Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

2

Kotzebue Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutzKosmo Solar JumpKotzebue Electric

3

Kotzebue Wind Project III | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJV JumpJumpKotzebue

4

E-Print Network 3.0 - assessment kotzebue wind Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

kotzebue wind Search Powered by Explorit Topic List Advanced Search Sample search results for: assessment kotzebue wind Page: << < 1 2 3 4 5 > >> 1 This introduction to wind power...

5

Final Technical Report - Kotzebue Wind Power Project - Volume II  

SciTech Connect (OSTI)

The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and community outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.

Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker

2007-10-31T23:59:59.000Z

6

alaska fairbanks fairbanks: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

7

Graduate Programs University of AlaskaFairbanks  

E-Print Network [OSTI]

Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

8

Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

9

North Campus Plan University of Alaska Fairbanks  

E-Print Network [OSTI]

and Wildlife Carol Adamczak, Senior Project Manager, Division of Design and Construction, Facilities Services Pamela Davis, Executive Director, Development Office Terry Dowdy, Director, Environmental Health & Safety, Fairbanks North Star Borough Luke Hopkins, Manager, Facilities Services Katie Murra, Graduate student Ian

Hartman, Chris

10

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details...

11

Fairbanks Geothermal Energy Project Final Report  

SciTech Connect (OSTI)

The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

2013-05-31T23:59:59.000Z

12

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY  

E-Print Network [OSTI]

UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

Wagner, Diane

13

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not...

14

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Abstract Not available. Author Brian D. Fairbank...

15

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Flow Test Activity Date 2002 - 2002 Usefulness not useful...

16

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering Ltd, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date...

17

Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Geothermal Area...

18

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Home Exploration Activity: Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

19

Reflection Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

dipping faults that become less steep with increasing depth. References Fairbank Engineering Ltd (2003) Phase I Report U.S. DOE GRED II Program Additional References Retrieved...

20

Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Aerial Photography At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

22

Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,...

23

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Exploration Activity Details Location...

24

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity...

25

anchorage alaska installation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

26

University of Alaska Fairbanks [A COMPARITIVE ANALYSIS OF  

E-Print Network [OSTI]

] The Fairbanks community is deeply dependent on oil as a source of heat and electrical generation. As the price of crude oil continues its ascent that began in 2005, the community members of the Fairbanks North Star Borough seek out ways to decouple their cost of energy from the price of crude. The most obvious

Wagner, Diane

27

Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

be due to a geothermal system at depth. One of the anomalies was interpreted to be from fluids up to 200 degrees Celsius. References Fairbank Engineering Ltd (2003) Phase I...

28

Ocean Acidification Workshop in Anchorage | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ocean Acidification Workshop in Anchorage Ocean Acidification Workshop in Anchorage December 2, 2014 9:00AM to 6:00PM AKST This workshop aims to bring concerned andor interested...

29

Fractal electronic devices: simulation and implementation M S Fairbanks1  

E-Print Network [OSTI]

Fractal electronic devices: simulation and implementation M S Fairbanks1 , D N McCarthy2 scattering, which caused the electrons to flow through micro and nano-scale devices along fractal in which novel electronic devices feature a fractal distribution of conducting channels. We will focus

Taylor, Richard

30

Anchorage Roundtable Summary | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaskaMoney |ofAnalytical ServicesAnchorage

31

E-Print Network 3.0 - anchorage independent functions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marine Science Symposium. January 20-23, 2008, Anchorage, Alaska. Goetz, K.T., D.J. Rugh, and J... at the Alaska Marine Science Symposium. January 20-23, 2009, Anchorage,...

32

E-Print Network 3.0 - anchorage alaska usa Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4101 University Drive, Anchorage, AK 99508, U.S.A... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in Alaska add up...

33

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

34

PERFORMANCE '13University of Alaska Anchorage TOM CASE, Chancellor  

E-Print Network [OSTI]

PERFORMANCE '13University of Alaska Anchorage #12;TOM CASE, Chancellor ELISHA ("BEAR") R. BAKER IV, Interim President (3/2012-4/2013) Jacob Ng, President (effective 7/2013) UNIVERSITY GOVERNANCE FACULTY on Diversity 28 Focus on Safety #12;ELISHA "BEAR" R. BAKER IV, Ph.D., was named provost and vice chancellor

Pantaleone, Jim

35

Anchorage Municipal Light and Power | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage Municipal Light and

36

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,  

E-Print Network [OSTI]

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

Harris, David Money

37

The history of the anchorage at Serce Liman, Turkey  

E-Print Network [OSTI]

, the shore resumes its normal hill profile. The recess ends in a ridge, extending underwater several tens of meters toward the center of the bay; this ridge figured largely in the survey. Beyond the ridge, the shoreline curves back convexly to the dog...-leg. It was in this section that the slope floor was sur- veyed extending from the. ridge into the harbor for 56 meters. That this area was used as an anchorage in antiquity is testified by the number of anchors recovered: Figure 2. Serge Liman harbor. a stone anchor, a...

Slane, Dorothy Anne

1982-01-01T23:59:59.000Z

38

E-Print Network 3.0 - anchorages Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology 15 LIFE SCIENCES SEMINAR Kevin McCracken Summary: Field Station for research. Joe Margraf, 98-916, to Anchorage to attend the 135th Annual Meeting... of the American...

39

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

40

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775-6340  

E-Print Network [OSTI]

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775 AGREEMENT for the Review of Infrastructure, Sustainability and Energy Board Between the Associated Students of Sustainability, Faculty Senate, and Staff Council March 2011 Preamble In order to promote investment in energy

Ickert-Bond, Steffi

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000  

E-Print Network [OSTI]

Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

Sites, James R.

42

Kotzebue Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida:KenyonKosciusko County Rural E M

43

Kotzebue Wind Project 2012 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJV JumpJump to:

44

Kotzebue Wind Project I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJV JumpJump to:Elec.

45

Kotzebue Wind Project II | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJV JumpJump

46

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

47

Published by the Arctic Research Consortium of the United States 3535 College Road Suite 101 Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia  

E-Print Network [OSTI]

· Fairbanks, AK 99709 Arctic Research at the University of Northern British Columbia Establishedin1994 Columbia Prince George Campus 3333 University Way Prince George, BC V2N 4Z9 Canada 250-960-5555 sderywithconsiderablepublicendorsementandenthusiasm,theUniver- sity of Northern British Columbia (UNBC) has grown into one of Canada's premier

Dery, Stephen

48

Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador  

E-Print Network [OSTI]

in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow anchorage in soils with low bulk density and in environments with high wind speeds. Abbreviations: AR m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all

Lehmann, Johannes

49

The multi-filter rotating shadowband radiometer (MFRSR) - precision infrared radiometer (PIR) platform in Fairbanks: Scientific objectives  

SciTech Connect (OSTI)

The multi-filter rotating shadowband radiometer (MFRSR) and precision infrared radiometer (PIR) have been employed at the Geophysical Institute in Fairbanks to check their performance under arctic conditions. Drawing on the experience of the previous measurements in the Arctic, the PIR was equipped with a ventilator to prevent frost and moisture build-up. We adopted the Solar Infrared Observing Sytem (SIROS) concept from the Southern Great Plains Cloud and Radiation Testbed (CART) to allow implementation of the same data processing software for a set of radiation and meteorological instruments. To validate the level of performance of the whole SIROS prior to its incorporation into the North Slope of Alaska (NSA) Cloud and Radiation Testbed Site instrumental suite for flux radiatin measurements, the comparison between measurements and model predictions will be undertaken to assess the MFRSR-PIR Arctic data quality.

Stamnes, K.; Leontieva, E. [Univ. of Alaska, Fairbanks (United States)

1996-04-01T23:59:59.000Z

50

2006 National Marine Fisheries Service Registered Tanner List For further information, please contact Agent Les Cockreham in the NMFS Enforcement Anchorage Office at (907) 271-3021 or  

E-Print Network [OSTI]

Road Juneau Alaska, 99801 Jacob Gary Alpha Fur Dressing 11211 Old Seward Highway Anchorage Alaska, 99515 Stewart Richard The Bear's Den 4828 Palermo Drive, 1 S.W. Olympia Washington, 98502 Murray Remie P

51

The U.S. Department of Energy Office of Indian Energy Policy and Programs, Anchorage, Alaska, Roundtable Summary  

SciTech Connect (OSTI)

The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15th, at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director?Policy of the Office of Indian Energy, represented DOE. Approximately twenty?seven people attended the meeting, including representatives of three native Alaskan villages, four Alaskan tribal corporations representing more than 40 tribal governments, as well as representatives from tribal associations and conferences. Interested state, federal, and non?profit representatives also were present. A full list of attendees is at the end of this summary. The meeting was facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute).  

none,

2011-04-14T23:59:59.000Z

52

3-D Tracking of Shoes for Virtual Mirror Applications Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, June 2008.  

E-Print Network [OSTI]

and Pattern Recognition, Anchorage, Alaska, June 2008. P. Eisert, P. Fechteler, J. Rurainsky Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute Einsteinufer 37, D-10587 Berlin, Germany peter.eisert@hhi.fraunhofer in two stores, one at the Champs Elys´ees, Paris, the other in Lille, France. At their innovation center

Eisert, Peter

53

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Kotzebue  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

54

Kotzebue Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJV

55

Kotzebue Wind Project Phase II & III | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone Clean Air JumpMaine. Its FIPSJVII & III Jump

56

Office of Human Resources 907-450-8200 (phone) 907-450-8201 (fax)  

E-Print Network [OSTI]

Office of Human Resources 907-450-8200 (phone) 907-450-8201 (fax) 212 Butrovich Building PO Box-6000147 Address: 910 Yukon Dr, Ste 212 or PO Box 755140 Fairbanks AK 99775-5140 Employer Phone Number: (907) 450 (907) 450-8200 UA Anchorage Human Resource Services (907) 786-4608 UA Fairbanks Human Resources (907

Pantaleone, Jim

57

Health studies indicate MTBE is safe gasoline additive  

SciTech Connect (OSTI)

Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

Anderson, E.V.

1993-09-01T23:59:59.000Z

58

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

59

University of Alaska -Fairbanks March 2, 2012  

E-Print Network [OSTI]

and mathematical modeling to the design and construction of biological parts, devices, and systems with applications in energy, medicine, and technology. www.bio.davidson, March 4, 2012 #12;Biofuels from Algae CO -neutral2 1,000,000 gallons in 2008 Sunday, March 4, 2012 #12

Campbell, A. Malcolm

60

University of Alaska Fairbanks Business Report  

E-Print Network [OSTI]

Routine Unscheduled PMI 258 5,879 2 1,604 B. Billing Summary by Work Code: July 1 ­ December 31,777 7% PMI's $419,064 10% Urgent Callin's & Standby's (After hours) $12,814 0% $4,232,294 Maintenance & Repair 83% Renewal/ Replacement 7% PMI's 10% Urgent Callin's Standyby's 0% FS Business

Wagner, Diane

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

University of Alaska Fairbanks Utility Development Plan  

E-Print Network [OSTI]

Threshold 0.65 Boiler1 Capacity HPSteamPerHr Capacity Units Per Hr 45 Boiler1 Efficiency MlbsPerTonCoal Based on UAF Historic Data 10.9 Boiler1 Efficiency MlbsPerMMBtu =10.9 / (7,800 Btu per lbm *2000 lbs perPerHr Capacity Units Per Hr 45 Boiler2 Efficiency MlbsPerTonCoal Based on UAF Historic Data 10.9 Boiler2

Hartman, Chris

62

Fairbanks Geothermal Energy Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof EnergyFactDepartment ofCeramics

63

Fairbanks, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHome Kyoung's picture Submitted

64

UNIVERSITY OF ALASKA ANCHORAGE INTERNSHIP REPORT  

E-Print Network [OSTI]

locations: FBI Headquarters in Washington, DC, the FBI Academy in Quantico, VA, or the Criminal Justice division within the FBI, performing many critical tasks for the bureau, as well as many other law Fingerprint Identification System (IAFIS). Every day, the FBI receives over 55,000 fingerprint card requests

Mock, Kenrick

65

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 20092009 | Open2008

66

Anchorage Solar Tour | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal Register / Vol. 71,Research

67

UNITED WAY OF ANCHORAGE CODE WEB ADDRESS United Way of Anchorage 71830 www.liveunitedanchorage.org  

E-Print Network [OSTI]

.pathwaycenter.org Renewable Energy Alaska Project 88020 alaskarenewableenergy.org Special Olympics Alaska Inc 55282 www 35694 www.hfhanchorage.org Kids' Corps, Inc. 30881 kcialaska.org Lutheran Social Services of Alaska Inc

Pantaleone, Jim

68

UNIVERSITY OF ALASKA FAIRBANKS April 2012 Chancellor's Report  

E-Print Network [OSTI]

in Edinburgh, Scotland, lets users model oil reservoirs, wells and pipeline networks. In Progress Marketing designed to position UAF in relationship to other universities. The research included focus groups, key risks and raises funds for research. Construction projects planned for this summer include construction

Ickert-Bond, Steffi

69

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Fairbanks  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well as other DOE-related activities in the region. DOE, in conjunction with several other federal agencies, will host seven tribal consultation sessions and seven stakeholder outreach meetings between October and December 2014.

