); Nero, Damion C. (Woodside, NY)

    2012-04-10

    Provided herein are compositions and methods for producing transgenic plants. In specific embodiments, transgenic plants comprise a construct comprising a polynucleotide encoding CCA1, GLK1 or bZIP1, operably linked to a plant-specific promote, wherein the CCA1, GLK1 or bZIP1 is ectopically overexpressed in the transgenic plants, and wherein the promoter is optionally a constitutive or inducible promoter. In other embodiments, transgenic plants in which express a lower level of CCA1, GLK1 or bZIP1 are provided. Also provided herein are commercial products (e.g., pulp, paper, paper products, or lumber) derived from the transgenic plants (e.g., transgenic trees) produced using the methods provided herein.

  18. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  19. Feedstock and Conversion Supply System Design and Analysis

    SciTech Connect (OSTI)

    J. Jacobson; R. Mohammad; K. Cafferty; K. Kenney; E. Searcy; J. Hansen

    2014-09-01

    The success of the earlier logistic pathway designs (Biochemical and Thermochemical) from a feedstock perspective was that it demonstrated that through proper equipment selection and best management practices, conventional supply systems (referred to in this report as “conventional designs,” or specifically the 2012 Conventional Design) can be successfully implemented to address dry matter loss, quality issues, and enable feedstock cost reductions that help to reduce feedstock risk of variable supply and quality and enable industry to commercialize biomass feedstock supply chains. The caveat of this success is that conventional designs depend on high density, low-cost biomass with no disruption from incremental weather. In this respect, the success of conventional designs is tied to specific, highly productive regions such as the southeastern U.S. which has traditionally supported numerous pulp and paper industries or the Midwest U.S for corn stover.

  20. Xylanases, nucleic acids encoding them and methods for making and using them

    DOE Patents [OSTI]

    Gray, Kevin A; Dirmeier, Reinhard

    2013-07-16

    The invention relates to enzymes having xylanase, mannanase and/or glucanase activity, e.g., catalyzing hydrolysis of internal .beta.-1,4-xylosidic linkages or endo-.beta.-1,4-glucanase linkages; and/or degrading a linear polysaccharide beta-1,4-xylan into xylose. Thus, the invention provides methods and processes for breaking down hemicellulose, which is a major component of the cell wall of plants, including methods and processes for hydrolyzing hemicelluloses in any plant or wood or wood product, wood waste, paper pulp, paper product or paper waste or byproduct. In addition, methods of designing new xylanases, mannanases and/or glucanases and methods of use thereof are also provided. The xylanases, mannanases and/or glucanases have increased activity and stability at increased pH and temperature.

  1. Method for recovering and using lignin in adhesive resins by extracting demethylated lignin

    DOE Patents [OSTI]

    Schroeder, Herbert A. (Ft. Collins, CO)

    1991-01-01

    Lignin, or a lignin derived material, which has been significantly demethylated (e.g., the demethylated lignin found in the raffinate produced as a by-product of dimethyl sulfide production which can be carried out using the spent liquor from wood pulping operations) can be isolated by a process wherein an organic solvent is added to a lignin-containing aqueous solution. The organic solvent is typically a polar, and at least a partially water-immiscible substance such as, for example, ethyl acetate. The resulting lignin-containing aqueous solution/organic solvent mixture is acidified to produce a water layer which is discarded and an organic solvent layer which contains the demethylated lignin. Upon its recovery, the demethylated lignin is preferably dried and stored until it is used (along with an alkali, an aldehyde and an adhesive filler) in compounding an adhesive of the type generally used in the manufacture of plywood.

  2. "RSE Table N5.2. Relative Standard Errors for Table N5.2;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Relative Standard Errors for Table N5.2;" " Unit: Percents." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and",," "

  3. Chip pile storage - a review of practices to avoid deterioration and economic losses

    SciTech Connect (OSTI)

    Fuller, W.S.

    1985-08-01

    Chip pile storage began in the 1950s with the use of wood products residuals as a major source for pulp chips. Storage was required to handle the intermittent flow of chips to the mills. Chip piles were also used to build inventory for periods of the year when wood delivery was low, such as the winter and rainy seasons. In the early years of using chip pile storage, there were catastrophic losses of chip piles as a result of high temperatures and even fire. Numerous studies have determined the mechanisms that cause this deterioration, and methods have been developed to control the deterioration and reduce economic losses. Part of this inventory strategy includes equipment that has been specifically designed for storing and handling chips. This summary brings the past work together into a prescription for chip pile management that can be adapted to any mill that stores chips. 24 references.

  4. Investigations of release phenomenon of volatile organic compounds and particulates from residual storage chip piles

    SciTech Connect (OSTI)

    Mohan, S.; Nagarkatti, M.

    1996-12-31

    This paper outlines the method for estimating Particulate Matter and Volatile Organic Compounds (VOCs) emissions from wood handling and storage operations at a pulp mill. Fugitive particulate matter emissions from wood handling and storage operations are due to material load/dropout operations, wind erosion from storage piles and vehicular traffic on paved roads. The particulate matter emissions are a function of a number of variables like windspeed, surface moisture content, material silt content, and number of days of precipitation. Literature review attributes VOC emissions to biological, microbiological, chemical, and physical processes occurring in wood material storage pile. The VOC emissions are from the surface of these piles and the VOC released during retrieval of chips from the pile. VOC emissions are based on the chip throughput, number of turnovers, moisture content and surface area of the pile. The emission factors with the requisite calculation methodology to be utilized for quantifying VOC emissions from chip piles has been discussed in this paper.

  5. Industry-identified combustion research needs: Special study

    SciTech Connect (OSTI)

    Keller, J.G.; Soelberg, N.R.; Kessinger, G.F.

    1995-11-01

    This report discusses the development and demonstration of innovative combustion technologies that improve energy conservation and environmental practices in the US industrial sector. The report includes recommendations by industry on R&D needed to resolve current combustion-related problems. Both fundamental and applied R&D needs are presented. The report assesses combustion needs and suggests research ideas for seven major industries, which consume about 78% of all energy used by industry. Included are the glass, pulp and paper, refinery, steel, metal casting, chemicals, and aluminum industries. Information has been collected from manufacturers, industrial operators, trade organizations, and various funding organizations and has been supplemented with expertise at the Idaho National Engineering Laboratory to develop a list of suggested research and development needed for each of the seven industries.

  6. Manipulation of lignin composition in plants using a tissue-specific promoter

    DOE Patents [OSTI]

    Chapple, Clinton C. S.

    2003-08-26

    The present invention relates to methods and materials in the field of molecular biology, the manipulation of the phenylpropanoid pathway and the regulation of proteins synthesis through plant genetic engineering. More particularly, the invention relates to the introduction of a foreign nucleotide sequence into a plant genome, wherein the introduction of the nucleotide sequence effects an increase in the syringyl content of the plant's lignin. In one specific aspect, the invention relates to methods for modifying the plant lignin composition in a plant cell by the introduction there into of a foreign nucleotide sequence comprising at issue specific plant promoter sequence and a sequence encoding an active ferulate-5-hydroxylase (F5H) enzyme. Plant transformants harboring an inventive promoter-F5H construct demonstrate increased levels of syringyl monomer residues in their lignin, rendering the polymer more readily delignified and, thereby, rendering the plant more readily pulped or digested.

  7. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    SciTech Connect (OSTI)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    Recently there has been much interest in developing processes for producing liquid fuels from renewable resources. The most logical long term approach in terms of economics derives the carbohydrate substrate for fermentation from the hydrolysis of cellulosic crop and forest residues rather than from grains or other high grade food materials (1,2). Since the presence of lignin is the main barrier to the hydrolysis of cellulose from lignocellulosic materials, delignification processes developed by the wood pulping industry have been considered as possible prehydrolysis treatments. The delignification process under study in our laboratory is envisioned as a synthesis of two recently developed pulping processes. In the first step, called autohydrolysis, hot water is used directly to solubilize hemicellulose and to depolymerize lignin (3). Then, in a second step known as organosolv pulping (4), the autohydrolyzed material is extracted with aqueous alcohol. A s shown in Figure 1, this process can separate the original lignocellulosic material into three streams--hemicellulose in water, lignin in aqueous alcohol, and a cellulose pulp. Without further mechanical milling, delignified cellulose can be enzymatically hydrolyzed at 45-50 C to greater than 80% theoretical yield of glucose using fungal cellulases (5, 6). The resulting glucose syrup can then be fermented by yeast to produce ethanol or by selected bacteria to produce acetone and butanol or acetic and propionic acids (7). One objection to such a process, however, is the large energy input that is required. In order to extend our supplies of liquid fuels and chemicals, it is important that the use of fossil fuels in any lignocellulosic conversion process be minimized. The direct use of geothermal hot water in carrying out the autohydrolysis and extraction operations, therefore, seems especially attractive. On the one hand, it facilitates the conversion of non-food biomass to fuels and chemicals without wasting fossil fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

  8. Methods And Apparatus For Acoustic Fiber Fractionation

    DOE Patents [OSTI]

    Brodeur, Pierre (Smyrna, GA)

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  9. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.

    1997-12-31

    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  10. Function and dynamics of aptamers: A case study on the malachite green aptamer

    SciTech Connect (OSTI)

    Wang, Tianjiao

    2008-12-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH{sup -} is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD simulation and experimental verification. The former has potential application in controlling metabolic reactions and protein modifications by small reactants and the latter may serve as a general approach to study the dynamics of aptamer-target interaction for new insights into mechanisms of aptamer-target recognition.

  11. Mssbauer study of metallic iron and iron oxide nanoparticles having environmental purifying ability

    SciTech Connect (OSTI)

    Kubuki, Shiro Watanabe, Yuka Akiyama, Kazuhiko; Risti?, Mira; Krehula, Stjepko; Homonnay, Zoltn; Kuzmann, Ern?; Nishida, Tetsuaki

    2014-10-27

    A relationship between local structure and methylene blue (MB) decomposing ability of nanoparticles (NPs) of metallic iron (Fe{sup 0}) and maghemite (??Fe{sub 2}O{sub 3}) was investigated by {sup 57}Fe Mssbauer spectroscopy, X-ray diffractometry and UV-visible light absorption spectroscopy. ??Fe{sub 2}O{sub 3} NPs were successfully prepared by mixing (NH{sub 4}){sub 2}Fe(SO{sub 4}){sub 2}?6H{sub 2}O (Mohr's salt) and (NH{sub 4}){sub 3}Fe(C{sub 2}O{sub 4}){sub 3}?3H{sub 2}O aqueous solution at 30 C for 1 h, while those of Fe{sup 0} were obtained by the reduction of Mohr's salt with NaBH{sub 4}. From the Scherrer's equation, the smallest crystallite sizes of ??Fe{sub 2}O{sub 3} NPs and Fe{sup 0} NPs were determined to be 9.7 and 1.5 nm, respectively. {sup 57}Fe Mssbauer spectrum of ??Fe{sub 2}O{sub 3} NPs consists of a relaxed sextet with isomer shift (?) of 0.33{sub 0.01} mm s{sup ?1}, internal magnetic field (H{sub int}) of 25.8{sub 0.5} T, and linewidth (?) of 0.62{sub 0.04} mm s{sup ?1}. {sup 57}Fe Mssbauer spectrum of Fe{sup 0} NP is mainly composed of a sextet having ?, ?, and H{sub int} of 0.00{sub 0.01} mm s{sup ?1} 0.45{sub 0.01} mm s{sup ?1}, and 22.8{sub 0.1} T, respectively. A bleaching test of the mixture of Fe{sup 0} and ??Fe{sub 2}O{sub 3} NPs (3:7 ratio, 100 mg) in MB aqueous solution (20 mL) for 6 h showed a remarkable decrease of MB concentration with the first-order rate constant (k{sub MB}) of 6.7 10{sup ?1} h{sup ?1}. This value is larger than that obtained for the bleaching test using bulk Fe{sup 0}+??Fe{sub 2}O{sub 3} (3:7) mixture (k{sub MB}?=?6.510{sup ?3}h{sup ?1}). These results prove that MB decomposing ability is enhanced by the NPs mixture of Fe{sub 0} and ??Fe{sub 2}O{sub 3}.

  12. The south Karelia air pollution study: Effects of low-level expsoure to malodorous sulfur compounds on symptoms

    SciTech Connect (OSTI)

    Partti-Pellinen, K.; Marttila, O.; Vilkka, V.; Jaakkola, J.J. |

    1996-07-01

    Exposure to very low levels of ambient-air malodorous sulfur compounds and their effect on eye irritation, respiratory-tract symptoms, and central nervous system symptoms in adults were assessed. A cross-sectional self-administered questionnaire (response rate = 77%) was distributed during March and April 1992 to adults (n = 336) who lived in a neighborhood that contained a pulp mill and in a nonpolluted reference community (n = 380). In the exposed community, the measured annual mean concentrations of total reduced sulfur compounds and sulfur dioxide measured in two stations were 2 to 3 {mu}g/m{sup 3} and 1 {mu}g/m{sup 3}, respectively. In the reference community, the annual mean concentration of sulfur dioxide was 1 {mu}g/m{sup 3}. The residents of the community near the pulp mill reported an excess of cough, respiratory infections, and headache during the previous 4 wk, as well as during the preceding 12 mo. The relative risk for headache was increased significantly in the exposed community, compared with the reference area: the adjusted odds ratio (aOR) was 1.83 (95% confidence interval [95% Cl] = 1.06-3.15) during the previous 4 wk and 1.70 (95% Cl = 1.05-2.73) during the preceding 12 mo. The relative risk for cough was also increased during the preceding 12 mo (aOR = 1.64, 95% Cl = 1.01-2.64). These results indicated that adverse health effects of malodorous sulfur compounds occur at lower concentrations than reported previously. 25 refs., 3 tabs.

  13. BIOMASS GASIFICATION AND POWER GENERATION USING ADVANCED GAS TURBINE SYSTEMS

    SciTech Connect (OSTI)

    David Liscinsky

    2002-10-20

    A multidisciplined team led by the United Technologies Research Center (UTRC) and consisting of Pratt & Whitney Power Systems (PWPS), the University of North Dakota Energy & Environmental Research Center (EERC), KraftWork Systems, Inc. (kWS), and the Connecticut Resource Recovery Authority (CRRA) has evaluated a variety of gasified biomass fuels, integrated into advanced gas turbine-based power systems. The team has concluded that a biomass integrated gasification combined-cycle (BIGCC) plant with an overall integrated system efficiency of 45% (HHV) at emission levels of less than half of New Source Performance Standards (NSPS) is technically and economically feasible. The higher process efficiency in itself reduces consumption of premium fuels currently used for power generation including those from foreign sources. In addition, the advanced gasification process can be used to generate fuels and chemicals, such as low-cost hydrogen and syngas for chemical synthesis, as well as baseload power. The conceptual design of the plant consists of an air-blown circulating fluidized-bed Advanced Transport Gasifier and a PWPS FT8 TwinPac{trademark} aeroderivative gas turbine operated in combined cycle to produce {approx}80 MWe. This system uses advanced technology commercial products in combination with components in advanced development or demonstration stages, thereby maximizing the opportunity for early implementation. The biofueled power system was found to have a levelized cost of electricity competitive with other new power system alternatives including larger scale natural gas combined cycles. The key elements are: (1) An Advanced Transport Gasifier (ATG) circulating fluid-bed gasifier having wide fuel flexibility and high gasification efficiency; (2) An FT8 TwinPac{trademark}-based combined cycle of approximately 80 MWe; (3) Sustainable biomass primary fuel source at low cost and potentially widespread availability-refuse-derived fuel (RDF); (4) An overall integrated system that exceeds the U.S. Department of Energy (DOE) goal of 40% (HHV) efficiency at emission levels well below the DOE suggested limits; and (5) An advanced biofueled power system whose levelized cost of electricity can be competitive with other new power system alternatives.

  14. Real time viability detection of bacterial spores

    DOE Patents [OSTI]

    Vanderberg, Laura A.; Herdendorf, Timothy J.; Obiso, Richard J.

    2003-07-29

    This invention relates to a process for detecting the presence of viable bacterial spores in a sample and to a spore detection system, the process including placing a sample in a germination medium for a period of time sufficient for commitment of any present viable bacterial spores to occur, mixing the sample with a solution of a lanthanide capable of forming a fluorescent complex with dipicolinic acid, and, measuring the sample for the presence of dipicolinic acid, and the system including a germination chamber having inlets from a sample chamber, a germinant chamber and a bleach chamber, the germination chamber further including an outlet through a filtering means, the outlet connected to a detection chamber, the detection chamber having an inlet from a fluorescence promoting metal chamber and the detection chamber including a spectral excitation source and a means of measuring emission spectra from a sample, the detection chamber further connected to a waste chamber. A germination reaction mixture useful for promoting commitment of any viable bacterial spores in a sample including a combination of L-alanine, L-asparagine and D-glucose is also described.

  15. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    SciTech Connect (OSTI)

    Kanemoto, Katsuichi Nakatani, Hitomi; Domoto, Shinya

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5??10{sup 16?}cm{sup ?3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  16. Pencil-like zinc oxide micro/nano-scale structures: Hydrothermal synthesis, optical and photocatalytic properties

    SciTech Connect (OSTI)

    Moulahi, A.; Sediri, F.

    2013-10-15

    Graphical abstract: - Highlights: Zinc oxide micro/nanopencils have been synthesized hydrothermally. Photocatalytic activity has been evaluated by the degradation of methylene blue under UV light irradiation. ZnO nanopencils exhibit much higher photocatalytic activity than the commercial ZnO. - Abstract: Zinc oxide micro/nanopencils have been successfully synthesized by hydrothermal process using zinc acetate and diamines as structure-directing agents. The morphology, the structure, the crystallinity and the composition of the materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The optical properties of synthesized ZnO were investigated by UVvis spectroscopy. The photocatalytic activity of the material has been evaluated by the degradation of methylene blue under UV irradiation. As a result, after the lapse of 150 min, around 82% bleaching was observed, with ZnO nanopencils yielding more photodegradation compared to that of commercial ZnO (61%)

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. This report covers Task 1.3, Simulative corrosion of candidate materials developed by refractory producers and in the laboratory based on the results of Task 1.1 and Task 1.2. Refractories provided by in-kind sponsors were tested by cup testing, density/porosity determinations, chemical analysis and microscopy. The best performing materials in the cup testing were fused cast materials. However, 2 castables appear to outperforming any of the previously tested materials and may perform better than the fused cast materials in operation. The basis of the high performance of these materials is the low open porosity and permeability to black liquor smelt.

  18. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. This report covers Task 1.4, Industrial Trial of candidate materials developed by refractory producers and in the laboratory based on the results of Task 1.1, 1.2 and 1.3. Refractories provided by in-kind sponsors to industrial installations tested by cup testing, density/porosity determinations, chemical analysis and microscopy. None of the materials produced in this program have been tried in high temperature gasifiers, but the mortar developed Morcocoat SP-P is outperforming other mortars tested at ORNL. MORCO PhosGun M-90-O has shown in laboratory testing to be an acceptable candidate for hot and cold repairs of existing high temperature gasifiers. It may prove to be an acceptable lining material.

  19. Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone

    SciTech Connect (OSTI)

    Jha, Manis Kumar, E-mail: mkjha@nmlindia.org; Kumari, Anjan; Jha, Amrita Kumari; Kumar, Vinay; Hait, Jhumki; Pandey, Banshi Dhar

    2013-09-15

    Graphical abstract: Recovery of valuable metals from scrap batteries of mobile phone. - Highlights: Recovery of Co and Li from spent LIBs was performed by hydrometallurgical route. Under the optimum condition, 99.1% of lithium and 70.0% of cobalt were leached. The mechanism of the dissolution of lithium and cobalt was studied. Activation energy for lithium and cobalt were found to be 32.4 kJ/mol and 59.81 kJ/mol, respectively. After metal recovery, residue was washed before disposal to the environment. - Abstract: In view of the stringent environmental regulations, availability of limited natural resources and ever increasing need of alternative energy critical elements, an environmental eco-friendly leaching process is reported for the recovery of lithium and cobalt from the cathode active materials of spent lithium-ion batteries of mobile phones. The experiments were carried out to optimize the process parameters for the recovery of lithium and cobalt by varying the concentration of leachant, pulp density, reductant volume and temperature. Leaching with 2 M sulfuric acid with the addition of 5% H{sub 2}O{sub 2} (v/v) at a pulp density of 100 g/L and 75 C resulted in the recovery of 99.1% lithium and 70.0% cobalt in 60 min. H{sub 2}O{sub 2} in sulfuric acid solution acts as an effective reducing agent, which enhance the percentage leaching of metals. Leaching kinetics of lithium in sulfuric acid fitted well to the chemical controlled reaction model i.e. 1 ? (1 ? X){sup 1/3} = k{sub c}t. Leaching kinetics of cobalt fitted well to the model ash diffusion control dense constant sizes spherical particles i.e. 1 ? 3(1 ? X){sup 2/3} + 2(1 ? X) = k{sub c}t. Metals could subsequently be separated selectively from the leach liquor by solvent extraction process to produce their salts by crystallization process from the purified solution.

  20. Observation of two distinct negative trions in tungsten disulfide monolayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; et al

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates throughmore » a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XB’s characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using λpump < 2.4 eV forms only trion T1, which implies that the electron that remains from the dissociation of exciton XA is involved in the creation of this trion with a binding energy ~ 10 meV with respect to XA. The absorption peak that corresponds to trion T2 appears when λpump > 2.4 eV, which is just sufficient to excite exciton XB. The dynamics of trion T2 formation are found to correlate with the disappearance of the bleach of XB exciton, which indicates the involvement of holes participating in the bleach dynamics of exciton XB. Static electrical-doping photoabsorption measurements confirm the presence of an induced absorption peak similar to that of T2. Since the proposed trion formation process here involves exciton dissociation through hole-trapping by defects in the 2D crystal or substrate, this discovery highlights the strong role that defects have in defining the optical and electrical properties of 2D metal chalcogenides, which is relevant to a broad spectrum of basic science and technology applications.« less

  1. Observation of two distinct negative trions in tungsten disulfide monolayers

    SciTech Connect (OSTI)

    Boulesbaa, Abdelaziz; Huang, Bing; Wang, Kai; Lin, Ming-Wei; Mahjouri-Samani, Masoud; Rouleau, Christopher M.; Xiao, Kai; Yoon, Mina; Sumpter, Bobby G.; Puretzky, Alexander A.; Geohegan, David B.

    2015-09-25

    We report on the observation of two distinct photogenerated negative trion states TA and TB in two-dimensional tungsten disulfide (2D-WS2) monolayers. These trions are postulated to emerge from their parent excitons XA and XB, which originate from spin-orbit-split (SOS) levels in the conduction band (CB) and valence band (VB). Time-resolved spectroscopy measurements suggests that Pauli blocking controls a competition process between TA and TB photoformation, following dissociation of XA and XB through hole trapping at internal or substrate defect sites. While TA arises directly from its parent XA, TB emerges through a different transition accessible only after XB dissociates through a hole trapping channel. This discovery of additional optically-active band-edge transitions in atomically-thin metal dichalcogenides may revolutionize optoelectronic applications and fundamental research opportunities for many-body interaction physics. Ultrafast pump-probe spectroscopy of two-dimensional tungsten disulfide monolayers (2D-WS2) grown on sapphire substrates revealed two transient absorption spectral peaks that are attributed to distinct negative trions at ~2.02 eV (T1) and ~1.98 eV (T2). The dynamics measurements indicate that trion formation by the probe is enabled by photodoped electrons that remain after trapping of holes from excitons or free electron-hole pairs at defect sites in the crystal or on the substrate. Dynamics of the excitons XA and XBs characteristic absorption bands, at ~2.03 and ~2.40 eV, respectively, were separately monitored and compared with the photoinduced absorption features. Selective excitation of the lowest exciton level XA using ?pump < 2.4 eV forms only trion T1, which implies that the electron that remains from the dissociation of exciton XA is involved in the creation of this trion with a binding energy ~ 10 meV with respect to XA. The absorption peak that corresponds to trion T2 appears when ?pump > 2.4 eV, which is just sufficient to excite exciton XB. The dynamics of trion T2 formation are found to correlate with the disappearance of the bleach of XB exciton, which indicates the involvement of holes participating in the bleach dynamics of exciton XB. Static electrical-doping photoabsorption measurements confirm the presence of an induced absorption peak similar to that of T2. Since the proposed trion formation process here involves exciton dissociation through hole-trapping by defects in the 2D crystal or substrate, this discovery highlights the strong role that defects have in defining the optical and electrical properties of 2D metal chalcogenides, which is relevant to a broad spectrum of basic science and technology applications.

  2. A novel structure and photochromism of heteropolyoxometalates dispersed in polymer networks

    SciTech Connect (OSTI)

    Bao Xinjian [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130023 (China); Optoelectronic Technology Institute, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China); Feng Wei, E-mail: weifeng@dlmu.edu.cn [Optoelectronic Technology Institute, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China); Chen Jie [Optoelectronic Technology Institute, Dalian Maritime University, Linghai Road 1, Dalian 116026 (China); Liu Xiaoyang, E-mail: Liuxy@jlu.edu.cn [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130023 (China)

    2012-07-15

    Nanocomposites based on Keggin structure tungstophosphate acid (PWA) with 'branch-like' nanometer well dispersed in poly(acrylamide-co-vinylamine) (PAM-co-PVAm) were fabricated. The microstructure and photochromic properties were studied via Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), ultraviolet-visible spectra (UV-vis) and electron resonance spectra (ESR). FT-IR results showed that the Keggin geometry of polyoxometalates was still preserved inside the composites and hydrogen bonding and salt formation were built between PWA and polymer matrix. SEM and TEM images showed that PWA nanoparticles were finely dispersed in polymer matrix with 'branch-like' shape. Under UV irradiation, the film was reduced photochemically to yield a glaucous species. After UV light turned off, the color of film became green. Two photo-reduction processes (one was between acylamino and heteropoly acid, another was between amidocyanogen and heteropoly acid) occurred at the same time in PWA/PAM-co-PVAm system, which resulted in the formation of heteropolygreen. - Graphical abstract: Two absorption bands appeared after UV irradiated. In bleaching process, the peaks at 620-820 nm disappeared and those at 420 nm still presented. Due to synergies happened between heteropolyacid and PAM-co-PVAm, heteropolygreen was formed. Highlights: Black-Right-Pointing-Pointer 'Branch-like' composites were fabricated by dispersed PWA into PAM-co-PVAm system. Black-Right-Pointing-Pointer Two photo-reduction processes occurred simultaneously in PWA/PAM-co-PVAm system. Black-Right-Pointing-Pointer Heteropolygreen was formed by synergies of hydrogen bonding and salt formation.

  3. Long-term monitoring of reef corals at the Flower Garden Banks (northwest Gulf of Mexico): Reef coral population changes and historical incorporation of barium in Montastrea annularis

    SciTech Connect (OSTI)

    Deslarzes, K.J.P.

    1992-01-01

    Reef coral populations were monitored from 1988 to 1991 at the Flower Garden Banks located in the northwestern Gulf of Mexico. The status of reef coral populations, and natural or man-made factors potentially affecting their well-being were determined. Man-made chronic disturbances are degrading coral reef resources on a global scale. Yet, the Flower Garden coral reefs seem to have been sheltered from the effects of regional stresses generated by population growth and increased industrial activity. Since 1974, reef coral population levels have remained unchanged in the Montastrea-Diploria Zones at the Flower Garden Banks. Live coral cover ranges between 46 and 46.5%. Montastrea annularis and Diploria strigosa comprise 80% of the coral cover on either bank. The remainder of the cover is mostly shared by eight other taxa. Coral taxa appear to be more homogeneously distributed on the West Bank. The relatively greater number of Agaricia spp., Madracis decastis, and P. astreoides colonies on the East Bank may be the source of a decreased evenness. The health of reef corals was assessed using repetitive and non-repetitive photographic methods, and accretionary growth measurements of M. annularis. Reef corals have undergone small scale changes at the Flower Gardens probably reflecting natural disturbance, predation, disease, and inter-specific competition. White mat disease (ridge disease) is shown to generate more tissue loss than any of the three bleaching events that took place at the Flower Gardens (1989, 1990, and 1991). Advance to retreat linear ratios of encrusting growth revealed a net tissue gain on the East Bank and a net tissue loss on the West Bank. Growth rates of M. annularis were highly variable. The annual barium content from 1910 in 1989 in a M. annularis colony from the West Flower Garden did not reveal trends associated with the extensive oil and gas exploration in the northern Gulf of Mexico.

  4. Electrochromism in sol-gel deposited TiO(sub 2) films

    SciTech Connect (OSTI)

    Bell, J.M.; Barczynska, J.; Evans, L.A.; MacDonald, K.A.; Wang, J.; Green, D.C.; Smith, G.B.

    1994-12-31

    Electrochromism in sol-gel deposited TiO{sub 2} films and films containing TiO{sub 2} and WO{sub 3} has been observed. The films are deposited by dip-coating from a precursor containing titanium isopropoxide in ethanol or titanium propoxide in ethanol, and after deposition the films are heat treated to between 250 C and 300 C. The films do not show any signs of crystallinity. However substantial coloration is observed using Li{sup +} ions in a non-aqueous electrolyte, both in pure TiO{sub 2} films and in mixed metal oxide films (WO{sub 3}:TiO{sub 2}), although the voltage required to produce coloration is different in the two cases. Results will be presented detailing the optical switching and charge transport properties of the films during cyclic voltammetry. These results will be used to compare the performance of the TiO{sub 2} films with other electrochromics. The TiO{sub 2} and mixed metal films all color cathodically, and the colored state is a neutral greyish color for TiO{sub 2}, while the bleached state is transparent and colorless. Results on coloration efficiency and the stability under repeated electrochemical cycling will also be presented. The neutral color of the TiO{sub 2} films and mixed-metal films means that electrochromic windows based on TiO{sub 2} may have significant advantages over WO{sub 3}-based windows. A detailed analysis of the optical properties of the colored state of the films will be presented. The dynamics of coloration for these films is also under investigation, and preliminary results will be presented.

  5. Mechanisms of optical losses in the {sup 5}D{sub 4} and {sup 5}D{sub 3} levels in Tb{sup 3+} doped low silica calcium aluminosilicate glasses

    SciTech Connect (OSTI)

    Santos, J. F. M. dos; Terra, I. A. A.; Nunes, L. A. O.; Catunda, T.; Astrath, N. G. C.; Guimares, F. B.; Baesso, M. L.

    2015-02-07

    Trivalent Tb-doped materials exhibit strong emission in the green and weak emission in the UV-blue levels. Usually, this behavior is attributed to the cross relaxation (CR) process. In this paper, the luminescence properties of Tb{sup 3+}-doped low silica calcium aluminosilicate glasses are analyzed for UV (?{sub exc}?=?325?nm) and visible (488?nm) excitations. Under 325?nm excitation, the intensity of green luminescence increases proportionally to Tb{sup 3+} concentration. However, the blue luminescence intensity is strongly reduced with the increase of concentration from 0.515.0?wt. %. In the case of 488?nm excitation, a saturation behavior of the green emission is observed at intensities two orders of magnitude smaller than expected for bleaching of the ground state population. Using a rate equation model, we showed that this behavior can be explained by an excited state absorption cross section two orders of magnitude larger than the ground state absorption. The blue emission is much weaker than expected from our rate equations (325?nm and 488?nm excitation). We concluded that only the CR process cannot explain the overall feature of measured luminescence quenching in the wide range of Tb{sup 3+} concentrations. Cooperative upconversion from a pair of excited ions ({sup 5}D{sub 3}:{sup 5}D{sub 3} or {sup 5}D{sub 3}:{sup 5}D{sub 4}) and other mechanisms involving upper lying states (4f5d, charge transfer, host matrix, defects, etc.) may play a significant role.

  6. Mass transfer during wall-rock alteration: An example from a quartz-graphite vein, Black Hills, South Dakota

    SciTech Connect (OSTI)

    Galbreath, K.C.; Duke, E.F.; Papike, J.J. ); Laul, J.C. )

    1988-07-01

    Mass transfer and fluid-rock interaction have been evaluated along two sample traverses in low-sillimanite grade quartz-mica schist adjacent to a synmetamorphic quartz-graphite vein in the southern Black Hills, South Dakota. In an {approximately}17 cm halo between apparently unaltered schist and the vein contact is an outer zone of cryptic alteration and three inner zones of visible alteration. The cryptic zone consists of the original prograde metamorphic mineral assemblage plus anomalously high amounts of tourmaline. The outermost visible zone contains abundant graphite. The second visible zone is defined by intensive bleaching of the schist. The innermost visible zone, immediately adjacent to the vein, is tourmaline + quartz + plagioclase + limonite + graphite. The vein is composed almost entirely of quartz, but also contains trace amounts of graphite. Mass balance calculations indicate that Al was essentially inert. The predominant chemical changes during wall-rock alteration were addition of B and C from the vein-forming fluid along with loss of K from the wall rocks, corresponding to precipitation of tourmaline and graphite, and the progressive destruction of microcline, biotite, and muscovite toward the vein. In addition, the elements V, Cr, Cu, Zn, Pb, As, Sb, W, and Au were introduced into the country rock, whereas Si, Rb, Ba, and Cs were removed. Fluid-rock interaction modeling suggests that between one and four equivalent masses of fluid interacted chemically with the most altered mineral assemblages. In addition, greater than one equivalent mass of reactive fluid penetrated to distances of at least 5 cm from the vein contact.

  7. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  8. Experience in preparing fuel for combustion

    SciTech Connect (OSTI)

    Rude, J.

    1995-09-01

    The key phase seems to be that wood is the ORIGINAL FUEL. Certainly as man discovered fire, it was the most obvious as well as abundantly available fuel and it burned very well because man was smart enough to select the dry wood once he understood the basics of combustion. As the needs started to go beyond the most elementary, designs for burning ideal fuels were pretty well perfected, however, the burning of less ideal fuels still remain a challenge. To provide plant steam requirements by burning waste that must be disposed of anyway can reduce operating cost considerably. For most of us involved in producing steam, the experience we have with fuels such as bark, wood waste, sludge, and miscellaneous forms of solid combustible waste material, are a result of burning these fuels in an existing boiler supposedly designed for wood waste or possibly a combination of wood and other fuels such as coal, oil, or gas. For a supplier of fuel preparation systems, the typical application involves the sizing, cleaning, and drying of wood waste, and sludge from a pulp and/or paper mill. Other forms of combustible waste are dealt with occasionally and after proper preparation fired in the combustion system for the purpose of generating hot gas and/or steam for the plant process.

  9. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect (OSTI)

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  10. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  11. Isolated polypeptide having arabinofuranosidase activity

    DOE Patents [OSTI]

    Foreman, Pamela (Palo Alto, CA); Van Solingen, Pieter (Naaldwijk, NL); Goedegebuur, Frits (Vlaardingen, NL); Ward, Michael (Palo Alto, CA)

    2010-02-23

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry. TABLE-US-00001 cip1 cDNA sequence (SEQ ID NO: 1) GACTAGTTCA TAATACAGTA GTTGAGTTCA TAGCAACTTC 50 ACTCTCTAGC TGAACAAATT ATCTGCGCAA ACATGGTTCG CCGGACTGCT 100 CTGCTGGCCC TTGGGGCTCT CTCAACGCTC TCTATGGCCC AAATCTCAGA 150 CGACTTCGAG TCGGGCTGGG ATCAGACTAA ATGGCCCATT TCGGCACCAG 200 ACTGTAACCA GGGCGGCACC GTCAGCCTCG ACACCACAGT AGCCCACAGC 250 GGCAGCAACT CCATGAAGGT CGTTGGTGGC CCCAATGGCT ACTGTGGACA 300 CATCTTCTTC GGCACTACCC AGGTGCCAAC TGGGGATGTA TATGTCAGAG 350 CTTGGATTCG GCTTCAGACT GCTCTCGGCA GCAACCACGT CACATTCATC 400 ATCATGCCAG ACACCGCTCA GGGAGGGAAG CACCTCCGAA TTGGTGGCCA 450 AAGCCAAGTT CTCGACTACA ACCGCGAGTC CGACGATGCC ACTCTTCCGG 500 ACCTGTCTCC CAACGGCATT GCCTCCACCG TCACTCTGCC TACCGGCGCG 550 TTCCAGTGCT TCGAGTACCA CCTGGGCACT GACGGAACCA TCGAGACGTG 600 GCTCAACGGC AGCCTCATCC CGGGCATGAC CGTGGGCCCT GGCGTCGACA 650 ATCCAAACGA CGCTGGCTGG ACGAGGGCCA GCTATATTCC GGAGATCACC 700 GGTGTCAACT TTGGCTGGGA GGCCTACAGC GGAGACGTCA ACACCGTCTG 750 GTTCGACGAC ATCTCGATTG CGTCGACCCG CGTGGGATGC GGCCCCGGCA 800 GCCCCGGCGG TCCTGGAAGC TCGACGACTG GGCGTAGCAG CACCTCGGGC 850 CCGACGAGCA CTTCGAGGCC AAGCACCACC ATTCCGCCAC CGACTTCCAG 900 GACAACGACC GCCACGGGTC CGACTCAGAC ACACTATGGC CAGTGCGGAG 1000 GGATTGGTTA CAGCGGGCCT ACGGTCTGCG CGAGCGGCAC GACCTGCCAG 1050 GTCCTGAACC CATACTACTC CCAGTGCTTA TAAGGGGATG AGCATGGAGT 1100 GAAGTGAAGT GAAGTGGAGA GAGTTGAAGT GGCATTGCGC TCGGCTGGGT 1150 AGATAAAAGT CAGCAGCTAT GAATACTCTA TGTGATGCTC ATTGGCGTGT 1200 ACGTTTTAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1250 AAAAAAAAAA AAAAAAAAAG GGGGCGGCCG C 1271

  12. Assessing Sources of Stress to Aquatic Ecosystems: Using Biomarkers and Bioindicators to Characterize Exodure-Response Profiles of Anthropogenic Activities

    SciTech Connect (OSTI)

    Adams, S.M.

    1999-03-29

    Establishing causal relationships between sources of environmental stressors and aquatic ecosystem health if difficult because of the many biotic and abiotic factors which can influence or modify responses of biological systems to stress, the orders of magnitude involved in extrapolation over both spatial and temporal scales, and compensatory mechanisms such as density-dependent responses that operate in populations. To address the problem of establishing causality between stressors and effects on aquatic systems, a diagnostic approach, based on exposure-response profiles for various anthropogenic activities, was developed to help identify sources of stress responsible for effects on aquatic systems at ecological significant levels of biological organization (individual, population, community). To generate these exposure-effects profiles, biomarkers of exposure were plotted against bioindicators of corresponding effects for several major anthropogenic activities including petrochemical , pulp and paper, domestic sewage, mining operations, land-development activities, and agricultural activities. Biomarkers of exposure to environmental stressors varied depending on the type of anthropogenic activity involved. Bioindicator effects, however, including histopathological lesions, bioenergetic status, individual growth, reproductive impairment, and community-level responses were similar among many of the major anthropogenic activities. This approach is valuable to help identify and diagnose sources of stressors in environments impacted by multiple stressors. By identifying the types and sources of environmental stressors, aquatic ecosystems can be more effectively protected and managed to maintain acceptable levels of environmental quality and ecosystem fitness.

  13. 1982 worldwide pipeline construction will top 21,900 miles, $9. 5 billion

    SciTech Connect (OSTI)

    Hall, D.

    1982-07-01

    Reports that pipeline construction slowed slightly in 1982 because of lowered economic activity worldwide, with an upturn forecast for 1983. Explains that need for new pipelines to transport increasing amounts of oil and gas energy now being discovered, plus use of pipelines to transport other commodities in increasing amounts, has created a backlog of demand for facilities. Indicates that commodities suited for pipeline transport and getting consideration include crude oil; refined products; natural gas liquids; LPG; coal slurries; carbon dioxide (used for enhanced oil recovery); chemicals such as ammonia, ethane, ethylene, and similar petrochemical feedstocks; industrial gases such as oxygen, nitrogen; and solids slurries such as ores, wood chips, and other non-soluble minerals, even items such as wood chips and wood pulp for paper-making. Reveals that there are 10,396 miles of coal slurry pipeline planned for the US and 500 miles in Canada. Major US projects underway in the gas pipeline field include the 797-mile, 36-in. Trailblazer system in Nebraska, Wyoming, Colorado, and Utah. Products/ LPG/NGL pipelines underway include 105 miles of dual 4 and 6-in. line in Kansas. Crude pipeline activity includes 100 miles of 12-in. in California and 80 miles of 4 thru 40-in. in Alaska on the North Slope. Updates plans in Canada, Scotland, Denmark, Ireland, France, the Middle East, Australia, Southeast Asia, Mexico, South America and the USSR.

  14. Stress-Assisted Corrosion in Boiler Tubes

    SciTech Connect (OSTI)

    Preet M Singh; Steven J Pawel

    2006-05-27

    A number of industrial boilers, including in the pulp and paper industry, needed to replace their lower furnace tubes or decommission many recovery boilers due to stress-assisted corrosion (SAC) on the waterside of boiler tubes. More than half of the power and recovery boilers that have been inspected reveal SAC damage, which portends significant energy and economic impacts. The goal of this project was to clarify the mechanism of stress-assisted corrosion (SAC) of boiler tubes for the purpose of determining key parameters in its mitigation and control. To accomplish this in-situ strain measurements on boiler tubes were made. Boiler water environment was simulated in the laboratory and effects of water chemistry on SAC initiation and growth were evaluated in terms of industrial operations. Results from this project have shown that the dissolved oxygen is single most important factor in SAC initiation on carbon steel samples. Control of dissolved oxygen can be used to mitigate SAC in industrial boilers. Results have also shown that sharp corrosion fatigue and bulbous SAC cracks have similar mechanism but the morphology is different due to availability of oxygen during boiler shutdown conditions. Results are described in the final technical report.

  15. Functional Stability Of A Mixed Microbial Consortia Producing PHA From Waste Carbon Sources

    SciTech Connect (OSTI)

    David N. Thompson; Erik R. Coats; William A. Smith; Frank J. Loge; Michael P. Wolcott

    2006-04-01

    Polyhydroxyalkanoates (PHAs), naturally-occurring biological polyesters that are microbially synthesized from a myriad of carbon sources, can be utilized as biodegradable substitutes for petroleum-derived thermoplastics. However, current PHA commercialization schemes are limited by high feedstock costs, the requirement for aseptic reactors, and high separation and purification costs. Bacteria indigenous to municipal waste streams can accumulate large quantities of PHA under environmentally controlled conditions; hence, a potentially more environmentally-effective method of production would utilize these consortia to produce PHAs from inexpensive waste carbon sources. In this study, PHA production was accomplished in sequencing batch bioreactors utilizing mixed microbial consortia from municipal activated sludge as inoculum, in cultures grown on real wastewaters. PHA production averaged 85%, 53%, and 10% of the cell dry weight from methanol-enriched pulp-and-paper mill foul condensate, fermented municipal primary solids, and biodiesel wastewater, respectively. The PHA-producing microbial consortia were examined to explore the microbial community changes that occurred during reactor operations, employing denaturing gradient gel electrophoresis (DGGE) of 16S-rDNA from PCR-amplified DNA extracts. Distinctly different communities were observed both between and within wastewaters following enrichment. More importantly, stable functions were maintained despite the differing and contrasting microbial populations.

  16. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect (OSTI)

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  17. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin

    SciTech Connect (OSTI)

    Demir, Muslum; Kahveci, Zafer; Aksoy, Burak; Palapati, Naveen K. R.; Subramanian, Arunkumar; Cullinan, Harry T.; El-Kaderi, Hani M.; Harris, Charles T.; Gupta, Ram B.

    2015-10-09

    Lignin is a high-volume byproduct from the pulp and paper industry and is currently burned to generate electricity and process heat. Moreover, the industry has been searching for high value-added uses of lignin to improve the process economics. In addition, battery manufacturers are seeking nonfossil sources of graphitic carbon for environmental sustainability. In our work, lignin (which is a cross-linked polymer of phenols, a component of biomass) is converted into graphitic porous carbon using a two-step conversion. Lignin is first carbonized in water at 300 C and 1500 psi to produce biochar, which is then graphitized using a metal nitrate catalyst at 9001100 C in an inert gas at 15 psi. Graphitization effectiveness of three different catalystsiron, cobalt, and manganese nitratesis examined. The product is analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both temperature and catalyst type influenced the degree of graphitization. A good quality graphitic carbon was obtained using catalysis by Mn(NO3)2 at 900 C and Co(NO3)2 at 1100 C.

  18. An overview of biopulping consortia research

    SciTech Connect (OSTI)

    Akhtar, M.; Lirk, T.K.

    1996-10-01

    This paper provides an overview of a 8-year biopulping research effort conducted under the auspices of two biopulping consortia, involving the Universities of Wisconsin and Minnesota, the Forest Products Laboratory, and the industry. Biopulping, defined as the fungal pretreatment of wood chips for pulping, is an environmentally benign process that saves at least 30% electrical energy during mechanical refining, and improves paper quality in a 2-week period during laboratory trials. A rapid method of evaluating the benefits of biopulping has been found using the Simons staining procedures. We have identified a white-rot fungus Ceriporiopsis subvermispora which is effective on both hardwood and softwood species. This fungus can perform biopulping effectively if chips are steamed using the atmospheric steam for a very short period of time prior to fungal inoculation. Also, one of the major costs during the scale-up of biopulping is inoculum production. To this end, we have reduced the amount of inoculum dramatically (from 3 kg to 0.25 g dry weight of fungus per ton of dry wood) by adding corn steep liquor to the mycelial suspension. Current research is focused on large-scale decontamination of chips and maintenance of suitable temperature, aeration and moisture in chip piles so that biopulping can become a successful industrial process.

  19. Ecology and silviculture of poplar plantations.

    SciTech Connect (OSTI)

    Stanturf, John A.; Van Oosten, Cees; Netzer, Daniel A.

    2002-07-01

    D.I.; Isebrands, J.G.; Eckenwalder, J.E.; Richardson, J., eds. Poplar culture in North America, part A, chapter 5. Ottawa: NRC Research Press, National Research Council of Canada: 153-206. ABSTRACT. Poplars are some of the fastest growing trees in North America and foresters have sought to capitalize on this potential since the 1940s. Interest in growing poplars has fluctuated, and objectives have shifted between producing sawlogs, pulp-wood, or more densely spaced "woodgrass" or biofuels. Currently, most poplar plantations are established for pulpwood or chip production on rotations of 10 years or less, but interest in sawlog production is increasing. Sid McKnight characterized cottonwood as a prima donna species: under ideal conditions, growth rates are just short of spectacular. Just as this can be applied to all poplars, it is equally true that all poplars are demanding of good sites and careful establishment. Growing poplars in plantations is challenging, and good establishment the first year is critical to long-term success. If a grower lacks the commitment or resources to provide needed treatments at critical times, then species other than poplars should be considered. Our objective in this chapter is to provide growers with current information for establishing and tending poplar plantations, as practiced in North America. Where we have sufficient information, differences between the poplar-growing regions of the United States and Canada will be noted. Mostly information is available on eastern and black cottonwood and their hybrids.

  20. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, Jonathan (Kingston, TN)

    1998-01-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered.

  1. Risk assessment for Industrial Control Systems quantifying availability using mean failure cost (MFC)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Qian; Abercrombie, Robert K; Sheldon, Frederick T.

    2015-09-23

    Industrial Control Systems (ICS) are commonly used in industries such as oil and natural gas, transportation, electric, water and wastewater, chemical, pharmaceutical, pulp and paper, food and beverage, as well as discrete manufacturing (e.g., automotive, aerospace, and durable goods.) SCADA systems are generally used to control dispersed assets using centralized data acquisition and supervisory control. Originally, ICS implementations were susceptible primarily to local threats because most of their components were located in physically secure areas (i.e., ICS components were not connected to IT networks or systems). The trend toward integrating ICS systems with IT networks (e.g., efficiency and the Internetmore » of Things) provides significantly less isolation for ICS from the outside world thus creating greater risk due to external threats. Albeit, the availability of ICS/SCADA systems is critical to assuring safety, security and profitability. Such systems form the backbone of our national cyber-physical infrastructure. We extend the concept of mean failure cost (MFC) to address quantifying availability to harmonize well with ICS security risk assessment. This new measure is based on the classic formulation of Availability combined with Mean Failure Cost (MFC). The metric offers a computational basis to estimate the availability of a system in terms of the loss that each stakeholder stands to sustain as a result of security violations or breakdowns (e.g., deliberate malicious failures).« less

  2. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Demir, Muslum; Kahveci, Zafer; Aksoy, Burak; Palapati, Naveen K. R.; Subramanian, Arunkumar; Cullinan, Harry T.; El-Kaderi, Hani M.; Harris, Charles T.; Gupta, Ram B.

    2015-10-09

    Lignin is a high-volume byproduct from the pulp and paper industry and is currently burned to generate electricity and process heat. Moreover, the industry has been searching for high value-added uses of lignin to improve the process economics. In addition, battery manufacturers are seeking nonfossil sources of graphitic carbon for environmental sustainability. In our work, lignin (which is a cross-linked polymer of phenols, a component of biomass) is converted into graphitic porous carbon using a two-step conversion. Lignin is first carbonized in water at 300 °C and 1500 psi to produce biochar, which is then graphitized using a metal nitratemore » catalyst at 900–1100 °C in an inert gas at 15 psi. Graphitization effectiveness of three different catalysts—iron, cobalt, and manganese nitrates—is examined. The product is analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both temperature and catalyst type influenced the degree of graphitization. A good quality graphitic carbon was obtained using catalysis by Mn(NO3)2 at 900 °C and Co(NO3)2 at 1100 °C.« less

  3. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect (OSTI)

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  4. Tubeless evaporation process development: Final report

    SciTech Connect (OSTI)

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  5. Application of gas-liquid two-phase cross-flow filtration to pilot-scale methane fermentation

    SciTech Connect (OSTI)

    Imasaka, Takuo; So, Hiroyuki; Matsushita, Kohnosuke; Furukawa, Tomoya; Kanekuni, Nobuhiko )

    1993-01-01

    As part of a national project, Aqua-Renaissance '90,' by the MITI, a pilot-scale evaluation of membrane-enhanced anaerobic fermentation, has progressed for the wastewater from a pulp and paper mill. A novel membrane filtration system was newly proposed with the aim of saving energy. That is, a gas-liquid two-phase cross-flow filtration which was generated with liquid circulation by an air-lift pump effect, was combined in the anaerobic bioreactor. It was confirmed that the membrane filtration not only offered very stable and large permeate flux, but enhanced the processing efficiency by retaining the microorganisms in the bioreactor. Furthermore, the power consumption per unit permeate volume in the membrane system of 1.78 kWh/m[sup 3] was achieved, which was a very high-performance result from the viewpoint of saving energy, as compared with 3-5 kWh/m[sup 3] of conventional liquid single-phase cross-flow filtration.

  6. Riocell nurtures environmental accomplishments

    SciTech Connect (OSTI)

    Meadows, D.G.

    1994-05-01

    Environmental concerns have very much influenced operations at Riocell's pulp and paper mill in Guaiba, Brazil. Celso Foelkel, environmental and technical director, refers to it as a minimal environmental impact mill that's moving toward becoming a zero impact mill. In many cases, Riocell has developed simple methods to reduce or recycle 99.7% of the 15,000 tons/month of solid residue it generates. It uses composted mill waste to renourish the soil of its plantations, though most of the organic fertilizer produced is sold to local farmers for agricultural use. About half of the solid residue is converted to agricultural use, especially as organic fertilizers. Sawdust is used as fuel or as bedding for poultry. Another 40% goes to industrial uses such as cement manufacturing. The rest is used as fill for the recovery of mined areas. Event the garbage from the mill is sorted and 85% is recycled. A new concern for the Riocell mill is a move toward placing taxes on the use of natural resources such as water. That's prompted the mill to look into going a step beyond tertiary treatment. The Clean-Rio process makes use of sand-bed filtration and reverse osmosis. Settling with activated carbon might also work well.

  7. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  8. Method for separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials

    DOE Patents [OSTI]

    Woodward, J.

    1998-12-01

    A method for enzymatically separating the non-inked cellulose fibers from the inked cellulose fibers in cellulosic materials. The cellulosic material, such as newsprint, is introduced into a first chamber containing a plastic canvas basket. This first chamber is in fluid communication, via plastic tubing, with a second chamber containing cellobiase beads in a plastic canvas basket. Cellulase is then introduced into the first chamber. A programmable pump then controls the flow rate between the two chambers. The action of cellulase and stirring in the first chamber results in the production of a slurry of newsprint pulp in the first chamber. This slurry contains non-inked fibers, inked fibers, and some cellobiose. The inked fibers and cellobiose flow from the first chamber to the second chamber, whereas the non-inked fibers remain in the first chamber because they are too large to pass through the pores of the plastic canvas basket. The resulting non-inked and inked fibers are then recovered. 6 figs.

  9. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  10. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical and physical properties and chemical stability; and are relatively inexpensive, reliable repair materials. Material development was divided into 2 tasks: Task 1 was development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO2 and SiC. Task 2 was finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  11. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and were functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development were divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  13. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  14. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  15. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  16. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  17. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesium aluminate and barium aluminate for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO{sub 2} and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  18. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in-situ; are functionally-graded to give the best combination of thermal, mechanical, and physical properties and chemical stability; or are relatively inexpensive, reliable repair materials. Material development will be divided into 2 tasks: Task 1, Development and property determinations of improved and existing refractory systems for black liquor containment. Refractory systems of interest include magnesia aluminate and baria aluminate spinels for binder materials, both dry and hydratable, and materials with high alumina contents, 85-95 wt%, aluminum oxide, 5.0-15.0 wt%, and BaO, SrO, CaO, ZrO and SiC. Task 2, Finite element analysis of heat flow and thermal stress/strain in the refractory lining and steel shell of existing and proposed vessel designs. Stress and strain due to thermal and chemical expansion has been observed to be detrimental to the lifespan of existing black liquor gasifiers. The thermal and chemical strain as well as corrosion rates must be accounted for in order to predict the lifetime of the gasifier containment materials.

  19. A ground state depleted laser in neodymium doped yttrium orthosilicate

    SciTech Connect (OSTI)

    Beach, R.; Albrecht, G.; Solarz, R.; Krupke, W.; Comaskey, B.; Mitchell, S.; Brandle, C.; Berkstresser, G.

    1990-01-16

    A ground state depleted (GSD){sup 1,2} laser has been demonstrated in the form of a Q-switched oscillator operating at 912 nm. Using Nd{sup 3+} as the active ion and Y{sub 2}SiO{sub 5} as the host material, the laser transition is from the lowest lying stark level of the Nd{sup 3t}F{sub 3/2} level to a stark level 355 cm{sup {minus}1} above the lowest lying one in the {sup 4}I{sub 9/2} manifold. The necessity of depleting the ground {sup 4}I{sub 9/2} manifold is evident for this level scheme as transparency requires a 10% inversion. To achieve the high excitation levels required for the efficient operation of this laser, bleach wave pumping using an alexandrite laser at 745 nm has been employed. The existence of a large absorption feature at 810 nm also allows for the possibility of AlGaAs laser diode pumping. Using KNbO{sub 3}, noncritical phase matching is possible at 140{degree}C using d{sub 32} and has been demonstrated. The results of Q-switched laser performance and harmonic generation in KNbO{sub 3} will be presented. Orthosilicate can be grown in large boules of excellent optical quality using a Czochralski technique. Because of the relatively small 912 nm emission cross section of 2-3 {times} 10{sup {minus}20} cm{sup 2} (orientation dependent) fluences of 10-20 J/cm{sup 2} must be circulated in the laser cavity for the efficient extraction of stored energy. This necessitates very aggressive laser damage thresholds. Results from the Reptile laser damage facility at Lawrence Livermore National Laboratory (LLNL) will be presented showing Y{sub 2}SiO{sub 5} bulk and AR sol-gel coated surface damage thresholds of greater than 40 J/cm{sup 2} for 10 nsec, 10 Hz, 1.06 {mu} pulses. 16 refs., 18 figs., 6 tabs.

  20. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and amore » putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of either anthropogenic or natural origin, but little is known of the defense mechanisms they have evolved. Using a microorganism that generates RCS internally as part of its respiratory process allowed us to uncover a novel defense mechanism based on RCS scavenging by reductive reaction with a sacrificial methionine-rich peptide and redox recycling through a methionine sulfoxide reductase. As a result, this system is conserved in a broad diversity of organisms, including some of clinical importance, invoking a possible important role in innate immune system evasion.« less

  1. Electromagnetic calorimeter for the Heavy Photon Search Experiment at Jefferson Lab

    SciTech Connect (OSTI)

    Buchanan, Emma

    2014-11-01

    The Heavy Photon Search Experiment (HPS) seeks to detect a hypothesised hidden sector boson, the A', predicted to be produced in dark matter decay or annihilation. Theories suggest that the A' couples weakly to electric charge through kinetic mixing, allowing it, as a result, to decay to Standard Matter (SM) lepton pair, which may explain the electron and positron excess recently observed in cosmic rays. Measuring the lepton pair decay of the A' could lead to indirect detection of dark matter. The HPS experiment is a fixed target experiment that will utilize the electron beam produced at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The detector set-up includes a silicon vertex tracker (SVT) and an Electromagnetic Calorimeter (ECal). The ECal will provide the trigger and detect e+e- pairs and its construction and testing forms the focus of this thesis. The ECal consists of 442 PbWO4} tapered crystals with a length 16cm and a 1.6x1.6cm^2 cross-section, stacked into a rectangular array and are coupled to Large Area APDs and corresponding pre-amplifiers. Supplementary to the ECal is a Light Monitoring System (LMS) consisting of bi-coloured LEDs that will monitor changes in APD gain and crystal transparency due to radiation damage. Before construction of the ECal each of the components were required to be individually tested to determine a number of different characteristics. Irradiation tests were performed on PbWO4 ECal crystals and, as a comparison, one grown by a different manufacturer to determine their radiation hardness. A technique for annealing the radiation damage by optical bleaching, which involves injecting light of various wavelengths into the crystal, was tested using the blue LED from the LMS as a potential candidate. The light yield dependence on temperature was also measured for one of the PbWO4 crystal types. Each APD was individually tested to determine if they functioned correctly and within the requirements of the experiment, then arranged into groups of similar gain at chosen applied voltages, for connection to High Voltage (HV) supplies. Each bi-coloured LED was also tested to determine if they functioned within the specifications of the experiment; including their signal quality at high frequency and their radiation hardness. The HPS crystals were recycled from a previous Jefferson Lab detector, the Inner Calorimeter from CLAS, which needed to be dismantled and reconditioned using various removal and cleaning techniques. The HPS ECal was then constructed in a new formation using a combination of different gluing and construction techniques, and initial functionality tests were performed.

  2. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase

    SciTech Connect (OSTI)

    Melnyk, Ryan A.; Youngblut, Matthew D.; Clark, Iain C.; Carlson, Hans K.; Wetmore, Kelly M.; Price, Morgan N.; Lavarone, Anthony T.; Deutschbauer, Adam M.; Arkin, Adam P.; Coates, John D.

    2015-05-12

    Reactive chlorine species (RCS) defense mechanisms are important for bacterial fitness in diverse environments. In addition to the anthropogenic use of RCS in the form of bleach, these compounds are also produced naturally through photochemical reactions of natural organic matter and in vivo by the mammalian immune system in response to invading microorganisms. To gain insight into bacterial RCS defense mechanisms, we investigated Azospira suillum strain PS, which produces periplasmic RCS as an intermediate of perchlorate respiration. Our studies identified an RCS response involving an RCS stress-sensing sigma/anti-sigma factor system (SigF/NrsF), a soluble hypochlorite-scavenging methionine-rich periplasmic protein (MrpX), and a putative periplasmic methionine sulfoxide reductase (YedY1). We investigated the underlying mechanism by phenotypic characterization of appropriate gene deletions, chemogenomic profiling of barcoded transposon pools, transcriptome sequencing, and biochemical assessment of methionine oxidation. Our results demonstrated that SigF was specifically activated by RCS and initiated the transcription of a small regulon centering around yedY1 and mrpX. A yedY1 paralog (yedY2) was found to have a similar fitness to yedY1 despite not being regulated by SigF. Markerless deletions of yedY2 confirmed its synergy with the SigF regulon. MrpX was strongly induced and rapidly oxidized by RCS, especially hypochlorite. Our results suggest a mechanism involving hypochlorite scavenging by sacrificial oxidation of the MrpX in the periplasm. Reduced MrpX is regenerated by the YedY methionine sulfoxide reductase activity. The phylogenomic distribution of this system revealed conservation in several Proteobacteria of clinical importance, including uropathogenic Escherichia coli and Brucella spp., implying a putative role in immune response evasion in vivo. In addition, bacteria are often stressed in the environment by reactive chlorine species (RCS) of either anthropogenic or natural origin, but little is known of the defense mechanisms they have evolved. Using a microorganism that generates RCS internally as part of its respiratory process allowed us to uncover a novel defense mechanism based on RCS scavenging by reductive reaction with a sacrificial methionine-rich peptide and redox recycling through a methionine sulfoxide reductase. As a result, this system is conserved in a broad diversity of organisms, including some of clinical importance, invoking a possible important role in innate immune system evasion.

  3. Department of Energy Support of Energy Intensive Manufacturing Related to Refractory Research

    SciTech Connect (OSTI)

    Hemrick, James Gordon

    2013-01-01

    For many years, the United States Department of Energy (DOE) richly supported refractory related research to enable greater energy efficiency processes in energy intensive manufacturing industries such as iron and steel, glass, aluminum and other non-ferrous metal production, petrochemical, and pulp and paper. Much of this support came through research projects funded by the former DOE Energy Efficiency and Renewable Energy (EERE) Office of Industrial Technologies (OIT) under programs such as Advanced Industrial Materials (AIM), Industrial Materials of the Future (IMF), and the Industrial Technologies Program (ITP). Under such initiatives, work was funded at government national laboratories such as Oak Ridge National Laboratory (ORNL), at universities such as West Virginia University (WVU) and the Missouri University of Science and Technology (MS&T) which was formerly the University of Missouri Rolla, and at private companies engaged in these manufacturing areas once labeled industries of the future by DOE due to their strategic and economic importance to American industry. Examples of such projects are summarized below with information on the scope, funding level, duration, and impact. This is only a sampling of representative efforts funded by the DOE in which ORNL was involved over the period extending from 1996 to 2011. Other efforts were also funded during this time at various other national laboratories, universities and private companies under the various programs mentioned above. Discussion of the projects below was chosen because I was an active participant in them and it is meant to give a sampling of the magnitude and scope of investments made by DOE in refractory related research over this time period.

  4. Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites

    SciTech Connect (OSTI)

    Dennis Castonguay

    2012-06-29

    Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

  5. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect (OSTI)

    Doelle, Klaus

    2011-06-26

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections and it is important to understand the effect that different types of calcium carbonates have on the paper properties made of 100% eucalyptus pulp. The current study is focused on selecting the most suitable market available calcium carbonate for the production of uncoated Eucalyptus digital printing paper, targeting a potential filler increase of 5% above the currently used filler content. We made hand sheets using 13 different varieties of widely used calcium carbonates [Nine samples of PCC (two rhombic and seven scalenohedral, covering a wide particle size range from 1.2 {micro}m to 2.9 {micro}m), and four samples of GCC (three anionic and one cationic, with a particle size range from 0.7 {micro}m to 1.5 {micro}m)] available in the market followed by a 12? pilot plant paper machine run. The detailed analysis on the main structural, optical and strength properties of the hand sheets found that the most suitable calcium carbonate for uncoated Eucalyptus digital printing paper production is scalenohedral PCC, with a particle size of 1.9 {micro}m for its positive effects on thickness, stiffness, brightness and opacity of paper.

  6. Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods

    SciTech Connect (OSTI)

    Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.

    2011-07-01

    The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.

  7. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    N /A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  8. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    SciTech Connect (OSTI)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  9. Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30

    SciTech Connect (OSTI)

    Anderson, Lindsey N.; Culley, David E.; Hofstad, Beth A.; Chauvigne-Hines, Lacie M.; Zink, Erika M.; Purvine, Samuel O.; Smith, Richard D.; Callister, Stephen J.; Magnuson, Jon M.; Wright, Aaron T.

    2013-12-01

    Development of alternative, non-petroleum based sources of bioenergy that can be applied in the short-term find great promise in the use of highly abundant and renewable lignocellulosic plant biomass.1 This material obtained from different feedstocks, such as forest litter or agricultural residues, can yield liquid fuels and other chemical products through biorefinery processes.2 Biofuels are obtained from lignocellulosic materials by chemical pretreatment of the biomass, followed by enzymatic decomposition of cellulosic and hemicellulosic compounds into soluble sugars that are converted to desired chemical products via microbial metabolism and fermentation.3, 4 To release soluble sugars from polymeric cellulose multiple enzymes are required, including endoglucanase, exoglucanase, and ?-glucosidase.5, 6 However, the enzymatic hydrolysis of cellulose into soluble sugars remains a significant limiting factor to the efficient and economically viable utilization of lignocellulosic biomass for transport fuels.7, 8 The primary industrial source of cellulose and hemicellulases is the mesophilic soft-rot fungus Trichoderma reesei,9 having widespread applications in food, feed, textile, pulp, and paper industries.10 The genome encodes 200 glycoside hydrolases, including 10 cellulolytic and 16 hemicellulolytic enzymes.11 The hypercellulolytic catabolite derepressed strain RUT-C30 was obtained through a three-step UV and chemical mutagenesis of the original T. reesei strain QM6a,12, 13 in which strains M7 and NG14 were intermediate, having higher cellulolytic activity than the parent strain but less activity and higher catabolite repression than RUT-C30.14 Numerous methods have been employed to optimize the secreted enzyme cocktail of T. reesei including cultivation conditions, operational parameters, and mutagenesis.3 However, creating an optimal and economical enzyme mixture for production-scale biofuels synthesis may take thousands of experiments to identify.

  10. SURFACTANT SPRAY: A NOVEL TECHNOLOGY TO IMPROVE FLOTATION DEINKING PERFORMANCE

    SciTech Connect (OSTI)

    Yulin Deng; Junyong Zhu

    2004-01-31

    Based on the fundamental understanding of ink removal and fiber loss mechanism in flotation deinking process, we developed this innovative technology using surfactant spray to improve the ink removal efficiency, reduce the water and fiber loss, reduce the chemical consumption and carry over in the flotation deinking. The innovative flotation deinking process uses a spray to deliver the frothing agent during flotation deinking to control several key process variables. The spray can control the foam stability and structure and modify the fluid dynamics to reduce the fibers entrapped in the froth layer. The froth formed at the top part of the flotation column will act as a physical filter to prevent the penetration of frothing agent into the pulp suspension to eliminate fiber contamination and unfavorable deinking surface chemistry modification due to surfactant adsorption on the fiber surface. Because of the filter effect, frothing agents will be better utilized. Under the sponsorships of the US Dept. of Energy (DOE) and the member companies of the Institute of Paper Science and Technology, we studied the chem-mechanical mechanism of surfactant spray for flotation deinking using different furnishes, chemicals, and flotation devices in the past four years. In the final year of the project, we successfully conducted mill trials at Abitibi-Consolidated, Inc., Snowflake paper recycling operation of 100% mixture of ONP/OMG. Results from laboratory, pilot-plant and mill trials indicated that surfactant spray technology can significantly reduce fiber loss in flotation deinking. It can be concluded that paper industry can profit greatly when this technology is commercialized in flotation deinking mills.

  11. Modifying woody plants for efficient conversion to liquid and gaseous fuels

    SciTech Connect (OSTI)

    Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. )

    1990-07-01

    The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

  12. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  13. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  14. Efficacy of low level electric current (A-C) for controlling quagga mussles in the Welland Canal

    SciTech Connect (OSTI)

    Fears, C.; Mackie, G.L.

