Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental Assessment Kotzebue Wind Installation Project  

Broader source: Energy.gov (indexed) [DOE]

Assessment \ Kotzebue Wind Installation Project Kotzebue, Alaska U. S. Department of Energy Golden Field Office 16 17 Cole Boulevard Golden, Colorado May 1998 Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska U. S . Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado May 1998 Finding of No Significant Impact Environmental Assessment Kotzebue Wind Installation Project Kotzebue, Alaska F'INDING OF NO SIGNIFICANT IMPACT for KOTZEBUE WIND INSTALLATION PROJECT KOTZEBUE, ALASKA AGENCY: Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact SUMMARY: The DOE is proposing to provide financial .assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska.

2

Kotzebue Wind Project III | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Wind Project III Kotzebue Wind Project III Jump to: navigation, search Name Kotzebue Wind Project III Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.83716°, -162.556955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83716,"lon":-162.556955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Kotzebue Wind Project I | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Wind Project I Kotzebue Wind Project I Facility Kotzebue Wind Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.836485°, -162.556955° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.836485,"lon":-162.556955,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

Kotzebue Wind Project 2012 | Open Energy Information  

Open Energy Info (EERE)

2012 2012 Jump to: navigation, search Name Kotzebue Wind Project 2012 Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Association Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Association Location Kotzebue AK Coordinates 66.83693789°, -162.5569081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83693789,"lon":-162.5569081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska  

SciTech Connect (OSTI)

The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

NONE

1998-05-01T23:59:59.000Z

6

Kotzebue Wind Project II | Open Energy Information  

Open Energy Info (EERE)

II II Facility Kotzebue Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Elec. Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Elec. Assoc. Location Kotzebue AK Coordinates 66.83912°, -162.562816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83912,"lon":-162.562816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Kotzebue Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Electric Assn Inc Kotzebue Electric Assn Inc (Redirected from Kotzebue Electric Association) Jump to: navigation, search Name Kotzebue Electric Assn Inc Place Alaska Utility Id 10451 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Residential Residential Small Commercial Commercial Street Lights Rate Lighting Average Rates Residential: $0.4820/kWh Commercial: $0.4640/kWh The following table contains monthly sales and revenue data for Kotzebue

8

Kotzebue Wind Project Phase I | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Wind Project Phase I Kotzebue Wind Project Phase I Facility Kotzebue Wind Project Phase I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.83907°, -162.551315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.83907,"lon":-162.551315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

Kotzebue Wind Project Phase II & III | Open Energy Information  

Open Energy Info (EERE)

II & III II & III Jump to: navigation, search Name Kotzebue Wind Project Phase II & III Facility Kotzebue Wind Project Phase II & III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Kotzebue Electric Assoc. Developer Kotzebue Electric Association Energy Purchaser Kotzebue Electric Assoc. Location Kotzebue AK Coordinates 66.839104°, -162.556894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.839104,"lon":-162.556894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

Kotzebue Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Kotzebue Electric Assn Inc Kotzebue Electric Assn Inc Place Alaska Utility Id 10451 Utility Location Yes Ownership C NERC Location AK Operates Generating Plant Yes Activity Generation Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Residential Residential Small Commercial Commercial Street Lights Rate Lighting Average Rates Residential: $0.4820/kWh Commercial: $0.4640/kWh The following table contains monthly sales and revenue data for Kotzebue Electric Assn Inc (Alaska). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

11

Fairbanks Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

12

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

13

University of Alaska Fairbanks Utility Development Plan  

E-Print Network [OSTI]

.1 Strategy 2 - Natural Gas Sub-Option - New Equipment STEAM SYSTEM Equipment MachineorGrouUniversity of Alaska Fairbanks Utility Development Plan October 25,2006TechnicalAppendices B UTILITY DEVELOPMENT PLAN APPENDIX B: TECHNICAL APPENDIX #12;10/25/06 SECTION 1 ­ TECHNICAL PRODUCTION

Hartman, Chris

14

Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska 8 Fairbanks, Alaska Archive Reference Buildings by Climate Zone: 8 Fairbanks, Alaska Here you will find past versions of the reference buildings for new construction commercial buildings, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available. You can download ZIP files that contain the following: An EnergyPlus software input file (.idf) An html file showing the results from the EnergyPlus simulation (.html) A spreadsheet that summarizes the inputs and results for each location (.xls) The EnergyPlus TMY2 weather file (.epw). benchmark-v1.0_3.0-8a_ak_fairbanks.zip benchmark-v1.1_3.1-8a_usa_ak_fairbanks.zip benchmark-new-v1.2_4.0-8a_usa_ak_fairbanks.zip More Documents & Publications

15

Fairbanks, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Fairbanks, Alaska: Energy Resources Fairbanks, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.8377778°, -147.7163889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.8377778,"lon":-147.7163889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

17

Reference Buildings by Climate Zone and Representative City: 8 Fairbanks,  

Broader source: Energy.gov (indexed) [DOE]

Climate Zone and Representative City: 8 Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included. refbldg_8a_usa_ak_fairbanks_post1980_v1.3_5.0.zip refbldg_8a_usa_ak_fairbanks_post1980_v1-4_7-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 3A Atlanta, Georgia Reference Buildings by Climate Zone and Representative City: 6B Helena, Montana Reference Buildings by Building Type: Secondary school

18

Designing for Energy Conservation - The Cypress Fairbanks Medical Center Hospital  

E-Print Network [OSTI]

efficient and economically constructed has the winning combination. This paper details the design concepts of a 1984 Grand Award winner, the Cypress Fairbanks Medical Center Hospital, in the Fourth Annual Energy Conservation Design Award Competition....

Wiernik, L. B.; Ranzau, P. A.

1984-01-01T23:59:59.000Z

19

Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...  

Open Energy Info (EERE)

be due to a geothermal system at depth. One of the anomalies was interpreted to be from fluids up to 200 degrees Celsius. References Fairbank Engineering Ltd (2003) Phase I...

20

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain  

Open Energy Info (EERE)

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Author BRIAN D. FAIRBANK Published Publisher Not Provided, 2012 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Citation BRIAN D. FAIRBANK. 2012. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility. N/Ap. Retrieved from "http://en.openei.org/w/index.php?title=STATEMENT_OF_BRIAN_D._FAIRBANK_Nevada_Geothermal_Power_Inc.%27s_Blue_Mountain_Geothermal_Power_Facility&oldid=682760

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

22

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering,  

Open Energy Info (EERE)

Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Blue Mountain Area (Fairbank Engineering, 2010) Exploration Activity Details Location Blue Mountain Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes Using a precision thermistor probe, EGI, University of Utah, obtained detailed temperature logs of eleven new mineral exploration holes drilled at Blue Mountain. The holes, ranging in depth from 99 to 244 meters (325 to 800 feet), were drilled in areas to the northeast, northwest and southwest of, and up to distances of two kilometers from, the earlier mineral exploration drill holes that encountered hot artesian flows. Unfortunately,

23

Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) | Open  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Engineering, 2007) Blue Mountain Area (Fairbank Engineering, 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection Survey At Blue Mountain Area (Fairbank Engineering, 2007) Exploration Activity Details Location Blue Mountain Area Exploration Technique Reflection Survey Activity Date Usefulness useful DOE-funding Unknown Notes A high-resolution seismic reflection survey was conducted by Utah Geophysical, Inc. (1990) along four widely spaced survey lines normal to range front fault sets. The survey was designed primarily to detect silicified zones or zones of argillic alteration, and faulting, to depths of about 300 meters (1000 feet), as part of the precious metals exploration program. One interpretation of the data showed discrete, high-angle faults