70

National Strategy for the Arctic Tribal Consultation Session: Fairbanks  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

71

Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was conducted on the western flank of Blue Mountain. SP Profile...

72

Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County, Virginia:

73

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge,Dinwiddie County,|Open

74

Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma.Groom EnergyNannini,

75

National Strategy for the Arctic Tribal Consultation Session: Fairbanks |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation,

76

Designing for Energy Conservation - The Cypress Fairbanks Medical Center Hospital  

E-Print Network [OSTI]

,000 'quare foot is heat gain. The longest dbeneions of the Cypress cmprised Of three 40-bed medical'sur&ical In-patient Medical Center are oriented northwest and southeast. care nureing floors, and the first floor which houses All of the external windows... are 1/4" solar bronze administrative, business, dienostic, treatment and and internally ehded by 3" wide vertical blinds. ancillary services. The hospital is adjoined by a First floor windows are ehaded by a -$-foot overhang. 40,000 square foot med...

Wiernik, L. B.; Ranzau, P. A.

1984-01-01T23:59:59.000Z

77

Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:

78

Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouth Dakota) JumpSkyonic JumpOpenFacility |2003) |

79

Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming:Reeves County,Ltd, 2003) | Open Energy

80

Fairbanks North Star Borough, Alaska: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-WellValley Of

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource Evaluation AndwebsiteLtd, 2003) | Open

82

Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to:IowaResource(Nannini, 1986) Jump to:Ltd, 2003) |

83

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexas | DepartmentIllinoisMinnesota

84

City of Fairbank, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLakeWyomingDurant, IowaEstelline, South

85

Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°,St.Stanly

86

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationTheInformation

87

Fairbanks Ranch, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump to: navigation, search Equivalent URI

88

Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: EnergyFeilden Clegg BradleyFerrotec CorpFidelis Energy2003) |

89

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory

90

Chukchi Campus Master Plan Per Board of Regents  

E-Print Network [OSTI]

of Alaska Strategic Direction Initiative 48 #12;Student and teachers set up a Kotzebue wind turbine. #12

Hartman, Chris

91

ShoreZone in the Arctic 8,000 km of Coastal Habitat Mapping Cathy Coon, Bureau of Ocean Energy Management, catherine.coon@boem.gov  

E-Print Network [OSTI]

Deadhorse Kotzebue Sound BOEM North Slope Imagery - 1,900 km BOEM North Slope Shore Stations National Park a continental-scale characterization of the arctic shoreline and support planning efforts related to oils spills Krusenstern, north of Kotzebue #12;Point Lay Wales Kotzebue Wainwright Cape Lisburne Kaktovik BARROW Point

92

anchorage independent growth: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hinton, Geoffrey E. 42 GEOLOG is an independent and privately owned oilfield services company with a strong track record of growth and international Specialized in Surface...

93

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies through verify storage permanence and track plume movement. * Geospatial data resources-Developing resources to improve access to geospatial data for public...

94

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

95

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Core Flow Laboratory Background Sequestration of CO 2 and production of coalbed methane (CBM) can affect the strata in various ways. For example, coal can swell...

96

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

97

Project Name Work Description -as Approv Aug 09 Anchorage Harbor,  

E-Print Network [OSTI]

; perform energy upgrades; replace underground fuel tank and heating system to meet Environmental CompliancePrimary State Corps District Project Name Work Description - as Approv Aug 09 Planned Allocation excessive maintenance. Reduces future maintenance costs. 1,000,000 AL Mobile Alabama River Lakes, AL Award 8

US Army Corps of Engineers

98

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

99

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information

100

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 | Open Energy

102

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 | Open

103

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 | OpenJanuary

104

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |

105

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October 2008 |

106

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October 2008

107

Anchorage Borough, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:Operations

108

01240_NStransportation | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho...

109

Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy  

SciTech Connect (OSTI)

The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

David O. Ogbe; Shirish L. Patil; Doug Reynolds

2005-06-30T23:59:59.000Z

110

Asynchronous or synchronous? A misleading choice. Scott Fairbanks and Simon Moore  

E-Print Network [OSTI]

elements of so- called asynchronous design in the construction of a so-called synchronous system placing equal delays in all pipeline stages. GasP mixes design elements from the asynchronous design style This work suggests that synchrony and asynchrony are not design choices but rather a collection of design

Moore, Simon

111

(Photograph by Jan Curtis; taken at Fairbanks, Alaska) Prepared by: a good Ph-223 student  

E-Print Network [OSTI]

a magnetosphere. While at the same moment the earth's strongest magnetic area (the North and South pole) attracts, it generates electrical energy. This energy is produced when the magnetic field of the solar wind's charged that appear in the upper and southern region of the Earth's poles. Auroras that appears in the North Pole

La Rosa, Andres H.

112

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric Coop, Inc JumpTanaka, 1995) |Open Energy

113

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDSWawarsing,Webb County, Texas:75692°,WedellWelcomeEnergy|

114

Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross,  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective Jump to:the NatureOpenOpenAlum Area (DOE

115

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTI PFAN)

116

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar Power Plant JumpInformation SSMountain

117

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003)  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vs ActualInformationAlum Area (DOE GTP) Jump|

118

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&D Fac

119

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&D

120

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National LaboratoryR&DMost

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National

122

University of Alaska, Fairbanks Dr. Alexander Keller Hirsch MAYmester 2013 Office Location: 601B Gruening Bldg  

E-Print Network [OSTI]

an examination of contemporary moral issues and dilemmas ranging from capital punishment, to abortion, cloning which keep it from being an `A'; or it may be all- around good work, free of major problems but lacking

Sikes, Derek S.

123

Alaska Justice Forum Page 1 Summer 1995 UNIVERSITY OF ALASKA ANCHORAGE Vol. 12, No. 2  

E-Print Network [OSTI]

.5 Other social concerns Child care, child abuse, elderly 0.4 Fishing and hunting Fishing industry has gone problem facing your community today? N=605 Substance abuse Drugs, alcohol, substance abuse, related crime

Pantaleone, Jim

124

To appear: Proceedings of the 28 IEEE Photovoltaic Specialists Conference, Anchorage, September 19-22, 2000  

E-Print Network [OSTI]

. ABSTRACT We present infrared transmittance and reflection modulation spectra for changes in the reverse in the intrinsic, a-Si:H layer of the cell [8]. The much weaker infrared signal is nearly independent of VDC. The weak, negative infrared response is due to charging and discharging of dopant and defect levels near

Schiff, Eric A.

125

Fall 1997 UNIVERSITY OF ALASKA ANCHORAGE Vol. 14, No. 3 A Publication of the  

E-Print Network [OSTI]

judges and administrators, human resources specialists, academic researchers, criminal and civil meetings; and contacting community groups and private individuals by letter and telephone. Findings system workforce $10,000 $105,000 Develop and update affirmative action plan and outreach ($5

Pantaleone, Jim

126

anchorage-independent growth response: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

apoptosis is a prerequisite for TGF-?1induced fibrosis and remodeling. Key words: asthma pulmonary fibrosis fibrosis reversibility airway remodeling Chun Geun Lee;...

127

Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information Alaska

128

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - April  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October

129

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - August  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October2008 |

130

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - July  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October2008

131

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - June  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009 |October20082008

132

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 2009

133

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 20092009 | Open

134

Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - May  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe TomovesFebruary 20092009 | Open2008 |

135

Pmceedingsof the American ControlConference Anchorage,AK May8-10,2002  

E-Print Network [OSTI]

, launch vehicles, flight simulators, turbine control, and numerous military applications. The electronic components provide the desired flexibility, while the hydraulic part of an EHSS is responsible for success- ful power management. The main components of the power assembly of an EHSS are its hydraulic power

Jovanovic, Mihailo

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastair

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethane

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska NativeAlastairMethaneS

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaska

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and Control

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors and

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors andNon-Thermal

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensors

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A 3DAlaskaSensorsGeomechanical

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - A

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,

147

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space Geodesy,GEOSEQ:

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining Space

149

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification of

150

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining SpaceQuantification

151

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombining

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq III

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seq

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor CO2

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-Seqfor

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf of

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe Coal-SeqforGulf

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningThe

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA CONTACTS Traci

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA CONTACTS

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRA

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurements of

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurements

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz - ACombiningTheGSRAMeasurementsof

165

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic and Geomechanical

167

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic and

168

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA CONTACTS Traci

169

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA CONTACTS

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRA

171

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRABeneficial Use

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic andGSRABeneficial

173

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -Actualistic

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducing Uncertainties

175

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducing

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducingExperimental

177

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz -ActualisticReducingExperimentaland

178

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport Viz

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing a New

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing a

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and Testing

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2 at the

183

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2 at

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and TestingCO2

185

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping and

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplified Predictive

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplified

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedof Improved

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedof

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping andSimplifiedofAdvanced

191

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototyping

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic Assessment of

193

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic Assessment

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematic

195

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField Test and

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField Test

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicField

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport VizPrototypingSystematicFieldReactive

199

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirport

200

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory - Management

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory -

202

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne National Laboratory -Technology

203

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0 Background

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0CONTACTS

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen 2.0CONTACTSand

207

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGen

208

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGenCONTACTS J.

209

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne NationalFutureGenCONTACTS

210

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonne

211

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George Guthrie Focus

212

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George Guthrie

213

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George GuthrieCONTACTS

214

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS George

215

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid Performance

216

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid

217

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid NFflow

218

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid NFflow

219

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybrid

220

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS GeorgeHybridScience

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTS

222

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia Powell Director

223

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia Powell

224

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia PowellIntegrated

225

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthia

226

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthiaCONTACTS Bryan

227

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovationAirportArgonneCONTACTSCynthiaCONTACTS

228

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the

229

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell Director

230

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

231

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

232

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell DirectorOFFICE

233

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia Powell

234

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia PowellDeepwater

235

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT Cynthia

236

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional Resources

237

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional

238

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional Sciences

239

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventional

240

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT CynthiaUnconventionalSystems

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENT

242

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICE OF

243

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICE

244

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICE OF

245

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICE

246

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science OFFICEOFFICEFuel

247

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy Science

248

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy ScienceEvaluation of

249

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy ScienceEvaluation

250

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergy

251

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic Growth Area

252

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic Growth

253

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic GrowthOFFICE OF

254

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic GrowthOFFICE

255

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategic

256

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolvents for

257

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolvents

258

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolventsMembranes

259

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND DEVELOPMENTEnergyStrategicSolventsMembranes

260

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH AND

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus Area Lead

262

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus Area

263

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCO 2

264

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCO

265

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCOCONTACTS

266

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus AreaCOCONTACTS

267

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie Focus

268

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie FocusStatistical

269

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Guthrie

270

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwest Regional

271

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwest

272

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwestJoshua Hull

273

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George GuthrieSouthwestJoshua

274

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George

275

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WV 26507

276

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WV

277

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegional

278

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegional

279

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegionalPO Box

280

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown, WVRegionalPO

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OF RESEARCH ANDCONTACTS George Morgantown,

282

P8.13 CONTRAIL STUDIES AND FORECASTS IN THE SUBARCTIC ATMOSPHERE ABOVE FAIRBANKS, Martin Stuefer* and Gerd Wendler  

E-Print Network [OSTI]

, the radiative characteristics of contrails are similar to those of thin layers of naturally occurring cirrus are of interest for scientists investigating atmospheric radiation transfer processes, the chemical state of temperatures in the lower atmosphere by reducing the net radiation to the surface during the day and reducing

Stuefer, Martin

283

U.S. DEPARThlFNT OF ENFRGY EERE PROJECT MANAGEMENT CENTER NFPA...  