    1995-06-01

    The efficacy of systems (for which patents are pending) which use low-voltage A-C currents for preventing settlement and attachment by zebra mussels were tested with steel rods and plates placed near the intake of a pulp and paper plant in the Welland Canal at Thorold, Ontario. Six racks made of 16 ft. (4.9 m), 2x4s (5.1 x 10.2 cm) were placed into the Welland Canal on August 5, 1994. One rack had 1/8th in (3.2 mm) diam x 12 in (30.5 cm) long steel rods, each separated by 2 in (5.1 cm) attached to pressure treated wood and concrete blocks and an A-C current of 16 v (or 8 v/in); rack 2 had steel rods of the same configuration but 12 v (or 6 v/in) was applied; rack 3 was identical to these but no current was applied and was used as a rod control. The remaining three racks had steel plates, each plate being 3 in (7.6 cm) wide X 24 in (61 cm) long X 1/4 in (6.4 mm) thick and separated by 2 in (5.1 cm); one had 12 v applied (or 6 v/in), another had 16 v applied (or 8 v/in), and the third had no current and was used as a plate control. The racks were placed on the upstream and downstream side of the intake at a depth of about 7 ft (2.1 m) where the mussels populations were heaviest (as determined by SCUBA diving). All mussels were quagga mussels (Dreissena bugensis). The racks were pulled in mid November after settlement was complete and the results showed: (1) complete prevention of settlement of both new recruits and translocators at 8 volts/in with steel rods on both wood and concrete surfaces and with steel plate trash bars; (2) partial prevention of settlement at 6 volts/in with steel rods on both wood and concrete surfaces and steel plates; and (3) that, at current kilowatt hr rates, total efficacy at 8 volts/in would cost approximately $10.80/day/1000 sq ft using rods to protect concrete walls and about $16.32/day/1000 sq ft to protect 3 in wide x 1/4 in thick trash bars. These costs can be reduced even further with pulse dosed AC currents.

  15. Final Report: Development of Renewable Microbial Polyesters for Cost Effective and Energy- Efficient Wood-Plastic Composites

    SciTech Connect (OSTI)

    Thompson, David N.; Emerick, Robert W.; England, Alfred B.; Flanders, James P.; Loge, Frank J.; Wiedeman, Katherine A.; Wolcott, Michael P.

    2010-03-31

    In this project, we proposed to produce wood fiber reinforced thermoplastic composites (WFRTCs) using microbial thermoplastic polyesters in place of petroleum-derived plastic. WFRTCs are a rapidly growing product area, averaging a 38% growth rate since 1997. Their production is dependent on substantial quantities of petroleum based thermoplastics, increasing their overall energy costs by over 230% when compared to traditional Engineered Wood Products (EWP). Utilizing bio-based thermoplastics for these materials can reduce our dependence on foreign petroleum. We have demonstrated that biopolymers (polyhydroxyalkanoates, PHA) can be successfully produced from wood pulping waste streams and that viable wood fiber reinforced thermoplastic composite products can be produced from these materials. The results show that microbial polyester (PHB in this study) can be extruded together with wastewater-derived cell mass and wood flour into deck products having performance properties comparable to existing commercial HDPE/WF composite products. This study has thus proven the underlying concept that the microbial polyesters produced from waste effluents can be used to make cost-effective and energy-efficient wood-plastic composites. The cost of purified microbial polyesters is about 5-20 times that of HDPE depending on the cost of crude oil, due to high purification (40%), carbon substrate (40%) and sterilized fermentation (20%) costs for the PHB. Hence, the ability to produce competitive and functional composites with unpurified PHA-biomass mixtures from waste carbon sources in unsterile systems—without cell debris removal—is a significant step forward in producing competitive value-added structural composites from forest products residuals using a biorefinery approach. As demonstrated in the energy and waste analysis for the project, significant energy savings and waste reductions can also be realized using this approach. We recommend that the next step for development of useful products using this technology is to scale the technology from the 700-L pilot reactor to a small-scale production facility, with dedicated operation staff and engineering controls. In addition, we recommend that a market study be conducted as well as further product development for construction products that will utilize the unique properties of this bio-based material.

  16. Capture and Sequestration of CO2 at the Boise White Paper Mill

    SciTech Connect (OSTI)

    B.P. McGrail; C.J. Freeman; G.H. Beeman; E.C. Sullivan; S.K. Wurstner; C.F. Brown; R.D. Garber; D. Tobin E.J. Steffensen; S. Reddy; J.P. Gilmartin

    2010-06-16

    This report documents the efforts taken to develop a preliminary design for the first commercial-scale CO2 capture and sequestration (CCS) project associated with biomass power integrated into a pulp and paper operation. The Boise Wallula paper mill is located near the township of Wallula in Southeastern Washington State. Infrastructure at the paper mill will be upgraded such that current steam needs and a significant portion of the current mill electric power are supplied from a 100% biomass power source. A new biomass power system will be constructed with an integrated amine-based CO2 capture plant to capture approximately 550,000 tons of CO2 per year for geologic sequestration. A customized version of Fluor Corporations Econamine Plus carbon capture technology will be designed to accommodate the specific chemical composition of exhaust gases from the biomass boiler. Due to the use of biomass for fuel, employing CCS technology represents a unique opportunity to generate a net negative carbon emissions footprint, which on an equivalent emissions reduction basis is 1.8X greater than from equivalent fossil fuel sources (SPATH and MANN, 2004). Furthermore, the proposed project will offset a significant amount of current natural gas use at the mill, equating to an additional 200,000 tons of avoided CO2 emissions. Hence, the total net emissions avoided through this project equates to 1,100,000 tons of CO2 per year. Successful execution of this project will provide a clear path forward for similar kinds of emissions reduction that can be replicated at other energy-intensive industrial facilities where the geology is suitable for sequestration. This project also represents a first opportunity for commercial development of geologic storage of CO2 in deep flood basalt formations. The Boise paper mill site is host to a Phase II pilot study being carried out under DOEs Regional Carbon Partnership Program. Lessons learned from this pilot study and other separately funded projects studying CO2 sequestration in basalts will be heavily leveraged in developing a suitable site characterization program and system design for permanent sequestration of captured CO2. The areal extent, very large thickness, high permeability in portions of the flows, and presence of multiple very low permeability flow interior seals combine to produce a robust sequestration target. Moreover, basalt formations are quite reactive with water-rich supercritical CO2 and formation water that contains dissolved CO2 to generate carbonate minerals, providing for long-term assurance of permanent sequestration. Sub-basalt sediments also exist at the site providing alternative or supplemental storage capacity.

  17. Real-time Molecular Study of Bystander Effects of Low dose Low LET radiation Using Living Cell Imaging and Nanoparticale Optics

    SciTech Connect (OSTI)

    Natarajan, Mohan; Xu, Nancy R; Mohan, Sumathy

    2013-06-03

    In this study two novel approaches are proposed to investigate precisely the low dose low LET radiation damage and its effect on bystander cells in real time. First, a flow shear model system, which would provide us a near in vivo situation where endothelial cells in the presence of extra cellular matrix experiencing continuous flow shear stress, will be used. Endothelial cells on matri-gel (simulated extra cellular matrix) will be subjected to physiological flow shear (that occurs in normal blood vessels). Second, a unique tool (Single nano particle/single live cell/single molecule microscopy and spectroscopy; Figure A) will be used to track the molecular trafficking by single live cell imaging. Single molecule chemical microscopy allows one to single out and study rare events that otherwise might be lost in assembled average measurement, and monitor many target single molecules simultaneously in real-time. Multi color single novel metal nanoparticle probes allow one to prepare multicolor probes (Figure B) to monitor many single components (events) simultaneously and perform multi-complex analysis in real-time. These nano-particles resist to photo bleaching and hence serve as probes for unlimited timeframe of analysis. Single live cell microscopy allows one to image many single cells simultaneously in real-time. With the combination of these unique tools, we will be able to study under near-physiological conditions the cellular and sub-cellular responses (even subtle changes at one molecule level) to low and very low doses of low LET radiation in real time (milli-second or nano-second) at sub-10 nanometer spatial resolution. This would allow us to precisely identify, at least in part, the molecular mediators that are responsible of radiation damage in the irradiated cells and the mediators that are responsible for initiating the signaling in the neighboring cells. Endothelial cells subjected to flow shear (2 dynes/cm2 or 16 dynes/cm2) and exposed to 0.1, 1 and 10 cGy on coverslips will be examined for (a) low LET radiation-induced alterations of cellular function and its physiological relevance in real time; and (b) radiation damage triggered bystander effect on the neighboring unirradiated cells. First, to determine the low LET radiation induced alteration of cellular function we will examine: (i) the real time transformation of single membrane transporters in single living cells; (ii) the pump efficiency of membrane efflux pump of live cells in real time at the molecular level; (iii) the kinetics of single-ligand receptor interaction on single live cell surface (Figure C); and (iv) alteration in chromosome replication in living cell. Second, to study the radiation triggered bystander responses, we will examine one of the key signaling pathway i.e. TNF- alpha/NF-kappa B mediated signaling. TNF-alpha specific nano particle sensors (green) will be developed to detect the releasing dynamics, transport mechanisms and ligand-receptor binding on live cell surface in real time. A second sensor (blue) will be developed to simultaneously monitor the track of NF-kB inside the cell. The proposed nano-particle optics approach would complement our DOE funded study on biochemical mechanisms of TNF-alpha- NF-kappa B-mediated bystander effect.

  18. Performance and value of CAD-deficient pine- Final Report

    SciTech Connect (OSTI)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype x treatment interactions was found for any of the traits studied, in the fertilized plots, the effect of the cad-n1 allele on wood density was reduced. The study indicates that the cad-n1 allele could be a valuable gene to the pulp and paper industry for the purpose of enhancing pulp yields through increasing wood density. Stem growth and wood density associated with a mutant null (cad-n1) allele were examined in three 15-year-old loblolly pine diallel tests, established on two sites in the southern United States. In each diallel test, one or two cad-n1 heterozygous parents were crossed with five unrelated wild-type parents, to produce five or ten full-sib families. In all, 839 trees from 20 full-sib families in four genetic backgrounds (a cad-n1 heterozygote x 5 unrelated trees) were sampled, genotyped at the cad locus, and assessed for growth and wood density traits. In a combined analysis of all four genetic backgrounds, we found evidence for effects of increased wood density associated with the cad-n1 allele at age 15 (p=0.03) years and height growth at ages 6 (p=0.03) and 15 (p=0.005). There were large differences in the cad-n1 effects for the various growth and wood traits among the diallel tests. This variation may be due to either different genetic backgrounds among the parents of the different diallel tests, or for different growing environments at the field sites. Even though the cad-n1 effect on growth and wood density was significant across genetic backgrounds, the effect was variable among full-sib families within backgrounds. We speculate that certain wild-type alleles from second parents specifically interact with cad-n1 producing large positive effects. In addition, pleiotropic effects on growth and wood density appear to be associated with the cad-n1 allele. While substantial gains are possible through deployment of trees carrying cad-n1, these gains may be family-specific and should be verified for each cross through field testing.

  19. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  20. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition

    SciTech Connect (OSTI)

    Shih, Chien-Ju

    2010-05-16

    This dissertation focuses on the development of facile and rapid quantitative Raman spectroscopy measurements for the determination of conversion products in producing bioethanol from corn stover. Raman spectroscopy was chosen to determine glucose, xylose and ethanol in complex hydrolysis and fermentation matrices. Chapter 1 describes the motives and main goals of this work, and includes an introduction to biomass, commonly used pretreatment methods, hydrolysis and fermentation reactions. The principles of Raman spectroscopy, its advantages and applications related to biomass analysis are also illustrated. Chapter 2 and 3 comprise two published or submitted manuscripts, and the thesis concludes with an appendix. In Chapter 2, a Raman spectroscopic protocol is described to study the efficiency of enzymatic hydrolysis of cellulose by measuring the main product in hydrolysate, glucose. Two commonly utilized pretreatment methods were investigated in order to understand their effect on glucose measurements by Raman spectroscopy. Second, a similar method was set up to determine the concentration of ethanol in fermentation broth. Both of these measurements are challenged by the presence of complex matrices. In Chapter 3, a quantitative comparison of pretreatment protocols and the effect of enzyme composition are studied using systematic methods. A multipeak fitting algorithm was developed to analyze spectra of hydrolysate containing two analytes: glucose and xylose. Chapter 4 concludes with a future perspective of this research area. An appendix describes a convenient, rapid spectrophotometric method developed to measure cadmium in water. This method requires relatively low cost instrumentation and can be used in microgravity, such as space shuttles or the International Space Station. This work was performed under the supervision of Professor Marc Porter while at Iowa State University. Research related to producing biofuel from bio-renewable resources, especially bioethanol from biomass, has grown significantly in the past decade due to the high demand and rising costs of fossil fuels. More than 3 percent of the energy consumption in the U.S. is derived from renewable biomass, mostly through industrial heat and steam production by the pulp and paper industry, and electricity generation from municipal solid waste (MSW) and forest industry residues. The utilization of food-based biomass to make fuels has been widely criticized because it may increase food shortages throughout the world and raise the cost of food. Thus, nonfood-based and plentiful lignocellulosic feedstocks, such as corn stover, perennial grass, bagasse, sorghum, wheat/rice straw, herbaceous and woody crops, have great potential to be new bio-renewable sources for energy production. Given that many varieties of biomass are available, there is need for a rapid, simple, high-throughput method to screen the conversion of many plant varieties. The most suitable species for each geographic region must be determined, as well as the optimal stage of harvest, impacts of environmental conditions (temperature, soil, pH, etc.). Various genetically modified plants should be studied in order to establish the desired biomass in bioethanol production. The main screening challenge, however, is the complexity of plant cell wall structures that make reliable and sensitive analysis difficult. To date, one of the most popular methods to produce lignocellulosic ethanol is to perform enzymatic hydrolysis followed by fermentation of the hydrolysate with yeast. There are several vital needs related to the field of chemistry that have been suggested as primary research foci needed to effectively improve lignocellulosic ethanol production. These topics include overcoming the recalcitrance of cellulosic biomass, the pervasiveness of pretreatment, advanced biological processing and better feedstocks. In this thesis, a novel approach using Raman spectroscopy has been developed to address important issues related to bioethanol generation, which will aid the research aimed to solve the topics m

  1. ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM

    SciTech Connect (OSTI)

    Joseph Rabovitser; Bruce Bryan

    2003-04-01

    The objective of this project is the development and commercial demonstration of an advanced biomass gasification-based power generation system at Boise Cascade Corporation's pulp and paper mill in DeRidder, Louisiana. The advanced power generation system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as the primary fuel resource. The novel system is based on three advanced technology components: GTI's RENUGAS{reg_sign} and 3-stage solid fuels combustion technologies coupled with one of the power generation approaches used in DOE's HIPPS program. Phase 1 of the project is a technical and economic evaluation of the system at the DeRidder site. A Continuation Application will be submitted at the conclusion of Phase 1 for authorization to proceed to testing and design in Phase 2. Phase 2 includes pilot-scale verification of selected system components and preparation of a detailed engineering design and cost estimate for retrofit of the advanced power system at the DeRidder mill. Phase 3 will complete procurement and construction of the system at the DeRidder site along with all required permitting activities. Phase 4 of the project will included plant commissioning, startup and demonstration operations. Design information for the Gasification Island was completed during the quarter. Two vendor quotations were received for the bark/hog fuel dryers. A final layout plan for the major equipment was developed and submitted to DeRidder for review and approval. The Institute of Paper Science and Technology (IPST) completed a subcontract for a laboratory study on VOC emissions from wood waste drying using bark from the DeRidder mill. Samples of DeRidder's lime mud and green liquor dregs were collected and analyzed in GTI's laboratory. It was determined that lime mud is far too fine to be utilized as inert bed material in the fluidized bed gasifier. Results for the green liquor dregs are currently being reviewed. Design analysis for the in-furnace HPHT Air Heater was completed and the external Syngas Cooler/Air Heater was begun. Materials were received for the air heater tube testing system to be installed in Boiler No. 2 at DeRidder. A refractory interference problem with the original testing system design was discovered and resolved. Analyses of the externally recuperated gas turbine cycles (air heater and booster combustor in parallel or series) were continued including the effects of steam cooling and inlet air humidification on power output and operating cost. Discussions were continued with turbine manufacturers regarding the technical, time and cost requirements for developing an externally recuperated turbine engine suitable for use in the project. A 5-month no-cost time extension was requested and received for the project to accommodate design and evaluation of externally recuperated gas turbines using HPHT air as the working fluid.

  2. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or other industries are interested in lignin as a potential fuel or feedstock but need more information on properties.

  3. Bio-inspired MOF-based Catalysts for Lignin Valorization.

    SciTech Connect (OSTI)

    Allendorf, Mark D.; Stavila, Vitalie; Ramakrishnan, Parthasarathi; Davis, Ryan Wesley

    2014-09-01

    Lignin is a potentially plentiful source of renewable organics, with ~50Mtons/yr produced by the pulp/paper industry and 200-300 Mtons/yr projected production by a US biofuels industry. This industry must process approximately 1 billion tons of biomass to meet the US Renewable Fuel goals. However, there are currently no efficient processes for converting lignin to value-added chemicals and drop-in fuels. Lignin is therefore an opportunity for production of valuable renewable chemicals, but presents staggering technical and economic challenges due to the quantities of material involved and the strong chemical bonds comprising this polymer. Aggressive chemistries and high temperatures are required to degrade lignin without catalysts. Moreover, chemical non-uniformity among lignins leads to complex product mixtures that tend to repolymerize. Conventional petrochemical approaches (pyrolysis, catalytic cracking, gasification) are energy intensive (400-800 degC), require complicated separations, and remove valuable chemical functionality. Low-temperature (25-200 degC) alternatives are clearly desirable, but enzymes are thermally fragile and incompatible with liquid organic compounds, making them impractical for large-scale biorefining. Alternatively, homogeneous catalysts, such as recently developed vanadium complexes, must be separated from product mixtures, while many heterogenous catalysts involve costly noble metals. The objective of this project is to demonstrate proof of concept that an entirely new class of biomimetic, efficient, and industrially robust synthetic catalysts based on nanoporous Metal- Organic Frameworks (MOFs) can be developed. Although catalytic MOFs are known, catalysis of bond cleavage reactions needed for lignin degradation is completely unexplored. Thus, fundamental research is required that industry and most sponsoring agencies are currently unwilling to undertake. We introduce MOFs infiltrated with titanium and nickel species as catalysts for the C-O bond hydrogenolysis in model compounds, which mimic the b-O-4, a-O-4, and 4-O-5 linkages of natural lignin. The versatile IRMOF-74(n) series is proposed as a platform for creating efficient hydrogenolysis catalysts as it not only displays tunable pore sizes, but also has the required thermal and chemical stability. The catalytic C-O bond cleavage occurs at 10 bar hydrogen pressure and temperatures as low as 120 degC. The conversion efficiency of the aromatic ether substrates into the corresponding hydrocarbons and phenols varies as PhCH 2 CH 2 OPh > PhCH 2 OPh > PhOPh (Ph = phenyl), while the catalytic activity generally follows the following trend Ni%40IRMOF-74>Ti%40IRMOF-74>IRMOF-74. Conversions as high as 80%, coupled with good selectivity for hydrogenolysis vs. hydrogenation, highlight the potential of MOF-based catalysts for the selective cleavage of recalcitrant aryl-ether bonds found in lignin and other biopolymers. This project supports the DOE Integrated Biorefinery Program goals, the objective of which is to convert biomass to fuels and high-value chemicals, by addressing an important technology gap: the lack of low-temperature catalysts suitable for industrial lignin degradation. Biomass, which is ~30 wt% lignin, constitutes a potentially major source of platform chemicals that could improve overall profitability and productivity of all energy-related products, thereby benefiting consumers and reducing national dependence on imported oil. Additionally, DoD has a strong interest in low-cost drop-in fuels (Navy Biofuel Initiative) and has signed a Memorandum of Understanding with DOE and USDA to develop a sustainable biofuels industry.

  4. Remote Automatic Material On-Line Sensor

    SciTech Connect (OSTI)

    Magnuson, Erik

    2005-12-20

    Low cost NMR sensor for measuring moisture content of forest products. The Department of Energy (DOE) Industries of the Future (IOF) program seeks development and implementation of technologies that make industry more efficient--in particular, more energy-efficient. Quantum Magnetics, Inc. (QM), a wholly-owned subsidiary of GE Security, received an award under the program to investigate roles for low-cost Nuclear Magnetic Resonance (NMR) technology in furtherance of these goals. Most NMR systems are designed for high-resolution spectroscopy applications. These systems use intense magnetic fields produced by superconducting magnets that drive price and operating cost to levels beyond industry tolerance. At low magnetic fields, achievable at low cost, one loses the ability to obtain spectroscopic information. However, measuring the time constants associated with the NMR signal, called NMR relaxometry, gives indications of chemical and physical states of interest to process control and optimization. It was the purpose of this effort to investigate the technical and economic feasibility of using such low-field, low-cost NMR to monitor parameters enabling greater process efficiencies. The primary target industry identified in the Cooperative Development Agreement was the wood industry, where the moisture content of wood is a key process parameter from the time the cut tree enters a mill until the time it is delivered as pieces of lumber. Extracting the moisture is energy consuming, and improvements in drying efficiency stand to reduce costs and emissions substantially. QM designed and developed a new, low-cost NMR instrument suitable for inspecting lumber up to 3 inches by 12 inches in cross section, and other materials of similar size. Low cost is achieved via an inexpensive, permanent magnet and low-cost NMR spectrometer electronics. Laboratory testing demonstrated that the NMR system is capable of accurate ({+-} 0.5%) measurements of the moisture content of wood for moisture ranging from 2% to over 140% (referenced to the wood's dry weight). Accuracy exceeded that offered by existing instrumentation when the moisture content was in excess of the fiber saturation point ({approx}20%). Accuracy was independent of the wood form: solid wood, wood chips or sawdust. The prototype NMR system was designed and built for incorporation and use in a beta test site. Beta testing is under way at the pilot plant operated by the Pulp and Paper Research Institute of Canada (PAPRICAN) in Vancouver, B.C. Other industries were also investigated. For example, laboratory testing demonstrated that low-field NMR is capable of measuring the hydrogen content of calcium oxide (quicklime). Hydrogen content measurement can be done both rapidly (on the order of 1 second) and nondestructively. Measurement of moisture in quicklime affects energy consumption in the steel industry. Further advances in system electronics, ongoing under DOD support, will enable yet more substantial system cost reductions over the prototype system, opening up a wider range of utility.

  5. A preliminary assessment of the state of harvest and collection technology for forest residues

    SciTech Connect (OSTI)

    Webb, Erin; Perlack, Robert D; Blackwelder, D. Brad; Muth, David J.; Hess, J. Richard

    2008-08-01

    To meet the 'Twenty in Ten Initiative' goals set in the 2007 State of the Union address, forest resources will be needed as feedstocks for lignocellulosic ethanol production. It has been estimated that 368 million dry tons can be produced annually in the U.S. from logging residues and fuel treatment thinnings. Currently, very little of this woody biomass is used for energy production due to the costs and difficulty in collecting and transporting this material. However, minimizing biomass costs (including harvest, handling, transport, storage, and processing costs) delivered to the refinery is necessary to develop a sustainable cellulosic ethanol industry. Achieving this goal requires a fresh look at conventional timber harvesting operations to identify ways of efficiently integrating energy wood collection and developing cost-effective technologies to harvest small-diameter trees. In conventional whole-tree logging operations, entire trees are felled and skidded from the stump to the landing. The residues (also called slash), consisting of tops and limbs, accumulate at the landing when trees are delimbed. This slash can be ground at the landing with a mobile grinder or transported to another central location with a stationary grinder. The ground material is transported via chip vans, or possibly large roll on/off containers, to the user facility. Cut-to-length harvesting systems are gaining popularity in some locations. In these operations, specialized harvesters that can fall, delimb, and cut logs to length are used. The small diameter tops and limbs accumulate along the machine's track. It can be left in the forest to dry or removed soon after harvest while logs are extracted. Removing slash during the same operation as the wood has been shown to be more efficient. However, leaving residue in the forest to dry reduces moisture content, which improves grinder performance, reduces dry matter loss during storage, and inhibits colonization of fungi that produce harmful spores. In recent years, new machines that are specially designed for collection of small diameter wood have been developed in the U.S. and Europe. Residue bundlers and balers improve transportation and handling efficiency by densifying the material and packaging it so that it can be handled with conventional equipment. An experimental integrated harvester/grinder can fall small diameter trees and feed them into a grinder. The ground material is collected in a bin that can be dumped into a chip van. The harvester head is also capable of delimbing and bucking (cut into sections) small timber to be used for pulp and posts. Limitations of these new technologies are their large capital costs and complexity, leading to high maintenance costs and the need for highly trained operators. To ensure that quality feedstock materials consistently enter the mouth of the refinery, the uniform format supply system concept proposes that feedstock diversity be managed at harvest, much like the current grain supply system. This allows for standardization of key infrastructure components and facilitation of a biomass commodity system. Challenges in achieving a uniform woody biomass supply include, but are not limited to, developing machines for efficient harvest of small-diameter trees in a range of topographies and conditions, developing machines and operating plans for grinding biomass as near to the stump as possible, developing cost-effective drying strategies to reduce losses and mold growth during wood chip storage, and quantifying environmental impacts of slash removal and fuel thinnings to aid landowner decisions and policy development.

  6. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    SciTech Connect (OSTI)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    In order to ensure the global competitiveness of the Pulp and Paper Industry in the Southeastern U.S., more wood with targeted characteristics have to be produced more efficiently on less land. The objective of the research project is to provide a molecular genetic basis for tree breeding of desirable traits in juvenile loblolly pine, using a multidisciplinary research approach. We developed micro analytical methods for determine the cellulose and lignin content, average fiber length, and coarseness of a single ring in a 12 mm increment core. These methods allow rapid determination of these traits in micro scale. Genetic variation and genotype by environment interaction (GxE) were studied in several juvenile wood traits of loblolly pine (Pinus taeda L.). Over 1000 wood samples of 12 mm increment cores were collected from 14 full-sib families generated by a 6-parent half-diallel mating design (11-year-old) in four progeny tests. Juvenile (ring 3) and transition (ring 8) for each increment core were analyzed for cellulose and lignin content, average fiber length, and coarseness. Transition wood had higher cellulose content, longer fiber and higher coarseness, but lower lignin than juvenile wood. General combining ability variance for the traits in juvenile wood explained 3 to 10% of the total variance, whereas the specific combining ability variance was negligible or zero. There were noticeable full-sib family rank changes between sites for all the traits. This was reflected in very high specific combining ability by site interaction variances, which explained from 5% (fiber length) to 37% (lignin) of the total variance. Weak individual-tree heritabilities were found for cellulose, lignin content and fiber length at the juvenile and transition wood, except for lignin at the transition wood (0.23). Coarseness had moderately high individual-tree heritabilities at both the juvenile (0.39) and transition wood (0.30). Favorable genetic correlations of volume and stem straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  7. Advancement of High Temperature Black Liquor Gasification Technology

    SciTech Connect (OSTI)

    Craig Brown; Ingvar Landalv; Ragnar Stare; Jerry Yuan; Nikolai DeMartini; Nasser Ashgriz

    2008-03-31

    Weyerhaeuser operates the world's only commercial high-temperature black liquor gasifier at its pulp mill in New Bern, NC. The unit was started-up in December 1996 and currently processes about 15% of the mill's black liquor. Weyerhaeuser, Chemrec AB (the gasifier technology developer), and the U.S. Department of Energy recognized that the long-term, continuous operation of the New Bern gasifier offered a unique opportunity to advance the state of high temperature black liquor gasification toward the commercial-scale pressurized O2-blown gasification technology needed as a foundation for the Forest Products Bio-Refinery of the future. Weyerhaeuser along with its subcontracting partners submitted a proposal in response to the 2004 joint USDOE and USDA solicitation - 'Biomass Research and Development Initiative'. The Weyerhaeuser project 'Advancement of High Temperature Black Liquor Gasification' was awarded USDOE Cooperative Agreement DE-FC26-04NT42259 in November 2004. The overall goal of the DOE sponsored project was to utilize the Chemrec{trademark} black liquor gasification facility at New Bern as a test bed for advancing the development status of molten phase black liquor gasification. In particular, project tasks were directed at improvements to process performance and reliability. The effort featured the development and validation of advanced CFD modeling tools and the application of these tools to direct burner technology modifications. The project also focused on gaining a fundamental understanding and developing practical solutions to address condensate and green liquor scaling issues, and process integration issues related to gasifier dregs and product gas scrubbing. The Project was conducted in two phases with a review point between the phases. Weyerhaeuser pulled together a team of collaborators to undertake these tasks. Chemrec AB, the technology supplier, was intimately involved in most tasks, and focused primarily on the design, specification and procurement of facility upgrades. Chemrec AB is also operating a pressurized, O2-blown gasifier pilot facility in Piteaa, Sweden. There was an exchange of knowledge with the pressurized projects including utilization of the experimental results from facilities in Piteaa, Sweden. Resources at the Georgia Tech Research Corporation (GTRC, a.k.a., the Institute of Paper Science and Technology) were employed primarily to conduct the fundamental investigations on scaling and plugging mechanisms and characterization of green liquor dregs. The project also tapped GTRC expertise in the development of the critical underlying black liquor gasification rate subroutines employed in the CFD code. The actual CFD code development and application was undertaken by Process Simulation, Ltd (PSL) and Simulent, Ltd. PSL focused on the overall integrated gasifier CFD code, while Simulent focused on modeling the black liquor nozzle and description of the black liquor spray. For nozzle development and testing Chemrec collaborated with ETC (Energy Technology Centre) in Piteae utilizing their test facility for nozzle spray investigation. GTI (Gas Technology Institute), Des Plains, IL supported the team with advanced gas analysis equipment during the gasifier test period in June 2005.

  8. Chemical Industry Corrosion Management: A Comprehensive Information System (ASSET 2). Final Report

    SciTech Connect (OSTI)

    John, Randy C.; Young, Arthur L.; Pelton, Arthur D.; Thompson, William T.; Wright, Ian G.

    2008-10-10

    The research sponsored by this project has greatly expanded the ASSET corrosion prediction software system to produce a world-class technology to assess and predict engineering corrosion of metals and alloys corroding by exposure to hot gases. The effort included corrosion data compilation from numerous industrial sources and data generation at Shell Oak Ridge National Laboratory and several other companies for selected conditions. These data were organized into groupings representing various combinations of commercially available alloys and corrosion by various mechanisms after acceptance via a critical screening process to ensure the data were for alloys and conditions, which were adequately well defined, and of sufficient repeatability. ASSET is the largest and most capable, publicly-available technology in the field of corrosion assessment and prediction for alloys corroding by high temperature processes in chemical plants, hydrogen production, energy conversion processes, petroleum refining, power generation, fuels production and pulp/paper processes. The problems addressed by ASSET are: determination of the likely dominant corrosion mechanism based upon information available to the chemical engineers designing and/or operating various processes and prediction of engineering metal losses and lifetimes of commercial alloys used to build structural components. These assessments consider exposure conditions (metal temperatures, gas compositions and pressures), alloy compositions and exposure times. Results of the assessments are determination of the likely dominant corrosion mechanism and prediction of the loss of metal/alloy thickness as a function of time, temperature, gas composition and gas pressure. The uses of these corrosion mechanism assessments and metal loss predictions are that the degradation of processing equipment can be managed for the first time in a way which supports efforts to reduce energy consumption, ensure structural integrity of equipment with the goals to avoid premature failure, to quantitatively manage corrosion over the entire life of high temperature process equipment, to select alloys for equipment and to assist in equipment maintenance programs. ASSET software operates on typical Windows-based (Trademark of Microsoft Corporation) personal computers using operating systems such as Windows 2000, Windows NT and Vista. The software is user friendly and contains the background information needed to make productive use of the software in various help-screens in the ASSET software. A graduate from a university-level curriculum producing a B.S. in mechanical/chemical/materials science/engineering, chemistry or physics typically possesses the background required to make appropriate use of ASSET technology. A training/orientation workshop, which requires about 3 hours of class time was developed and has been provided multiple times to various user groups of ASSET technology. Approximately 100 persons have been trained in use of the technology. ASSET technology is available to about 65 companies representing industries in petroleum/gas production and processing, metals/alloys production, power generation, and equipment design.

  9. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

  10. Catalyzed Ceramic Burner Material

    SciTech Connect (OSTI)

    Barnes, Amy S., Dr.

    2012-06-29

    Catalyzed combustion offers the advantages of increased fuel efficiency, decreased emissions (both NOx and CO), and an expanded operating range. These performance improvements are related to the ability of the catalyst to stabilize a flame at or within the burner media and to combust fuel at much lower temperatures. This technology has a diverse set of applications in industrial and commercial heating, including boilers for the paper, food and chemical industries. However, wide spread adoption of catalyzed combustion has been limited by the high cost of precious metals needed for the catalyst materials. The primary objective of this project was the development of an innovative catalyzed burner media for commercial and small industrial boiler applications that drastically reduce the unit cost of the catalyzed media without sacrificing the benefits associated with catalyzed combustion. The scope of this program was to identify both the optimum substrate material as well as the best performing catalyst construction to meet or exceed industry standards for durability, cost, energy efficiency, and emissions. It was anticipated that commercial implementation of this technology would result in significant energy savings and reduced emissions. Based on demonstrated achievements, there is a potential to reduce NOx emissions by 40,000 TPY and natural gas consumption by 8.9 TBtu in industries that heavily utilize natural gas for process heating. These industries include food manufacturing, polymer processing, and pulp and paper manufacturing. Initial evaluation of commercial solutions and upcoming EPA regulations suggests that small to midsized boilers in industrial and commercial markets could possibly see the greatest benefit from this technology. While out of scope for the current program, an extension of this technology could also be applied to catalytic oxidation for volatile organic compounds (VOCs). Considerable progress has been made over the course of the grant period in accomplishing these objectives. Our work in the area of Pd-based, methane oxidation catalysts has led to the development of highly active catalysts with relatively low loadings of Pd metal using proprietary coating methods. The thermal stability of these Pd-based catalysts were characterized using SEM and BET analyses, further demonstrating that certain catalyst supports offer enhanced stability toward both PdO decomposition and/or thermal sintering/growth of Pd particles. When applied to commercially available fiber mesh substrates (both metallic and ceramic) and tested in an open-air burner, these catalyst-support chemistries showed modest improvements in the NOx emissions and radiant output compared to uncatalyzed substrates. More significant, though, was the performance of the catalyst-support chemistries on novel media substrates. These substrates were developed to overcome the limitations that are present with commercially available substrate designs and increase the gas-catalyst contact time. When catalyzed, these substrates demonstrated a 65-75% reduction in NOx emissions across the firing range when tested in an open air burner. In testing in a residential boiler, this translated into NOx emissions of <15 ppm over the 15-150 kBtu/hr firing range.

  11. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect (OSTI)

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

  12. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    SciTech Connect (OSTI)

    Tolk, Norman H.; Feldman, L. C.; Luepke, G.

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen impurity states under transient compression. This research focused on the characterization of photon and ion stimulated hydrogen related defect and impurity reactions and migration in solid state matter, which requires a detailed understanding of the rates and pathways of vibrational energy flow, of the transfer channels and of the coupling mechanisms between local vibrational modes (LVMs) and phonon bath as well as the electronic system of the host material. It should be stressed that researchers at Vanderbilt and William and Mary represented a unique group with a research focus and capabilities for low temperature creation and investigation of such material systems. Later in the program, we carried out a vigorous research effort addressing the roles of defects, interfaces, and dopants on the optical and electronic characteristics of semiconductor crystals, using phonon generation by means of ultrafast coherent acoustic phonon (CAP) spectroscopy, nonlinear characterization using second harmonic generation (SHG), and ultrafast pump-and-probe reflectivity and absorption measurements. This program featured research efforts from hydrogen defects in silicon alone to other forms of defects such as interfaces and dopant layers, as well as other important semiconducting systems. Even so, the emphasis remains on phenomena and processes far from equilibrium, such as hot electron effects and travelling localized phonon waves. This program relates directly to the mission of the Department of Energy. Knowledge of the rates and pathways of vibrational energy flow in condensed matter is critical for understanding dynamical processes in solids including electronically, optically and thermally stimulated defect and impurity reactions and migration. The ability to directly probe these pathways and rates allows tests of theory and scaling laws at new levels of precision. Hydrogen embedded in model crystalline semiconductors and metal oxides is of particular interest, since the associated local mode can be excited cleanly, and is usually well-separated in energy from the phonon bath. These basic dynamical studies have provided new insights for example into the fundamental mechanisms that control proton diffusion in these oxides. This area of materials science has largely fulfilled its promise to identify degradation mechanisms in electronic and optoelectronic devices, and to advance solid oxide proton conductors for fuel cells, gas sensors and proton-exchange membrane applications. It also provides the basis for innovations in materials synthesis involving atomic-selective diffusion and desorption.

  13. Structure and Biochemestry of Laccases from the Lignin-Degrading Basidiomycete, Ganoderma lucidum

    SciTech Connect (OSTI)

    C.A.Reddy, PI

    2005-06-30

    G. lucidum is one of the most important and widely distributed ligninolytic white rot fungi from habitats such as forest soils, agricultural soils, and tropical mangrove ecosystems and produce laccases as an important family of lignin modifying enzymes. Biochemically, laccases are blue multi copper oxidases that couple four electron reduction of molecular oxygen to water. There is a growing interest in the use of laccases for a variety of industrial applications such as bio-pulping and biobleaching as well as in their ability to detoxify a wide variety of toxic environmental pollutants. These key oxidative enzymes are found in all the three domains of life: Eukaryota. Prokarya, and Archaea. Ganoderma lucidum (strain no.103561) produces laccase with some of the highest activity (17,000 micro katals per mg of protein) reported for any laccases to date. Our results showed that this organism produces at least 11 different isoforms of laccase based on variation in mol. weight and/or PI. Our Studies showed that the presence of copper in the medium yields 15- to 20-fold greater levels of enzyme by G. lucidum. Dialysation of extra cellular fluid of G. lucidum against 10mM sodium tartrate (pH5.5) gave an additional 15 to 17 fold stimulation of activity with an observed specific activity of 17,000 {micro}katals/mg protein. Dialysis against acetate buffer gave five fold increase in activity while dialysis against glycine showed inhibition of activity. Purification by FPLC and preparative gel electrophoresis gave purified fractions that resolved into eleven isoforms as separated by isoelectric focusing, and the PI,s were 4.7, 4.6, 4.5, 4.3, 4.2, 4.1, 3.8, 3.7, 3.5, 3.4 and 3.3. Genomic clones of laccase were isolated using G. lucidum DNA as a template and using inverse PCR and forward/reverse primers corresponding to the sequences of the conserved copper binding region in the N-terminal domain of one of the laccases of this organism. Inverse PCR amplication of HindIII digested and ligated G.lucidum DNA was done using ABI Geneamp XL PCR kit in Ribocycler. The 5 conserved copper binding region of laccase was used for designing forward primer (5TCGACAATTCTTTCCTGTACG3) and reverse primer (5 TGGAGATGGG ACACT GGCTTATC 3). The PCR profile was 95 C for 3min, 94 C for 1min, 57 C for 30 sec and 68 C for 5min. for 30 cycles, and the final extension was at 72 C for 10min. The resulting {approx}2.7 Kb inverse PCR fragment was cloned into ZERO TOPOII blunt ligation vector (INVITROGEN) and screened on Kanamycin plates. Selected putative clones containing inserts were digested with a battery of restriction enzymes and analyzed on 1% agarose gels. Restriction digestion of these clones with BamHI, PstI, SalI, PvuII, EcoRI, and XhoI revealed 8 distinct patterns suggesting gene diversity. Two clones were sequenced using overlapping primers on ABI system. The sequences were aligned using Bioedit program. The aa sequences of the clones were deduced by Genewise2 program using Aspergillus as the reference organism. Eukaryotic gene regulatory sequences were identified using GeneWise2 Program. Laccase sequence alignments and similarity indexes were calculated using ClustalW and BioEdit programs. Blast analysis of two distinct BamHI clones, lac1 and lac4, showed that the proteins encoded by these clones are fungal laccase sequences. The coding sequence of lac1gene is interrupted by 6 introns ranging in size from 37-55 nt and encodes a mature protein consisting of 456 aa (Mr: 50,160), preceded by a putative 37-aa signal sequence. This predicted Mr is in agreement with the range of Mrs previously reported by us for the laccases of G. lucidum. The deduced aa sequence of LAC1 showed relatively high degree of homology with laccases of other basidiomycetes. It showed 96% homology to full-length LAC4 protein and 47-53% similarity to unpublished partial laccase sequences of other G. lucidum strains. Among the other basidiomycete laccases, LAC1 showed the highest similarity of 53-55% to Trametes versicolorLAC3 and LAC4. The consensus copper-binding domains found in ot

  14. Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration

    SciTech Connect (OSTI)

    Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.; Richardson, A.

    2012-08-02

    Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest management in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of subcanopy trees by opening up the forest canopy to increasing light penetration. Decomposition of onsite harvest slash and of wastes created during timber processing releases CO{sub 2} to the atmosphere, thus offsetting some of the C sequestered in vegetation. Decomposition of soil C and dead roots may also be temporarily stimulated by increased light penetration and warming of the forest floor. Quantification of these processes and their net effect is needed. We began studying C sequestration in a planned shelterwood harvest at the Howland Forest in central Maine in 2000. The harvest took place in 2002 by the International Paper Corporation, who assisted us to track the fates of harvest products (Scott et al., 2004, Environmental Management 33: S9-S22). Here we present the results of intensive on-site studies of the decay of harvest slash, soil respiration, growth of the remaining trees, and net ecosystem exchange (NEE) of CO{sub 2} during the first six years following the harvest. These results are combined with calculations of C in persisting off-site harvest products to estimate the net C consequences to date of this commercial shelterwood harvest operation. Tower-based eddy covariance is an ideal method for this study, as it integrates all C fluxes in and out of the forest over a large 'footprint' area and can reveal how the net C flux, as well as gross primary productivity and respiration, change following harvest. Because the size of this experiment precludes large-scale replication, we are use a paired-airshed approach, similar to classic large-scale paired watershed experiments. Measurements of biomass and C fluxes in control and treatment stands were compared during a pre-treatment calibration period, and then divergence from pre-treatment relationships between the two sites measured after the harvest treatment. Forests store carbon (C) as they accumulate biomass. Many forests are also commercial sources of timber and wood fiber. In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the at

  15. Final Report

    SciTech Connect (OSTI)

    David W. Mazyck; Angela Lindner; CY Wu, Rick Sheahan, Ashok Jain

    2007-06-30

    Forest products provide essential resources for human civilization, including energy and materials. In processing forest products, however, unwanted byproducts, such as volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) are generated. The goal of this study was to develop a cost effective and reliable air pollution control system to reduce VOC and HAP emissions from pulp, paper and paperboard mills and solid wood product facilities. Specifically, this work focused on the removal of VOCs and HAPs from high volume low concentration (HVLC) gases, particularly methanol since it is the largest HAP constituent in these gases. Three technologies were developed and tested at the bench-scale: (1) A novel composite material of activated carbon coated with a photocatalyst titanium dioxide (TiO{sub 2}) (referred to as TiO{sub 2}-coated activated carbon or TiO{sub 2}/AC), (2) a novel silica gel impregnated with nanosized TiO{sub 2} (referred to as silica-titania composites or STC), and (3) biofiltration. A pilot-scale reactor was also fabricated and tested for methanol removal using the TiO{sub 2}/AC and STC. The technical feasibility of removing methanol with TiO{sub 2}/AC was studied using a composite synthesized via a spay desiccation method. The removal of methanol consists of two consecutive operation steps: removal of methanol using fixed-bed activated carbon adsorption and regeneration of spent activated carbon using in-situ photocatalytic oxidation. Regeneration using photocatalytic oxidation employed irradiation of the TiO{sub 2} catalyst with low-energy ultraviolet (UV) light. Results of this technical feasibility study showed that photocatalytic oxidation can be used to regenerate a spent TiO{sub 2}/AC adsorbent. A TiO{sub 2}/AC adsorbent was then developed using a dry impregnation method, which performed better than the TiO{sub 2}/AC synthesized using the spray desiccation method. The enhanced performance was likely a result of the better distribution of TiO2 particles on the activated carbon surface. A method for pore volume impregnation using microwave irradiation was also developed. A commercial microwave oven (800 W) was used as the microwave source. Under 2450 MHz microwave irradiation, TTIP was quickly hydrolyzed and anatase TiO2 was formed in a short time (< 20 minutes). Due to the volumetric heating and selective heating of microwave, the solvent and by-products were quickly removed which reduced energy consumption and processing time. Activated carbon and TiO{sub 2}/AC were also tested for the removal of hydrogen sulfide, which was chosen as the representative total reduced sulfur (TRS) species. The BioNuchar AC support itself was a good H{sub 2}S remover. After coating TiO{sub 2} by dry impregnation, H{sub 2}S removal efficiency of TiO{sub 2}/AC decreased compared with the virgin AC due to the change of surface pH. Under UV light irradiation, H{sub 2}S removal efficiency of TiO{sub 2}/AC composite doubled, and its sulfate conversion efficiency was higher than that of AC. The formation of sulfate is preferred since the sulfate can be removed from the composite by rising with water. A pilot-scale fluidized bed reactor was designed to test the efficiency of methanol oxidation with TiO{sub 2}/AC in the presence of UV light. TiO{sub 2}/AC was prepared using the spray desiccation method. The TiO{sub 2}/AC was pre-loaded with (1) methanol (equivalent to about 2%wt) and (2) methanol and water. When the TiO{sub 2}/AC loaded with methanol only was exposed to UV light for one hour in the reactor, most of the methanol remained in the carbon pores and, thus, was not oxidized. The TiO{sub 2}/AC loaded with methanol and water desorbed about 2/3 of the methanol from its pores during fluidization, however, only a small portion of this desorbed methanol was oxidized. A biofilter system employing biological activated carbon was developed for methanol removal. The biofilter contained a mixed packing with Westvaco BioNuchar granular activated carbon, perlite, Osmocote slow release ammonium nitrate pellets, and

  16. 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY"