24

Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Blue Mountain Area (Fairbank Engineering, 2008) Exploration Activity Details Location Blue Mountain Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding

25

Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank & Neggemann, 2004) Blue Mountain Area (Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown References Brian D. Fairbank, Kim V. Niggemann (2004) Deep Blue No 1- A Slimhole Geothermal Discovery At Blue Mountain, Humboldt County, Nevada Retrieved from "http://en.openei.org/w/index.php?title=Thermal_Gradient_Holes_At_Blue_Mountain_Area_(Fairbank_%26_Neggemann,_2004)&oldid=386709" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link

26

Fairbanks North Star Borough, Alaska: Energy Resources | Open Energy  

Open Energy Info (EERE)

Fairbanks North Star Borough, Alaska: Energy Resources Fairbanks North Star Borough, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 64.9526102°, -146.4744155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.9526102,"lon":-146.4744155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2003) |  

Open Energy Info (EERE)

Blue Mountain Area (Fairbank Blue Mountain Area (Fairbank Engineering, 2003) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense

28

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal Communication: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power...

29

Anchorage, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anchorage, Alaska: Energy Resources Anchorage, Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

30

Anchorage Municipal Light and Power (Alaska) EIA Revenue and...  

Open Energy Info (EERE)

Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

31

Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank  

Open Energy Info (EERE)

5) 5) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering, 2005) Exploration Activity Details Location Blue Mountain Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Geophysical surveys that have been conducted specifically for the geothermal program at Blue Mountain include a self-potential (SP) survey, and additional IP/electrical resistivity traversing. These surveys were conducted under a cooperative program between Noramex Corporation and the Energy and Geosciences Institute (EGI), University of Utah, with funding support from the DOE's Office of Geothermal Technology (DOE/OGT).

32

STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...  

Open Energy Info (EERE)

Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General: STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue...

33

EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

34

Fairbanks Ranch, California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Fairbanks Ranch, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9939331°, -117.1872572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9939331,"lon":-117.1872572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

35

Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) | Open Energy  

Open Energy Info (EERE)

Fairbank Engineering, 2009) Fairbank Engineering, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Fairbank Engineering, 2009) Exploration Activity Details Location Blue Mountain Area Exploration Technique Slim Holes Activity Date Usefulness useful DOE-funding Unknown Notes DEEP BLUE No.1, the first slim geothermal observation test hole at Blue Mountain, was drilled under a cost-share program between the DOE and Noramex, under the DOE's Geothermal Resource Exploration and Definition (GRED) program, (Noramex Corp., 2002). The hole was sited to test an area of projected high temperature at depth from gradients measured in shallow holes drilled in the central part of the lease area (Figure 3.1), and to test an area of low apparent resistivity interpreted to reflect possible

36

Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) | Open Energy  

Open Energy Info (EERE)

Fairbank & Neggemann, 2004) Fairbank & Neggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Blue Mountain Area (Fairbank & Neggemann, 2004) Exploration Activity Details Location Blue Mountain Area Exploration Technique Core Holes Activity Date Usefulness useful DOE-funding Unknown Notes Drilling took longer than scheduled due to severe losses of circulation in the shallow subsurface causing considerable disruptions with the drilling and difficulty with cementing the 7 inch and 4.5 inch casing. An artesian flow of hot water was encountered at 163ft (49.7m) but efforts to obtain an uncontaminated sample of the water were frustrated by unstable hole conditions. In contrast, the 3.782" HQ interval of the well, continuously

37

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones,  

E-Print Network [OSTI]

A Counterflow Pipeline Experiment Bill Coates, Jo Ebergen, Jon Lexau, Scott Fairbanks, Ian Jones The counterflow pipeline architecture [12] consists of two interacting pipelines in which data items flow in op. The maximum total throughput of the chip, which is the sum of the throughputs of the two pipelines, varies

Harris, David Money

38

To appear: Proceedings of the 28 IEEE Photovoltaic Specialists Conference, Anchorage, September 19-22, 2000  

E-Print Network [OSTI]

To appear: Proceedings of the 28 th IEEE Photovoltaic Specialists Conference, Anchorage, September the n/i and p/i interfaces. Measured with 20 kHz, 1.6 Vpp modulation. #12;To appear: Proceedings of the 28 th IEEE Photovoltaic Specialists Conference, Anchorage, September 19-22, 2000 Manuscript Page 2

Schiff, Eric A.

39

The history of the anchorage at Serce Liman, Turkey  

E-Print Network [OSTI]

, the shore resumes its normal hill profile. The recess ends in a ridge, extending underwater several tens of meters toward the center of the bay; this ridge figured largely in the survey. Beyond the ridge, the shoreline curves back convexly to the dog...-leg. It was in this section that the slope floor was sur- veyed extending from the. ridge into the harbor for 56 meters. That this area was used as an anchorage in antiquity is testified by the number of anchors recovered: Figure 2. Serge Liman harbor. a stone anchor, a...

Slane, Dorothy Anne

1982-01-01T23:59:59.000Z

40

Geohydrology and groundwater geochemistry at a sub-arctic landfill, Fairbanks, Alaska  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough, Alaska, landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperature, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of groundwater flow from the landfill, and thus the leachate is not expected to affect the water supply wells. 11 refs., 21 figs., 2 tabs.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775-6340  

E-Print Network [OSTI]

Division of Student Services 514 Gruening Building, P.O. Box 756340, Fairbanks, Alaska 99775 AGREEMENT for the Review of Infrastructure, Sustainability and Energy Board Between the Associated Students of Sustainability, Faculty Senate, and Staff Council March 2011 Preamble In order to promote investment in energy

Ickert-Bond, Steffi

42

Anchorage Municipal Light and Power | Open Energy Information  

Open Energy Info (EERE)

Light and Power Light and Power Jump to: navigation, search Name Anchorage Municipal Light and Power Place Alaska Utility Id 599 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Area Lighting Service 1000 W Lighting Area Lighting Service 150 W Lighting Area Lighting Service 175 W Lighting Area Lighting Service 250 W Lighting Area Lighting Service 400 W Lighting

43

E-Print Network 3.0 - anchorages Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology 15 LIFE SCIENCES SEMINAR Kevin McCracken Summary: Field Station for research. Joe Margraf, 98-916, to Anchorage to attend the 135th Annual Meeting... of the American...

44

Scale-up of suspension and anchorage-dependent animal cells  

Science Journals Connector (OSTI)

Alternative culture processes for laboratory scale-up (to 20 L) are described for both suspension and anchorage-dependent cells. Systems range from simple multiple culture units such as the roller bottle, thro...

Bryan Griffiths

2001-01-01T23:59:59.000Z

45

Induction of Anchorage-independent Growth in Human Fibroblasts by Propane Sultone  

Science Journals Connector (OSTI)

...Anchorage-independent Growth in Human Fibroblasts by Propane Sultone 1 1 Supported in part by Department...growth after treatment with the carcinogen propane sultone, followed by exponential growth...Exposure to these same concentrations of propane sultone also resulted in a dose-dependent...

K. Charles Silinskas; Suzanne A. Kateley; John E. Tower; Veronica M. Maher; J. Justin McCormick

1981-05-01T23:59:59.000Z

46

Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000  

E-Print Network [OSTI]

Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

Sites, James R.