Broader source: Energy.gov (indexed) [DOE]

PROJECT MANAGEMENT CENTER NFPA DETEIU.llNATION RECIPIENT:Fairbanks North Star Borough PROJECT TITLE: Fairbanks Geothermal Energy Project Page 1 of2 STATE: AK Funding Opportunity...

284

A Comparison of Two Gasoline and Two Diesel Cars with Varying...  

Broader source: Energy.gov (indexed) [DOE]

(Sweden) Volkswagen (Sweden) F F Klaus Klaus - - Peter Schindler, Volkswagen, Germany Peter Schindler, Volkswagen, Germany F F John Fairbanks, DOE John Fairbanks, DOE 2002...

285

Torrey Pine and Climate Change  

E-Print Network [OSTI]

San Diego, Ca. , 98pp. Peltier, W.R. , and R.G. Fairbanks,24,000 years according to Peltier and Fairbanks, 2006 (black

Berger, Wolfgang H

2007-01-01T23:59:59.000Z

286

Fishery Notes Alaska Plans New  

E-Print Network [OSTI]

IS remote, but there is plenty of good water and room for future expansion. The Kotzebue hatchery was added was severe," he said. Since high salinities Waste Heat Boosts Growth of Salmon Use of waste heat from

287

COMMUNITY RESOURCES ALCOHOL & OTHER DRUGS Akeela, Inc. 2804 Bering St., Anchorage 99503; 562-4556; www.akeela.org  

E-Print Network [OSTI]

-4556; www.akeela.org Provides immediate care, aftercare, residential long-term treatment, and a large-5130. Provides immediate care, residential short-term treatment, day treatment. Booth Memorial Youth and Family and support groups for people with drug addictions. Elmendorf AFB Alcohol Drug Abuse Prevention Treatment

Pantaleone, Jim

288

In Proceedings of the Information Resources Management Association Conference May 21-24, 2000 Anchorage, Alaska, USA  

E-Print Network [OSTI]

In Proceedings of the Information Resources Management Association Conference May 21-24, 2000 and multimedia present an opportunity for cross-platform multimedia applications. However, little research has to the desktop. These new streaming multimedia applications promise to enrich our interactions with the power

Claypool, Mark

289

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network [OSTI]

efficiency, near-zero emissions and water usage, and carbon dioxide (co2 ) capture. Project Description se),NetLisleadingtheresearch,development,anddemonstrationofsoFcsforboth domestic coal and natural gas fueled central generation power systems that will enable low cost, high energy technology Laboratory 3610 collins Ferry road P.o. Box 880 Morgantown, WV 26507-0880 304

Azad, Abdul-Majeed

290

CX-006509: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006509: Categorical Exclusion Determination Fairbanks Geothermal Energy Project CX(s) Applied: A9, B3.1, B5.12 Date: 08252011 Location(s): Fairbanks,...

291

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the...

292

Miklankovitch Theory - Hits and Misses  

E-Print Network [OSTI]

Leipzig, 1199pp. Peltier, W.R. , and R.G. Fairbanks, 2006.N.J. , A. Berger, and W. R. Peltier, 1990. An alternative1990, 1996; Shinn, 2001; Peltier and Fairbanks, 2006), with

Berger, W H

2012-01-01T23:59:59.000Z

293

336 VOLUME 14J O U R N A L O F C L I M A T E 2001 American Meteorological Society  

E-Print Network [OSTI]

Research and Engineering Laboratory, Fort Wainwright, Alaska Department of Integrative Biology, University, Fort Collins, Colorado @ Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks of Atmospheric Science, Col- orado State University, Fort Collins, Colorado. Corresponding author address: Dr

Sturm, Matthew

294

FACT SHEET! 2013 What is ShoreZone?  

E-Print Network [OSTI]

, British Columbia, Washington and Oregon. The North Slope and Kotzebue Sound mapping is now completed trackline by a unique time code, providing a GPS position on the coastline for each image. Figure 3. Oil and sediment type. Highest values indicate an oil residence time of months to years. Hig Higman/ShoreZone Mary

295

International Conference on Dependable Systems & Networks: Anchorage, Alaska, June 24-27 2008 Enhancing Data Availability in Disk Drives through Background Activities*  

E-Print Network [OSTI]

latent error is detected while the storage system is operating under reduced redun- dancy, i.e., during enhance data availability in the storage system, their execution may cause performance degradation, these features remain performance-wise transparent to the storage system user while still improving data

Riska, Alma

296

University of Alaska Anchorage Dean's List Fall 2011 (Degree Seeking students enrolled in at least 12 UAA credits who earned a 3.50 GPA)  

E-Print Network [OSTI]

Sarah A. Brough Cameron A. Brown Chelsea L. Brown Hillary M. Brown Spencer C. Brown Daniel C Taryn M. Byrd Stephen L. Calkin Yesenia E. Camarena Hilary Campbell Tempest A. Campbell Harvey J. Campbell II Rochelle M. Cannon Jason R. Cappelletty David C. Carlson III Steisy C. Carmona Frank L. Carney

Duddleston, Khrys

297

3211 Providence Drive, Gordon Hartlieb Hall, Room 111, Anchorage, AK 99508 P: 907.786.6475 | F: 907.786.6474 | www.uaa.alaska.edu/transportation  

E-Print Network [OSTI]

to cover the costs of the required student tuition, fees, books and equipment leading to the OEC. The state. Student qualification in each NDT method is based on general, specific and practical examinations & Technical College Advising Center at 907.786.6045 for information on qualification for MATH A105. Many

Pantaleone, Jim

298

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect (OSTI)

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

299

Non-destructive inspection protocol for reinforced concrete barriers and bridge railings  

SciTech Connect (OSTI)

Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

2014-02-18T23:59:59.000Z

300

Marine Habitat Mapping Technology for Alaska, J.R. Reynolds and H.G. Greene (eds.) 185 Alaska Sea Grant College Program, University of Alaska Fairbanks. doi:10.4027/mhmta.2008.13  

E-Print Network [OSTI]

, and depth based on current standards used in California fisher- ies management. Both the GIS layer nautical miles from shore. CCSWMP is managed by the California Ocean Protection Council through. 2004, Harney et al. 2006). The California State Marine Life Protection Act (MLPA) calls for protecting

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EA-1183: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

183: Final Environmental Assessment EA-1183: Final Environmental Assessment Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska This EA evaluates the environmental...

302

E-Print Network 3.0 - actual doe savannah Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska Fairbanks Collection: Environmental Sciences and Ecology 28 Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen Research, Aiken, GA...

303

E-Print Network 3.0 - alaskan tussock tundra Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fairbanks Collection: Environmental Sciences and Ecology 6 ORIGINAL ARTICLES Arctic Soil Respiration: Effects Summary: measurements of CO2 and energy fluxes of an Alaskan...

304

E-Print Network 3.0 - accidents home Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks AccidentIncident Report (personal injury) To report an automobile... accident, do not use this form, please go to: http:www.alaska.eduswrisk...

305

E-Print Network 3.0 - allele homozygous subjects Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Alaska Fairbanks Collection: Environmental Sciences and Ecology 7 Am. J. Hum. Genet. 65:14891492, 1999 INVITED EDITORIAL Summary: Am. J. Hum. Genet....

306

E-Print Network 3.0 - affect early post-fire Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fairbanks Collection: Environmental Sciences and Ecology 4 -POPULATION SIZE AND FIRE INTENSITY DETERMINE POST-FIRE ABUNDANCE IN GRASSLAND LICHENS -193 Applied Vegetation...

307

E-Print Network 3.0 - assessing body composition Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology, University of Alaska Fairbanks Collection: Environmental Sciences and Ecology 14 Breeding origins of wader populations utilizing the Dutch Wadden Sea Summary: to...

308

Chemical Hygiene Planh UNIVERSITY OF AlASKA  

E-Print Network [OSTI]

Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

Hartman, Chris

309

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Broader source: Energy.gov (indexed) [DOE]

5, and 7 calculated by recording exhaust and coolant temperatures entering individual modules. is the figure of merit for the TEG Material. 10 From John W Fairbanks, 'Automotive...

310

--No Title--  

Broader source: Energy.gov (indexed) [DOE]

roads The proposed action would involve changing the tribe's street lights from incandescent bulbs to LED lighting fixtures. The City of Fairbanks would provide research it...

311

On the Rates of Sea Level Rise -- Clues From the Distant Past  

E-Print Network [OSTI]

o d a y . 1 9 , 4 - 1 0 . Peltier. W. R. , a nd R . G . F acorresponding depth in the Peltier and Fairbanks graph (4

Berger, Wolfgang H

2009-01-01T23:59:59.000Z

312

DOE Final Report  

SciTech Connect (OSTI)

This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

Hinzman, Larry D.; Long, James; Newby, Greg B.

2014-01-08T23:59:59.000Z

313

E-Print Network 3.0 - association news apha Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks Collection: Environmental Sciences and Ecology 12 Electronic Health Care Resource List 1. Montana Area Health Education Center (AHEC) Summary: . http:...

314

E-Print Network 3.0 - altitude polar orbiting Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. - Geophysical Institute, University of Alaska Fairbanks Collection: Geosciences 2 PHY 499S Earth Observations from Space, Spring Term 2005 (K. Strong) page 2-1 Section 2....

315

ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS  

E-Print Network [OSTI]

W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Finaltion of Super alloys for Gas Turbine Engines, 11 J, Metals,

Boone, Donald H.

2013-01-01T23:59:59.000Z

316

SWAMC Economic Summit | Department of Energy  

Office of Environmental Management (EM)

SWAMC Economic Summit SWAMC Economic Summit March 4, 2015 6:00AM AKST to March 6, 2015 3:00PM AKST Anchorage, Alaska Hotel Captain Cook 939 West 5th Avenue Anchorage, AK 99501 The...

317

E-Print Network 3.0 - anchor piles Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

KEYWORDS 762009 Aerospace Structures Summary: KEYWORDS 762009 Aerospace Structures Aging Airplanes Airports Anchors & Anchorages Assessment... Offshore Engineering Offshore...

318

United States of Agriculture  

E-Print Network [OSTI]

in Ecological, Traditional, and Ecotourism Values 2001 May 15­16; Anchorage, Alaska #12;USDA Forest Service

Brown, Gregory G.