    U.S. Energy Information Administration (EIA) Indexed Site

    NAD_UTIL","FILLER","EFFDATE","STATUS","MULTIST","YEAR","GEN01","CON01","STK01","GEN02","CON02","STK02","GEN03","CON03","STK03","GEN04","CON04","STK04","GEN05","CON05","STK05","GEN06","CON06","STK06","GEN07","CON07","STK07","GEN08","CON08","STK08","GEN09","CON09","STK09","GEN10","CON10","STK10","GEN11","CON11","STK11","GEN12","CON12","STK12","PCODE","NERC","UTILCODE","FUELDESC","PMDESC" 11,23,1,1,,19,10,"BANGOR HYDRO ELECTRIC CO","ELLSWORTH",0,,1179,"0A",1294,,,95,2941,0,0,3518,0,0,4870,0,0,1732,0,0,3252,0,0,2193,0,0,134,0,0,447,0,0,465,0,0,538,0,0,4295,0,0,3601,0,0,1469,6,50159,"WAT","HY" 11,23,1,1,,19,15,"BANGOR HYDRO ELECTRIC CO","HOWLAND",0,,1179,"0A",1294,,,95,772,0,0,858,0,0,1012,0,0,727,0,0,1061,0,0,917,0,0,385,0,0,118,0,0,0,0,0,657,0,0,905,0,0,820,0,0,1472,6,50159,"WAT","HY" 11,23,1,1,,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,,1179,"0A",1294,,,95,2116,0,0,1715,0,0,1459,0,0,1821,0,0,1946,0,0,2134,0,0,2157,0,0,1797,0,0,1745,0,0,1829,0,0,2224,0,0,2386,0,0,1474,6,50159,"WAT","HY" 11,23,1,3,2,19,30,"BANGOR HYDRO ELECTRIC CO","MEDWAY",0,"LIGHT OIL",1179,"0A",1294,,,95,0,0,553,181,307,419,0,0,593,31,55,538,66,120,418,219,399,383,324,598,481,313,579,614,97,178,575,1,2,573,0,0,608,98,171,611,1474,6,50159,"FO2","IC" 11,23,1,1,,19,35,"BANGOR HYDRO ELECTRIC CO","MILFORD",0,,1179,"0A",1294,,,95,3843,0,0,3348,0,0,4177,0,0,3759,0,0,4855,0,0,4740,0,0,2971,0,0,2432,0,0,1786,0,0,1561,0,0,3510,0,0,4606,0,0,1475,6,50159,"WAT","HY" 11,23,1,1,,19,45,"BANGOR HYDRO ELECTRIC CO","ORONO",0,,1179,"0A",1294,,,95,895,0,0,836,0,0,966,0,0,576,0,0,624,0,0,736,0,0,684,0,0,464,0,0,408,0,0,616,0,0,849,0,0,896,0,0,1476,6,50159,"WAT","HY" 11,23,1,1,,19,55,"BANGOR HYDRO ELECTRIC CO","STILLWATER",0,,1179,"0A",1294,,,95,1191,0,0,844,0,0,939,0,0,1021,0,0,1114,0,0,1181,0,0,1170,0,0,878,0,0,818,0,0,880,0,0,923,0,0,950,0,0,1478,6,50159,"WAT","HY" 11,23,1,1,,19,60,"BANGOR HYDRO ELECTRIC CO","VEAZIE A",0,,1179,"0A",1294,,,95,4314,0,0,3855,0,0,5043,0,0,5153,0,0,6053,0,0,5342,0,0,3542,0,0,2651,0,0,2281,0,0,3932,0,0,5128,0,0,3842,0,0,1479,6,50159,"WAT","HY" 11,23,1,1,,19,62,"BANGOR HYDRO ELECTRIC CO","VEAZIE B",0,,1179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7199,6,50159,"WAT","HY" 11,23,1,3,2,19,68,"BANGOR HYDRO ELECTRIC CO","BAR HARBOR",0,"LIGHT OIL",1179,"0A",1294,,,95,42,73,538,379,659,574,0,0,574,73,128,446,69,125,512,225,420,440,312,579,556,449,813,455,32,60,586,49,89,497,6,10,487,152,264,571,1466,6,50159,"FO2","IC" 11,23,1,3,2,19,75,"BANGOR HYDRO ELECTRIC CO","EASTPORT",0,"LIGHT OIL",1179,"0A",1294,,,95,39,70,576,80,139,412,0,0,586,10,18,557,32,58,494,111,204,464,172,317,495,182,334,509,19,36,472,0,0,470,15,29,429,67,117,460,1468,6,50159,"FO2","IC" 11,23,1,1,,37,5,"CENTRAL MAINE POWER CO","ANDROSCOG 3",0,,3266,"0M",1294,,,95,2536,0,0,2573,0,0,2732,0,0,2703,0,0,2639,0,0,2235,0,0,2379,0,0,2201,0,0,1657,0,0,2352,0,0,2282,0,0,2805,0,0,1480,6,50491,"WAT","HY" 11,23,1,1,,37,10,"CENTRAL MAINE POWER CO","BAR MILLS",0,,3266,"0M",1294,,,95,2420,0,0,1389,0,0,2414,0,0,2364,0,0,2584,0,0,1195,0,0,623,0,0,586,0,0,293,0,0,1310,0,0,2401,0,0,2056,0,0,1481,6,50491,"WAT","HY" 11,23,1,1,,37,20,"CENTRAL MAINE POWER CO","BONNY EAGLE",0,,3266,"0M",1294,,,95,6041,0,0,3654,0,0,5858,0,0,5255,0,0,4575,0,0,2217,0,0,1233,0,0,1084,0,0,592,0,0,3323,0,0,7098,0,0,4100,0,0,1482,6,50491,"WAT","HY" 11,23,1,1,,37,40,"CENTRAL MAINE POWER CO","CATARACT",0,,3266,"0M",1294,,,95,5330,0,0,4194,0,0,4953,0,0,4656,0,0,4888,0,0,5331,0,0,818,0,0,662,0,0,102,0,0,2232,0,0,5064,0,0,4090,0,0,1486,6,50491,"WAT","HY" 11,23,1,1,,37,42,"CENTRAL MAINE POWER CO","CONTINENTAL",0,,3266,"0M",1294,,,95,-14,0,0,-15,0,0,322,0,0,72,0,0,147,0,0,12,0,0,3,0,0,13,0,0,15,0,0,109,0,0,555,0,0,-18,0,0,1487,6,50491,"WAT","HY" 11,23,1,1,,37,50,"CENTRAL MAINE POWER CO","DEER RIP 1",0,,3266,"0M",1294,,,95,2694,0,0,2434,0,0,4080,0,0,3776,0,0,4034,0,0,2023,0,0,686,0,0,215,0,0,83,0,0,1916,0,0,3984,0,0,3453,0,0,1488,6,50491,"WAT","HY" 11,23,1,1,,37,60,"CENTRAL MAINE POWER CO","FT HALIFAX",0,,3266,"0M",1294,,,95,959,0,0,424,0,0,1026,0,0,961,0,0,925,0,0,526,0,0,51,0,0,5,0,0,155,0,0,380,0,0,977,0,0,659,0,0,1490,6,50491,"WAT","HY" 11,23,1,1,,37,75,"CENTRAL MAINE POWER CO","GULF ISLAND",0,,3266,"0M",1294,,,95,10764,0,0,9131,0,0,13512,0,0,13282,0,0,13485,0,0,8299,0,0,5537,0,0,4070,0,0,2892,0,0,9130,0,0,15549,0,0,11464,0,0,1491,6,50491,"WAT","HY" 11,23,1,1,,37,80,"CENTRAL MAINE POWER CO","HARRIS",0,,3266,"0M",1294,,,95,14325,0,0,24479,0,0,22937,0,0,6538,0,0,5448,0,0,21283,0,0,13285,0,0,11928,0,0,12813,0,0,10770,0,0,19708,0,0,26783,0,0,1492,6,50491,"WAT","HY" 11,23,1,1,,37,85,"CENTRAL MAINE POWER CO","HIRAM",0,,3266,"0M",1294,,,95,5791,0,0,3447,0,0,5873,0,0,6762,0,0,6516,0,0,2778,0,0,1397,0,0,1182,0,0,155,0,0,2992,0,0,7160,0,0,4285,0,0,1493,6,50491,"WAT","HY" 11,23,1,1,,37,90,"CENTRAL MAINE POWER CO","MESALONSK 2",0,,3266,"0M",1294,,,95,1280,0,0,585,0,0,1625,0,0,606,0,0,869,0,0,350,0,0,2,0,0,-1,0,0,9,0,0,710,0,0,1668,0,0,745,0,0,1497,6,50491,"WAT","HY" 11,23,1,1,,37,95,"CENTRAL MAINE POWER CO","MESALONSK 3",0,,3266,"0M",1294,,,95,753,0,0,330,0,0,977,0,0,349,0,0,507,0,0,180,0,0,0,0,0,-6,0,0,0,0,0,414,0,0,1038,0,0,416,0,0,1498,6,50491,"WAT","HY" 11,23,1,1,,37,100,"CENTRAL MAINE POWER CO","MESALONSK 4",0,,3266,"0M",1294,,,95,405,0,0,183,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1499,6,50491,"WAT","HY" 11,23,1,1,,37,105,"CENTRAL MAINE POWER CO","MESALONSK 5",0,,3266,"0M",1294,,,95,699,0,0,292,0,0,0,0,0,378,0,0,0,0,0,203,0,0,13,0,0,9,0,0,4,0,0,408,0,0,923,0,0,390,0,0,1500,6,50491,"WAT","HY" 11,23,1,1,,37,110,"CENTRAL MAINE POWER CO","NO GORHAM",0,,3266,"0M",1294,,,95,1215,0,0,963,0,0,842,0,0,520,0,0,455,0,0,503,0,0,595,0,0,604,0,0,413,0,0,340,0,0,740,0,0,1180,0,0,1501,6,50491,"WAT","HY" 11,23,1,1,,37,125,"CENTRAL MAINE POWER CO","SHAWMUT",0,,3266,"0M",1294,,,95,5226,0,0,5495,0,0,6547,0,0,5776,0,0,5295,0,0,4910,0,0,3475,0,0,2346,0,0,2571,0,0,3529,0,0,4803,0,0,6066,0,0,1504,6,50491,"WAT","HY" 11,23,1,1,,37,130,"CENTRAL MAINE POWER CO","SKELTON",0,,3266,"0M",1294,,,95,13276,0,0,8614,0,0,12134,0,0,11304,0,0,11550,0,0,5199,0,0,2833,0,0,2610,0,0,687,0,0,6731,0,0,13037,0,0,9456,0,0,1505,6,50491,"WAT","HY" 11,23,1,1,,37,145,"CENTRAL MAINE POWER CO","WEST BUXTON",0,,3266,"0M",1294,,,95,4424,0,0,2556,0,0,4381,0,0,3723,0,0,3292,0,0,1602,0,0,798,0,0,745,0,0,418,0,0,1944,0,0,4334,0,0,3045,0,0,1508,6,50491,"WAT","HY" 11,23,1,1,,37,150,"CENTRAL MAINE POWER CO","WESTON",0,,3266,"0M",1294,,,95,8095,0,0,8443,0,0,9513,0,0,8520,0,0,7843,0,0,7850,0,0,5819,0,0,4618,0,0,4257,0,0,5361,0,0,7925,0,0,9347,0,0,1509,6,50491,"WAT","HY" 11,23,1,1,,37,155,"CENTRAL MAINE POWER CO","WILLIAMS",0,,3266,"0M",1294,,,95,9171,0,0,9162,0,0,10255,0,0,6585,0,0,7543,0,0,8658,0,0,6098,0,0,5593,0,0,5308,0,0,5891,0,0,8857,0,0,10646,0,0,1510,6,50491,"WAT","HY" 11,23,1,1,,37,160,"CENTRAL MAINE POWER CO","WYMAN HYDRO",0,,3266,"0M",1294,,,95,30298,0,0,37016,0,0,38382,0,0,18735,0,0,24745,0,0,31774,0,0,20433,0,0,17564,0,0,16353,0,0,19735,0,0,40234,0,0,38504,0,0,1511,6,50491,"WAT","HY" 11,23,1,4,2,37,175,"CENTRAL MAINE POWER CO","CAPE",0,"LIGHT OIL",3266,"0M",1294,,,95,40,282,7937,40,336,7601,-57,44,7557,-40,24,7533,5,162,7371,38,208,7316,611,1872,6581,497,1571,5887,-24,32,5855,-32,27,5828,-45,25,5803,-25,145,5552,1484,6,50491,"FO2","GT" 11,23,1,2,2,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"LIGHT OIL",3266,"0M",1294,,,95,707,1587,1149,810,1542,1579,117,264,1534,980,1825,1680,366,883,1468,854,1640,1807,783,1460,2327,653,1307,1677,115,266,1410,20,76,1335,486,1282,2039,604,1177,2212,1507,6,50491,"FO2","ST" 11,23,1,2,3,37,200,"CENTRAL MAINE POWER CO","WYMAN STEAM",0,"HEAVY OIL",3266,"0M",1294,,,95,47051,97029,319010,122493,214459,275338,22777,47240,228098,127804,222606,207728,22560,50003,278752,79660,140051,253816,153893,263859,173676,74046,134076,202289,16596,35140,288543,3258,10955,197963,18538,44437,353526,107031,192190,308382,1507,6,50491,"FO6","ST" 11,23,1,3,2,37,204,"CENTRAL MAINE POWER CO","ISLESBORO",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1494,6,50491,"FO2","IC" 11,23,1,3,2,37,206,"CENTRAL MAINE POWER CO","PEAK IS",0,"LIGHT OIL",3266,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1502,6,50491,"FO2","IC" 11,23,1,1,,37,210,"CENTRAL MAINE POWER CO","BRUNSWICK",0,,3266,"0M",1294,,,95,7964,0,0,6898,0,0,11266,0,0,10237,0,0,10095,0,0,6009,0,0,3698,0,0,2974,0,0,2429,0,0,6541,0,0,12216,0,0,8541,0,0,1483,6,50491,"WAT","HY" 11,23,1,1,,37,215,"CENTRAL MAINE POWER CO","W CHANNEL",0,,3266,"0M",1294,,,95,0,0,0,-33,0,0,-20,0,0,-22,0,0,-1,0,0,-1,0,0,-1,0,0,-21,0,0,-1,0,0,19,0,0,-11,0,0,-22,0,0,695,6,50491,"WAT","HY" 11,23,1,1,,37,220,"CENTRAL MAINE POWER CO","BATES UPPER",0,,3266,"0M",1294,,,95,-41,0,0,-34,0,0,610,0,0,144,0,0,273,0,0,15,0,0,1,0,0,15,0,0,18,0,0,217,0,0,4223,0,0,-30,0,0,7044,6,50491,"WAT","HY" 11,23,1,1,,37,225,"CENTRAL MAINE POWER CO","BATES LOWER",0,,3266,"0M",1294,"S",,95,-17,0,0,-16,0,0,-8,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-3,0,0,-17,0,0,7045,6,50491,"WAT","HY" 11,23,1,1,,37,235,"CENTRAL MAINE POWER CO","ANDRO LOWER",0,,3266,"0M",1294,,,95,23,0,0,-11,0,0,21,0,0,-2,0,0,12,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,5,0,0,38,0,0,-14,0,0,7047,6,50491,"WAT","HY" 11,23,1,1,,37,240,"CENTRAL MAINE POWER CO","HILL MILL",0,,3266,"0M",1294,,,95,-3,0,0,-2,0,0,183,0,0,-6,0,0,60,0,0,2,0,0,1,0,0,0,0,0,1,0,0,105,0,0,467,0,0,-6,0,0,7048,6,50491,"WAT","HY" 11,23,1,1,,37,245,"CENTRAL MAINE POWER CO","C E MONTY",0,,3266,"0M",1294,,,95,11840,0,0,10124,0,0,14280,0,0,13297,0,0,13808,0,0,8324,0,0,5496,0,0,4271,0,0,3199,0,0,9333,0,0,15686,0,0,12247,0,0,805,6,50491,"WAT","HY" 11,23,1,1,,37,250,"CENTRAL MAINE POWER CO","SMELT HILL",0,,3266,"0M",294,"A",,95,0,0,0,400,0,0,352,0,0,239,0,0,180,0,0,162,0,0,191,0,0,178,0,0,-608,0,0,766,0,0,224,0,0,283,0,0,7514,6,50491,"WAT","HY" 11,23,1,2,"B",37,255,"CENTRAL MAINE POWER CO","AROOSTOOK V",0,"WOOD",3266,"0M",294,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,165,0,0,134,0,0,0,0,0,0,0,0,7513,6,50491,"WD","ST" 11,23,1,1,,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,,11522,"0M",1294,,,95,454,0,0,469,0,0,519,0,0,451,0,0,454,0,0,410,0,0,48,0,0,1,0,0,-2,0,0,178,0,0,536,0,0,504,0,0,1513,6,51747,"WAT","HY" 11,23,1,2,3,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"HEAVY OIL",11522,"0M",1294,,,95,343,903,9375,592,1410,7984,-32,0,8005,-29,0,7995,-26,6,8015,-27,4,8057,-26,0,8067,222,644,7448,-28,0,7396,-29,0,7390,857,1841,5557,2237,4973,2370,1513,6,51747,"FO6","ST" 11,23,1,3,2,94,5,"MAINE PUBLIC SERVICE CO","CARIBOU",0,"LIGHT OIL",11522,"0M",1294,,,95,50,251,1746,5,143,1693,-65,0,1583,78,225,1932,-18,17,1865,-9,6,1829,38,115,1683,233,500,1802,86,210,1776,-6,65,2071,-56,28,1948,244,599,2098,1513,6,51747,"FO2","IC" 11,23,1,1,,94,10,"MAINE PUBLIC SERVICE CO","SQUA PAN",0,,11522,"0M",1294,,,95,115,0,0,363,0,0,152,0,0,-10,0,0,-7,0,0,-3,0,0,-3,0,0,-4,0,0,-6,0,0,-7,0,0,3,0,0,223,0,0,1516,6,51747,"WAT","HY" 11,23,1,3,2,94,23,"MAINE PUBLIC SERVICE CO","FLOS INN",0,"LIGHT OIL",11522,"0M",1294,,,95,27,115,314,19,82,232,-29,0,232,19,79,373,-23,2,371,-16,0,371,13,80,290,124,284,232,74,135,323,-3,51,272,-25,8,264,217,451,388,1514,6,51747,"FO2","IC" 11,23,1,3,2,94,25,"MAINE PUBLIC SERVICE CO","HOULTON",0,"LIGHT OIL",11522,"0M",1294,,,95,6,28,13,-8,1,12,-8,2,10,-8,0,10,-6,0,10,-3,0,10,-2,0,10,-3,0,10,-3,0,10,-4,0,11,-4,2,8,14,34,6,1515,6,51747,"FO2","IC" 11,23,1,2,1,97,1,"MAINE YANKEE ATOMIC PWR C","MAIN YANKEE",0,"NUCLEAR",11525,"0M",1294,,,95,197577,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1517,6,51748,"UR","ST" 11,23,1,3,2,116,10,"PUB SERV CO OF NEW HAMP","SWANS FALLS",0,"LIGHT OIL",15472,"0M",1294,"R",180,95,-7,0,2,-7,0,2,-6,0,2,-3,0,2,-2,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-1,0,2,-3,0,2,0,0,0,1518,6,52411,"FO2","IC" 11,23,5,1,,525,1,"LEWISTON (CITY OF)","ANDRO UPPER",0,,10963,"0A",1294,,,95,296,0,0,378,0,0,310,0,0,424,0,0,264,0,0,390,0,0,256,0,0,258,0,0,304,0,0,270,0,0,342,0,0,324,0,0,7046,6,54168,"WAT","HY" 11,23,5,1,,566,1,"MADISON (CITY OF)","NORRIDGEWCK",0,,11477,"0A",1294,,,95,306,0,0,241,0,0,261,0,0,291,0,0,379,0,0,277,0,0,75,0,0,0,0,0,26,0,0,121,0,0,197,0,0,224,0,0,6701,6,51737,"WAT","HY" 11,23,8,3,2,835,5,"EASTERN MAINE ELEC COOP","PORTABLE",0,"LIGHT OIL",5609,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6366,6,50848,"FO2","IC" 11,23,8,3,2,940,1,"SWANS ISLAND ELEC COOP","MINTURN",0,"LIGHT OIL",18368,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1550,6,52863,"FO2","IC" 12,33,1,1,,106,5,"NEW ENGLAND POWER CO","COMERFORD",0,,13433,"0M",1294,,90,95,34273,0,0,19125,0,0,43429,0,0,11874,0,0,22700,0,0,13853,0,0,5565,0,0,11061,0,0,5412,0,0,30636,0,0,45527,0,0,18948,0,0,2349,6,52007,"WAT","HY" 12,33,1,1,,106,10,"NEW ENGLAND POWER CO","MCINDOES",0,,13433,"0M",1294,,90,95,4420,0,0,3434,0,0,6350,0,0,3330,0,0,4648,0,0,2664,0,0,1453,0,0,2497,0,0,1353,0,0,4755,0,0,7050,0,0,3740,0,0,6483,6,52007,"WAT","HY" 12,33,1,1,,106,13,"NEW ENGLAND POWER CO","S C MOORE",0,,13433,"0M",1294,,90,95,29434,0,0,15866,0,0,34014,0,0,9521,0,0,19359,0,0,12124,0,0,4787,0,0,9805,0,0,4357,0,0,27013,0,0,40020,0,0,16551,0,0,2351,6,52007,"WAT","HY" 12,33,1,1,,106,15,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,7120,0,0,5523,0,0,9186,0,0,7993,0,0,7582,0,0,3197,0,0,1355,0,0,2525,0,0,19,0,0,5912,0,0,9702,0,0,7342,0,0,2352,6,52007,"WAT","HY" 12,33,1,1,,106,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,1974,0,0,3326,0,0,18722,0,0,7773,0,0,8911,0,0,4713,0,0,4047,0,0,5176,0,0,2849,0,0,9330,0,0,12667,0,0,7471,0,0,2353,6,52007,"WAT","HY" 12,33,1,2,1,123,1,"PUB SERV CO OF NEW HAMP","SEABROOK",0,"NUCLEAR",15472,"0M",1294,,180,95,857441,0,0,778373,0,0,863021,0,0,832472,0,0,865152,0,0,495425,0,0,690261,0,0,805711,0,0,800410,0,0,828658,0,0,60958,0,0,501494,0,0,6115,6,52411,"UR","ST" 12,33,1,1,,123,4,"PUB SERV CO OF NEW HAMP","AMOSKEAG",0,,15472,"0M",1294,,180,95,10690,0,0,7028,0,0,11425,0,0,749,0,0,15769,0,0,4245,0,0,2251,0,0,3257,0,0,434,0,0,5760,0,0,11044,0,0,6264,0,0,2354,6,52411,"WAT","HY" 12,33,1,1,,123,6,"PUB SERV CO OF NEW HAMP","AYERS IS",0,,15472,"0M",1294,,180,95,3909,0,0,2249,0,0,4743,0,0,3555,0,0,4487,0,0,1520,0,0,1448,0,0,1727,0,0,380,0,0,3303,0,0,5711,0,0,2632,0,0,2355,6,52411,"WAT","HY" 12,33,1,1,,123,16,"PUB SERV CO OF NEW HAMP","EASTMAN FLS",0,,15472,"0M",1294,,180,95,2843,0,0,1293,0,0,2781,0,0,2587,0,0,2725,0,0,1214,0,0,1763,0,0,10079,0,0,-9794,0,0,1729,0,0,3266,0,0,1701,0,0,2356,6,52411,"WAT","HY" 12,33,1,1,,123,20,"PUB SERV CO OF NEW HAMP","GARVIN FLS",0,,15472,"0M",1294,,180,95,5209,0,0,3143,0,0,5693,0,0,4388,0,0,3956,0,0,2019,0,0,755,0,0,1667,0,0,350,0,0,3233,0,0,6336,0,0,3913,0,0,2357,6,52411,"WAT","HY" 12,33,1,1,,123,22,"PUB SERV CO OF NEW HAMP","GORHAM",0,,15472,"0M",1294,,180,95,989,0,0,1031,0,0,1249,0,0,885,0,0,1193,0,0,756,0,0,568,0,0,530,0,0,580,0,0,864,0,0,1116,0,0,1202,0,0,2358,6,52411,"WAT","HY" 12,33,1,1,,123,28,"PUB SERV CO OF NEW HAMP","HOOKSETT",0,,15472,"0M",1294,,180,95,787,0,0,865,0,0,912,0,0,1164,0,0,1141,0,0,791,0,0,156,0,0,317,0,0,43,0,0,751,0,0,952,0,0,776,0,0,2359,6,52411,"WAT","HY" 12,33,1,1,,123,30,"PUB SERV CO OF NEW HAMP","JACKMAN",0,,15472,"0M",1294,,180,95,1997,0,0,535,0,0,1239,0,0,236,0,0,557,0,0,305,0,0,191,0,0,722,0,0,-8,0,0,1339,0,0,2326,0,0,864,0,0,2360,6,52411,"WAT","HY" 12,33,1,1,,123,50,"PUB SERV CO OF NEW HAMP","SMITH STA",0,,15472,"0M",1294,,180,95,8143,0,0,9737,0,0,11648,0,0,6108,0,0,8349,0,0,6172,0,0,4454,0,0,4871,0,0,3742,0,0,6861,0,0,10860,0,0,10308,0,0,2368,6,52411,"WAT","HY" 12,33,1,4,2,123,57,"PUB SERV CO OF NEW HAMP","LOST NATION",0,"LIGHT OIL",15472,"0M",1294,,180,95,-15,0,2159,79,306,1853,-15,0,1853,-12,0,1853,42,125,1728,50,140,1587,209,595,1527,275,828,1235,-11,0,1235,-11,0,1235,-10,0,1235,111,338,1076,2362,6,52411,"FO2","GT" 12,33,1,2,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,27,45,275,16,29,156,22,38,180,23,38,218,0,0,0,29,52,151,6,14,205,30,55,180,52,96,222,62,108,185,57,96,176,20,35,176,2364,6,52411,"FO2","ST" 12,33,1,2,6,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"BIT COAL",15472,"0M",1294,,180,95,266403,101539,253077,274308,103830,266334,256612,98157,263978,216443,80934,278945,76504,17154,315133,246563,95683,297713,281671,111493,247571,263463,95839,235114,181335,71786,264069,207269,81066,275589,253852,96425,269715,287608,108204,247069,2364,6,52411,"BIT","ST" 12,33,1,4,2,123,59,"PUB SERV CO OF NEW HAMP","MERRIMACK",0,"LIGHT OIL",15472,"0M",1294,,180,95,-47,0,3032,411,1048,3032,-21,0,1984,-18,0,1984,112,282,1702,122,334,1367,613,1576,1494,582,1554,2033,-14,0,2033,-11,20,2013,-20,0,2013,242,603,1411,2364,6,52411,"FO2","GT" 12,33,1,2,3,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"HEAVY OIL",15472,"0M",1294,,180,95,1350,2702,31413,820,1554,92325,2073,4352,187620,1454,2823,184796,1826,3479,189663,2478,4626,184835,4062,7903,176932,2011,4193,53637,1321,2911,170000,1885,4329,165671,5233,10859,154812,3538,6785,118334,2367,6,52411,"FO6","ST" 12,33,1,2,6,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"BIT COAL",15472,"0M",1294,,180,95,53534,27148,87087,68779,32692,50318,47008,24972,52027,65230,33724,53967,55312,27020,32185,49976,24400,75043,55074,26887,62380,30313,18396,42154,18241,9931,51974,16092,9642,54786,30357,16856,90418,65541,32424,72200,2367,6,52411,"BIT","ST" 12,33,1,4,2,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"LIGHT OIL",15472,"0M",1294,,180,95,-13,0,804,95,260,723,-12,0,723,-9,0,723,57,118,604,-7,0,604,90,262,723,242,963,714,-7,0,714,0,0,714,-9,0,714,120,301,794,2367,6,52411,"FO2","GT" 12,33,1,4,9,123,63,"PUB SERV CO OF NEW HAMP","SCHILLER",0,"NAT GAS",15472,"0M",1294,,180,95,19,240,0,12,140,0,24,310,0,25,300,0,22,264,0,17,210,0,219,2700,0,121,2803,0,14,190,0,15,220,0,24,320,0,22,260,0,2367,6,52411,"NG","GT" 12,33,1,4,2,123,70,"PUB SERV CO OF NEW HAMP","WHITE LAKE",0,"LIGHT OIL",15472,"0M",1294,,180,95,-17,0,2383,97,350,2033,-14,4,2029,-7,0,2029,48,94,1935,136,341,1595,147,405,1763,357,924,1410,-3,0,1410,-3,0,1410,-13,0,1410,-6,129,1281,2369,6,52411,"FO2","GT" 12,33,1,2,2,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"LIGHT OIL",15472,"0M",1294,,180,95,2141,4247,1577,1729,3274,1766,1111,2327,1824,1584,4149,1209,1580,3072,1209,1589,3168,1640,1162,2239,1856,1703,3313,1598,1134,2258,1388,173,817,1751,1894,3703,1630,507,3096,1651,8002,6,52411,"FO2","ST" 12,33,1,2,3,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"HEAVY OIL",15472,"0M",1294,,180,95,73391,138116,328850,119485,206586,321529,32827,62816,434361,89003,159420,245596,100291,177704,321055,73382,134661,317462,125529,216497,100965,57182,118647,2305699,45699,82009,405756,1560,6611,399144,100544,177099,222046,136392,231245,388270,8002,6,52411,"FO6","ST" 12,33,1,2,9,123,72,"PUB SERV CO OF NEW HAMP","NEWINGTON",0,"NAT GAS",15472,"0M",1294,,180,95,1463,17053,0,0,0,0,0,0,0,0,0,0,35353,394385,0,45744,527451,0,57696,624462,0,48968,544320,0,10747,122302,0,57,1545,0,742,8312,0,0,0,0,8002,6,52411,"NG","ST" 13,50,1,1,,22,2,"CENTRAL VT PUB SERV CORP","ARNOLD FLS",0,,3292,"0A",1294,,350,95,112,0,0,27,0,0,168,0,0,290,0,0,100,0,0,18,0,0,33,0,0,37,0,0,17,0,0,172,0,0,245,0,0,135,0,0,3707,6,50503,"WAT","HY" 13,50,1,1,,22,10,"CENTRAL VT PUB SERV CORP","CAVENDISH",0,,3292,"0A",1294,,350,95,534,0,0,309,0,0,847,0,0,607,0,0,267,0,0,83,0,0,0,0,0,134,0,0,-3,0,0,391,0,0,928,0,0,383,0,0,3710,6,50503,"WAT","HY" 13,50,1,1,,22,11,"CENTRAL VT PUB SERV CORP","CLARKS FLS",0,,3292,"0A",1294,,350,95,1404,0,0,1026,0,0,1689,0,0,1865,0,0,1729,0,0,855,0,0,596,0,0,1076,0,0,567,0,0,1648,0,0,1970,0,0,1412,0,0,3711,6,50503,"WAT","HY" 13,50,1,1,,22,15,"CENTRAL VT PUB SERV CORP","FAIRFAX",0,,3292,"0A",1294,,350,95,1873,0,0,1589,0,0,2321,0,0,2516,0,0,2499,0,0,1241,0,0,878,0,0,1432,0,0,744,0,0,2114,0,0,2573,0,0,2233,0,0,3712,6,50503,"WAT","HY" 13,50,1,1,,22,16,"CENTRAL VT PUB SERV CORP","GAGE",0,,3292,"0A",1294,,350,95,221,0,0,24,0,0,244,0,0,307,0,0,290,0,0,73,0,0,85,0,0,38,0,0,48,0,0,305,0,0,523,0,0,226,0,0,3713,6,50503,"WAT","HY" 13,50,1,1,,22,18,"CENTRAL VT PUB SERV CORP","GLEN",0,,3292,"0A",1294,,350,95,1041,0,0,605,0,0,731,0,0,367,0,0,238,0,0,98,0,0,83,0,0,323,0,0,183,0,0,629,0,0,1307,0,0,401,0,0,3714,6,50503,"WAT","HY" 13,50,1,1,,22,22,"CENTRAL VT PUB SERV CORP","LW MIDLEBRY",0,,3292,"0A",1294,,350,95,725,0,0,534,0,0,1054,0,0,920,0,0,550,0,0,286,0,0,79,0,0,150,0,0,104,0,0,524,0,0,1220,0,0,492,0,0,3716,6,50503,"WAT","HY" 13,50,1,1,,22,26,"CENTRAL VT PUB SERV CORP","MILTON",0,,3292,"0A",1294,,350,95,3538,0,0,2446,0,0,4215,0,0,4336,0,0,3864,0,0,1806,0,0,1204,0,0,2514,0,0,1210,0,0,4046,0,0,4879,0,0,3192,0,0,3717,6,50503,"WAT","HY" 13,50,1,1,,22,28,"CENTRAL VT PUB SERV CORP","PASSUMPSIC",0,,3292,"0A",1294,,350,95,315,0,0,97,0,0,378,0,0,435,0,0,415,0,0,90,0,0,51,0,0,150,0,0,94,0,0,370,0,0,434,0,0,44,0,0,3718,6,50503,"WAT","HY" 13,50,1,1,,22,30,"CENTRAL VT PUB SERV CORP","PATCH",0,,3292,"0A",1294,,350,95,107,0,0,58,0,0,59,0,0,21,0,0,7,0,0,5,0,0,5,0,0,28,0,0,7,0,0,42,0,0,158,0,0,30,0,0,3719,6,50503,"WAT","HY" 13,50,1,1,,22,34,"CENTRAL VT PUB SERV CORP","PIERCE MLS",0,,3292,"0A",1294,,350,95,113,0,0,81,0,0,121,0,0,180,0,0,161,0,0,59,0,0,47,0,0,47,0,0,17,0,0,102,0,0,181,0,0,116,0,0,3721,6,50503,"WAT","HY" 13,50,1,1,,22,36,"CENTRAL VT PUB SERV CORP","PITTSFORD",0,,3292,"0A",1294,,350,95,1275,0,0,941,0,0,158,0,0,47,0,0,-2,0,0,9,0,0,0,0,0,489,0,0,354,0,0,726,0,0,1999,0,0,679,0,0,3722,6,50503,"WAT","HY" 13,50,1,1,,22,38,"CENTRAL VT PUB SERV CORP","SALISBURY",0,,3292,"0A",1294,,350,95,325,0,0,210,0,0,191,0,0,62,0,0,141,0,0,65,0,0,25,0,0,72,0,0,111,0,0,88,0,0,-6,0,0,303,0,0,3724,6,50503,"WAT","HY" 13,50,1,1,,22,40,"CENTRAL VT PUB SERV CORP","SILVER LAKE",0,,3292,"0A",1294,,350,95,800,0,0,508,0,0,722,0,0,405,0,0,402,0,0,227,0,0,103,0,0,275,0,0,84,0,0,500,0,0,973,0,0,535,0,0,3725,6,50503,"WAT","HY" 13,50,1,1,,22,41,"CENTRAL VT PUB SERV CORP","TAFTSVILLE",0,,3292,"0A",1294,,350,95,150,0,0,135,0,0,208,0,0,200,0,0,119,0,0,12,0,0,0,0,0,17,0,0,-1,0,0,55,0,0,175,0,0,162,0,0,3727,6,50503,"WAT","HY" 13,50,1,1,,22,44,"CENTRAL VT PUB SERV CORP","WEYBRIDGE",0,,3292,"0A",1294,,350,95,1391,0,0,616,0,0,1819,0,0,1459,0,0,991,0,0,370,0,0,156,0,0,354,0,0,167,0,0,1042,0,0,2031,0,0,856,0,0,3728,6,50503,"WAT","HY" 13,50,1,1,,22,45,"CENTRAL VT PUB SERV CORP","PETERSON",0,,3292,"0A",1294,,350,95,2522,0,0,1281,0,0,3601,0,0,3092,0,0,2335,0,0,1090,0,0,702,0,0,1605,0,0,681,0,0,2814,0,0,4021,0,0,1742,0,0,3720,6,50503,"WAT","HY" 13,50,1,4,2,22,48,"CENTRAL VT PUB SERV CORP","RUTLAND",0,"LIGHT OIL",3292,"0A",1294,,350,95,13,125,4525,45,327,4198,40,218,3979,19,143,3836,20,127,3709,101,381,3328,272,898,2430,277,932,1498,34,167,3475,-8,46,3429,32,195,3234,152,651,2583,3723,6,50503,"FO2","GT" 13,50,1,4,2,22,49,"CENTRAL VT PUB SERV CORP","ASCUTNEY",0,"LIGHT OIL",3292,"0A",1294,,350,95,27,136,2572,77,326,2246,69,300,1946,18,96,1851,8,65,1786,41,144,1641,268,895,2175,226,765,1409,-1,38,3277,-15,0,3277,-3,71,3206,88,353,2853,3708,6,50503,"FO2","GT" 13,50,1,3,2,22,60,"CENTRAL VT PUB SERV CORP","ST ALBANS",0,"LIGHT OIL",3292,"0A",1294,,350,95,-14,0,89,5,38,214,-11,4,210,-10,5,205,7,17,188,21,40,148,72,149,234,59,123,111,-1,2,110,-3,0,110,-6,0,108,9,42,236,3726,6,50503,"FO2","IC" 13,50,1,1,,22,65,"CENTRAL VT PUB SERV CORP","SMITH",0,,3292,"0A",1294,,350,95,361,0,0,154,0,0,495,0,0,658,0,0,519,0,0,163,0,0,121,0,0,123,0,0,72,0,0,258,0,0,692,0,0,170,0,0,3709,6,50503,"WAT","HY" 13,50,1,1,,22,70,"CENTRAL VT PUB SERV CORP","EAST BARNET",0,,3292,"0A",1294,,350,95,595,0,0,399,0,0,900,0,0,1046,0,0,922,0,0,325,0,0,322,0,0,358,0,0,203,0,0,790,0,0,1148,0,0,702,0,0,788,6,50503,"WAT","HY" 13,50,1,1,,24,5,"CITIZENS UTILITIES CO","CHARLESTON",0,,3611,"0A",1294,,,95,339,0,0,244,0,0,393,0,0,445,0,0,409,0,0,252,0,0,154,0,0,192,0,0,90,0,0,382,0,0,461,0,0,314,0,0,3729,6,50560,"WAT","HY" 13,50,1,1,,24,10,"CITIZENS UTILITIES CO","NEWPORT",0,,3611,"0A",1294,,,95,1625,0,0,946,0,0,1961,0,0,1655,0,0,1645,0,0,917,0,0,474,0,0,1107,0,0,331,0,0,1614,0,0,2652,0,0,1235,0,0,3731,6,50560,"WAT","HY" 13,50,1,3,2,24,15,"CITIZENS UTILITIES CO","NEWPORT DSL",0,"LIGHT OIL",3611,"0A",1294,,,95,0,0,377,16,33,290,0,0,259,0,0,229,0,0,206,0,0,206,0,0,206,7,12,194,8,16,177,0,0,177,0,0,137,0,0,85,3730,6,50560,"FO2","IC" 13,50,1,1,,24,20,"CITIZENS UTILITIES CO","TROY",0,,3611,"0A",1294,,,95,150,0,0,72,0,0,150,0,0,267,0,0,209,0,0,71,0,0,28,0,0,30,0,0,3,0,0,74,0,0,244,0,0,128,0,0,3733,6,50560,"WAT","HY" 13,50,1,1,,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,,7601,"0M",1294,,,95,2888,0,0,2870,0,0,4338,0,0,3931,0,0,3261,0,0,980,0,0,333,0,0,1531,0,0,936,0,0,2161,0,0,3540,0,0,2964,0,0,3737,6,51169,"WAT","HY" 13,50,1,3,2,47,10,"GREEN MOUNTAIN POWER CORP","ESSEX 19",0,"LIGHT OIL",7601,"0M",1294,,,95,0,0,311,11,27,284,1,1,283,0,0,283,7,16,267,28,61,385,45,85,300,33,65,235,9,19,394,0,0,394,0,0,394,12,25,369,3737,6,51169,"FO2","IC" 13,50,1,1,,47,15,"GREEN MOUNTAIN POWER CORP","GORGE NO 18",0,,7601,"0M",1294,,,95,901,0,0,986,0,0,1573,0,0,1661,0,0,1125,0,0,122,0,0,113,0,0,692,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6475,6,51169,"WAT","HY" 13,50,1,1,,47,20,"GREEN MOUNTAIN POWER CORP","MARSHFIELD6",0,,7601,"0M",1294,,,95,891,0,0,1188,0,0,245,0,0,107,0,0,0,0,0,3,0,0,2,0,0,54,0,0,53,0,0,604,0,0,1300,0,0,430,0,0,3739,6,51169,"WAT","HY" 13,50,1,1,,47,25,"GREEN MOUNTAIN POWER CORP","MIDDLESEX 2",0,,7601,"0M",1294,,,95,1134,0,0,848,0,0,1580,0,0,1697,0,0,1156,0,0,150,0,0,111,0,0,717,0,0,45,0,0,1158,0,0,2061,0,0,1133,0,0,3740,6,51169,"WAT","HY" 13,50,1,1,,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,,7601,"0M",1294,,,95,972,0,0,799,0,0,1171,0,0,1224,0,0,968,0,0,441,0,0,247,0,0,499,0,0,318,0,0,590,0,0,1307,0,0,899,0,0,6519,6,51169,"WAT","HY" 13,50,1,3,2,47,40,"GREEN MOUNTAIN POWER CORP","VERGENNES 9",0,"LIGHT OIL",7601,"0M",1294,,,95,15,27,282,68,118,164,15,24,319,5,8,311,4,25,465,108,264,200,174,319,417,163,302,294,20,35,437,3,2,436,2,4,432,35,62,370,6519,6,51169,"FO2","IC" 13,50,1,1,,47,53,"GREEN MOUNTAIN POWER CORP","WATRBRY 22",0,,7601,"0M",1294,,,95,2101,0,0,2029,0,0,1441,0,0,318,0,0,823,0,0,444,0,0,464,0,0,1190,0,0,485,0,0,2251,0,0,2609,0,0,1566,0,0,6520,6,51169,"WAT","HY" 13,50,1,1,,47,55,"GREEN MOUNTAIN POWER CORP","W DANVIL 15",0,,7601,"0M",1294,,,95,445,0,0,146,0,0,507,0,0,509,0,0,301,0,0,77,0,0,87,0,0,220,0,0,103,0,0,544,0,0,661,0,0,151,0,0,3743,6,51169,"WAT","HY" 13,50,1,4,2,47,58,"GREEN MOUNTAIN POWER CORP","BERLIN NO 5",0,"LIGHT OIL",7601,"0M",1294,,,95,32,270,10962,606,1501,9460,21,72,9388,0,0,9338,254,677,8711,731,1834,7632,1214,3039,11011,1354,3377,12369,189,463,14376,681,1521,12855,79,209,12646,389,879,11767,3734,6,51169,"FO2","GT" 13,50,1,4,2,47,60,"GREEN MOUNTAIN POWER CORP","COLCHSTR 16",0,"LIGHT OIL",7601,"0M",1294,,,95,7,28,1071,86,296,775,5,25,750,0,0,750,9,33,717,6,26,1583,117,472,1112,76,320,791,0,0,1506,0,0,1506,0,0,1507,0,0,1506,3735,6,51169,"FO2","GT" 13,50,1,1,,47,65,"GREEN MOUNTAIN POWER CORP","BOLTON FALL",0,,7601,"0M",1294,,,95,3020,0,0,2253,0,0,3823,0,0,2884,0,0,2258,0,0,636,0,0,502,0,0,1603,0,0,428,0,0,2596,0,0,4478,0,0,2430,0,0,7056,6,51169,"WAT","HY" 13,50,1,7,"D",47,70,"GREEN MOUNTAIN POWER CORP","CARTHUSIANS",0,"N/A",7601,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7260,6,51169,"WI","WI" 13,50,1,1,,73,5,"NEW ENGLAND POWER CO","BELLOWS FLS",0,,13433,"0M",1294,,90,95,22299,0,0,16448,0,0,28735,0,0,22260,0,0,21635,0,0,10244,0,0,6175,0,0,10541,0,0,3991,0,0,19464,0,0,30239,0,0,18843,0,0,3745,6,52007,"WAT","HY" 13,50,1,1,,73,10,"NEW ENGLAND POWER CO","HARRIMAN",0,,13433,"0M",1294,,90,95,14391,0,0,13610,0,0,13092,0,0,2630,0,0,807,0,0,1394,0,0,2040,0,0,2968,0,0,2416,0,0,10136,0,0,16468,0,0,11713,0,0,3746,6,52007,"WAT","HY" 13,50,1,1,,73,15,"NEW ENGLAND POWER CO","SEARSBURG",0,,13433,"0M",1294,,90,95,3120,0,0,2878,0,0,3094,0,0,1942,0,0,1012,0,0,853,0,0,152,0,0,1319,0,0,954,0,0,2077,0,0,3042,0,0,2675,0,0,6529,6,52007,"WAT","HY" 13,50,1,1,,73,18,"NEW ENGLAND POWER CO","VERNON",0,,13433,"0M",1294,,90,95,4592,0,0,4182,0,0,5197,0,0,4922,0,0,4427,0,0,2397,0,0,1604,0,0,3525,0,0,1667,0,0,3876,0,0,4946,0,0,3693,0,0,8904,6,52007,"WAT","HY" 13,50,1,1,,73,20,"NEW ENGLAND POWER CO","WILDER",0,,13433,"0M",1294,,90,95,9053,0,0,5888,0,0,8525,0,0,1765,0,0,2559,0,0,1204,0,0,21,0,0,1756,0,0,407,0,0,4556,0,0,8802,0,0,2669,0,0,8905,6,52007,"WAT","HY" 13,50,1,1,,98,5,"PUB SERV CO OF NEW HAMP","CANAAN",0,,15472,"0M",1294,,180,95,729,0,0,718,0,0,805,0,0,483,0,0,569,0,0,345,0,0,252,0,0,190,0,0,195,0,0,728,0,0,765,0,0,738,0,0,3750,6,52411,"WAT","HY" 13,50,1,2,1,135,1,"VT YANKEE NUCLEAR PR CORP","VT YANKEE",0,"NUCLEAR",19796,"0M",1294,,,95,384928,0,0,346136,0,0,192519,0,0,0,0,0,335965,0,0,365673,0,0,371198,0,0,375476,0,0,363210,0,0,389313,0,0,379730,0,0,354361,0,0,3751,6,53128,"UR","ST" 13,50,1,1,,304,1,"VERMONT MARBLE CO","PROCTOR",0,,19794,"0A",1294,,,95,3213,0,0,2009,0,0,3559,0,0,3058,0,0,2032,0,0,1143,0,0,395,0,0,893,0,0,294,0,0,1839,0,0,3796,0,0,1853,0,0,6450,6,53127,"WAT","HY" 13,50,1,1,,304,5,"VERMONT MARBLE CO","CTR RUTLAND",0,,19794,"0A",1294,,,95,161,0,0,164,0,0,188,0,0,211,0,0,211,0,0,121,0,0,26,0,0,62,0,0,19,0,0,85,0,0,190,0,0,184,0,0,6453,6,53127,"WAT","HY" 13,50,1,1,,304,10,"VERMONT MARBLE CO","BELDENS",0,,19794,"0A",1294,,,95,2174,0,0,1009,0,0,2729,0,0,1624,0,0,972,0,0,405,0,0,95,0,0,369,0,0,149,0,0,1679,0,0,2997,0,0,1013,0,0,6451,6,53127,"WAT","HY" 13,50,1,4,2,304,15,"VERMONT MARBLE CO","FLORENCE",0,"LIGHT OIL",19794,"0A",1294,,,95,-2,95,12708,118,200,12076,184,475,11934,674,1762,7457,74,191,4607,157,358,9260,354,1040,6925,210,559,6363,167,435,4707,-11,3,10761,-13,60,8428,167,550,7887,7337,6,53127,"FO2","GT" 13,50,5,1,,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,,1299,"0A",1294,,,95,477,0,0,231,0,0,556,0,0,533,0,0,570,0,0,256,0,0,132,0,0,351,0,0,83,0,0,382,0,0,680,0,0,196,0,0,3753,6,50178,"WAT","HY" 13,50,5,3,2,520,1,"BARTON (VILLAGE OF)","W CHARLESTN",0,"LIGHT OIL",1299,"0A",1294,,,95,0,0,206,14,34,172,0,0,172,0,0,172,1,3,169,19,51,118,39,103,190,42,112,78,7,19,59,0,0,59,0,0,118,10,86,32,3753,6,50178,"FO2","IC" 13,50,5,4,2,536,1,"BURLINGTON (CITY OF)","GAS TURB",0,"LIGHT OIL",2548,"0M",1294,,,95,0,1,1628,248,707,868,0,4,2022,0,0,2015,19,66,1949,459,1365,1742,608,1830,1698,485,1472,1476,56,189,1287,0,0,1285,84,242,1001,165,472,1772,3754,6,50375,"FO2","GT" 13,50,5,2,"B",536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"WOD CHIPS",2548,"0M",1294,,,95,7742,0,0,12138,0,0,4790,0,0,12108,0,0,15618,0,0,11949,0,0,14425,0,0,8887,0,0,5359,0,0,3746,0,0,10817,0,0,19589,0,0,589,6,50375,"WOD","ST" 13,50,5,2,2,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"LIGHT OIL",2548,"0M",1294,,,95,136,326,2416,132,350,1989,41,99,1826,0,216,1559,0,39,1448,0,22,1351,4,23,1264,0,81,1183,0,52,1021,0,40,945,19,99,3170,24,98,2994,589,6,50375,"FO2","ST" 13,50,5,2,9,536,10,"BURLINGTON (CITY OF)","J C MC NEIL",0,"NAT GAS",2548,"0M",1294,,,95,1750,24386,0,816,12632,0,1337,18689,0,0,2252,0,0,3244,0,0,3721,0,177,4800,0,0,2471,0,0,2396,0,0,2708,0,449,13380,0,2064,47618,0,589,6,50375,"NG","ST" 13,50,5,1,,551,5,"ENOSBURG FALLS (VILLAGE)","KENDALL",0,,5915,"0A",1294,,,95,52,0,0,126,0,0,145,0,0,160,0,0,164,0,0,130,0,0,102,0,0,121,0,0,68,0,0,109,0,0,147,0,0,64,0,0,3757,6,50910,"WAT","HY" 13,50,5,3,2,551,10,"ENOSBURG FALLS (VILLAGE)","DIESEL PLT",0,"LIGHT OIL",5915,"0A",1294,,,95,1,5,320,14,24,296,0,1,296,1,3,293,4,13,280,16,34,246,20,37,351,23,44,307,2,6,301,0,0,301,0,0,0,12,21,279,4247,6,50910,"FO2","IC" 13,50,5,1,,551,15,"ENOSBURG FALLS (VILLAGE)","VILLAGE PLT",0,,5915,"0A",1294,,,95,370,0,0,204,0,0,298,0,0,433,0,0,408,0,0,218,0,0,87,0,0,140,0,0,45,0,0,324,0,0,364,0,0,395,0,0,4246,6,50910,"WAT","HY" 13,50,5,1,,567,1,"HARDWICK (VILLAGE OF)","WOLCOTT",0,,8104,"0A",1294,,,95,228,0,0,139,0,0,381,0,0,480,0,0,332,0,0,55,0,0,41,0,0,20,0,0,22,0,0,331,0,0,526,0,0,262,0,0,6477,6,51238,"WAT","HY" 13,50,5,3,2,567,5,"HARDWICK (VILLAGE OF)","HARDWICK",0,"LIGHT OIL",8104,"0A",1294,,,95,0,0,451,0,0,451,0,0,451,0,0,451,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6476,6,51238,"FO2","IC" 13,50,5,1,,644,5,"LYNDONVILLE (CITY OF)","GREAT FALLS",0,,11359,"0A",1294,,,95,160,0,0,115,0,0,308,0,0,489,0,0,746,0,0,350,0,0,273,0,0,122,0,0,171,0,0,457,0,0,558,0,0,437,0,0,3762,6,51721,"WAT","HY" 13,50,5,1,,644,10,"LYNDONVILLE (CITY OF)","VAIL",0,,11359,"0A",1294,,,95,100,0,0,71,0,0,99,0,0,123,0,0,225,0,0,93,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,107,0,0,3763,6,51721,"WAT","HY" 13,50,5,1,,659,5,"MORRISVILLE (VILLAGE OF)","CADYS FALLS",0,,12989,"0A",1294,,,95,396,0,0,268,0,0,387,0,0,226,0,0,403,0,0,133,0,0,101,0,0,2,0,0,71,0,0,356,0,0,337,0,0,160,0,0,3765,6,51943,"WAT","HY" 13,50,5,1,,659,10,"MORRISVILLE (VILLAGE OF)","MORRISVILLE",0,,12989,"0A",1294,,,95,250,0,0,312,0,0,619,0,0,801,0,0,581,0,0,131,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,-2,0,0,227,0,0,3764,6,51943,"WAT","HY" 13,50,5,1,,659,15,"MORRISVILLE (VILLAGE OF)","W K SANDERS",0,,12989,"0A",1294,,,95,-5,0,0,114,0,0,24,0,0,13,0,0,33,0,0,10,0,0,-1,0,0,38,0,0,-2,0,0,83,0,0,177,0,0,7,0,0,678,6,51943,"WAT","HY" 13,50,5,1,,737,5,"SWANTON (VILLAGE OF)","HIGHGATE FL",0,,18371,"0A",1294,,,95,3846,0,0,2084,0,0,5329,0,0,5012,0,0,4484,0,0,2556,0,0,711,0,0,1431,0,0,444,0,0,4486,0,0,6056,0,0,2920,0,0,6618,6,52864,"WAT","HY" 13,50,8,1,,800,5,"VERMONT ELECTRIC COOP","N HARTLAND",0,,19791,"0A",1294,,,95,1260,0,0,415,0,0,212,0,0,990,0,0,623,0,0,190,0,0,90,0,0,4,0,0,8,0,0,484,0,0,1466,0,0,734,0,0,590,6,53125,"WAT","HY" 13,50,8,1,,810,5,"WASHINGTON ELECTRIC COOP","WRIGHTSVILE",0,,20151,"0A",1294,,,95,270,0,0,88,0,0,334,0,0,327,0,0,246,0,0,50,0,0,54,0,0,128,0,0,47,0,0,3224,0,0,418,0,0,153,0,0,7051,6,58100,"WAT","HY" 14,25,1,2,1,23,1,"BOSTON EDISON CO","PILGRIM",0,"NUCLEAR",1998,"0M",1294,,,95,494219,0,0,433548,0,0,370903,0,0,0,0,0,0,0,0,313826,0,0,476983,0,0,486906,0,0,466384,0,0,470820,0,0,479805,0,0,492451,0,0,1590,6,50300,"UR","ST" 14,25,1,4,2,23,15,"BOSTON EDISON CO","EDGAR",0,"LIGHT OIL",1998,"0M",1294,,,95,43,139,1048,160,393,893,25,79,1053,64,124,929,28,74,855,110,379,953,323,950,955,245,760,910,38,108,1040,37,107,933,56,139,1032,134,337,934,1585,6,50300,"FO2","GT" 14,25,1,4,2,23,17,"BOSTON EDISON CO","FRAMINGHAM",0,"LIGHT OIL",1998,"0M",1294,,,95,141,378,1770,276,681,1804,67,203,1601,44,165,1674,70,215,1698,449,1329,1559,788,2383,1819,766,2306,1658,95,258,1630,53,142,1734,74,277,1695,278,761,1649,1586,6,50300,"FO2","GT" 14,25,1,4,2,23,20,"BOSTON EDISON CO","L STREET",0,"LIGHT OIL",1998,"0M",1294,,,95,18,71,606,223,524,481,31,74,586,101,254,571,64,181,628,302,790,611,232,657,597,450,1241,537,70,195,581,33,121,579,41,95,603,202,478,601,1587,6,50300,"FO2","GT" 14,25,1,2,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,251,519,1723,2082,3518,560,0,0,2480,874,1565,1748,1508,2858,1987,1285,2470,2852,2284,4277,1789,1325,2537,1992,119,230,1762,111,219,2019,220,439,1580,238,420,1327,1588,6,50300,"FO2","ST" 14,25,1,2,3,23,25,"BOSTON EDISON CO","MYSTIC",0,"HEAVY OIL",1998,"0M",1294,,,95,112692,212897,634701,250006,389639,396000,28170,35809,578539,46219,75659,622498,47350,81843,540595,74633,131731,529651,114158,195470,453259,65504,114254,339850,9543,16899,623019,18574,33314,589243,137777,234264,549412,333744,539006,466193,1588,6,50300,"FO6","ST" 14,25,1,2,9,23,25,"BOSTON EDISON CO","MYSTIC",0,"NAT GAS",1998,"0M",1294,,,95,54301,611365,0,41760,387451,0,199825,2260608,0,223483,2242300,0,121095,1295784,0,76698,835115,0,229079,2424349,0,221936,2420968,0,166749,1844575,0,138588,1545200,0,1185,12271,0,4690,47014,0,1588,6,50300,"NG","ST" 14,25,1,4,2,23,25,"BOSTON EDISON CO","MYSTIC",0,"LIGHT OIL",1998,"0M",1294,,,95,27,56,491,103,175,435,20,57,497,61,110,506,37,71,435,192,369,532,279,524,365,264,506,455,27,53,523,26,52,471,36,92,498,52,92,444,1588,6,50300,"FO2","GT" 14,25,1,2,2,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"LIGHT OIL",1998,"0M",1294,,,95,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,0,0,60,1589,6,50300,"FO2","ST" 14,25,1,2,3,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"HEAVY OIL",1998,"0M",1294,,,95,215120,320592,70394,155709,225131,71506,167349,258313,38374,0,0,38374,0,0,38374,0,0,38374,0,0,38403,0,0,38403,0,0,38403,0,0,38808,0,0,73197,633,1026,94600,1589,6,50300,"FO6","ST" 14,25,1,2,9,23,30,"BOSTON EDISON CO","NEW BOSTON",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,151,1334,0,2301,23751,0,201560,2042478,0,231080,2303282,0,366745,3613841,0,376840,3697457,0,381210,3746576,0,337660,3311625,0,328300,3254233,0,343010,3322669,0,159417,1573389,0,1589,6,50300,"NG","ST" 14,25,1,4,2,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"LIGHT OIL",1998,"0M",1294,,,95,532,1305,6724,2615,5858,6588,305,882,6659,441,1064,6548,648,1783,6907,1922,5806,5619,2304,7193,6789,2376,1139,6841,43,153,6688,33,101,6587,199,636,6665,2492,6199,6929,1592,6,50300,"FO2","GT" 14,25,1,4,9,23,40,"BOSTON EDISON CO","WEST MEDWAY",0,"NAT GAS",1998,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,963,16262,0,363,42170,0,305,906,0,134,2149,0,0,0,0,0,0,0,1592,6,50300,"NG","GT" 14,25,1,2,3,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"HEAVY OIL",4120,"0M",1294,,80,95,12,9,1622,622,891,254,0,0,0,12,11,3277,4,9,3067,8,31,3303,19,66,3122,71,286,2313,8,25,2707,0,0,2900,388,267,2375,216,151,3016,1594,6,50412,"FO6","ST" 14,25,1,2,9,25,5,"COMMONWEALTH ENERGY SYS","BLACKSTONE",0,"NAT GAS",4120,"0M",1294,,80,95,643,3052,0,809,7234,0,0,0,0,329,1924,0,176,2782,0,306,7064,0,840,18553,0,641,16359,0,98,2009,0,0,0,0,26,113,0,3,12,0,1594,6,50412,"NG","ST" 14,25,1,2,3,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"HEAVY OIL",4120,"0M",1294,,80,95,1966,3331,44639,4440,7426,46357,571,1025,43350,551,1184,40895,279,518,39729,76,146,39422,226,384,45928,178,367,45253,473,969,43288,91,206,42859,6937,10643,43043,10035,14044,33074,1595,6,50412,"FO6","ST" 14,25,1,2,9,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"NAT GAS",4120,"0M",1294,,80,95,8305,87563,0,5498,57215,0,7487,85115,0,6963,94695,0,6096,81153,0,7445,90078,0,8638,93009,0,7941,103714,0,6154,79756,0,5898,84299,0,580,5629,0,447,3954,0,1595,6,50412,"NG","ST" 14,25,1,4,2,25,10,"COMMONWEALTH ENERGY SYS","KENDALL SQ",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1889,173,442,1930,0,0,1930,10,26,1904,381,951,1671,340,886,1969,587,1240,1863,822,2088,2078,160,754,1323,0,0,1561,0,0,1561,183,453,1925,1595,6,50412,"FO2","GT" 14,25,1,2,3,25,15,"COMMONWEALTH ENERGY SYS","CANAL",0,"HEAVY OIL",4120,"0M",1294,,80,95,162391,279085,64428,147412,254620,37606,178077,310890,35916,210807,342420,34150,172965,296386,68134,149960,274442,64297,204907,357210,66759,386648,623547,65078,202416,316252,66152,59087,109907,66707,307766,492512,64272,421791,645524,63446,1599,6,50412,"FO6","ST" 14,25,1,3,2,25,25,"COMMONWEALTH ENERGY SYS","OAK BLUFFS",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,1131,70,125,1006,0,0,1006,3,6,1000,58,98,1011,55,97,1035,183,321,1005,196,350,1036,1,4,1032,0,0,1159,6,15,1144,63,118,1026,1597,6,50412,"FO2","IC" 14,25,1,3,2,25,30,"COMMONWEALTH ENERGY SYS","W TISBURY",0,"LIGHT OIL",4120,"0M",1294,,80,95,0,0,2023,42,87,1936,0,0,1936,2,4,1932,38,68,1918,40,70,1848,243,439,1711,204,373,1827,0,0,1827,0,0,2044,5,18,2026,47,98,1928,6049,6,50412,"FO2","IC" 14,25,1,3,2,25,35,"COMMONWEALTH ENERGY SYS","AIRPORT DIE",0,"LIGHT OIL",4120,"0M",1294,,80,95,2,4,65,20,32,57,6,9,48,14,26,23,3,17,6,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7184,6,50412,"FO2","IC" 14,25,1,4,2,46,1,"FITCHBURG GAS & ELEC LGT","FITCHBURG",0,"LIGHT OIL",6374,"0M",1294,,,95,113,320,1233,544,1372,812,0,0,1289,68,210,1079,120,416,1139,539,1444,1109,663,1798,2154,708,1974,1126,70,191,2125,49,166,1960,0,0,1960,461,1173,2216,1601,6,50990,"FO2","GT" 14,25,1,1,,59,5,"HOLYOKE WTR PWR CO","BB HOLBROOK",0,,8779,"0M",1294,,554,95,215,0,0,12,0,0,439,0,0,48,0,0,0,0,0,-4,0,0,-2,0,0,111,0,0,7,0,0,88,0,0,177,0,0,95,0,0,1602,6,51327,"WAT","HY" 14,25,1,1,,59,7,"HOLYOKE WTR PWR CO","CHEMICAL",0,,8779,"0M",1294,,554,95,390,0,0,65,0,0,264,0,0,560,0,0,1378,0,0,-3,0,0,-2,0,0,33,0,0,-2,0,0,199,0,0,228,0,0,152,0,0,1604,6,51327,"WAT","HY" 14,25,1,1,,59,10,"HOLYOKE WTR PWR CO","HADLEY FLLS",0,,8779,"0M",1294,,554,95,19318,0,0,16252,0,0,20835,0,0,17997,0,0,1047,0,0,10005,0,0,4815,0,0,8945,0,0,1536,0,0,13795,0,0,19251,0,0,19209,0,0,1605,6,51327,"WAT","HY" 14,25,1,1,,59,15,"HOLYOKE WTR PWR CO","RIVERSIDE",0,,8779,"0M",1294,,554,95,2283,0,0,798,0,0,2407,0,0,2806,0,0,1058,0,0,-32,0,0,-28,0,0,236,0,0,-31,0,0,991,0,0,1475,0,0,1658,0,0,1607,6,51327,"WAT","HY" 14,25,1,1,,59,20,"HOLYOKE WTR PWR CO","BOATLOCK",0,,8779,"0M",1294,,554,95,1401,0,0,440,0,0,1465,0,0,1749,0,0,-1985,0,0,-45,0,0,34,0,0,364,0,0,188,0,0,1015,0,0,1030,0,0,1719,0,0,1603,6,51327,"WAT","HY" 14,25,1,1,,59,21,"HOLYOKE WTR PWR CO","SKINNER",0,,8779,"0M",1294,,554,95,1087,0,0,-990,0,0,135,0,0,122,0,0,0,0,0,-3,0,0,-3,0,0,10,0,0,-5,0,0,48,0,0,88,0,0,144,0,0,1608,6,51327,"WAT","HY" 14,25,1,2,2,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"LIGHT OIL",8779,"0M",1294,,554,95,253,312,334,85,74,223,86,144,363,96,161,0,210,338,471,128,216,400,63,106,0,319,575,0,148,244,0,283,596,339,311,528,442,268,461,289,1606,6,51327,"FO2","ST" 14,25,1,2,6,59,23,"HOLYOKE WTR PWR CO","MT TOM",0,"BIT COAL",8779,"0M",1294,,554,95,83436,31625,65901,94304,36568,48767,100316,38568,48417,92219,34981,57613,86828,32256,68520,89522,33641,55040,96838,37232,50903,67013,26869,64337,58083,21428,72102,20300,9635,85211,75120,28714,96373,83498,33548,87268,1606,6,51327,"BIT","ST" 14,25,1,2,3,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"HEAVY OIL",12833,"0M",1294,,,95,5362,8778,70647,3605,6271,64376,3682,6389,57987,572,894,57093,4068,7388,49705,3861,6474,101371,1808,3090,98281,1729,8455,89825,4071,6826,83000,7484,12748,70251,8762,14647,55605,1259,3587,97942,1613,6,56511,"FO6","ST" 14,25,1,2,6,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"BIT COAL",12833,"0M",1294,,,95,57318,21462,76767,61443,26125,64290,61730,25219,52529,14739,5125,47404,25607,10149,50811,58410,21998,42203,65563,26654,42553,52228,21241,48670,53057,20314,65856,44642,17190,76089,48433,18499,83931,70559,26084,98563,1613,6,56511,"BIT","ST" 14,25,1,4,2,85,1,"MONTAUP ELECTRIC COMPANY","SOMERSET",0,"LIGHT OIL",12833,"0M",1294,,,95,143,374,5116,433,1118,3998,115,229,3769,65,186,3583,285,740,4510,629,1593,4110,1349,3410,5229,1777,4429,5348,136,348,5000,0,0,4999,5,26,5687,653,1369,4318,1613,6,56511,"FO2","GT" 14,25,1,3,2,90,15,"NANTUCKET ELEC CO","NANTUCKET",0,"LIGHT OIL",13206,"0M",1294,,,95,7539,12658,2602,7625,13184,8503,7218,12056,5494,6969,12757,2261,7465,13354,7937,7820,14759,9687,10453,19444,7486,10644,19689,5848,7894,13523,10626,6823,12246,7898,7832,14492,3042,9557,16800,2912,1615,6,51977,"FO2","IC" 14,25,1,1,,96,5,"NEW ENGLAND POWER CO","DEERFIELD 2",0,,13433,"0M",1294,,90,95,3908,0,0,2952,0,0,3971,0,0,2045,0,0,1064,0,0,520,0,0,442,0,0,617,0,0,404,0,0,2016,0,0,3583,0,0,2747,0,0,6047,6,52007,"WAT","HY" 14,25,1,1,,96,10,"NEW ENGLAND POWER CO","DEERFIELD 3",0,,13433,"0M",1294,,90,95,4040,0,0,3243,0,0,4233,0,0,2293,0,0,1182,0,0,848,0,0,445,0,0,722,0,0,460,0,0,1885,0,0,3570,0,0,3116,0,0,6083,6,52007,"WAT","HY" 14,25,1,1,,96,15,"NEW ENGLAND POWER CO","DEERFIELD 4",0,,13433,"0M",1294,,90,95,3691,0,0,2835,0,0,3555,0,0,1674,0,0,865,0,0,673,0,0,414,0,0,621,0,0,420,0,0,1920,0,0,3135,0,0,2638,0,0,6119,6,52007,"WAT","HY" 14,25,1,1,,96,20,"NEW ENGLAND POWER CO","DEERFIELD 5",0,,13433,"0M",1294,,90,95,8684,0,0,6946,0,0,8699,0,0,2314,0,0,807,0,0,564,0,0,515,0,0,177,0,0,0,0,0,0,0,0,3382,0,0,5810,0,0,1620,6,52007,"WAT","HY" 14,25,1,1,,96,25,"NEW ENGLAND POWER CO","SHERMAN",0,,13433,"0M",1294,,90,95,4117,0,0,3467,0,0,4264,0,0,1151,0,0,407,0,0,439,0,0,377,0,0,602,0,0,527,0,0,2183,0,0,3889,0,0,2917,0,0,6012,6,52007,"WAT","HY" 14,25,1,2,3,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"HEAVY OIL",13433,"0M",1294,,90,95,40093,74054,435541,65951,116563,318656,49098,75749,438283,41100,69916,368366,2212,5326,519600,0,0,519442,0,0,519401,488,4266,515767,0,0,516617,0,0,516584,7553,10954,505630,71672,125949,379784,1619,6,52007,"FO6","ST" 14,25,1,2,6,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"BIT COAL",13433,"0M",1294,,90,95,657136,245754,255528,538158,200282,277893,335153,130042,379361,336389,128159,523785,552184,203304,520224,709319,259373,461575,714608,267126,390587,681408,256270,431828,600517,222478,518312,676108,250140,322224,643066,226804,159986,692743,256541,166201,1619,6,52007,"BIT","ST" 14,25,1,2,9,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"NAT GAS",13433,"0M",1294,,90,95,2475,65992,0,19895,234494,0,87264,1046891,0,115149,1305242,0,165738,1925331,0,192541,2159965,0,121121,1465806,0,138514,1578722,0,90677,1067560,0,7950,208839,0,642,50267,0,499,65467,0,1619,6,52007,"NG","ST" 14,25,1,3,2,96,27,"NEW ENGLAND POWER CO","BRAYTON PT",0,"LIGHT OIL",13433,"0M",1294,,90,95,48,91,0,168,321,0,49,91,0,66,120,0,149,212,0,229,427,0,434,803,0,429,813,0,49,97,0,17,33,0,0,0,0,122,221,0,1619,6,52007,"FO2","IC" 14,25,1,2,3,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"HEAVY OIL",13433,"0M",1294,,90,95,4216,6811,427550,19621,51462,372000,43825,80929,296042,52176,100975,196885,88546,157427,294207,74155,134469,405510,143472,245061,157683,78033,135040,315193,15952,29894,481681,10242,22800,451257,31856,63264,446411,130138,177251,300301,1626,6,52007,"FO6","ST" 14,25,1,2,6,96,33,"NEW ENGLAND POWER CO","SALEM HABR",0,"BIT COAL",13433,"0M",1294,,90,95,170230,67910,116594,174526,68827,87604,182421,75469,107334,180983,73494,87888,123760,53441,145441,149482,64633,132065,157915,67184,148469,169338,69504,116124,140768,59871,93091,133365,56779,72780,147538,65216,99054,158287,70574,72828,1626,6,52007,"BIT","ST" 14,25,1,3,2,96,40,"NEW ENGLAND POWER CO","GLOUCESTER",0,"LIGHT OIL",13433,"0M",1294,,90,95,180,400,1027,365,1056,1255,495,500,1183,191,320,863,798,1430,1148,331,615,1333,398,757,1219,767,1957,1197,100,165,1033,0,0,1031,2,3,1465,491,918,1190,1624,6,52007,"FO2","IC" 14,25,1,3,2,96,50,"NEW ENGLAND POWER CO","NEWBURYPORT",0,"LIGHT OIL",13433,"0M",1294,,90,95,23,31,898,242,431,942,1,0,943,124,222,720,79,135,986,279,516,828,384,714,746,466,834,770,24,47,723,5,10,715,0,0,929,200,360,998,1625,6,52007,"FO2","IC" 14,25,1,1,,96,55,"NEW ENGLAND POWER CO","FIFE BROOK",0,,13433,"0M",1294,,90,95,4107,0,0,3775,0,0,4880,0,0,1321,0,0,312,0,0,338,0,0,198,0,0,494,0,0,291,0,0,2274,0,0,4150,0,0,3161,0,0,8004,6,52007,"WAT","HY" 14,25,1,1,,96,60,"NEW ENGLAND POWER CO","BEAR SWAMP",0,"P-PUMPSTG",13433,"0M",1294,,90,95,-17861,61325,0,-15324,57381,0,-16082,58258,0,-15241,53916,0,-14630,56226,0,-16812,61971,0,-18159,63682,0,-15902,62948,0,-16995,61404,0,-17477,62001,0,-15650,58713,0,-16215,58454,0,8005,6,52007,"WAT","HY" 14,25,1,1,,145,5,"W MASSACHUSETTS ELEC CO","CABOT",0,,20455,"0M",1294,,555,95,27350,0,0,20962,0,0,33562,0,0,28813,0,0,2450,0,0,11373,0,0,5730,0,0,10888,0,0,1060,0,0,21360,0,0,32264,0,0,23532,0,0,1629,6,53266,"WAT","HY" 14,25,1,1,,145,10,"W MASSACHUSETTS ELEC CO","COBBLE MT",0,,20455,"0M",1294,,555,95,2687,0,0,2401,0,0,3134,0,0,1490,0,0,613,0,0,1371,0,0,1579,0,0,2606,0,0,404,0,0,934,0,0,679,0,0,2257,0,0,1630,6,53266,"WAT","HY" 14,25,1,1,,145,12,"W MASSACHUSETTS ELEC CO","DWIGHT",0,,20455,"0M",1294,,555,95,541,0,0,520,0,0,744,0,0,709,0,0,972,0,0,422,0,0,241,0,0,219,0,0,137,0,0,316,0,0,187,0,0,450,0,0,6378,6,53266,"WAT","HY" 14,25,1,1,,145,20,"W MASSACHUSETTS ELEC CO","GARDER FLS",0,,20455,"0M",1294,,555,95,1535,0,0,1501,0,0,2140,0,0,1273,0,0,591,0,0,393,0,0,159,0,0,373,0,0,244,0,0,740,0,0,1394,0,0,1292,0,0,1634,6,53266,"WAT","HY" 14,25,1,1,,145,30,"W MASSACHUSETTS ELEC CO","IND ORCHARD",0,,20455,"0M",1294,,555,95,1913,0,0,854,0,0,1614,0,0,786,0,0,661,0,0,177,0,0,8,0,0,59,0,0,4,0,0,434,0,0,1375,0,0,741,0,0,6379,6,53266,"WAT","HY" 14,25,1,1,,145,32,"W MASSACHUSETTS ELEC CO","PUTTS BRDGE",0,,20455,"0M",1294,,555,95,224,0,0,252,0,0,1368,0,0,249,0,0,550,0,0,741,0,0,249,0,0,393,0,0,186,0,0,1233,0,0,1150,0,0,251,0,0,1637,6,53266,"WAT","HY" 14,25,1,1,,145,33,"W MASSACHUSETTS ELEC CO","RED BRIDGE",0,,20455,"0M",1294,,555,95,2265,0,0,1259,0,0,1699,0,0,1592,0,0,1025,0,0,689,0,0,212,0,0,256,0,0,150,0,0,1248,0,0,7724,0,0,1271,0,0,1638,6,53266,"WAT","HY" 14,25,1,1,,145,35,"W MASSACHUSETTS ELEC CO","TURNERS FL",0,,20455,"0M",1294,,555,95,1180,0,0,-9,0,0,2580,0,0,457,0,0,2357,0,0,3,0,0,320,0,0,753,0,0,1529,0,0,1437,0,0,3487,0,0,96,0,0,6388,6,53266,"WAT","HY" 14,25,1,1,,145,37,"W MASSACHUSETTS ELEC CO","NORTHFLD MT",0,"P-PUMPSTG",20455,"0M",1294,,555,95,-40582,142177,0,-33131,122422,0,-34507,127754,0,-38191,123876,0,-53574,130653,0,-54650,139615,0,-65287,149806,0,-58299,150495,0,-60095,144418,0,-65178,152081,0,-51403,135668,0,-54958,140849,0,547,6,53266,"WAT","HY" 14,25,1,4,2,145,38,"W MASSACHUSETTS ELEC CO","DOREEN",0,"LIGHT OIL",20455,"0M",1294,,555,95,50,156,956,319,789,738,14,84,997,11,135,1029,31,63,967,166,460,863,117,360,1099,422,1231,1099,69,204,1073,-10,0,1073,34,122,951,162,418,771,1631,6,53266,"FO2","GT" 14,25,1,2,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,0,0,533,101,224,458,0,0,458,19,36,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,411,0,0,379,1642,6,53266,"FO2","ST" 14,25,1,2,3,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"HEAVY OIL",20455,"0M",1294,,555,95,3033,6175,75421,4119,8425,75374,344,607,80604,1867,3252,77352,19,33,77318,750,1321,75997,1456,2596,73401,758,1343,72058,0,0,72058,0,0,72923,2320,5181,76520,13739,24402,55074,1642,6,53266,"FO6","ST" 14,25,1,2,9,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"NAT GAS",20455,"0M",1294,,555,95,2167,27681,0,81,1046,0,24872,278755,0,28674,316564,0,33801,372726,0,33691,376470,0,34950,395433,0,39329,440670,0,21443,242289,0,3420,45099,0,110,1547,0,158,1773,0,1642,6,53266,"NG","ST" 14,25,1,4,2,145,55,"W MASSACHUSETTS ELEC CO","W SPRINGFLD",0,"LIGHT OIL",20455,"0M",1294,,555,95,45,159,682,84,220,801,-17,0,801,-12,0,801,-3,12,789,108,297,6777,282,717,1096,319,633,977,0,0,977,0,0,977,0,0,977,0,0,977,1642,6,53266,"FO2","GT" 14,25,1,4,2,145,60,"W MASSACHUSETTS ELEC CO","WOODLAND RD",0,"LIGHT OIL",20455,"0M",1294,,555,95,38,127,1027,218,623,814,3,20,1144,11,96,1048,22,56,992,219,604,924,341,963,1130,373,1030,1017,32,105,1090,-7,0,1090,5,59,1032,156,398,534,1643,6,53266,"FO2","GT" 14,25,5,3,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,1,3,0,40,86,0,2,4,0,8,15,0,18,33,0,0,0,0,66,37,0,90,173,0,8,15,0,16,29,0,0,0,0,47,86,0,1660,6,50315,"FO2","IC" 14,25,5,5,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"WASTE HT",2144,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1660,6,50315,"NG","CC" 14,25,5,6,2,532,5,"BRAINTREE (CITY OF)","POTTER",0,"LIGHT OIL",2144,"0M",1294,,,95,597,1163,3860,1950,3916,4922,529,946,3897,722,1243,2632,0,0,2595,0,0,2595,0,0,0,0,0,0,0,0,0,418,803,0,0,0,0,563,1271,0,1660,6,50315,"FO2","CT" 14,25,5,6,9,532,5,"BRAINTREE (CITY OF)","POTTER",0,"NAT GAS",2144,"0M",1294,,,95,6985,76876,0,16116,164048,0,4161,42418,0,25648,268544,0,6647,61554,0,0,0,0,6439,68107,0,22225,231091,0,11633,125960,0,2826,30097,0,605,6473,0,2795,30378,0,1660,6,50315,"NG","CT" 