47

Geohydrology and ground-water geochemistry at a sub-Arctic Landfill, Fairbanks, Alaska. Water resources investigation  

SciTech Connect (OSTI)

The Fairbanks-North Star Borough landfill is located on silt, sand, and gravel deposits of the Tanana River flood plain, about 3 miles south of the city of Fairbanks water-supply wells. The landfill has been in operation for about 25 years in this sub-arctic region of discontinuous permafrost. The cold climate limits biological activity within the landfill with corresponding low gas and leachate production. Chloride concentrations, specific conductance, water temperatures, and earth conductivity measurements indicate a small plume of leachate flowing to the northwest from the landfill. The leachate remains near the water table as it flows northwestward toward a drainage ditch. Results of computer modeling of this local hydrologic system indicate that some of the leachate may be discharging to the ditch. Chemical data show that higher-than-background concentrations of several ions are present in the plume. However, the concentrations appear to be reduced to background levels within a short distance along the path of ground-water flow from the landfill, and thus the leachate is not expected to affect the water-supply wells.

Downey, J.S.; Sinton, P.O.

1990-01-01T23:59:59.000Z

48

Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov  

E-Print Network [OSTI]

Albany, OR · Anchorage, AK · Morgantown, WV · Pittsburgh, PA · Sugar Land, TX Website: www.netl-285-5437 briggs.white@netl.doe.gov Neil Nofziger Principal Investigator seM-coM company, Inc. 1040 North Westwood 304-285-4717 daniel.driscoll@netl.doe.gov PARTNERS University of Toledo Ceramatec, Inc. PROJECT

Azad, Abdul-Majeed

49

Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador  

E-Print Network [OSTI]

in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow anchorage in soils with low bulk density and in environments with high wind speeds. Abbreviations: AR m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all

Lehmann, Johannes

50

The U.S. Department of Energy Office of Indian Energy Policy and Programs, Anchorage, Alaska, Roundtable Summary  

SciTech Connect (OSTI)

The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15th, at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director?Policy of the Office of Indian Energy, represented DOE. Approximately twenty?seven people attended the meeting, including representatives of three native Alaskan villages, four Alaskan tribal corporations representing more than 40 tribal governments, as well as representatives from tribal associations and conferences. Interested state, federal, and non?profit representatives also were present. A full list of attendees is at the end of this summary. The meeting was facilitated by the Udall Foundations U.S. Institute for Environmental Conflict Resolution (U.S. Institute).

none,

2011-04-14T23:59:59.000Z

51

Role of Valence State and Solubility of Chromium Compounds on Induction of Cytotoxicity, Mutagenesis, and Anchorage Independence in Diploid Human Fibroblasts  

Science Journals Connector (OSTI)

...were counted with a dissecting micro scope. Induction of Anchorage...not directly determine the oxidation state of the ultrapure chromium...Fig. 1). In addition, oxidation of chromium(III) to chromium...soluble chromium(VI) compounds arc mutagenic in human cells...

Kim A. Biedermann and Joseph R. Landolph

1990-12-15T23:59:59.000Z

52

3-D Tracking of Shoes for Virtual Mirror Applications Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Anchorage, Alaska, June 2008.  

E-Print Network [OSTI]

and Pattern Recognition, Anchorage, Alaska, June 2008. P. Eisert, P. Fechteler, J. Rurainsky Fraunhofer Institute for Telecommunications, Heinrich-Hertz-Institute Einsteinufer 37, D-10587 Berlin, Germany peter.eisert@hhi.fraunhofer in two stores, one at the Champs Elys´ees, Paris, the other in Lille, France. At their innovation center

Eisert, Peter

53

Quantitation of the Rate of Spontaneous Generation and Carcinogen-induced Frequency of Anchorage-independent Variants of Rat Tracheal Epithelial Cells in Culture  

Science Journals Connector (OSTI)

...alepithelial; EGV, enhanced growth variant; CFE, colony-forming efficiency; MNNG, N-methyl-W...equation M No. of colonies observed in agarose CFE in agarose of cells from isolated colonies...optimize conditions to obtain the maximum CFE and colony size of anchorage-independent...

David G. Thomassen; Paul Nettesheim; Thomas E. Gray; J. Carl Barrett

1985-04-01T23:59:59.000Z

54

Enhanced Induction of the Anchorage-independent Phenotype in Initiated Rat Tracheal Epithelial Cell Cultures by the Tumor Promoter 12-O-Tetradecanoylphorbol-13-acetate  

Science Journals Connector (OSTI)

...carioylphorbol-13-acetate; FBS, fe tal bovine serum; CFE, colony-forming efficiency; DMSO, dimethyl...exposure media was 0.2%. Cell Number and CFE Measurement. At Day 40, all cultures were...anchorage- independent growth by measuring CFE in soft agarose by a modified MacPherson...

Vernon E. Steele; Diane K. Beeman; Paul Nettesheim

1984-11-01T23:59:59.000Z

55

"1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "1. Beluga","Gas","Chugach Electric Assn Inc",344 "2. George M Sullivan Generation Plant 2","Gas","Anchorage Municipal Light and Power",220 "3. North Pole","Petroleum","Golden Valley Elec Assn Inc",144 "4. Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 "5. Anchorage 1","Gas","Anchorage Municipal Light and Power",88 "6. Snettisham","Hydroelectric","Alaska Electric Light&Power Co",78 "7. Bernice Lake","Gas","Chugach Electric Assn Inc",62 "8. Lemon Creek","Petroleum","Alaska Electric Light&Power Co",58

56

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Kotzebue  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

57

National Strategy for the Arctic Region Tribal Consultation Session: Kotzebue  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well as other DOE-related activities in the region. DOE, in conjunction with several other federal agencies, will host seven consultation sessions between October and December 2014.

58

Albany, OR * Fairbanks, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55...

59

Albany, OR * Fairbanks, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Harbison-Walker Refractories Company Improved Refractory Materials for Slagging Gasification Systems Advances in technology are often directly linked to materials development....

60

Albany, OR * Fairbanks, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Triassic Newark Basin of New York & New Jersey for Geologic Storage of Carbon Dioxide Background Carbon capture and storage (CCS) technologies offer the potential for reducing...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Albany, OR * Fairbanks, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

efforts. The initiatives include: (1) an industry consortium gathering information on how hydraulic fracturing stimulations perform in the Bakken; (2) an evaluation of key factors...

62

Albany, OR * Fairbanks, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Most Promising Sequestration Formations in the Rocky Mountain Region Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO2 emissions without...

63

Variation in capacity for anchorage-independent growth among agar-derived clones of spontaneously transformed BALB/3T3 cells  

SciTech Connect (OSTI)

A subline of cloned spontaneously transformed BALB/3T3 cells had a colony-forming efficiency (CFE) in agar of 5 to 20%. Individual agar colonies isolated and reseeded into agar were not significantly more efficient at initiating colonies than the original unselected subline. Four successive cycles of agar growth and selection also failed to increase the mean CFE in agar. Randomly selected clones isolated on a plastic surface all had the capacity to grow in agar. These results suggest that the failure of the majority of the cells to grow in agar is not the result of an intrinsic or heritable inability to do so. The ability to initiate a colony in agar seems to vary phenotypically from cell to cell. In contrast, agar colonies isolated from some tumor cell lines (originating from related spontaneously transformed 3T3 cells) and reseeded in agar had a higher CFE than the unselected tumor cell lines. In one case, this increased CFE in agar was lost when the cells were passaged on plastic without further selection for agar growth. Thus, expression of the anchorage-independent phenotype may vary, even among related cloned populations of transformed cells. 39 references, 3 tables.

Romerdahl, C.A.; Rubin, H.