319

Kousa International | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutzKosmo Solar JumpKotzebue

320

Kelly L. Drew, Ph.D. November 7, 2011 Curriculum Vitae  

E-Print Network [OSTI]

Kelly L. Drew, Ph.D. November 7, 2011 Curriculum Vitae 1 CURRICULUM VITAE Kelly L. Drew, Ph Institute of Arctic Biology University of Alaska Fairbanks, Fairbanks, AK #12;Kelly L. Drew, Ph.D. November) $3,000 (Summer 2000) 2001 American Heart Association #12;Kelly L. Drew, Ph.D. November 7, 2011

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Kelly L. Drew, Ph.D. August 16, 2010 Curriculum Vitae  

E-Print Network [OSTI]

Kelly L. Drew, Ph.D. August 16, 2010 Curriculum Vitae 1 CURRICULUM VITAE Kelly L. Drew, Ph.D. Personal: Born: September 19, 1959 Mailing Address: Institute of Arctic University of Alaska Fairbanks, Fairbanks, AK #12;Kelly L. Drew, Ph.D. August 16, 2010

Wagner, Diane

322

Circumpolar Arctic Tundra Vegetation Change Is Linked  

E-Print Network [OSTI]

of Plant Biology, Michigan State University, East Lansing, Michigan Received 7 December 2009; accepted 4Circumpolar Arctic Tundra Vegetation Change Is Linked to Sea Ice Decline Uma S. Bhatt*,1 Donald A Institute, and Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska

Bhatt, Uma

323

Journal of Colloid and Interface Science 270 (2004) 7785 www.elsevier.com/locate/jcis  

E-Print Network [OSTI]

Fairbanks, Fairbanks, AK 99775, USA b Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717, USA c DuPont Engineering Technology, Brandywine Building, Wilmington, DE 19898, USA d NRL with ubiquitously existing hydrous oxides of Fe, Al, and Mn as well as with clays and clay minerals are important

Sparks, Donald L.

324

New handbook for standardised measurement of plant functional traits worldwide  

E-Print Network [OSTI]

. S Ecological Farming Systems, Agroscope Reckenholz Tänikon, Research Station ART, Reckenholzstrasse 191, 8046, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. F Systems Ecology, Faculty of Earth and Life Sciences, Department of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam

Sack, Lawren

325

This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details  

E-Print Network [OSTI]

-9326/8/3/035017) Home Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING ENVIRONMENTAL, 2332 Cordes Way, Fairbanks, AK 99709, USA 2 US Geological Survey, Menlo Park, CA 94025, USA 3 Park Service, Fairbanks, AK 99709, USA 5 US Geological Survey, Boulder, CO 80303, USA 6 Department

Ickert-Bond, Steffi

326

ABSTRACT FINAL ID: SM13A-2029 TITLE: Particle-in-Cell Simulations of Two-dimensional Bernstein-Greene-Kruskal (BGK)  

E-Print Network [OSTI]

ABSTRACT FINAL ID: SM13A-2029 TITLE: Particle-in-Cell Simulations of Two-dimensional Bernstein, University of Alaska Fairbanks, Fairbanks, AK, United States. Title of Team: ABSTRACT BODY: Electrostatic with modulations having frequency of the order of electron cyclotron frequency. This work is supported

Ng, Chung-Sang

327

E-Print Network 3.0 - alaska special sampling Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contained five sections: (1) questions about... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, ... Source: Brown, Gregory G. - Department of...

328

administration decreases generosity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PREFACE The Norton Sound Synthesis Meeting was convened in Anchorage, Alaska, on October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the...

329

alpha administration zmiany: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PREFACE The Norton Sound Synthesis Meeting was convened in Anchorage, Alaska, on October 28, 1980. The purposes of this meeting were: to synthesize our knowledge of the...

330

E-Print Network 3.0 - adhesion deficiency-i case Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant cell. Swimming spores... of the green alga Enteromorpha linza (L.) J. Ag. (710 lm) secrete an adhesive glycoprotein which provides rm... anchorage to the substratum....

331

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Service. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan Environmental Impact Statement, (Anchorage , Alaska, August, 1998). U.S. Department of...

332

DOE Funds 21 Research, Development and Demonstration Projects...  

Energy Savers [EERE]

of UtahEnergy and Geoscience Institute (EGI) (Anchorage, Alaska): to identify open fracture systems by their Fluid Inclusion Stratigraphy (FIS) chemical signature; differences...

333

atmospheric inorganic contaminants: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the advertised product to be used or purchased because of this publication. PREFACE The Norton Sound Synthesis Meeting was convened in Anchorage, Alaska, on October 28, 1980. The...

334

Alaska BIA Providers Conference  

Broader source: Energy.gov [DOE]

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

335

E-Print Network 3.0 - alaska power administration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and political power of migrants to Alaska... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in the...

336

EA-1183: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

183: Finding of No Significant Impact EA-1183: Finding of No Significant Impact Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska Based on analysis in the EA, DOE...

337

VOLUNTARY LEAVE TRANSFER PROGRAM  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM LIST Name Organization Fairbanks, Mary H. AU Garnett-Harris, Deborah A. AU James, Debra A. AU Johnston, Robyne AU May, Melanie P. AU Pickens,...

338

120 Check www.uaf.edu/schedule/ for changes to classes, regulations and fees. Area code is 907. FarmersLoopRoad  

E-Print Network [OSTI]

Automotive Technology Center, 3202 Industrial Ave. Facilities Services Division of Design and Construction in a Cultural Context, 2175 University Ave. South Fire Station 2, 1950 University Ave. South Fairbanks Pipeline

Wagner, Diane

339

Fishery Biology Graduate Programs  

E-Print Network [OSTI]

Fishery Biology Graduate Programs University of Alaska Fairbanks, Alaska 997750820 Program: Fisheries Biology, Marine Biology, Oceanography http://www.sfos.uaf.edu:8000/academics State University Fort Collins, Colorado 805230015 Programs: Fishery Biology http

340

Ocean loading effects on stress at near shore plate boundary fault systems  

E-Print Network [OSTI]

, and since that time, eustatic sea level has risen 120 m [Peltier, 2004; Peltier and Fairbanks, 2006; Lambeck et al., 2002a; Peltier and Drummond, 2008], but these analyses are not repeated here. Instead

Sandwell, David T.

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Stress in the lithosphere from non-tectonic loads with implications for plate boundary processes  

E-Print Network [OSTI]

Res. , 112 (B03402). Peltier, W.R. (2004), Global glacialearth.32.082503.144359. Peltier, W.R. , and R. Drummond (10.1029/2008GL034586. Peltier, W.R. , and R.G. Fairbanks (

Luttrell, Karen M

2010-01-01T23:59:59.000Z

342

Alaska Rural Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

343

Krafla Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutzKosmo Solar JumpKotzebueKrafla

344

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

to control power generation and distribution and build electric drives. People trained in computer/equal opportunity employer and educational institution. 08.2011 electricAl engineering College of Engineering and Mines Department of Electrical and Computer Engineering 907-474-7137 www.uaf.edu/cem/ece/ B.s. Degree

Ickert-Bond, Steffi

345

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

260--Addictions: Intervention and Treatment................2 RHS F275--Introduction to Mental Health for Alaska behavioral health care workers. The occupational endorse- ment program directly parallels

Ickert-Bond, Steffi

346

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

/equal opportunity employer and educational institution. 08.2011 proceSS technology College of Rural and Community and milling, transportation and refining, chem- ical manufacturing, power generation, utilities, wastewater treatment facilities maintenance, and food processing. This

Ickert-Bond, Steffi

347

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

absorption spectrometer, UV-VIS di- ode array spectrometers, two gas chromatographs interfaced with mass and analytical chemistry, and biochemistry. Undergraduate research leading to publications is strongly encouraged working on advanced topics that are gener- ally outside of the scope of an undergraduate curriculum. See

Ickert-Bond, Steffi

348

Studying Altocumulus Plus Virga with Ground-based Active and Passive Remote Sensors Zhien Wang1, Kenneth Sassen2, David Whiteman3, and Belay Demoz3 1University of Maryland, Baltimore County, Catonsville, MD 21228 2University of Alaska, Fairbanks, Alaska 99775 3NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: zhien@agnes.gsfc.nasa.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon Cooling and Ejection from

349

Studying Altocumulus Plus Virga with Ground-based Active and Passive Remote Sensors Zhien Wang1, Kenneth Sassen2, David Whiteman3, and Belay Demoz3 1University of Maryland, Baltimore County, Catonsville, MD 21228 2University of Alaska, Fairbanks, Alaska 99775 3NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: zhien@agnes.gsfc.nasa.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon Cooling and Ejection fromSeasonal and

350

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

...............................................................................4 PGEN F104--Gas and Steam Turbines; Co-Generation and Combined Cycle Technologies ­ 3) * ENGL F212 does not fulfill the second half of the written commu- nication requirement

Ickert-Bond, Steffi

351

Coastal ImpressionsA Photographic Journey along Alaska's Gulf Coast Exhibit compiled by  

E-Print Network [OSTI]

, and in the process has developed an archive of high resolution digital imagery. Coastal Impressions: A Photographic by Digital Blueprint, Anchorage Digital Maps for Exhibit and Booklet prepared by GRS, Anchorage January 2012 cliff provides clues for understanding local coastal processes and yet even experts are sometimes

352

142 Int. J. Sustainable Materials and Structural Systems, Vol. 1, No. 2, 2013 Copyright 2013 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

anchorage systems for fibre-reinforced polymer (FRP) strengthening of #12;Anchorage systems for FRP sheets; CFRP; polyethylene terephthalate; PET; glass fibre reinforced polymer; GFRP; shear-sliding; mode I debonding; FRP strengthening; near-surface mounted; cementitious adhesive. Reference to this paper

353

Anniston Museum of Natural History, Anniston Gulf Coast Exploreum Science Center, Mobile  

E-Print Network [OSTI]

ALABAMA Anniston Museum of Natural History, Anniston Gulf Coast Exploreum Science Center, Mobile Alabama Science Center, Huntsville Southern Museum of Flight, Birmingham U.S. Space & Rocket Center, Huntsville ALASKA Anchorage Museum at Rasmuson Ctr./Imaginarium Discovery Ctr., Anchorage ARIZONA Arizona

Patterson, Bruce D.

354

Anniston Museum of Natural History, Anniston Gulf Coast Exploreum Science Center, Mobile  

E-Print Network [OSTI]

ALABAMA Anniston Museum of Natural History, Anniston Gulf Coast Exploreum Science Center, Mobile-Quest, the North Alabama Science Ctr, Huntsville Southern Museum of Flight, Birmingham U.S. Space & Rocket Center, Huntsville ALASKA Anchorage Museum at Rasmuson Ctr./Imaginarium Discovery Ctr., Anchorage ARIZONA Arizona

Westneat, Mark W.

355

NANA Wind Resource Assessment Program Final Report  

SciTech Connect (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

356

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

357

Alaska Justice Forum 18(1), Winter 2001 1 ALASKA JUSTICE FORUM  

E-Print Network [OSTI]

arose in Broward County, Florida in 1997; in King County, Washington in 1999; inAnchorage in 1999 and in San Bernardino, California in 1999. All except the San Bernardino court deal with misdemeanor

Pantaleone, Jim

358

CASH / CHECK (EnCloSEd) ToTAl: Cash Check (Payable to the UAA Community Campaign)  

E-Print Network [OSTI]

. 96802 Life Alaska Donor Services 93898 Pathway Counseling & Family Center 50737 Renewable Energy Alaska Anchorage 35694 Kid's Corps, Inc. 30881 Lutheran Social Services of Alaska, Inc. 55632 Mabel T. Caverly

Pantaleone, Jim

359

CX-004529: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Abrasion Testing of Critical Components of Hydrokinetic DevicesCX(s) Applied: A9, B3.6Date: 11/29/2010Location(s): Anchorage, AlaskaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

360

Rebate Program Serves Alaskans with Disabilities | Department...  

Energy Savers [EERE]

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment  

Broader source: Energy.gov [DOE]

Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental Justice Interagency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

362

Alaska Native People Shaping Health Care 2011Malcolm Baldrige  

E-Print Network [OSTI]

Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

Magee, Joseph W.

363

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

DE-NT0006553 ConocoPhillips FE Phase 3: Admin, Planning, Model SCNGO - Methane Hydrate Program 2011-2012 Richard Baker Phase 3 (Budget Periods 3 and 4) Anchorage, AK Gas Hydrate...

364

Energy Ambassadors to Provide Front Line Support for Alaska Native...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

365

DOE to Host Three Alaska Native Village Renewable Energy Project...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

366

E-Print Network 3.0 - akashi kaikyo bridge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 87 By-Products Utilization Summary: of bridges. In 1990, self-compacting concrete was used in the construction of the two anchorages of Akashi... Straights...

367

affects cluster root: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is an important determinant of the form of the root system. It affects the way and for cultivation systems which can influence tree growth and anchorage. This review discusses...