14,25,5,1,,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,,8776,"0M",1294,,,95,1039,0,0,94,0,0,1200,0,0,538,0,0,244,0,0,216,0,0,169,0,0,308,0,0,243,0,0,308,0,0,843,0,0,63,0,0,9864,6,51325,"WAT","HY" 14,25,5,2,3,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"HEAVY OIL",8776,"0M",1294,,,95,-34,8,21223,-7,161,18597,-32,0,17335,-149,242,9944,-157,0,11105,-26,144,12014,197,918,10400,173,751,10383,0,0,21744,-26,2,23445,-45,21,21407,48,571,24539,9864,6,51325,"FO6","ST" 14,25,5,2,9,597,5,"HOLYOKE (CITY OF)","HOLYOKE",0,"NAT GAS",8776,"0M",1294,,,95,-406,548,0,-47,7095,0,-432,0,0,-151,1508,0,-180,0,0,-82,2775,0,358,10343,0,495,13260,0,-282,0,0,-300,136,0,-310,907,0,116,8617,0,9864,6,51325,"NG","ST" 14,25,5,3,2,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"LIGHT OIL",8973,"0A",1294,,,95,126,216,6535,468,801,5733,24,47,5687,49,79,5608,60,99,5509,136,242,5267,334,576,4687,237,442,10028,21,36,9992,0,0,9992,0,0,9992,0,613,9379,9038,6,51362,"FO2","IC" 14,25,5,3,9,602,1,"HUDSON (CITY OF)","CHERRY ST",0,"NAT GAS",8973,"0A",1294,,,95,16,177,0,0,0,0,0,0,0,27,276,0,223,2327,0,514,5353,0,813,8555,0,1067,10973,0,248,2679,0,0,0,0,0,0,0,0,0,0,9038,6,51362,"NG","IC" 14,25,5,3,2,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"LIGHT OIL",9442,"0A",1294,,,95,3,144,1524,185,504,1020,-44,84,928,26,97,839,45,81,751,112,229,1817,221,430,1388,171,335,1053,42,71,981,0,0,1991,0,13,1901,70,285,1616,1670,6,51411,"FO2","IC" 14,25,5,3,9,613,1,"IPSWICH (CITY OF)","IPSWICH",0,"NAT GAS",9442,"0A",1294,,,95,0,0,0,0,0,0,-7,91,0,26,564,0,193,2049,0,356,4180,0,540,6225,0,488,5467,0,218,2149,0,0,0,0,0,164,0,0,0,0,1670,6,51411,"NG","IC" 14,25,5,3,2,630,20,"MARBLEHEAD (CITY OF)","COMM ST 2",0,"LIGHT OIL",11624,"0A",1294,,,95,0,0,134,30,54,153,0,0,124,1,4,109,8,23,86,22,43,163,30,67,96,40,77,139,3,3,134,0,0,129,0,0,107,16,31,153,6585,6,51769,"FO2","IC" 14,25,5,3,2,630,25,"MARBLEHEAD (CITY OF)","WILKINS STA",0,"LIGHT OIL",11624,"0A",1294,,,95,24,42,422,242,404,495,3,4,490,17,25,466,41,67,398,140,249,387,184,331,532,214,384,390,17,34,833,0,0,831,0,0,833,105,187,646,6586,6,51769,"FO2","IC" 14,25,5,4,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,868,1812,0,3250,6760,0,1070,2159,0,1016,2152,0,1531,3641,0,3583,7206,0,6923,15010,0,5440,12228,0,1296,2825,0,251,525,0,0,0,0,2081,4355,0,6081,6,56516,"FO2","GT" 14,25,5,5,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,4867,0,0,4882,0,0,1895,0,0,0,0,0,1645,0,0,1298,0,0,2909,0,0,2231,0,0,542,0,0,137,0,0,778,0,0,7866,0,0,6081,6,56516,"FO2","CC" 14,25,5,5,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"WASTE HT",11806,"0M",1294,,,95,667,6409,0,33,225,0,713,7903,0,38860,226425,0,32080,282829,0,30410,271547,0,30355,268417,0,22281,199679,0,16911,152536,0,13731,126250,0,649,6336,0,0,0,0,6081,6,56516,"NG","CC" 14,25,5,6,2,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"LIGHT OIL",11806,"0M",1294,,,95,16765,34499,275954,17076,35625,171066,1732,3145,164811,15194,31318,130811,4458,10049,117055,3259,6474,203614,7129,14689,223923,5719,12097,199458,1427,2966,193410,406,852,191674,2974,6318,192851,24527,50346,140778,6081,6,56516,"FO2","CT" 14,25,5,6,9,640,5,"MASS MUN WHOLESALE ELEC","STONY BROOK",0,"NAT GAS",11806,"0M",1294,,,95,2298,22081,0,33,225,0,7123,78947,0,38860,226425,0,85133,750563,0,75927,677993,0,74156,655728,0,57044,511219,0,44278,399380,0,38588,354794,0,2475,24166,0,0,0,0,6081,6,56516,"NG","CT" 14,25,5,4,2,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"LIGHT OIL",14605,"0M",1294,,,95,4,11,7009,461,990,6019,3,13,6006,114,218,5789,218,411,5378,259,572,4806,1447,3081,5724,79,204,5787,0,0,5770,0,0,5770,0,0,5770,751,1304,4214,1678,6,52270,"FO2","GT" 14,25,5,4,9,668,10,"PEABODY (CITY OF)","WATERS RIVR",0,"NAT GAS",14605,"0M",1294,,,95,71,948,0,818,8676,0,0,0,0,298,3898,0,500,6079,0,1161,14052,0,735,10563,0,2810,34245,0,871,10971,0,16,244,0,0,0,0,136,1612,0,1678,6,52270,"NG","GT" 14,25,5,3,2,695,1,"SHREWSBURY (CITY OF)","SHREWSBURY",0,"LIGHT OIL",17127,"0A",1294,,,95,-48,53,1717,-20,96,1621,-72,0,1621,-59,0,1621,-27,43,1577,28,133,1444,206,450,994,393,793,1630,-12,58,1571,-52,4,1568,-66,0,1568,5,146,1421,6125,6,52653,"FO2","IC" 14,25,5,2,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,707,1487,45484,117,274,41056,124,1171,40232,227,881,38944,154,338,18232,1782,3821,13122,1997,4404,13146,1671,3714,26632,1017,1981,30701,285,1042,41468,209,665,43572,1269,2308,3691,1682,6,52885,"FO6","ST" 14,25,5,5,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,2588,4259,0,3074,4987,0,7,71,0,264,1016,0,10569,21610,0,5376,8750,0,7132,10296,0,7761,11325,0,6430,8473,0,269,1218,0,135,435,0,7563,7563,0,1682,6,52885,"FO6","CC" 14,25,5,5,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,0,0,0,88,2162,0,0,0,0,0,7,0,70,898,0,11828,118101,0,7953,72245,0,11517,102477,0,3409,38796,0,275,3743,0,0,0,0,0,0,0,1682,6,52885,"NG","CC" 14,25,5,6,2,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"LIGHT OIL",18488,"0M",1294,,,95,600,1721,500,1175,3321,414,0,10,405,0,0,405,23,155,250,230,719,0,424,1426,393,75,247,983,20,69,920,0,0,922,172,601,798,1596,4611,881,1682,6,52885,"FO2","CT" 14,25,5,6,3,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"HEAVY OIL",18488,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1682,6,52885,"FO6","CT" 14,25,5,6,9,711,10,"TAUNTON (CITY OF)","CLRY FLOOD",0,"NAT GAS",18488,"0M",1294,,,95,215,3547,0,0,0,0,0,0,0,9,220,0,91,2523,0,3269,55134,0,3573,59309,0,4974,79500,0,4776,58796,0,188,2751,0,2,41,0,0,0,0,1682,6,52885,"NG","CT" 15,44,1,3,2,59,1,"BLOCK ISLAND POWER CO","BLOCK ISL",0,"LIGHT OIL",1857,"0A",1294,,,95,640,929,1894,560,757,1368,454,801,1953,666,926,2412,871,1183,2384,728,1492,1815,1748,2173,1258,1686,2317,1251,852,1532,1104,890,1214,1044,683,904,1044,537,1042,1378,6567,6,50270,"FO2","IC" 15,44,1,2,3,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"HEAVY OIL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6954,6984,12805,21121,8031,15471,21089,11950,17787,9381,10642,17134,20900,3236,6,52007,"FO6","ST" 15,44,1,2,6,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"BIT COAL",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3236,6,52007,"BIT","ST" 15,44,1,2,9,60,5,"NEW ENGLAND POWER CO","MANCHSTR ST",0,"NAT GAS",13433,"0M",1294,,90,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,185,6790,0,5496,108488,0,22180,283931,0,57696,544903,0,43911,426261,0,200212,1571059,0,273062,2060878,0,3236,6,52007,"NG","ST" 15,44,1,3,2,71,5,"NEWPORT ELECTRIC CORP","ELDRED",0,"LIGHT OIL",13549,"0A",1294,,,95,0,0,912,146,241,919,0,0,916,14,24,893,280,476,872,38,285,806,254,445,603,431,759,765,53,97,884,0,0,884,30,55,818,186,311,942,3240,6,52046,"FO2","IC" 15,44,1,3,2,71,15,"NEWPORT ELECTRIC CORP","JEPSON",0,"LIGHT OIL",13549,"0A",1294,,,95,10,19,1047,104,179,864,0,0,1112,13,24,1094,58,103,998,35,303,926,228,421,966,339,620,1037,31,56,977,0,0,977,0,0,977,162,273,920,3241,6,52046,"FO2","IC" 15,44,5,1,,600,1,"PROVIDENCE (CITY OF)","PROVIDENCE",0,,15440,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3245,6,52404,"WAT","HY" 16,9,1,1,,21,1,"GILMAN BROTHERS CO","GILMAN",0,,6885,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,536,6,50309,"WAT","HY" 16,9,1,1,,37,5,"CONNECTICUT LGT & PWR CO","BULLS BRDGE",0,,4176,"0M",1294,,550,95,4542,0,0,3859,0,0,4535,0,0,4526,0,0,711,0,0,1545,0,0,596,0,0,576,0,0,83,0,0,3291,0,0,5258,0,0,4512,0,0,541,6,50651,"WAT","HY" 16,9,1,1,,37,15,"CONNECTICUT LGT & PWR CO","ROBERTSVLE",0,,4176,"0M",1294,,550,95,228,0,0,144,0,0,74,0,0,117,0,0,0,0,0,23,0,0,4,0,0,14,0,0,1,0,0,58,0,0,0,0,0,7,0,0,549,6,50651,"WAT","HY" 16,9,1,1,,37,20,"CONNECTICUT LGT & PWR CO","ROCKY RIVER",0,"C-PUMPSTG",4176,"0M",1294,,550,95,-532,573,0,-108,831,0,-5011,4942,0,-3890,3881,0,-2483,2464,0,-30,0,0,-50,160,0,-45,941,0,-34,0,0,-295,262,0,3242,0,0,3543,0,0,539,6,50651,"WAT","HY" 16,9,1,1,,37,25,"CONNECTICUT LGT & PWR CO","SCOTLAND DM",0,,4176,"0M",1294,,550,95,1196,0,0,762,0,0,1285,0,0,753,0,0,65,0,0,169,0,0,32,0,0,83,0,0,9,0,0,401,0,0,43,0,0,524,0,0,551,6,50651,"WAT","HY" 16,9,1,1,,37,28,"CONNECTICUT LGT & PWR CO","SHEPAUG",0,,4176,"0M",1294,,550,95,19987,0,0,8510,0,0,16746,0,0,8668,0,0,479,0,0,3113,0,0,1323,0,0,1665,0,0,561,0,0,4280,0,0,17593,0,0,9586,0,0,552,6,50651,"WAT","HY" 16,9,1,1,,37,30,"CONNECTICUT LGT & PWR CO","STEVENSON",0,,4176,"0M",1294,,550,95,14594,0,0,6873,0,0,12878,0,0,7022,0,0,5946,0,0,2333,0,0,1155,0,0,1565,0,0,585,0,0,7574,0,0,15018,0,0,7269,0,0,553,6,50651,"WAT","HY" 16,9,1,1,,37,33,"CONNECTICUT LGT & PWR CO","TAFTVILLE",0,,4176,"0M",1294,,550,95,1047,0,0,773,0,0,1181,0,0,662,0,0,0,0,0,286,0,0,106,0,0,168,0,0,58,0,0,376,0,0,802,0,0,539,0,0,554,6,50651,"WAT","HY" 16,9,1,1,,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,,4176,"0M",1294,,550,95,1344,0,0,790,0,0,1127,0,0,808,0,0,808,0,0,130,0,0,51,0,0,62,0,0,13,0,0,528,0,0,1238,0,0,756,0,0,557,6,50651,"WAT","HY" 16,9,1,4,2,37,35,"CONNECTICUT LGT & PWR CO","TUNNEL",0,"LIGHT OIL",4176,"0M",1294,,550,95,92,241,1121,148,413,1052,-10,0,1052,8,34,1017,-9,0,1017,174,492,1054,399,1075,1028,391,1123,1060,-10,0,1060,-9,0,1060,-8,0,1060,247,642,1013,557,6,50651,"FO2","GT" 16,9,1,4,2,37,37,"CONNECTICUT LGT & PWR CO","COS COB",0,"LIGHT OIL",4176,"0M",1294,,550,95,338,879,6366,1004,2550,5530,-6,0,6730,61,328,6402,100,252,6836,1043,2766,6164,1606,4183,6744,1574,4512,6417,89,372,6045,10,115,5931,-7,47,5884,478,1250,6205,542,6,50651,"FO2","GT" 16,9,1,2,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,4,7,607,26,48,738,10,19,719,8,14,705,6,12,693,5,10,683,12,21,662,5,10,652,35,67,586,12,21,564,10,19,545,126,250,652,544,6,50651,"FO2","ST" 16,9,1,2,3,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"HEAVY OIL",4176,"0M",1294,,550,95,1691,2896,140820,5317,8938,131882,6310,10503,160145,2309,3909,156236,1040,1748,154488,1026,1746,152742,366,624,152118,0,0,152118,0,0,152118,1119,1895,186866,0,0,223227,52715,95704,164704,544,6,50651,"FO6","ST" 16,9,1,2,9,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"NAT GAS",4176,"0M",1294,,550,95,139882,1480772,0,125833,1333372,0,140034,1484076,0,74718,805341,0,129292,1364215,0,113222,1209824,0,134347,1440396,0,141005,1520883,0,84240,919763,0,92690,988325,0,85651,910220,0,1027,11734,0,544,6,50651,"NG","ST" 16,9,1,4,2,37,40,"CONNECTICUT LGT & PWR CO","DEVON",0,"LIGHT OIL",4176,"0M",1294,,550,95,-8,0,826,52,143,1016,-6,0,1016,11,41,975,15,50,924,93,252,873,213,464,899,323,840,1155,12,42,1113,14,46,864,-8,0,864,126,312,755,544,6,50651,"FO2","GT" 16,9,1,2,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,79,187,224,71,184,282,0,0,277,35,81,316,26,52,254,126,275,254,225,460,205,169,342,281,13,78,193,-9,27,344,11,35,57,248,530,404,546,6,50651,"FO2","ST" 16,9,1,2,3,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"HEAVY OIL",4176,"0M",1294,,550,95,19404,42123,179930,11903,28403,229734,496,984,267130,8852,18669,287361,73,131,287230,16090,31789,255441,33046,60820,194621,29759,54794,250449,448,2452,286041,-459,1261,284780,4782,14127,272628,50192,96782,219079,546,6,50651,"FO6","ST" 16,9,1,2,9,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"NAT GAS",4176,"0M",1294,,550,95,2644,35575,0,1337,19886,0,14239,177907,0,15760,209674,0,26332,300080,0,15321,191070,0,33080,384304,0,29657,341116,0,660,22744,0,-410,7132,0,948,17617,0,2622,31910,0,546,6,50651,"NG","ST" 16,9,1,3,2,37,45,"CONNECTICUT LGT & PWR CO","MONTVILLE",0,"LIGHT OIL",4176,"0M",1294,,550,95,5,11,429,51,91,429,3,5,429,21,47,429,5,10,429,32,60,429,47,88,429,44,82,429,5,10,429,0,0,429,7,15,429,14,27,429,546,6,50651,"FO2","IC" 16,9,1,2,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,,550,95,1942,3751,1166,1049,1831,1166,1411,2570,1166,801,1409,746,830,1566,1275,1306,2393,1275,1212,2164,1208,1005,1793,1129,448,996,1090,743,1549,1201,1863,3623,816,1573,2830,1073,548,6,50651,"FO2","ST" 16,9,1,2,3,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"HEAVY OIL",4176,"0M",1294,,550,95,61485,109340,281515,116317,186438,251428,53269,89422,277523,112195,177490,244461,49615,86635,387526,72024,117143,423659,87276,142042,395624,69104,110519,365065,12764,26032,444868,12966,24423,458286,56112,97835,437824,98414,160154,343905,548,6,50651,"FO6","ST" 16,9,1,4,2,37,46,"CONNECTICUT LGT & PWR CO","NORWALK HAR",0,"LIGHT OIL",4176,"0M",1294,"R",550,95,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,548,6,50651,"FO2","GT" 16,9,1,1,,37,60,"CONNECTICUT LGT & PWR CO","BANTAM",0,,4176,"0M",1294,,550,95,166,0,0,122,0,0,177,0,0,99,0,0,0,0,0,24,0,0,2,0,0,9,0,0,0,0,0,66,0,0,182,0,0,126,0,0,6457,6,50651,"WAT","HY" 16,9,1,1,,37,65,"CONNECTICUT LGT & PWR CO","FLS VILLAGE",0,,4176,"0M",1294,,550,95,6485,0,0,3067,0,0,6148,0,0,4269,0,0,57,0,0,1043,0,0,359,0,0,386,0,0,86,0,0,3283,0,0,6134,0,0,3241,0,0,560,6,50651,"WAT","HY" 16,9,1,4,2,37,70,"CONNECTICUT LGT & PWR CO","FRANKLIN DR",0,"LIGHT OIL",4176,"0M",1294,,550,95,87,251,1073,112,303,770,-21,0,770,6,41,429,9,45,1229,156,508,1033,386,937,931,385,1480,880,-11,0,808,-12,0,808,-14,0,0,109,306,1000,561,6,50651,"FO2","GT" 16,9,1,2,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,52,116,72,106,200,205,37,72,134,69,119,181,93,171,177,62,115,62,142,274,121,143,283,195,159,331,184,25,61,123,89,174,116,58,124,159,562,6,50651,"FO2","ST" 16,9,1,2,3,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"HEAVY OIL",4176,"0M",1294,,550,95,28156,57773,619646,82338,144562,470965,28954,52136,494722,112799,180932,367774,91771,154447,321716,103385,178821,285273,180564,315539,192342,120265,219668,308678,14240,27382,395204,9172,20697,432521,29631,53865,465010,116423,197687,379501,562,6,50651,"FO6","ST" 16,9,1,4,2,37,75,"CONNECTICUT LGT & PWR CO","MIDDLETOWN",0,"LIGHT OIL",4176,"0M",1294,,550,95,0,0,986,60,155,998,2,12,986,0,0,986,18,56,1096,133,235,803,220,518,962,326,864,969,6,21,948,0,0,946,0,0,936,0,0,936,562,6,50651,"FO2","GT" 16,9,1,2,"C",37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"REFUSE",4176,"0M",1294,,550,95,36668,0,0,31584,0,0,30750,0,0,36558,0,0,4988,0,0,38064,0,0,35273,0,0,35840,0,0,37803,0,0,39379,0,0,36583,0,0,40236,0,0,563,6,50651,"GEO","ST" 16,9,1,4,2,37,80,"CONNECTICUT LGT & PWR CO","S MEADOW",0,"LIGHT OIL",4176,"0M",1294,,550,95,547,1286,33605,2263,5797,27807,-4,195,27613,257,794,4952,465,1373,43574,2527,6621,35953,4081,8784,28189,3486,11650,34410,234,1143,29931,-49,0,29931,56,271,29660,2479,6072,23588,563,6,50651,"FO2","GT" 16,9,1,4,2,37,85,"CONNECTICUT LGT & PWR CO","TORRINGTN T",0,"LIGHT OIL",4176,"0M",1294,,550,95,80,183,802,-19,0,802,9,49,753,4,24,729,-6,0,1062,163,373,867,4081,6864,28189,583,1059,947,4,16,931,-7,0,931,-8,0,931,173,446,1006,565,6,50651,"FO2","GT" 16,9,1,4,2,37,90,"CONNECTICUT LGT & PWR CO","BRANFORD",0,"LIGHT OIL",4176,"0M",1294,,550,95,-23,0,993,-11,0,993,-12,0,983,-9,0,993,-12,0,993,-15,0,963,303,888,1170,580,1248,981,112,115,1073,-7,12,1061,12,62,999,103,312,1042,540,6,50651,"FO2","GT" 16,9,1,2,1,45,1,"CONN YANKEE ATOMIC PWR CO","HADDAM NECK",0,"NUCLEAR",4187,"0M",1294,,551,95,349804,0,0,-2724,0,0,-2714,0,0,80321,0,0,411060,0,0,385019,0,0,346822,0,0,397229,0,0,404771,0,0,427136,0,0,421633,0,0,435253,0,0,558,6,50652,"UR","ST" 16,9,1,1,,70,1,"FARMINGTON RIVER POWER CO","RAINBOW",0,,6207,"0A",1294,,,95,4465,0,0,2602,0,0,3654,0,0,2574,0,0,1712,0,0,1108,0,0,787,0,0,842,0,0,700,0,0,2530,0,0,4222,0,0,2756,0,0,559,6,50970,"WAT","HY" 16,9,1,2,1,85,1,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,474794,0,0,424364,0,0,479164,0,0,452923,0,0,470915,0,0,397551,0,0,307242,0,0,369216,0,0,459416,0,0,478184,0,0,46176,0,0,-2630,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,2,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,-2968,0,0,-3117,0,0,-2841,0,0,12840,0,0,0,0,0,0,0,0,-8427,0,0,340333,0,0,625348,0,0,645987,0,0,618792,0,0,511064,0,0,566,6,50005,"UR","ST" 16,9,1,2,1,85,3,"NORTHEAST NUCL ENERGY CO","MILLSTONE",0,"NUCLEAR",21687,"0M",1294,,553,95,853882,0,0,758672,0,0,851613,0,0,328284,0,0,0,0,0,594786,0,0,853005,0,0,844847,0,0,822134,0,0,852985,0,0,817800,0,0,422956,0,0,566,6,50005,"UR","ST" 16,9,1,2,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,289,498,533,83,144,555,103,183,538,278,575,297,94,164,466,159,276,523,127,224,632,239,436,363,60,105,591,207,368,557,52,92,465,58,101,530,568,6,53003,"FO2","ST" 16,9,1,2,3,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,12678,20036,157706,31465,49414,142873,1716,2749,140124,28015,51807,143380,11615,18496,124884,34707,55499,150609,43253,69685,122107,18699,30642,149294,6814,10677,163242,4908,7842,155400,4195,6665,148735,54634,86347,0,568,6,53003,"FO6","ST" 16,9,1,2,6,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"BIT COAL",19497,"0M",1294,,,95,193441,73716,182983,223214,85285,166858,221070,86802,148636,4755,2176,201542,224862,86475,170775,217578,84500,168741,225684,88542,121774,166492,67303,123827,199715,77070,157924,143992,56780,199095,198867,77375,176894,249682,95223,163986,568,6,53003,"BIT","ST" 16,9,1,4,2,159,3,"UNITED ILLUMINATING CO","BRDGEPT HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,4,8,549,151,259,469,0,0,647,5,12,635,10,18,617,12,22,595,145,256,696,308,560,493,63,111,560,0,0,560,9,16,545,75,130,594,568,6,53003,"FO2","GT" 16,9,1,2,2,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"LIGHT OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO2","ST" 16,9,1,2,3,159,5,"UNITED ILLUMINATING CO","ENGLISH",0,"HEAVY OIL",19497,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,569,6,53003,"FO6","ST" 16,9,1,2,2,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"LIGHT OIL",19497,"0M",1294,,,95,876,1540,484,437,731,468,424,737,445,327,564,583,511,892,406,254,441,667,361,632,570,401,702,762,359,651,646,23,502,680,959,1741,546,779,1314,482,6156,6,53003,"FO2","ST" 16,9,1,2,3,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"HEAVY OIL",19497,"0M",1294,,,95,104071,166097,286634,171042,260046,151260,95848,151028,241794,147390,227183,379543,69013,110799,306351,74009,117219,286218,97251,153426,333078,88533,139665,374595,39346,64393,310202,163,3184,307018,72476,120773,186245,162959,252660,0,6156,6,53003,"FO6","ST" 16,9,1,2,9,159,12,"UNITED ILLUMINATING CO","N HAVEN HBR",0,"NAT GAS",19497,"0M",1294,,,95,0,0,0,0,0,0,31250,307224,0,64504,630374,0,76077,749979,0,81590,800742,0,99404,985733,0,49501,489902,0,13044,134068,0,34,4180,0,0,0,0,0,0,0,6156,6,53003,"NG","ST" 16,9,5,1,,556,5,"NORWICH (CITY OF)","SECOND ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,5,0,0,174,0,0,101,0,0,67,0,0,17,0,0,180,0,0,272,0,0,324,0,0,580,6,52123,"WAT","HY" 16,9,5,1,,556,10,"NORWICH (CITY OF)","OCCUM",0,,13831,"0A",1294,,,95,516,0,0,356,0,0,529,0,0,370,0,0,225,0,0,257,0,0,63,0,0,95,0,0,42,0,0,215,0,0,420,0,0,292,0,0,582,6,52123,"WAT","HY" 16,9,5,1,,556,13,"NORWICH (CITY OF)","TENTH ST",0,,13831,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,83,0,0,0,0,0,113,0,0,54,0,0,255,0,0,534,0,0,636,0,0,583,6,52123,"WAT","HY" 16,9,5,4,2,556,20,"NORWICH (CITY OF)","N MAIN ST",0,"LIGHT OIL",13831,"0A",1294,,,95,0,0,1935,53,168,1767,0,0,1767,0,0,1767,23,56,1711,62,161,1550,402,1007,1693,531,1325,1518,0,0,1518,0,0,1518,0,0,1518,117,296,2388,581,6,52123,"FO2","GT" 16,9,5,3,2,560,1,"SOUTH NORWALK (CITY OF)","SO NORWALK",0,"LIGHT OIL",17569,"0A",1294,,,95,50,90,1114,84,147,1614,27,49,1523,27,45,1455,71,123,1331,70,125,1235,242,444,819,209,351,1604,20,34,1570,2,4,1736,9,13,1671,98,158,1418,6598,6,52704,"FO2","IC" 16,9,5,2,3,567,1,"WALLINGFORD (CITY OF)","PIERCE",0,"HEAVY OIL",20038,"0A",1294,,,95,0,15,1540,368,1067,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,0,0,2318,146,445,1873,0,0,1873,0,0,1873,0,0,1873,6635,6,53175,"FO6","ST" 21,36,1,1,,35,10,"CENTRAL HUDSON GAS & ELEC","DASHVILLE",0,,3249,"0M",1294,,,95,2381,0,0,502,0,0,1130,0,0,814,0,0,844,0,0,273,0,0,156,0,0,52,0,0,6,0,0,1173,0,0,1735,0,0,901,0,0,2481,6,50484,"WAT","HY" 21,36,1,1,,35,18,"CENTRAL HUDSON GAS & ELEC","NEVERSINK",0,,3249,"0M",1294,,,95,4408,0,0,4221,0,0,4645,0,0,2716,0,0,2618,0,0,2849,0,0,10968,0,0,9289,0,0,3298,0,0,2724,0,0,2482,0,0,4970,0,0,2483,6,50484,"WAT","HY" 21,36,1,1,,35,20,"CENTRAL HUDSON GAS & ELEC","STURGEON PL",0,,3249,"0M",1294,,,95,9300,0,0,4140,0,0,8251,0,0,4665,0,0,3127,0,0,1123,0,0,872,0,0,359,0,0,111,0,0,5834,0,0,7954,0,0,3663,0,0,2486,6,50484,"WAT","HY" 21,36,1,2,3,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"HEAVY OIL",3249,"0M",1294,,,95,0,0,10567,2887,4585,13091,0,0,13091,0,0,13091,377,619,12472,1176,2123,10349,198,406,9943,0,0,9943,0,0,9943,0,0,9943,16,30,9913,0,0,9913,2480,6,50484,"FO6","ST" 21,36,1,2,6,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"BIT COAL",3249,"0M",1294,,,95,180547,67912,176943,208851,77841,149786,144579,54893,173619,180437,67955,164986,58267,23110,161831,149627,57630,163884,131893,51114,152154,127793,49654,170960,144488,55872,134561,60315,24424,150152,137406,60589,138420,208309,77898,129136,2480,6,50484,"BIT","ST" 21,36,1,2,9,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"NAT GAS",3249,"0M",1294,,,95,12788,136338,0,5348,58875,0,52133,554622,0,1003,12881,0,26410,269381,0,9355,110458,0,50047,563362,0,64005,727957,0,42268,475832,0,72329,806049,0,21208,238996,0,526,5007,0,2480,6,50484,"NG","ST" 21,36,1,3,2,35,25,"CENTRAL HUDSON GAS & ELEC","DANSKAMMER",0,"LIGHT OIL",3249,"0M",1294,,,95,38,70,119,10,15,278,29,38,240,10,9,231,5,9,222,30,55,167,29,60,281,48,81,200,48,99,274,48,83,191,38,76,289,9,16,273,2480,6,50484,"FO2","IC" 21,36,1,4,2,35,35,"CENTRAL HUDSON GAS & ELEC","SOUTH CAIRO",0,"LIGHT OIL",3249,"0M",1294,,,95,74,178,2486,0,0,2486,0,0,2486,0,0,2486,13,31,2455,198,577,1878,16,34,1844,70,197,1647,0,0,2719,0,0,2719,39,93,2626,18,49,2577,2485,6,50484,"FO2","GT" 21,36,1,4,2,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"LIGHT OIL",3249,"0M",1294,,,95,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,0,0,2176,2487,6,50484,"FO2","GT" 21,36,1,4,9,35,40,"CENTRAL HUDSON GAS & ELEC","W COXSACKIE",0,"NAT GAS",3249,"0M",1294,,,95,90,1181,0,32,427,0,0,0,0,45,632,0,59,962,0,631,9351,0,109,1557,0,530,7243,0,0,0,0,52,789,0,180,2430,0,69,1043,0,2487,6,50484,"NG","GT" 21,36,1,2,2,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"LIGHT OIL",3249,"0M",1294,,,95,1744,3069,2289,782,1361,3014,1071,2036,2369,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,0,2542,0,17,2525,654,2512,1229,581,1004,2137,8006,6,50484,"FO2","ST" 21,36,1,2,3,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"HEAVY OIL",3249,"0M",1294,,,95,49649,80148,781308,157108,249990,495225,13890,23984,478029,0,0,478029,0,0,478029,0,0,604069,0,0,604069,0,0,604069,0,0,604069,0,0,589640,1356,4755,599314,189513,299562,451927,8006,6,50484,"FO6","ST" 21,36,1,2,9,35,45,"CENTRAL HUDSON GAS & ELEC","ROSETON JO",0,"NAT GAS",3249,"0M",1294,,,95,33526,336575,0,69660,692555,0,24026,260204,0,0,0,0,177930,1880760,0,186946,1950511,0,310122,3310810,0,247281,2627847,0,0,0,0,0,0,0,2849,61824,0,7068,69278,0,8006,6,50484,"NG","ST" 21,36,1,1,,35,50,"CENTRAL HUDSON GAS & ELEC","HIGH FALLS",0,,3249,"0M",1294,,,95,1184,0,0,92,0,0,1122,0,0,69,0,0,143,0,0,23,0,0,26,0,0,0,0,0,0,0,0,340,0,0,1057,0,0,170,0,0,579,6,50484,"WAT","HY" 21,36,1,1,,37,5,"CENTRAL VT PUB SERV CORP","CARVERS FLS",0,,3292,"0A",1294,,350,95,921,0,0,597,0,0,1182,0,0,1121,0,0,691,0,0,250,0,0,18,0,0,58,0,0,0,0,0,391,0,0,1196,0,0,502,0,0,6456,6,50503,"WAT","HY" 21,36,1,2,3,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,0,0,5711,7328,11940,18519,0,0,18519,0,0,18519,0,0,18513,0,0,18513,2490,6,50653,"FO6","ST" 21,36,1,2,9,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"NAT GAS",4226,"0M",1294,,,95,-1408,17220,0,-1393,16473,0,-1276,5546,0,42517,495291,0,55216,582417,0,194234,1938196,0,301093,2957985,0,278373,2754690,0,147636,1480827,0,-1783,3561,0,-1398,5,0,-1433,5,0,2490,6,50653,"NG","ST" 21,36,1,4,2,40,1,"CONSOL EDISON CO N Y INC","ARTHUR KILL",0,"LIGHT OIL",4226,"0M",1294,,,95,13,44,1913,67,194,1823,0,0,1823,36,79,1744,215,635,1882,298,918,2083,566,1739,2154,371,1201,1884,0,0,0,0,0,0,0,0,0,0,0,0,2490,6,50653,"FO2","GT" 21,36,1,2,1,40,2,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"NUCLEAR",4226,"0M",1294,,,95,562851,0,0,52711,0,0,-6970,0,0,-3790,0,0,-13730,0,0,241777,0,0,674078,0,0,678357,0,0,681364,0,0,661697,0,0,694091,0,0,636105,0,0,2497,6,50653,"UR","ST" 21,36,1,2,3,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"HEAVY OIL",4226,"0M",1294,,,95,44284,69523,204071,87234,136417,162405,51168,80603,150832,37361,58624,135192,36339,59441,192317,36196,59149,130130,89762,143025,106180,87335,138221,98117,59995,93814,117887,54037,87216,125085,64568,101738,117638,289554,461968,161157,8906,6,50653,"FO6","ST" 21,36,1,2,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,270672,2666431,0,244705,2376465,0,354262,3528212,0,241575,2383868,0,275033,2732177,0,466083,4630924,0,417404,4132582,0,422777,4216725,0,331846,3235732,0,333120,3377003,0,267480,2653281,0,78615,787377,0,8906,6,50653,"NG","ST" 21,36,1,4,2,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"LIGHT OIL",4226,"0M",1294,,,95,1484,3523,70541,935,2176,68112,695,1314,66869,1270,3125,63744,1033,2385,61076,1517,3666,57410,5121,12698,44790,1655,4191,48468,794,1989,67296,758,1842,65454,651,1541,63965,4785,11328,52945,8906,6,50653,"FO2","GT" 21,36,1,4,9,40,3,"CONSOL EDISON CO N Y INC","ASTORIA",0,"NAT GAS",4226,"0M",1294,,,95,1238,16825,0,4723,63317,0,9436,102713,0,19761,279920,0,13199,175023,0,14602,203072,0,50641,721027,0,30754,443611,0,22755,324431,0,10683,150198,0,29807,410036,0,1300,17862,0,8906,6,50653,"NG","GT" 21,36,1,2,3,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"HEAVY OIL",4226,"0M",1294,,,95,48411,100447,260377,52328,112594,251467,22577,46041,196293,14368,29471,111609,10915,20599,75923,9443,18148,129321,17347,33410,143239,17145,35799,154704,57,119,208820,391,883,155405,24581,53489,125358,26299,56899,135819,2493,6,50653,"FO6","ST" 21,36,1,2,9,40,5,"CONSOL EDISON CO N Y INC","EAST RIVER",0,"NAT GAS",4226,"0M",1294,,,95,22936,297706,0,16423,222129,0,33740,432005,0,32894,424765,0,83114,976015,0,52018,626673,0,74759,901280,0,43540,571392,0,62070,814818,0,38780,549257,0,26334,362630,0,4079,55677,0,2493,6,50653,"NG","ST" 21,36,1,2,3,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,134,711,28019,-168,0,13932,-186,0,17029,-180,0,14663,-186,0,16921,-180,0,14962,-186,0,34238,-186,0,28013,0,0,18655,-186,0,24175,-180,0,21506,-186,0,15408,2503,6,50653,"FO6","ST" 21,36,1,2,9,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"NAT GAS",4226,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-180,0,0,0,0,0,0,0,0,0,0,0,2503,6,50653,"NG","ST" 21,36,1,4,2,40,8,"CONSOL EDISON CO N Y INC","59TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,2421,12,43,2379,0,0,2379,34,63,2315,382,920,2169,220,532,2101,517,1422,2132,154,399,2018,0,0,2018,0,0,2018,0,0,2019,0,0,2019,2503,6,50653,"FO2","GT" 21,36,1,4,2,40,10,"CONSOL EDISON CO N Y INC","GOWANUS",0,"LIGHT OIL",4226,"0M",1294,,,95,3431,10187,54995,3032,8863,61517,3332,9885,51514,5596,16946,54888,9656,30399,58173,10867,35156,51183,35078,112111,54362,18095,69179,54055,9925,32320,51120,3062,9091,61678,11850,35551,63660,11082,31386,52408,2494,6,50653,"FO2","GT" 21,36,1,4,2,40,17,"CONSOL EDISON CO N Y INC","INDIAN PT",0,"LIGHT OIL",4226,"0M",1294,,,95,10,470,1357,110,334,1476,0,0,1438,10,26,1387,190,648,1553,120,502,1367,618,1994,1429,339,1276,1561,10,65,1518,10,49,1466,70,568,1361,10,79,1524,2497,6,50653,"FO2","GT" 21,36,1,2,3,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"HEAVY OIL",4226,"0M",1294,,,95,13942,16640,116475,22892,27677,121761,19571,25683,88715,5881,7513,112117,13579,17821,145862,8960,11221,121321,17004,23012,156902,16358,21789,184711,8488,11589,233738,9039,12876,207818,15377,22058,190563,21649,30797,210122,2496,6,50653,"FO6","ST" 21,36,1,4,2,40,18,"CONSOL EDISON CO N Y INC","HUDSON AVE",0,"LIGHT OIL",4226,"0M",1294,,,95,32,106,3790,262,520,3270,24,63,4088,0,0,4088,318,932,4131,366,1254,4363,1154,3982,3948,684,2253,4361,44,148,4212,7,28,4185,255,954,4157,0,0,4471,2496,6,50653,"FO2","GT" 21,36,1,4,2,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"LIGHT OIL",4226,"0M",1294,,,95,1815,5002,70995,2374,6488,64363,3121,8503,70742,4829,13085,57595,4696,13259,61188,7112,20641,70359,14360,43802,86922,0,0,86754,113,310,61193,358,1046,60146,2527,7040,53007,5977,17365,64411,2499,6,50653,"FO2","GT" 21,36,1,4,9,40,23,"CONSOL EDISON CO N Y INC","NARROWS BAY",0,"NAT GAS",4226,"0M",1294,,,95,160,2545,0,0,0,0,1437,23105,0,3151,50378,0,5478,91177,0,7841,132409,0,26727,472807,0,23321,410674,0,8725,137237,0,6684,112244,0,14121,266734,0,726,12168,0,2499,6,50653,"NG","GT" 21,36,1,2,3,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"HEAVY OIL",4226,"0M",1294,,,95,56562,96769,43835,156038,248776,28947,15866,27428,34677,22910,42845,42500,30055,54093,37926,31922,55970,39660,31596,55334,44269,54612,90412,42941,11656,19796,32055,4144,7555,26939,45172,77641,44297,97823,181018,43354,2500,6,50653,"FO6","ST" 21,36,1,2,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,209768,2234824,0,193780,1928735,0,161992,1747544,0,161776,1895581,0,200509,2260799,0,241862,2659354,0,377330,4132582,0,492580,5112387,0,269868,2872681,0,121326,1378858,0,190022,2065045,0,34903,408143,0,2500,6,50653,"NG","ST" 21,36,1,4,2,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"LIGHT OIL",4226,"0M",1294,,,95,317,1144,40469,1114,3166,37304,412,1109,36195,1364,3752,32443,0,0,32613,292,765,31848,1020,2785,39004,707,2001,37003,43,116,38759,232,819,37940,91,256,37684,3105,8078,40525,2500,6,50653,"FO2","GT" 21,36,1,4,9,40,25,"CONSOL EDISON CO N Y INC","RAVENSWOOD",0,"NAT GAS",4226,"0M",1294,,,95,699,14506,0,461,7543,0,1614,25061,0,3849,61087,0,2639,36379,0,6191,93115,0,11215,178768,0,7292,120354,0,2766,43431,0,1873,38571,0,2782,45521,0,533,8123,0,2500,6,50653,"NG","GT" 21,36,1,2,3,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"HEAVY OIL",4226,"0M",1294,,,95,4001,11849,37330,7337,16422,1428,4042,7539,1190,6302,7774,1190,11192,14181,1190,8567,12004,1190,7521,9483,1190,3846,5472,1365,3937,4892,1428,-949,0,1429,3253,6242,1429,3602,5677,1429,2504,6,50653,"FO6","ST" 21,36,1,4,2,40,30,"CONSOL EDISON CO N Y INC","74TH STREET",0,"LIGHT OIL",4226,"0M",1294,,,95,-13,0,1690,-11,0,2143,-12,0,2083,-12,0,1952,-3,12,1881,-12,0,1762,-12,24,1738,-13,0,1747,-12,0,1548,-12,0,1524,-12,0,1595,-12,0,2202,2504,6,50653,"FO2","GT" 21,36,1,2,3,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"HEAVY OIL",4226,"0M",1294,,,95,3119,5797,0,25178,41438,0,1003,1798,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,146,266,0,2502,6,50653,"FO6","ST" 21,36,1,2,9,40,40,"CONSOL EDISON CO N Y INC","WATERSIDE",0,"NAT GAS",4226,"0M",1294,,,95,59934,697096,0,47441,490868,0,53623,603408,0,39082,449151,0,37250,448243,0,36423,288224,0,55999,633276,0,55829,627391,0,38346,480259,0,35286,396996,0,48220,540897,0,63071,723341,0,2502,6,50653,"NG","ST" 21,36,1,2,3,40,50,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"HEAVY OIL",4226,"0M",1294,,,95,0,0,2766499,0,0,2324286,0,0,2545579,0,0,2254272,0,0,1899927,0,0,1649376,0,0,1484314,0,0,1332860,0,0,1420463,0,0,1532278,0,0,1814997,0,0,1473629,8801,6,50653,"FO6","ST" 21,36,1,4,2,40,60,"CONSOL EDISON CO N Y INC","OIL STORAGE",0,"LIGHT OIL",4226,"0M",1294,,,95,0,0,204071,0,0,265070,0,0,259969,0,0,242953,0,0,247234,0,0,245330,0,0,259288,0,0,251578,0,0,241219,0,0,257945,0,0,250930,0,0,243796,8802,6,50653,"FO2","GT" 21,36,1,4,2,40,65,"CONSOL EDISON CO N Y INC","BUCHANAN",0,"LIGHT OIL",4226,"0M",1294,,,95,55,213,3746,295,599,4326,12,22,4481,20,42,4440,199,586,4211,634,1857,4497,979,2573,4452,907,2783,4475,35,172,4303,63,247,4282,398,1093,4230,56,191,4039,4233,6,50653,"FO2","GT" 21,36,1,1,,49,5,"HYDRO DEV GROUP INC","DEXTER",0,,9145,"0A",1294,,,95,2082,0,0,1260,0,0,2412,0,0,1860,0,0,1134,0,0,690,0,0,834,0,0,558,0,0,666,0,0,1998,0,0,2619,0,0,1908,0,0,2505,6,50785,"WAT","HY" 21,36,1,1,,49,10,"HYDRO DEV GROUP INC","PYRITES #1",0,,9145,"0A",1294,,,95,228,0,0,53,0,0,337,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2506,6,50785,"WAT","HY" 21,36,1,1,,49,12,"HYDRO DEV GROUP INC","PYRITES #2",0,,9145,"0A",1294,,,95,2658,0,0,1453,0,0,3335,0,0,2856,0,0,2370,0,0,1044,0,0,630,0,0,678,0,0,606,0,0,2458,0,0,3186,0,0,2166,0,0,7031,6,50785,"WAT","HY" 21,36,1,1,,49,15,"HYDRO DEV GROUP INC","HAILESBORO",0,,9145,"0A",1294,,,95,1037,0,0,706,0,0,1087,0,0,1097,0,0,854,0,0,509,0,0,415,0,0,624,0,0,389,0,0,982,0,0,1159,0,0,780,0,0,6573,6,50785,"WAT","HY" 21,36,1,1,,49,20,"HYDRO DEV GROUP INC","FOWLER",0,,9145,"0A",1294,,,95,426,0,0,394,0,0,515,0,0,491,0,0,515,0,0,316,0,0,245,0,0,349,0,0,250,0,0,398,0,0,507,0,0,434,0,0,6572,6,50785,"WAT","HY" 21,36,1,1,,49,25,"HYDRO DEV GROUP INC","#6 MILL",0,,9145,"0A",1294,,,95,471,0,0,407,0,0,463,0,0,491,0,0,394,0,0,231,0,0,201,0,0,313,0,0,208,0,0,384,0,0,494,0,0,499,0,0,453,6,50785,"WAT","HY" 21,36,1,1,,49,50,"HYDRO DEV GROUP INC","COPENHAGEN",0,,9145,"0A",1294,,,95,1176,0,0,560,0,0,1460,0,0,1532,0,0,460,0,0,108,0,0,360,0,0,112,0,0,312,0,0,1396,0,0,1884,0,0,924,0,0,742,6,50785,"WAT","HY" 21,36,1,1,,49,55,"HYDRO DEV GROUP INC","DIAMOND IS",0,,9145,"0A",1294,,,95,665,0,0,468,0,0,733,0,0,702,0,0,504,0,0,251,0,0,228,0,0,190,0,0,239,0,0,583,0,0,773,0,0,616,0,0,2553,6,50785,"WAT","HY" 21,36,1,1,,49,60,"HYDRO DEV GROUP INC","THERESA",0,,9145,"0A",1294,,,95,752,0,0,606,0,0,800,0,0,836,0,0,556,0,0,150,0,0,78,0,0,202,0,0,34,0,0,710,0,0,842,0,0,794,0,0,2618,6,50785,"WAT","HY" 21,36,1,1,,49,70,"HYDRO DEV GROUP INC","#3 MILL",0,,9145,"0A",1294,,,95,456,0,0,350,0,0,485,0,0,483,0,0,398,0,0,240,0,0,157,0,0,294,0,0,180,0,0,283,0,0,456,0,0,346,0,0,743,6,50785,"WAT","HY" 21,36,1,1,,49,75,"HYDRO DEV GROUP INC","GOODYEAR LK",0,,9145,"0A",1294,,,95,640,0,0,400,0,0,757,0,0,542,0,0,315,0,0,166,0,0,49,0,0,25,0,0,19,0,0,171,0,0,575,0,0,550,0,0,7358,6,50785,"WAT","HY" 21,36,1,3,2,59,1,"FISHERS IS ELEC CORP (THE","FISHERS ISL",0,"LIGHT OIL",6369,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6575,6,50989,"FO2","IC" 21,36,1,4,2,87,1,"LONG ISLAND LIGHTING CO","W BABYLON",0,"LIGHT OIL",11172,"0M",1294,,,95,-9,0,10978,184,398,10580,-10,0,10580,-8,0,10580,-10,0,10580,-10,0,10580,1589,3799,6781,1012,2525,9994,-8,0,9994,23,63,9931,12,52,9878,-6,0,9878,2521,6,51685,"FO2","GT" 21,36,1,2,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,0,0,382,189,351,31,0,0,31,0,0,0,0,0,0,2511,6,51685,"FO2","ST" 21,36,1,2,3,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"HEAVY OIL",11172,"0M",1294,,,95,7679,13204,183912,19277,32691,151221,6888,12026,167809,7622,13054,154755,21364,35883,118872,5001,8521,110351,0,0,100351,0,0,150055,0,0,176621,0,0,176621,4499,7876,168745,30931,52133,130983,2511,6,51685,"FO6","ST" 21,36,1,2,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,88641,923891,0,72376,743992,0,119516,1265049,0,108791,1129535,0,161464,1644681,0,176300,1817157,0,201713,2124759,0,207176,2182914,0,194067,2023621,0,176719,1855067,0,152642,1622397,0,111293,1143313,0,2511,6,51685,"NG","ST" 21,36,1,4,2,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,0,0,21322,89,272,21050,2511,6,51685,"FO2","GT" 21,36,1,4,9,87,2,"LONG ISLAND LIGHTING CO","E F BARRETT",0,"NAT GAS",11172,"0M",1294,,,95,2584,48858,0,2455,39578,0,396,9580,0,7540,115964,0,15423,241318,0,13024,203027,0,13183,202506,0,13611,214090,0,2215,41056,0,3367,60239,0,3070,49795,0,1324,23100,0,2511,6,51685,"NG","GT" 21,36,1,2,3,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,0,0,630,2513,6,51685,"FO6","ST" 21,36,1,2,9,87,5,"LONG ISLAND LIGHTING CO","FAR ROCKWAY",0,"NAT GAS",11172,"0M",1294,,,95,35652,370173,0,-382,0,0,37901,413154,0,47344,499677,0,39814,418408,0,43785,454694,0,44918,522402,0,46370,490439,0,46043,485717,0,32114,356625,0,40424,437203,0,48243,507731,0,2513,6,51685,"NG","ST" 21,36,1,2,3,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"HEAVY OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2514,6,51685,"FO6","ST" 21,36,1,2,9,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"NAT GAS",11172,"0M",1294,,,95,57152,656357,0,88875,989013,0,43090,513102,0,64609,758501,0,65972,764067,0,85437,987225,0,91585,1053103,0,91614,1044546,0,87436,984844,0,70615,831640,0,65930,771090,0,72860,814525,0,2514,6,51685,"NG","ST" 21,36,1,4,2,87,15,"LONG ISLAND LIGHTING CO","GLENWOOD",0,"LIGHT OIL",11172,"0M",1294,,,95,-13,0,28987,348,833,28155,-2,113,28042,-10,0,28042,-15,0,28042,308,112,27929,1020,3353,24576,1330,3635,20941,-16,0,20941,52,122,20819,-18,0,20787,-15,0,20787,2514,6,51685,"FO2","GT" 21,36,1,3,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,971,33,69,902,-4,4,898,-6,0,898,-1,8,890,2,12,878,464,935,369,527,862,816,51,112,705,-6,0,705,-1,4,915,0,3,911,2512,6,51685,"FO2","IC" 21,36,1,4,2,87,17,"LONG ISLAND LIGHTING CO","E HAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-17,0,2876,-11,17,2859,-15,0,2859,-9,0,2859,-4,25,2834,34,116,2718,2330,5851,265,2246,5851,2259,76,212,2471,-10,0,2471,27,113,2789,-12,0,2789,2512,6,51685,"FO2","GT" 21,36,1,4,2,87,18,"LONG ISLAND LIGHTING CO","SOUTHOLD",0,"LIGHT OIL",11172,"0M",1294,,,95,-8,0,2716,-15,0,2716,-15,0,2716,-11,0,2716,-9,0,2716,14,79,2637,79,316,2534,39,174,2784,-8,0,2784,-8,0,2784,33,160,2624,-15,0,2624,2520,6,51685,"FO2","GT" 21,36,1,2,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,393,703,2446,1919,3360,10568,787,1448,10918,244,438,10694,0,0,10694,1255,2346,10708,543,987,10787,859,1604,10653,1224,1286,10857,0,0,11070,42,78,10992,866,1558,10948,2516,6,51685,"FO2","ST" 21,36,1,2,3,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"HEAVY OIL",11172,"0M",1294,,,95,251839,410183,917940,419721,669714,545119,137170,230153,627264,93546,156459,751601,4614,7948,743653,138528,235371,730114,232571,387065,831393,198326,339587,780654,65679,111985,948390,0,0,1048629,13006,22156,1026473,263245,435054,787488,2516,6,51685,"FO6","ST" 21,36,1,2,9,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"NAT GAS",11172,"0M",1294,,,95,161173,1656185,0,109357,1099738,0,179917,1902183,0,179876,1858552,0,249772,2620522,0,277680,2980882,0,392501,4094975,0,395601,4243388,0,332956,3533654,0,339896,3613412,0,310631,3313635,0,259449,2673147,0,2516,6,51685,"NG","ST" 21,36,1,4,2,87,21,"LONG ISLAND LIGHTING CO","NORTHPORT",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2030,-16,0,2030,11,87,1943,-13,0,1943,-12,0,1943,-8,15,1928,10,25,1904,24,175,1729,-2,17,1712,-7,0,0,-15,0,1290,-10,0,1506,2516,6,51685,"FO2","GT" 21,36,1,3,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2518,6,51685,"FO2","IC" 21,36,1,4,2,87,23,"LONG ISLAND LIGHTING CO","SHOREHAM",0,"LIGHT OIL",11172,"0M",1294,,,95,-4,0,10375,81,259,11414,11,38,11377,-7,0,11377,340,528,10848,91,128,10720,441,1417,9303,551,846,15679,5,41,15638,18,32,15605,-4,0,15605,-7,3,15602,2518,6,51685,"FO2","GT" 21,36,1,2,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,505,940,248,368,651,173,451,865,267,430,769,71,340,624,210,273,507,271,308,573,265,205,379,265,120,230,224,260,511,310,181,337,162,173,317,229,2517,6,51685,"FO2","ST" 21,36,1,2,3,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"HEAVY OIL",11172,"0M",1294,,,95,83231,142447,374658,116002,187180,292517,84682,149701,363973,88134,146337,217636,86246,147673,240914,86540,147162,367784,119762,202643,388397,116504,197519,283029,62653,110443,267311,37059,67418,404544,57551,98596,305948,73017,122780,291514,2517,6,51685,"FO6","ST" 21,36,1,4,2,87,24,"LONG ISLAND LIGHTING CO","P JEFFERSON",0,"LIGHT OIL",11172,"0M",1294,,,95,14,70,2055,36,150,1905,-16,0,1905,-11,0,1905,30,100,1805,15,79,1726,94,282,1444,49,175,2118,-8,0,2118,2,49,2069,-12,0,2069,-14,0,2069,2517,6,51685,"FO2","GT" 21,36,1,4,2,87,26,"LONG ISLAND LIGHTING CO","SOUTHAMPTON",0,"LIGHT OIL",11172,"0M",1294,,,95,-16,0,2575,22,137,2438,-17,0,2438,-9,0,2438,-4,9,2430,36,153,2277,200,649,2266,170,698,2628,-11,0,2628,-8,0,2628,-2,0,2628,-18,0,2628,2519,6,51685,"FO2","GT" 21,36,1,3,2,87,29,"LONG ISLAND LIGHTING CO","MONTAUK",0,"LIGHT OIL",11172,"0M",1294,,,95,-6,0,685,34,66,619,-6,0,619,-6,0,619,0,0,619,2,46,572,274,574,424,184,319,529,57,109,420,-6,0,420,0,23,611,-6,0,611,2515,6,51685,"FO2","IC" 21,36,1,4,2,87,30,"LONG ISLAND LIGHTING CO","HOLTSVILLE",0,"LIGHT OIL",11172,"0M",1294,,,95,3418,7966,65483,2730,6945,98989,1349,3183,95807,3573,8991,86815,1220,3009,83806,4957,12317,71489,13538,28073,71475,15481,41712,89159,785,2396,86763,-94,234,86529,427,1487,85042,2296,5778,79264,8007,6,51685,"FO2","GT" 21,36,1,4,2,87,35,"LONG ISLAND LIGHTING CO","BROOKHAVEN",0,"LIGHT OIL",11172,"0M",1294,,,95,2290,4982,38416,2652,6010,38901,226,279,38622,3165,6704,37310,6210,13571,28376,6235,12488,40846,9816,21210,30472,9736,19194,39142,-52,0,39142,113,688,40071,528,1470,40751,2660,5996,37572,7146,6,51685,"FO2","GT" 21,36,1,1,,100,1,"N Y STATE ELEC & GAS CORP","CADYVILLE",0,,13511,"0M",1294,,,95,2289,0,0,1760,0,0,2697,0,0,2249,0,0,2033,0,0,1277,0,0,1043,0,0,1271,0,0,873,0,0,1835,0,0,2411,0,0,1256,0,0,2522,6,52036,"WAT","HY" 21,36,1,1,,100,3,"N Y STATE ELEC & GAS CORP","MILL 'C'",0,,13511,"0M",1294,,,95,1082,0,0,1120,0,0,1325,0,0,1217,0,0,1424,0,0,918,2,0,782,0,0,1153,0,0,591,0,0,1982,0,0,2696,0,0,728,0,0,6486,6,52036,"WAT","HY" 21,36,1,1,,100,8,"N Y STATE ELEC & GAS CORP","HIGH FALLS",0,,13511,"0M",1294,,,95,8036,0,0,6467,0,0,9348,0,0,7548,0,0,6945,0,0,4111,0,0,3127,0,0,4402,0,0,2270,0,0,1885,0,0,8998,0,0,6023,0,0,2530,6,52036,"WAT","HY" 21,36,1,1,,100,9,"N Y STATE ELEC & GAS CORP","KENT FALLS",0,,13511,"0M",1294,,,95,4267,0,0,3614,0,0,5729,0,0,4500,0,0,4403,0,0,2459,0,0,1821,0,0,2011,0,0,1112,0,0,2429,0,0,0,0,0,2462,0,0,2532,6,52036,"WAT","HY" 21,36,1,1,,100,11,"N Y STATE ELEC & GAS CORP","KEUKA",0,,13511,"0M",1294,,,95,479,0,0,618,0,0,1104,0,0,424,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,246,0,0,368,0,0,87,0,0,2533,6,52036,"WAT","HY" 21,36,1,1,,100,18,"N Y STATE ELEC & GAS CORP","RAINBOW FLS",0,,13511,"0M",1294,,,95,844,0,0,484,0,0,1136,0,0,1424,0,0,2008,0,0,1044,0,0,972,0,0,828,0,0,572,0,0,920,0,0,1432,0,0,800,0,0,6526,6,52036,"WAT","HY" 21,36,1,1,,100,20,"N Y STATE ELEC & GAS CORP","SENECA FLS",0,,13511,"0M",1294,,,95,929,0,0,0,0,0,237,0,0,418,0,0,57,0,0,12,0,0,35,0,0,0,0,0,0,0,0,144,0,0,1097,0,0,1515,0,0,6525,6,52036,"WAT","HY" 21,36,1,1,,100,26,"N Y STATE ELEC & GAS CORP","WATERLOO",0,,13511,"0M",1294,,,95,218,0,0,0,0,0,91,0,0,167,0,0,47,0,0,38,0,0,63,0,0,15,0,0,0,0,0,28,0,0,273,0,0,435,0,0,2538,6,52036,"WAT","HY" 21,36,1,2,2,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"LIGHT OIL",13511,"0M",1294,,,95,4,6,902,7,12,922,38,860,816,166,1093,889,115,412,787,23,40,755,14,25,726,19,34,1012,88,159,674,17,29,652,15,27,781,57,99,755,2526,6,52036,"FO2","ST" 21,36,1,2,6,100,28,"N Y STATE ELEC & GAS CORP","GOUDEY",0,"BIT COAL",13511,"0M",1294,,,95,49140,18404,38386,47957,17309,33487,38535,14154,31196,29944,11570,19706,47570,19243,17396,46082,17833,16951,48114,18609,8401,48907,19270,14458,47509,18547,11816,46734,17563,21803,47743,17962,29205,49938,18814,16951,2526,6,52036,"BIT","ST" 21,36,1,2,2,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"LIGHT OIL",13511,"0M",1294,,,95,49,84,1482,143,249,1673,49,85,1663,69,118,1503,97,194,1276,101,268,963,140,255,1024,312,565,929,134,232,1184,28,65,1082,27,47,1003,135,254,963,2527,6,52036,"FO2","ST" 21,36,1,2,6,100,30,"N Y STATE ELEC & GAS CORP","GREENIDGE",0,"BIT COAL",13511,"0M",1294,,,95,59064,22369,46139,64896,24628,34337,56536,21560,33567,61588,23327,27754,60141,23147,16512,44718,17812,44179,56844,23346,35975,63282,25535,39483,33115,12718,51031,52461,19935,48906,51733,19814,48981,79778,32545,44179,2527,6,52036,"BIT","ST" 21,36,1,2,6,100,32,"N Y STATE ELEC & GAS CORP","HICKLING",0,"BIT COAL",13511,"0M",1294,,,95,29937,25353,59845,37278,28317,42388,31428,24287,26231,36848,29367,9739,25540,20965,7417,26619,21486,11619,19927,15033,13417,19292,17747,12211,16109,14260,19398,15799,13125,25995,15584,11444,38506,16518,14020,11619,2529,6,52036,"BIT","ST" 21,36,1,2,"B",100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"WOOD CHIP",13511,"0M",1294,,,95,1937,0,0,2506,0,0,1706,0,0,446,0,0,510,0,0,631,0,0,0,0,0,966,0,0,1443,0,0,1357,0,0,215,0,0,517,0,0,2531,6,52036,"WOD","ST" 21,36,1,2,6,100,34,"N Y STATE ELEC & GAS CORP","JENNISON",0,"BIT COAL",13511,"0M",1294,,,95,18813,12027,31771,27918,18374,13300,18598,13682,9272,12405,9568,1166,10568,8258,1035,8066,6810,737,10639,7167,2889,9803,7780,5121,7664,6371,9926,7104,5362,9933,11173,7198,8195,18436,12369,737,2531,6,52036,"BIT","ST" 21,36,1,2,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,206,337,1812,188,320,1856,273,465,1873,142,244,1879,53,94,1978,249,452,1841,116,209,1815,158,288,1863,211,385,1831,258,462,1670,59,105,1738,26,47,1841,2535,6,52036,"FO2","ST" 21,36,1,2,6,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"BIT COAL",13511,"0M",1294,,,95,192258,68792,79141,180255,67185,80127,183681,68408,89806,153861,58397,69230,98273,37927,98714,132074,52498,118633,185234,73165,90889,184163,73756,101056,131693,53020,97110,185372,73940,102961,167135,65625,99048,191784,76075,118633,2535,6,52036,"BIT","ST" 21,36,1,3,2,100,35,"N Y STATE ELEC & GAS CORP","MILLIKEN",0,"LIGHT OIL",13511,"0M",1294,,,95,0,1,0,20,38,0,3,84,0,104,107,0,54,144,0,1,38,0,-64,39,0,10,20,0,0,1,0,12,39,0,11,44,0,17,32,0,2535,6,52036,"FO2","IC" 21,36,1,3,2,100,40,"N Y STATE ELEC & GAS CORP","HARRIS LAKE",0,"LIGHT OIL",13511,"0M",1294,,,95,-11,0,405,0,0,349,0,0,0,-4,0,313,0,0,260,0,0,242,64,122,269,12,25,244,2,0,436,0,0,357,0,0,290,-13,0,242,2528,6,52036,"FO2","IC" 21,36,1,1,,100,43,"N Y STATE ELEC & GAS CORP","MECHANICVLE",0,,13511,"0M",1294,,,95,9072,0,0,6867,0,0,9702,0,0,6867,0,0,4347,0,0,2961,0,0,1134,0,0,2331,0,0,1953,0,0,5670,0,0,12663,0,0,8946,0,0,625,6,52036,"WAT","HY" 21,36,1,2,2,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"LIGHT OIL",13511,"0M",1294,,,95,219,378,4169,770,1322,2904,474,811,3335,953,1656,3113,165,283,2839,314,543,2288,879,1523,3426,394,685,2738,627,1087,4124,1183,2162,2118,626,1094,4657,509,873,2288,6082,6,52036,"FO2","ST" 21,36,1,2,6,100,50,"N Y STATE ELEC & GAS CORP","KINTIGH",0,"BIT COAL",13511,"0M",1294,,,95,429496,166336,132032,393694,148405,142690,419527,160683,178911,416807,160659,178855,418612,159916,174957,381565,146069,162034,348178,133246,124345,413546,158604,73112,376458,141570,75380,181079,73253,130474,363691,142233,133771,423315,159637,162034,6082,6,52036,"BIT","ST" 21,36,1,2,1,105,1,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,368414,0,0,58742,0,0,0,0,0,332154,0,0,459193,0,0,439571,0,0,434942,0,0,437261,0,0,420930,0,0,452099,0,0,441551,0,0,459844,0,0,2589,6,52053,"UR","ST" 21,36,1,2,1,105,2,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"NUCLEAR",13573,"0M",1294,,190,95,694823,0,0,533574,0,0,742888,0,0,149501,0,0,0,0,0,575400,0,0,821880,0,0,766368,0,0,443850,0,0,845303,0,0,824493,0,0,841323,0,0,2589,6,52053,"UR","ST" 21,36,1,1,,105,5,"NIAGARA MOHAWK POWER CORP","ALLENS FLS",0,,13573,"0M",1294,,190,95,2087,0,0,1758,0,0,2479,0,0,2662,0,0,2344,0,0,1289,0,0,1268,0,0,1240,0,0,1099,0,0,2308,0,0,2305,0,0,2092,0,0,2540,6,52053,"WAT","HY" 21,36,1,1,,105,10,"NIAGARA MOHAWK POWER CORP","BALDWINSVLE",0,,13573,"0M",1294,,190,95,205,0,0,112,0,0,221,0,0,171,0,0,60,0,0,7,0,0,-3,0,0,16,0,0,1,0,0,57,0,0,217,0,0,140,0,0,2542,6,52053,"WAT","HY" 21,36,1,1,,105,15,"NIAGARA MOHAWK POWER CORP","BELFORT",0,,13573,"0M",1294,,190,95,861,0,0,751,0,0,805,0,0,464,0,0,550,0,0,561,0,0,714,0,0,764,0,0,730,0,0,557,0,0,1171,0,0,1354,0,0,2544,6,52053,"WAT","HY" 21,36,1,1,,105,20,"NIAGARA MOHAWK POWER CORP","BENNETTS B",0,,13573,"0M",1294,,190,95,10231,0,0,5759,0,0,9838,0,0,5346,0,0,4404,0,0,1938,0,0,-33,0,0,313,0,0,5443,0,0,9001,0,0,13335,0,0,6313,0,0,2545,6,52053,"WAT","HY" 21,36,1,1,,105,25,"NIAGARA MOHAWK POWER CORP","BLACK RIVER",0,,13573,"0M",1294,,190,95,3477,0,0,2422,0,0,3823,0,0,3907,0,0,2562,0,0,1270,0,0,1501,0,0,948,0,0,1559,0,0,3563,0,0,4456,0,0,3477,0,0,2546,6,52053,"WAT","HY" 21,36,1,1,,105,30,"NIAGARA MOHAWK POWER CORP","BLAKE",0,,13573,"0M",1294,,190,95,6604,0,0,6486,0,0,5072,0,0,2962,0,0,3721,0,0,3715,0,0,672,0,0,2828,0,0,1682,0,0,3534,0,0,9144,0,0,6300,0,0,2547,6,52053,"WAT","HY" 21,36,1,1,,105,35,"NIAGARA MOHAWK POWER CORP","BROWNS FLS",0,,13573,"0M",1294,,190,95,6785,0,0,3738,0,0,4510,0,0,1724,0,0,1746,0,0,1866,0,0,545,0,0,2901,0,0,1160,0,0,4896,0,0,7492,0,0,3767,0,0,2548,6,52053,"WAT","HY" 21,36,1,1,,105,40,"NIAGARA MOHAWK POWER CORP","CHASM",0,,13573,"0M",1294,,190,95,1902,0,0,1138,0,0,1426,0,0,1777,0,0,1751,0,0,1323,0,0,994,0,0,1236,0,0,1014,0,0,1752,0,0,1795,0,0,1489,0,0,2550,6,52053,"WAT","HY" 21,36,1,1,,105,45,"NIAGARA MOHAWK POWER CORP","COLTON",0,,13573,"0M",1294,,190,95,20600,0,0,18761,0,0,20043,0,0,13701,0,0,15937,0,0,15548,0,0,9456,0,0,14510,0,0,7469,0,0,15049,0,0,2073,0,0,19935,0,0,2551,6,52053,"WAT","HY" 21,36,1,1,,105,50,"NIAGARA MOHAWK POWER CORP","DEFERIET",0,,13573,"0M",1294,,190,95,4478,0,0,3495,0,0,5869,0,0,5234,0,0,3642,0,0,1740,0,0,1638,0,0,1204,0,0,1248,0,0,5355,0,0,7027,0,0,4656,0,0,2552,6,52053,"WAT","HY" 21,36,1,1,,105,65,"NIAGARA MOHAWK POWER CORP","EAGLE",0,,13573,"0M",1294,,190,95,2653,0,0,2021,0,0,2505,0,0,1200,0,0,1421,0,0,1737,0,0,2331,0,0,1979,0,0,2045,0,0,1398,0,0,3203,0,0,3777,0,0,2555,6,52053,"WAT","HY" 21,36,1,1,,105,70,"NIAGARA MOHAWK POWER CORP","EEL WEIR",0,,13573,"0M",1294,,190,95,866,0,0,622,0,0,964,0,0,803,0,0,524,0,0,203,0,0,115,0,0,125,0,0,7,0,0,655,0,0,1332,0,0,994,0,0,2556,6,52053,"WAT","HY" 21,36,1,1,,105,75,"NIAGARA MOHAWK POWER CORP","EFFLEY",0,,13573,"0M",1294,,190,95,1093,0,0,986,0,0,1153,0,0,580,0,0,694,0,0,845,0,0,905,0,0,982,0,0,900,0,0,740,0,0,1558,0,0,1767,0,0,2557,6,52053,"WAT","HY" 21,36,1,1,,105,80,"NIAGARA MOHAWK POWER CORP","ELMER",0,,13573,"0M",1294,,190,95,812,0,0,575,0,0,796,0,0,380,0,0,439,0,0,552,0,0,441,0,0,640,0,0,593,0,0,496,0,0,1010,0,0,1135,0,0,2559,6,52053,"WAT","HY" 21,36,1,1,,105,85,"NIAGARA MOHAWK POWER CORP","ET NORFOLK",0,,13573,"0M",1294,,190,95,2479,0,0,1995,0,0,2559,0,0,1703,0,0,1975,0,0,1859,0,0,1059,0,0,1731,0,0,851,0,0,1883,0,0,2471,0,0,2519,0,0,2561,6,52053,"WAT","HY" 21,36,1,1,,105,90,"NIAGARA MOHAWK POWER CORP","FIVE FALLS",0,,13573,"0M",1294,,190,95,10795,0,0,10405,0,0,8347,0,0,4782,0,0,5926,0,0,5896,0,0,3396,0,0,5619,0,0,2631,0,0,5807,0,0,14654,0,0,10198,0,0,2562,6,52053,"WAT","HY" 21,36,1,1,,105,95,"NIAGARA MOHAWK POWER CORP","FLAT ROCK",0,,13573,"0M",1294,,190,95,1503,0,0,871,0,0,1489,0,0,592,0,0,450,0,0,401,0,0,136,0,0,528,0,0,169,0,0,1414,0,0,1912,0,0,876,0,0,2563,6,52053,"WAT","HY" 21,36,1,1,,105,98,"NIAGARA MOHAWK POWER CORP","FRANKLIN F",0,,13573,"0M",1294,,190,95,775,0,0,767,0,0,1052,0,0,613,0,0,385,0,0,496,0,0,336,0,0,352,0,0,-1,0,0,-1,0,0,-1,0,0,-1,0,0,2564,6,52053,"WAT","HY" 21,36,1,1,,105,100,"NIAGARA MOHAWK POWER CORP","FULTON",0,,13573,"0M",1294,,190,95,464,0,0,333,0,0,608,0,0,437,0,0,459,0,0,300,0,0,406,0,0,363,0,0,304,0,0,474,0,0,653,0,0,625,0,0,2566,6,52053,"WAT","HY" 21,36,1,1,,105,105,"NIAGARA MOHAWK POWER CORP","GRANBY",0,,13573,"0M",1294,,190,95,5845,0,0,3502,0,0,6558,0,0,1324,0,0,640,0,0,477,0,0,-38,0,0,491,0,0,-42,0,0,3025,0,0,5404,0,0,5157,0,0,2569,6,52053,"WAT","HY" 21,36,1,1,,105,110,"NIAGARA MOHAWK POWER