1984-12-01T23:59:59.000Z

64

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Company The University of Alabama - Birmingham Shell International Exploration and Production B.V. PROJECT DURATION Start Date End Date 8112010 3312014 COST Total Project...

65

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from oil and gas wells and develop possible uses and applications. In oil and gas exploration, produced water includes saline water found in underground formations that is...

66

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

67

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that 99 percent of injected CO2 remains in the injection zone(s); (3) improving efficiency of storage operations; and (4) developing Best Practices Manuals (BPMs). Figure...

68

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regions Research Program Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas...

69

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Space Geodesy and Geochemistry Applied to the Monitoring, Verification of Carbon Capture and Storage (CCS): Training and Research Background Increased attention is being placed on...

70

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from university or small business research projects. Collaboration with academic, non-profit, or commercial research groups can be arranged under a variety of cooperative...

71

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

72

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

risks to water ecology and energy resources from potential leakage of CO 2 from deep brine reservoirs. The results of the efforts above will be used to develop a toolkit of...

73

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Flow, Transport, and Storage of CO2 in Saline Aquifers Background Through its core research and development program administered by the National Energy Technology...

74

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coal-Seq III Consortium: Advancing the Science of CO 2 Sequestration in Coal Seam and Gas Shale Reservoirs Background Through its core research and development (R&D) program...

75

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a key risk factor for carbon capture and storage (CCS) applications. Wells (existing and new) may present risks for CO2 geologic storage, including wells which underwent poor...

76

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manager Strategic Center for Natural Gas & Oil 281-494-2520 roy.long@netl.doe.gov Kelly Rose Offshore Technical Portfolio Lead Office of Research and Development 541-967-5883...

77

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Actualistic and Geomechanical Modeling of Reservoir Rock, CO2 and FormationFluid Interaction, Citronelle Oil Field, Alabama Background Fundamental and applied research on carbon...

78

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GEOSEQ: Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers (PFTs) Background The purpose of this project is to develop monitoring, verification,...

79

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

80

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulating Capillary and Dissolution Trapping During Injection and Post-Injection of CO2 in Heterogeneous Geological Formations Using Data from Intermediate Scale Test Systems...

82

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department...

83

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National...

84

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

85

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and Trapping Background The overall goal of the Department of Energy's (DOE)...

86

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

87

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximization of Permanent Trapping of CO2 and Co-contaminants in the Highest Porosity Formations of the Rock Springs Uplift (Southwest Wyoming): Experimentation and Multi-Scale...

88

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering...

89

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or...

90

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background During hydraulic fracturing of unconventional resources, large quantities of fracturing fluids are injected at high...

91

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large Scale Geologic Storage of CO 2 Background Carbon capture and storage...

92

Ocean Acidification Workshop in Anchorage  

Broader source: Energy.gov [DOE]

This workshop aims to bring concerned and/or interested individuals together to hear the latest research, policy implications, community perspectives, and potential impacts along Alaskas coast and...

93

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in MaficUltramafic Rocks Background The overall goal of the...

94

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Near-Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field- Ready 14 C Isotopic Analyzer Background Through its core...

95

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental Design Applications for Modeling and Assessing Carbon Dioxide Sequestration in Saline Aquifers Background The overall goal of the Department of Energy's (DOE) Carbon...

96

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consortium-Validation Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

97

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Test of a 1,000-Level 3C Fiber Optic Borehole Seismic Array Applied to Carbon Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

98

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center Development and Implementation of the Midwest Geological Sequestration Consortium Sequestration Training and Education Program (STEP) Background Carbon capture utilization...

99

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Commission Association of American Railroads Augusta Systems, Inc. Southeast Regional Carbon Sequestration Partnership-Validation Phase Background The U.S. Department of Energy...

100

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l , optical, magnetic, and or catalytic properties. Efforts will also focus on assessing graphene for high temperature sensor applications. The novel control system research...

102

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of CO 2 storage in oil reservoirs in association with CO 2 enhanced oil recovery (EOR). The goal of the saline formation activities is to refine, as necessary, the equations...

103

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thus making the educational products globally accessible. * Developing a self-sustaining CCUS training program through an active sponsorship program and appropriately...

104

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thus addressing primary obstacles to rapid CCUS deployment. * Developing a self-sustaining CCUS training program through an active sponsorship program and appropriately...

105

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

106

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration of Carbon Dioxide Gas in Coal Seams Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that...

107

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of moderate to high gamma background radiation (i.e., potential Rn degassing) with naturally-occurring CO 2 (Figure 1). Natural CO 2 analogues provide a means of understanding...

108

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

109

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

110

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in this study include: * How physical properties of sandmudstone interfaces influence CO2 storage and transport. * How geochemical perturbations * Induced by CO2 emplacement...

111

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being developed for geologic carbon storage are focused on five storage types: oil and gas reservoirs, saline formations, unmineable coal seams, basalts, and...

112

Archived Reference Climate Zone: 8 Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed before 1980, organized by building type and location. A summary ofbuilding types and climate zonesis available for reference.Current versionsare also available.

113

Archived Reference Climate Zone: 8 Fairbanks, Alaska  

Broader source: Energy.gov [DOE]

Here you will find past versions of the commercial reference building models for existing buildings constructed in or after 1980, organized by building type and location. A summary of building types and climate zones is available for reference. Current versions are also available.

114

University of Alaska -Fairbanks March 2, 2012  

E-Print Network [OSTI]

and mathematical modeling to the design and construction of biological parts, devices, and systems with applications in energy, medicine, and technology. www.bio.davidson, March 4, 2012 #12;Biofuels from Algae CO -neutral2 1,000,000 gallons in 2008 Sunday, March 4, 2012 #12

Campbell, A. Malcolm

115

Ng Chung-Sung Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA  

E-Print Network [OSTI]

99775, USA L. Lin, and A. Bhattacharjee Space Science Center University of New Hampshire USA Three and Center for Magnetic Self-Organization, University of New Hampshire, Durham, New Hampshire 03824, USA

Ng, Chung-Sang

116

National Strategy for the Arctic Region Stakeholder Outreach...  

Broader source: Energy.gov (indexed) [DOE]

the Arctic Region Stakeholder Outreach Meeting: Kotzebue November 5, 2014 10:00AM to 12:00PM AKST Kotzebue, Alaska Northwest Arctic Heritage Center 171 3rd Ave. Kotzebue, AK 9975...

117

National Strategy for the Arctic Region Tribal Consultation Session...  

Broader source: Energy.gov (indexed) [DOE]

for the Arctic Region Tribal Consultation Session: Kotzebue November 5, 2014 1:30PM to 3:30PM AKST Kotzebue, Alaska Northwest Arctic Heritage Center 171 3rd Ave. Kotzebue, AK 9975...

118

UNIVERSITY of ALASKA ANCHORAGE ALASKA JUSTICE FORUM  

E-Print Network [OSTI]

of the processes and procedures legal authorities use to make decisions, and it consists of three interrelated of the federal government to require individuals to purchase health insurance), rather than the processes

Pantaleone, Jim

119

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL R&D Tackles Technological NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding

120

Aeromagnetic Survey At Blue Mountain Area (Fairbank Engineering, 2004) |  

Open Energy Info (EERE)

4) 4) Exploration Activity Details Location Blue Mountain Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes The airborne magnetometer and VLF-EM surveys carried out by Aerodat Limited, in 1988, covered the western flank of Blue Mountain including most of the geothermal lease area. The interpreted data (total field magnetic contours; calculated vertical magnetic gradient) indicate parallel sets of northerly, northeasterly, and northwesterly-trending structures that correspond well with the major fault sets identified from geologic mapping and interpreted drilling sections. Also, an elongate northerly-trending area of low magnetic gradient coincides closely with the area of intense hydrothermal alteration associated with the prominent north-south range

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

122

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Fairbanks  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well as other DOE-related activities in the region. DOE, in conjunction with several other federal agencies, will host seven tribal consultation sessions and seven stakeholder outreach meetings between October and December 2014.