368

INVESTIGATIONS ON THE IMPACTS OF LAND-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES  

E-Print Network [OSTI]

REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE By Zhao Li RECOMMENDED-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE A THESIS Presented to the Faculty of the University of Alaska Fairbanks In Partial

Moelders, Nicole

369

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

Grace, R. C.; Gifford, J.

2008-05-01T23:59:59.000Z

370

FY15 Issue 1 We've Moved  

E-Print Network [OSTI]

! Royalty Check Presentation Event Volcanic Ash Software On Wednesday, July 2, 2014, 9 of the 31 named Dan White in the lobby of IARC for a royalty check presentation ceremony. University of Alaska Fairbanks (UAF) is set to disburse the first round of royalty checks to the 31 named contributors whose

Hartman, Chris

371

Monday September 19, 2011 10:00 AM Chem. Sci. 215  

E-Print Network [OSTI]

arctic marine microorganisms to biodegrade Alaskan North Slope (ANS) crude oil in the presence or absenceD Candidate Department of Biology and Wildlife, University of Alaska Fairbanks Biodegradation of Dispersed Oil in Arctic Marine Environments As oil exploration expands in offshore Arctic regions, it is imperative

372

In the Department of Computer Science...  

E-Print Network [OSTI]

In the Department of Computer Science... at the University of Alaska Fairbanks (UAF), you will find career truly begins at UAF. Programs of Study Our four-year B.S. program in computer science is the only ABET accredited computer science pro- gram in the state of Alaska. Your undergraduate experience

Wagner, Diane

373

Citizen Science Katie Villano Spellman  

E-Print Network [OSTI]

: Investigate the impact of invasive white sweetclover on the pollination of blueberry and cranberry #12 monitoring Cranberry specimen from the University of Alaska Museum of the North herbarium Label on a herbarium sample dating back to 1881. Monitoring lowbush cranberry in Fairbanks. #12;Historical Data Alaska

Ruess, Roger W.

374

Solvent Interactions and Conformational Choice in a Core N-Glycan Segment: Gas Phase Conformation of the Central,  

E-Print Network [OSTI]

. Gamblin, Emilio J. Cocinero, Jann Frey, Romano T. Kroemer,# Antony J. Fairbanks, Benjamin G. Davis,*, and John P. Simons*, Department of Chemistry, UniVersity of Oxford, Physical and Theoretical Chemistry-mail: john.simons@chem.ox.ac.uk; Ben.Davis@chem.ox.ac.uk Abstract: The intrinsic conformational preferences

Davis, Ben G.

375

\\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions  

E-Print Network [OSTI]

\\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions UCI Study.studyabroad.uci.edu Advisor Countries/Regions (EAP & IOP) EAP Countries Chrystal Fairbanks cfairban@uci.edu (949) 824

Barrett, Jeffrey A.

376

Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme  

E-Print Network [OSTI]

ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

Moelders, Nicole

377

Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)  

E-Print Network [OSTI]

Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

Moelders, Nicole

378

31-3617ja.1 Interested in a Career as a  

E-Print Network [OSTI]

31-3617ja.1 Interested in a Career as a Statistician within the Pharmaceutical Industry? Then Come Fairbanks, a statistician working in the pharmaceutical industry, is visiting the university to talk about careers in the pharmaceutical industry. The aim of the presentation is to raise awareness of the role

Wright, Francis

379

Wildlife Biology Graduate Schools  

E-Print Network [OSTI]

Wildlife Biology Graduate Schools University of Alaska Fairbanks, Alaska 997750820 Program: Wildlife Biology http://www.bw.uaf.edu/ University of Arizona Tucson, Arizona 95721 Program: Wildlife://www.forestry.auburn.edu/graduate/ProspectiveStudents/degrees.htm Clemson University Clemson, South Carolina 29634 Programs: Wildlife Fisheries Biology http

380

12. H. M. Liversidge, T. Molleson, Am. J. Phys. Anthropol. 123, 172 (2004).  

E-Print Network [OSTI]

. Phys. Anthropol. 82, 295 (1990). 18. H. Schutkowski, Int. J. Anthropol. 2, 347 (1987). 19. S. R. Loth. J. F. Hoffecker, W. R. Powers, T. E. Goebel, Science 259, 46 (1993). 26. T. E. Goebel, W. R. Powers in the central Alaska Range" (Cooperative Park Studies Unit, Univ. of Alaska Fairbanks, 1980). 30. W. R. Powers

Hoekstra, Hopi E.

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geophysical Institute. Biennial report, 1993-1994  

SciTech Connect (OSTI)

The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

NONE

1996-01-01T23:59:59.000Z

382

Risk Assessment in Complex Interacting Infrastructure Systems D. E. Newman  

E-Print Network [OSTI]

University of Alaska, Fairbanks, AK 99775 USA ffden@uaf.edu Bertrand Nkei Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA nnb@fed.ornl.g ov B. A. Carreras Oak Ridge National Laboratory, Oak Ridge, TN 37831 dobson@engr. wisc.edu V. E. Lynch Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA lynchve

Dobson, Ian

383

Model-Data Fusion Studies of Pacific Arctic Climate and Ice-Ocean Processes Jia Wang1, Hajo Eicken2, Yanling Yu3, X. Bai4, Jinlun Zhang3, H. Hu4, Moto Ikeda5, Kohei  

E-Print Network [OSTI]

and Ecosystems Research (CILER), School of Natural Resources and Environment, University of Michigan, 4840 South1 Model-Data Fusion Studies of Pacific Arctic Climate and Ice-Ocean Processes Jia Wang1, Hajo. Tel: 734-741-2281; Email: Jia.Wang@noaa.gov 2. University of Alaska Fairbanks, Geophysical Institute

Zhang, Jinlun

384

ActOl OceOlnologicOl SinicOl 2008, VoL 27, No.3, p. 79 -87 http://www.oceOlnpress.com.cn  

E-Print Network [OSTI]

, xhool of Natural Resources and Environment, University of Michigan, Ann Arbor, MI, USA Received 15Olil: hyxhe@263.net Observations and modeling of the ice-ocean conditions in the coastal Chukchi and Beaufort Research Center, University of Alaska Fairbanks, AK 99775-7340, USA 2. NOAA, Great Likes Environmental

385

Journal of Glaciology, Vol. 58, No. 212, 2012 doi: 10.3189/2012JoG11J249 1151 Using surface velocities to calculate ice thickness and bed  

E-Print Network [OSTI]

and Space Sciences, University of Washington, Seattle, WA, USA 5 School of Technology, Michigan velocities to calculate ice thickness and bed topography: a case study at Columbia Glacier, Alaska, USA R,7 W.T. PFEFFER,8 B.E. SMITH,7 M. TRUFFER1 1 Geophysical Institute, University of Alaska Fairbanks

Rasmussen, L.A.

386

Invited paper Tide distribution and  

E-Print Network [OSTI]

plants Zygmunt Kowalik Institute of Marine Science, University of Alaska, Fairbanks, AK, 99775, USA; e tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping currents to bring electricity to remote locations. Since the generation of such electricity is concerned

Kowalik, Zygmunt

387

758-60 751-54 Tanana Loop  

E-Print Network [OSTI]

Reichardt Virology Lab Life Sciences Facility Museum Arctic Health Butrovich IAB Greenhouse Climbing Wall Cold Climate Housing Research Center 1000 Fairbanks St. O'Neill Irving I Irving II Biological Research, 4001 Geist Road Wells Fargo Building, 794 University Ave. Facilities Services Division of Design

Wagner, Diane

388

JUNE 2004 409M O L D E R S A N D O L S O N 2004 American Meteorological Society  

E-Print Network [OSTI]

, moisture, and heat on precipitation for Fairbanks, Alaska, a remote city at high latitude. The remote predicted for the innermost domain, but not for the outer domains; prediction efficiency depends on grid increment size because processes are resolved on the finer grid that do not appear on the coarse grid

Moelders, Nicole

389

Water and Environmental Research Center Annual Technical Report  

E-Print Network [OSTI]

of all nine permafrost conference proceedings on a DVD. There were also pre- and post-extended conference (IARC) on the Fairbanks campus, hosted another IPY activity, the Ninth International Conference on Permafrost (NICOP). This conference, which convenes every five years, attracted 700 scientist and engineers

390

Fractal images induce fractal pupil dilations and constrictions  

E-Print Network [OSTI]

1 Fractal images induce fractal pupil dilations and constrictions P. Moon, J. Muday, S. Raynor, J. Schirillo Wake Forest University C. Boydston, M. S. Fairbanks, R.P. Taylor University of Oregon Fractals revealed fractal patterns in many natural and physiological processes. This article investigates pupillary

Taylor, Richard

391

American Statistical Association (ASA) Section on Statistics and the Environment (ENVR)  

E-Print Network [OSTI]

21-23, 2004, Palmer House, Chicago, Illinois, is an opportunity to learn all about Computational of environmental data. Application areas include ecology, air quality, water resources, environmental health (U of Chicago), and Devin Johnson (U of Alaska Fairbanks) will discuss ecological applications. Mark

392

Religious and Spiritual Life The Office of Religious and Spiritual Life encourages  

E-Print Network [OSTI]

Dean of the Tucker Foundation Visit us at: 6154 Fairbanks Hall Hanover, New Hampshire 03755 Http and readings, discussions with faculty, and public presentations. The Dartmouth Partners in Community Service Center provides a full time rabbi and Shabbat services and dinners, special holiday observances

Lotko, William

393

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

394

Interstat Issue 2  

E-Print Network [OSTI]

? Should I say more? Hasn't this all gone far enough? Your answer, friends, by now should be nothing short of that resounding 20th century Americanism — "I'll buy that!" Michele Arvizu LITHOGRAPH ART PRINTS BY Gerry Downes 3925 West 79th anchorage/ alaska... enjoy that flattery, appreciate it, and as an audience, even return it. Charmer! Thank you -- may you always remain so. Jai Oyoumick c/o Jerry Downes 3925 W. 79th Anchorage, Alaska 99502 I just read INTERSTAT #1: It is very nicely layed out. The type set...

1977-01-01T23:59:59.000Z

395

Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments  

SciTech Connect (OSTI)

Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

2008-12-31T23:59:59.000Z

396

BOSTON HARBOR, MASSACHUSETTS DEEP DRAFT NAVIGATION IMPROVEMENT PROJECT  

E-Print Network [OSTI]

BOSTON HARBOR, MASSACHUSETTS DEEP DRAFT NAVIGATION IMPROVEMENT PROJECT Civil Works Review Board Re-Presentation - 26 April 2013 ABSTRACT: The Boston Harbor Deep Draft Navigation Improvement Project consists entrance channels connecting Massachusetts Bay to the harbor, deep water anchorages in the harbor, a main

US Army Corps of Engineers

397

Annales Geophysicae, 23, 30813088, 2005 SRef-ID: 1432-0576/ag/2005-23-3081  

E-Print Network [OSTI]

Survey, Murchison House, West Mains Road, Edinburgh EH9 3LA, UK 2Halliburton (Sperry Drilling Services Union 2005 Annales Geophysicae Space weather effects on drilling accuracy in the North Sea S. J. Reay1), 6900 Arctic Boulevard, Anchorage, Alaska, AK 99518, USA 3Halliburton (Sperry Drilling Services), Howe

Paris-Sud XI, Université de

398

Technical Report Documentation Page 1. Report No.  