CORP","HANNAWA",0,,13573,"0M",1294,,190,95,5253,0,0,4772,0,0,5248,0,0,3332,0,0,4051,0,0,3941,0,0,2329,0,0,3797,0,0,1747,0,0,1086,0,0,2696,0,0,5321,0,0,2571,6,52053,"WAT","HY" 21,36,1,1,,105,115,"NIAGARA MOHAWK POWER CORP","HERRINGS",0,,13573,"0M",1294,,190,95,1980,0,0,1586,0,0,2151,0,0,2116,0,0,1509,0,0,629,0,0,705,0,0,371,0,0,337,0,0,1747,0,0,2341,0,0,2187,0,0,2572,6,52053,"WAT","HY" 21,36,1,1,,105,120,"NIAGARA MOHAWK POWER CORP","HEUVELTON",0,,13573,"0M",1294,,190,95,458,0,0,468,0,0,484,0,0,556,0,0,455,0,0,254,0,0,195,0,0,277,0,0,149,0,0,433,0,0,506,0,0,588,0,0,2573,6,52053,"WAT","HY" 21,36,1,1,,105,125,"NIAGARA MOHAWK POWER CORP","HIGH DAM 6",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,1863,0,0,2023,0,0,1494,0,0,922,0,0,725,0,0,989,0,0,179,0,0,2024,0,0,2607,0,0,3766,0,0,2574,6,52053,"WAT","HY" 21,36,1,1,,105,126,"NIAGARA MOHAWK POWER CORP","HIGH FALLS",0,,13573,"0M",1294,,190,95,2622,0,0,1900,0,0,2648,0,0,1268,0,0,1439,0,0,1814,0,0,2106,0,0,1998,0,0,1847,0,0,1571,0,0,3045,0,0,3527,0,0,2575,6,52053,"WAT","HY" 21,36,1,1,,105,130,"NIAGARA MOHAWK POWER CORP","HIGLEY",0,,13573,"0M",1294,,190,95,3414,0,0,2999,0,0,3075,0,0,1774,0,0,2177,0,0,2037,0,0,1416,0,0,2086,0,0,1120,0,0,2315,0,0,3556,0,0,3242,0,0,2576,6,52053,"WAT","HY" 21,36,1,1,,105,135,"NIAGARA MOHAWK POWER CORP","HOGANSBURG",0,,13573,"0M",1294,,190,95,98,0,0,143,0,0,192,0,0,192,0,0,148,0,0,129,0,0,87,0,0,146,0,0,79,0,0,113,0,0,186,0,0,218,0,0,2577,6,52053,"WAT","HY" 21,36,1,1,,105,140,"NIAGARA MOHAWK POWER CORP","KAMARGO",0,,13573,"0M",1294,,190,95,2374,0,0,1857,0,0,2750,0,0,2638,0,0,1924,0,0,960,0,0,1034,0,0,398,0,0,612,0,0,2497,0,0,3433,0,0,1788,0,0,2581,6,52053,"WAT","HY" 21,36,1,1,,105,145,"NIAGARA MOHAWK POWER CORP","LIGHTHOUSE",0,,13573,"0M",1294,,190,95,2431,0,0,1342,0,0,2514,0,0,1178,0,0,925,0,0,399,0,0,-14,0,0,-14,0,0,1080,0,0,1999,0,0,3282,0,0,1507,0,0,2582,6,52053,"WAT","HY" 21,36,1,1,,105,155,"NIAGARA MOHAWK POWER CORP","MACOMB",0,,13573,"0M",1294,,190,95,434,0,0,398,0,0,641,0,0,569,0,0,481,0,0,319,0,0,-4,0,0,-4,0,0,132,0,0,534,0,0,627,0,0,520,0,0,2583,6,52053,"WAT","HY" 21,36,1,1,,105,160,"NIAGARA MOHAWK POWER CORP","MINETTO",0,,13573,"0M",1294,,190,95,3847,0,0,2604,0,0,4467,0,0,2022,0,0,1607,0,0,940,0,0,602,0,0,800,0,0,427,0,0,1690,0,0,4151,0,0,4554,0,0,2586,6,52053,"WAT","HY" 21,36,1,1,,105,165,"NIAGARA MOHAWK POWER CORP","MOSHIER",0,,13573,"0M",1294,,190,95,2698,0,0,2561,0,0,2447,0,0,1064,0,0,1751,0,0,2554,0,0,2993,0,0,2896,0,0,2791,0,0,736,0,0,3994,0,0,5506,0,0,2588,6,52053,"WAT","HY" 21,36,1,1,,105,170,"NIAGARA MOHAWK POWER CORP","NORFOLK",0,,13573,"0M",1294,,190,95,2391,0,0,2156,0,0,2979,0,0,1872,0,0,2207,0,0,2139,0,0,1223,0,0,2018,0,0,958,0,0,2054,0,0,3088,0,0,2630,0,0,2590,6,52053,"WAT","HY" 21,36,1,1,,105,175,"NIAGARA MOHAWK POWER CORP","NORWOOD",0,,13573,"0M",1294,,190,95,1536,0,0,1408,0,0,1536,0,0,938,0,0,1146,0,0,1136,0,0,605,0,0,1104,0,0,480,0,0,1072,0,0,1232,0,0,1488,0,0,2591,6,52053,"WAT","HY" 21,36,1,1,,105,180,"NIAGARA MOHAWK POWER CORP","OSWEGATCHIE",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2593,6,52053,"WAT","HY" 21,36,1,1,,105,182,"NIAGARA MOHAWK POWER CORP","OSWEGO FL E",0,,13573,"0M",1294,,190,95,2890,0,0,2449,0,0,2510,0,0,1688,0,0,1604,0,0,996,0,0,637,0,0,679,0,0,550,0,0,1991,0,0,2836,0,0,2816,0,0,2595,6,52053,"WAT","HY" 21,36,1,1,,105,183,"NIAGARA MOHAWK POWER CORP","OSWEGO FL W",0,,13573,"0M",1294,,190,95,1223,0,0,423,0,0,1212,0,0,176,0,0,-1,0,0,28,0,0,-2,0,0,47,0,0,14,0,0,385,0,0,730,0,0,1172,0,0,2596,6,52053,"WAT","HY" 21,36,1,1,,105,185,"NIAGARA MOHAWK POWER CORP","PARISHVILLE",0,,13573,"0M",1294,,190,95,0,0,0,690,0,0,1562,0,0,1603,0,0,1516,0,0,848,0,0,849,0,0,763,0,0,749,0,0,1395,0,0,1488,0,0,1298,0,0,2597,6,52053,"WAT","HY" 21,36,1,1,,105,187,"NIAGARA MOHAWK POWER CORP","PIERCEFIELD",0,,13573,"0M",1294,,190,95,1488,0,0,1283,0,0,1529,0,0,1482,0,0,1341,0,0,627,0,0,429,0,0,881,0,0,370,0,0,1195,0,0,1783,0,0,1527,0,0,2598,6,52053,"WAT","HY" 21,36,1,1,,105,192,"NIAGARA MOHAWK POWER CORP","PROSPECT",0,,13573,"0M",1294,,190,95,1704,0,0,0,0,0,4257,0,0,5788,0,0,3672,0,0,2881,0,0,2386,0,0,1689,0,0,184,0,0,6691,0,0,11309,0,0,6904,0,0,2599,6,52053,"WAT","HY" 21,36,1,1,,105,195,"NIAGARA MOHAWK POWER CORP","RAINBOW",0,,13573,"0M",1294,,190,95,10771,0,0,10270,0,0,8298,0,0,4779,0,0,5959,0,0,5843,0,0,3452,0,0,5583,0,0,2641,0,0,5774,0,0,14120,0,0,9950,0,0,2600,6,52053,"WAT","HY" 21,36,1,1,,105,200,"NIAGARA MOHAWK POWER CORP","RAYMONDVLE",0,,13573,"0M",1294,,190,95,932,0,0,816,0,0,1452,0,0,926,0,0,670,0,0,1102,0,0,674,0,0,1036,0,0,530,0,0,1056,0,0,1404,0,0,1120,0,0,2601,6,52053,"WAT","HY" 21,36,1,1,,105,210,"NIAGARA MOHAWK POWER CORP","S EDWARDS",0,,13573,"0M",1294,,190,95,1404,0,0,1076,0,0,1387,0,0,973,0,0,1018,0,0,736,0,0,427,0,0,1020,0,0,558,0,0,1359,0,0,1919,0,0,1392,0,0,2604,6,52053,"WAT","HY" 21,36,1,1,,105,215,"NIAGARA MOHAWK POWER CORP","SEWALLS",0,,13573,"0M",1294,,190,95,1372,0,0,889,0,0,1518,0,0,1486,0,0,1205,0,0,544,0,0,246,0,0,320,0,0,319,0,0,1211,0,0,1489,0,0,1514,0,0,2608,6,52053,"WAT","HY" 21,36,1,1,,105,220,"NIAGARA MOHAWK POWER CORP","SOFT MAPLE",0,,13573,"0M",1294,,190,95,2633,0,0,1616,0,0,2359,0,0,882,0,0,1236,0,0,1714,0,0,2341,0,0,1918,0,0,1850,0,0,1760,0,0,3432,0,0,4125,0,0,2610,6,52053,"WAT","HY" 21,36,1,1,,105,225,"NIAGARA MOHAWK POWER CORP","SOTH COLTON",0,,13573,"0M",1294,,190,95,8860,0,0,8292,0,0,6906,0,0,3510,0,0,4607,0,0,4842,0,0,2861,0,0,4595,0,0,2211,0,0,4731,0,0,12247,0,0,8305,0,0,2611,6,52053,"WAT","HY" 21,36,1,1,,105,230,"NIAGARA MOHAWK POWER CORP","STARK",0,,13573,"0M",1294,,190,95,10035,0,0,10162,0,0,7531,0,0,4401,0,0,5629,0,0,5788,0,0,3281,0,0,5363,0,0,2475,0,0,5187,0,0,14852,0,0,9960,0,0,2613,6,52053,"WAT","HY" 21,36,1,1,,105,235,"NIAGARA MOHAWK POWER CORP","SUGAR IS",0,,13573,"0M",1294,,190,95,2908,0,0,2519,0,0,2995,0,0,2818,0,0,2884,0,0,2757,0,0,1893,0,0,2754,0,0,1376,0,0,2667,0,0,2781,0,0,2983,0,0,2616,6,52053,"WAT","HY" 21,36,1,1,,105,240,"NIAGARA MOHAWK POWER CORP","TAYLORVILLE",0,,13573,"0M",1294,,190,95,2219,0,0,1663,0,0,2176,0,0,1051,0,0,1247,0,0,1560,0,0,1566,0,0,1692,0,0,1630,0,0,1392,0,0,2700,0,0,3109,0,0,2617,6,52053,"WAT","HY" 21,36,1,1,,105,250,"NIAGARA MOHAWK POWER CORP","TRENTON",0,,13573,"0M",1294,,190,95,12363,0,0,10763,0,0,12685,0,0,10309,0,0,6711,0,0,6004,0,0,5262,0,0,4565,0,0,3995,0,0,8295,0,0,14603,0,0,11617,0,0,2619,6,52053,"WAT","HY" 21,36,1,1,,105,255,"NIAGARA MOHAWK POWER CORP","VARICK",0,,13573,"0M",1294,,190,95,3510,0,0,2348,0,0,3552,0,0,1467,0,0,836,0,0,546,0,0,363,0,0,629,0,0,211,0,0,2344,0,0,3490,0,0,3553,0,0,2621,6,52053,"WAT","HY" 21,36,1,1,,105,265,"NIAGARA MOHAWK POWER CORP","YALEVILLE",0,,13573,"0M",1294,,190,95,293,0,0,255,0,0,406,0,0,320,0,0,373,0,0,341,0,0,243,0,0,407,0,0,242,0,0,346,0,0,275,0,0,248,0,0,2624,6,52053,"WAT","HY" 21,36,1,3,2,105,270,"NIAGARA MOHAWK POWER CORP","NINE MILE P",0,"LIGHT OIL",13573,"0M",1294,,190,95,6,136,4435,3,121,4470,11,87,4380,0,100,4256,13,323,4316,10,36,4349,6,164,4288,7,218,4320,6,11,535,6,12,573,6,13,557,6,12,543,2589,6,52053,"FO2","IC" 21,36,1,2,3,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"HEAVY OIL",13573,"0M",1294,,190,95,0,0,632933,120407,215553,417380,0,0,417380,26504,46741,370639,0,0,370639,1371,4130,366508,44092,30232,330715,13690,33269,298197,9883,21973,276183,0,0,276183,0,0,542213,0,0,542213,2594,6,52053,"FO6","ST" 21,36,1,2,9,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"NAT GAS",13573,"0M",1294,,190,95,999,22854,0,10635,117884,0,0,0,0,0,0,0,0,0,0,0,0,0,108,461,0,38513,570000,0,15497,213000,0,0,0,0,0,0,0,0,0,0,2594,6,52053,"NG","ST" 21,36,1,3,2,105,275,"NIAGARA MOHAWK POWER CORP","OSWEGO",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,0,0,2149,4,11,2138,0,0,2138,0,0,2138,0,0,2138,2594,6,52053,"FO2","IC" 21,36,1,1,,105,285,"NIAGARA MOHAWK POWER CORP","BEARDSLEE F",0,,13573,"0M",1294,,190,95,5266,0,0,1946,0,0,6556,0,0,4417,0,0,2463,0,0,1946,0,0,895,0,0,759,0,0,741,0,0,5400,0,0,6369,0,0,2631,0,0,2543,6,52053,"WAT","HY" 21,36,1,1,,105,290,"NIAGARA MOHAWK POWER CORP","BAKER FALLS",0,,13573,"0M",1294,"R",190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2541,6,52053,"WAT","HY" 21,36,1,1,,105,300,"NIAGARA MOHAWK POWER CORP","EL J WEST",0,,13573,"0M",1294,,190,95,5989,0,0,5250,0,0,1580,0,0,972,0,0,1241,0,0,3218,0,0,3059,0,0,2326,0,0,4257,0,0,1425,0,0,10684,0,0,8834,0,0,6527,6,52053,"WAT","HY" 21,36,1,1,,105,305,"NIAGARA MOHAWK POWER CORP","EPHRATAH",0,,13573,"0M",1294,,190,95,2045,0,0,902,0,0,1493,0,0,780,0,0,337,0,0,463,0,0,97,0,0,147,0,0,127,0,0,1599,0,0,1298,0,0,1198,0,0,2560,6,52053,"WAT","HY" 21,36,1,1,,105,315,"NIAGARA MOHAWK POWER CORP","GLEN FALLS",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2567,6,52053,"WAT","HY" 21,36,1,1,,105,317,"NIAGARA MOHAWK POWER CORP","GREEN ISL",0,,13573,"0M",1294,,190,95,3672,0,0,3067,0,0,3470,0,0,3478,0,0,2678,0,0,2110,0,0,1303,0,0,1440,0,0,1476,0,0,2837,0,0,2513,0,0,3722,0,0,6528,6,52053,"WAT","HY" 21,36,1,1,,105,320,"NIAGARA MOHAWK POWER CORP","INGHAMS",0,,13573,"0M",1294,,190,95,2951,0,0,1446,0,0,3570,0,0,3006,0,0,1806,0,0,1403,0,0,605,0,0,518,0,0,480,0,0,2716,0,0,3695,0,0,1829,0,0,2579,6,52053,"WAT","HY" 21,36,1,1,,105,325,"NIAGARA MOHAWK POWER CORP","JOHNSONVLE",0,,13573,"0M",1294,,190,95,783,0,0,709,0,0,698,0,0,730,0,0,706,0,0,415,0,0,84,0,0,196,0,0,71,0,0,754,0,0,1347,0,0,777,0,0,2580,6,52053,"WAT","HY" 21,36,1,1,,105,340,"NIAGARA MOHAWK POWER CORP","MOREAU",0,,13573,"0M",1294,"R",190,95,0,0,0,2501,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2587,6,52053,"WAT","HY" 21,36,1,1,,105,350,"NIAGARA MOHAWK POWER CORP","SCH ST COHS",0,,13573,"0M",1294,,190,95,17365,0,0,13801,0,0,18549,0,0,16246,0,0,8330,0,0,6836,0,0,4087,0,0,3410,0,0,3303,0,0,14028,0,0,23804,0,0,15352,0,0,2605,6,52053,"WAT","HY" 21,36,1,1,,105,355,"NIAGARA MOHAWK POWER CORP","SCHAGHTICKE",0,,13573,"0M",1294,,190,95,6959,0,0,4628,0,0,1779,0,0,7008,0,0,3998,0,0,2703,0,0,925,0,0,1694,0,0,513,0,0,4157,0,0,7065,0,0,4122,0,0,2606,6,52053,"WAT","HY" 21,36,1,1,,105,360,"NIAGARA MOHAWK POWER CORP","SCHUYLERVLE",0,,13573,"0M",1294,,190,95,766,0,0,454,0,0,951,0,0,408,0,0,291,0,0,185,0,0,26,0,0,77,0,0,-5,0,0,527,0,0,1089,0,0,771,0,0,2607,6,52053,"WAT","HY" 21,36,1,1,,105,365,"NIAGARA MOHAWK POWER CORP","SHERMAN",0,,13573,"0M",1294,,190,95,14937,0,0,11480,0,0,11483,0,0,9158,0,0,6495,0,0,5892,0,0,5453,0,0,6179,0,0,6999,0,0,9121,0,0,7996,0,0,9198,0,0,2609,6,52053,"WAT","HY" 21,36,1,1,,105,370,"NIAGARA MOHAWK POWER CORP","SPIER FALLS",0,,13573,"0M",1294,,190,95,22054,0,0,16130,0,0,18521,0,0,13202,0,0,8844,0,0,7373,0,0,6467,0,0,7246,0,0,8844,0,0,15741,0,0,12177,0,0,20353,0,0,2612,6,52053,"WAT","HY" 21,36,1,1,,105,380,"NIAGARA MOHAWK POWER CORP","STEWARTS BR",0,,13573,"0M",1294,,190,95,10770,0,0,11203,0,0,3959,0,0,1818,0,0,5172,0,0,2348,0,0,5366,0,0,4271,0,0,7737,0,0,2666,0,0,19084,0,0,17328,0,0,2614,6,52053,"WAT","HY" 21,36,1,1,,105,385,"NIAGARA MOHAWK POWER CORP","STUYVESANT",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2615,6,52053,"WAT","HY" 21,36,1,2,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,220,0,0,201,0,0,201,0,0,195,0,0,192,0,0,189,0,0,185,2539,6,52053,"FO2","ST" 21,36,1,2,3,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"HEAVY OIL",13573,"0M",1294,,190,95,58267,97691,332532,62750,94595,237938,5641,8097,184840,0,0,184840,0,0,184840,1711,4230,180610,0,0,180610,0,0,180610,0,0,180610,0,0,180610,18591,30657,149952,25930,42050,107902,2539,6,52053,"FO6","ST" 21,36,1,2,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,57789,665226,0,58253,669709,0,144263,1550322,0,53054,571524,0,31237,333909,0,47841,524896,0,130139,1434248,0,147338,1604315,0,50979,541649,0,49257,521886,0,6001,121469,0,5994,104410,0,2539,6,52053,"NG","ST" 21,36,1,3,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","IC" 21,36,1,4,2,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"FO2","GT" 21,36,1,4,9,105,395,"NIAGARA MOHAWK POWER CORP","ALBANY",0,"NAT GAS",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2539,6,52053,"NG","GT" 21,36,1,1,,105,420,"NIAGARA MOHAWK POWER CORP","GLENWOOD",0,,13573,"0M",1294,,190,95,584,0,0,584,0,0,712,0,0,35,0,0,602,0,0,501,0,0,510,0,0,499,0,0,459,0,0,493,0,0,412,0,0,213,0,0,2568,6,52053,"WAT","HY" 21,36,1,1,,105,425,"NIAGARA MOHAWK POWER CORP","HYDRAULIC R",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,247,0,0,1980,0,0,1737,0,0,1757,0,0,1761,0,0,1655,0,0,1715,0,0,209,0,0,0,0,0,2578,6,52053,"WAT","HY" 21,36,1,1,,105,440,"NIAGARA MOHAWK POWER CORP","WATERPORT",0,,13573,"0M",1294,,190,95,1372,0,0,1372,0,0,1447,0,0,69,0,0,924,0,0,779,0,0,723,0,0,727,0,0,684,0,0,922,0,0,936,0,0,428,0,0,2623,6,52053,"WAT","HY" 21,36,1,2,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,1601,2790,0,653,1081,0,675,1178,0,599,1017,0,1403,2417,0,539,896,0,638,1090,0,1031,1725,0,723,1216,0,997,1731,0,914,1625,0,396,651,0,2554,6,52053,"FO2","ST" 21,36,1,2,6,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"BIT COAL",13573,"0M",1294,,190,95,254022,99455,112963,311173,114689,97723,298538,114582,80138,317020,119632,52831,259603,99967,52456,255038,95545,74556,311521,120965,80149,307244,117398,77577,307482,116339,76599,257442,99939,138351,253614,100750,153571,354614,131876,151153,2554,6,52053,"BIT","ST" 21,36,1,3,2,105,445,"NIAGARA MOHAWK POWER CORP","DUNKIRK",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,1079,0,0,1334,0,0,1300,0,0,1323,0,0,635,0,0,1174,0,0,1343,0,0,1234,0,0,1317,0,0,1090,0,0,1325,0,0,1484,2554,6,52053,"FO2","IC" 21,36,1,2,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,681,1256,1160,349,688,1247,690,1294,1076,1705,3207,1221,704,1326,1175,1004,1818,1727,1072,1981,1452,554,1037,1301,324,570,1193,1215,2237,1180,832,1567,1213,253,461,1135,2549,6,52053,"FO2","ST" 21,36,1,2,6,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"BIT COAL",13573,"0M",1294,,190,95,272246,110975,103175,276497,121255,106086,220640,91915,179212,270614,112094,162277,265384,109603,157439,267756,107734,190733,286378,118727,131748,337035,139658,120591,316597,122391,136393,245260,100618,129570,236599,99435,197282,339259,137453,168549,2549,6,52053,"BIT","ST" 21,36,1,3,2,105,450,"NIAGARA MOHAWK POWER CORP","C R HUNTLEY",0,"LIGHT OIL",13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2549,6,52053,"FO2","IC" 21,36,1,1,,105,460,"NIAGARA MOHAWK POWER CORP","OAK ORCHARD",0,,13573,"0M",1294,,190,95,0,0,0,0,0,0,0,0,0,0,0,0,178,0,0,186,0,0,185,0,0,187,0,0,174,0,0,176,0,0,46,0,0,0,0,0,2592,6,52053,"WAT","HY" 21,36,1,1,,105,465,"NIAGARA MOHAWK POWER CORP","BEEBEE IS",0,,13573,"0M",1294,,190,95,3633,0,0,2768,0,0,5208,0,0,4383,0,0,3010,0,0,1959,0,0,2292,0,0,1754,0,0,2115,0,0,4754,0,0,5881,0,0,3959,0,0,6434,6,52053,"WAT","HY" 21,36,1,1,,105,470,"NIAGARA MOHAWK POWER CORP","FEEDER DAM",0,,13573,"0M",1294,,190,95,3058,0,0,0,0,0,2491,0,0,1680,0,0,1085,0,0,869,0,0,595,0,0,648,0,0,1046,0,0,1795,0,0,3058,0,0,2885,0,0,2666,6,52053,"WAT","HY" 21,36,1,1,,115,3,"ORANGE & ROCKLAND UTL INC","GRAHAMSVILE",0,,14154,"0M",1294,,,95,7995,0,0,10213,0,0,10828,0,0,5471,0,0,3765,0,0,6843,0,0,11715,0,0,11385,0,0,6049,0,0,6915,0,0,5017,0,0,7158,0,0,2627,6,52181,"WAT","HY" 21,36,1,1,,115,5,"ORANGE & ROCKLAND UTL INC","MONGAUP FLS",0,,14154,"0M",1294,,,95,1849,0,0,830,0,0,1994,0,0,1152,0,0,218,0,0,502,0,0,749,0,0,605,0,0,91,0,0,475,0,0,1859,0,0,1637,0,0,2630,6,52181,"WAT","HY" 21,36,1,1,,115,10,"ORANGE & ROCKLAND UTL INC","RIO",0,,14154,"0M",1294,,,95,4380,0,0,1792,0,0,4911,0,0,2578,0,0,759,0,0,986,0,0,1125,0,0,978,0,0,116,0,0,1041,0,0,4467,0,0,3352,0,0,2631,6,52181,"WAT","HY" 21,36,1,1,,115,15,"ORANGE & ROCKLAND UTL INC","SWING BR 1",0,,14154,"0M",1294,,,95,1041,0,0,442,0,0,1445,0,0,608,0,0,266,0,0,374,0,0,391,0,0,409,0,0,76,0,0,299,0,0,1316,0,0,873,0,0,2633,6,52181,"WAT","HY" 21,36,1,1,,115,20,"ORANGE & ROCKLAND UTL INC","SWING BR 2",0,,14154,"0M",1294,,,95,687,0,0,340,0,0,661,0,0,428,0,0,16,0,0,-84,0,0,164,0,0,42,0,0,-68,0,0,68,0,0,889,0,0,593,0,0,2634,6,52181,"WAT","HY" 21,36,1,2,3,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"HEAVY OIL",14154,"0M",1294,,,95,43906,73730,656595,138605,222519,509921,36874,60431,690856,47123,77864,612992,171664,281797,399693,132603,218077,395393,121658,204130,412273,93622,159538,457749,16475,28676,564249,22772,39554,562775,23802,41159,590697,87447,145316,516559,2625,6,52181,"FO6","ST" 21,36,1,2,9,115,25,"ORANGE & ROCKLAND UTL INC","BOWLINE PT",0,"NAT GAS",14154,"0M",1294,,,95,168974,1723560,0,82272,1239913,0,246716,2463200,0,218627,2199380,0,99656,966090,0,197607,1984380,0,277722,2939140,0,259468,2692570,0,188365,2000250,0,195838,2071510,0,142378,1499610,0,41983,424600,0,2625,6,52181,"NG","ST" 21,36,1,2,3,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"HEAVY OIL",14154,"0M",1294,,,95,8,15,100319,1955,3363,96956,1,1,96927,0,0,96968,162,289,96714,7,13,96701,10,18,96682,5,10,96706,6,11,96717,0,0,96732,0,0,96732,5,10,96723,2629,6,52181,"FO6","ST" 21,36,1,2,6,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"BIT COAL",14154,"0M",1294,,,95,111799,49067,63359,155251,65603,75519,116513,50062,70545,69873,29960,67950,67316,29174,75567,80224,36666,84715,138923,58882,82515,118307,52178,76055,140703,61690,59229,113469,49704,60388,125569,51656,62679,132749,58514,56774,2629,6,52181,"BIT","ST" 21,36,1,2,9,115,30,"ORANGE & ROCKLAND UTL INC","LOVETT",0,"NAT GAS",14154,"0M",1294,,,95,29773,323525,0,26698,280445,0,15824,169812,0,33214,357965,0,35392,384353,0,65900,754578,0,47901,513697,0,42001,470557,0,20369,222754,0,24743,268834,0,21096,220661,0,31665,346005,0,2629,6,52181,"NG","ST" 21,36,1,4,2,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4238,0,0,4238,0,0,4238,0,0,4238,0,9,4229,0,0,4229,52,164,4065,108,334,3731,0,0,3731,0,0,3731,0,0,3731,0,0,3731,2628,6,52181,"FO2","GT" 21,36,1,4,9,115,35,"ORANGE & ROCKLAND UTL INC","HILLBURN",0,"NATURAL G",14154,"0M",1294,,,95,44,1217,0,0,0,0,37,1143,0,565,8996,0,-13,1208,0,256,5250,0,276,4745,0,945,15862,0,444,6906,0,-18,82,0,-27,456,0,24,430,0,2628,6,52181,"NG","GT" 21,36,1,4,2,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"LIGHT OIL",14154,"0M",1294,,,95,0,0,4599,73,30,4569,29,103,4466,-1,30,4485,1,2,4463,45,124,4068,0,0,4068,1,3,4065,0,0,4065,22,81,3984,84,247,3738,0,0,3738,2632,6,52181,"FO2","GT" 21,36,1,4,9,115,40,"ORANGE & ROCKLAND UTL INC","SHOEMAKER",0,"NAT GAS",14154,"0M",1294,,,95,217,4023,0,342,7789,0,599,11559,0,-31,207,0,1856,30143,0,3256,49008,0,4402,75566,0,4597,74746,0,2492,42150,0,713,14586,0,45,456,0,53,1654,0,2632,6,52181,"NG","GT" 21,36,1,2,1,135,1,"ROCHESTER GAS & ELEC CORP","GINNA",0,"NUCLEAR",16183,"0M",1294,,,95,351805,0,0,321771,0,0,293087,0,0,-2750,0,0,299117,0,0,334397,0,0,342637,0,0,305248,0,0,336763,0,0,353447,0,0,342871,0,0,354889,0,0,6122,6,52501,"UR","ST" 21,36,1,1,,135,5,"ROCHESTER GAS & ELEC CORP","MILLS M 172",0,,16183,"0M",1294,,,95,68,0,0,0,0,0,79,0,0,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2636,6,52501,"WAT","HY" 21,36,1,1,,135,10,"ROCHESTER GAS & ELEC CORP","MT MORR 160",0,,16183,"0M",1294,,,95,0,0,0,75,0,0,0,0,0,0,0,0,49,0,0,121,0,0,87,0,0,44,0,0,16,0,0,124,0,0,132,0,0,67,0,0,2637,6,52501,"WAT","HY" 21,36,1,1,,135,15,"ROCHESTER GAS & ELEC CORP","ROCHESTER 2",0,,16183,"0M",1294,,,95,3983,0,0,3890,0,0,4861,0,0,4119,0,0,4073,0,0,2681,0,0,1898,0,0,1483,0,0,708,0,0,3228,0,0,4230,0,0,3509,0,0,2639,6,52501,"WAT","HY" 21,36,1,1,,135,25,"ROCHESTER GAS & ELEC CORP","ROCHESTER 5",0,,16183,"0M",1294,,,95,18727,0,0,8869,0,0,21670,0,0,13445,0,0,7303,0,0,4173,0,0,5885,0,0,2422,0,0,1347,0,0,9730,0,0,15462,0,0,12738,0,0,2641,6,52501,"WAT","HY" 21,36,1,1,,135,28,"ROCHESTER GAS & ELEC CORP","RCHESTER 26",0,,16183,"0M",1294,,,95,596,0,0,1040,0,0,1215,0,0,1302,0,0,1083,0,0,420,0,0,405,0,0,282,0,0,135,0,0,726,0,0,1174,0,0,1054,0,0,2638,6,52501,"WAT","HY" 21,36,1,1,,135,35,"ROCHESTER GAS & ELEC CORP","WISCOY 170",0,,16183,"0M",1294,,,95,517,0,0,408,0,0,590,0,0,391,0,0,204,0,0,97,0,0,121,0,0,83,0,0,55,0,0,240,0,0,470,0,0,462,0,0,2646,6,52501,"WAT","HY" 21,36,1,2,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",394,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,102,143,2305,77,143,2008,122,214,1718,91,167,1882,68,119,1700,27,58,1645,2640,6,52501,"FO2","ST" 21,36,1,2,3,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"HEAVY OIL",16183,"0M",1294,"R",,95,27,48,2860,14,24,2809,14,24,2745,14,24,2703,0,0,2703,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2640,6,52501,"FO6","ST" 21,36,1,2,6,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"BIT COAL",16183,"0M",1294,,,95,36334,13900,770,42264,15300,1458,40715,15300,1556,45572,16900,817,17481,6500,1591,36715,14100,1438,41179,15700,936,37637,15017,1800,37010,13802,1800,27740,10832,1630,33466,12558,1431,34731,13210,1105,2640,6,52501,"BIT","ST" 21,36,1,4,2,135,45,"ROCHESTER GAS & ELEC CORP","ROCHESTER 3",0,"LIGHT OIL",16183,"0M",1294,,,95,26,81,0,4,27,0,13,41,0,3,18,0,0,0,0,6,34,0,4,6,0,46,154,0,25,76,0,8,26,0,13,63,0,1,7,0,2640,6,52501,"FO2","GT" 21,36,1,2,2,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"LIGHT OIL",16183,"0M",1294,,,95,299,571,1111,90,167,1127,375,690,1162,173,310,1211,249,452,1299,566,1071,1121,331,643,1190,434,833,1065,37,71,1065,373,738,1065,345,643,958,311,571,1102,2642,6,52501,"FO2","ST" 21,36,1,2,6,135,50,"ROCHESTER GAS & ELEC CORP","ROCHESTER 7",0,"BIT COAL",16183,"0M",1294,,,95,66357,27700,114902,86515,35300,90431,90609,36600,83204,137634,53400,75835,121093,47500,85250,104898,43000,113923,112687,47700,112973,116634,48507,127749,110993,45157,153399,77990,33362,173353,81051,33064,173047,90029,35948,150667,2642,6,52501,"BIT","ST" 21,36,1,4,2,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"LIGHT OIL",16183,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2644,6,52501,"FO2","GT" 21,36,1,4,9,135,60,"ROCHESTER GAS & ELEC CORP","ROCHESTER 9",0,"NAT GAS",16183,"0M",1294,,,95,26,383,0,2,74,0,14,216,0,4,174,0,0,0,0,8,290,0,17,280,0,3,89,0,24,381,0,0,0,0,3,98,0,8,143,0,2644,6,52501,"NG","GT" 21,36,5,3,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,1463,3067,3172,1434,3271,2622,413,1557,2551,-162,121,3525,-118,217,5782,984,2264,6164,3712,7100,3595,3729,7301,5720,584,1625,6684,895,1423,5789,787,2037,3752,1869,3903,3213,2679,6,51057,"FO2","IC" 21,36,5,4,2,578,5,"FREEPORT (VILLAGE OF)","PLANT NO 2",0,"LIGHT OIL",6775,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,12,0,13,58,0,18,95,0,0,0,0,0,0,0,0,0,0,0,0,0,2679,6,51057,"FO2","GT" 21,36,5,3,2,578,10,"FREEPORT (VILLAGE OF)","PLANT NO 1",0,"LIGHT OIL",6775,"0M",1294,,,95,182,658,1479,376,1032,1630,468,1254,1391,320,920,1697,251,803,1542,452,1093,1119,571,1281,1220,740,1757,1321,639,1551,1424,175,575,1295,402,1078,1704,465,1231,1436,2678,6,51057,"FO2","IC" 21,36,5,1,,586,1,"GOUVERNEUR (CITY OF)","GOUVERNEUR",0,,7422,"0A",1294,,,95,46,0,0,92,0,0,47,0,0,50,0,0,50,0,0,38,0,0,13,0,0,45,0,0,29,0,0,20,0,0,26,0,0,41,0,0,2680,6,51137,"WAT","HY" 21,36,5,3,2,599,1,"GREENPORT (CITY OF)","GREENPORT",0,"LIGHT OIL",7630,"0A",1294,,,95,-32,0,183,-32,0,183,-27,0,183,0,2,181,0,0,0,0,1,180,-20,0,180,-4,28,152,-10,14,182,-19,0,182,0,0,182,-1,26,181,2681,6,51177,"FO2","IC" 21,36,5,2,2,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"LIGHT OIL",9645,"0M",1294,,,95,105,273,377,41,102,275,21,59,394,24,59,335,20,54,281,26,64,394,57,144,250,59,144,281,26,66,215,26,69,323,44,114,209,51,136,250,2682,6,51437,"FO2","ST" 21,36,5,2,6,624,1,"JAMESTOWN (CITY OF)","S A CARLSON",0,"BIT COAL",9645,"0M",1294,,,95,17974,10638,3526,17648,10013,3826,11794,7305,3597,9844,5439,3428,9879,6006,2629,11487,6255,2811,13511,7717,2530,13208,7291,3578,9538,5398,3370,10505,6096,2827,12704,7245,3946,16956,10165,3924,2682,6,51437,"BIT","ST" 21,36,5,3,2,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"LIGHT OIL",16217,"0M",1294,,,95,105,294,2332,321,741,2091,43,283,1808,-60,82,1726,-18,114,2338,244,637,2368,957,2138,1919,2160,4073,1884,560,1129,2277,20,216,2061,38,213,2151,101,381,1770,2695,6,52509,"FO2","IC" 21,36,5,3,9,675,1,"ROCKVILLE CTR(VILLAGE OF)","ROCKVILLE C",0,"NAT GAS",16217,"0M",1294,,,95,642,7257,0,510,5912,0,15,471,0,0,325,0,-11,282,0,1931,20033,0,4455,46010,0,2523,26516,0,352,4031,0,47,1369,0,46,1025,0,450,5750,0,2695,6,52509,"NG","IC" 21,36,5,3,2,700,5,"SKANEATELES VILLAGE OF","SKANEATELES",0,"LIGHT OIL",17280,"0A",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2697,6,52670,"FO2","IC" 21,36,5,1,,712,1,"SPRINGVILLE (CITY OF)","SPRINGVILLE",0,,17846,"0A",1294,,,95,145,0,0,118,0,0,104,0,0,166,0,0,172,0,0,129,0,0,84,0,0,63,0,0,12,0,0,39,0,0,110,0,0,124,0,0,2698,6,52772,"WAT","HY" 21,36,5,1,,725,1,"WATERTOWN (CITY OF)","WATERTOWN",0,,20188,"0A",1294,,,95,2508,0,0,1826,0,0,2861,0,0,2520,0,0,2042,0,0,715,0,0,684,0,0,252,0,0,458,0,0,1925,0,0,2671,0,0,2141,0,0,2700,6,53199,"WAT","HY" 21,36,9,1,,668,1,"POWER AUTHY OF ST OF N Y","LEWISTON PG",0,"C-PUMPSTG",15296,"0M",1294,,,95,-23392,48481,0,-16321,48107,0,-18062,52914,0,-34170,75041,0,-32754,81523,0,-35246,84639,0,-35971,80543,0,-31970,78905,0,-33926,76500,0,-34404,82531,0,-25619,66689,0,-26848,63831,0,2692,6,52375,"WAT","HY" 21,36,9,2,1,668,1,"POWER AUTHY OF ST OF N Y","FITZPATRICK",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,34055,0,0,544665,0,0,562170,0,0,384520,0,0,579310,0,0,577530,0,0,402855,0,0,590100,0,0,572680,0,0,580835,0,0,6110,6,52375,"UR","ST" 21,36,9,1,,668,3,"POWER AUTHY OF ST OF N Y","MOSES NIAG",0,,15296,"0M",1294,,,95,1463973,0,0,1230590,0,0,1418230,0,0,1163933,0,0,1279083,0,0,1132981,0,0,1197133,0,0,1148436,0,0,1021706,0,0,1145560,0,0,1382957,0,0,1354956,0,0,2693,6,52375,"WAT","HY" 21,36,9,2,1,668,3,"POWER AUTHY OF ST OF N Y","INDIAN PT 3",0,"NUCLEAR",15296,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,0,0,434533,0,0,716433,0,0,320544,0,0,0,0,0,0,0,0,-2,0,0,8907,6,52375,"UR","ST" 21,36,9,1,,668,5,"POWER AUTHY OF ST OF N Y","MOSES PR DM",0,,15296,"0M",1294,,,95,524759,0,0,481624,0,0,585412,0,0,549618,0,0,532348,0,0,526743,0,0,545520,0,0,559232,0,0,538635,0,0,554432,0,0,576778,0,0,569302,0,0,2694,6,52375,"WAT","HY" 21,36,9,1,,668,8,"POWER AUTHY OF ST OF N Y","BLENHEIM G",0,"P-PUMPSTG",15296,"0M",1294,,,95,-80117,223900,0,-66116,187582,0,-64757,198518,0,-71547,180530,0,-58305,185571,0,-61293,196731,0,-78558,215353,0,-75753,237341,0,-63547,183628,0,-66325,194141,0,-57795,177791,0,-70135,192222,0,2691,6,52375,"WAT","HY" 21,36,9,2,3,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"HEAVY OIL",15296,"0M",1294,,,95,33400,61649,303226,126069,209523,203682,20403,35475,168236,17269,37577,130679,19806,35708,94972,47803,62254,32718,36004,60668,68293,14149,23707,150452,35247,61190,430389,17481,30727,459549,62862,110242,349307,252627,421942,245156,2491,6,52375,"FO6","ST" 21,36,9,2,9,668,15,"POWER AUTHY OF ST OF N Y","POLETTI",0,"NAT GAS",15296,"0M",1294,,,95,99454,1128061,0,99940,1020449,0,202945,2167293,0,211435,2738075,0,258894,2862705,0,324525,2604689,0,262599,2721610,0,310920,3222176,0,205757,2168448,0,224611,2374781,0,128580,1368464,0,2466,25078,0,2491,6,52375,"NG","ST" 21,36,9,1,,668,20,"POWER AUTHY OF ST OF N Y","ASHOKAN",0,,15296,"0M",1294,,,95,1615,0,0,587,0,0,1045,0,0,2214,0,0,2450,0,0,2277,0,0,2117,0,0,2126,0,0,1756,0,0,1286,0,0,1083,0,0,1303,0,0,88,6,52375,"WAT","HY" 21,36,9,1,,668,25,"POWER AUTHY OF ST OF N Y","KENSICO",0,,15296,"0M",1294,,,95,802,0,0,73,0,0,0,0,0,1521,0,0,150,0,0,271,0,0,1411,0,0,1244,0,0,1418,0,0,1191,0,0,880,0,0,0,0,0,650,6,52375,"WAT","HY" 21,36,9,1,,668,30,"POWER AUTHY OF ST OF N Y","JARVIS",0,,15296,"0M",1294,,,95,4048,0,0,2165,0,0,2416,0,0,2485,0,0,1720,0,0,1501,0,0,1162,0,0,1003,0,0,575,0,0,2833,0,0,5091,0,0,2476,0,0,808,6,52375,"WAT","HY" 21,36,9,1,,668,35,"POWER AUTHY OF ST OF N Y","CRESCENT",0,,15296,"0M",1294,,,95,6303,0,0,4034,0,0,7316,0,0,4624,0,0,3019,0,0,2031,0,0,104,0,0,713,0,0,703,0,0,3132,0,0,6120,0,0,4690,0,0,2685,6,52375,"WAT","HY" 21,36,9,1,,668,40,"POWER AUTHY OF ST OF N Y","VISCHER FER",0,,15296,"0M",1294,,,95,5945,0,0,3714,0,0,6024,0,0,4504,0,0,2789,0,0,1833,0,0,986,0,0,123,0,0,654,0,0,2259,0,0,5980,0,0,4591,0,0,2686,6,52375,"WAT","HY" 21,36,9,5,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"WASTE HT",15296,"0M",1294,,,95,24819,192100,0,17369,134483,0,27383,211172,0,18948,146928,0,26056,199854,0,24430,188777,0,23492,184084,0,25126,194127,0,24424,188668,0,23749,183457,0,20261,158951,0,19720,154115,0,7314,6,52375,"WH","CC" 21,36,9,6,2,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"LIGHT OIL",15296,"0M",1294,,,95,7722,10369,101959,21462,28859,72145,0,0,72242,14,20,72083,0,0,72104,0,0,72094,0,0,72044,0,0,72052,0,0,72062,157,211,71873,9447,12866,58992,27271,36998,78070,7314,6,52375,"FO2","CT" 21,36,9,6,9,668,45,"POWER AUTHY OF ST OF N Y","FLYNN",0,"NAT GAS",15296,"0M",1294,,,95,74458,576302,0,52111,403450,0,82153,633518,0,56849,440785,0,78170,599562,0,73293,566331,0,71470,552251,0,75381,582382,0,73276,566005,0,71251,550371,0,60784,476853,0,59162,462344,0,7314,6,52375,"NG","CT" 22,34,1,2,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,123,81,130,93,0,0,131,0,0,138,14,28,165,67,129,202,80,160,147,5,10,137,40,91,189,0,29,160,0,29,131,4,8,123,2384,3,56513,"FO2","ST" 22,34,1,2,3,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"HEAVY OIL",963,"0M",1294,,181,95,1345,2425,95467,4563,6516,88951,0,0,88951,0,0,88261,0,0,88261,1177,2026,86235,3361,5958,80277,5273,9351,70926,5555,8624,62302,0,0,62302,0,0,62302,0,0,62302,2384,3,56513,"FO6","ST" 22,34,1,2,6,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"BIT COAL",963,"0M",1294,,181,95,29945,12519,39313,35838,15203,23710,8276,3561,20149,0,0,34389,5810,3059,52665,34469,14723,52014,42129,18253,40567,44451,19515,27979,11926,4625,44084,33654,13941,51248,53859,21346,70836,57721,22974,63900,2384,3,56513,"BIT","ST" 22,34,1,2,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,1491,16310,0,0,0,0,944,9940,0,1878,22040,0,11307,122240,0,11062,117040,0,27862,302860,0,29442,321050,0,12534,120040,0,807,8090,0,1552,15370,0,0,0,0,2384,3,56513,"NG","ST" 22,34,1,4,2,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"LIGHT OIL",963,"0M",1294,,181,95,-8,0,770,27,44,729,14,39,690,20,103,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,587,0,0,0,2384,3,56513,"FO2","GT" 22,34,1,4,9,24,1,"ATLANTIC CITY ELEC CO","DEEPWATER",0,"NAT GAS",963,"0M",1294,,181,95,-8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,629,6657,0,3831,41649,0,3649,39793,0,1027,14649,0,628,9167,0,1061,10505,0,694,6875,0,2384,3,56513,"NG","GT" 22,34,1,4,2,24,2,"ATLANTIC CITY ELEC CO","MISSOURI AV",0,"LIGHT OIL",963,"0M",1294,,181,95,-4,100,9869,278,791,9635,3,53,9582,-21,5,9576,-17,8,9568,177,455,9113,2101,5546,7361,1882,5382,8451,605,2439,10201,-18,16,10185,-16,19,10167,2,70,10097,2383,3,56513,"FO2","GT" 22,34,1,2,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,510,999,1734,317,596,1818,213,395,1756,107,200,1734,125,224,1843,424,778,1734,424,814,1508,552,1027,1647,500,1086,1588,450,958,1654,643,1122,1377,242,442,1435,2378,3,56513,"FO2","ST" 22,34,1,2,3,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"HEAVY OIL",963,"0M",1294,,181,95,4583,8307,99579,7833,13643,103560,0,0,103560,0,0,103560,0,0,103560,8731,14731,88829,37756,66914,51324,29729,50813,69931,850,2842,113855,18800,33751,80103,0,0,80103,15770,26499,87607,2378,3,56513,"FO6","ST" 22,34,1,2,6,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"BIT COAL",963,"0M",1294,,181,95,68381,30282,165387,127521,54088,125492,123787,53379,95025,85963,36061,88754,176115,72435,61413,155554,64926,62658,185411,80134,49009,173888,73305,41509,130330,53650,71904,83030,32962,118367,145947,62033,109160,196038,81549,81843,2378,3,56513,"BIT","ST" 22,34,1,3,2,24,5,"ATLANTIC CITY ELEC CO","B L ENGLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,5,11,0,0,0,0,0,0,0,0,0,0,12,23,0,133,257,0,321,597,0,5,10,0,0,0,0,0,0,0,0,0,0,2378,3,56513,"FO2","IC" 22,34,1,4,2,24,20,"ATLANTIC CITY ELEC CO","MIDDLE STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-834,144,15410,-227,1590,15128,-1342,459,14669,-815,159,14510,-333,16,14494,-558,315,9113,2009,5421,12193,2243,7786,14637,-670,677,15327,-729,232,15284,-745,423,15069,-730,254,14814,2382,3,56513,"FO2","GT" 22,34,1,4,2,24,25,"ATLANTIC CITY ELEC CO","CEDAR STA",0,"LIGHT OIL",963,"0M",1294,,181,95,-474,179,21675,-321,918,21875,-42,70,21804,-546,56,21748,-110,38,21710,62,61,21650,3843,9672,14702,3756,10444,18151,-253,1075,20407,-631,431,21246,-535,219,21027,-679,322,20705,2380,3,56513,"FO2","GT" 22,34,1,4,2,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"LIGHT OIL",963,"0M",1294,,181,95,-28,8,13554,78,379,13175,-43,0,13175,-20,0,13175,-965,8,13167,-121,166,13002,1394,2899,10102,1615,4499,9171,-32,0,13713,-16,0,14849,-44,0,14849,49,332,14517,2379,3,56513,"FO2","GT" 22,34,1,4,9,24,30,"ATLANTIC CITY ELEC CO","CARLL CORNR",0,"NAT GAS",963,"0M",1294,,181,95,35,1120,0,452,8170,0,-76,50,0,-19,1010,0,73,2450,0,835,15970,0,6072,93380,0,5324,82370,0,-117,28460,0,861,14250,0,-44,7170,0,172,150,0,2379,3,56513,"NG","GT" 22,34,1,4,2,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8008,3,56513,"FO2","GT" 22,34,1,4,9,24,32,"ATLANTIC CITY ELEC CO","MICKETON ST",0,"NAT GAS",963,"0M",1294,,181,95,665,11020,0,1084,16250,0,714,11030,0,1017,15170,0,334,6070,0,2355,35610,0,9801,143090,0,8665,129480,0,2856,42750,0,30,1480,0,2277,33340,0,276,5380,0,8008,3,56513,"NG","GT" 22,34,1,4,2,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"LIGHT OIL",963,"0M",1294,,181,95,-76,0,18141,-10,0,18141,-38,0,18141,-31,0,18141,-30,0,18141,0,0,18141,5894,12888,17367,7323,16647,12470,3,249,14661,0,0,17077,-158,198,17249,60,412,16838,5083,3,56513,"FO2","GT" 22,34,1,4,9,24,33,"ATLANTIC CITY ELEC CO","CUMBERLAND",0,"NAT GAS",963,"0M",1294,,181,95,-76,0,0,-10,0,0,-38,0,0,-31,0,0,0,0,0,-27,130,0,342,4020,0,16,200,0,1,380,0,-93,0,0,0,0,0,101,3810,0,5083,3,56513,"NG","GT" 22,34,1,4,2,24,35,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"LIGHT OIL",963,"0M",1294,,181,95,0,0,53843,0,0,50861,0,0,80853,0,0,80853,0,0,80853,0,0,80853,0,0,58245,0,0,12871,0,0,12871,0,0,52645,0,0,52645,0,0,82122,8803,3,56513,"FO2","GT" 22,34,1,4,3,24,40,"ATLANTIC CITY ELEC CO","MANTU DEPOT",0,"HEAVY OIL",963,"0M",1294,,181,95,0,0,128847,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,111223,0,0,81814,0,0,111865,0,0,111865,0,0,115694,0,0,115694,0,0,131074,8804,3,56513,"FO6","GT" 22,34,1,4,2,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"LIGHT OIL",963,"0M",1294,,181,95,70,186,14708,-45,0,14708,-30,0,14708,0,0,14708,-11,0,14708,0,0,14708,0,0,14708,-190,0,14708,0,0,14708,0,0,14708,76,193,14515,232,590,14513,7288,3,56513,"FO2","GT" 22,34,1,4,9,24,45,"ATLANTIC CITY ELEC CO","SHERMAN AVE",0,"NAT GAS",963,"0M",1294,,181,95,1386,19950,0,-45,0,0,-30,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-190,0,0,0,0,0,0,0,0,1704,23780,0,2984,41500,0,7288,3,56513,"NG","GT" 22,34,1,2,1,50,1,"GPU NUCLEAR CORP","OYSTER CRK",0,"NUCLEAR",7423,"0M",1294,,,95,471880,0,0,400185,0,0,466040,0,0,457427,0,0,440064,0,0,447364,0,0,438119,0,0,420825,0,0,447572,0,0,468215,0,0,428423,0,0,307964,0,0,2388,3,58850,"UR","ST" 22,34,1,1,,78,5,"JERSEY CENTRAL PWR & LGT","YARDS CR JO",0,"P-PUMPSTG",9726,"0M",1294,,,95,-9476,31075,0,-6121,19602,0,-8606,30644,0,-9596,30043,0,-9800,36086,0,-15417,52655,0,-13938,46076,0,-11848,42668,0,-7525,27636,0,0,0,0,0,0,0,-2205,5358,0,6522,3,56512,"WAT","HY" 22,34,1,4,2,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"LIGHT OIL",9726,"0M",1294,,,95,357,1074,17830,457,1242,16588,29,247,16340,30,141,16199,0,0,16199,360,1062,15138,0,0,15138,0,0,15138,149,445,14693,21,60,14633,69,223,14409,10,63,16838,8227,3,56512,"FO2","GT" 22,34,1,4,9,78,7,"JERSEY CENTRAL PWR & LGT","GLEN GARDNR",0,"NAT GAS",9726,"0M",1294,,,95,1,10,0,31,485,0,2,90,0,0,0,0,0,0,0,698,11690,0,15562,248730,0,18982,309960,0,4246,71580,0,3046,50662,0,1111,20594,0,10,377,0,8227,3,56512,"NG","GT" 22,34,1,2,3,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"HEAVY OIL",9726,"0M",1294,,,95,268,611,153901,2150,4403,149484,0,0,149488,0,0,149544,0,0,149379,0,0,150080,0,0,150051,0,0,149974,0,0,150075,0,0,149949,0,0,149926,8990,12417,137518,2393,3,56512,"FO6","ST" 22,34,1,2,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1658,32084,0,198,3865,0,-452,0,0,-364,0,0,-363,0,0,6011,80854,0,28213,364986,0,24888,306021,0,915,14545,0,340,8670,0,825,13717,0,331,2840,0,2393,3,56512,"NG","ST" 22,34,1,4,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,150,431,0,803,2747,0,39,127,0,0,0,0,0,0,0,1,8,0,1,3,0,791,2604,0,31,88,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"FO2","GT" 22,34,1,4,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,1,16,0,0,0,0,1,15,0,0,0,0,0,0,0,3,79,0,2862,50800,0,6493,121452,0,911,15880,0,4,174,0,979,364,0,29,249,0,2393,3,56512,"NG","GT" 22,34,1,5,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,728,0,0,3136,0,0,1259,0,0,1612,0,0,-587,0,0,5741,0,0,26058,0,0,28272,0,0,20554,0,0,8047,0,0,19296,0,0,18926,0,0,2393,3,56512,"FO2","CC" 22,34,1,5,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"WASTE HT",9726,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2393,3,56512,"NG","CC" 22,34,1,6,2,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"LIGHT OIL",9726,"0M",1294,,,95,1147,2566,252704,5572,11989,236313,1136,2545,232067,367,826,230086,0,0,229824,2660,6112,221348,82,189,219853,2038,4709,211204,942,1977,207539,163,373,205587,83,183,203671,5739,8660,193069,2393,3,56512,"FO2","CT" 22,34,1,6,9,78,9,"JERSEY CENTRAL PWR & LGT","GILBERT",0,"NAT GAS",9726,"0M",1294,,,95,5385,68331,0,8729,106467,0,6306,80671,0,7352,94029,0,-100,0,0,15594,203104,0,61026,877903,0,70864,931070,0,54572,701754,0,24094,329931,0,60664,796524,0,81101,693848,0,2393,3,56512,"NG","CT" 22,34,1,2,3,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"HEAVY OIL",9726,"0M",1294,,,95,4224,7914,90214,19448,37587,72103,7,16,72200,0,0,72163,792,1710,90373,6448,15362,75189,42812,86857,27305,24793,50118,55888,1650,3646,52242,0,0,71301,7,18,90540,10844,23847,66865,2390,3,56512,"FO6","ST" 22,34,1,2,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,20137,245800,0,2651,32100,0,6917,89800,0,-727,100,0,-407,2800,0,141,2100,0,224,4900,0,16338,199000,0,1429,25400,0,-704,0,0,2904,47900,0,306,4100,0,2390,3,56512,"NG","ST" 22,34,1,4,2,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"LIGHT OIL",9726,"0M",1294,,,95,93,224,31996,752,2238,29758,0,0,29758,0,0,29758,139,640,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,0,0,29118,2390,3,56512,"FO2","GT" 22,34,1,4,9,78,10,"JERSEY CENTRAL PWR & LGT","SAYREVILLE",0,"NAT GAS",9726,"0M",1294,,,95,1500,19800,0,1294,21300,0,831,12100,0,898,13300,0,187,4800,0,2507,37100,0,16534,266200,0,24165,379300,0,3245,51100,0,2451,37300,0,265,3800,0,22,300,0,2390,3,56512,"NG","GT" 22,34,1,2,3,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"HEAVY OIL",9726,"0M",1294,,,95,259,628,28845,5405,11437,18060,1926,4703,13792,-265,311,13764,-275,69,13780,1352,3366,28845,10346,20351,28459,7922,15595,12784,55,70,13159,-271,197,32022,-298,546,32144,3509,7954,24818,2385,3,56512,"FO6","ST" 22,34,1,4,2,78,15,"JERSEY CENTRAL PWR & LGT","WERNER",0,"LIGHT OIL",9726,"0M",1294,,,95,44,115,40240,398,1664,37864,88,236,37615,0,0,37379,13,702,36473,348,618,35855,2640,8238,27453,4764,13326,33888,215,290,33598,10,269,33202,0,25,42792,3,278,41910,2385,3,56512,"FO2","GT" 22,34,1,4,2,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"LIGHT OIL",9726,"0M",1294,,,95,0,0,16388,1066,2219,17602,713,1618,15984,0,0,15971,0,0,15989,0,0,15969,0,0,15974,0,0,15980,0,0,15980,5,12,15970,0,0,15994,221,489,15505,7138,3,56512,"FO2","GT" 22,34,1,4,9,78,20,"JERSEY CENTRAL PWR & LGT","FORKED RVR",0,"NAT GAS",9726,"0M",1294,,,95,364,4569,0,160,1908,0,1306,15609,0,1647,20147,0,1120,14174,0,2225,28309,0,12875,162923,0,11844,149957,0,4227,53220,0,1880,23454,0,1759,25611,0,749,9475,0,7138,3,56512,"NG","GT" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,818199,0,0,47631,0,0,687443,0,0,753981,0,0,247176,0,0,-8310,0,0,-7985,0,0,-5500,0,0,-3133,0,0,-2112,0,0,-2002,0,0,-2639,0,0,2410,3,52414,"UR","ST" 22,34,1,2,1,131,1,"PUBLIC SERV ELEC & GAS CO","HOPE CREEK",0,"NUCLEAR",15477,"0M",1294,,,95,778188,0,0,711976,0,0,566874,0,0,750262,0,0,767051,0,0,742345,0,0,309223,0,0,760021,0,0,742281,0,0,733449,0,0,210606,0,0,-8357,0,0,6118,3,52414,"UR","ST" 22,34,1,2,1,131,2,"PUBLIC SERV ELEC & GAS CO","SALEM",0,"NUCLEAR",15477,"0M",1294,,,95,-17867,0,0,12090,0,0,369001,0,0,767911,0,0,765246,0,0,157494,0,0,-5523,0,0,-7400,0,0,-4042,0,0,-4499,0,0,-4002,0,0,-3638,0,0,2410,3,52414,"UR","ST" 22,34,1,4,2,131,2,"PUBLIC SERV ELEC & GAS CO","BAYONNE 1",0,"LIGHT OIL",15477,"0M",1294,,,95,-19,40,3837,74,282,453,-9,0,453,-44,0,1097,-18,0,3930,-2,0,3930,252,805,3125,134,585,2744,-24,0,3373,-42,0,3744,0,26,3744,-33,25,3898,2397,3,52414,"FO2","GT" 22,34,1,2,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-2112,0,0,-2514,3702,0,8759,159907,0,3706,93882,0,82739,754972,0,167861,1271630,0,281448,2131152,0,334990,2488678,0,184434,1379778,0,154884,1248547,0,151551,1232638,0,151368,1176288,0,2398,3,52414,"NG","ST" 22,34,1,4,2,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,0,0,21622,0,0,21622,0,0,38592,0,0,38592,0,0,61623,2310,3197,102565,0,0,118429,0,0,118396,3765,5367,113029,4832,7091,116664,465,652,117805,2398,3,52414,"FO2","GT" 22,34,1,4,9,131,3,"PUBLIC SERV ELEC & GAS CO","BERGEN",0,"NAT GAS",15477,"0M",1294,,,95,-13,0,0,0,0,0,-6,664,0,-6,644,0,-9,0,0,0,0,0,347,35845,0,505,5090,0,0,0,0,-7,0,0,-7,0,0,-8,0,0,2398,3,52414,"NG","GT" 22,34,1,2,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,922,1740,0,1014,1683,0,707,1131,0,668,1366,0,0,0,0,911,1528,0,1631,2761,0,200,501,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","ST" 22,34,1,2,3,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"HEAVY OIL",15477,"0M",1294,,,95,9046,15688,55522,11250,17153,88452,0,0,88452,0,0,88452,-534,0,88437,2949,4515,83916,25958,40320,43596,1803,5025,88868,-545,0,88868,-541,0,88868,-541,0,88868,-573,0,88868,2399,3,52414,"FO6","ST" 22,34,1,4,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",1294,,,95,1176,2221,83444,10436,17314,64340,158,253,93381,55,114,91811,-75,14,91811,57,96,90581,102,173,81026,4040,11276,88868,-82,16,87601,-75,58,86367,29,348,84382,4578,8912,83631,2399,3,52414,"FO2","GT" 22,34,1,4,9,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"NAT GAS",15477,"0M",1294,,,95,60222,642634,0,62039,580691,0,60695,548854,0,9404,108237,0,42361,363894,0,31693,299006,0,63357,605299,0,60174,537745,0,21155,187254,0,17575,158420,0,24156,217635,0,18363,172905,0,2399,3,52414,"NG","GT" 22,34,1,6,2,131,5,"PUBLIC SERV ELEC & GAS CO","BURLINGTON",0,"LIGHT OIL",15477,"0M",894,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,144,235,0,0,0,0,0,0,0,0,0,0,0,0,0,2399,3,52414,"FO2","CT" 22,34,1,4,2,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"LIGHT OIL",15477,"0M",1294,,,95,152,366,106308,281,513,105795,252,403,105392,7,135,105257,0,0,105257,88,644,104610,675,1783,102827,687,1976,100851,0,0,110803,0,0,110803,126,444,110359,742,2206,108153,2400,3,52414,"FO2","GT" 22,34,1,4,9,131,7,"PUBLIC SERV ELEC & GAS CO","EDISON",0,"NAT GAS",15477,"0M",1294,,,95,-33,582,0,70,992,0,-80,345,0,0,0,0,-162,750,0,0,0,0,3046,44211,0,2441,36716,0,-100,537,0,120,3310,0,89,2079,0,28,428,0,2400,3,52414,"NG","GT" 22,34,1,4,2,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,112211,4598,10660,104446,0,0,104446,0,0,103802,0,0,96326,4,10,91990,0,0,91990,0,0,91990,0,0,112914,2,185,112914,234,400,112327,894,2118,110210,2401,3,52414,"FO2","GT" 22,34,1,4,9,131,8,"PUBLIC SERV ELEC & GAS CO","ESSEX",0,"NAT GAS",15477,"0M",1294,,,95,20171,250330,0,38746,466002,0,28312,330527,0,6195,75506,0,7086,87770,0,17745,236062,0,65291,864255,0,62756,803138,0,18682,243317,0,3599,40505,0,3163,40505,0,1420,2118,0,2401,3,52414,"NG","GT" 22,34,1,2,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,0,0,0,0,0,0,0,0,0,0,0,0,0,3,6,0,4,9,0,4,9,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"FO2","ST" 22,34,1,2,3,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"HEAVY OIL",15477,"0M",1294,,,95,11188,21576,147242,40039,87268,59974,0,0,59974,158,379,13064,0,0,13064,0,0,13064,0,0,13064,0,0,0,0,0,0,0,0,0,0,0,0,-2401,3164,109182,2403,3,52414,"FO6","ST" 22,34,1,2,6,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"BIT COAL",15477,"0M",1294,,,95,0,0,239403,0,0,239403,46093,19713,219690,82549,35226,208484,158939,68702,225010,141427,62425,162585,235608,99546,193639,263396,110928,173063,10310,4383,258904,0,0,349753,57703,21908,369380,339660,132744,293504,2403,3,52414,"BIT","ST" 22,34,1,2,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,30599,362930,0,7194,97478,0,122788,1378604,0,43966,500739,0,16188,203737,0,20750,232325,0,137870,1458255,0,96187,1102638,0,1254,45160,0,-3375,2793,0,356,3383,0,1493,16683,0,2403,3,52414,"NG","ST" 22,34,1,4,2,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"LIGHT OIL",15477,"0M",1294,,,95,119,251,352215,256,609,34606,-63,0,34606,-54,0,34597,-48,0,34597,0,0,34597,1239,2320,32262,396,2283,29962,-50,0,29962,-46,0,29962,-55,0,29962,-71,0,29959,2403,3,52414,"FO2","GT" 22,34,1,4,9,131,13,"PUBLIC SERV ELEC & GAS CO","HUDSON",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,7,103,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,38,0,0,0,0,0,0,0,0,0,0,0,0,0,2403,3,52414,"NG","GT" 22,34,1,2,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,0,0,0,47,160,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2404,3,52414,"FO2","ST" 22,34,1,2,3,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"HEAVY OIL",15477,"0M",1294,,,95,-1419,0,47358,3162,9747,46218,-1264,0,46218,-811,0,43218,-763,0,46218,2322,7151,47602,25660,53229,45133,22324,46979,41775,-837,0,41775,-758,0,41755,-1135,0,41775,-1308,0,46698,2404,3,52414,"FO6","ST" 22,34,1,4,2,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"LIGHT OIL",15477,"0M",1294,,,95,375,941,65441,656,2205,61502,0,175,60444,-48,459,59831,-54,459,66419,-11,40,64109,2241,5425,58552,1592,6227,53502,-37,0,73227,-117,0,73054,-84,226,71810,-19,331,69761,2404,3,52414,"FO2","GT" 22,34,1,4,9,131,16,"PUBLIC SERV ELEC & GAS CO","KEARNY",0,"NAT GAS",15477,"0M",1294,,,95,778,10891,0,531,10070,0,-183,586,0,-132,928,0,-131,324,0,1324,24641,0,4064,67350,0,6293,99804,0,-119,0,0,-6,0,0,-8,139,0,-23,0,0,2404,3,52414,"NG","GT" 22,34,1,2,3,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"HEAVY OIL",15477,"0M",1294,,,95,-2975,0,169370,18699,47791,121579,1724,8149,41900,-1941,0,88431,-2550,0,88431,1771,15138,11078,59268,130643,95281,51534,115049,125814,-2711,0,128815,-1641,0,126134,-2551,10434,115700,-1747,0,115700,2406,3,52414,"FO6","ST" 22,34,1,4,2,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"LIGHT OIL",15477,"0M",1294,,,95,26,253,53370,313,1361,52009,448,1157,50882,3498,6627,44255,6478,14170,30085,0,0,30085,0,0,30085,564,1160,28925,0,0,49924,-37,195,49604,202,372,49037,451,1756,51571,2406,3,52414,"FO2","GT" 22,34,1,4,9,131,18,"PUBLIC SERV ELEC & GAS CO","LINDEN",0,"NAT GAS",15477,"0M",1294,,,95,-96,0,0,43,2616,0,3961,49847,0,1854,18696,0,15141,180135,0,13553,160573,0,33255,393680,0,32192,409006,0,8666,121819,0,8374,103539,0,3980,41596,0,1468,15561,0,2406,3,52414,"NG","GT" 22,34,1,2,6,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"BIT COAL",15477,"0M",1294,,,95,260338,90961,263541,283481,98338,252219,105820,38401,312566,69927,25278,364038,58034,23857,399943,121372,47152,419711,144178,55677,392291,111773,44297,360087,169493,64917,301841,40666,17201,334307,135703,47712,346850,209008,71876,359245,2408,3,52414,"BIT","ST" 22,34,1,2,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,15072,160572,0,10698,100608,0,12860,134613,0,17393,171693,0,23606,242604,0,33578,373796,0,130882,1357300,0,110572,1186167,0,12727,142016,0,7184,77196,0,1387,12188,0,362,30224,0,2408,3,52414,"NG","ST" 22,34,1,4,2,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"LIGHT OIL",15477,"0M",1294,,,95,58,452,0,99,166,0,-80,45,0,-80,22,0,-90,0,0,-84,0,0,174,1003,0,1250,2375,0,-74,0,0,-89,0,0,-86,0,0,65,504,0,2408,3,52414,"FO2","GT" 22,34,1,4,9,131,22,"PUBLIC SERV ELEC & GAS CO","MERCER",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,11,107,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,23,252,0,0,0,0,0,0,0,0,0,0,0,0,0,2408,3,52414,"NG","GT" 22,34,1,4,2,131,24,"PUBLIC SERV ELEC & GAS CO","NATIONAL PK",0,"LIGHT OIL",15477,"0M",1294,,,95,-7,0,2850,-5,0,2850,-6,0,168,-6,0,167,-7,0,1390,-6,0,3548,-6,0,3548,33,67,3481,-6,0,3481,3,25,3456,2,22,3434,-6,0,3434,2409,3,52414,"FO2","GT" 22,34,1,2,3,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"HEAVY OIL",15477,"0M",1294,,,95,915,2021,98313,16425,33366,104241,341,778,103613,0,0,103613,1016,2372,101241,0,0,101241,128,279,100962,2211,4787,96175,4969,9343,86832,2764,7861,78971,2025,6536,72435,11423,30324,105394,2411,3,52414,"FO6","ST" 22,34,1,2,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,30968,435199,0,63113,771440,0,13222,183529,0,3478,58360,0,10032,124996,0,30077,426413,0,86401,1129748,0,69754,958979,0,7865,101861,0,-868,15021,0,1354,26896,0,943,15389,0,2411,3,52414,"NG","ST" 22,34,1,4,2,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"LIGHT OIL",15477,"0M",1294,,,95,51,704,34543,121,263,34280,-71,0,34280,-133,0,34280,-130,0,34280,-22,30,38575,438,1523,37052,831,2943,34109,-123,0,34109,-124,0,34109,23,82,34027,80,208,33819,2411,3,52414,"FO2","GT" 22,34,1,4,9,131,25,"PUBLIC SERV ELEC & GAS CO","SEWAREN",0,"NAT GAS",15477,"0M",1294,,,95,0,0,0,2,31,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,2411,3,52414,"NG","GT" 22,34,1,4,2,131,27,"PUBLIC SERV ELEC & GAS CO","SALEM JO",0,"LIGHT OIL",15477,"0M",1294,,,95,-18,3,16640,85,264,16528,-5,49,16528,-14,28,17721,-15,0,17581,0,0,17581,398,125,32262,152,455,31807,-6,0,16295,2764,7861,78971,-14,0,14970,54,170,12261,2410,3,52414,"FO2","GT" 22,34,5,2,3,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"HEAVY OIL",19856,"0M",1294,,,95,0,0,24261,803,2139,23900,486,1664,22238,294,1029,21209,2656,6649,16338,890,2102,21318,4629,11673,9645,3246,7549,10200,0,0,10347,0,0,10397,0,0,10320,2429,6628,6595,2434,3,53140,"FO6","ST" 22,34,5,2,6,645,1,"VINELAND (CITY OF)","HOWARD DOWN",0,"BIT COAL",19856,"0M",1294,,,95,7844,4284,7953,7472,4143,6788,3415,1988,9938,0,0,9849,2186,1111,8737,7260,3928,6843,6950,3861,9709,3584,3042,7673,388,209,9251,1581,798,8709,5259,2954,5755,3724,2035,5931,2434,3,53140,"BIT","ST" 22,34,5,4,2,645,10,"VINELAND (CITY OF)","WEST",0,"LIGHT OIL",19856,"0M",1294,,,95,74,199,9430,353,887,8543,45,128,8417,0,0,8417,0,0,8417,315,901,7389,2079,6227,5808,2543,5808,3568,151,900,3206,36,73,3061,6,80,2981,129,339,2818,6776,3,53140,"FO2","GT" 23,42,1,2,1,52,1,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,17240,0,0,-6300,0,0,367420,0,0,596300,0,0,615700,0,0,589500,0,0,604900,0,0,561482,0,0,591490,0,0,614130,0,0,582150,0,0,452460,0,0,6040,1,50827,"UR","ST" 23,42,1,2,1,52,2,"DUQUESNE LGT CO","B VALLEY",0,"NUCLEAR",5487,"0M",1294,,,95,610052,0,0,558397,0,0,377306,0,0,-2502,0,0,358108,0,0,592883,0,0,609130,0,0,296500,0,0,598381,0,0,622939,0,0,557126,0,0,601216,0,0,6040,1,50827,"UR","ST" 