123

ORIGIN OF THE UPLAND SILT NEAR FAIRBANKS, ALASKA  

Science Journals Connector (OSTI)

...level. The wide crest of Chena Ridge (PI. 1), extending...near Chatanika, Circle Hot Springs, and Chena Springs (Fig. 2...Tanana River at Manley Hot Springs, about 90 miles west...the flood plain of the Chena-Tanana River system...

124

Customized ESL Summer Program July 5 (Sat) Arrive Fairbanks  

E-Print Network [OSTI]

9:15-10:30 and 10:45-12:00 English Course Noon Lunch Leave for Chena Hot Springs 7:00 PM Goldpanner/Kayaking down the Chena River 5:30 PM Dinner 7:00 PM Aurora Talk July 16th Wed 7:30 -8:30 am Breakfast 9

Sikes, Derek S.

125

Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

well Deep Blue No. 1. Notes Well log data was collected in Deep Blue No. 1 upon its completion. The logging was conducted by Welaco Well Analysis Corporation. Temperature,...

126

Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

geothermal activity which could be linked to faults that serve as pathways for geothermal fluids. Notes This survey was conducted on the western flank of Blue Mountain. SP Profile...

127

National Strategy for the Arctic Tribal Consultation Session: Fairbanks  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well...

128

UNITED WAY OF ANCHORAGE CODE WEB ADDRESS United Way of Anchorage 71830 www.liveunitedanchorage.org  

E-Print Network [OSTI]

.pathwaycenter.org Renewable Energy Alaska Project 88020 alaskarenewableenergy.org Special Olympics Alaska Inc 55282 www 35694 www.hfhanchorage.org Kids' Corps, Inc. 30881 kcialaska.org Lutheran Social Services of Alaska Inc

Pantaleone, Jim

129

June2004TopicalReportANS-Drilling.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Drilling and Data Acquisition Planning Drilling and Data Acquisition Planning Topical Report Cooperative Agreement Award Number DE-FC-01NT41332 Submitted to the United States Department of Energy National Energy Technology Laboratory ADD Document Control by BP Exploration (Alaska), Inc. Robert Hunter (Principal Investigator) P.O. Box 196612 Anchorage, Alaska 99519-6612 Email: hunterrb@bp.com robert.hunter@asrcenergy.com Tel: (907)-339-6377 with University of Alaska Fairbanks Shirish Patil (Principal Investigator) 425 Duckering Building P.O. Box 755880 Fairbanks, Alaska 99775-5880 and Arizona Board of Regents University of Arizona, Tucson Robert Casavant (Principal Investigator) Dept. Mining and Geological Engineering Rm. 245, Mines and Metallurgy Bldg. #12 1235 E. North Campus Dr., POB 210012

130

June2006_BP_QuartRpt5.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 2006 Quarterly Technical Report June 2006 Quarterly Technical Report Fifteenth Technical Quarterly Report: inclusive of January 2005 - June 2006 (Technical Quarterly Reports Ten through Fourteen Waived) Cooperative Agreement Award Number DE-FC-01NT41332 Submitted to the United States Department of Energy National Energy Technology Laboratory ADD Document Control by BP Exploration (Alaska), Inc. Robert Hunter (Principal Investigator) P.O. Box 196612 Anchorage, Alaska 99519-6612 Email: hunterrb@bp.com robert.hunter@asrcenergy.com Tel: (907)-339-6377 with University of Alaska Fairbanks Shirish Patil (Principal Investigator) 425 Duckering Building P.O. Box 755880 Fairbanks, Alaska 99775-5880 and Arizona Board of Regents University of Arizona, Tucson Robert Casavant (Principal Investigator)

131

Sept2006_BP_QuartRpt-repaired.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

September 2006 Quarterly Technical Report September 2006 Quarterly Technical Report Sixteenth Technical Quarterly Report: July 2006 - September 2006 Cooperative Agreement Award Number DE-FC-01NT41332 Submitted to the United States Department of Energy National Energy Technology Laboratory ADD Document Control by BP Exploration (Alaska), Inc. Robert Hunter (Principal Investigator) P.O. Box 196612 Anchorage, Alaska 99519-6612 Email: hunterrb@bp.com robert.hunter@asrcenergy.com Tel: (907)-339-6377 with University of Alaska Fairbanks Shirish Patil (Principal Investigator) 425 Duckering Building P.O. Box 755880 Fairbanks, Alaska 99775-5880 and Arizona Board of Regents University of Arizona, Tucson Robert Casavant (Principal Investigator) Dept. Mining and Geological Engineering Rm. 245, Mines and Metallurgy Bldg. #12

132

Chukchi Campus Master Plan Per Board of Regents  

E-Print Network [OSTI]

of Alaska Strategic Direction Initiative 48 #12;Student and teachers set up a Kotzebue wind turbine. #12

Hartman, Chris

133

ShoreZone in the Arctic 8,000 km of Coastal Habitat Mapping Cathy Coon, Bureau of Ocean Energy Management, catherine.coon@boem.gov  

E-Print Network [OSTI]

Deadhorse Kotzebue Sound BOEM North Slope Imagery - 1,900 km BOEM North Slope Shore Stations National Park a continental-scale characterization of the arctic shoreline and support planning efforts related to oils spills Krusenstern, north of Kotzebue #12;Point Lay Wales Kotzebue Wainwright Cape Lisburne Kaktovik BARROW Point

134

Anchorage Borough, Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 61.2180556°, -149.9002778° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2180556,"lon":-149.9002778,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 s o l u b i li t y at r o o m temperature. CO 2 solubility testing of the most prom- ising eutectic combinations was completed. The results indicate that increasing the...

136

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

412-386-7343 Hunaid.Nulwala@contr.netl.doe.gov David Luebke Technical Co-ordinator for Carbon Capture National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940...

137

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55...

138

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

139

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

140

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sorbents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory Pacific Northwest National Laboratory Princeton University Carbon Capture Simulation Initiative The Carbon Capture Simulation Initiative (CCSI) is a...

142

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Midwest Regional Carbon Sequestration Partnership - Development Phase Large-Scale Field Project Background The U.S. Department of Energy Regional Carbon Sequestration Partnership...

143

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic...

144

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. industry in a complementary research program designed to develop and demonstrate oil and natural gas drilling and production methodologies in ultra-deep formations. This...

145

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer at NETL Carbon capture, quantum mechanical simulations, integrated gasification, and clean power-words like these mean the future of energy to NETL's in-house...

146

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

estimates could result in a 4 - 6% gain in overall system efficiency. Rotating Detonation Combustion (RDC) capitalizes on this cycle and offers potential as a drop in...

147

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Engineering 304-285-4685 madhava.syamlal@netl.doe.gov David Miller Technical Director Carbon Capture Simulation Initiative 412-386-6555 david.miller@netl.doe.gov RESEARCH...

148

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

needs of advanced power systems. Industries that utilize natural gas, gasifier syngas, biogas, landfill gas, or any type of fuel gas can benefit from knowing the composition of the...