E-Print Network [OSTI]

of hooked bar anchorage is also included. The review of headed reinforcement includes historical background of pertinent code provisions. The review of strut-and-tie modeling (STM) includes an historical background Classif. (of this page) Unclassified 21. No. of pages 116 22. Price Form DOT F 1700.7 (8-72) Reproduction

Texas at Austin, University of

399

2 REGION 6 COASTAL CHARTS  

E-Print Network [OSTI]

do Ibo 46,171 Pemba 46,234 61190 Dar Es Salaam to Mchinga Bay 297,064 61191 Dar es Salaam & Adjoining Anchorages 50,040 Plan: Dar es Salaam Harbor (Not shown on index) 10,007 61200 Dar es Salaam to Mombasa

Russell, Lynn

400

Thursday, December 27, 2012 Federal Processor Permit 1 of 4 NOAA Fisheries Service -Alaska Region  

E-Print Network [OSTI]

COLD STORAGE, INC. PETERSBURG, AK EINERSON, GREG L SHP 28721 COPPER RIVER SEAFOODS, INC. ANCHORAGE, AK AMERICA, LLC SHP 5335 HOONAH COLD STORAGE HOONAH, AK DIGNON, WILLIAM A SHP 32927 HOONAH COLD STORAGE ALYESKA SEAFOODS, INC. UNALASKA, AK ALYESKA SEAFOODS, INC. SHP 5394 ANNETTE ISLAND PACKING CO. COLD

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A New Approach To Wind Energy: Opportunities And Challenges  

E-Print Network [OSTI]

1 A New Approach To Wind Energy: Opportunities And Challenges John O. Dabiria , Julia R. Greera, Anchorage, AK 99508, USA Abstract. Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource--which is 20

Dabiri, John O.

402

NOAA ARL Monthly Activity Report December 2005  

E-Print Network [OSTI]

a two-way coupling using CMAQ 14. Urban Dispersion Program (New York City 15. Smart Balloon 16 planning by meteorologists at the Anchorage Volcanic Ash Advisory Center. barbara.stunder@noaa.gov 2 for relating sources to downwind effects. The latter takes a gridded view, with sources combined across grid

403

Page 1 Alaska Justice Forum ALASKA JUSTICE FORUM  

E-Print Network [OSTI]

exhibiting racial, ethnic, religious or other types of bias. While the FBI assembles data on bias incidents reported in the Anchorage area. Assembly of Data The FBI is the primary source for national figures on hate from the 1999 edition of this publication. Participation in this FBI reporting program is voluntary

Pantaleone, Jim

404

Fastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture  

E-Print Network [OSTI]

-to- vehicle-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2VFastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to- Infrastructure (V2V2I University of Alaska, Anchorage jmiller@uaa.alaska.edu Abstract ­ In this paper, I describe the vehicle

Miller, Jeffrey A.

405

Atmos. Chem. Phys., 8, 21032114, 2008 www.atmos-chem-phys.net/8/2103/2008/  

E-Print Network [OSTI]

Transport Experiment Phase B (INTEX- B) campaign in spring 2006. Flights were conducted around Mexico City with CO, CO2, CH4, and C2Cl4 were diffuse overall, but recognizable on flights out of Anchorage with in- dustrialization and emissions of CO2 from combustion of fossil fuels (Lamborg et al., 2002

Meskhidze, Nicholas

406

ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT  

SciTech Connect (OSTI)

The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the community’s rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

POLLIS, REBECCA

2014-10-17T23:59:59.000Z

407

Cogeneration at Iowa Methodist Medical Center  

E-Print Network [OSTI]

Medical Center of Des Moines, Iowa, is installing two 1,500 kW Fairbanks Morse turbocharged dual-fuel reciprocating engine generators. The system will be installed with re covery of exhaust waste heat as steam and jacket, lube Oil, and intercooler... outages or duri g peak thermal loads. Backup and peaking power capa ity is generally a provision of the interconnection gree ment with the electric utility. Provisions m st also be made to remove excess waste heat to b lance thermal production...

Thunem, C. B.; Schebler, S. J.; Love, G. I.

408

National Transportation Stakeholders Forum (NTSF) Charter | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanks |

409

National Transportation Stakeholders Forum | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanks |Transportation Stakeholders

410

Natural Resources Defense Council Consent Decree, May 26, 1988  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanksNatural

411

Natural Resources Defense Council Consent Decree, May 26, 1988 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanksNaturalDecree No. 1:85-2583-6

412

Naval Spent Fuel Rail Shipment Accident Exercise Objectives | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010 Printing andNancyFairbanksNaturalDecreeCouncilEnergy

413

The use of elastomeric pads as bearings for steel beams  

E-Print Network [OSTI]

SCIEWCE August lg6S Ma)or Subjects Civil Eugiueeriag THE HSE OP BIASTMEEXC PASS AS EEARIHCS FOR STEE7 SEAMS A Thesis Hardy E. Fairbanks Approved as to style and content by; Chairnan of Coeeittee Head of Separtme t August 1960 TABLE OP CONTENTS... on Richmond Avenue in Houston, Texas Figure 5 Current Practice Concerning the Use of Elasto- meric Beazing Pads Pigure 6 Economic Comparison of Conventional and Elasto- 8 meric Bearings Figure 7 Figure 8 Figure 9 Teat Set-Up for Phase I Experimental...

Fairbanks, Hardy Ewald

2012-06-07T23:59:59.000Z

414

Improved design procedure for embedded plates in gravity anchors for precast concrete panels  

E-Print Network [OSTI]

is considered, and second, the shear area of the concrete resisting the applied shear to the studs is considered. Typically, the latter parameter controls the design, since most plate and stud anchorages are installed fairly close to the edge of a wall panel...IMPROVED DESIGN PROCEDURE FOR EMBEDDED PLATES IN GRAVITy ANCHORS FOR PRECAST CONCRETE PANELS A Thesis by Lawrence Fred Fragomeli Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

Fragomeli, Lawrence Fred

2012-06-07T23:59:59.000Z

415

Understanding Energy Code Acceptance within the Alaska Building Community  

SciTech Connect (OSTI)

This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

Mapes, Terry S.

2012-02-14T23:59:59.000Z

416

Evaluation of collared peccary translocations in the Texas Hill Country  

E-Print Network [OSTI]

of collared peccaries, however, has not been evaluated. 1 Translocations have been used in the restoration of mid- to large-sized mammal populations in many areas of the United States (Nielsen 1988). For example, use of translocations for Sitka black..., New Jersey, USA. Hooge, B. N., and B. Eichenlaub. 1999. Animal movement extension to ArcView, version 1.1. Alaska Biological Center, U.S. Geological Survey, Anchorage, Alaska, USA. Ilse, L. M., and E. C. Hellgren. 1995. Resource...

Porter, Brad Alan

2007-09-17T23:59:59.000Z

417

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage, Alaska,

418

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage,

419

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage,Reno,

420

Evaluation of near-field earthquake effects  

SciTech Connect (OSTI)

Structures and equipment, which are qualified for the design basis earthquake (DBE) and have anchorage designed for the DBE loading, do not require an evaluation of the near-field earthquake (NFE) effects. However, safety class 1 acceleration sensitive equipment such as electrical relays must be evaluated for both NFE and DBE since they are known to malfunction when excited by high frequency seismic motions.

Shrivastava, H.P.

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Anco Advance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage Municipal Light

422

Andean Development Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage Municipal

423

Andorra: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage MunicipalAndorra:

424

Angel Fire, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage

425

Angola-Nationally Appropriate Mitigation Actions (NAMAs) in the Congo Basin  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage| Open Energy

426

Anguilla: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage| Open

427

Animas, New Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage|

428

Ankara, Turkey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage|Ankara, Turkey:

429

Anna, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage|Ankara,

430

Annandale, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage|Ankara,409347°,

431

Effects of Village Power Quality on Fuel Consumption and Operating Expenses  

SciTech Connect (OSTI)

Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

Richard Wies; Ron Johnson

2008-12-31T23:59:59.000Z

432

Planning the Next Generation of Arctic Ecosystem Experiments  

SciTech Connect (OSTI)

Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

433

Coal-fired diesel generator  

SciTech Connect (OSTI)

The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

NONE

1997-05-01T23:59:59.000Z

434

Coal transfer: can an environmentally safe coal transfer operation be undertaken in the lower Delaware Bay. Delaware Estuary situation report. [Dusts from transport of coal from barges to colliers  

SciTech Connect (OSTI)

Effective August 1983, the U.S. Coast Guard authorized coal transfer between vessels moored in Anchorage Area A, off Big Stone Beach in lower Delaware Bay. Two general methods may be used to transfer coal from shallow-draft barges to deep-draft colliers: auger or conveyor-belt operation and clamshell operation. Although dust emission is inherent in coal transfer, best available data from similar situations indicate dust emission can vary from 0.168 pounds per ton for clamshell to 0.0024 pounds per ton for auger/conveyor transfer. Air quality and bottom water deterioration are the major potential environmental impacts.

Biggs, R.B.; Sharp, J.H.; Manus, A.T.; Wypyszinski, A.W.

1983-01-01T23:59:59.000Z

435

Population Dynamics of Plain Chachalacas in the Lower Rio Grande Valley  

E-Print Network [OSTI]

. The biotic provinces of Texas. Texas Journal of Science 2:93?117. Hooge, B. N., and B. Eichenlaub. 1999. Animal movement extension to ArcView, version 1.1. Alaska Biological Center, U.S. Geological Survey, Anchorage, Alaska, USA. Jahrsdoefer, S. E.... Silvy, R. R. Lopez, B. E. Toole, R. S. Jones, and S. J. DeMaso. Breeding and non-breeding survival of lesser prairie-chickens in Texas. Wildlife Biology 15:89?96. Marion, W. R. 1974. Ecology of the plain chachalaca in the Lower Rio Grande Valley...

Gandaria, Adan G.

2011-02-22T23:59:59.000Z

436

DOE Awards Small Business Contract for West Valley NY Services  

Broader source: Energy.gov [DOE]

CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

437

Alaska Plans Geothermal Leasing at Volcano | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe OfficeUtility Fed. GovernmentFed.DepartmentSeptember 22, 2014ANCHORAGE,

438

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage, Alaska,Las Vegas,

439

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage, Alaska,Las

440

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage,Reno, Nevada,

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage,Reno, Nevada,The

442

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategoryAdvancedAnchorage,Reno,Washington,

443

National Strategy for the Arctic Region Stakeholder Outreach Meeting:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage | Department

444

National Strategy for the Arctic Region Stakeholder Outreach Meeting:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage |

445

National Strategy for the Arctic Region Stakeholder Outreach Meeting:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage |Bethel |

446

National Strategy for the Arctic Region Stakeholder Outreach Meeting:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage |Bethel

447

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Dutch  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage

448

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Nome  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage| Department

449

National Strategy for the Arctic Region Tribal Consultation Session: Barrow  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage| Department|

450

National Strategy for the Arctic Region Tribal Consultation Session: Bethel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage| Department||

451

National Strategy for the Arctic Region Tribal Consultation Session: Dutch  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage|

452

National Strategy for the Arctic Region Tribal Consultation Session: Nome |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage|Department of

453

National Strategy for the Arctic Region Tribal Consultation and Stakeholder  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational Science Foundation, LakeAnchorage|Department

454

Angola: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage| Open EnergyAngola:

455

Anheuser-Busch Fairfield | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility Jump to:OperationsAnchorage| OpenAnheuser-Busch

456

International conference on the role of the polar regions in global change: Proceedings. Volume 2  

SciTech Connect (OSTI)

The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.

Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

1991-12-01T23:59:59.000Z

457

International conference on the role of the polar regions in global change: Proceedings. Volume 1  

SciTech Connect (OSTI)

The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks; (6) paleoenvironmental studies; and, (7) aerosols and trace gases.

Weller, G.; Wilson, C.L.; Severin, B.A.B. [eds.

1991-12-01T23:59:59.000Z

458

Organic petrography of coals from a coalbed methane test well, Ouachita Parish, Louisiana  

SciTech Connect (OSTI)

In March 2003, the U.S. Geological Survey, the Louisiana Geological Survey, and EnerVest Management Partners Ltd. participated in a Cooperative Research and Development Agreement (CRADA) to drill and core the Fairbanks Real Estate No. 359 (FRE No. 359) coalbed methane test well in Ouachita Parish, Louisiana. This effort was in support of ongoing U.S. Geological Survey investigations into the coal gas potential of the Gulf Coastal Plain. To determine possible relationships between coalbed gas content and coal composition, maceral modes were determined for 17 subsurface coal and carbonaceous shale samples cored and desorbed from the Paleocene-Eocene Wilcox Group. Similar determinations of maceral mode were made on cuttings collected from 5 non-cored coaly intervals in the overlying Eocene Sparta Sand. 22 refs., 11 figs., 3 tabs.