23,42,1,2,6,52,5,"DUQUESNE LGT CO","CHESWICK",0,"BIT COAL",5487,"0M",1294,,,95,355392,137291,317861,331090,126419,307477,249582,96410,291500,17430,8507,318494,299247,119774,288017,339756,132948,261655,256633,102182,276100,296500,118467,263069,297357,118900,201464,311698,126308,186349,351416,139379,173501,306740,121467,188856,8226,1,50827,"BIT","ST" 23,42,1,2,9,52,5,"DUQUESNE LGT CO","CHESWICK",0,"NAT GAS",5487,"0M",1294,,,95,1427,13928,0,331,3531,0,1002,9220,0,1172,14418,0,1806,18532,0,1364,13508,0,1549,14158,0,2639,26716,0,2701,26104,0,1881,19412,0,1411,14459,0,1232,12044,0,8226,1,50827,"NG","ST" 23,42,1,2,2,52,13,"DUQUESNE LGT CO","ELRAMA",0,"LIGHT OIL",5487,"0M",1294,,,95,1941,3768,1508,1330,2779,1204,1589,3262,979,1253,2681,1633,1006,2112,1445,803,1634,1382,1389,3062,1487,1368,2719,1591,1136,2443,1644,986,1991,1570,898,1981,1539,1195,2526,782,3098,1,50827,"FO2","ST" 23,42,1,2,6,52,13,"DUQUESNE LGT CO","ELRAMA",0,"BIT COAL",5487,"0M",1294,,,95,240736,111790,172599,220356,101044,171860,197080,90684,191628,207597,94541,190808,200161,89633,171686,159939,73949,169611,197010,95313,150545,226664,107371,139013,188236,90982,151708,97661,45101,189092,223530,101521,181601,237771,106889,154459,3098,1,50827,"BIT","ST" 23,42,1,2,2,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"FO2","ST" 23,42,1,2,6,52,15,"DUQUESNE LGT CO","F PHILLIPS",0,"BIT COAL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3099,1,50827,"BIT","ST" 23,42,1,4,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,,,95,-733,567,24237,-801,692,23545,-848,9,23536,-662,220,23316,-662,0,23316,-579,460,22856,1005,4706,18150,5198,15710,17539,-587,0,19993,-604,0,19993,-808,0,19993,-777,582,20583,3096,1,50827,"FO2","GT" 23,42,1,5,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CC" 23,42,1,6,2,52,27,"DUQUESNE LGT CO","BRUNOT ILND",0,"LIGHT OIL",5487,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3096,1,50827,"FO2","CT" 23,42,1,2,1,100,1,"GPU NUCLEAR CORP","3 MI ISLAND",0,"NUCLEAR",7423,"0M",1294,,,95,611412,0,0,552321,0,0,609022,0,0,586279,0,0,599986,0,0,573186,0,0,584601,0,0,586748,0,0,144888,0,0,338797,0,0,590553,0,0,610193,0,0,8011,3,58850,"UR","ST" 23,42,1,1,,114,15,"METROPOLITAN EDISON CO","YORK HAVEN",0,,12390,"0M",1294,,,95,8890,0,0,9724,0,0,12867,0,0,10005,0,0,12383,0,0,12781,0,0,10950,0,0,1654,0,0,3141,0,0,8336,0,0,12409,0,0,9435,0,0,3117,3,54020,"WAT","HY" 23,42,1,4,2,114,24,"METROPOLITAN EDISON CO","HAMILTON",0,"LIGHT OIL",12390,"0M",1294,,,95,0,44,4643,342,858,4499,38,102,4397,28,68,4330,-2,0,4330,0,0,4330,432,1398,2932,1179,2884,2369,143,356,3085,0,0,3085,47,129,3491,190,511,4606,3109,3,54020,"FO2","GT" 23,42,1,4,2,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"LIGHT OIL",12390,"0M",1294,,,95,44,117,8244,904,2365,9808,139,361,9448,53,150,8583,0,1,8583,0,0,8582,1,3,8579,16,42,8895,2,7,9067,19,50,9017,7,22,8995,281,706,8304,3110,3,54020,"FO2","GT" 23,42,1,4,9,114,25,"METROPOLITAN EDISON CO","HUNTERSTOWN",0,"NAT GAS",12390,"0M",1294,,,95,1133,17680,0,1048,17830,0,7,180,0,729,13320,0,504,8500,0,1339,19320,0,3546,41940,0,6556,84500,0,3434,53290,0,1503,23470,0,1262,20430,0,1780,27282,0,3110,3,54020,"NG","GT" 23,42,1,4,2,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"LIGHT OIL",12390,"0M",1294,,,95,71,188,6429,964,2523,5157,48,126,5031,4,12,5912,0,0,5912,0,1,5911,0,2,5910,0,0,5910,36,175,5913,0,0,6270,0,2,6804,367,1234,6575,3111,3,54020,"FO2","GT" 23,42,1,4,9,114,27,"METROPOLITAN EDISON CO","MOUNTAIN",0,"NATURAL G",12390,"0M",1294,,,95,297,5940,0,476,8360,0,443,6390,0,469,7770,0,208,3710,0,328,5630,0,1743,26610,0,3541,53620,0,894,14500,0,170,2840,0,572,8810,0,1301,18260,0,3111,3,54020,"NG","GT" 23,42,1,4,2,114,31,"METROPOLITAN EDISON CO","ORRTANNA",0,"LIGHT OIL",12390,"0M",1294,,,95,48,116,4401,346,875,4418,88,218,4200,26,66,4135,0,0,4135,0,0,4135,593,1575,2917,1316,3402,1824,159,409,2667,26,65,3674,0,7,5453,229,581,4898,3112,3,54020,"FO2","GT" 23,42,1,2,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,1210,2219,56721,612,1085,51313,671,1307,49944,1587,3013,45429,432,812,42830,190,349,41500,955,1701,39591,434,783,37499,499,951,35882,161,335,60358,2066,4127,57233,222,397,56872,3113,3,54020,"FO2","ST" 23,42,1,2,6,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"BIT COAL",12390,"0M",1294,,,95,132808,53399,109521,182821,71489,66961,66747,28478,108572,54477,22914,130642,57698,23989,150827,144768,58703,134821,179344,71804,85267,178789,70856,51093,83228,35019,46481,11852,5425,93489,58689,25583,120272,183470,71507,85462,3113,3,54020,"BIT","ST" 23,42,1,4,2,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"LIGHT OIL",12390,"0M",1294,,,95,77,142,2671,1704,3020,3973,50,98,3938,790,1501,3938,951,1787,3938,662,1215,3705,281,501,3412,727,1310,3410,2125,4049,3409,1,3,3407,122,245,3406,1839,3288,3291,3113,3,54020,"FO2","GT" 23,42,1,4,9,114,32,"METROPOLITAN EDISON CO","PORTLAND",0,"NAT GAS",12390,"0M",1294,,,95,7,72,0,1596,15661,0,2973,32178,0,2051,22130,0,3978,42351,0,12035,125176,0,33248,336088,0,28922,295790,0,5224,56353,0,750,8818,0,2029,22553,0,597,5955,0,3113,3,54020,"NG","GT" 23,42,1,4,2,114,34,"METROPOLITAN EDISON CO","SHAWNEE",0,"LIGHT OIL",12390,"0M",1294,,,95,73,171,6099,265,687,6483,16,27,6472,20,60,6412,44,112,6301,35,90,6211,135,371,5839,869,2245,3594,68,177,3417,0,0,4845,68,117,5622,0,0,5679,3114,3,54020,"FO2","GT" 23,42,1,2,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,102,198,885,73,138,926,387,772,869,487,933,1186,472,874,1205,168,334,1228,294,559,1026,220,409,617,291,530,803,369,699,998,321,614,560,227,431,880,3115,3,54020,"FO2","ST" 23,42,1,2,6,114,35,"METROPOLITAN EDISON CO","TITUS",0,"BIT COAL",12390,"0M",1294,,,95,73788,31030,99475,51570,21149,100003,47245,20126,101173,38103,15904,107895,66063,26455,103387,95872,40846,84743,118659,48529,57453,118052,46687,37871,105060,41177,26170,83805,34936,50826,103029,42373,57757,128752,52966,41217,3115,3,54020,"BIT","ST" 23,42,1,4,2,114,35,"METROPOLITAN EDISON CO","TITUS",0,"LIGHT OIL",12390,"0M",1294,,,95,58,114,4000,793,1492,4117,0,0,4117,1,2,4115,0,0,4115,4,8,4106,65,124,3983,133,248,3983,0,0,3983,131,248,3734,20,39,3695,0,0,3755,3115,3,54020,"FO2","GT" 23,42,1,4,9,114,35,"METROPOLITAN EDISON CO","TITUS",0,"NAT GAS",12390,"0M",1294,,,95,53,575,0,23,240,0,80,890,0,60,640,0,52,541,0,22,250,0,1587,16770,0,2936,30250,0,319,3230,0,110,1190,0,149,1590,0,5,60,0,3115,3,54020,"NG","GT" 23,42,1,4,2,114,38,"METROPOLITAN EDISON CO","TOLNA",0,"LIGHT OIL",12390,"0M",1294,,,95,68,175,6400,563,1516,6278,90,224,6054,0,1,6053,0,0,6053,0,0,6053,759,2033,4020,2323,6134,2677,164,447,5438,64,349,6339,62,101,6238,114,281,6229,3116,3,54020,"FO2","GT" 23,42,1,2,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,514,827,5361,559,930,4122,454,736,6813,810,1319,5181,459,747,4344,78,121,4153,878,1456,2385,538,892,3017,74,121,5479,0,0,5356,3148,5217,7748,383,627,6559,3118,3,54025,"FO2","ST" 23,42,1,2,6,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"BIT COAL",14711,"0M",1294,,250,95,1122156,419851,722958,925303,359096,640938,1076935,406220,574117,992331,375372,600365,1073542,404411,660222,1082614,409954,586984,1087889,419782,543363,1144736,439047,524854,727433,274855,587632,579871,221827,735222,799742,308937,733868,1107177,421853,608881,3118,3,54025,"BIT","ST" 23,42,1,2,9,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"NAT GAS",14711,"0M",1294,,250,95,1516,13798,0,1026,9654,0,566,5184,0,1707,15719,0,1710,15719,0,264,2319,0,2347,22035,0,3446,32313,0,452,4120,0,258,2408,0,2434,22766,0,571,5283,0,3118,3,54025,"NG","ST" 23,42,1,3,2,133,1,"PENNSYLVANIA ELEC CO","CONMAUGH JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,59,96,0,34,57,0,59,97,0,181,295,0,54,89,0,45,71,0,187,311,0,146,243,0,46,75,0,31,52,0,78,130,0,46,76,0,3118,3,54025,"FO2","IC" 23,42,1,1,,133,5,"PENNSYLVANIA ELEC CO","PINEY",0,,14711,"0M",1294,,250,95,7087,0,0,2980,0,0,8315,0,0,7025,0,0,7405,0,0,7866,0,0,1807,0,0,900,0,0,618,0,0,1506,0,0,5259,0,0,4760,0,0,3124,3,54025,"WAT","HY" 23,42,1,1,,133,13,"PENNSYLVANIA ELEC CO","SENECA JO",0,"C-PUMPSTG",14711,"0M",1294,,250,95,-18038,60718,0,-12762,44459,0,-13759,53339,0,-14476,46086,0,-10189,43886,0,-20535,71955,0,-32632,124316,0,-31819,130160,0,-23462,98242,0,-26851,110227,0,-17180,96885,0,-19235,101307,0,8225,3,54025,"WAT","HY" 23,42,1,4,9,133,17,"PENNSYLVANIA ELEC CO","BLOSSBURG",0,"NAT GAS",14711,"0M",1294,,250,95,-5,0,0,248,3769,0,-4,0,0,0,0,0,0,0,0,0,0,0,502,7485,0,846,9556,0,243,7354,0,-5,0,0,-4,0,0,-4,0,0,3120,3,54025,"NG","GT" 23,42,1,2,2,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"LIGHT OIL",14711,"0M",1294,,250,95,724,1106,10724,239,368,10825,1397,2089,8613,678,1026,8717,2469,3709,5517,3227,5084,7324,1158,1765,5736,474,737,6933,1569,3909,7274,769,1187,8528,7523,12170,9104,4070,6343,6965,3122,3,54025,"FO2","ST" 23,42,1,2,6,133,25,"PENNSYLVANIA ELEC CO","HOMER CTYJO",0,"BIT COAL",14711,"0M",1294,,250,95,1185616,454082,568142,1188794,455176,479305,1210546,457862,391125,1087359,409749,340123,685495,258590,520058,1050104,414471,562956,1147586,445483,356766,1213094,474606,228657,448257,271599,331273,758425,290978,460056,823682,334855,431770,991225,388795,409243,3122,3,54025,"BIT","ST" 23,42,1,2,2,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"LIGHT OIL",14711,"0M",1294,,250,95,662,1281,675,306,595,618,281,535,616,145,261,535,122,305,409,432,940,535,285,552,414,274,531,585,416,789,657,463,878,671,432,834,724,340,657,600,3130,3,54025,"FO2","ST" 23,42,1,2,6,133,45,"PENNSYLVANIA ELEC CO","SEWARD",0,"BIT COAL",14711,"0M",1294,,250,95,101596,46820,104963,110101,50567,86392,110470,50520,76721,54307,23628,78208,29270,17347,91227,52721,27510,83682,115539,53769,77789,119322,55517,67991,102723,46904,73094,107866,49063,74467,105367,48397,85472,116951,53923,61526,3130,3,54025,"BIT","ST" 23,42,1,2,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,1123,1920,8833,2602,4605,6882,3250,5700,8490,1312,2317,8459,872,1542,9545,917,1633,7965,912,1584,7411,1122,2141,8065,1665,3195,7890,1607,2973,8086,2444,4275,8035,3504,6399,6379,3131,3,54025,"FO2","ST" 23,42,1,2,6,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"BIT COAL",14711,"0M",1294,,250,95,269348,109338,102763,256827,107901,105884,326710,136132,96046,350160,145852,80632,328883,137262,84982,336010,141689,79617,350851,144610,79435,304942,138068,76369,248206,112475,83476,317261,138069,65107,346273,142913,61290,323453,141293,48123,3131,3,54025,"BIT","ST" 23,42,1,3,2,133,48,"PENNSYLVANIA ELEC CO","SHAWVILLE",0,"LIGHT OIL",14711,"0M",1294,,250,95,31,54,764,42,75,689,26,47,797,22,39,757,20,37,721,29,52,669,42,74,740,203,388,705,22,43,662,24,46,763,18,32,731,24,44,819,3131,3,54025,"FO2","IC" 23,42,1,2,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,101,246,375,38,94,281,58,147,313,65,158,336,29,123,391,38,93,297,45,104,725,30,76,657,8,20,637,47,126,511,41,109,402,38,97,482,3132,3,54025,"FO2","ST" 23,42,1,2,6,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"BIT COAL",14711,"0M",1294,,250,95,23223,13460,34201,30943,18008,26672,17000,10379,34033,20947,11998,35372,16865,16419,30837,28698,16502,23133,35556,19496,14235,32084,18799,17943,18322,10742,21117,17556,10786,25392,16779,10295,31120,32207,19202,23049,3132,3,54025,"BIT","ST" 23,42,1,4,2,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"LIGHT OIL",14711,"0M",1294,,250,95,2,7,9205,924,2260,9835,124,314,9521,0,1,9519,94,389,9130,154,374,8757,2078,4788,7154,3447,8693,6033,514,1272,7934,0,0,7934,105,276,7658,393,986,9466,3132,3,54025,"FO2","GT" 23,42,1,4,9,133,60,"PENNSYLVANIA ELEC CO","WARREN",0,"NAT GAS",14711,"0M",1294,,250,95,0,10,0,0,10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3132,3,54025,"NG","GT" 23,42,1,3,2,133,75,"PENNSYLVANIA ELEC CO","BENTON",0,"LIGHT OIL",14711,"0M",1294,"R",250,95,-3,0,0,-2,0,0,-3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3119,3,54025,"FO2","IC" 23,42,1,4,2,133,87,"PENNSYLVANIA ELEC CO","WAYNE",0,"LIGHT OIL",14711,"0M",1294,,250,95,-99,18,20263,508,1505,18758,-92,0,18758,-86,0,18758,-70,1,18757,-54,0,18757,1349,3469,15288,3798,9355,11397,490,1027,13199,-52,0,13199,141,1098,14037,154,691,18031,3134,3,54025,"FO2","GT" 23,42,1,2,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,2244,3690,6503,1272,2084,8137,0,0,8969,4533,7554,9207,714,1204,9434,965,1623,9346,2145,3684,9013,3083,5243,9005,923,1553,9324,753,1254,8496,1264,2066,8810,0,0,8724,3136,3,54025,"FO2","ST" 23,42,1,2,6,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"BIT COAL",14711,"0M",1294,,250,95,1102214,423987,311858,582793,225211,453587,563417,222247,605342,809149,315890,648804,1078337,426399,648546,1084349,429852,601163,1034268,420581,454702,938657,378854,582342,1033031,410618,649687,1088547,426659,795799,1058746,408591,711979,1180880,456067,560683,3136,3,54025,"BIT","ST" 23,42,1,3,2,133,90,"PENNSYLVANIA ELEC CO","KEYSTONE JO",0,"LIGHT OIL",14711,"0M",1294,,250,95,349,575,0,349,573,0,34,59,0,204,341,0,100,170,0,35,60,0,207,356,0,870,1480,0,155,262,0,66,110,0,178,291,0,46,86,0,3136,3,54025,"FO2","IC" 23,42,1,2,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,157,295,104,61,118,158,276,532,107,184,352,158,327,657,138,250,493,138,176,344,140,152,297,106,171,327,131,192,372,116,117,218,145,156,288,161,3138,1,52289,"FO2","ST" 23,42,1,2,6,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"BIT COAL",14716,"0M",1294,,,95,167856,72057,99647,154279,67443,98213,130534,58811,77871,125682,55847,86191,67772,31976,90113,98557,45757,95531,118202,53998,90022,140629,64008,74786,116270,52148,73949,88872,40250,91385,140709,61724,82726,150687,61716,63171,3138,1,52289,"BIT","ST" 23,42,1,3,2,135,1,"PENNSYLVANIA POWER CO","NEW CASTLE",0,"LIGHT OIL",14716,"0M",1294,,,95,22,56,1012,6,7,1012,7,22,863,1,3,991,4,9,875,1,7,1095,68,120,980,348,650,769,21,48,895,12,25,914,9,4,978,1,5,846,3138,1,52289,"FO2","IC" 23,42,1,2,2,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"LIGHT OIL",14716,"0M",1294,,,95,1007,1692,29171,723,1155,27861,1506,2563,20232,2103,3540,37005,3377,5991,30895,1363,2382,49447,1396,2364,47084,1578,2757,44327,1128,2011,40209,852,1442,3868,625,1076,37528,5978,10675,26852,6094,1,52289,"FO2","ST" 23,42,1,2,6,135,12,"PENNSYLVANIA POWER CO","MANSFLD JO",0,"BIT COAL",14716,"0M",1294,,,95,1000025,404047,691181,900788,348267,715644,764097,314521,842427,1018498,413184,894368,1102944,466816,876286,1268001,530524,794307,1358940,556273,756092,1346419,567300,719388,816664,349651,802659,889136,365870,922037,897824,373667,888666,766127,330985,1035343,6094,1,52289,"BIT","ST" 23,42,1,2,1,137,1,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,784581,0,0,707744,0,0,597267,0,0,-6623,0,0,455272,0,0,764570,0,0,800626,0,0,807866,0,0,781516,0,0,816456,0,0,256044,0,0,663200,0,0,6103,3,52288,"UR","ST" 23,42,1,2,1,137,2,"PENNSYLVANIA PWR & LGT CO","SUSQUEHANNA",0,"NUCLEAR",14715,"0M",1294,,,95,819260,0,0,744537,0,0,809836,0,0,572523,0,0,800757,0,0,763767,0,0,784244,0,0,790491,0,0,327567,0,0,158303,0,0,801099,0,0,820399,0,0,6103,3,52288,"UR","ST" 23,42,1,1,,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,,14715,"0M",1294,,,95,63368,0,0,44815,0,0,66767,0,0,61784,0,0,47914,0,0,44060,0,0,38745,0,0,15029,0,0,8892,0,0,3395,0,0,54454,0,0,52183,0,0,3145,3,52288,"WAT","HY" 23,42,1,2,2,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,2,293,307,92,564,453,76,299,502,6,12,486,9,103,375,64,316,412,48,185,402,32,69,513,156,340,542,105,324,374,44,96,457,71,158,639,3145,3,52288,"FO2","ST" 23,42,1,2,4,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"ANTH COAL",14715,"0M",1294,,,95,16657,10967,92177,28295,20094,81874,38352,28374,83310,37995,26901,93553,28887,20504,97262,21957,15483,110941,27038,19535,107719,38254,26848,105902,36692,25935,106839,27783,20333,110563,38411,27438,93901,40473,29360,79473,3145,3,52288,"ANT","ST" 23,42,1,2,5,137,8,"PENNSYLVANIA PWR & LGT CO","HOLTWOOD",0,"COKE",14715,"0M",1294,,,95,5600,3687,7954,10386,7347,6463,12376,9136,6569,13390,9479,6750,10455,7419,8863,7778,5469,5689,9256,6676,3115,13170,9235,2168,11989,8438,3400,7495,5464,2289,8623,7102,1550,11704,5956,0,3145,3,52288,"PC","ST" 23,42,1,1,,137,14,"PENNSYLVANIA PWR & LGT CO","WALLENPAUPK",0,,14715,"0M",1294,,,95,12278,0,0,38773,0,0,4171,0,0,-24207,0,0,735,0,0,560,0,0,5204,0,0,2717,0,0,244,0,0,24,0,0,11908,0,0,11545,0,0,3153,3,52288,"WAT","HY" 23,42,1,4,2,137,15,"PENNSYLVANIA PWR & LGT CO","ALLENTOWN",0,"LIGHT OIL",14715,"0M",1294,,,95,64,195,4597,200,523,4444,0,0,4446,40,90,4355,0,0,4356,122,333,4024,199,561,4006,2797,7611,4017,44,168,4389,12,34,4355,0,0,4351,134,369,4531,3139,3,52288,"FO2","GT" 23,42,1,2,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,5215,9667,5220,2811,6985,2945,2623,7457,4341,1006,3274,4688,1673,5855,4747,623,3511,4635,1145,3027,3800,192,491,4638,1850,4455,1752,956,1998,4421,1497,3195,3955,6348,15226,4765,3140,3,52288,"FO2","ST" 23,42,1,2,6,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"BIT COAL",14715,"0M",1294,,,95,726861,278333,624176,797416,299207,615563,638681,243796,659948,618218,235042,726562,483331,182515,843219,636052,246917,774595,729927,280541,565746,770922,293672,454478,661164,258193,418744,632910,240757,448356,500569,201629,451028,542332,211139,476821,3140,3,52288,"BIT","ST" 23,42,1,3,2,137,20,"PENNSYLVANIA PWR & LGT CO","BRUNNER ISL",0,"LIGHT OIL",14715,"0M",1294,,,95,43,75,0,27,35,0,29,50,0,11,33,0,29,50,0,27,47,0,38,66,0,41,123,0,30,52,0,27,47,0,21,37,0,28,47,0,3140,3,52288,"FO2","IC" 23,42,1,4,2,137,26,"PENNSYLVANIA PWR & LGT CO","FISHBACH",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2203,37,115,2088,0,0,2076,11,33,2043,0,0,2039,16,52,1987,102,265,2080,1274,3289,1978,63,218,2105,0,0,2095,0,0,2105,13,33,2071,3142,3,52288,"FO2","GT" 23,42,1,4,2,137,28,"PENNSYLVANIA PWR & LGT CO","HARWOOD",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2216,83,240,2157,0,0,2152,44,152,2171,0,0,2171,13,61,2272,289,883,2098,1064,3093,1958,134,415,2230,60,205,2217,0,0,2217,0,0,2208,3144,3,52288,"FO2","GT" 23,42,1,4,2,137,29,"PENNSYLVANIA PWR & LGT CO","HARRISBURG",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4184,328,916,4530,0,0,4528,34,103,4425,7,31,4394,111,326,4426,221,659,4486,3286,9229,3610,329,960,4424,0,0,4424,8,0,4410,101,283,4486,3143,3,52288,"FO2","GT" 23,42,1,2,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,1397,3966,1367,1654,3961,905,487,1818,1153,845,3118,1197,886,4111,1282,1222,4052,1400,1679,4825,803,2026,5349,775,303,753,1408,633,2680,1365,1511,3919,1485,2510,5735,1078,3148,3,52288,"FO2","ST" 23,42,1,2,3,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"HEAVY OIL",14715,"0M",1294,,,95,3313,20105,1792976,137098,246817,1537637,4594,16136,1518993,7837,26024,1486208,0,0,1482804,46574,94076,1387076,225007,410380,970823,241933,469387,1094662,32635,57250,1132457,11373,23775,1505839,59422,125764,1590347,265457,506756,1125474,3148,3,52288,"FO6","ST" 23,42,1,2,6,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"BIT COAL",14715,"0M",1294,,,95,77736,33553,94127,107453,45145,78631,33245,15373,94972,56476,25532,79013,56350,25210,63411,56558,24356,57931,77903,34985,45157,72539,34251,53601,19134,10553,62015,28384,12765,56271,68305,31511,46146,107135,53235,34362,3148,3,52288,"BIT","ST" 23,42,1,3,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,19,33,0,53,92,0,70,124,0,63,90,0,15,57,0,18,30,0,7,12,0,39,74,0,10,20,0,7,13,0,4,7,0,20,9,0,3148,3,52288,"FO2","IC" 23,42,1,4,2,137,32,"PENNSYLVANIA PWR & LGT CO","MARTINS CRK",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,5154,253,713,4491,0,0,4487,23,66,4408,0,0,4408,97,271,4056,301,924,3141,2928,8451,3433,332,1023,4044,0,0,4797,34,92,6619,47,134,6156,3148,3,52288,"FO2","GT" 23,42,1,4,2,137,34,"PENNSYLVANIA PWR & LGT CO","JENKINS",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,2287,49,143,2325,0,0,2326,12,59,2267,0,0,2265,0,0,2261,285,831,1773,1377,3617,2093,62,169,2280,17,50,2230,0,0,2177,0,0,2170,3146,3,52288,"FO2","GT" 23,42,1,4,2,137,36,"PENNSYLVANIA PWR & LGT CO","LOCK HAVEN",0,"LIGHT OIL",14715,"0M",1294,,,95,2,17,2072,0,0,2072,0,0,2071,0,0,2072,0,0,2231,19,50,2181,47,187,2160,309,776,1940,29,62,2234,0,0,2233,0,0,2229,0,0,2223,3147,3,52288,"FO2","GT" 23,42,1,2,2,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"LIGHT OIL",14715,"0M",1294,,,95,5284,3061,15269,1120,9829,7128,603,1538,7267,606,3951,8198,13,2000,6913,5227,30521,8337,1368,7253,4923,878,2071,5843,1573,7626,7055,7633,17598,7723,1969,8730,7062,7059,10859,7500,3149,3,52288,"FO2","ST" 23,42,1,2,6,137,38,"PENNSYLVANIA PWR & LGT CO","MONTOUR",0,"BIT COAL",14715,"0M",1294,,,95,847074,335924,519372,875346,340631,445625,780698,304571,380887,372505,141113,452083,435583,162563,503087,625764,248102,531404,836431,328954,481373,911902,352540,306054,690630,264412,407406,817637,314073,299288,838531,328858,291789,880367,352324,220532,3149,3,52288,"BIT","ST" 23,42,1,2,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,120,1018,953,89,415,868,270,1417,1025,212,1169,913,362,1349,784,121,240,1084,94,305,938,95,427,967,167,1398,1038,316,896,961,315,1038,893,516,1056,864,3152,3,52288,"FO2","ST" 23,42,1,2,4,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"ANTH COAL",14715,"0M",1294,,,95,59791,48178,418732,52800,43904,407593,42379,34783,387855,56229,44534,380823,54876,44151,401119,43071,35250,457310,34960,27900,513983,38518,30044,586494,54062,41683,635399,58158,44699,652259,58144,45249,613424,56311,42856,591156,3152,3,52288,"ANT","ST" 23,42,1,2,5,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"COKE",14715,"0M",1294,,,95,32080,14266,18014,37875,17579,8930,34489,14591,2989,39190,17032,15602,35966,15206,24516,28052,11818,24368,21736,9175,21882,27009,11174,25559,37827,15339,20820,35544,14870,22116,40820,17176,11347,43815,18422,22426,3152,3,52288,"PC","ST" 23,42,1,2,6,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"BIT COAL",14715,"0M",1294,,,95,38602,20937,145827,50229,27422,136935,127350,62833,126363,110076,53702,131074,110470,54187,128876,117078,56381,126273,137002,67568,99984,129986,64144,93470,121920,58717,95585,117436,55949,93435,118781,56941,78649,145641,68789,57848,3152,3,52288,"BIT","ST" 23,42,1,3,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,29,54,0,17,32,0,22,41,0,12,22,0,18,33,0,15,28,0,10,19,0,41,76,0,14,26,0,21,39,0,16,30,0,15,28,0,3152,3,52288,"FO2","IC" 23,42,1,4,2,137,40,"PENNSYLVANIA PWR & LGT CO","SUNBURY",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,4196,0,0,4357,0,0,4367,0,0,4367,0,0,4367,12,34,4284,56,161,4122,1269,3772,3896,136,375,4425,0,0,4425,0,0,4304,59,188,4116,3152,3,52288,"FO2","GT" 23,42,1,4,2,137,41,"PENNSYLVANIA PWR & LGT CO","WEST SHORE",0,"LIGHT OIL",14715,"0M",1294,,,95,0,0,1981,146,397,2124,0,0,2125,23,63,2063,0,0,2063,27,85,2157,93,275,2060,1581,3944,1664,97,247,1948,0,0,1948,0,0,1943,0,0,1936,3154,3,52288,"FO2","GT" 23,42,1,4,2,137,42,"PENNSYLVANIA PWR & LGT CO","WILLIAMPORT",0,"LIGHT OIL",14715,"0M",1294,,,95,11,25,2095,108,303,2299,33,89,2120,24,80,2130,0,0,1062,31,83,2085,166,469,2282,1685,4637,1796,229,615,2348,0,1,2347,0,0,2347,47,129,2218,3155,3,52288,"FO2","GT" 23,42,1,2,4,137,44,"PENNSYLVANIA PWR & LGT CO","COAL STORAG",0,"ANTH COAL",14715,"0M",1294,,,95,0,0,4326102,0,0,4287048,0,0,4250306,0,0,4192077,0,0,4116068,0,0,4024607,0,0,3949307,0,0,3858966,0,0,3770991,0,0,3712178,0,0,3655315,0,0,3627389,8805,3,52288,"ANT","ST" 23,42,1,2,1,144,1,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,758738,0,0,649503,0,0,788638,0,0,741991,0,0,644273,0,0,749037,0,0,735331,0,0,472319,0,0,293869,0,0,781359,0,0,758883,0,0,774008,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","LIMERICK",0,"NUCLEAR",14940,"0M",1294,,260,95,305997,0,0,145495,0,0,841460,0,0,792169,0,0,828631,0,0,759339,0,0,812705,0,0,648469,0,0,793584,0,0,839715,0,0,794719,0,0,838665,0,0,6105,3,52304,"UR","ST" 23,42,1,2,1,144,2,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,835865,0,0,758077,0,0,833805,0,0,783656,0,0,813085,0,0,767048,0,0,814131,0,0,781700,0,0,787889,0,0,812587,0,0,755502,0,0,620649,0,0,3166,3,52304,"UR","ST" 23,42,1,1,,144,3,"PECO ENERGY CO","MUDDY RUN",0,"P-PUMPSTG",14940,"0M",1294,,260,95,-58588,197635,0,-48050,161907,0,-57936,201052,0,-62063,184331,0,-54454,193555,0,-64502,219733,0,-77254,238571,0,-71435,248510,0,-71632,228867,0,-151911,225998,0,-140643,200522,0,-140747,207063,0,3164,3,52304,"WAT","HY" 23,42,1,2,1,144,3,"PECO ENERGY CO","PEACHBOTTOM",0,"NUCLEAR",14940,"0M",1294,,260,95,777483,0,0,711496,0,0,640321,0,0,740258,0,0,699846,0,0,588449,0,0,497410,0,0,423621,0,0,284823,0,0,314451,0,0,800042,0,0,695148,0,0,3166,3,52304,"UR","ST" 23,42,1,4,2,144,10,"PECO ENERGY CO","CHESTER",0,"LIGHT OIL",14940,"0M",1294,,260,95,40,143,6303,283,871,5973,4,13,5960,0,0,5960,0,0,5960,134,251,5709,1965,3097,5088,2547,9094,4622,135,622,5417,6,46,5371,9,117,5615,0,0,5615,3157,3,52304,"FO2","GT" 23,42,1,2,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,552,1065,739,136,247,742,559,972,675,596,1108,639,800,1555,694,542,1023,717,107,204,786,442,846,656,532,1027,700,390,751,648,1349,2625,514,669,1263,679,3159,3,52304,"FO2","ST" 23,42,1,2,3,144,18,"PECO ENERGY CO","CROMBY",0,"HEAVY OIL",14940,"0M",1294,,260,95,2359,4204,37192,40300,66566,38230,6132,9753,28477,2439,4170,38531,1755,3147,35384,2326,3992,31392,2427,4219,27173,2684,4698,32767,5362,9562,23250,2962,5168,40075,2887,5164,35070,3164,5422,36172,3159,3,52304,"FO6","ST" 23,42,1,2,6,144,18,"PECO ENERGY CO","CROMBY",0,"BIT COAL",14940,"0M",1294,,260,95,74489,31603,37801,84553,33984,30569,59404,28393,32942,68130,28446,39783,56042,24391,55616,62095,25757,51736,68743,28828,37015,81385,34554,29542,73288,31653,35675,82081,34906,31898,75734,32689,34891,88164,36436,31030,3159,3,52304,"BIT","ST" 23,42,1,2,9,144,18,"PECO ENERGY CO","CROMBY",0,"NAT GAS",14940,"0M",1294,,260,95,71643,785884,0,61834,634083,0,79727,785913,0,51172,541950,0,54177,597370,0,81502,865110,0,111181,1192120,0,110008,1192120,0,68568,752990,0,0,0,0,0,0,0,69,740,0,3159,3,52304,"NG","ST" 23,42,1,3,2,144,18,"PECO ENERGY CO","CROMBY",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,425,2,5,382,1,2,380,1,3,377,0,0,377,0,1,376,6,13,363,0,0,363,2,5,358,0,0,358,3,6,352,0,0,352,3159,3,52304,"FO2","IC" 23,42,1,2,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,83,167,285,230,443,159,379,1037,262,0,1258,270,63,112,285,407,948,313,503,939,296,248,512,251,125,311,303,0,535,306,0,1886,292,1548,3097,274,3160,3,52304,"FO2","ST" 23,42,1,2,3,144,20,"PECO ENERGY CO","DELAWARE",0,"HEAVY OIL",14940,"0M",1294,,260,95,7566,13842,54536,40968,72617,57755,6149,15501,61363,-988,853,60510,1023,1674,58836,10372,22370,60784,73226,125872,59240,61586,116298,48551,3817,8670,64382,-880,0,64382,-848,109,64273,42071,77005,46160,3160,3,52304,"FO6","ST" 23,42,1,3,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,4,8,0,6,12,0,0,0,0,8,4,0,0,0,0,0,0,0,0,0,0,5,12,0,0,0,0,0,0,0,3,6,0,0,0,0,3160,3,52304,"FO2","IC" 23,42,1,4,2,144,20,"PECO ENERGY CO","DELAWARE",0,"LIGHT OIL",14940,"0M",1294,,260,95,14,29,4606,471,908,4510,16,46,5120,42,103,4834,0,0,5221,137,321,4998,1693,3157,5919,4022,8277,4823,175,434,5097,11,64,4495,0,0,4139,3,6,3960,3160,3,52304,"FO2","GT" 23,42,1,2,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,2860,5785,8309,7265,14150,6730,691,1392,5338,656,1353,6842,1090,2439,5446,1497,2992,3502,265,545,7647,1122,2234,5367,200,403,4943,1397,2645,5855,940,1740,11279,4634,8834,12016,3161,3,52304,"FO2","ST" 23,42,1,2,3,144,23,"PECO ENERGY CO","EDDYSTONE",0,"HEAVY OIL",14940,"0M",1294,,260,95,28189,52308,219884,149450,269038,232369,3289,6168,226201,212,405,225796,779,1602,224194,12605,22920,225716,34139,63954,190796,58828,107390,228949,6004,24353,228406,13370,23208,205198,25814,43623,161575,159697,281810,186014,3161,3,52304,"FO6","ST" 23,42,1,2,6,144,23,"PECO ENERGY CO","EDDYSTONE",0,"BIT COAL",14940,"0M",1294,,260,95,230611,102377,114701,145600,63304,115351,142036,63132,95986,141196,64796,114142,75987,37394,136129,72749,31969,156190,38241,17251,161746,115645,50809,196139,101095,70609,237844,255413,106924,214128,279475,114586,204428,343647,144382,154263,3161,3,52304,"BIT","ST" 23,42,1,2,9,144,23,"PECO ENERGY CO","EDDYSTONE",0,"NAT GAS",14940,"0M",1294,,260,95,44577,509816,0,75572,836629,0,64058,732536,0,42770,502085,0,37425,473140,0,199205,2238826,0,248894,2876189,0,290649,3273871,0,116178,2028607,0,136486,1466691,0,26917,282787,0,17773,193338,0,3161,3,52304,"NG","ST" 23,42,1,4,2,144,23,"PECO ENERGY CO","EDDYSTONE",0,"LIGHT OIL",14940,"0M",1294,,260,95,88,179,7824,301,588,7236,23,47,7189,0,0,7189,59,133,7056,38,77,6979,2082,4276,7703,5802,11553,9393,213,2838,8159,40,77,8082,74,138,7944,162,310,8951,3161,3,52304,"FO2","GT" 23,42,1,2,3,144,25,"PECO ENERGY CO","OIL STORAGE",0,"HEAVY OIL",14940,"0M",1294,,260,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8806,3,52304,"FO6","ST" 23,42,1,4,2,144,26,"PECO ENERGY CO","FALLS",0,"LIGHT OIL",14940,"0M",1294,,260,95,6,16,10772,174,460,10312,0,0,10312,0,0,10312,0,0,10312,323,626,9686,1716,2316,9307,2167,6952,8374,53,261,8289,8,112,8177,0,0,8503,0,0,8503,3162,3,52304,"FO2","GT" 23,42,1,4,2,144,27,"PECO ENERGY CO","MOSER",0,"LIGHT OIL",14940,"0M",1294,,260,95,62,154,10920,416,1304,10329,2,7,10322,0,0,10322,0,0,10322,174,159,10163,2401,3681,8582,3033,9617,8076,165,385,7691,0,0,7691,49,1948,8854,0,0,8854,3163,3,52304,"FO2","GT" 23,42,1,4,2,144,30,"PECO ENERGY CO","RICHMOND",0,"LIGHT OIL",14940,"0M",1294,,260,95,73,705,25225,1538,2518,24154,176,209,23945,0,0,23945,0,0,23945,546,1092,22853,7883,15050,19654,8358,22812,19604,1489,4282,16208,573,1391,19605,1780,4530,22192,2646,5558,20232,3168,3,52304,"FO2","GT" 23,42,1,2,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,10,31,177,29,55,282,0,13,330,0,0,58,5,32,173,21,41,260,32,63,204,31,64,224,0,0,285,0,0,204,0,13,117,174,366,292,3169,3,52304,"FO2","ST" 23,42,1,2,3,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"HEAVY OIL",14940,"0M",1294,,260,95,2569,7049,0,27433,47982,0,-514,221,0,-442,0,0,787,4441,0,7540,12988,0,45149,79435,0,40737,74952,0,2171,4408,0,-450,0,0,-487,0,0,33696,64594,0,3169,3,52304,"FO6","ST" 23,42,1,3,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,0,11,21,0,1,6,0,0,0,0,0,0,0,0,0,0,0,0,0,4,9,0,2,8,0,0,0,0,0,0,0,0,0,0,3169,3,52304,"FO2","IC" 23,42,1,4,2,144,35,"PECO ENERGY CO","SCHUYLKILL",0,"LIGHT OIL",14940,"0M",1294,,260,95,0,0,4077,183,347,4272,0,0,4454,0,0,4454,16,102,4352,25,48,4304,1060,2033,4025,3086,6214,3655,57,113,3542,0,0,3542,0,0,4435,0,0,4435,3169,3,52304,"FO2","GT" 23,42,1,4,2,144,39,"PECO ENERGY CO","SOUTHWARK",0,"LIGHT OIL",14940,"0M",1294,,260,95,7,10,6164,245,786,6101,28,123,5978,0,0,5978,0,0,5978,21,33,5945,2299,3702,5765,2572,9427,4876,120,646,4593,9,18,4592,0,0,5461,12,32,5429,3170,3,52304,"FO2","GT" 23,42,1,4,2,144,62,"PECO ENERGY CO","CROYDON",0,"LIGHT OIL",14940,"0M",1294,,260,95,908,1378,96105,5368,13129,82976,1206,2774,80202,185,1674,78528,-30,449,78079,2904,7166,70913,28748,58359,102954,34047,90855,75978,5816,17011,58967,4006,14190,124677,9344,33758,90919,20108,59103,81811,8012,3,52304,"FO2","GT" 23,42,1,1,,166,1,"SAFE HARBOR WATERPOWER CO","SAFE HARBOR",0,,16537,"0M",1294,,,95,143384,0,0,59393,0,0,126476,0,0,89759,0,0,63828,0,0,55553,0,0,43077,0,0,14256,0,0,7655,0,0,60191,0,0,112079,0,0,82918,0,0,3175,3,52553,"WAT","HY" 23,42,1,2,2,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"LIGHT OIL",19390,"0M",1294,,,95,513,820,149,94,161,167,202,328,185,435,618,244,11,18,226,1,2,224,140,230,170,0,0,170,514,892,135,73,127,175,21,35,140,24,41,99,3176,3,52988,"FO2","ST" 23,42,1,2,4,182,5,"UNITED GAS IMP CO (THE)","HUNLOCK CRK",0,"ANTH COAL",19390,"0M",1294,,,95,22922,15408,12384,27213,18489,14764,29884,19399,26578,8930,5383,44202,31976,21379,41110,31087,20919,40663,28632,19193,37106,32217,21657,39145,28079,19274,38194,32138,21308,38517,32139,20464,33331,30924,20327,26649,3176,3,52988,"ANT","ST" 23,42,1,2,2,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"LIGHT OIL",20387,"0M",1294,,71,95,1137,2044,435,250,438,461,208,349,465,208,340,516,357,602,494,249,434,577,87,154,405,77,134,448,175,297,469,719,1212,478,755,1324,33,100,171,531,3178,1,54030,"FO2","ST" 23,42,1,2,6,187,1,"WEST PENN POWER CO","ARMSTRONG",0,"BIT COAL",20387,"0M",1294,,71,95,116602,48997,133134,169087,69152,118235,94695,37329,143043,106738,41224,154005,90547,35992,160453,93589,37605,145126,109058,44341,133889,108429,43934,141795,50453,20094,155423,132983,52637,143306,163282,66595,118118,227115,90923,97838,3178,1,54030,"BIT","ST" 23,42,1,2,2,187,5,"WEST PENN POWER CO","HATFIELD",0,"LIGHT OIL",20387,"0M",1294,,71,95,431,715,4466,429,677,4860,16,26,4860,109,176,5175,295,498,4642,232,393,4202,112,193,4003,116,200,3858,440,729,3846,625,1001,3653,200,324,4266,345,551,4530,3179,1,54030,"FO2","ST" 23,42,1,2,6,187,5,"WEST PENN POWER CO","HATFIELD",0,"BIT COAL",20387,"0M",1294,,71,95,924993,349235,573422,796344,286253,580468,654622,239981,562743,652050,240234,569141,751057,287421,561772,807472,310567,503117,873489,338429,425399,814220,315517,429242,611272,228129,438816,665375,244419,472140,717809,264457,471668,976850,352523,470255,3179,1,54030,"BIT","ST" 23,42,1,2,2,187,15,"WEST PENN POWER CO","MITCHELL",0,"LIGHT OIL",20387,"0M",1294,,71,95,1099,1660,62781,14264,26130,36652,9573,16358,20294,0,0,95,0,0,20294,0,0,20294,2975,5533,14761,9534,17307,37248,0,0,37248,370,623,36693,0,0,102,0,0,36712,3181,1,54030,"FO2","ST" 23,42,1,2,6,187,15,"WEST PENN POWER CO","MITCHELL",0,"BIT COAL",20387,"0M",1294,,71,95,133543,54702,81824,96423,41467,82859,153555,62524,77796,125039,49503,90740,49588,20363,93045,53622,23986,82955,92131,39751,72392,131370,55646,87997,44218,20045,99480,112797,45127,97501,86006,35430,95483,91125,37261,96203,3181,1,54030,"BIT","ST" 23,42,1,2,9,187,15,"WEST PENN POWER CO","MITCHELL",0,"NAT GAS",20387,"0M",1294,,71,95,997,8782,0,512,5468,0,649,6574,0,362,3518,0,98,1012,0,493,5639,0,384,4175,0,352,3732,0,608,6884,0,229,2287,0,632,6538,0,411,4215,0,3181,1,54030,"NG","ST" 23,42,1,2,3,187,25,"WEST PENN POWER CO","SPRINGDALE",0,"HEAVY OIL",20387,"0M",1294,"S",71,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3182,1,54030,"FO6","ST" 23,42,8,1,,800,5,"ALLEGHENY ELECTRIC COOP","RAYSTOWN",0,,332,"0A",1294,,,95,10581,0,0,4872,0,0,10420,0,0,7145,0,0,9214,0,0,7292,0,0,7823,0,0,1871,0,0,1862,0,0,6232,0,0,13092,0,0,11263,0,0,7128,1,58500,"WAT","HY" 31,39,1,2,2,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"LIGHT OIL",3006,"0M",1294,,365,95,1506,2512,16004,1987,3269,21891,793,1326,20561,810,1358,18998,750,1207,17783,5623,9537,7493,587,994,18460,1462,2531,15746,996,1682,14054,1293,2176,11850,586,984,10858,3751,6207,17605,2828,1,50359,"FO2","ST" 31,39,1,2,6,30,5,"CARDINAL OPERATING CO","CARDINAL",0,"BIT COAL",3006,"0M",1294,,365,95,964403,385031,651565,952635,371878,631820,970861,386058,589923,907026,357640,591393,523077,201759,670651,745173,300966,631446,1013299,410501,467099,1010121,415926,370224,984185,397240,345127,996339,400914,397108,987234,392815,487317,940659,377797,434608,2828,1,50359,"BIT","ST" 31,39,1,4,2,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"LIGHT OIL",3542,"0M",1294,,210,95,20,1175,6144,23,332,5811,9,35,5776,18,399,5377,0,0,5377,10,47,5330,233,987,4343,377,1342,3001,3,41,5373,8,49,5325,18,65,5260,1,7,5253,2831,1,50556,"FO2","GT" 31,39,1,4,9,43,1,"CINCINNATI GAS ELEC CO","DICKS CREEK",0,"NAT GAS",3542,"0M",1294,,210,95,74,4943,0,-217,0,0,17,13,0,-138,563,0,-109,0,0,227,871,0,3843,78877,0,4803,89226,0,-34,0,0,-101,1423,0,240,6693,0,672,17724,0,2831,1,50556,"NG","GT" 31,39,1,2,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,1063,1868,0,520,909,0,1246,2193,0,616,1040,0,909,1575,0,1694,2920,0,83,148,0,648,1175,0,673,1200,0,1185,2032,0,1335,2313,0,1124,2076,0,2830,1,50556,"FO2","ST" 31,39,1,2,6,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"BIT COAL",3542,"0M",1294,,210,95,376000,158991,137317,393834,167236,139827,297378,127194,171002,437582,181317,177440,274678,116442,192793,481664,200911,197721,528583,228082,195580,602321,260506,195850,213081,91113,206835,487454,202145,200676,427365,176777,196004,493746,218176,193234,2830,1,50556,"BIT","ST" 31,39,1,4,2,43,2,"CINCINNATI GAS ELEC CO","WC BECKJORD",0,"LIGHT OIL",3542,"0M",1294,,210,95,904,1589,30711,253,443,29179,30,54,26769,24,41,25499,30,53,23746,206,356,41971,10845,19305,22349,18056,32731,31385,523,933,29084,23,40,26796,38,67,23956,1551,2863,41821,2830,1,50556,"FO2","GT" 31,39,1,2,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,1008,1795,0,465,820,0,830,1457,0,436,757,0,862,1538,0,1665,3001,0,1804,3164,0,3368,6051,0,1292,2324,0,260,450,0,548,956,0,3202,5528,0,2832,1,50556,"FO2","ST" 31,39,1,2,6,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"BIT COAL",3542,"0M",1294,,210,95,637745,262491,294369,502865,207419,302760,559242,231277,318869,305741,124954,357678,414341,174583,369622,502174,211728,359534,599203,248510,325680,672906,285623,264937,557339,235511,249465,607306,250021,246891,553335,226505,248836,594845,241403,260437,2832,1,50556,"BIT","ST" 31,39,1,4,2,43,5,"CINCINNATI GAS ELEC CO","MIAMI FORT",0,"LIGHT OIL",3542,"0M",1294,,210,95,184,328,29994,104,184,28839,51,90,27190,104,182,26060,90,161,23971,260,470,20424,2604,4567,34307,5930,10654,29284,0,0,26912,56,98,26221,132,231,25022,4,7,19483,2832,1,50556,"FO2","GT" 31,39,1,2,2,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"LIGHT OIL",3542,"0M",1294,,210,95,387,627,43117,405,662,42455,266,437,42018,446,721,41297,544,908,40390,5437,9067,40610,3869,6259,34351,2406,3947,30404,654,1074,29331,0,0,28641,10375,17945,31644,228,326,31318,6019,1,50556,"FO2","ST" 31,39,1,2,6,43,10,"CINCINNATI GAS ELEC CO","W H ZIMMER",0,"BIT COAL",3542,"0M",1294,,210,95,945287,364436,470303,860575,334587,468422,931671,360276,429932,905494,345488,449089,895923,353208,433131,685071,269191,462164,813824,313887,471999,817013,315668,465279,858265,326707,439814,-6015,0,440306,643755,258809,446427,954218,369625,445092,6019,1,50556,"BIT","ST" 31,39,1,4,2,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"PROPANE",3542,"0M",1294,,210,95,3264,17257,47281,251,6836,40445,206,1875,39359,655,3378,35981,0,2040,33941,765,1976,31965,599,1450,30515,128,307,30208,2,8,30200,22,122,30078,2291,8079,47000,9027,29590,47410,7158,1,50556,"FO2","GT" 31,39,1,4,9,43,15,"CINCINNATI GAS ELEC CO","WOODSDALE",0,"NAT GAS",3542,"0M",1294,,210,95,150,4500,0,6,900,0,329,16900,0,549,16100,0,-24,5400,0,8444,123700,0,78223,1073891,0,127374,1732000,0,11241,209600,0,798,24900,0,8079,161217,0,5288,98400,0,7158,1,50556,"NG","GT" 31,39,1,2,1,47,1,"CLEVELAND ELEC ILLUM CO","PERRY",0,"NUCLEAR",3755,"0M",1294,,,95,876776,0,0,768903,0,0,819283,0,0,488364,0,0,856246,0,0,825532,0,0,844484,0,0,836109,0,0,563058,0,0,867378,0,0,562127,0,0,802040,0,0,6020,1,50587,"UR","ST" 31,39,1,2,2,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"LIGHT OIL",3755,"0M",1294,,,95,42,104,847,0,0,847,118,290,165,18,45,836,36,88,1105,993,2435,781,1126,2764,920,735,1805,1069,508,1246,1250,554,1359,961,372,912,1126,318,78,1063,2835,1,50587,"FO2","ST" 31,39,1,2,6,47,5,"CLEVELAND ELEC ILLUM CO","ASHTABULA",0,"BIT COAL",3755,"0M",1294,,,95,52796,31491,71024,49964,29829,71024,55761,34212,70589,75864,42918,70589,57256,34078,70589,75393,41494,70589,152351,73482,69602,185535,87655,62911,92554,48842,63273,134786,62671,50375,152108,70363,39853,183631,84228,39391,2835,1,50587,"BIT","ST" 31,39,1,2,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,545,1336,12357,217,533,11823,334,820,11003,71,175,13126,623,1529,11274,103,252,10337,204,501,9328,209,514,12564,219,537,11551,455,1117,10529,439,1076,9330,211,518,8657,2836,1,50587,"FO2","ST" 31,39,1,2,6,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"BIT COAL",3755,"0M",1294,,,95,418792,166008,147432,412531,162705,122460,424163,169344,131476,363532,138488,180398,251231,98651,203325,203947,82859,218224,353614,137703,162497,424161,173437,95914,388690,173071,75855,373672,144052,89758,227150,92153,101135,197850,84233,81208,2836,1,50587,"BIT","ST" 31,39,1,4,2,47,10,"CLEVELAND ELEC ILLUM CO","AVON",0,"LIGHT OIL",3755,"0M",1294,,,95,-48,0,1833,46,308,1525,-44,0,1525,16,93,1432,-27,0,1432,51,171,1260,97,283,1453,726,2175,826,-20,0,1302,-23,0,1326,-40,0,1326,-55,0,1861,2836,1,50587,"FO2","GT" 31,39,1,2,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,1497,3674,9572,911,2234,8964,764,1874,9624,751,1842,8674,1166,2861,7850,1418,3479,8310,853,2092,5787,966,2369,13472,911,2234,13178,758,1860,11437,682,1673,13358,1121,2750,10965,2837,1,50587,"FO2","ST" 31,39,1,2,6,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"BIT COAL",3755,"0M",1294,,,95,563066,214828,125324,531721,201833,127529,552063,214200,127558,603752,229103,113946,476696,183152,148312,528305,201681,134280,545020,211638,133115,580108,227637,126504,418750,164875,155538,237147,95621,161064,619540,234785,116588,554005,216330,121544,2837,1,50587,"BIT","ST" 31,39,1,4,2,47,15,"CLEVELAND ELEC ILLUM CO","EASTLAKE",0,"LIGHT OIL",3755,"0M",1294,,,95,-26,411,1392,-34,64,1328,-7,96,1232,-39,0,1232,-17,48,1184,80,272,913,110,487,2330,416,1227,1642,-21,0,1642,-29,0,1642,-48,0,1642,-62,0,1642,2837,1,50587,"FO2","GT" 31,39,1,2,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,1807,4433,0,1095,2687,0,655,1878,10867,822,2016,9030,822,2016,9030,822,2016,9030,822,2016,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,0,0,9030,2838,1,50587,"FO2","ST" 31,39,1,2,3,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"HEAVY OIL",3755,"0M",1294,,,95,-1345,0,0,-1121,0,0,-1101,0,0,-967,0,0,-1013,0,0,-1144,0,0,-1177,0,0,-1109,0,0,-1101,0,0,-886,0,0,-1113,0,0,-1190,0,0,2838,1,50587,"FO6","ST" 31,39,1,2,6,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"BIT COAL",3755,"0M",1294,,,95,-2869,0,0,-2051,0,0,-8655,0,0,-1765,0,0,-1630,0,0,-1592,0,0,-1511,0,0,-680,0,0,-664,0,0,-785,0,0,-839,0,0,-939,0,0,2838,1,50587,"BIT","ST" 31,39,1,3,2,47,20,"CLEVELAND ELEC ILLUM CO","LAKE SHORE",0,"LIGHT OIL",3755,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2838,1,50587,"FO2","IC" 31,39,1,2,2,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"LIGHT OIL",4062,"0M",1294,,369,95,781,1346,11167,848,1487,10088,1527,2569,9973,647,1108,10480,1150,1863,10818,808,1412,11137,1992,3195,10638,911,1520,12206,2980,5206,7444,848,1360,7419,1411,2362,6092,1247,2194,6515,2840,1,50633,"FO2","ST" 31,39,1,2,6,50,5,"COLUMBUS SOUTHERN PWR CO","CONESVILLE",0,"BIT COAL",4062,"0M",1294,,369,95,839897,361439,480236,776708,341510,409270,577474,241703,450938,516809,220156,545479,471259,188870,589930,540735,233443,590510,666114,292069,537443,960463,414977,380548,748475,319718,311923,775359,307972,333993,824448,339869,356943,594247,257598,411899,2840,1,50633,"BIT","ST" 31,39,1,2,2,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"LIGHT OIL",4062,"0M",1294,,369,95,77,157,318,80,151,162,0,0,158,0,0,163,0,0,150,271,581,410,67,164,258,153,329,279,86,168,293,52,109,355,102,206,330,71,149,354,2843,1,50633,"FO2","ST" 31,39,1,2,6,50,15,"COLUMBUS SOUTHERN PWR CO","PICWAY",0,"BIT COAL",4062,"0M",1294,,369,95,24098,12576,18902,17338,8355,10547,0,0,10547,0,0,10547,0,0,10547,12062,7059,8508,8499,5099,16411,33626,17892,7051,12493,6357,14305,11264,6148,20174,12256,6425,23762,14575,8110,25135,2843,1,50633,"BIT","ST" 31,39,1,3,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",1294,,,95,10,18,2118,30,55,1880,24,44,4879,67,123,5809,5,9,5601,0,0,8437,59,128,8308,638,1170,6968,8,15,6953,0,0,6953,4,31,12908,0,0,12704,2847,1,50752,"FO2","IC" 31,39,1,4,2,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"LIGHT OIL",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,8,31,0,2615,5585,0,2094,4660,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,87,204,0,2847,1,50752,"FO2","GT" 31,39,1,4,9,56,15,"DAYTON PWR & LGT CO (THE)","FRANK TAIT",0,"NAT GAS",4922,"0M",494,,,95,0,0,0,0,0,0,0,0,0,206,4610,0,2453,30366,0,2250,29020,0,2757,33743,0,5899,80360,0,392,7740,0,65,1370,0,35,1210,0,1279,17010,0,2847,1,50752,"NG","GT" 31,39,1,2,6,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"BIT COAL",4922,"0M",1294,,,95,1189,1204,103680,11354,5882,97799,-864,0,97799,0,0,97799,-467,0,97799,38657,18515,85185,73119,34885,59277,140943,65371,20520,7427,3975,45638,4351,2521,84275,3553,2065,93826,62576,27616,66210,2848,1,50752,"BIT","ST" 31,39,1,2,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,408,9899,0,595,6448,0,0,0,0,-804,48,0,4,164,0,1487,14801,0,2254,22264,0,5404,59821,0,688,9010,0,440,6133,0,353,5099,0,1464,15898,0,2848,1,50752,"NG","ST" 31,39,1,4,2,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"LIGHT OIL",4922,"0M",1294,,,95,71,303,1433,82,157,1275,0,1,1275,0,0,1275,0,0,1274,0,0,1274,0,0,1274,0,1,1274,0,0,1274,0,0,1274,58,147,1127,49,94,1395,2848,1,50752,"FO2","GT" 31,39,1,4,9,56,20,"DAYTON PWR & LGT CO (THE)","HUTCHINGS",0,"NAT GAS",4922,"0M",1294,,,95,0,10,0,0,0,0,5,1130,0,16,400,0,8,327,0,0,0,0,140,1384,0,423,4690,0,0,0,0,0,0,0,0,0,0,41,453,0,2848,1,50752,"NG","GT" 31,39,1,2,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,,,95,1332,2321,1749,646,1073,2134,623,1061,2140,1223,2081,1858,1631,2823,2062,975,1647,2197,223,358,2194,623,1047,2043,1054,1794,2183,2669,4498,2177,1035,1708,1924,2772,4191,2252,2850,1,50752,"FO2","ST" 31,39,1,2,6,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"BIT COAL",4922,"0M",1294,,,95,1324209,556655,951299,1313535,540148,931841,981133,406226,1101726,963505,397393,1210633,1235488,518718,880851,1223521,506083,868835,1340550,537277,869585,1339861,554937,815555,984147,409972,981044,990034,409244,867049,1361690,549068,888832,1361213,508529,976472,2850,1,50752,"BIT","ST" 31,39,1,3,2,56,23,"DAYTON PWR & LGT CO (THE)","J M STUART",0,"LIGHT OIL",4922,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2850,1,50752,"FO2","IC" 31,39,1,4,2,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"LIGHT OIL",4922,"0M",1294,,,95,392,1042,6368,143,449,7390,1,3,5791,0,0,5791,0,1,5790,0,2,5788,0,0,5788,0,2,6395,2,7,6388,0,1,6388,60,192,6195,298,738,6316,2854,1,50752,"FO2","GT" 31,39,1,4,9,56,28,"DAYTON PWR & LGT CO (THE)","YANKEE ST",0,"NAT GAS",4922,"0M",1294,,,95,10,160,0,62,1100,0,162,1963,0,84,1410,0,82,1499,0,110,1913,0,390,6135,0,2583,45005,0,16,299,0,118,2067,0,15,279,0,1,15,0,2854,1,50752,"NG","GT" 31,39,1,3,2,56,34,"DAYTON PWR & LGT CO (THE)","MONUMENT",0,"LIGHT OIL",4922,"0M",1294,,,95,48,88,666,38,70,596,24,44,749,8,15,735,20,37,698,0,0,698,0,0,698,868,1591,510,12,22,679,8,15,664,3,6,658,23,73,586,2851,1,50752,"FO2","IC" 31,39,1,3,2,56,38,"DAYTON PWR & LGT CO (THE)","SIDNEY",0,"LIGHT OIL",4922,"0M",1294,,,95,36,66,654,39,72,582,19,35,547,12,22,525,27,50,476,38,70,594,200,367,418,928,1701,298,12,22,467,14,26,441,11,20,599,27,50,550,2852,1,50752,"FO2","IC" 31,39,1,2,2,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"LIGHT OIL",4922,"0M",1294,,,95,1515,2654,38401,2032,3512,34941,568,957,33906,811,1364,32383,2303,3935,28369,2103,3623,24697,1150,1949,22638,3905,6750,39224,3140,5527,33621,140,241,33352,1226,2214,31022,7796,9042,43816,6031,1,50752,"FO2","ST" 31,39,1,2,6,56,40,"DAYTON PWR & LGT CO (THE)","KILLEN",0,"BIT COAL",4922,"0M",1294,,,95,396655,162048,146219,299969,123570,141430,380134,154283,172985,326056,132202,166969,335211,138111,191956,337194,139038,170239,357281,145509,178055,407089,168349,129255,293108,123208,110897,435673,179182,98466,52201,22774,186101,115941,32572,227624,6031,1,50752,"BIT","ST" 31,39,1,2,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,255,723,33,159,366,33,0,0,0,308,793,33,68,152,33,5,124,33,27,86,33,7,17,33,1286,2860,33,3,6,33,2857,1,52154,"FO2","ST" 31,39,1,2,9,133,10,"OHIO EDISON CO","EDGEWATER",0,"NAT GAS",13998,"0M",394,,,95,0,0,0,0,0,0,7097,98907,0,15050,194824,0,0,0,0,5911,86537,0,13656,173637,0,24053,289252,0,13182,151945,0,7495,97750,0,13698,169535,0,9290,104799,0,2857,1,52154,"NG","ST" 31,39,1,4,2,133,10,"OHIO EDISON CO","EDGEWATER",0,"LIGHT OIL",13998,"0M",1294,,,95,39,51,10875,58,329,9555,-8,73,8938,-14,44,9839,0,0,9464,200,693,10736,984,3224,10487,1718,5378,9687,120,437,8935,-17,0,8918,15,18,8748,20,140,9834,2857,1,52154,"FO2","GT" 31,39,1,2,2,133,15,"OHIO EDISON CO","GORGE STEAM",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"FO2","ST" 31,39,1,2,6,133,15,"OHIO EDISON CO","GORGE STEAM",0,"BIT COAL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2858,1,52154,"BIT","ST" 31,39,1,4,2,133,30,"OHIO EDISON CO","MAD RIVER",0,"LIGHT OIL",13998,"0M",1294,,,95,-78,0,15547,-26,273,15273,-54,0,15273,-54,0,15273,363,2822,15479,99,426,15053,1080,3857,14177,3295,9983,13051,179,602,14577,62,386,15260,60,421,14839,73,357,15562,2860,1,52154,"FO2","GT" 31,39,1,2,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,5,9,253,86,166,190,142,266,280,33,64,216,17,38,406,275,522,253,67,130,224,50,97,303,45,88,221,63,123,320,28,54,266,27,53,213,2861,1,52154,"FO2","ST" 31,39,1,2,6,133,43,"OHIO EDISON CO","NILES",0,"BIT COAL",13998,"0M",1294,,,95,123871,55965,73387,98573,45856,68795,100911,45527,84171,102317,46469,88241,6938,3797,109930,76341,34497,104722,105408,49207,76769,73326,33732,70283,103996,47562,47231,111221,52359,33613,108872,49872,33134,113766,51273,29923,2861,1,52154,"BIT","ST" 31,39,1,4,2,133,43,"OHIO EDISON CO","NILES",0,"LIGHT OIL",13998,"0M",1294,,,95,55,295,7474,75,333,7682,-36,56,7626,-41,0,7626,-25,30,7596,100,416,7180,647,2274,6851,1403,4579,5630,65,256,6970,-7,118,6852,3,124,6728,61,335,7293,2861,1,52154,"FO2","GT" 31,39,1,2,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,101,204,570,57,119,629,70,132,675,95,173,502,63,117,562,95,188,374,81,156,558,51,100,633,44,83,549,46,91,458,2,3,632,119,296,336,2864,1,52154,"FO2","ST" 31,39,1,2,6,133,45,"OHIO EDISON CO","R E BURGER",0,"BIT COAL",13998,"0M",1294,,,95,220103,104240,157034,164294,78521,184267,126512,54034,193327,150997,63973,186573,81596,35961,201217,96775,43949,193287,127163,56391,181386,166656,74197,142563,130934,57102,99030,67387,30839,87088,93946,40429,64542,82572,48775,54306,2864,1,52154,"BIT","ST" 31,39,1,3,2,133,45,"OHIO EDISON CO","R E BURGER",0,"LIGHT OIL",13998,"0M",1294,,,95,7,10,1284,23,46,1417,9,11,1407,0,0,1407,0,0,1407,34,84,1323,236,429,1243,566,1044,904,17,35,1224,23,43,1181,0,0,1181,30,77,1647,2864,1,52154,"FO2","IC" 31,39,1,2,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,1482,2546,867,528,903,1046,558,954,844,550,932,638,695,1199,912,544,955,1493,706,1274,1304,451,1354,1217,1142,2017,1181,1316,2293,1036,94,160,983,2104,3601,973,2866,1,52154,"FO2","ST" 31,39,1,2,6,133,57,"OHIO EDISON CO","W H SAMMIS",0,"BIT COAL",13998,"0M",1294,,,95,1276095,514756,525945,1279324,511426,457910,1239563,502275,472374,1278563,515393,459047,1160892,479648,563045,1211972,504994,605054,1203599,510803,549162,1367687,590999,470321,991825,414819,354704,1017793,422778,445492,1052538,422578,399901,1094820,447068,288610,2866,1,52154,"BIT","ST" 31,39,1,3,2,133,57,"OHIO EDISON CO","W H SAMMIS",0,"LIGHT OIL",13998,"0M",1294,,,95,21,47,2208,62,132,2422,24,52,2506,21,51,2619,18,49,2690,84,169,2569,424,916,2504,994,1895,1445,56,115,2687,17,62,1885,61,120,2363,49,78,2264,2866,1,52154,"FO2","IC" 