149

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of feedstock, gasifier geometry and flow conditions. Using palladium sorbents for high temperature capture of mercury and other trace elements in flue gases is also under...

150

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solvents for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical component of realistic strategies for arresting the rise in...

151

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov OTHER PARTNERS Energy Frontiers Research...

152

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membranes for Carbon Capture Background Carbon capture and storage from fossil-based power generation is a critical com- ponent of realistic strategies for arresting the rise in...

153

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

541-967-5885 david.alman@netl.doe.gov David Hopkinson Technical Portfolio Lead Carbon Capture 304-285-4360 david.hopkinson@netl.doe.gov Figure 1: Film made from a...

154

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

science to ensure safe, essentially permanent carbon sequestration; develop reliable measurement, monitoring and verification technologies acceptable to permitting agencies;...

155

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can simulate reservoirs that are multi-layered, exhibit dip, and have variable thickness, rock porosity, and rock permeability. The reservoirs can have fractures that open and...

156

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment Partnership Initiative The National Risk Assessment Partnership (NRAP) is a DOE initiative that harnesses core capabilities developed across the National Laboratory...

157

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to offshore hydrocarbon production and the recovery of unconventional resources like shale gas, estimating CO 2 storage potential in various types of geologic formations, and...

158

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

these emissions can negatively impact air quality. The environmental risks of shale gas and shale oil development may be very different from that of conventional oil and gas...

159

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of carbon dioxide in tight formations. Benefits Production of natural gas from hydraulically-fractured shales surrounding horizontal wells is a relatively recent and...

160

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

waters with geologic media such as confining layers and fossil fuels (e.g., coal, oil shale, natural gas bearing formations); and unconventional fossil fuel extraction...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 514-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

162

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

163

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technical Portfolio Lead Carbon Storage 412-386-4962 angela.goodman@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

164

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological and Environmental Sciences Division 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

165

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Acting Geology Team Lead Office of Research and Development National Energy...

166

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collins Ferry Road Morgantown, WV 26507-0880 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator, Ultra-Deepwater Resources Portfolio Office of Research and...

167

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator National Energy Technology Laboratory 1450 Queen Ave SW...

168

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

REARCH AND DEVELOPMENT Cynthia Powell Director 541-967-5803 cynthia.powell@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

169

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Portfolio Lead National Risk Assessment Program 304-285-4688 grant.bromhal@netl.doe.gov Kelly Rose Technical Portfolio Lead Offshore Resources 541-967-5883 kelly.rose@netl.doe.gov...

170

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon...

171

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting (MVA) and...

172

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. The major areas of focus...

173

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its research...

174

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

related impacts to human health and the natural environment, and induced seismicity from hydraulic fracturing. Project Description Through collaboration with its Regional...

175

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geomechanical Impacts of Shale Gas Activities Background Hydraulic fracturing of gas shale is the injection of large volumes of fluid at high pressures in low permeability shale to...

176

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas activities are associated with remote and challenging...

177

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

178

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

number of individual break-through tasks in diverse number of areas. These range from identification of new materials for gas capture, storage or separation to optimization of...

179

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface...

180

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Association of American Railroads Augusta Systems, Incorporated Southeast Regional Carbon Sequestration Partnership-Development Phase Cranfield Site and Citronelle Site...

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EOR Field Project - Development Phase Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The...

182

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Services Vecta Oil & Gas, Ltd. Washington State University Big Sky Regional Carbon Sequestration Partnership-Kevin Dome Development Phase Project Background The U.S....

183

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern United States Carbon Sequestration Training Center Background The focus of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance...

184

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to 200 o C for combustion is inefficient from both a cost and net electricity perspective. Hydrophobic solvents could be operated at higher temperatures and minimize...

185

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat in a combustion process while producing a concentrated CO 2 stream to facilitate carbon capture. Chemical looping research efforts can be categorized as: modeling tool...

186

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that are difficult or impossible to measure, such as coal jet penetration into a gasifier. This system provides the capabilities for running modeling tools at various scales...

187

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and implementing a Sponsorship Development Program that allows SECARB-Ed to be self-sustaining after the initial three-year period by establishing an advisory board, developing...

188

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

priations) to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program...

189

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Fossil Energy R&D 1 Bezdek, R. Wendling, R., The Return on Investment of the Clean Coal Technology Program in the USA. Energy Policy, Vol. 54, March 2013, pp. 104-112 2...

190

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

191

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R&D 070, November 2011, rev 1114 Research facilities include the Severe Environment Corrosion Erosion Research Facility (SECERF) for assessing materials performance in a variety...

192

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

can affect permeability and porosity (flow properties), depending on the amount of sorptiondesorption. If the geological formations of interest are deep and have high...

193

National Strategy for the Arctic Region Stakeholder Outreach Meeting: Anchorage  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well as other DOE-related activities in the region. DOE, in conjunction with several other federal agencies, will host seven consultation sessions between October and December 2014.

194

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

well and post- placement. Foamed cement stability depends on time evolution of the gas bubble-size distribution (BSD) and varies as it is pumped and placed in the well. Unstable...

195

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or particles. * High-definition, high-speed video capabilities: - Detailed information on bubble hydrodynamics. - Unprecedented resolution of hydrate surface morphology. * Provide...

196

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changes in CO 2 -water inter- facial tension. * Experimental CO 2 injection tests in pore micro-models and parallel network model simulations demonstrate that the sweep efficiency...

197

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pollutants and CO 2 . Oxy-fuel combustion of hydrocarbon fuel (coal, natural-gas, biomass) generates denitrified combustion gas comprising dominantly CO 2 and H 2 O. The...

198

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency loss, so it will...

199

National Strategy for the Arctic Region Tribal Consultation Session: Anchorage  

Broader source: Energy.gov [DOE]

DOE is seeking input from federally recognized Alaska Native Tribes and Alaska Native corporations on a 10-year implementation plan as part of the National Strategy for the Arctic Region, as well as other DOE-related activities in the region. DOE, in conjunction with several other federal agencies, will host seven consultation sessions between October and December 2014.

200

MICRO-BUBBLE SPARGING OF ANCHORAGE DEPENDENT ANIMAL CELL CULTURES  

Science Journals Connector (OSTI)

ABSTRACT We have recently demonstrated that micro-bubble sparging can be successfully applied for bubble oxygenation of suspended animal cell cultures. The success of micro-bubble sparging requires the use of surfactants (such as Pluronic F-68 and silicone based antifoams) which minimize foaming and bubble damaging effects and, at the same time improve the oxygen transfer capabilities across bubbles. For anchored animal cells the use of surfactants and micro-bubble sparging requires a careful evaluation of the choice of substrates which will enable maximum cell adhesion and growth in the presence of the appropriate surfactant. Results will be presented which show that cell culture polystyrene is an excellent substrate for the growth of anchored cells in surfactant-based media formulations. These fundamental studies were extrapolated to large-scale perfusion cultures of anchored BHK cells, cultivated in a polystyrene CellCube (Costar, U.K.), using micro-bubble sparging for medium oxygenation in a 2L stirred tank bioreactor (LH Fermentation Ltd). High yields of anchored cells (in excess of 1010 cells) with viabilities greater than 95% were obtained within 710 days post-inoculation. Keywords Micro-bubble oxygenation; anchored cells; Pluronic; adhesion; perfusion; foaming.

A. Handa-Corrigan; S. Nikolay; R. Brydges

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

near 276 MPa. Therefore, the per turbed-chain statistical associating fluid theory (PC-SAFT) model was used to calculate the fluid density, which is an input into the improved...