Paul C. Hackley; Peter D. Warwick [USGS, Reston, VA (United States)

2005-07-01T23:59:59.000Z

459

Re-evaluation of total and Umkehr ozone data from NOAA-CMDL Dobson spectrophotometer observatories. Final report  

SciTech Connect (OSTI)

This report describes work to improve the quality of total ozone and Umkehr data obtained in the past at the NOAA Climate Monitoring and Diagnostics Laboratory and the Dobson spectrophotometer ozone observatories. The authors present results of total ozone data re-evaluations for ten stations: Byrd, Antarctica; Fairbanks, Alaska; Hallett, Antarctica; Huancayo, Peru; Haute Provence, France; Lauder, New Zealand; Perth, Australia; Poker Flat, Alaska; Puerto Montt, Chile; and South Pole, Antarctica. The improved data will be submitted in early 1996 to the World Meteorological Organization (WMO) World Ozone Data Center (WODC), and the Atmospheric Environment Service for archiving. Considerable work has been accomplished, also, in reevaluating Umkehr data from seven of the stations, viz., Huancayo, Haute Provence, Lauder, Perth, Poker Flat, Boulder, Colorado; and Mauna Loa, Hawaii.

Komhyr, W.D.; Quincy, D.M.; Grass, R.D.; Koenig, G.L. [Univ. of Colorado, Boulder, CO (United States)] [Univ. of Colorado, Boulder, CO (United States); [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Climate Monitoring and Diagnostics Lab.

1995-12-01T23:59:59.000Z

460

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002  

SciTech Connect (OSTI)

This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

National Energy Technology Laboratory

2003-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NANA Strategic Energy Plan & Energy Options Analysis  

SciTech Connect (OSTI)

NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

Jay Hermanson; Brian Yanity

2008-12-31T23:59:59.000Z

462

Technical and economic assessment of the use of ammonia expanders for energy recovery in air-cooled power plants  

SciTech Connect (OSTI)

Binary cycle power plants have been the subject of much discussion among engineers and scientists for nearly 100 years. Current economic and environmental concerns have stimulated new interest and research. Ammonia has been recommended by other studies as the leading contender for use as simply the heat rejection medium in an air-cooled power plant. This study investigates the technical feasibility and economic potential of including an expander in the heat rejection system of an air-cooled power plant. The expander would be used during certain parts of the year to increase the total output of the power plant. Five different plant locations (Miami, San Francisco, Bakersfield, Chicago, Anchorage) were investigated to show the effect which climate has on the economic potential of this ammonia bottoming cycle. The study shows that the expected energy costs for the bottoming cycle only will be less than 50 mills/kWh for any of the five plant locations. This cost assumes that an ammonia phase-change heat rejection system is already a part of the existing plant. The colder climates of Chicago and Anchorage demonstrate an even smaller energy cost of less than 15 mills/kWh. Further investigation of the concept is merited to substantiate these costs and determine the needed technology.

Hauser, S.G.; Hane, G.J.; Johnson, B.M.

1982-07-01T23:59:59.000Z

463

Weatherization Apprenticeship Program  

SciTech Connect (OSTI)

Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

Watson, Eric J

2012-12-18T23:59:59.000Z

464

Strength and conformance testing of a GCL used in a solid waste landfill lining system  

SciTech Connect (OSTI)

This paper describes strength and conformance tests conducted on a Bentomat ST geosynthetic clay liner (GCL) used in a composite lining system for the Cells 4 and 5 expansion of the Anchorage Regional Landfill in Anchorage, Alaska. The Cells 4 and 5 lining system included use of an 80-mil, high-density polyethylene (HDPE) liner overlying a GCL on both the sideslopes and base of the cells. The use of this lining system in a Seismic Zone 4 area on relatively steep side slopes required careful evaluation of both internal shear strength of the GCL and interface friction between the GCL and textured HDPE. Laboratory tests were carried out to evaluate both peak and residual GCL internal strengths at normal loads up to 552 kiloPascals (80 pounds per square inch). Laboratory tests also were conducted to evaluate the interface strength between the GCL and Serrot box and point textured HDPE. Interface strengths between both woven and nonwoven sides of the GCL and the textured HDPE were evaluated. Considerations related to use of peak or residual strengths for various interim stability cases are described in this paper. Stability analyses using stress-dependent interface and internal strengths for the GCL are addressed. The quality assurance and conformance testing program adopted for the project on GCL is discussed also.

Merrill, K.S. [CH2M Hill, Anchorage, AK (United States); O`Brien, A.J. [CH2M Hill, Sacramento, CA (United States)

1997-11-01T23:59:59.000Z

465

Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants  

SciTech Connect (OSTI)

The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

2009-04-02T23:59:59.000Z

466

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.  

SciTech Connect (OSTI)

A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

Pratt, Joseph William; Harris, Aaron P

2013-01-01T23:59:59.000Z

467

LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins  

SciTech Connect (OSTI)

Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U. (MIT); (ETH Zurich)

2012-08-31T23:59:59.000Z

468

Coal diesel combined-cycle project. Annual report, January 1996--January 1997  

SciTech Connect (OSTI)

The Clean Coal Diesel project will demonstrate a new Clean Coal Technology that has technical, economic and environmental advantages over conventional power generating methods. This innovative technology enables utilization of coal-based fuel in large-bore, medium-speed, diesel engines. Modular power generating applications in the 10 to 100 megawatt size range are the target applications. The University of Alaska campus in Fairbanks, Alaska, is the project`s host site. At this location, the University will construct and operate the Clean Coal Diesel System, which will serve as a 6.2 MW diesel powerplant addition. The University will also assemble and operate a 5-ton per hour coal-water fuel processing plant. The plant will utilize local coal, brought by truck from Usibelli`s mine in Healey, AK. The estimated performance characteristics of the mature commercial embodiment of the Clean Coal Diesel, if achieved, will make this technology quite competitive: 48% efficiency; $1,300/kW installed cost; and emission levels controlled to 50--70% below New Source Performance Standards. Specific objectives are to demonstrate that the Coal Diesel Technology: is durable and can operate 6,000 hours in a realistic commercial setting; will meet efficiency targets; can effectively control criteria pollutants to levels that are well below anticipated standards, as well as reduce greenhouse gas emissions; and can accommodate substantial power demand swings.

NONE

1997-12-31T23:59:59.000Z

469

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.  

SciTech Connect (OSTI)

This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

Lottes, S. A.; Kulak, R. F.; Bojanowski, C. (Energy Systems)

2011-05-19T23:59:59.000Z

470

Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement  

SciTech Connect (OSTI)

This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

Not Available

1994-09-01T23:59:59.000Z

471

TRANSPORTATION ISSUES IN THE DELIVERY OF GTL PRODUCTS FROM ALASKAN NORTH SLOPE TO MARKET  

SciTech Connect (OSTI)

The Alaskan North Slope (ANS) is one of the largest hydrocarbon reserves in the United States where Gas-to-Liquids (GTL) technology can be successfully implemented. The proven and recoverable reserves of conventional natural gas in the developed and undeveloped fields in the Alaskan North Slope (ANS) are estimated to be 38 trillion standard cubic feet (TCF) and estimates of additional undiscovered gas reserves in the Arctic field range from 64 TCF to 142 TCF. Because the domestic gas market in the continental United States is located thousands of miles from the ANS, transportation of the natural gas from the remote ANS to the market is the key issue in effective utilization of this valuable and abundant resource. The focus of this project is to study the operational challenges involved in transporting the gas in converted liquid (GTL) form through the existing Trans Alaska Pipeline System (TAPS). A three-year, comprehensive research program was undertaken by the Petroleum Development Laboratory, University of Alaska Fairbanks, under cooperative agreement No. DE-FC26-98FT40016 to study the feasibility of transporting GTL products through TAPS. Cold restart of TAPS following an extended winter shutdown and solids deposition in the pipeline were identified as the main transportation issues in moving GTL products through the pipeline. The scope of work in the current project (Cooperative Agreement No. DE-FC26-01NT41248) included preparation of fluid samples for the experiments to be conducted to augment the comprehensive research program.

Godwin Chukwu

2004-01-01T23:59:59.000Z

472

Disposition, metabolism, and toxicity of methyl tertiary butyl ether, an oxygenate for reformulated gasoline  

SciTech Connect (OSTI)

Studies of the toxicology of methyl tertiary butyl ether (MTBE) were reviewed as a possible information base for evaluating the health effects of evaporative emissions from reformulated gasoline (RFG). Perirenal fat/blood MTBE concentration ratios ranged from 9.7 to 11.6 after 15 wk of intermittent exposure. During an oxyfuels program in Fairbanks, AK, blood levels of occupationally exposed workers were 0.2-31.5 {mu}g/L MTBE and 1.6 to 72.2 {mu}g/L TBA with a mean TBA:MTBE blood concentration ratio of 4.2. In patients who received MTBE by percutaneous, transhepatic puncture for the dissolution of cholesterol gallstones, concentrations of MTBE in fat tissue reached 60 and 300 {mu}g/g at a treatment time when mean blood MTBE was less than 20 {mu}g/ml. The results of laboratory and clinical studies indicate that metabolites of MTBE may contribute to the nephropathy, neoplasms, and other pathological changes associated with repeated exposure to MTBE in experimental animals. It is concluded that such studies can provide a well-defined database for quantitatitive safety comparisons and health risk-benefit analyses of MTBE and other oxygenates in RFG. 39 refs., 1 tab.

Hutcheon, D.E.; Hove, W. ten; Boyle, J. III [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States)] [UMDNJ, New Jersey Medical Schook, Newark, NJ (United States); Arnold, J.D. [Arnold & Arnold, Inc., Kansas City, MO (United States)] [Arnold & Arnold, Inc., Kansas City, MO (United States)

1996-04-05T23:59:59.000Z

473

Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997  

SciTech Connect (OSTI)

The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein, North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).

NONE

1997-10-01T23:59:59.000Z

474

Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

Jones, M.L.

1998-12-31T23:59:59.000Z

475

ELF detection of energetic-particle precipitation. Final report, 25 Nov 88-28 Feb 90  

SciTech Connect (OSTI)

The scientific objective of this project was to investigate the effects of relativistic electron precipitation on the characteristics of the Schumann resonances. The method of investigation was to establish a Schumann resonance and ELF observing station in Alaska to provide high-latitude measurements for comparison against similar measurements made at midlatitude stations in California and Australia. Observations of Schumann resonance eigenfrequencies and Q-factors during May-October, 1989 showed discontinuous changes that correlated well with the occurrence of several large solar events that produced notable enhancements in the intensities of magnetospheric relativistic electrons 1.21 MeV, and solar x-rays 0.5-8A. The observed correlation suggests that the solar events produced a globally significant perturbation in the conductivity of the D-region forming the upper boundary of the earth-ionosphere cavity to produce the observed Schumann resonance response. A more refined analysis of the data will permit establishing the relative importance of the relativistic electron, energetic proton and x-ray contributions to the observed perturbations. In addition to making Schumann resonance measurements, the station in Alaska successfully detected for the first time ALF emissions in the frequency range 6-154 Hz generated by polar electrojet modification by the HIPAS HF heater facility located near Fairbanks.

Sentman, D.D.

1990-07-25T23:59:59.000Z

476

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report  

SciTech Connect (OSTI)

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.

Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

2012-06-28T23:59:59.000Z

477

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.  

SciTech Connect (OSTI)

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.

Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

2011-12-09T23:59:59.000Z

478

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.  

SciTech Connect (OSTI)

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.

Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

2011-08-26T23:59:59.000Z

479

Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.  

SciTech Connect (OSTI)

The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.

Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

2012-04-09T23:59:59.000Z

480

Arctic Energy Technology Development Laboratory  

SciTech Connect (OSTI)

The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

SciTech Connect (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

482

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

483

Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays  

SciTech Connect (OSTI)

Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

2013-05-14T23:59:59.000Z

484

Old Harbor Scammon Bay Hydro Feasibility  

SciTech Connect (OSTI)

The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

Brent Petrie

2007-06-27T23:59:59.000Z

485

Amchitka, Alaska Site Fact Sheet  

SciTech Connect (OSTI)

Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

None

2011-12-15T23:59:59.000Z

486

Probabilistic evaluation of main coolant pipe break indirectly induced by earthquakes: Savannah River Project L and P Reactors  

SciTech Connect (OSTI)

A probabilistic evaluation of seismically-induced indirect pipe break for the Savannah River Project (SRP) L- and P-Reactor main coolant (process water) piping has been conducted. Seismically-induced indirect pipe break can result primarily from: (1) failure of the anchorage of one or more of the components to which the pipe is anchored; or (2) failure of the pipe due to collapse of the structure. The potential for both types of seismically-induced indirect failures was identified during a seismic walkdown of the main coolant piping. This work involved: (1) identifying components or structures whose failure could result in pipe failure; (2) developing seismic capacities or fragilities of these components; (3) combining component fragilities to develop plant damage state fragilities; and (4) convolving the plant seismic fragilities with a probabilistic seismic hazard estimate for the site in order to obtain estimates of seismic risk in terms of annual probability of seismic-induced indirect pipe break. 6 refs., 5 figs., 2 tabs.

Short, S.A.; Wesley, D.A.; Awadalla, N.G.; Kennedy, R.P. (Impell Corp., Mission Viejo, CA (USA); Westinghouse Savannah River Co., Aiken, SC (USA); Structural Mechanics Consulting, Inc., Yorba Linda, CA (USA))

1989-01-01T23:59:59.000Z

487

WESF natural phenomena hazards survey  

SciTech Connect (OSTI)

A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

Wagenblast, G.R., Westinghouse Hanford

1996-07-01T23:59:59.000Z

488

BUILDING TRIBAL CAPABILITIES IN ENERGY RESOURCE TRIBES  

SciTech Connect (OSTI)

The CERT Tribal Internship Program is part of the education and training opportunities provided by CERT to accelerate the development of American Indian technical professionals available to serve Tribes and expand the pool of these professionals. Tribes are severely impacted by the inadequate number of Indian professionals available to serve and facilitate Tribal participation and support of the energy future of Tribes,and subsequently the energy future of the nation. By providing interns with hands-on work experience in their field of study two goals are accomplished: (1) the intern is provided opportunities for professional enhancement; and (2) The pool of Indian professionals available to meet the needs of Tribal government and Tribal communities in general is increased. As of January 17, 2003, Lance M Wyatt successfully completed his internship with the Interagency Working Group on Environmental Justice on the Task Force that specifically focuses their work on Tribal nations. While working as an intern with the National Transportation Program, Albuquerque operations, Jacqueline Agnew received an offer to work for the Alaska Native Health Board in Anchorage, Alaska. This was an opportunity that Ms. Agnew did not feel she could afford to forego and she left her internship position in February 2003. At present, CERT is in the process of finding another qualified individual to replace the internship position vacated by Ms. Agnew. Mr. Wyatt's and Ms. Agnew's final comments are given.

Mary Lopez

2003-04-01T23:59:59.000Z

489

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

SciTech Connect (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

490

Work Element B: 157. Sampling in Fish-Bearing Reaches [Variation in Productivity in Headwater Reaches of the Wenatchee Subbasin], Final Report for PNW Research Station.  

SciTech Connect (OSTI)

We studied variation in productivity in headwater reaches of the Wenatchee subbasin for multiple field seasons with the objective that we could develop methods for monitoring headwater stream conditions at the subcatchment and stream levels, assign a landscape-scale context via the effects of geoclimatic parameters on biological productivity (macroinvertebrates and fish) and use this information to identify how variability in productivity measured in fishless headwaters is transmitted to fish communities in downstream habitats. In 2008, we addressed this final objective. In collaboration with the University of Alaska Fairbanks we found some broad differences in the production of aquatic macroinvertebrates and in fish abundance across categories that combine the effects of climate and management intensity within the subbasin (ecoregions). From a monitoring standpoint, production of benthic macroinvertebrates was not a good predictor of drifting macroinvertebrates and therefore might be a poor predictor of food resources available to fish. Indeed, there is occasionally a correlation between drifting macroinvertebrate abundance and fish abundance which suggests that headwater-derived resources are important. However, fish in the headwaters appeared to be strongly food-limited and there was no evidence that fishless headwaters provided a consistent subsidy to fish in reaches downstream. Fish abundance and population dynamics in first order headwaters may be linked with similar metrics further down the watershed. The relative strength of local dynamics and inputs into productivity may be constrained or augmented by large-scale biogeoclimatic control. Headwater streams are nested within watersheds, which are in turn nested within ecological subregions; thus, we hypothesized that local effects would not necessarily be mutually exclusive from large-scale influence. To test this we examined the density of primarily salmonid fishes at several spatial and temporal scales within a major sub-basin of the Columbia River and associations of density with ecoregion and individuals drainages within the sub-basin. We further examined habitat metrics that show positive associations with fish abundance to see if these relationships varied at larger spatial scales. We examined the extent to which headwater fish density and temporal variation in density were correlated between the headwaters and the main tributaries of the sub-basin, and the influence of ecoregion influence on density differences, particularly at wider temporal scales. Finally, we examined demographic parameters such as growth and emigration to determine whether density-dependence differs among ecoregions or whether responses were more strongly influenced by the demography of the local fish population.

Polivka, Karl; Bennett, Rita L. [USDA Forest Service, Pacific Northwest Research Station, Wenatchee, WA

2009-03-31T23:59:59.000Z

491

Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska  

SciTech Connect (OSTI)

This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e disposal of contaminated waste. The results of this evaluation will be presented in a subsequent corrective action decision document.

DOE /NV

2001-03-12T23:59:59.000Z

492

Cadmium induces carcinogenesis in BEAS-2B cells through ROS-dependent activation of PI3K/AKT/GSK-3?/?-catenin signaling  

SciTech Connect (OSTI)

Cadmium has been widely used in industry and is known to be carcinogenic to humans. Although it is widely accepted that chronic exposure to cadmium increases the incidence of cancer, the mechanisms underlying cadmium-induced carcinogenesis are unclear. The main aim of this study was to investigate the role of reactive oxygen species (ROS) in cadmium-induced carcinogenesis and the signal transduction pathways involved. Chronic exposure of human bronchial epithelial BEAS-2B cells to cadmium induced cell transformation, as evidenced by anchorage-independent growth in soft agar and clonogenic assays. Chronic cadmium treatment also increased the potential of these cells to invade and migrate. Injection of cadmium-stimulated cells into nude mice resulted in the formation of tumors. In contrast, the cadmium-mediated increases in colony formation, cell invasion and migration were prevented by transfection with catalase, superoxide dismutase-1 (SOD1), or SOD2. In particular, chronic cadmium exposure led to activation of signaling cascades involving PI3K, AKT, GSK-3?, and ?-catenin and transfection with each of the above antioxidant enzymes markedly inhibited cadmium-mediated activation of these signaling proteins. Inhibitors specific for AKT or ?-catenin almost completely suppressed the cadmium-mediated increase in total and active ?-catenin proteins and colony formation. Moreover, there was a marked induction of AKT, GSK-3?, ?-catenin, and carcinogenic markers in tumor tissues formed in mice after injection with cadmium-stimulated cells. Collectively, our findings suggest a direct involvement of ROS in cadmium-induced carcinogenesis and implicate a role of AKT/GSK-3?/?-catenin signaling in this process. -- Highlights: ? Chronic exposure to cadmium induces carcinogenic properties in BEAS-2B cells. ? ROS involved in cadmium-induced tumorigenicity of BEAS-2B cells. ? Cadmium activates ROS-dependent AKT/GSK-3?/?-catenin-mediated signaling. ? ROS-dependent signaling as potential therapeutic targets in cadmium carcinogenesis.

Son, Young-Ok; Wang, Lei; Poyil, Pratheeshkumar; Budhraja, Amit; Hitron, J. Andrew; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)] [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States) [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States); School of Dentistry and Institute of Oral Biosciences (BK21 program), Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)] [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY (United States)

2012-10-15T23:59:59.000Z

493

Repair of O sup 6 -ethylguanine in DNA protects rat 208F cells from tumorigenic conversion by N-ethyl-N-nitrosourea  

SciTech Connect (OSTI)

O{sup 6}-Ethylguanine (O{sup 6}-EtGua) is one of about a dozen different alkylation products formed in the DNA of cells exposed to the alkylating N-nitroso carcinogen N-ethyl-N-nitrosourea (EtNU). The authors have evaluated selectively the relative capacity of cells for the specific enzymatic repair of O{sup 6}-EtGua as a determinant for the probability of malignant conversion. Eleven O{sup 6}-EtGua-repair-proficient (R{sup +}) variant subclones were isolated from the O{sup 6}-EtGua-repair-deficient (R{sup {minus}}) clonal rat fibroblast line 208F by selection for resistance to 1,3-bis-(2-chloroethyl)-1-nitrosourea. Contrary to the 208F wild-type cells, all variants expressed O{sup 6}-methylguanine-DNA methyltransferase activity, while both kinds of cells were deficient for repair of the DNA ethylation products O{sup 2}- and O{sup 4}-ethylthymine. After exposure to EtNU cells were analyzed for the formation of piled-up foci in monolayer culture and of anchorage-independent colonies in semisolid agar medium. No significant differences in the frequencies of piled-up foci were found between wild-type and variant cells after exposure to the major reactive metabolite of benzo(a)pyrene, (+)-7{beta},8{alpha}-dihydroxy-9,10{alpha}-epoxy7,8,9,10{alpha}-tetrahydrobenzo(a)pyrene, for which stable binding to guanine O{sup 6} in cellular DNA has not been observed. The relative capacity of cells for repair of O{sup 6}-alkylguanine is, therefore, a critical determinant for their risk of malignant conversion by N-nitroso carcinogens.

Thomale, J.; Huh, Namho; Nehls, P.; Eberle, G.; Rajewsky, M.F. (Univ. of Essen Medical School (West Germany))

1990-12-01T23:59:59.000Z

494

Proceedings of the North Aleutian Basin information status and research planning meeting.  

SciTech Connect (OSTI)

The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant ecological and natural resources. The Basin includes most of the southeastern part of the Bering Sea continental shelf including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals including federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012 and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory (Argonne) were contracted to assist the MMS Alaska Outer Continental Shelf (OCS) Region in identifying and prioritizing information needs related to the North Aleutian Basin and potential future oil and gas leasing and development activities. The overall approach focused on three related but separate tasks: (1) identification and gathering of relevant literature; (2) synthesis and summary of the literature; and (3) identification and prioritization of information needs. To assist in gathering this information, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting, held in Anchorage, Alaska, from November 28 through December 1, 2006; this report presents a summary of that meeting. The meeting was the primary method used to gather input from stakeholders and identify information needs and priorities for future inventory, monitoring, and research related to potential leasing and oil and gas developments in the North Aleutian Basin.

LaGory, K. E.; Krummel, J. R.; Hayse, J. W.; Hlohowskyj, I.; Stull, E. A.; Gorenflo, L.; Environmental Science Division

2007-10-26T23:59:59.000Z

495

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

496

Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results  

SciTech Connect (OSTI)

The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

None

2013-09-01T23:59:59.000Z

497

Advanced Techniques for Power System Identification from Measured Data  

SciTech Connect (OSTI)

Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

Pierre, John W.; Wies, Richard; Trudnowski, Daniel

2008-11-25T23:59:59.000Z

498

Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas  

SciTech Connect (OSTI)

The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.

Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

2008-12-31T23:59:59.000Z

499

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001  

SciTech Connect (OSTI)

No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

National Energy Technology Laboratory

2002-10-01T23:59:59.000Z

500

Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank  

SciTech Connect (OSTI)

The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.

Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

2010-06-30T23:59:59.000Z