31,39,1,5,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CC" 31,39,1,6,2,133,80,"OHIO EDISON CO","W LORAIN JO",0,"LIGHT OIL",13998,"0M",1294,"A",,95,0,0,0,0,0,0,18,114,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2869,1,52154,"FO2","CT" 31,39,1,2,2,141,28,"OHIO POWER CO","MUSKINGUM R",0,"LIGHT OIL",14006,"0M",1294,,364,95,3882,6525,18086,2171,3713,17991,1663,2732,19038,2100,3500,20732,2616,4271,21458,2357,4274,22882,1323,2298,23072,3025,5284,24028,1082,2039,25141,1349,2367,24554,1527,2671,21638,6433,9974,10617,2872,1,54028,"FO2","ST" 31,39,1,2,6,141,28,"OHIO POWER CO","MUSKINGUM R",0,"BIT COAL",14006,"0M",1294,,364,95,535201,215186,421884,537048,220375,419768,597967,235236,427281,521184,207858,375208,449068,175136,430680,464394,194776,458208,580017,239178,402984,570215,237224,362814,265479,117802,367772,240284,100504,368567,286463,120853,342833,504050,190482,323803,2872,1,54028,"BIT","ST" 31,39,1,2,2,141,30,"OHIO POWER CO","GAVIN",0,"LIGHT OIL",14006,"0M",1294,,364,95,3763,6775,47403,769,1320,46083,4239,7491,38592,399,722,37870,719,1203,36667,2089,3543,33123,1042,1767,31357,1100,2128,29229,787,1372,39659,1447,2509,37150,1827,3076,34074,190,326,33748,8102,1,54028,"FO2","ST" 31,39,1,2,6,141,30,"OHIO POWER CO","GAVIN",0,"BIT COAL",14006,"0M",1294,,364,95,64858,30038,1931820,651490,284413,2186971,988276,436625,1888556,1196488,552083,1872871,1419448,615414,1838157,1182854,513910,1760692,1417031,613808,1615051,1643009,713610,1363516,1514789,657244,1159863,1269184,559173,1152059,1395530,601427,1176037,1375641,605361,1157372,8102,1,54028,"BIT","ST" 31,39,1,1,,141,35,"OHIO POWER CO","RACINE",0,,14006,"0M",1294,,364,95,18331,0,0,19396,0,0,21002,0,0,26318,0,0,19638,0,0,23776,0,0,16330,0,0,12023,0,0,7551,0,0,14526,0,0,23751,0,0,24817,0,0,6006,1,54028,"WAT","HY" 31,39,1,2,6,141,40,"OHIO POWER CO","TIDD",0,"BIT COAL",14006,"0M",1294,"S",364,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2874,1,54028,"BIT","ST" 31,39,1,2,2,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"LIGHT OIL",14015,"0M",1294,,506,95,214,364,1335,346,582,1079,478,772,930,80,131,1631,298,520,1248,203,342,1489,97,168,1464,0,0,1642,55,92,1550,582,973,577,236,390,1258,83,146,1373,2876,1,52156,"FO2","ST" 31,39,1,2,6,147,1,"OHIO VALLEY ELEC CORP","KYGER CREEK",0,"BIT COAL",14015,"0M",1294,,506,95,702913,271965,605907,555922,215202,643003,623778,230327,685798,645615,237897,675827,712862,278407,639864,676683,252935,580389,702720,270228,524058,722985,274975,470824,637930,231881,406765,609383,225508,431319,645928,235364,421426,715380,277692,649924,2876,1,52156,"BIT","ST" 31,39,1,2,1,168,1,"TOLEDO EDISON CO (THE)","DAVIS-BESSE",0,"NUCLEAR",18997,"0M",1294,,,95,658580,0,0,596841,0,0,657111,0,0,620608,0,0,643953,0,0,629968,0,0,645923,0,0,643124,0,0,630210,0,0,652469,0,0,633467,0,0,645496,0,0,6149,1,52927,"UR","ST" 31,39,1,2,2,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"PROPANE",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"FO2","ST" 31,39,1,2,6,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"BIT COAL",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"BIT","ST" 31,39,1,2,9,168,9,"TOLEDO EDISON CO (THE)","ACME",0,"NAT GAS",18997,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2877,1,52927,"NG","ST" 31,39,1,2,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,136,448,525,273,439,445,156,255,550,380,622,464,160,607,393,170,407,521,159,530,700,226,457,598,155,367,588,238,402,364,76,315,588,112,197,572,2878,1,52927,"FO2","ST" 31,39,1,2,6,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"BIT COAL",18997,"0M",1294,,,95,271495,103216,169716,328463,121979,150035,259418,97335,167411,220548,81660,204738,228937,86543,252579,283830,108691,226673,265296,101256,155041,323077,180415,73781,309205,109740,75119,176674,67648,106761,254611,97258,111939,278242,107020,82847,2878,1,52927,"BIT","ST" 31,39,1,4,2,168,11,"TOLEDO EDISON CO (THE)","BAY SHORE",0,"LIGHT OIL",18997,"0M",1294,,,95,14,64,566,36,59,688,0,0,782,14,24,758,0,0,758,17,30,1086,46,267,997,175,646,886,8,62,825,2,5,820,0,19,979,1,53,926,2878,1,52927,"FO2","GT" 31,39,1,4,2,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"LIGHT OIL",18997,"0M",1294,,,95,0,40,2793,0,0,2793,0,0,2793,0,25,2768,0,3,2764,27,124,2641,49,260,2380,192,729,1652,0,0,1652,0,44,1607,0,0,2325,0,0,2325,2880,1,52927,"FO2","GT" 31,39,1,4,9,168,18,"TOLEDO EDISON CO (THE)","RICHLAND",0,"NAT GAS",18997,"0M",1294,,,95,0,276,0,0,594,0,0,324,0,0,621,0,0,756,0,25,675,0,71,2079,0,345,7385,0,0,215,0,0,3046,0,0,92,0,2,392,0,2880,1,52927,"NG","GT" 31,39,1,4,2,168,19,"TOLEDO EDISON CO (THE)","STRYKER",0,"LIGHT OIL",18997,"0M",1294,,,95,10,159,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,0,1191,0,8,1183,0,0,1183,16,41,1142,0,0,92,0,29,1113,2881,1,52927,"FO2","GT" 31,39,5,3,2,522,1,"ARCANUM (CITY OF)","ARCANUM",0,"LIGHT OIL",768,"0A",1294,,,95,27,51,203,49,90,186,15,31,155,4,8,148,3,5,143,17,33,110,14,27,82,52,101,101,4,8,93,3,6,87,4,13,74,8,21,171,2902,1,50096,"FO2","IC" 31,39,5,3,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,14,23,355,14,25,329,0,0,329,178,304,378,39,68,310,12,21,289,145,250,215,87,158,235,29,50,179,16,27,153,37,63,268,9,32,237,2903,1,50356,"FO2","IC" 31,39,5,4,2,552,1,"BRYAN (CITY OF)","BRYAN",0,"LIGHT OIL",2439,"0M",1294,,,95,22,50,6950,0,0,6950,2,156,6795,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6790,0,0,6760,0,0,6720,6,12,6690,1,5,6682,2903,1,50356,"FO2","GT" 31,39,5,4,9,552,1,"BRYAN (CITY OF)","BRYAN",0,"NAT GAS",2439,"0M",1294,,,95,22,566,0,82,2330,0,0,0,0,254,4926,0,3992,62915,0,6018,86797,0,4936,89292,0,8968,190437,0,6094,104355,0,104,2299,0,132,2762,0,420,8161,0,2903,1,50356,"NG","GT" 31,39,5,4,2,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1070,0,4,1066,83,263,803,0,0,803,4,238,565,0,0,922,0,0,922,50,256,1022,0,0,1022,0,0,1022,0,0,1022,0,0,1022,2906,1,50589,"FO2","GT" 31,39,5,4,9,561,2,"CLEVELAND (CITY OF)","COLLINWOOD",0,"NAT GAS",3762,"0M",1294,,,95,27,729,0,0,0,0,1,32,0,0,33,0,0,0,0,674,8563,0,274,8962,0,32,941,0,17,380,0,0,3,0,0,7,0,0,4,0,2906,1,50589,"NG","GT" 31,39,5,2,2,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"LIGHT OIL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"FO2","ST" 31,39,5,2,6,561,10,"CLEVELAND (CITY OF)","LAKE ROAD",0,"BIT COAL",3762,"0M",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2908,1,50589,"BIT","ST" 31,39,5,4,2,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"LIGHT OIL",3762,"0M",1294,,,95,0,1,1995,0,0,1994,0,0,1994,0,0,1993,0,0,1993,0,0,1992,0,1,1992,0,1,1991,0,0,1990,0,0,1990,0,1,1989,0,0,1989,2909,1,50589,"FO2","GT" 31,39,5,4,9,561,20,"CLEVELAND (CITY OF)","W 41ST ST",0,"NAT GAS",3762,"0M",1294,,,95,477,14950,0,526,10745,0,431,12673,0,247,6523,0,221,6443,0,340,8176,0,1197,15109,0,4074,94135,0,593,26459,0,537,13366,0,668,16240,0,628,17345,0,2909,1,50589,"NG","GT" 31,39,5,2,6,579,1,"DOVER (CITY OF)","DOVER",0,"BIT COAL",5336,"0M",1294,,,95,7510,5164,474,5838,3935,612,7700,4900,592,6987,4742,130,0,7,150,0,0,623,5223,3579,213,7330,5046,506,6122,4199,218,2658,1764,200,6852,5320,346,7262,4963,413,2914,1,50806,"BIT","ST" 31,39,5,2,9,579,1,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",794,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,27,403,0,884,12716,0,410,6737,0,110,1163,0,663,9798,0,637,9130,0,2914,1,50806,"NG","ST" 31,39,5,3,2,579,1,"DOVER (CITY OF)","DOVER",0,"LIGHT OIL",5336,"0M",1294,,,95,0,0,66,0,0,66,4,9,61,0,0,66,0,0,57,18,228,79,36,74,109,29,75,101,0,0,101,0,0,101,0,0,101,0,0,101,2914,1,50806,"FO2","IC" 31,39,5,4,9,579,5,"DOVER (CITY OF)","DOVER",0,"NAT GAS",5336,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,65,1022,0,0,0,0,0,0,0,0,0,0,48,698,0,0,0,0,0,0,0,0,0,0,0,0,0,2914,1,50806,"NG","GT" 31,39,5,2,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,5,11,1751,1,3,1749,1,4,1747,1,5,1744,1,4,1743,4,10,1737,3,7,1734,4,9,1730,4,11,1724,1,4,1722,1,6,1719,7,16,1711,2917,1,51225,"FO2","ST" 31,39,5,2,6,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"BIT COAL",7977,"0M",1294,,,95,22703,11176,13737,252,146,15989,5474,3315,16142,8640,5428,12982,9803,5101,7881,11553,6584,1297,16363,9478,2000,22973,9375,5688,24478,13592,4621,4956,3752,6715,4870,4046,7024,23079,11772,7422,2917,1,51225,"BIT","ST" 31,39,5,2,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,157,1874,0,13990,195116,0,5260,76784,0,483,7231,0,4563,57272,0,9310,123945,0,17338,207709,0,14384,141922,0,1816,24404,0,676,12116,0,270,5334,0,784,9339,0,2917,1,51225,"NG","ST" 31,39,5,4,2,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"LIGHT OIL",7977,"0M",1294,,,95,0,0,1751,0,0,1749,0,0,1748,0,0,1745,0,0,1742,0,0,1738,0,0,1735,0,0,1730,0,0,1725,0,0,1723,0,0,1719,0,0,1711,2917,1,51225,"FO2","GT" 31,39,5,4,9,605,1,"HAMILTON (CITY OF)","HAM MUN EL",0,"NAT GAS",7977,"0M",1294,,,95,11,142,0,174,2439,0,83,1220,0,26,393,0,18,234,0,55,745,0,1064,12754,0,1170,28673,0,18,250,0,134,2411,0,10,207,0,18,217,0,2917,1,51225,"NG","GT" 31,39,5,1,,605,5,"HAMILTON (CITY OF)","HMLTN HYDRO",0,,7977,"0M",1294,"R",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,7807,1,51225,"WAT","HY" 31,39,5,3,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,3,23,1067,0,0,1067,90,268,799,0,0,799,0,0,799,0,0,799,29,63,734,52,106,805,0,0,805,0,0,805,0,0,805,0,0,805,2921,1,51615,"FO2","IC" 31,39,5,4,2,629,1,"LEBANON (CITY OF)","LEBANON",0,"LIGHT OIL",10830,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2921,1,51615,"FO2","GT" 31,39,5,3,2,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"LIGHT OIL",13949,"0A",1294,,,95,5,65,637,21,41,596,0,37,558,8,17,528,0,0,509,33,80,429,17,210,218,239,528,405,11,41,364,8,17,348,194,525,358,145,391,324,2933,1,52140,"FO2","IC" 31,39,5,3,9,684,1,"OBERLIN (CITY OF)","OBERLIN",0,"NAT GAS",13949,"0A",1294,,,95,275,2724,0,260,2802,0,5,1676,0,75,826,0,13,132,0,200,1734,0,339,3535,0,552,5958,0,39,487,0,82,884,0,969,9721,0,63,1533,0,2933,1,52140,"NG","IC" 31,39,5,2,6,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"BIT COAL",14194,"0M",1294,,,95,30925,20332,2401,27128,23359,528,19190,7163,1721,22147,13962,524,29670,13038,1437,23583,15893,1741,24259,14697,2641,28372,19561,2485,22121,14691,1281,18235,13105,1557,28993,15643,959,24197,16177,783,2935,1,52192,"BIT","ST" 31,39,5,2,9,689,1,"ORRVILLE (CITY OF)","ORRVILLE",0,"NAT GAS",14194,"0M",1294,,,95,45,744,0,42,811,0,122,1020,0,127,1797,0,112,1116,0,51,780,0,63,856,0,72,1126,0,22,331,0,46,762,0,78,961,0,76,1181,0,2935,1,52192,"NG","ST" 31,39,5,2,2,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"LIGHT OIL",14381,"0M",1294,,,95,0,0,1518,0,0,1518,0,0,1518,36,100,1776,5,13,1762,0,0,1048,0,0,1762,25,73,1689,25,73,1616,4,14,1602,17,53,1548,10,20,1528,2936,1,52227,"FO2","ST" 31,39,5,2,6,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"BIT COAL",14381,"0M",1294,,,95,17099,10622,1607,15231,10037,2990,13188,8922,6467,12361,8060,7830,13138,7996,7962,15287,8544,8154,15901,9966,8093,12362,8310,8580,11176,7757,8780,11298,8213,9293,8336,6116,9293,7235,5099,7825,2936,1,52227,"BIT","ST" 31,39,5,2,9,691,1,"PAINESVILLE (CITY OF)","PAINESVILLE",0,"NAT GAS",14381,"0M",1294,,,95,16,258,0,29,464,0,152,2440,0,67,1072,0,27,394,0,18,254,0,42,658,0,113,1904,0,81,1386,0,46,839,0,100,1812,0,97,1715,0,2936,1,52227,"NG","ST" 31,39,5,2,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,0,1,33,1,9,24,0,0,35,1,7,27,0,0,32,0,1,31,0,1,30,0,0,30,0,0,30,0,4,26,0,3,23,1,6,36,2937,1,52334,"FO2","ST" 31,39,5,2,6,700,10,"PIQUA (CITY OF)","PIQUA",0,"BIT COAL",15095,"0M",1294,,,95,2963,3832,1560,2779,3526,1061,2427,2994,1038,1970,2648,582,2418,2789,195,1914,2556,734,1374,2211,15,1611,2421,41,1481,2312,382,2468,3140,627,2650,3515,1751,2688,3569,2090,2937,1,52334,"BIT","ST" 31,39,5,4,2,700,10,"PIQUA (CITY OF)","PIQUA",0,"LIGHT OIL",15095,"0M",1294,,,95,24,119,2949,51,239,3071,-37,127,2947,119,588,2896,109,897,3032,277,1359,2730,469,2758,2645,595,2956,2720,-11,101,2619,37,176,2979,59,288,3048,121,591,2992,2937,1,52334,"FO2","GT" 31,39,5,2,6,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"BIT COAL",17891,"0M",1294,,,95,1250,698,645,3927,2565,332,4111,3269,140,0,0,150,0,0,150,1641,1050,490,5298,3368,489,222,149,638,1630,1068,419,4646,3274,449,4461,2807,449,4928,3119,495,2942,1,52789,"BIT","ST" 31,39,5,4,2,722,1,"SAINT MARYS (CITY OF)","ST MARYS",0,"LIGHT OIL",17891,"0M",1294,,,95,1,12,318,0,0,307,28,146,352,0,0,352,0,0,352,1,4,348,59,83,428,3,8,420,1,24,396,0,0,520,1,3,518,2,6,512,2942,1,52789,"FO2","GT" 31,39,5,2,6,726,1,"SHELBY (CITY OF)","SHELBY",0,"BIT COAL",17043,"0M",1294,,,95,8039,5710,300,7249,5098,300,7132,4852,300,6141,3985,300,6694,4389,300,8103,4859,300,6796,4831,300,7378,5266,0,6897,3944,300,6844,4580,300,7615,5188,300,8726,5206,300,2943,1,52637,"BIT","ST" 31,39,5,2,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,134,1996,0,47,686,0,36,517,0,9,134,0,0,0,0,30,381,0,96,1415,0,11,164,0,19,230,0,41,576,0,48,685,0,44,555,0,2943,1,52637,"NG","ST" 31,39,5,3,2,726,1,"SHELBY (CITY OF)","SHELBY",0,"LIGHT OIL",17043,"0M",1294,,,95,0,0,73,0,0,73,0,0,73,0,0,103,0,0,103,0,0,103,1,5,93,1,4,83,2,5,78,0,1,77,0,1,76,0,1,45,2943,1,52637,"FO2","IC" 31,39,5,3,9,726,1,"SHELBY (CITY OF)","SHELBY",0,"NAT GAS",17043,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2943,1,52637,"NG","IC" 31,39,5,3,2,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"LIGHT OIL",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"FO2","IC" 31,39,5,3,9,774,1,"WOODSFIELD (CITY OF)","WOODSFIELD",0,"NAT GAS",20977,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2945,1,53350,"NG","IC" 31,39,8,2,6,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"BIT COAL",40577,"0M",1294,,,95,99037,64265,81413,104738,67228,84252,126378,79745,86718,63579,42733,100556,123281,76701,94920,115392,69307,101317,117333,72018,101225,121473,79176,86641,108722,66669,90892,126955,78956,87022,103717,67360,86260,126485,80616,78276,7286,1,58910,"BIT","ST" 31,39,8,2,9,800,1,"AMER MUN POWER-OHIO INC","R GORSUCH",0,"NAT GAS",40577,"0M",1294,,,95,1576,22702,0,1469,21157,0,638,9083,0,541,8226,0,767,10634,0,1094,14686,0,877,12191,0,505,7352,0,810,11188,0,528,7439,0,733,10544,0,821,11624,0,7286,1,58910,"NG","ST" 32,18,1,2,6,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"BIT COAL",4111,"0M",1294,,101,95,111368,64033,111935,149730,82697,41943,169301,90886,94463,49952,30907,197006,107334,61118,203229,185763,102059,199201,147171,80912,167481,211732,117972,103696,93902,54629,131796,97942,56647,95060,141995,78255,74660,93050,52182,100094,981,4,54003,"BIT","ST" 32,18,1,2,9,25,1,"COMMONWEALTH ED CO IND","STATE LINE",0,"NAT GAS",4111,"0M",1294,,101,95,6077,64670,0,5326,53012,0,4895,48146,0,1349,14775,0,4538,48258,0,4988,51500,0,4470,45645,0,4498,45907,0,2972,32243,0,3706,39699,0,5098,51893,0,3793,39849,0,981,4,54003,"NG","ST" 32,18,1,2,2,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"LIGHT OIL",9269,"0M",1294,,505,95,186,351,3905,152,276,3630,241,444,3700,377,692,3522,263,551,3142,200,360,3468,175,320,4005,93,171,4177,112,189,3988,183,330,3658,234,419,3925,187,321,3947,983,1,54010,"FO2","ST" 32,18,1,2,6,45,1,"INDIANA-KENTUCKY EL CORP","CLIFTY CRK",0,"BIT COAL",9269,"0M",1294,,505,95,680000,340288,711560,681685,332462,794224,771872,377298,719124,715568,349771,768331,774831,394798,790608,706890,347717,739042,846234,432529,698423,836401,439085,664104,841295,424266,608234,755940,378632,751924,859900,416889,759244,867253,423226,804472,983,1,54010,"BIT","ST" 32,18,1,1,,57,5,"INDIANA MICHIGAN POWER CO","ELKHART",0,,9324,"0M",1294,,363,95,1650,0,0,1194,0,0,1755,0,0,1250,0,0,1341,0,0,1179,0,0,1157,0,0,1230,0,0,728,0,0,610,0,0,606,0,0,1138,0,0,986,1,57745,"WAT","HY" 32,18,1,1,,57,15,"INDIANA MICHIGAN POWER CO","TWIN BRANCH",0,,9324,"0M",1294,,363,95,2749,0,0,2559,0,0,3177,0,0,3035,0,0,3169,0,0,2570,0,0,2394,0,0,2550,0,0,1769,0,0,1707,0,0,2868,0,0,2542,0,0,989,1,57745,"WAT","HY" 32,18,1,2,2,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"LIGHT OIL",9324,"0M",1294,,363,95,1203,1922,5959,701,1134,5915,1180,2025,6714,1059,1682,6177,1112,1829,5848,1144,1978,6336,1259,2060,7095,1078,1912,5713,665,1191,4522,206,409,5361,886,1592,4308,1326,2011,4418,988,1,57745,"FO2","ST" 32,18,1,2,6,57,40,"INDIANA MICHIGAN POWER CO","TANNERS CRK",0,"BIT COAL",9324,"0M",1294,,363,95,432338,162155,420217,485332,183170,404434,427268,171172,375261,371083,146417,383926,364601,144830,374644,383224,158993,372917,442272,183537,275408,494886,200826,195877,151186,61682,248353,10073,4559,312659,189477,75997,327350,330050,118848,262047,988,1,57745,"BIT","ST" 32,18,1,4,2,57,55,"INDIANA MICHIGAN POWER CO","FOURTH ST",0,"LIGHT OIL",9324,"0M",1294,,363,95,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,0,0,90,1025,1,57745,"FO2","GT" 32,18,1,2,2,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"LIGHT OIL",9324,"0M",1294,,363,95,1253,2167,36532,1335,2320,34384,3886,6841,48740,4321,7609,41131,3580,6420,34711,5662,10180,45654,3887,6888,38767,4216,7569,31198,1478,2587,28611,1002,1634,26976,690,1194,25782,1723,4126,33355,6166,1,57745,"FO2","ST" 32,18,1,2,6,57,60,"INDIANA MICHIGAN POWER CO","ROCKPORT",0,"BIT COAL",9324,"0M",1294,,363,95,1749008,1032186,1725862,1579775,933220,1565332,1339465,797497,1717887,1321428,787392,1749794,910898,553161,1861348,1507665,916281,1691338,1420244,862282,1685879,1514621,918947,1761783,1599963,954251,1694782,1691163,933949,1738612,1640828,959611,1762887,1464158,854236,1918162,6166,1,57745,"BIT","ST" 32,18,1,2,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,566,1401,20541,856,1914,17945,116,609,17337,446,1143,15565,419,1038,14023,233,762,13073,334,805,11083,970,3484,18728,223,679,18049,471,1101,16948,1380,2012,14910,618,1456,13138,990,1,51394,"FO2","ST" 32,18,1,2,6,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"BIT COAL",9273,"0M",1294,,,95,194584,90056,252587,180919,84581,279836,140480,66420,317709,160947,73882,318796,235268,109052,299888,217930,103073,287645,259644,122601,267666,349367,162431,221093,272895,126479,196285,244308,112170,197708,270443,125748,220391,253279,116842,274191,990,1,51394,"BIT","ST" 32,18,1,3,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,990,1,51394,"FO2","IC" 32,18,1,4,2,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"LIGHT OIL",9273,"0M",1294,,,95,1107,4856,0,-42,681,0,-50,0,0,112,628,0,182,504,0,-7,189,0,293,1179,0,349,1894,0,-35,0,0,-43,0,0,-50,26,0,-11,317,0,990,1,51394,"FO2","GT" 32,18,1,4,9,63,5,"INDIANAPOLIS PWR & LGT CO","E W STOUT",0,"NAT GAS",9273,"0M",1294,,,95,1286,11256,0,10,1339,0,-53,1880,0,93,2875,0,1102,18630,0,448,8470,0,4489,66365,0,11695,166046,0,-64,3722,0,-37,1618,0,3205,49273,0,3710,54428,0,990,1,51394,"NG","GT" 32,18,1,2,2,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"LIGHT OIL",9273,"0M",1294,,,95,0,0,4682,0,0,4553,0,0,4331,0,0,4301,0,0,4287,0,0,3841,0,0,3636,0,0,5062,0,0,5057,0,0,5051,0,0,5042,0,0,4762,992,1,51394,"FO2","ST" 32,18,1,2,6,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"BIT COAL",9273,"0M",1294,,,95,0,0,79574,-1610,0,80083,0,0,75101,0,0,73147,0,0,75348,0,0,76456,766,826,73924,340,352,74885,1152,1362,75776,0,0,74934,0,0,77090,0,0,71176,992,1,51394,"BIT","ST" 32,18,1,2,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,17,437,0,7,193,0,32,957,0,0,0,0,0,0,0,0,0,0,992,1,51394,"NG","ST" 32,18,1,5,9,63,15,"INDIANAPOLIS PWR & LGT CO","PERRY K",0,"WASTE HT",9273,"0M",1294,,,95,-782,0,0,0,0,0,1330,0,0,1056,0,0,2878,0,0,887,0,0,1971,0,0,1192,0,0,1301,0,0,1055,0,0,-372,0,0,-854,0,0,992,1,51394,"WT","CC" 32,18,1,2,2,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"LIGHT OIL",9273,"0M",1294,,,95,-49,0,697,-71,0,697,-71,0,697,-67,0,697,-59,0,697,-46,0,697,-51,0,697,-47,0,697,-42,0,697,-44,0,697,-59,0,697,-65,0,697,993,1,51394,"FO2","ST" 32,18,1,2,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"NAT GAS",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"NG","ST" 32,18,1,5,9,63,20,"INDIANAPOLIS PWR & LGT CO","PERRY W",0,"WASTE HT",9273,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,993,1,51394,"WH","CC" 32,18,1,2,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,610,1111,6386,445,819,5517,317,533,4940,401,748,8963,2218,4082,4553,637,1151,5787,377,687,4945,1822,3221,6367,801,1483,4763,545,999,3635,1447,2637,5880,1975,3581,4564,994,1,51394,"FO2","ST" 32,18,1,2,6,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"BIT COAL",9273,"0M",1294,,,95,1040025,481608,951198,910590,421941,973809,942914,432679,1023657,783657,368727,1096578,667135,315158,1184238,973163,448245,1179213,992610,460767,1051137,936517,439379,945966,722162,339012,925268,812107,376653,886087,794558,370468,820716,931266,431118,719090,994,1,51394,"BIT","ST" 32,18,1,3,2,63,23,"INDIANAPOLIS PWR & LGT CO","PETERSBURG",0,"LIGHT OIL",9273,"0M",1294,,,95,2,5,0,0,0,0,25,44,0,102,178,0,189,328,0,45,76,0,52,90,0,74,131,0,46,80,0,67,116,0,39,43,0,31,78,0,994,1,51394,"FO2","IC" 32,18,1,2,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,318,680,5661,350,656,4975,104,195,4685,436,902,7879,417,829,7014,283,586,6386,443,914,5445,1802,3787,7417,307,627,7108,203,431,6547,316,654,5835,499,993,4785,991,1,51394,"FO2","ST" 32,18,1,2,6,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"BIT COAL",9273,"0M",1294,,,95,39918,21829,172846,38399,18739,164110,25730,13890,166007,31554,16614,192907,62657,32105,189004,38978,20477,189810,89346,46785,168301,129720,68988,123731,61410,31642,119624,29705,15920,161259,67519,35572,171574,68221,34547,157787,991,1,51394,"BIT","ST" 32,18,1,3,2,63,25,"INDIANAPOLIS PWR & LGT CO","H T PRTCHRD",0,"LIGHT OIL",9273,"0M",1294,,,95,10,18,0,10,18,0,11,19,0,10,19,0,10,19,0,10,18,0,9,18,0,10,18,0,9,18,0,3,5,0,10,11,0,10,16,0,991,1,51394,"FO2","IC" 32,18,1,1,,97,25,"NORTHERN IND PUB SERV CO","NORWAY",0,,13756,"0M",1294,,,95,2951,0,0,1754,0,0,3112,0,0,3813,0,0,3505,0,0,2903,0,0,2206,0,0,1230,0,0,509,0,0,-5,0,0,935,0,0,741,0,0,998,1,52101,"WAT","HY" 32,18,1,1,,97,30,"NORTHERN IND PUB SERV CO","OAKDALE",0,,13756,"0M",1294,,,95,4302,0,0,2658,0,0,4495,0,0,5358,0,0,4552,0,0,4225,0,0,3387,0,0,1840,0,0,1214,0,0,492,0,0,1566,0,0,1435,0,0,999,1,52101,"WAT","HY" 32,18,1,2,5,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"PC","ST" 32,18,1,2,6,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"BIT COAL",13756,"0M",1294,,,95,255092,122559,79738,278804,133215,33213,188964,93227,81145,300874,140721,83750,249838,120767,64124,246937,117749,44162,235477,114020,45186,281196,134308,37119,206770,100042,54350,171878,84048,49037,248313,118863,34340,215434,105042,32995,995,1,52101,"BIT","ST" 32,18,1,2,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,2509,26046,0,1617,16709,0,6960,74244,0,364,3631,0,132,1380,0,473,4895,0,3976,41921,0,11155,116087,0,295,3099,0,9000,94567,0,731,7651,0,10008,106430,0,995,1,52101,"NG","ST" 32,18,1,4,2,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,995,1,52101,"FO2","GT" 32,18,1,4,9,97,35,"NORTHERN IND PUB SERV CO","BAILLY",0,"NAT GAS",13756,"0M",1294,,,95,260,4325,0,239,4585,0,197,4652,0,73,729,0,0,0,0,128,2648,0,1309,27718,0,1556,27641,0,86,2797,0,94,990,0,0,0,0,0,0,0,995,1,52101,"NG","GT" 32,18,1,2,6,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"BIT COAL",13756,"0M",1294,,,95,236420,123317,103301,234123,120234,148075,251278,135807,162546,205743,116541,177892,112253,67389,170049,124057,76284,129959,232893,135633,114125,231506,135299,93596,234187,129907,86183,254454,138881,100596,227408,129965,87044,241351,131616,87326,997,1,52101,"BIT","ST" 32,18,1,2,9,97,50,"NORTHERN IND PUB SERV CO","MICH CITY",0,"NAT GAS",13756,"0M",1294,,,95,22888,245981,0,12315,127428,0,7313,77250,0,2223,23885,0,17374,195664,0,14491,167133,0,33790,372448,0,46983,516773,0,57,601,0,277,2894,0,14761,158089,0,7779,81844,0,997,1,52101,"NG","ST" 32,18,1,2,6,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"BIT COAL",13756,"0M",1294,,,95,145857,82802,116751,116897,65893,113729,119863,69185,152487,141199,84936,154502,149654,87531,159194,148998,85732,121077,153374,92272,109798,153611,89672,90907,105137,61906,133520,134131,77926,126283,118138,72811,149593,119904,77033,120350,996,1,52101,"BIT","ST" 32,18,1,2,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,9050,99836,0,19988,219179,0,4693,51173,0,2044,22775,0,681,7679,0,15253,169699,0,31855,357533,0,49912,561059,0,1836,21192,0,688,7733,0,17585,198980,0,12007,137527,0,996,1,52101,"NG","ST" 32,18,1,4,2,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,996,1,52101,"FO2","GT" 32,18,1,4,9,97,54,"NORTHERN IND PUB SERV CO","D MITCHELL",0,"NAT GAS",13756,"0M",1294,,,95,0,0,0,62,1005,0,19,314,0,61,972,0,59,947,0,23,381,0,1109,18451,0,787,13562,0,0,0,0,17,200,0,19,316,0,40,614,0,996,1,52101,"NG","GT" 32,18,1,2,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","ST" 32,18,1,2,5,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"COKE",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5680,2361,3668,16726,6787,383,17831,7291,7,6085,1,52101,"PC","ST" 32,18,1,2,6,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"BIT COAL",13756,"0M",1294,,,95,535261,312105,335057,389163,229937,440028,546548,302317,415959,448635,246990,395514,597050,350998,454670,756850,452731,337454,682007,398333,335076,754511,435319,290970,649742,383628,258615,683709,390480,291948,637992,357548,247219,681946,380639,238033,6085,1,52101,"BIT","ST" 32,18,1,2,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,3899,42407,0,6373,71396,0,4950,53485,0,5022,55321,0,9160,101163,0,8473,94946,0,11416,127138,0,11318,127241,0,6765,76948,0,5330,59832,0,10465,114654,0,16610,183389,0,6085,1,52101,"NG","ST" 32,18,1,4,2,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"LIGHT OIL",13756,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6085,1,52101,"FO2","GT" 32,18,1,4,9,97,60,"NORTHERN IND PUB SERV CO","SCHAHFER",0,"NAT GAS",13756,"0M",1294,,,95,723,10302,0,782,11325,0,1650,23018,0,308,4700,0,805,15657,0,1994,32783,0,15126,225451,0,13726,215839,0,142,2242,0,733,10618,0,280,4262,0,601,10905,0,6085,1,52101,"NG","GT" 32,18,1,1,,115,10,"PSI ENERGY, INC","MARKLAND",0,,15470,"0M",1294,,,95,25874,0,0,30535,0,0,30427,0,0,34190,0,0,21420,0,0,33483,0,0,37429,0,0,31238,0,0,21329,0,0,31723,0,0,32028,0,0,33480,0,0,1005,1,52410,"WAT","HY" 32,18,1,2,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,132,235,5513,571,1037,4367,530,968,3231,360,648,6046,1268,2286,3656,1673,3058,5188,191,340,4690,456,897,3714,450,808,2757,116,203,4365,648,1159,3695,1043,1890,4595,1001,1,52410,"FO2","ST" 32,18,1,2,6,115,20,"PSI ENERGY, INC","CAYUGA",0,"BIT COAL",15470,"0M",1294,,,95,560086,260374,595374,436002,205588,619769,507290,241920,579748,458167,216960,558238,273942,132145,579528,461324,222630,594519,529339,250671,586438,553167,264792,531310,481498,229472,498542,556861,260068,435186,538773,254635,379746,560196,264529,360124,1001,1,52410,"BIT","ST" 32,18,1,3,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,52,94,835,80,146,689,46,85,604,32,59,546,48,87,793,40,74,719,187,332,719,345,632,893,44,79,814,57,100,714,46,83,810,52,95,715,1001,1,52410,"FO2","IC" 32,18,1,4,2,115,20,"PSI ENERGY, INC","CAYUGA",0,"LIGHT OIL",15470,"0M",1294,,,95,94,169,5321,0,0,5313,0,0,5287,0,0,5295,9,17,5278,0,0,5274,0,0,5261,0,0,5256,0,0,5278,0,0,5291,0,0,5304,0,0,5321,1001,1,52410,"FO2","GT" 32,18,1,4,9,115,20,"PSI ENERGY, INC","CAYUGA",0,"NAT GAS",15470,"0M",1294,,,95,2346,23310,0,1913,19353,0,1506,15557,0,1635,16714,0,1240,12674,0,4044,41468,0,15842,159433,0,18202,212550,0,0,0,0,0,0,0,2097,21202,0,3527,35908,0,1001,1,52410,"NG","GT" 32,18,1,2,2,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"LIGHT OIL",15470,"0M",1294,,,95,209,496,4820,64,150,4672,155,373,4297,0,0,4295,0,0,4292,97,238,4052,689,1571,2481,2502,5818,2869,342,868,2002,0,0,2002,0,0,1997,147,370,1625,1004,1,52410,"FO2","ST" 32,18,1,2,6,115,30,"PSI ENERGY, INC","EDWARDSPORT",0,"BIT COAL",15470,"0M",1294,,,95,17730,11048,72080,19934,11948,70647,12688,8051,74559,-527,0,75232,-535,0,75232,15454,10259,64973,35050,21901,43072,52741,33340,15650,4173,2912,38766,-602,0,62015,-609,0,63195,16335,10947,52274,1004,1,52410,"BIT","ST" 32,18,1,2,2,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"LIGHT OIL",15470,"0M",1294,,,95,2035,3891,1605,1454,2810,1394,1851,3297,1699,1757,3179,1643,2068,3708,1567,1765,3297,1717,1740,3339,1643,1698,3478,1699,628,1171,1662,1918,3473,1772,1054,1957,1432,2452,4557,1662,1008,1,52410,"FO2","ST" 32,18,1,2,6,115,32,"PSI ENERGY, INC","R GALLAGHER",0,"BIT COAL",15470,"0M",1294,,,95,228795,101724,280677,208492,94433,264483,157312,68908,321856,177541,78622,327010,219815,95103,325222,282888,123689,301473,287606,128632,273012,307948,143686,219622,142108,60394,233330,173570,72509,241738,224846,92953,254240,214410,90070,255848,1008,1,52410,"BIT","ST" 32,18,1,2,2,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"LIGHT OIL",15470,"0M",1294,,,95,51,112,562,83,160,505,48,112,674,66,152,531,0,0,490,110,229,643,81,169,664,55,117,548,22,64,674,58,167,474,0,43,548,34,71,476,1007,1,52410,"FO2","ST" 32,18,1,2,6,115,35,"PSI ENERGY, INC","NOBLESVILLE",0,"BIT COAL",15470,"0M",1294,,,95,11044,6031,55495,9455,4868,50627,3897,2460,49399,4036,2484,49078,-19,344,48734,11688,6456,42278,26318,14879,27399,34289,19561,18825,965,758,32438,3085,2324,49315,-104,155,61612,12274,6417,55744,1007,1,52410,"BIT","ST" 32,18,1,2,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,2430,4476,2106,1459,2739,2128,1389,2692,1967,1849,3579,2218,1434,2758,1631,681,1290,2176,1683,3263,2148,2465,4797,2269,945,1807,2338,1000,1900,2380,729,1435,2430,2010,3862,1720,1010,1,52410,"FO2","ST" 32,18,1,2,6,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"BIT COAL",15470,"0M",1294,,,95,269453,126688,229629,237554,115161,230254,111825,56100,288778,84991,42415,325474,75621,37146,348471,305101,147377,290801,239625,122121,244288,280979,141633,160506,165651,82144,169356,117517,58071,210036,143505,72409,218547,185588,91761,206945,1010,1,52410,"BIT","ST" 32,18,1,3,2,115,38,"PSI ENERGY, INC","WABASH RIVR",0,"LIGHT OIL",15470,"0M",1294,,,95,22,41,295,6,12,283,29,57,226,36,71,155,22,43,283,17,33,250,46,91,336,25,50,286,1,2,283,16,31,37,14,29,343,5,10,333,1010,1,52410,"FO2","IC" 32,18,1,3,2,115,40,"PSI ENERGY, INC","MIAMI WBASH",0,"LIGHT OIL",15470,"0M",1294,,,95,-10,953,9190,166,743,8447,-197,894,7552,-39,60,7493,16,281,7212,81,612,6600,891,3627,5277,1034,3669,3913,-3,92,3821,-25,12,3809,-92,165,3644,-114,427,3217,1006,1,52410,"FO2","IC" 32,18,1,4,2,115,43,"PSI ENERGY, INC","CONNERSVILE",0,"LIGHT OIL",15470,"0M",1294,,,95,598,1430,6151,267,338,5812,185,528,5284,-1,88,5196,74,91,5105,363,946,4160,1734,3950,0,1728,5143,7132,123,299,6833,35,74,6797,36,197,6601,68,309,6291,1002,1,52410,"FO2","GT" 32,18,1,2,2,115,47,"PSI ENERGY, INC","GIBSON STA",0,"LIGHT OIL",15470,"0M",1294,,,95,3573,6225,8026,3627,6211,8525,2908,4962,6089,2299,3933,7385,2638,4537,9046,4608,8201,6236,1193,2069,8692,1020,1752,9495,2262,3909,8491,2394,4067,6679,1306,2237,7725,1788,3105,5067,6113,1,52410,"FO2","ST" 32,18,1,2,6,115,47,"PSI ENERGY, INC","GIBSON STA",0,"BIT COAL",15470,"0M",1294,,,95,1411040,662768,2861774,1615449,737476,2742578,1641475,746285,2737505,1326993,600387,2789580,1389674,630387,2844473,1353290,632853,2819275,1781130,810634,2543921,1880261,844888,2374175,1610199,724136,2280260,1401722,620957,2297336,1703790,761235,2101523,1647889,748548,1888232,6113,1,52410,"BIT","ST" 32,18,1,4,2,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,0,0,801,1011,1,52727,"FO2","GT" 32,18,1,4,9,127,1,"SOUTHERN INDIANA G & E CO","BROADWAY",0,"NAT GAS",17633,"0M",1294,,,95,108,1488,0,31,496,0,72,936,0,66,992,0,675,9932,0,358,9922,0,3822,54621,0,11701,173627,0,131,4946,0,181,9912,0,586,4959,0,0,0,0,1011,1,52727,"NG","GT" 32,18,1,2,2,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,350,0,0,350,0,0,350,0,0,350,0,0,350,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,0,0,250,1012,1,52727,"FO2","ST" 32,18,1,2,6,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"BIT COAL",17633,"0M",1294,,,95,122067,60600,138140,167988,82419,159735,169634,79436,181228,114459,53639,191704,165848,81055,168418,184693,87570,154235,207611,100070,138520,218589,105190,134359,160446,77417,139667,174664,86907,135057,217251,106316,124021,205575,102713,115674,1012,1,52727,"BIT","ST" 32,18,1,2,9,127,3,"SOUTHERN INDIANA G & E CO","CULLEY",0,"NAT GAS",17633,"0M",1294,,,95,285,3090,0,126,1344,0,136,1410,0,300,3116,0,121,1311,0,107,1123,0,101,1082,0,285,3040,0,412,4406,0,312,3443,0,180,1935,0,153,1681,0,1012,1,52727,"NG","ST" 32,18,1,4,9,127,9,"SOUTHERN INDIANA G & E CO","NORTHEAST",0,"NAT GAS",17633,"0M",1294,,,95,24,992,0,48,5399,0,0,0,0,0,0,0,0,0,0,22,2492,0,0,0,0,562,10295,0,0,0,0,0,0,0,23,3023,0,26,4467,0,1013,1,52727,"NG","GT" 32,18,1,2,6,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"BIT COAL",17633,"0M",1294,,,95,95617,41510,100212,86572,39259,87257,96250,42312,89684,93020,40228,97629,96270,44344,83127,82739,38242,69870,89329,39892,44260,100497,44406,41656,97103,42826,35874,28941,12332,66823,92060,41077,55982,99718,45727,57793,6705,1,52727,"BIT","ST" 32,18,1,2,9,127,20,"SOUTHERN INDIANA G & E CO","WARRICK",0,"NAT GAS",17633,"0M",1294,,,95,27,261,0,112,1120,0,11,112,0,29,276,0,5,50,0,0,0,0,136,1318,0,83,796,0,0,0,0,295,2822,0,57,575,0,62,639,0,6705,1,52727,"NG","ST" 32,18,1,2,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,1712,0,0,1437,0,0,2186,0,0,2151,0,0,1998,0,0,1988,0,0,2336,0,0,2336,0,0,2336,0,0,2336,0,0,2175,0,0,2175,6137,1,52727,"FO2","ST" 32,18,1,2,6,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"BIT COAL",17633,"0M",1294,,,95,217766,95613,450544,147685,72927,476200,218223,106171,479883,196964,85661,485255,182235,86959,499237,216954,101195,498135,247301,113099,429991,275892,131703,360852,177911,84026,286413,238026,112468,229493,139223,67172,246596,170321,82481,189492,6137,1,52727,"BIT","ST" 32,18,1,2,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,728,7231,0,709,7962,0,465,5154,0,1271,12486,0,681,7404,0,869,9196,0,829,8558,0,910,9792,0,91,976,0,1005,9912,0,462,4959,0,1013,10609,0,6137,1,52727,"NG","ST" 32,18,1,4,2,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"LIGHT OIL",17633,"0M",1294,,,95,0,0,0,139,275,0,10,21,0,20,35,0,75,144,0,155,289,0,4,9,0,0,0,0,0,0,0,0,0,0,84,161,0,0,0,0,6137,1,52727,"FO2","GT" 32,18,1,4,9,127,25,"SOUTHERN INDIANA G & E CO","BROWN",0,"NAT GAS",17633,"0M",1294,,,95,371,3684,0,237,2668,0,72,799,0,244,2399,0,872,9478,0,725,7671,0,3499,36107,0,8313,89423,0,835,8917,0,0,0,0,0,0,0,115,1208,0,6137,1,52727,"NG","GT" 32,18,5,3,2,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"LIGHT OIL",1896,"0A",1294,,,95,1,60,1391,2,67,1322,61,54,1600,8,70,1533,12,90,1444,17,90,1361,5,46,0,16,58,1746,9,46,1693,5,45,1674,1,9,1658,1,20,1637,1023,1,54077,"FO2","IC" 32,18,5,3,9,529,15,"BLUFFTON (CITY OF)","BLUFFTON",0,"NAT GAS",1896,"0A",1294,,,95,252,951,0,283,1047,0,187,936,0,252,888,0,327,1129,0,322,1124,0,21,749,0,165,1201,0,79,956,0,14,141,0,8,282,0,62,1131,0,1023,1,54077,"NG","IC" 32,18,5,2,6,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"BIT COAL",4508,"M",1294,,,95,2633,2217,2514,2446,2032,2094,1890,1637,1012,0,12,1693,0,9,2211,497,408,1961,0,0,1961,1383,1034,1775,0,0,2801,0,0,2783,0,0,2783,2446,2070,2457,1024,1,50698,"BIT","ST" 32,18,5,2,9,552,1,"CTAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"NAT GAS",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,11,198,0,0,9,0,25,397,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"NG","ST" 32,18,5,3,2,552,1,"CRAWFORDSVILLE (CITY OF)","CRAWFRDVIL",0,"LIGHT OIL",4508,"M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1024,1,50698,"FO2","IC" 32,18,5,2,6,601,1,"JASPER (CITY OF)","JASPER",0,"BIT COAL",9667,"0A",1294,,,95,5717,4616,631,5399,3895,631,5890,4398,631,2952,2186,631,3065,2373,631,5988,4375,631,5621,4191,631,2798,2138,631,0,0,1075,5001,3514,1051,5782,4146,1096,5466,4050,1096,6225,1,51443,"BIT","ST" 32,18,5,2,9,601,1,"JASPER (CITY OF)","JASPER",0,"NAT GAS",9667,"0A",1294,,,95,20,339,0,0,0,0,0,0,0,0,0,0,16,267,0,0,0,0,0,0,0,0,0,0,0,0,0,14,206,0,0,0,0,0,0,0,6225,1,51443,"NG","ST" 32,18,5,2,6,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"BIT COAL",11142,"0M",1294,,,95,16294,10401,3093,15182,9658,2825,130,68,5257,0,0,7057,2842,2773,7049,15721,9566,3565,18496,9015,1600,18517,10895,1421,17032,9835,4095,8771,5557,5126,12606,7370,5733,23315,13078,934,1032,1,51681,"BIT","ST" 32,18,5,4,2,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"LIGHT OIL",11142,"0M",1294,,,95,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,0,0,1887,1032,1,51681,"FO2","GT" 32,18,5,4,9,622,1,"LOGANSPORT (CITY OF)","LOGANSPORT",0,"NAT GAS",11142,"0M",1294,,,95,127,2771,0,0,0,0,0,0,0,0,0,0,0,0,0,75,2842,0,0,0,0,217,5351,0,0,0,0,0,0,0,0,0,0,0,0,0,1032,1,51681,"NG","GT" 32,18,5,2,2,658,1,"PERU UTILITIES","PERU",0,"LIGHT OIL",14839,"0M",1294,,,95,2,7,60,0,0,40,0,0,29,0,0,45,0,0,42,0,0,89,0,0,89,28,62,123,2,6,104,0,0,104,0,0,64,0,0,58,1037,1,52298,"FO2","ST" 32,18,5,2,6,658,1,"PERU UTILITIES","PERU",0,"BIT COAL",14839,"0M",1294,,,95,597,409,462,0,0,462,0,0,462,0,0,462,0,0,462,0,0,664,0,0,664,4138,2475,1193,1602,1122,71,0,0,71,0,0,71,0,0,71,1037,1,52298,"BIT","ST" 32,18,5,3,2,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"LIGHT OIL",15860,"0A",1294,,,95,0,5,507,0,4,492,0,0,385,0,0,376,42,89,635,0,0,624,11,22,610,10,24,577,13,25,557,13,33,523,18,34,485,12,25,448,1038,1,52461,"FO2","IC" 32,18,5,3,9,666,1,"RENSSELAER (CITY OF)","RENSSELAER",0,"NAT GAS",15860,"0A",1294,,,95,12,2242,0,5,609,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1038,1,52461,"NG","IC" 32,18,5,2,2,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"LIGHT OIL",15989,"0M",1294,,,95,66,135,651,4,9,642,11,23,618,36,75,544,43,89,455,36,75,380,33,65,315,24,51,800,38,79,721,40,84,637,125,241,754,33,67,866,1040,1,52479,"FO2","ST" 32,18,5,2,6,669,10,"RICHMOND (CITY OF)","WHITEWATER",0,"BIT COAL",15989,"0M",1294,,,95,52567,26931,66546,54464,27521,59857,50869,26046,61570,37981,19323,61813,34761,18221,70185,50812,25880,63189,54367,27836,58351,55464,28592,56536,47367,24058,57432,31433,16236,61431,49216,24827,57518,55122,27935,65411,1040,1,52479,"BIT","ST" 32,18,8,2,2,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"LIGHT OIL",9267,"0M",1294,,,95,36,63,331,24,42,427,57,99,328,82,143,185,157,271,264,220,383,175,69,123,225,64,116,273,67,119,314,72,130,300,169,298,360,213,374,345,1043,1,51339,"FO2","ST" 32,18,8,2,6,849,5,"HOOSIER ENERGY RURAL","RATTS",0,"BIT COAL",9267,"0M",1294,,,95,152672,68804,12521,138850,61631,20613,120820,54271,33350,149240,67046,34059,138601,62960,37387,104185,47642,37604,152193,70371,29049,149047,69157,33970,133611,61143,30823,84154,38731,32856,131727,59094,30160,146986,66592,32432,1043,1,51339,"BIT","ST" 32,18,8,2,2,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"LIGHT OIL",9267,"0M",1294,,,95,195,354,6014,19,38,10415,677,1227,9188,41,76,9112,1799,3447,5664,1764,3378,7059,771,1387,5672,508,946,4725,1207,2219,7281,584,1062,6218,468,838,10208,592,1063,9145,6213,1,51339,"FO2","ST" 32,18,8,2,6,849,10,"HOOSIER ENERGY RURAL","MEROM",0,"BIT COAL",9267,"0M",1294,,,95,462676,222254,448322,417644,215416,460946,384780,184640,471566,246060,116767,519358,230592,116155,570294,429927,213604,544280,462605,221660,492415,499492,244053,429843,353022,171326,433018,376476,178855,429945,480027,227666,396833,503880,236844,364841,6213,1,51339,"BIT","ST" 32,18,9,4,2,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"LIGHT OIL",9234,"0M",1294,,,95,19,44,5010,33,68,4942,40,82,4860,14,24,4835,7,12,4824,25,62,4762,0,1,4761,1,4,4757,0,0,4757,14,27,4730,3,9,4721,10,13,4708,7336,1,19234,"FO2","GT" 32,18,9,4,9,900,5,"INDIANA MUN POWER AGENCY","ANDERSON",0,"NAT GAS",9234,"0M",1294,,,95,53,772,0,54,717,0,199,2578,0,66,914,0,31,416,0,481,7593,0,2482,36348,0,6354,89340,0,94,1557,0,64,1343,0,36,450,0,47,750,0,7336,1,19234,"NG","GT" 33,17,1,2,2,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"LIGHT OIL",3252,"0M",1294,,,95,580,979,551,369,645,642,581,1050,511,539,979,621,777,1362,571,696,1201,688,793,1392,574,425,792,507,571,980,634,610,991,501,329,558,506,455,759,491,856,4,50485,"FO2","ST" 33,17,1,2,6,29,5,"CENTRAL ILLINOIS LIGHT CO","E D EDWARDS",0,"BIT COAL",3252,"0M",1294,,,95,278723,111505,170727,240983,94522,156151,283715,115017,142278,219332,90164,180893,314512,130292,145461,303524,124741,120263,294912,127410,143742,416665,181855,115286,215994,93604,136103,343831,139588,97044,284797,118784,138306,257830,101322,144327,856,4,50485,"BIT","ST" 33,17,1,4,9,29,12,"CENTRAL ILLINOIS LIGHT CO","STERLING AV",0,"NAT GAS",3252,"0M",1294,,,95,91,1361,0,30,486,0,29,443,0,29,495,0,28,483,0,114,1973,0,236,4614,0,495,8477,0,62,1057,0,60,926,0,32,555,0,79,1259,0,860,4,50485,"NG","GT" 33,17,1,2,2,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"LIGHT OIL",3252,"0M",1294,,,95,464,794,607,155,264,573,38,67,506,39,69,437,368,658,640,47,83,557,76,135,598,252,429,597,203,353,523,461,865,374,191,334,581,221,383,548,6016,4,50485,"FO2","ST" 33,17,1,2,6,29,20,"CENTRAL ILLINOIS LIGHT CO","DUCK CREEK",0,"BIT COAL",3252,"0M",1294,,,95,186107,88236,146013,184996,85972,174445,212342,99989,207941,178133,85191,199728,101736,49494,191824,209741,99840,163763,218825,104416,121412,182815,87426,161492,205874,98086,126656,49432,25199,182072,221479,104789,147984,208001,98018,120664,6016,4,50485,"BIT","ST" 33,17,1,2,9,29,25,"CENTRAL ILLINOIS LIGHT CO","MIDWEST GRN",0,"NAT GAS",3252,"0M",694,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1987,12379,0,4809,36302,0,4873,33446,0,2693,19047,0,0,0,0,3046,22292,0,4051,25863,0,7384,4,50485,"NG","ST" 33,17,1,2,2,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"LIGHT OIL",3253,"0M",1294,,,95,281,528,4129,159,291,4010,394,749,4105,523,1002,3949,771,1637,3876,506,903,4329,271,491,4241,39,71,3944,249,436,4034,521,930,3986,417,729,4572,962,1745,3927,861,4,50486,"FO2","ST" 33,17,1,2,6,32,2,"CENTRAL ILL PUBLIC SER CO","COFFEEN",0,"BIT COAL",3253,"0M",1294,,,95,365821,196265,250663,291393,151752,268915,248792,134522,254062,79012,43562,287270,49602,29698,377234,331239,171527,392358,397070,207104,345747,370867,195382,346249,139189,69530,387149,251535,126615,387760,291764,143554,406398,266300,137380,362886,861,4,50486,"BIT","ST" 33,17,1,2,2,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"LIGHT OIL",3253,"0M",1294,,,95,146,294,559,222,423,494,139,267,578,60,171,742,-59,75,667,310,600,753,324,626,481,405,753,769,154,287,834,78,162,672,389,761,607,217,428,533,862,4,50486,"FO2","ST" 33,17,1,2,6,32,5,"CENTRAL ILL PUBLIC SER CO","GRAND TOWER",0,"BIT COAL",3253,"0M",1294,,,95,19817,10029,48685,18173,8634,59296,12650,6089,70908,3933,2772,73473,-503,161,78207,17238,8399,74696,44644,21400,58784,77238,35607,26412,11609,5363,31994,11150,5893,34133,57466,27803,19044,47800,23991,32368,862,4,50486,"BIT","ST" 33,17,1,2,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,72,148,1592,254,501,1092,252,532,1126,117,284,1556,421,883,1560,398,781,1662,440,832,1760,236,429,1331,196,323,1008,158,382,1338,346,655,1437,140,264,1173,863,4,50486,"FO2","ST" 33,17,1,2,6,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"BIT COAL",3253,"0M",1294,,,95,17493,9580,55605,13103,6803,61393,11330,6319,65444,3457,2220,70186,6929,4012,73260,18641,9997,71065,43752,22295,48771,75386,37255,19363,5801,2524,33120,7107,4480,39773,44924,22754,26665,48938,24435,23714,863,4,50486,"BIT","ST" 33,17,1,3,2,32,10,"CENTRAL ILL PUBLIC SER CO","HUTSONVILLE",0,"LIGHT OIL",3253,"0M",1294,,,95,5,10,124,0,0,126,0,0,130,5,9,121,5,9,106,0,0,106,15,30,72,10,21,233,0,0,229,0,0,228,5,9,225,0,0,227,863,4,50486,"FO2","IC" 33,17,1,2,2,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"LIGHT OIL",3253,"0M",1294,,,95,276,524,1245,240,455,1295,109,257,1541,576,1050,1518,264,464,1396,272,471,1722,478,864,1170,665,1188,1390,137,250,1672,104,202,1469,-609,0,1671,636,1140,1388,864,4,50486,"FO2","ST" 33,17,1,2,3,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"HEAVY OIL",3253,"0M",1294,,,95,-878,0,41246,-869,0,41246,-953,0,41246,-789,0,41246,-6,0,41246,1105,5986,35342,1753,6017,29342,6547,17169,22153,-808,333,23977,-646,0,42084,996,1890,42084,-711,0,42084,864,4,50486,"FO6","ST" 33,17,1,2,6,32,15,"CENTRAL ILL PUBLIC SER CO","MEREDOSIA",0,"BIT COAL",3253,"0M",1294,,,95,66774,32586,105182,41839,21008,131939,15303,9402,148998,70146,32222,148546,91295,40883,144840,111244,50699,134953,137571,64325,109649,184516,85228,55561,77698,37291,62196,86881,43240,73623,78143,41045,82454,97009,48373,93368,864,4,50486,"BIT","ST" 33,17,1,2,2,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"LIGHT OIL",3253,"0M",1294,,,95,844,1577,4500,512,956,5160,1182,2043,4716,553,984,5869,379,679,5723,681,1231,5199,190,328,5578,942,1748,4784,746,1331,5217,282,508,5420,60,105,5315,649,3661,4337,6017,4,50486,"FO2","ST" 33,17,1,2,6,32,20,"CENTRAL ILL PUBLIC SER CO","NEWTON",0,"BIT COAL",3253,"0M",1294,,,95,556271,262272,366063,518547,246265,373901,546762,245831,417351,503402,237591,446819,516641,244361,536330,468640,219703,623301,560024,252360,476964,466441,225593,612105,491641,228921,632582,454181,204761,666122,359030,160358,746315,378431,180592,722338,6017,4,50486,"BIT","ST" 33,17,1,1,,41,1,"COMMONWEALTH EDISON CO","DIXON",0,,4110,"0M",1294,,100,95,1217,0,0,1001,0,0,1400,0,0,1473,0,0,1443,0,0,1109,0,0,1264,0,0,1341,0,0,1211,0,0,1365,0,0,1603,0,0,1067,0,0,868,4,50643,"WAT","HY" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,265985,0,0,516483,0,0,563772,0,0,556271,0,0,570166,0,0,541658,0,0,537742,0,0,552522,0,0,533277,0,0,383182,0,0,293985,0,0,571167,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,845089,0,0,487988,0,0,443133,0,0,527594,0,0,838888,0,0,802928,0,0,825056,0,0,825520,0,0,701927,0,0,-9715,0,0,-10027,0,0,307159,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,766116,0,0,735235,0,0,817602,0,0,779568,0,0,804172,0,0,742334,0,0,790248,0,0,800198,0,0,786058,0,0,542611,0,0,-9310,0,0,142399,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,813809,0,0,531418,0,0,813835,0,0,788528,0,0,782478,0,0,561931,0,0,750639,0,0,609485,0,0,617973,0,0,773354,0,0,684375,0,0,641459,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,1,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,777628,0,0,706122,0,0,778794,0,0,744367,0,0,679639,0,0,751346,0,0,778214,0,0,771971,0,0,190946,0,0,-8633,0,0,-8349,0,0,290089,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","ZION",0,"NUCLEAR",4110,"0M",1294,,100,95,62829,0,0,-7517,0,0,-8823,0,0,214602,0,0,763695,0,0,707962,0,0,768388,0,0,745403,0,0,742149,0,0,737928,0,0,708434,0,0,471011,0,0,885,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","LASALLE CTY",0,"NUCLEAR",4110,"0M",1294,,100,95,805795,0,0,433271,0,0,-8184,0,0,-8016,0,0,-8927,0,0,375943,0,0,773928,0,0,744199,0,0,446327,0,0,816638,0,0,792434,0,0,804502,0,0,6026,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BYRON",0,"NUCLEAR",4110,"0M",1294,,100,95,753651,0,0,166639,0,0,50362,0,0,767250,0,0,824285,0,0,786866,0,0,797334,0,0,811901,0,0,764206,0,0,832898,0,0,804540,0,0,823838,0,0,6023,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","BRAIDWOOD",0,"NUCLEAR",4110,"0M",1294,,100,95,839335,0,0,759006,0,0,840028,0,0,777131,0,0,635751,0,0,794146,0,0,802182,0,0,795885,0,0,801537,0,0,846700,0,0,810185,0,0,831152,0,0,6022,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","QUAD CITIES",0,"NUCLEAR",4110,"0M",1294,,100,95,501116,0,0,453211,0,0,58157,0,0,-5752,0,0,-5952,0,0,-5994,0,0,-6618,0,0,93771,0,0,422180,0,0,318808,0,0,77988,0,0,571746,0,0,880,4,50643,"UR","ST" 33,17,1,2,1,41,2,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,535595,0,0,493244,0,0,81638,0,0,302574,0,0,449851,0,0,27639,0,0,-3615,0,0,-4287,0,0,-5566,0,0,-5704,0,0,-5672,0,0,-5963,0,0,869,4,50643,"UR","ST" 33,17,1,2,1,41,3,"COMMONWEALTH EDISON CO","DRESDEN",0,"NUCLEAR",4110,"0M",1294,,100,95,420814,0,0,506779,0,0,533907,0,0,467390,0,0,432429,0,0,-5060,0,0,-3401,0,0,-3807,0,0,41448,0,0,138092,0,0,358426,0,0,577978,0,0,869,4,50643,"UR","ST" 33,17,1,4,2,41,4,"COMMONWEALTH EDISON CO","BLOOM",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,15589,0,0,15589,69,87,15502,0,0,15495,0,0,15495,0,0,15475,146,497,14951,792,2784,12167,0,0,15755,0,0,15755,0,0,15755,1,3,15739,865,4,50643,"FO2","GT" 33,17,1,4,2,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16437,0,0,16437,0,0,16437,145,127,16310,0,0,16310,0,0,16310,593,2028,14281,508,1365,12917,0,0,15298,0,0,15298,0,0,15298,0,0,15298,866,4,50643,"FO2","GT" 33,17,1,4,9,41,6,"COMMONWEALTH EDISON CO","CALUMET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,68,1045,0,0,8,0,0,0,0,62,540,0,0,0,0,2902,56071,0,3743,56299,0,1,46,0,106,1474,0,29,760,0,0,0,0,866,4,50643,"NG","GT" 33,17,1,2,6,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"BIT COAL",4110,"0M",1294,,100,95,79127,52566,254284,56492,34236,247898,154770,96060,204338,157819,95401,178999,77964,50034,154295,195593,125311,78949,167051,106642,75986,220876,140947,52693,111791,74002,178401,100936,63677,173394,171688,108863,144620,107184,68961,169485,867,4,50643,"BIT","ST" 33,17,1,2,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,4191,46278,0,3822,41541,0,6151,66002,0,6881,74296,0,3205,34575,0,3676,39819,0,4307,47007,0,11765,128609,0,2943,33297,0,3202,34374,0,2534,27690,0,3684,42386,0,867,4,50643,"NG","ST" 33,17,1,4,2,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"LIGHT OIL",4110,"0M",1294,,100,95,39,239,11718,31,208,15427,7,85,15342,60,196,15146,0,0,15146,145,654,14492,207,1709,12783,90,287,12496,0,0,12495,0,0,12495,5,41,12453,0,0,12451,867,4,50643,"FO2","GT" 33,17,1,4,9,41,10,"COMMONWEALTH EDISON CO","CRAWFORD",0,"NAT GAS",4110,"0M",1294,,100,95,99,3367,0,462,10721,0,90,6128,0,496,8920,0,41,832,0,2338,60078,0,1956,92769,0,6353,117178,0,232,23469,0,130,22477,0,606,26280,0,716,38106,0,867,4,50643,"NG","GT" 33,17,1,2,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,874,4,50643,"FO2","ST" 33,17,1,2,6,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"BIT COAL",4110,"0M",1294,,100,95,122495,69041,120326,93234,54624,109729,118689,69742,107396,119799,68307,78398,7077,4459,86216,111744,65001,89393,128830,75618,81101,97034,56642,114450,105402,58755,119892,105052,56846,73967,38927,23143,87158,80786,46625,136310,874,4,50643,"BIT","ST" 33,17,1,2,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,2191,22095,0,1467,15220,0,2310,24340,0,2244,23500,0,166,1970,0,2208,24000,0,2239,22730,0,1106,11930,0,1732,18230,0,1439,14430,0,1402,15430,0,1598,17620,0,874,4,50643,"NG","ST" 33,17,1,3,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,28,24,0,19,36,0,26,24,0,38,121,0,42,65,0,45,88,0,191,342,0,177,323,0,43,60,8,25,36,0,50,114,0,33,48,0,874,4,50643,"FO2","IC" 33,17,1,4,2,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,12982,0,0,12946,0,0,13461,0,0,13339,0,0,11260,0,0,11071,56,101,11058,0,0,11182,0,0,11123,0,0,11087,0,0,11349,0,0,11301,874,4,50643,"FO2","GT" 33,17,1,4,9,41,16,"COMMONWEALTH