202

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of meeting such a challenge is the combination of a high temperature fuel cell and a gas turbine with a gasifier or reformer. This hybrid technology has been studied...

203

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's...

204

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are used to characterize the fundamental properties of unconventional natural gas and oil reservoirs, ultra-deepwater and frontier-region reservoirs, and reservoirs that offer...

205

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being developed for geologic carbon storage are focused on five storage types: (1) oil and natural gas reservoirs; (2) saline formations; (3) unmineable coal seams; (4)...

206

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Performance Project Research programs initiated by the U.S. Department of Energy (DOE) to achieve increased efficiency and reduced emissions are expected to result in the...

207

01240_NStransportation | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho...

208

Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy  

SciTech Connect (OSTI)

The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

David O. Ogbe; Shirish L. Patil; Doug Reynolds

2005-06-30T23:59:59.000Z

209

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Products and Chemicals, Inc.: Air Products and Chemicals, Inc.: Demonstration of CO2 Capture and Sequestration of Steam Methane Reforming Process Gas Used for Large-Scale Hydrogen Production Background Carbon dioxide (CO2) emissions from industrial processes, among other sources, are linked to global climate change. Advancing development of technologies that capture and store or beneficially reuse CO2 that would otherwise reside in the atmosphere for extended periods is of great importance. Advanced carbon capture, utilization and storage (CCUS) technologies offer significant potential for reducing CO2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Industrial Carbon Capture and Storage (ICCS) program, the U.S. Department

210

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Processing and Evaluation of Next Processing and Evaluation of Next Generation Oxygen Carrier Materials for Chemical Looping Combustion Background The Department of Energy (DOE) supports research towards the development of efficient and inexpensive CO 2 capture technologies for fossil fuel based power generation. The Department of Energy Crosscutting Research Program (CCR) serves as a bridge between basic and applied research. Projects supported by the Crosscutting Research Program conduct a range of pre-competitive research focused on opening new avenues to gains in power plant efficiency, reliability, and environmental quality by research in materials and processes, coal utilization science, sensors and controls, and computational energy science. Within the CCR, the University Coal Research (UCR) Program sponsors

211

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rick Dunst Rick Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 MS 922-273C Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Felicia Manciu Principal Investigator University of Texas at El Paso 500 West University Avenue El Paso, TX 79968-8900 915-747-5715 fsmanciu@utep.edu PROJECT DURATION Start Date 01/15/2009 End Date 12/15/2013 COST Total Project Value $249,546 DOE/Non-DOE Share $249,546 / $0

212

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACT CONTACT Cathy Summers Director, Process Development Division National Energy Technology Laboratory 1450 Queen Ave., SW Albany, OR 97321-2198 541-967-5844 cathy.summers@netl.doe.gov An Integrated Approach To Materials Development Traditional trial-and-error method in materials development is time consuming and costly. In order to speed up materials discovery for a variety of energy applications, an integrated approach for multi-scale materials simulations and materials design has

213

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Scale Simulations of the Large Scale Simulations of the Mechanical Properties of Layered Transition Metal Ternary Compounds for FE Power Systems Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. The goal of

214

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diode Laser Cladding of High Diode Laser Cladding of High Temperature Alloys Used in USC Coal- Fired Boilers Background The Advanced Research (AR) Materials Program addresses materials requirements for all fossil energy systems, including materials for advanced power generation and coal fuels technologies. Examples of these technologies include coal gasification, heat engines such as turbines, combustion systems, fuel cells, hydrogen production, and carbon capture

215

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathodes: Solid Oxide Fuel Cell Cathodes: Unraveling the Relationship among Structure, Surface Chemistry, and Oxygen Reduction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The Boston University (BU) project was competitively selected to acquire the fundamental

216

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Research Storage Research Carbon capture and storage (CCS) is a key component of the U.S. carbon management portfolio. Numerous studies have shown that CCS can account for up to 55 percent of the emissions reductions needed to stabilize and ultimately reduce atmospheric concentrations of CO 2 . NETL's Carbon Storage Program is readying CCS technologies for widespread commercial deployment by 2020. The program's goals are:

217

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE Leads Collaborative Effort DOE Leads Collaborative Effort to Quantify Environmental Changes that Coincide with Shale Gas Development Background DOE's National Energy Technology Laboratory (NETL) is leading a joint industry/ government research project to document environmental changes that occur during the lifecycle of shale gas development. The research plan calls for one year of environmental monitoring before development takes place to establish baseline conditions and account for seasonal variations. Monitoring then will continue through the different stages of unconventional shale gas development including: road and pad construction, drilling, and hydraulic fracturing, and for at least one year of subsequent production operations. The study will take place at a Range Resources-Appalachia

218

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r r oj e c t Fac t s Advanced Research Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments Background Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is central to the mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensors that can function under the

219

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Romanosky Romanosky Crosscutting Research Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4721 robert.romanosky@netl.doe.gov Richard Dunst Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6694 richard.dunst@netl.doe.gov Shizhong Yang Principal Investigator Southern University

220

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SO SO 2 -Resistent Immobilized Amine Sorbents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Patricia Rawls Patricia Rawls Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-5882 patricia.rawls@netl.doe.gov Sankaran Sundaresan Principal Investigator Princeton University Department of Chemical Engineering Princeton, NJ 08544 609-258-4583 sundar@princeton.edu PROJECT DURATION Start Date 10/01/2011 End Date 09/30/2014 COST Total Project Value $420,366 DOE/Non-DOE Share $300,000 / $120,366 Implementation and Refinement

222

Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methanol Economy Methanol Economy Background Fossil fuels such as coal, oil, and natural gas are composed of hydrocarbons with varying ratios of carbon and hydrogen. Consumption of hydrocarbons derived from fossil fuels is integral to modern day life in the U.S. Hydrocarbons are used as fuels and raw materials in the transportation sector and in many industrial production processes including chemicals, petrochemicals, plastics, pharmaceuticals, agrochemicals, and rubber.

223

University of Alaska, Fairbanks Dr. Alexander Keller Hirsch MAYmester 2013 Office Location: 601B Gruening Bldg  

E-Print Network [OSTI]

an examination of contemporary moral issues and dilemmas ranging from capital punishment, to abortion, cloning which keep it from being an `A'; or it may be all- around good work, free of major problems but lacking

Sikes, Derek S.

224

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

1998,1,4908,24636,4694,29431,1351,11643,1370,5978,12322,71688 1998,1,4908,24636,4694,29431,1351,11643,1370,5978,12322,71688 213,"Alaska Electric Light&Power Co","AK",1998,1,1430,14868,354,3934,363,4986,459,6435,2606,30223 599,"Anchorage Mun Light and Power","AK",1998,1,1536,16776,4633,63484,0,0,103,993,6272,81253 3522,"Chugach Electric Assn, Inc.","AK",1998,1,5237,53636,3662,48363,171,2657,110,629,9180,105285 7353,"Golden Valley Elec Assn, Inc","AK",1998,1,2781,30784,2589,30136,2180,33515,53,560,7603,94995 10210,"Ketchikan Public Utilities","AK",1998,1,532,5786,481,5514,92,1350,45,361,1150,13011 10433,"Kodiak Electric Assn, Inc","AK",1998,1,443,2881,294,2019,730,5211,17,74,1484,10185 10451,"Kotzebue Electric Assn, Inc","AK",1998,1,148,699,180,923,0,0,33,150,361,1772