EDISON CO","JOLIET",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1395,27871,0,8945,90787,0,8183,223338,0,866,13196,0,229,3746,0,131,5138,0,234,3377,0,874,4,50643,"NG","GT" 33,17,1,2,2,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,384,4,50643,"FO2","ST" 33,17,1,2,6,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"BIT COAL",4110,"0M",1294,,100,95,520241,284540,251012,441016,243169,314690,475210,271066,278538,286729,169187,274394,417122,253105,368822,380291,234398,349806,434794,265270,338716,502962,304953,251022,375036,226403,245187,274949,166801,229512,204177,119561,295972,195022,118007,392005,384,4,50643,"BIT","ST" 33,17,1,2,9,41,17,"COMMONWEALTH EDISON CO","JOLIET 7&8",0,"NAT GAS",4110,"0M",1294,,100,95,11103,108953,0,8750,87209,0,12754,127880,0,12398,126498,0,15389,159604,0,14468,153070,0,34003,358096,0,38820,399592,0,12449,130392,0,5845,61103,0,9664,99401,0,15109,163833,0,384,4,50643,"NG","ST" 33,17,1,2,2,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,876,4,50643,"FO2","ST" 33,17,1,2,6,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"BIT COAL",4110,"0M",1294,,100,95,55770,32758,306574,225554,110119,355485,177700,87847,323621,111716,54633,362527,59730,40786,398523,326434,167542,321546,302831,139901,261736,370353,171207,168914,152028,76179,217203,146493,75067,252142,105685,62572,325669,303394,153078,287687,876,4,50643,"BIT","ST" 33,17,1,2,9,41,18,"COMMONWEALTH EDISON CO","KINCAID",0,"NAT GAS",4110,"0M",1294,,100,95,1202,16174,0,747,8607,0,913,10721,0,996,11458,0,1078,14934,0,450,5024,0,586,6470,0,981,10590,0,742,8548,0,1541,18276,0,2200,30312,0,917,10402,0,876,4,50643,"NG","ST" 33,17,1,4,2,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16204,0,0,16203,0,2,15828,0,0,15828,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,0,0,15471,877,4,50643,"FO2","GT" 33,17,1,4,9,41,19,"COMMONWEALTH EDISON CO","LOMBARD",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,216,9440,0,28,3677,0,45,1042,0,1545,52076,0,2695,90228,0,4011,66015,0,277,4570,0,110,2620,0,70,1556,0,6,1352,0,877,4,50643,"NG","GT" 33,17,1,4,2,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,0,0,16029,870,4,50643,"FO2","GT" 33,17,1,4,9,41,22,"COMMONWEALTH EDISON CO","EL JUNCTION",0,"NAT GAS",4110,"0M",1294,,100,95,45,1465,0,255,9385,0,433,17490,0,266,17646,0,201,1306,0,3974,165292,0,3141,117346,0,6577,120875,0,317,6236,0,0,0,0,0,0,0,0,0,0,870,4,50643,"NG","GT" 33,17,1,2,2,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,879,4,50643,"FO2","ST" 33,17,1,2,6,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"BIT COAL",4110,"0M",1294,,100,95,295687,209649,423935,447158,294017,440451,348046,239570,435308,212232,137447,636432,150582,105273,808681,358461,251527,710182,600064,381559,542202,449473,321219,483261,473891,314575,379942,711307,426764,426047,347462,223314,654319,369211,237119,790527,879,4,50643,"BIT","ST" 33,17,1,2,9,41,25,"COMMONWEALTH EDISON CO","POWERTON",0,"NAT GAS",4110,"0M",1294,,100,95,2163,27135,0,934,10806,0,1060,12568,0,352,4015,0,411,4960,0,1912,23178,0,1304,14277,0,344,4172,0,2982,34612,0,1175,12623,0,1089,12285,0,860,10186,0,879,4,50643,"NG","ST" 33,17,1,4,2,41,34,"COMMONWEALTH EDISON CO","SABROOKE",0,"LIGHT OIL",4110,"0M",1294,,100,95,0,0,10453,0,0,10453,0,0,10453,0,0,10453,0,0,10453,1060,4114,11113,2120,6610,10937,3819,12030,8749,0,0,10491,0,0,10491,92,332,10159,19,57,10102,882,4,50643,"FO2","GT" 33,17,1,2,6,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"BIT COAL",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1258,2813,0,64730,37523,0,49452,31868,0,82828,51049,0,0,0,0,0,0,0,886,4,50643,"BIT","ST" 33,17,1,2,9,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"NAT GAS",4110,"0M",1294,,100,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,950,35700,0,6315,65190,0,4278,50522,0,3262,35967,0,0,0,0,0,0,0,886,4,50643,"NG","ST" 33,17,1,3,2,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"LIGHT OIL",4110,"0M",1294,,100,95,45,155,416,0,0,416,77,84,332,39,37,295,68,30,266,66,86,180,134,219,491,125,84,407,40,16,391,17,100,291,19,95,196,0,0,174,886,4,50643,"FO2","IC" 33,17,1,4,2,41,35,"COMMONWEALTH EDISON CO","FISK ST",0,"LIGHT OIL",4110,"0M",1294,,100,95,1,5,23532,47,93,23145,99,257,23261,297,889,22373,31,91,22630,3411,9368,21922,4887,12963,23223,4869,20375,20364,0,0,20364,0,0,20364,335,1236,19127,365,1339,17788,886,4,50643,"FO2","GT" 33,17,1,2,2,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"LIGHT OIL",4110,"0M",1294,,100,95,895,1547,2815,3612,6129,2742,4931,8714,2873,777,1407,3668,959,1672,3660,3946,7104,2494,3955,7041,2217,5282,9737,2829,3119,5998,3784,2859,5228,2552,3518,6749,3529,1606,3513,2435,883,4,50643,"FO2","ST" 33,17,1,2,6,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"BIT COAL",4110,"0M",1294,,100,95,297287,177180,273721,300831,175220,239888,317665,191650,286982,225455,141450,324935,256271,154756,392524,243529,150801,389581,310909,188184,335255,296518,187813,197729,119579,79260,209183,165704,104633,209690,128110,85584,284788,41660,30532,414595,883,4,50643,"BIT","ST" 33,17,1,2,9,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"NAT GAS",4110,"0M",1294,,100,95,1435,14340,0,1745,16984,0,6345,64552,0,12306,127984,0,2631,26534,0,2700,27935,0,4475,45751,0,8173,86616,0,1604,17712,0,0,0,0,0,0,0,1606,20058,0,883,4,50643,"NG","ST" 33,17,1,4,2,41,40,"COMMONWEALTH EDISON CO","WAUKEGAN",0,"LIGHT OIL",4110,"0M",1294,,100,95,311,627,9084,81,252,8832,0,0,8832,62,220,8612,0,0,8612,2971,8993,7575,4093,8993,10099,3465,12846,8690,217,650,9693,15,46,9832,388,721,9111,455,101,8825,883,4,50643,"FO2","GT" 33,17,1,2,2,41,45,"COMMONWEALTH EDISON CO","WILL COUNTY",0,"LIGHT OIL",4110,"0M",1294,,100,95,1062,18762,3939,7295,13109,3758,10624,18496,3941,8221,14895,3199,9084,16531,4090,8920,16134,4050,10413,17507,4073,8717,15307,3888,6246,11354,3823,8028,14057,4581,13300,23039,4265,11454,20638,3742,884,4,50643,"FO2","ST" 33,17,1,2,6,41,45,"COMMONWEALTH EDISON CO","WILL COUNTY",0,"BIT COAL",4110,"0M",1294,,100,95,339333,214481,728644,276729,163281,493423,436182,242324,418178,363653,209416,394195,307990,182353,450891,397251,238256,419768,378522,212664,447725,475303,276214,354866,276771,166573,326404,319122,188012,314278,367545,210217,297641,236545,145482,315427,884,4,50643,"BIT","ST" 33,17,1,2,2,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"LIGHT OIL",4110,"0M",1294,,100,95,44,168,8953,149,398,8555,143,315,8240,46,189,8051,8,33,9226,37,94,9132,118,236,8896,161,333,8562,33,186,8376,121,346,8030,407,870,7160,418,907,6253,6025,4,50643,"FO2","ST" 33,17,1,2,3,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"HEAVY OIL",4110,"0M",1294,,100,95,10708,14958,858168,17136,41575,816594,22453,44431,829903,5094,19291,887973,1621,6324,924611,37801,79457,874073,46886,87834,814064,170809,316836,497228,8876,46988,565732,30191,78409,602644,60143,118667,704727,63549,126751,840744,6025,4,50643,"FO6","ST" 33,17,1,2,9,41,60,"COMMONWEALTH EDISON CO","COLLINS",0,"NAT GAS",4110,"0M",1294,,100,95,39831,890044,0,143526,2177150,0,287955,3565711,0,53575,1269470,0,42336,1034381,0,242662,3192054,0,342245,4012183,0,559661,6496563,0,22424,742913,0,72437,1176239,0,234867,2894481,0,189527,2361026,0,6025,4,50643,"NG","ST" 33,17,1,2,2,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"LIGHT OIL",5748,"0M",1294,,,95,200,374,1123,39,70,1273,99,185,1072,621,1113,2510,355,632,917,223,421,1063,108,203,1046,324,609,1093,203,369,937,141,253,1041,23,42,874,163,297,1013,887,4,50877,"FO2","ST" 33,17,1,2,6,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"BIT COAL",5748,"0M",1294,,,95,714619,413405,218343,620332,359921,257338,581511,352021,367649,615267,357331,494389,555217,326921,554836,664604,410139,566371,692201,431949,348896,616065,383985,389108,610216,368490,418929,705090,420489,495502,724030,433000,497231,719491,431637,526478,887,4,50877,"BIT","ST" 33,17,1,2,9,59,5,"ELECTRIC ENERGY INC","JOPPA STEAM",0,"NAT GAS",5748,"0M",1294,,,95,3,39,0,3,32,0,2,31,0,4,42,0,2,29,0,3,39,0,2,28,0,2,25,0,2,30,0,3,33,0,4,43,0,2,27,0,887,4,50877,"NG","ST" 33,17,1,2,1,72,1,"ILLINOIS POWER CO","CLINTON",0,"NUCLEAR",9208,"0M",1294,,,95,606581,0,0,556463,0,0,137066,0,0,-6903,0,0,405888,0,0,658164,0,0,673318,0,0,670862,0,0,558375,0,0,682367,0,0,659454,0,0,500645,0,0,204,4,51385,"UR","ST" 33,17,1,2,"C",72,20,"ILLINOIS POWER CO","BALDWIN",0,"TIRES",9208,"0M",294,"A",,95,0,0,0,1818,0,0,3181,0,0,7099,0,0,6807,0,0,5350,0,0,7244,0,0,3493,0,0,6277,0,0,7534,0,0,10681,0,0,7569,0,0,889,4,51385,"TIR","ST" 33,17,1,2,2,72,20,"ILLINOIS POWER CO","BALDWIN",0,"LIGHT OIL",9208,"0M",1294,,,95,1081,1918,2086,605,1061,2802,687,1177,4303,886,1546,2758,788,1102,2909,1035,1849,3333,1018,1819,2723,194,347,3603,519,926,3761,917,1661,2395,449,802,2830,719,1288,2830,889,4,51385,"FO2","ST" 33,17,1,2,6,72,20,"ILLINOIS POWER CO","BALDWIN",0,"BIT COAL",9208,"0M",1294,,,95,660540,312984,326606,560194,261218,347154,721218,332734,317839,1001149,461485,170294,940043,347817,194365,784737,373003,199111,952571,453263,98640,1114689,528001,10906,767993,364295,81430,684089,329233,150289,880194,419001,132828,809209,388865,132828,889,4,51385,"BIT","ST" 33,17,1,2,2,72,35,"ILLINOIS POWER CO","HAVANA",0,"LIGHT OIL",9208,"0M",1294,,,95,910,1948,1153,666,1365,840,307,580,1330,461,889,1682,716,1472,1237,733,1517,1451,606,1199,1513,905,1843,2122,693,1487,1847,988,1998,879,1035,1991,1192,678,1527,1192,891,4,51385,"FO2","ST" 33,17,1,2,3,72,35,"ILLINOIS POWER CO","HAVANA",0,"HEAVY OIL",9208,"0M",1294,,,95,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,11893,0,0,362,0,0,362,891,4,51385,"FO6","ST" 33,17,1,2,6,72,35,"ILLINOIS POWER CO","HAVANA",0,"BIT COAL",9208,"0M",1294,,,95,98112,49256,30789,118979,58411,50159,224224,102634,40379,160060,74936,66818,118264,58880,70245,116146,58574,89918,115561,56674,118529,151230,75783,90549,71688,37378,112421,88892,44663,121996,115087,53793,99387,131730,71564,99387,891,4,51385,"BIT","ST" 33,17,1,2,9,72,35,"ILLINOIS POWER CO","HAVANA",0,"NAT GAS",9208,"0M",1294,,,95,1067,12979,0,440,5089,0,63,677,0,179,1951,0,351,4046,0,300,3543,0,463,5170,0,355,4086,0,402,4873,0,559,6392,0,891,9670,0,763,9698,0,891,4,51385,"NG","ST" 33,17,1,2,2,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,139,0,0,118,0,0,98,0,0,73,0,0,226,0,0,198,0,0,171,0,0,143,0,0,124,0,0,81,0,0,206,0,0,206,892,4,51385,"FO2","ST" 33,17,1,2,6,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"BIT COAL",9208,"0M",1294,,,95,87360,41868,110995,113939,53993,91245,148496,70812,66931,128982,61958,52605,126965,61905,34055,114742,56218,13963,122662,60852,24745,143091,72106,29954,79631,39909,56695,59580,30905,81408,39508,20500,71977,116352,56957,71977,892,4,51385,"BIT","ST" 33,17,1,2,9,72,37,"ILLINOIS POWER CO","HENNEPIN",0,"NAT GAS",9208,"0M",1294,,,95,32318,326516,0,1234,12249,0,1222,12243,0,808,8187,0,416,4252,0,2050,20916,0,733,7579,0,551,5765,0,776,8044,0,87,951,0,169,1816,0,493,5034,0,892,4,51385,"NG","ST" 33,17,1,4,2,72,39,"ILLINOIS POWER CO","OGLESBY",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8629,0,0,8805,0,0,8805,894,4,51385,"FO2","GT" 33,17,1,4,9,72,39,"ILLINOIS POWER CO","OGLESBY",0,"NAT GAS",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2951,33996,0,2725,56764,0,0,0,0,110,1650,0,0,0,0,519,7497,0,894,4,51385,"NG","GT" 33,17,1,4,2,72,40,"ILLINOIS POWER CO","STALLINGS",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,895,4,51385,"FO2","GT" 33,17,1,4,9,72,40,"ILLINOIS POWER CO","STALLINGS",0,"NAT GAS",9208,"0M",1294,,,95,-5,0,0,0,0,0,-188,0,0,-57,0,0,-40,0,0,-31,0,0,556,11621,0,1460,27572,0,-38,0,0,-159,0,0,0,0,0,40,1636,0,895,4,51385,"NG","GT" 33,17,1,2,2,72,45,"ILLINOIS POWER CO","VERMILION",0,"LIGHT OIL",9208,"0M",1294,,,95,115,249,624,91,198,602,191,417,364,236,549,361,18,38,279,0,0,257,0,0,333,0,0,327,0,0,327,0,0,284,0,0,284,0,0,284,897,4,51385,"FO2","ST" 33,17,1,2,6,72,45,"ILLINOIS POWER CO","VERMILION",0,"BIT COAL",9208,"0M",1294,,,95,30154,17048,27000,17324,9743,30113,23022,12947,17166,26005,15643,2483,5797,3221,2966,977,640,2326,0,0,2326,0,0,2326,0,0,2326,0,0,2326,-194,0,2326,0,0,2326,897,4,51385,"BIT","ST" 33,17,1,2,9,72,45,"ILLINOIS POWER CO","VERMILION",0,"NAT GAS",9208,"0M",794,"A",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,35157,523154,0,35815,280703,0,5530,63136,0,-181,425,0,0,0,0,0,0,0,897,4,51385,"NG","ST" 33,17,1,4,2,72,45,"ILLINOIS POWER CO","VERMILION",0,"LIGHT OIL",9208,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-967,0,0,13,1679,0,0,0,0,0,0,0,897,4,51385,"FO2","GT" 33,17,1,2,"B",72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"WOOD",9208,"0M",294,"A",,95,0,0,0,16,0,0,178,0,0,229,0,0,90,0,0,216,0,0,58,0,0,48,0,0,0,0,0,0,0,0,0,0,0,18,0,0,898,4,51385,"WD","ST" 33,17,1,2,2,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"LIGHT OIL",9208,"0M",1294,,,95,44,79,5600,23,43,5507,47,83,5347,40,74,5395,21,44,5332,24,48,5204,12,23,5294,49,90,5144,25,46,5028,38,67,5235,0,0,4820,0,0,4820,898,4,51385,"FO2","ST" 33,17,1,2,6,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"BIT COAL",9208,"0M",1294,,,95,179203,74998,45031,134748,57471,69498,189897,79401,76252,58215,25205,85871,13578,6765,84103,56995,25313,99570,176787,75799,113318,203949,86831,93346,141728,61520,85883,170165,70959,78358,166564,67877,95046,152328,67698,95046,898,4,51385,"BIT","ST" 33,17,1,2,9,72,50,"ILLINOIS POWER CO","WOOD RIVER",0,"NAT GAS",9208,"0M",1294,,,95,2917,29530,0,3161,32758,0,2112,21194,0,620,6474,0,455,5401,0,3940,43447,0,1042,11274,0,7813,79539,0,841,8463,0,2100,20806,0,1416,13732,0,3310,34114,0,898,4,51385,"NG","ST" 33,17,1,1,,76,5,"MIDAMERICAN ENERGY","MOLINE",0,,9438,"0M",1294,,50,95,867,0,0,502,0,0,693,0,0,501,0,0,751,0,0,1306,0,0,1909,0,0,1606,0,0,1628,0,0,1499,0,0,1295,0,0,824,0,0,899,5,51406,"WAT","HY" 33,17,1,4,2,76,5,"MIDAMERICAN ENERGY","MOLINE",0,"LIGHT OIL",9438,"0M",1294,,50,95,-104,1,1972,-89,0,1972,-80,0,1972,0,0,1972,0,0,1972,0,0,1972,0,0,1972,0,0,1972,-1,0,1972,-33,0,1972,-32,0,1972,-41,0,1972,899,5,51406,"FO2","GT" 33,17,1,4,9,76,5,"MIDAMERICAN ENERGY","MOLINE",0,"NAT GAS",9438,"0M",1294,,50,95,0,0,0,0,0,0,0,0,0,0,0,0,-61,2,0,1064,18944,0,1548,27660,0,1838,32171,0,-50,33,0,-34,0,0,-33,0,0,-42,0,0,899,5,51406,"NG","GT" 33,17,1,1,,107,1,"NATIONAL HYDRO","DAYTON",0,,9366,"0A",1294,,,95,1202,0,0,1122,0,0,1638,0,0,1567,0,0,992,0,0,1383,0,0,911,0,0,403,0,0,0,0,0,0,0,0,1259,0,0,1438,0,0,901,4,52081,"WAT","HY" 33,17,1,1,,134,1,"SO BELOIT WTR GAS & ELEC","ROCKTON",0,,17535,"0A",1294,,521,95,467,0,0,390,0,0,678,0,0,788,0,0,728,0,0,505,0,0,154,0,0,655,0,0,616,0,0,694,0,0,698,0,0,536,0,0,903,4,54026,"WAT","HY" 33,17,1,2,2,151,15,"UNION ELECTRIC CO","VENICE",0,"LIGHT OIL",19436,"0M",1294,,150,95,-14,55,40501,-148,624,39877,0,0,39877,0,0,39877,1716,6693,33184,1509,6175,27009,165,558,26451,1421,5295,29829,0,0,33009,0,0,33009,63,822,32186,-598,1970,30216,913,4,52997,"FO2","ST" 33,17,1,2,9,151,15,"UNION ELECTRIC CO","VENICE",0,"NAT GAS",19436,"0M",1294,,150,95,-1037,23078,0,-714,17082,0,745,29759,0,2615,70964,0,3881,85875,0,3694,85747,0,12175,233282,0,18970,400955,0,1254,9297,0,1125,26918,0,146,10894,0,-478,8990,0,913,4,52997,"NG","ST" 33,17,1,4,2,151,15,"UNION ELECTRIC CO","VENICE",0,"LIGHT OIL",19436,"0M",1294,,150,95,-67,27,1614,-28,163,2000,-35,94,1906,-28,27,1879,-20,89,1790,-20,0,1790,170,758,2114,425,1509,1672,-19,2,1670,-26,4,1666,-54,3,1664,-53,1,1663,913,4,52997,"FO2","GT" 33,17,5,2,2,528,1,"BREESE (CITY OF)","BREESE",0,"LIGHT OIL",2188,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,934,4,50322,"FO2","ST" 33,17,5,3,2,528,1,"BREESE (CITY OF)","BREESE",0,"LIGHT OIL",2188,"0A",1294,,,95,0,54,940,18,32,905,18,33,866,22,40,817,30,30,781,17,32,740,176,328,755,261,482,780,19,35,911,19,35,872,19,34,835,13,22,811,934,4,50322,"FO2","IC" 33,17,5,3,9,528,1,"BREESE (CITY OF)","BREESE",0,"NAT GAS",2188,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,934,4,50322,"NG","IC" 33,17,5,3,2,530,1,"BUSHNELL (CITY OF)","BUSHNELL",0,"LIGHT OIL",2634,"0A",1294,,,95,0,1,838,7,14,824,0,0,824,0,0,824,0,0,824,0,0,824,29,58,766,0,0,766,0,0,766,0,0,766,0,0,766,0,0,766,935,4,50383,"FO2","IC" 33,17,5,3,9,530,1,"BUSHNELL (CITY OF)","BUSHNELL",0,"NAT GAS",2634,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,935,4,50383,"NG","IC" 33,17,5,3,2,534,1,"CARLYLE (CITY OF)","CARLYLE",0,"LIGHT OIL",3037,"0A",1294,,,95,12,16,176,0,13,163,9,11,151,9,13,138,12,10,121,51,53,404,141,155,248,144,203,381,11,12,368,10,17,351,11,18,333,0,0,333,936,4,50438,"FO2","IC" 33,17,5,3,9,534,1,"CARLYLE (CITY OF)","CARLYLE",0,"NAT GAS",3037,"0A",1294,,,95,0,3,0,0,2,0,0,2,0,0,3,0,0,3,0,1,11,0,10,64,0,4,38,0,0,6,0,0,6,0,0,0,0,0,0,0,936,4,50438,"NG","IC" 33,17,5,3,2,537,1,"CARMI (CITY OF)","CARMI",0,"LIGHT OIL",3040,"0A",1294,,,95,16,38,765,95,45,720,10,19,700,7,19,681,5,21,660,5,32,627,5,12,616,9,15,600,18,53,722,9,20,702,10,22,702,61,90,590,937,4,50440,"FO2","IC" 33,17,5,3,9,537,1,"CARMI (CITY OF)","CARMI",0,"NAT GAS",3040,"0A",1294,,,95,70,720,0,25,1014,0,15,177,0,17,350,0,16,125,0,26,162,0,15,157,0,11,87,0,40,313,0,11,92,0,8,100,0,83,985,0,937,4,50440,"NG","IC" 33,17,5,2,6,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"BIT COAL",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"BIT","ST" 33,17,5,3,2,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"LIGHT OIL",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"FO2","IC" 33,17,5,3,9,559,1,"FAIRFIELD (CITY OF)","FAIRFIELD",0,"NAT GAS",6141,"0A",1294,"S",,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,940,4,50941,"NG","IC" 33,17,5,3,2,562,1,"FARMER (CITY OF)","FARMER CITY",0,"LIGHT OIL",6192,"0A",1294,,,95,1,3,227,0,0,227,0,0,227,0,0,227,1,2,230,10,20,208,7,23,186,38,71,283,4,4,279,0,0,279,0,0,274,0,0,274,941,4,50955,"FO2","IC" 33,17,5,3,9,562,1,"FARMER (CITY OF)","FARMER CITY",0,"NAT GAS",6192,"0A",1294,,,95,3,26,0,0,0,0,0,0,0,0,0,0,6,58,0,46,504,0,0,0,0,163,1723,0,0,0,0,0,0,0,0,0,0,0,0,0,941,4,50955,"NG","IC" 33,17,5,3,2,571,1,"FREEBURG (CITY OF)","FREEBURG",0,"LIGHT OIL",6764,"0A",1294,,,95,1,2,129,17,33,214,173,298,93,12,23,70,12,23,47,13,26,197,81,158,39,110,201,200,13,177,0,8,16,161,8,10,151,8,21,130,943,4,51056,"FO2","IC" 33,17,5,3,9,571,1,"FREEBURG (CITY OF)","FREEBURG",0,"NAT GAS",6764,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,943,4,51056,"NG","IC" 33,17,5,3,2,574,1,"GENESEO (CITY OF)","GENESEO",0,"LIGHT OIL",7095,"0A",1294,,,95,2,16,314,4,11,301,0,13,290,5,13,281,0,0,294,15,26,446,65,111,339,78,133,383,0,0,389,0,0,388,0,0,389,2,4,385,944,4,51093,"FO2","IC" 33,17,5,3,9,574,1,"GENESEO (CITY OF)","GENESEO",0,"NAT GAS",7095,"0A",1294,,,95,7,250,0,2,57,0,7,527,0,2,52,0,0,0,0,93,1716,0,562,6490,0,735,8338,0,0,0,0,0,0,0,0,0,0,0,1,0,944,4,51093,"NG","IC" 33,17,5,3,2,589,1,"HIGHLAND (CITY OF)","HIGHLAND",0,"LIGHT OIL",8573,"0A",1294,,,95,21,37,490,4,5,486,0,0,486,4,9,823,0,0,825,47,78,792,28,140,634,472,536,371,24,46,371,0,0,322,11,21,755,8,15,754,946,4,51298,"FO2","IC" 33,17,5,3,9,589,1,"HIGHLAND (CITY OF)","HIGHLAND",0,"NAT GAS",8573,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,946,4,51298,"NG","IC" 33,17,5,3,2,606,15,"MCLEANSBORO (CITY OF)","MCLEANSBORO",0,"LIGHT OIL",12167,"0A",1294,,,95,19,48,201,15,25,176,12,30,322,14,21,301,14,29,272,11,29,243,22,38,205,14,48,336,43,88,246,25,45,201,27,51,325,20,34,291,948,4,51812,"FO2","IC" 33,17,5,3,2,612,10,"MASCOUTAH (CITY OF)","MASCOUTAH",0,"LIGHT OIL",11790,"0A",1294,,,95,0,0,815,0,0,815,0,0,814,1,12,803,24,59,563,0,0,563,4,56,859,30,64,967,0,0,967,0,0,967,0,0,965,0,0,966,950,4,51789,"FO2","IC" 33,17,5,3,9,612,10,"MASCOUTAH (CITY OF)","MASCOUTAH",0,"NAT GAS",11790,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,10,410,0,0,0,0,0,0,0,74,4890,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,950,4,51789,"NG","IC" 33,17,5,2,9,646,1,"PERU (CITY OF)","PERU",0,"NAT GAS",14840,"0M",1294,,,95,-15,0,0,-11,0,0,4,0,0,-13,0,0,-7,0,0,77,680,0,-9,0,0,-62,0,0,0,0,0,8,0,0,0,0,0,0,0,0,955,4,52299,"NG","ST" 33,17,5,3,2,646,1,"PERU (CITY OF)","PERU",0,"LIGHT OIL",14840,"0M",1294,,,95,-30,12,619,-13,24,595,-13,23,572,-6,24,548,-2,23,525,63,146,560,189,366,550,299,560,533,-14,0,533,-1,23,510,-22,12,498,-33,0,498,955,4,52299,"FO2","IC" 33,17,5,4,2,646,1,"PERU (CITY OF)","PERU",0,"LIGHT OIL",14840,"0M",1294,,,95,-17,5,621,-6,30,547,-28,31,516,-11,19,497,2,45,621,32,120,501,-5,0,501,78,277,563,-5,0,563,2,31,532,-6,34,498,-8,0,498,955,4,52299,"FO2","GT" 33,17,5,3,2,649,15,"PRINCETON (CITY OF)","PRINCETON",0,"LIGHT OIL",15388,"0M",1294,,,95,6,12,977,0,0,976,3,7,975,2,4,971,3,7,975,23,40,932,56,97,838,536,913,802,20,35,768,17,32,720,0,3,712,14,25,688,957,4,52397,"FO2","IC" 33,17,5,3,9,649,15,"PRINCETON (CITY OF)","PRINCETON",0,"NAT GAS",15388,"0M",1294,,,95,21,220,0,0,0,0,27,268,0,15,153,0,24,231,0,137,1308,0,636,6226,0,1790,17269,0,131,1265,0,82,827,0,0,106,0,75,752,0,957,4,52397,"NG","IC" 33,17,5,3,2,652,15,"RANTOUL (CITY OF)","RANTOUL",0,"LIGHT OIL",15686,"0A",1294,,,95,18,21,236,2,5,232,6,12,220,11,25,195,23,32,203,55,112,186,16,31,295,0,0,299,0,0,299,8,15,284,0,0,284,0,0,284,958,4,52436,"FO2","IC" 33,17,5,3,2,655,1,"RED BUD (CITY OF)","RED BUD",0,"LIGHT OIL",15772,"0A",1294,,,95,28,56,1047,2,5,1040,2,3,1034,0,1,1030,4,7,1021,15,26,993,6,9,981,14,25,956,0,0,956,0,0,953,0,0,949,0,0,948,959,4,52447,"FO2","IC" 33,17,5,3,9,655,1,"RED BUD (CITY OF)","RED BUD",0,"NAT GAS",15772,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,959,4,52447,"NG","IC" 33,17,5,3,2,661,5,"ROCHELLE (CITY OF)","N NINTH ST",0,"LIGHT OIL",16179,"0A",1294,,,95,0,0,0,5,15,779,0,0,0,3,0,771,0,0,764,12,23,741,59,110,631,112,214,527,0,0,416,0,0,415,0,24,711,0,25,686,960,4,52498,"FO2","IC" 33,17,5,3,9,661,5,"ROCHELLE (CITY OF)","N NINTH ST",0,"NAT GAS",16179,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9,98,0,490,5142,0,1012,10917,0,0,0,0,0,0,0,0,1171,0,0,705,0,960,4,52498,"NG","IC" 33,17,5,2,6,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"BIT COAL",16179,"0A",1294,,,95,182,283,317,0,0,1359,692,1123,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1498,0,0,1218,0,0,0,256,380,38,0,38,0,961,4,52498,"BIT","ST" 33,17,5,2,9,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"NAT GAS",16179,"0A",1294,,,95,2606,84363,0,2941,19198,0,1831,61444,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,927,28450,0,0,0,0,961,4,52498,"NG","ST" 33,17,5,3,2,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"LIGHT OIL",16179,"0A",1294,,,95,0,0,0,0,0,261,0,0,259,7,8,258,0,0,258,0,0,1498,0,0,1498,0,2,252,0,0,251,0,0,252,0,1,249,0,0,216,961,4,52498,"FO2","IC" 33,17,5,3,9,661,10,"ROCHELLE (CITY OF)","S MAIN ST",0,"NAT GAS",16179,"0A",1294,,,95,0,0,0,0,0,0,14,486,0,2,19,0,0,0,0,0,0,0,0,0,0,83,2186,0,0,0,0,0,0,0,10,323,0,0,0,0,961,4,52498,"NG","IC" 33,17,5,2,2,676,1,"SPRINGFIELD (CITY OF)","LAKESIDE",0,"LIGHT OIL",17828,"0M",1294,,,95,18,56,3309,-376,0,3847,35,123,3773,38,88,3309,8,21,2805,159,387,2233,123,292,1856,53,125,1641,42,111,1830,11,54,1641,16,39,2126,38,94,1910,964,4,52766,"FO2","ST" 33,17,5,2,6,676,1,"SPRINGFIELD (CITY OF)","LAKESIDE",0,"BIT COAL",17828,"0M",1294,,,95,1426,1194,2186,0,0,2186,1719,1619,3329,28971,18281,2724,3680,2612,1929,9405,6305,1526,17496,11431,1377,28851,18625,1401,2662,1934,379,394,523,1151,16922,10895,1211,7009,4720,1069,964,4,52766,"BIT","ST" 33,17,5,2,2,676,5,"SPRINGFIELD (CITY OF)","DALLMAN",0,"LIGHT OIL",17828,"0M",1294,,,95,300,585,0,76,148,0,85,123,0,184,376,0,278,544,0,98,185,0,43,85,0,46,90,0,194,381,0,69,134,0,98,191,0,62,121,0,963,4,52766,"FO2","ST" 33,17,5,2,6,676,5,"SPRINGFIELD (CITY OF)","DALLMAN",0,"BIT COAL",17828,"0M",1294,,,95,147822,79578,86892,139935,74982,79739,149373,60539,83519,84927,48213,88238,138529,75670,76947,148142,77066,75576,175826,96140,69655,181595,98487,70624,145723,79465,62150,147146,79567,66752,143295,77415,69089,189782,102492,71677,963,4,52766,"BIT","ST" 33,17,5,4,2,676,10,"SPRINGFIELD (CITY OF)","REYNOLDS",0,"LIGHT OIL",17828,"0M",1294,,,95,2,21,1499,1,19,1480,0,0,1480,22,120,1360,0,0,1360,12,77,1283,189,560,1401,222,713,1224,45,147,1077,0,0,1792,0,0,1792,21,66,1726,965,4,52766,"FO2","GT" 33,17,5,4,2,676,12,"SPRINGFIELD (CITY OF)","FACTORY",0,"LIGHT OIL",17828,"0M",1294,,,95,0,0,3559,57,277,3282,0,56,3226,0,0,3226,0,0,3226,0,15,3212,234,612,3502,337,1007,2674,0,0,0,1,40,2634,0,0,2634,6,18,2615,8016,4,52766,"FO2","GT" 33,17,5,3,2,685,1,"SULLIVAN (CITY OF)","SULLIVAN",0,"LIGHT OIL",18277,"0A",1294,,,95,64,126,1258,39,77,1181,15,30,1151,13,25,1301,205,430,1242,250,497,1265,287,569,1218,337,669,1235,211,418,1150,109,216,1446,94,187,1607,131,261,1346,969,4,52842,"FO2","IC" 33,17,5,3,9,685,1,"SULLIVAN (CITY OF)","SULLIVAN",0,"NAT GAS",18277,"0A",1294,,,95,417,4732,0,354,3991,0,175,2187,0,90,1200,0,2497,25139,0,3160,40149,0,3856,39252,0,4473,45978,0,2693,27195,0,1163,12837,0,1195,13294,0,1409,15384,0,969,4,52842,"NG","IC" 33,17,5,3,2,688,1,"WATERLOO (CITY OF)","WATERLOO",0,"LIGHT OIL",20180,"0A",1294,,,95,0,0,663,0,0,655,5,10,638,0,0,632,2,10,596,2,5,575,67,109,621,73,155,621,8,14,601,0,0,593,0,0,587,3,6,574,971,4,53196,"FO2","IC" 33,17,5,3,9,688,1,"WATERLOO (CITY OF)","WATERLOO",0,"NAT GAS",20180,"0A",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,2,17,0,3,26,0,77,912,0,83,788,0,0,0,0,0,0,0,0,0,0,0,0,0,971,4,53196,"NG","IC" 33,17,5,2,6,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"BIT COAL",20824,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,972,4,53319,"BIT","ST" 33,17,5,2,9,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"NAT GAS",20824,"0M",1294,,,95,76,1403,0,83,1602,0,0,0,0,61,1226,0,0,0,0,429,7918,0,1790,29451,0,3027,46315,0,83,1711,0,38,687,0,36,627,0,82,1282,0,972,4,53319,"NG","ST" 33,17,5,3,2,697,1,"WINNETKA (VILLAGE OF)","WINNEKA",0,"LIGHT OIL",20824,"0M",1294,,,95,9,15,1600,16,24,1576,15,27,2011,8,11,2038,15,27,2008,53,94,1879,81,146,1771,87,156,1614,39,65,1549,14,24,1525,21,36,1489,27,48,1441,972,4,53319,"FO2","IC" 33,17,8,3,2,835,5,"SOYLAND POWER COOP INC","PITTSFIELD",0,"LIGHT OIL",40307,"0M",1294,,,95,-86,19,362,-83,0,362,-84,0,362,-71,0,362,-22,0,362,-10,10,352,-13,0,352,-12,5,346,-10,0,346,-17,0,346,-27,0,346,-86,0,346,6237,4,53264,"FO2","IC" 33,17,8,3,2,835,10,"SOYLAND POWER COOP INC","WINCHESTER",0,"LIGHT OIL",40307,"0M",1294,"R",,95,-5,0,0,-4,0,0,-2,0,0,-4,0,0,-4,0,0,-3,0,0,-4,0,0,-4,0,0,-4,0,0,-3,0,0,-4,0,0,0,0,0,6236,4,53264,"FO2","IC" 33,17,8,2,2,835,20,"SOYLAND POWER COOP INC","PEARL",0,"LIGHT OIL",40307,"0M",1294,,,95,394,885,0,148,333,0,151,333,0,44,96,0,62,137,0,71,157,0,49,109,0,81,183,0,82,176,0,53,118,0,43,98,0,0,293,0,6238,4,53264,"FO2","ST" 33,17,8,2,6,835,20,"SOYLAND POWER COOP INC","PEARL",0,"BIT COAL",40307,"0M",1294,,,95,7480,4550,11696,6009,3668,13434,10811,6523,12395,9951,5859,11765,8686,5203,12183,10526,6310,12845,13881,8405,11170,12227,7501,11236,14144,8259,10522,14726,8807,6860,7789,4727,5629,-128,0,6213,6238,4,53264,"BIT","ST" 33,17,8,4,2,835,20,"SOYLAND POWER COOP INC","PEARL",0,"LIGHT OIL",40307,"0M",1294,,,95,0,0,3174,0,0,2841,0,0,2508,0,0,3312,0,0,3174,0,0,3018,198,439,4233,153,346,3704,0,0,3527,0,0,3410,0,0,3316,27,99,2920,6238,4,53264,"FO2","GT" 33,17,8,2,2,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"LIGHT OIL",17632,"0M",1294,,,95,103,235,1930,398,937,1432,119,273,2109,54,114,1931,53,121,2200,40,89,1995,197,433,1909,516,982,1299,123,278,1355,138,291,1409,148,311,1983,116,228,2304,976,4,52726,"FO2","ST" 33,17,8,2,5,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"COKE",17632,"0M",494,,,95,0,0,0,0,0,0,0,0,0,7100,5033,63,10577,7498,1080,12093,8573,883,18130,8251,340,24637,9801,5288,14975,6746,15187,18417,7751,15005,28435,11888,20057,29187,11536,36572,976,4,52726,"PC","ST" 33,17,8,2,6,865,5,"SOUTHERN ILL PWR COOP","MARION",0,"BIT COAL",17632,"0M",1294,,,95,99578,58899,343511,88921,53220,322269,67012,39679,313811,55683,32048,304374,67117,37520,306395,69155,37199,286872,84620,48755,270682,92636,56774,253743,47041,28911,281123,49349,30941,306445,68451,42435,291995,75427,45356,318016,976,4,52726,"BIT","ST" 34,26,1,2,1,21,1,"CONSUMERS POWER CO","BIG ROCK",0,"NUCLEAR",4254,"0M",1294,,95,95,49904,0,0,36125,0,0,47852,0,0,36194,0,0,51600,0,0,49866,0,0,50938,0,0,42590,0,0,45863,0,0,42825,0,0,30166,0,0,31731,0,0,1697,1,50658,"UR","ST" 34,26,1,2,1,21,1,"CONSUMERS POWER CO","PALISADES",0,"NUCLEAR",4254,"0M",1294,,95,95,583852,0,0,515599,0,0,577496,0,0,558296,0,0,349591,0,0,-2326,0,0,-2452,0,0,108144,0,0,474684,0,0,571773,0,0,561439,0,0,541156,0,0,1715,1,50658,"UR","ST" 34,26,1,1,,21,8,"CONSUMERS POWER CO","ALCONA",0,,4254,"0M",1294,,95,95,2490,0,0,1993,0,0,2704,0,0,2797,0,0,2622,0,0,1880,0,0,1902,0,0,2070,0,0,1760,0,0,2007,0,0,2376,0,0,2188,0,0,1693,1,50658,"WAT","HY" 34,26,1,1,,21,10,"CONSUMERS POWER CO","ALLEGAN",0,,4254,"0M",1294,,95,95,1357,0,0,1013,0,0,1394,0,0,1356,0,0,1410,0,0,981,0,0,946,0,0,1011,0,0,703,0,0,731,0,0,1154,0,0,994,0,0,1694,1,50658,"WAT","HY" 34,26,1,1,,21,19,"CONSUMERS POWER CO","C W TIPPY",0,,4254,"0M",1294,,95,95,5282,0,0,4150,0,0,6293,0,0,5440,0,0,5008,0,0,4326,0,0,4371,0,0,5203,0,0,4190,0,0,4573,0,0,5014,0,0,4570,0,0,1698,1,50658,"WAT","HY" 34,26,1,1,,21,25,"CONSUMERS POWER CO","COOKE",0,,4254,"0M",1294,,95,95,2367,0,0,1873,0,0,2687,0,0,2739,0,0,2539,0,0,1904,0,0,1946,0,0,2050,0,0,1790,0,0,2028,0,0,2329,0,0,2102,0,0,1700,1,50658,"WAT","HY" 34,26,1,1,,21,26,"CONSUMERS POWER CO","CROTON",0,,4254,"0M",1294,,95,95,4641,0,0,3300,0,0,4505,0,0,3399,0,0,3856,0,0,2193,0,0,2270,0,0,3054,0,0,2166,0,0,2146,0,0,3632,0,0,3031,0,0,1701,1,50658,"WAT","HY" 34,26,1,1,,21,28,"CONSUMERS POWER CO","FIVE CHANLS",0,,4254,"0M",1294,,95,95,2230,0,0,1812,0,0,2478,0,0,2479,0,0,2347,0,0,1784,0,0,1756,0,0,1920,0,0,1683,0,0,1895,0,0,2059,0,0,1961,0,0,1704,1,50658,"WAT","HY" 34,26,1,1,,21,29,"CONSUMERS POWER CO","FOOTE",0,,4254,"0M",1294,,95,95,2783,0,0,2213,0,0,3183,0,0,3182,0,0,2865,0,0,2239,0,0,2243,0,0,2387,0,0,2148,0,0,2381,0,0,2653,0,0,2564,0,0,1705,1,50658,"WAT","HY" 34,26,1,1,,21,32,"CONSUMERS POWER CO","HARDY",0,,4254,"0M",1294,,95,95,10721,0,0,6926,0,0,9337,0,0,6936,0,0,8622,0,0,4585,0,0,5199,0,0,7002,0,0,5021,0,0,5910,0,0,8935,0,0,6928,0,0,1707,1,50658,"WAT","HY" 34,26,1,1,,21,34,"CONSUMERS POWER CO","HODENPYL",0,,4254,"0M",1294,,95,95,3684,0,0,2846,0,0,4474,0,0,3916,0,0,3467,0,0,2500,0,0,2611,0,0,3740,0,0,2787,0,0,3279,0,0,4048,0,0,3474,0,0,1708,1,50658,"WAT","HY" 34,26,1,1,,21,38,"CONSUMERS POWER CO","LOUD",0,,4254,"0M",1294,,95,95,1690,0,0,1352,0,0,1882,0,0,1972,0,0,1822,0,0,1365,0,0,1424,0,0,1486,0,0,1265,0,0,1447,0,0,1654,0,0,1528,0,0,1712,1,50658,"WAT","HY" 34,26,1,1,,21,40,"CONSUMERS POWER CO","LD PUMP ST",0,"P-PUMPSTG",4254,"0M",1294,,95,95,-64589,233719,0,-57356,190758,0,-53950,195482,0,-71987,218971,0,-31897,115524,0,-60407,243003,0,-67008,223779,0,-77060,289960,0,-65130,213393,0,-70748,250623,0,-58089,197571,0,-53599,186916,0,1713,1,50658,"WAT","HY" 34,26,1,1,,21,42,"CONSUMERS POWER CO","MIO",0,,4254,"0M",1294,,95,95,1408,0,0,1113,0,0,1515,0,0,1563,0,0,1475,0,0,1064,0,0,1017,0,0,1161,0,0,991,0,0,1142,0,0,1213,0,0,1283,0,0,1714,1,50658,"WAT","HY" 34,26,1,1,,21,49,"CONSUMERS POWER CO","ROGERS",0,,4254,"0M",1294,,95,95,2752,0,0,1858,0,0,2142,0,0,2190,0,0,2657,0,0,1513,0,0,1706,0,0,2352,0,0,1808,0,0,1968,0,0,2874,0,0,2363,0,0,1716,1,50658,"WAT","HY" 34,26,1,1,,21,58,"CONSUMERS POWER CO","WEBBER",0,,4254,"0M",1294,,95,95,1914,0,0,1295,0,0,2105,0,0,2059,0,0,1759,0,0,836,0,0,748,0,0,1150,0,0,321,0,0,398,0,0,1321,0,0,928,0,0,1722,1,50658,"WAT","HY" 34,26,1,2,2,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"LIGHT OIL",4254,"0M",1294,,95,95,376,598,4499,283,447,4052,1907,3068,3484,2100,3394,4019,519,835,7113,985,1571,5531,311,508,5023,954,1563,3460,1220,1999,3604,1817,2975,4007,1351,2181,3968,1278,2102,3566,1710,1,50658,"FO2","ST" 34,26,1,2,6,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"BIT COAL",4254,"0M",1294,,95,95,688173,266958,245746,629424,250579,214312,554183,223280,253129,421848,167012,399301,597082,246292,477288,640613,258293,443746,603954,255371,374582,621938,269381,277933,502655,214049,299355,646510,274214,290900,687374,281291,323449,707593,291775,344669,1710,1,50658,"BIT","ST" 34,26,1,4,2,21,65,"CONSUMERS POWER CO","JH CAMPBELL",0,"LIGHT OIL",4254,"0M",1294,,95,95,3,18,3579,26,68,3511,5,2,3510,3,8,3501,14,105,3396,1,1,3395,89,352,3043,300,894,2816,0,0,2816,0,0,2780,12,29,2750,0,0,2750,1710,1,50658,"FO2","GT" 34,26,1,2,2,21,70,"CONSUMERS POWER CO","B C COBB",0,"LIGHT OIL",4254,"0M",1294,,95,95,119,201,0,106,183,0,15,25,0,151,260,0,15,25,0,11,20,0,1038,1787,0,616,1065,0,337,575,0,124,210,0,609,1027,0,116,197,0,1695,1,50658,"FO2","ST" 34,26,1,2,6,21,70,"CONSUMERS POWER CO","B C COBB",0,"BIT COAL",4254,"0M",1294,,95,95,171685,81705,303296,112559,55863,247433,173477,86683,160750,176230,89153,134091,171229,86036,137454,177787,81941,81399,152875,79003,128717,175209,87546,157003,143997,70790,171410,172337,82837,192966,174578,86518,170355,171682,85592,358752,1695,1,50658,"BIT","ST" 34,26,1,2,9,21,70,"CONSUMERS POWER CO","B C COBB",0,"NAT GAS",4254,"0M",1294,,95,95,921,9110,0,661,6660,0,735,7267,0,667,6715,0,387,3867,0,701,6993,0,490,4921,0,732,7388,0,377,3745,0,625,6179,0,826,8120,0,729,7244,0,1695,1,50658,"NG","ST" 34,26,1,4,9,21,71,"CONSUMERS POWER CO","B E MORROW",0,"NAT GAS",4254,"0M",1294,,95,95,21,1252,0,61,797,0,23,390,0,0,0,0,0,0,0,401,8324,0,371,9296,0,1149,25420,0,33,769,0,0,0,0,0,0,0,0,0,0,1696,1,50658,"NG","GT" 34,26,1,2,2,21,73,"CONSUMERS POWER CO","D E KARN",0,"LIGHT OIL",4254,"0M",1294,,95,95,95,155,4465,729,1211,3870,49,79,4192,1413,2315,3502,1471,2465,4192,323,528,4944,367,607,3918,3048,4972,4484,1078,1808,6755,441,718,5263,482,776,5343,208,340,5633,1702,1,50658,"FO2","ST" 34,26,1,2,3,21,73,"CONSUMERS POWER CO","D E KARN",0,"HEAVY OIL",4254,"0M",1294,,95,95,17263,41101,178646,32230,70799,144631,3259,14882,162100,3710,14639,204722,1348,4618,245418,27469,68422,203997,56064,119639,141693,95085,202123,111624,29250,66633,127707,-2403,604,148925,24960,66400,139076,24013,58612,178738,1702,1,50658,"FO6","ST" 34,26,1,2,6,21,73,"CONSUMERS POWER CO","D E KARN",0,"BIT COAL",4254,"0M",1294,,95,95,201703,83102,130505,120289,51141,110637,178823,75624,145086,292219,122156,106091,232390,98356,133690,313475,134010,126635,299344,128910,118120,335951,141190,65110,201053,86888,158744,293910,123720,122461,305821,124517,171638,315326,164076,152202,1702,1,50658,"BIT","ST" 34,26,1,2,9,21,73,"CONSUMERS POWER CO","D E KARN",0,"NAT GAS",4254,"0M",1294,,95,95,0,0,0,0,0,0,126,3486,0,7447,169068,0,10439,207703,0,12622,193255,0,50264,657734,0,101002,1316168,0,18325,257600,0,0,0,0,11460,187792,0,10071,152074,0,1702,1,50658,"NG","ST" 34,26,1,4,9,21,74,"CONSUMERS POWER CO","GAYLORD",0,"NAT GAS",4254,"0M",1294,,95,95,16,288,0,102,1836,0,15,332,0,0,0,0,0,0,0,515,9959,0,346,16592,0,3203,53480,0,4,2469,0,2,482,0,49,1700,0,0,0,0,1706,1,50658,"NG","GT" 34,26,1,4,9,21,79,"CONSUMERS POWER CO","STRAITS",0,"NAT GAS",4254,"0M",1294,,95,95,0,0,0,20,371,0,33,801,0,0,0,0,0,427,0,0,0,0,0,0,0,201,2828,0,203,2283,0,10,340,0,0,0,0,0,0,0,1718,1,50658,"NG","GT" 34,26,1,4,9,21,80,"CONSUMERS POWER CO","THETFORD",0,"NAT GAS",4254,"0M",1294,,95,95,-73,0,0,51,3065,0,-47,1801,0,-81,0,0,-11,1761,0,1724,48143,0,3577,74211,0,8176,149686,0,359,8949,0,103,2718,0,99,1204,0,-193,371,0,1719,1,50658,"NG","GT" 34,26,1,2,2,21,81,"CONSUMERS POWER CO","WEADOCK",0,"LIGHT OIL",4254,"0M",1294,,95,95,0,0,0,43,71,0,206,349,0,0,0,0,0,0,0,32,55,0,418,680,0,532,903,0,187,305,0,128,198,0,422,716,0,0,0,0,1720,1,50658,"FO2","ST" 34,26,1,2,6,21,81,"CONSUMERS POWER CO","WEADOCK",0,"BIT COAL",4254,"0M",1294,,95,95,192310,85708,45814,188975,83651,56497,190706,85006,57355,187037,83678,61516,177334,80278,58828,184095,83971,65159,155632,70970,60725,137329,63894,42030,160634,72475,36751,171924,77864,49121,139453,63086,78970,91065,41232,72440,1720,1,50658,"BIT","ST" 34,26,1,4,9,21,81,"CONSUMERS POWER CO","WEADOCK",0,"NAT GAS",4254,"0M",1294,,95,95,1,12,0,16,289,0,3,117,0,0,0,0,0,0,0,7,73,0,6,58,0,5,49,0,44,404,0,8,72,0,0,0,0,0,0,0,1720,1,50658,"NG","GT" 34,26,1,2,2,21,84,"CONSUMERS POWER CO","WHITING",0,"LIGHT OIL",4254,"0M",1294,,95,95,67,114,0,17,29,0,23,38,0,43,74,0,40,69,0,63,110,0,122,217,0,60,107,0,40,69,0,81,138,0,152,260,0,71,122,0,1723,1,50658,"FO2","ST" 34,26,1,2,6,21,84,"CONSUMERS POWER CO","WHITING",0,"BIT COAL",4254,"0M",1294,,95,95,187062,77616,89934,185094,74786,71016,195982,81145,69534,189147,74635,99630,151777,65376,105918,176546,69938,98910,159910,67506,87345,170468,72736,86560,153306,62762,86674,136600,57354,115439,140799,58953,146166,157205,64361,118168,1723,1,50658,"BIT","ST" 34,26,1,4,2,21,84,"CONSUMERS POWER CO","WHITING",0,"LIGHT OIL",4254,"0M",1294,,95,95,0,0,3383,0,0,3383,0,0,3383,0,0,3383,0,0,3383,13,41,3341,40,165,3176,586,1651,1525,5,60,3025,0,0,3037,0,0,3037,13,28,3009,1723,1,50658,"FO2","GT" 34,26,1,2,1,30,2,"DETROIT EDISON CO (THE)","FERMI 2",0,"NUCLEAR",5109,"0M",1294,,,95,57145,0,0,-2291,0,0,191112,0,0,332959,0,0,429952,0,0,318206,0,0,641286,0,0,646514,0,0,632787,0,0,629384,0,0,621966,0,0,597155,0,0,1729,1,50782,"UR","ST" 34,26,1,2,2,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"LIGHT OIL",5109,"0M",1294,,,95,438,1013,575,399,920,291,337,838,431,226,616,443,208,409,330,272,533,404,256,504,456,402,782,347,137,284,368,256,520,468,392,891,512,324,728,420,1731,1,50782,"FO2","ST" 34,26,1,2,6,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"BIT COAL",5109,"0M",1294,,,95,19026,9916,30527,16932,9323,21204,13176,7346,13858,2917,1770,26559,11229,4899,21660,24213,10667,10993,14172,6321,18792,27860,12241,19588,7804,3632,16168,5468,2542,33328,18662,9888,37691,11914,6187,42217,1731,1,50782,"BIT","ST" 34,26,1,3,2,30,5,"DETROIT EDISON CO (THE)","HARBOR BECH",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,-6,7,0,1,2,0,-9,2,0,-7,8,0,-8,5,0,10,38,0,215,410,0,-7,4,0,-10,0,0,-9,2,0,-4,5,0,1731,1,50782,"FO2","IC" 34,26,1,2,2,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,5557,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,0,0,6175,1724,1,50782,"FO2","ST" 34,26,1,2,6,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"BIT COAL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1724,1,50782,"BIT","ST" 34,26,1,2,9,30,10,"DETROIT EDISON CO (THE)","BEACON",0,"NAT GAS",5109,"0M",1294,,,95,7417,215941,0,6530,166317,0,7378,568420,0,6367,460210,0,159,197560,0,-948,134770,0,-213,186220,0,133,234260,0,-472,176150,0,2357,308180,0,7138,508130,0,9005,660050,0,1724,1,50782,"NG","ST" 34,26,1,2,2,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"FO2","ST" 34,26,1,2,6,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"BIT COAL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"BIT","ST" 34,26,1,2,9,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"NAT GAS",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1726,1,50782,"NG","ST" 34,26,1,3,2,30,30,"DETROIT EDISON CO (THE)","CONNERS CRK",0,"LIGHT OIL",5109,"0M",1294,,,95,-19,10,403,-10,35,368,-17,0,368,-7,30,339,-12,1,338,-11,0,338,3,19,320,272,571,293,4,24,270,-18,0,270,-7,17,327,-18,1,327,1726,1,50782,"FO2","IC" 34,26,1,4,2,30,36,"DETROIT EDISON CO (THE)","HANCOCK",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1730,1,50782,"FO2","GT" 34,26,1,4,9,30,36,"DETROIT EDISON CO (THE)","HANCOCK",0,"NAT GAS",5109,"0M",1294,,,95,75,1708,0,88,2028,0,-39,0,0,75,1898,0,83,2205,0,1939,35032,0,831,16862,0,4390,52333,0,-32,0,0,63,13854,0,113,1716,0,13,727,0,1730,1,50782,"NG","GT" 34,26,1,4,2,30,37,"DETROIT EDISON CO (THE)","ENRCO FERMI",0,"LIGHT OIL",5109,"0M",1294,,,95,-23,67,9592,56,437,9156,-6,95,9061,3,40,9021,46,201,8820,22,73,8747,153,611,8157,2354,5359,6937,191,530,6407,25,406,6813,-7,117,6696,7,155,6541,1729,1,50782,"FO2","GT" 34,26,1,2,6,30,40,"DETROIT EDISON CO (THE)","MARYSVILLE",0,"BIT COAL",5109,"0M",1294,,,95,3451,2200,43168,1939,1836,41332,409,1040,40292,674,1100,39192,84,409,38783,2426,2025,36758,3997,2730,34028,24162,13503,20607,-821,0,20689,1187,1161,28911,77,1281,27712,1498,1298,26498,1732,1,50782,"BIT","ST" 34,26,1,2,9,30,40,"DETROIT EDISON CO (THE)","MARYSVILLE",0,"NAT GAS",5109,"0M",1294,,,95,758,11483,0,601,14357,0,109,6809,0,104,4289,0,18,2144,0,313,6731,0,407,7237,0,958,13528,0,-821,0,0,0,12,0,16,6473,0,766,16219,0,1732,1,50782,"NG","ST" 34,26,1,2,3,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"HEAVY OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1740,1,50782,"FO6","ST" 34,26,1,2,6,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"BIT COAL",5109,"0M",1294,,,95,219134,93352,55641,159139,73272,70516,175906,83846,66525,288407,131567,61779,267048,129044,38352,279504,129178,23957,147366,70111,56314,275336,132806,20939,244758,114254,49404,262473,127544,3398,311969,149413,952,289268,136099,23606,1740,1,50782,"BIT","ST" 34,26,1,2,9,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"N&BF GAS",5109,"0M",1294,,,95,13490,1142053,0,14328,1002326,0,27337,1536596,0,24705,1839986,0,27750,1701771,0,26423,2082983,0,18771,1535930,0,35058,2287285,0,27144,2100264,0,28968,1856118,0,25198,1941541,0,33781,2350884,0,1740,1,50782,"NG","ST" 34,26,1,3,2,30,41,"DETROIT EDISON CO (THE)","RIVER ROUGE",0,"LIGHT OIL",5109,"0M",1294,,,95,-64,0,605,-7,10,595,-39,17,579,-34,0,579,-17,26,552,-25,14,538,19,67,471,444,902,433,1,70,648,-12,14,633,-30,19,614,-47,0,614,1740,1,50782,"FO2","IC" 34,26,1,2,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,708,1282,34227,1068,2121,32093,3247,6007,21655,5314,10052,11849,6361,11768,6584,7708,14388,5004,650,1226,3459,1539,2748,8759,0,0,36637,1336,2409,49346,2815,5029,26266,1015,1855,17641,1743,1,50782,"FO2","ST" 34,26,1,2,3,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"HEAVY OIL",5109,"0M",1294,,,95,67,115,41140,472,857,40929,201,356,40849,2072,3718,37736,1534,2609,35989,1725,3066,36174,1324,2443,34132,3965,6895,28662,605,1053,29986,0,0,30968,0,0,26726,0,0,26726,1743,1,50782,"FO6","ST" 34,26,1,2,6,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"BIT COAL",5109,"0M",1294,,,95,527154,296526,1904789,579915,330143,1298971,632525,361281,910345,483802,281107,948523,421431,243485,1140644,540448,305320,1495864,747171,415802,1708026,687564,368710,1805574,643125,334613,2160088,580105,305454,2328721,615025,322461,2497621,727329,387191,2536457,1743,1,50782,"BIT","ST" 34,26,1,2,9,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"NAT GAS",5109,"0M",1294,,,95,300,3042,0,495,5533,0,1182,12305,0,2642,28255,0,933,9784,0,595,6301,0,407,4362,0,801,8135,0,440,4467,0,1095,11359,0,723,7386,0,821,8584,0,1743,1,50782,"NG","ST" 34,26,1,3,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,-21,0,0,6,12,0,-10,0,0,-6,8,0,0,0,0,-7,0,0,16,41,0,267,476,0,-7,0,0,-6,5,0,-10,0,0,-10,0,0,1743,1,50782,"FO2","IC" 34,26,1,4,2,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"LIGHT OIL",5109,"0M",1294,,,95,0,0,0,0,0,0,0,0,0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1743,1,50782,"FO2","GT" 34,26,1,4,9,30,42,"DETROIT EDISON CO (THE)","ST CLAIR",0,"NAT GAS",5109,"0M",1294,,,95,-15,0,0,19,222,0,0,0,0,-42,25,0,16,175,0,-11,0,0,18,346,0,-7,0,0,14,423,0,-10,0,0,-1,11,0,-3,54,0,1743,1,50782,"NG","GT" 34,26,1,2,2,30,45,"DETROIT EDISON CO (THE)","TRENTON CNL",0,"LIGHT OIL",5109,"0M",1294,,,95,2117,5567,8586,1135,2059,8309,1543,2836,11784,1101,1955,9830,427,776,11295,1378,2621,9024,1071,2007,11104,2983,5339,10903,715,1328,11816,1060,1978,12599,597,1093,11507,590,1046,12738,1745,1,50782,"FO2","ST" 34,26,1,2,6,30,45,"DETROIT EDISON CO (THE)","TRENTON CNL",0,"BIT COAL",5109,"0M",1294,,,95,73007,53010,125588,323088,144439,89756,284495,135448,125363,339095,164391,64193,278956,138759,81062,334708,166852,92923,344600,175834,77241,387486,184117,48162,328365,176710,67462,355401,186425,60433,331742,165511,87568,334941,167769,110839,1745,1,50782,"BIT","ST" 34,26,1,4,2,30,47,"DETROIT EDISON CO (THE)","NORTHEAST",0,"LIGHT OIL",5109,"0M",1294,,,95,-29,0,2051,-9,47,2004,-31,0,2004,9,63,1940,10,85,1855,610,1799,2214,83,729,2195,1190,3965,1920,-117,0,1920,-17,238,2156,14,127,2030,-35,0,2029,1734,1,50782,"FO2","GT" 34,26,1,4,9,30,47,"DETROIT EDISON CO (THE)","NORTHEAST",0,"NAT GAS",5109,"0M",1294,,,95,-49,274,0,3,1924,0,-15,871,0,5,475,0,-70,0,0,236,15908,0,291,28798,0,1942,30986,0,-58,0,0,1,1017,0,-88,44,0,53,1442,0,1734,1,50782,"NG","GT" 34,26,1,2,2,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"LIGHT OIL",5109,"0M",1294,,,95,2386,3835,8777,2169,3558,10202,1658,2697,9630,1424,2341,9860,7134,12079,8987,1592,2699,8841,1898,3281,9073,5386,9424,7517,3930,5748,10052,1222,2050,9934,11813,19875,7429,12821,21265,9414,1733,1,50782,"FO2","ST" 34,26,1,2,6,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"BIT COAL",5109,"0M",1294,,,95,2055700,868846,1154764,1856029,799581,917721,1821777,792041,931826,1409911,611222,1269078,1619971,729115,1538754,2012769,908040,1475012,1970161,908523,1280247,1479379,696258,1214669,1343155,523545,1406013,1481424,671457,1583586,1150121,520559,1842184,1706233,735862,1745134,1733,1,50782,"BIT","ST" 34,26,1,3,2,30,48,"DETROIT EDISON CO (THE)","MONROE",0,"LIGHT OIL",5109,"0M",1294,,,95,-5,0,0,-47,52,0,-40,0,0,-48,0,0,-40,0,0,-37,0,0,22,100,0,569,1187,0,-19,27,0,-45,0,0,0,0,0,-38,48,0,1733,1,50782,"FO2","IC" 34,26,1,4,2,30,49,"DETROIT EDISON CO (THE)","SUPERIOR",0,"LIGHT OIL",5109,"0M",1294,,,95,25,276,2009,5,207,2055,-10,125,1930,-44,25,2211,-7,77,2138,483,1399,2329,184,1197,2055,1386,4813,2182,-36,0,2182,-43,0,2182,-60,47,2135,26,287,2099,1744,1,50782,"FO2","GT" 34,26,1,3,2,30,57,"DETROIT EDISON CO (THE)","COLFAX",0,"LIGHT OIL",5109,"0M",1294,,,95,-45,0,676,-31,29,648,-44,4,643,-30,10,633,-35,0,633,168,401,519,174,333,421,293,427,405,-24,19,883,-23,118,865,-35,29,571,-40,7,564,1725,1,50782,"FO2","IC" 34,26,1,3,2,30,60,"DETROIT EDISON CO (THE)","DAYTON",0,"LIGHT OIL",5109,"0M",1294,,,95,-74,0,323,-18,33,290,-38,83,206,-45,0,206,-41,0,206,-36,0,206,5,36,290,470,915,178,-7,64,114,-40,0,232,-39,24,250,-55,0,250,1727,1,50782,"FO2","IC" 34,26,1,3,2,30,67,"DETROIT EDISON CO (THE)","OLIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,-46,33,617,-34,17,600,-48,0,600,-40,0,600,-21,10,590,-28,0,590,39,98,493,571,868,617,-20,22,842,-36,0,842,-35,17,569,-54,0,569,1735,1,50782,"FO2","IC" 34,26,1,3,2,30,69,"DETROIT EDISON CO (THE)","PLACID",0,"LIGHT OIL",5109,"0M",1294,,,95,-3,0,461,-72,32,429,-45,0,429,-37,0,429,-23,18,411,-30,0,661,26,341,571,598,894,540,-20,22,814,-23,0,814,-42,14,511,-53,0,511,1737,1,50782,"FO2","IC" 34,26,1,3,2,30,71,"DETROIT EDISON CO (THE)","PUTNAM",0,"LIGHT OIL",5109,"0M",1294,,,95,-40,0,424,-28,30,636,-41,0,636,-34,0,636,-24,7,629,-26,0,629,5,48,581,482,947,574,8,71,750,-32,0,750,-31,17,502,-46,0,502,1739,1,50782,"FO2","IC" 34,26,1,3,2,30,75,"DETROIT EDISON CO (THE)","SLOCUM",0,"LIGHT OIL",5109,"0M",1294,,,95,-55,0,640,-28,26,614,-41,0,614,-37,0,614,-18,14,600,-24,7,593,68,117,476,605,1403,429,-34,238,667,-23,38,629,-34,0,629,-50,19,610,1741,1,50782,"FO2","IC" 34,26,1,3,2,30,80,"DETROIT EDISON CO (THE)","WILMOT",0,"LIGHT OIL",5109,"0M",1294,,,95,-44,0,570,-33,27,543,-45,0,543,-27,10,533,-34,0,533,-27,0,533,26,133,633,600,1086,381,-31,23,855,-24,0,855,-43,0,576,-51,0,576,1746,1,50782,"FO2","IC" 34,26,1,2,2,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"LIGHT OIL",5109,"0M",1294,,,95,4,28,3428,6,13,4092,26,53,4039,0,0,4039,0,0,4039,23,55,3901,68,1158,3743,128,266,3477,21,48,3429,-1197,0,3910,22,49,3861,7,58,3803,6035,1,50782,"FO2","ST" 34,26,1,2,3,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"HEAVY OIL",5109,"0M",1294,,,95,510,3034,359269,3284,6867,352402,1894,3715,348687,0,0,348688,0,0,348687,2494,5699,342305,1189,2612,339692,9531,18685,321008,265,585,320423,0,0,320266,2252,4634,315632,450,3744,311888,6035,1,50782,"FO6","ST" 34,26,1,2,9,30,90,"DETROIT EDISON CO (THE)","GREENWOOD",0,"NAT GAS",5109,"0M",1294,,,95,1316,47283,0,28610,362616,0,31504,369892,0,-1411,0,0,-1129,0,0,13400,184849,0,17287,229421,0,111245,1316925,0,10246,136231,0,0,0,0,24239,301018,0,988,49739,0,6035,1,50782,"NG","ST" 34,26,1,2,2,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,2577,4561,7297,158,278,8186,1554,2756,11765,504,881,11639,1160,2811,8828,908,1609,12548,1655,2968,10908,397,713,11379,1199,2120,11764,1806,3221,11213,1755,3110,10505,779,1390,10598,6034,1,50782,"FO2","ST" 34,26,1,2,6,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"BIT COAL",5109,"0M",1294,,,95,757664,423548,0,538262,298137,0,548728,305605,0,813223,442905,0,804010,430468,0,820871,441566,0,794951,433415,0,874470,484029,0,783432,434518,0,753582,413798,0,703662,384115,0,770716,420877,0,6034,1,50782,"BIT","ST" 34,26,1,3,2,30,95,"DETROIT EDISON CO (THE)","BELLE RIVER",0,"LIGHT OIL",5109,"0M",1294,,,95,-37,0,628,-22,20,608,-35,0,608,-15,17,591,-25,0,591,-20,0,591,92,114,477,628,1371,395,-9,22,539,-26,121,660,-18,0,660,-51,0,660,6034,1,50782,"FO2","IC" 34,26,1,2,6,30,100,"DETROIT EDISON CO (THE)","CEN STORAGE",0,"BIT COAL",5109,"0M",1294,,,95,0,0,1269012,0,0,2228865,0,0,2946474,0,0,3197363,0,0,2993113,0,0,2587784,0,0,1484314,0,0,2112586,0,0,1678082,0,0,1488877,0,0,1413995,0,0,930358,8807,1,50782,"BIT","ST" 34,26,1,1,,33,5,"EDISON SAULT ELECTRIC CO","EDSON HYDRO",0,,5659,"0M",1294,,,95,19592,0,0,15547,0,0,15883,0,0,17286,0,0,18650,0,0,15539,0,0,15236,0,0,18725,0,0,15823,0,0,19459,0,0,20771,0,0,18274,0,0,1751,1,50862,"WAT","HY" 34,26,1,3,2,33,18,"EDISON SAULT ELECTRIC CO","MANISTIQUE",0,"LIGHT OIL",5659,"0M",1294,,,95,-17,0,356,39,93,264,8,48,216,14,59,333,10,29,304,-1,115,289,-2,15,274,14,45,228,1,25,203,-1,15,366,0,38,328,18,80,249,1750,1,50862,"FO2","IC" 34,26,1,2,1,54,1,"INDIANA MICHIGAN POWER CO","D C COOK",0,"NUCLEAR",9324,"0M",1294,,363,95,741655,0,0,690658,0,0,762188,0,0,736714,0,0,759369,0,0,571230,0,0,215173,0,0,0,0,0,0,0,0,5231,0,0,400663,0,0,513907,0,0,6000,1,57745,"UR","ST" 34,26,1,2,1,54,2,"INDIANA MICHIGAN POWER CO","D C COOK",0,"NUCLEAR",9324,"0M",1294,,363,95,807133,0,0,590722,0,0,774579,0,0,673765,0,0,783849,0,0,754340,0,0,759411,0,0,636809,0,0,461988,0,0,791419,0,0,775854,0,0,792659,0,0,6000,1,57745,"UR","ST" 34,26,1,1,,54,5,"INDIANA MICHIGAN POWER CO","BERRIEN SPS",0,,9324,"0M",1294,,363,95,2739,0,0,1862,0,0,2963,0,0,1589,0,0,0,0,0,507,0,0,48,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1753,1,57745,"WAT","HY" 34,26,1,1,,54,10,"INDIANA MICHIGAN POWER CO","BUCHANAN",0,,9324,"0M",1294,,363,95,1636,0,0,1617,0,0,1789,0,0,1926,0,0,2010,0,0,1668,0,0,1549,0,0,1775,0,0,1157,0,0,1044,0,0,1601,0,0,1633,0,0,1754,1,57745,"WAT","HY" 34,26,1,1,,54,15,"INDIANA MICHIGAN POWER CO","CONSTANTINE",0,,9324,"0M",1294,,363,95,609,0,0,520,0,0,626,0,0,584,0,0,568,0,0,380,0,0,291,0,0,327,0,0,221,0,0,160,0,0,483,0,0,395,0,0,1760,1,57745,"WAT","HY" 34,26,1,1,,54,20,"INDIANA MICHIGAN POWER CO","MOTTVILLE",0,,9324,"0M",1294,,363,95,786,0,0,612,0,0,875,0,0,831,0,0,783,0,0,502,0,0,393,0,0,637,0,0,342,0,0,301,0,0,693,0,0,525,0,0,1761,1,57745,"WAT","HY" 34,26,1,1,,95,5,"NORTHERN STATES POWER CO","SAXON",0,,13781,"0M",1294,,410,95,1021,0,0,771,0,0,1042,0,0,1101,0,0,1129,0,0,1082,0,0,1037,0,0,608,0,0,432,0,0,885,0,0,908,0,0,929,0,0,1756,5,52107,"WAT","HY" 34,26,1,1,,95,10,"NORTHERN STATES POWER CO","SUPERIOR FL",0,,13781,"0M&quo