225

Sustina Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Sustina Energy Systems Sustina Energy Systems Jump to: navigation, search Logo: Susitna Energy Systems Name Susitna Energy Systems Address 2507 Fairbanks Street Place Anchorage, Alaska Zip 99503 Product Energy Systems Phone number (877) 485-1100 Website http://www.susitnaenergy.com/ Coordinates 61.197291°, -149.871905° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.197291,"lon":-149.871905,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fact Sheets & Publications: State Fact Sheets Fact Sheets & Publications: State Fact Sheets The EWC >State Fact Sheets provide a simple, portable step-by-step guide to selecting energy efficient windows considering the conditions in that state. Each one summarizes the key considerations found elsewhere on this site, and provides a summary of results from the Window Selection Tool for key cities in that state. State New Construction Existing Construction (replacement) Alaska Anchorage, Fairbanks Alaska.pdf Alaska.pdf Alabama Birmingham, Mobile Alabama.pdf Alabama.pdf Arkansas Little Rock Arkansas.pdf Arkansas.pdf Arizona Phoenix, Flagstaff, Tucson Arizona.pdf Arizona.pdf California Arcata, Bakersfield, Daggett, Fresno, Los Angeles Red Bluff, Sacramento, San Diego, San Francisco California.pdf California.pdf

227

Step-by-Step Instructions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska based Alaska based upon the simple prescriptive option of the 2012 IECC. It does not provide a guarantee for meeting the IECC. This guide is not designed to reflect the actual energy code, with amendments, if any, adopted in Alaska and does not, therefore, provide a guarantee for meeting the state energy code. For details on the energy code adopted by Alaska, including how it may differ from the IECC, please contact your local building code official. Additional copies of this guide are available on www.reca-codes.com. CLIMATE ZONES 7 & 8 Aleutians East Aleutians West Census Area Anchorage Bethel Census Area Bristol Bay Denali Dillingham Census Area Fairbanks North Star Haines Hoonah-Angoon Census Area Juneau Kenai Peninsula Ketchikan Gateway

228

EA-1245: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

45: Finding of No Significant Impact 45: Finding of No Significant Impact EA-1245: Finding of No Significant Impact Kotzebue Wind Installation Project, Kotzebue, Alaska The U.S. Department of Energy's Golden Field Office is considering providing financial assistance to the Kotzebue Electric Association to expand its existing wind installation site near Kotzebue, Alaska. Like many rural Alaskan towns, Kotzebue uses diesel-powered generators to produce electricity, the high cost of which is currently subsidized by the Alaskan State government. In an effort to provide a cost effective and clean source of electricity, reduce dependance on diesel fuel, and reduce air pollutants, the DOE is proposing to partially fund the development of an experimental wind installation to test commercially available turbines

229

P8.13 CONTRAIL STUDIES AND FORECASTS IN THE SUBARCTIC ATMOSPHERE ABOVE FAIRBANKS, Martin Stuefer* and Gerd Wendler  

E-Print Network [OSTI]

, the radiative characteristics of contrails are similar to those of thin layers of naturally occurring cirrus are of interest for scientists investigating atmospheric radiation transfer processes, the chemical state of temperatures in the lower atmosphere by reducing the net radiation to the surface during the day and reducing

Stuefer, Martin

230

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on Local and Regional Air on Local and Regional Air Quality Impacts of Oil and Natural Gas Development Goal The NETL research effort in improving the assessment of impacts to air quality from oil and gas exploration and production activities has the following goals: (1) using NETL's mobile air monitoring laboratory, conduct targeted on-site measurements of emissions from oil and gas production activities that may impact the environment and (2) use collected data in atmospheric chemistry and transport models to further understanding of local and regional air quality impacts. Background The development of shale gas and shale oil resources requires horizontal drilling and multi-stage hydraulic fracturing, two processes that have been known for many years but have only recently become common practice. In addition, fugitive atmospheric

231

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of the Carbon Sequestration Evaluation of the Carbon Sequestration Potential of the Cambro Ordovician Strata of the Illinois and Michigan Basins Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

232

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Filtration to Improve Single Filtration to Improve Single Crystal Casting Yield-Mikro Systems Background Single crystal (SX) nickel superalloys are a primary material choice for gas turbine hot gas path component castings because of their high resistance to deformation at elevated temperatures. However, the casting yields of these components need to be improved in order to reduce costs and encourage more widespread use within the gas turbine industry. Low yields have been associated with a number of process-related defects common to the conventional casting of SX components. One innovative improvement, advanced casting filter designs, has been identified as a potential path toward increasing the yield rates of SX castings for high-temperature gas turbine applications. Mikro Systems, Inc. (Mikro) proposes to increase SX casting yields by developing

233

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Siemens Energy Siemens Energy Background Siemens Energy, along with numerous partners, has an ongoing U.S. Department of Energy (DOE) program to develop hydrogen turbines for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). Siemens Energy is expanding this program for industrial applications such as cement, chemical, steel, and aluminum plants, refineries, manufacturing facilities, etc., under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines for industrial CCS. ARRA industrial technology acceleration,

234

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Design of Advanced Engineering Design of Advanced Hydrogen-Carbon Dioxide Palladium and Palladium/Alloy Composite Membrane Separations and Process Intensification Background Technologies for pre-combustion carbon dioxide (CO2) capture and economical hydrogen (H2) production will contribute to the development of a stable and sustainable U.S. energy sector. The integrated gasification combined cycle (IGCC) system can produce synthesis gas (syngas) that can be used to produce electricity, hydrogen, fuels, and/or chemicals from coal and coal/biomass-mixtures in an environmentally responsible manner. The water-gas shift (WGS) reaction is a key part of this process for production of H2. The application of H2 separation technology can facilitate the production of high-purity H2 from gasification-based systems, as well as allow for process

235

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancement of SOFC Cathode Electro- Enhancement of SOFC Cathode Electro- chemical Performance Using Multi-Phase Interfaces- University of Wisconsin Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by

236

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Computational Materials Design of Computational Materials Design of Castable SX Ni-based Superalloys for IGT Blade Components-QuesTek Innovations Background Higher inlet gas temperatures in industrial gas turbines (IGTs) enable improved thermal efficiencies, but creep-the tendency of materials to deform gradually under stress-becomes more pronounced with increasing temperature. In order to raise inlet temperatures of IGTs, turbine blade materials are required to have superior creep rupture resistance. Nickel (Ni)-based single crystal (SX) blades have higher creep strength in comparison with directionally solidified blades and are widely used in aerospace engines. However, their use in IGTs, which require larger-size castings (two to three times the size needed in aerospace applications), is limited

237

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maira Reidpath Maira Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Steven S.C. Chuang Principal Investigator The University of Akron Department of Chemical and Biomolecular Engineering 230 E. Buchtel Commons Akron, OH 44325 330-972-6993 schuang@uakron.edu PARTNERS None PROJECT DURATION Start Date End Date 09/01/2009 08/31/2013 COST Total Project Value $1,713,961 DOE/Non-DOE Share $1,370,977/$342,984 AWARD NUMBER Techno-Economic Analysis of Scalable Coal-Based Fuel Cells-University of Akron Background In this congressionally directed project, the University of Akron (UA) will develop a scalable coal fuel cell manufacturing process to a megawatt scale. UA has demonstrated the

238

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Pressure, Temperature Combined Pressure, Temperature Contrast, and Surface-Enhanced Separation of Carbon Dioxide (CO 2 ) for Post-Combustion Carbon Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control tech- nologies and CO 2 compression is focused on advancing technological options for new and existing coal-fired

239

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Conductivity, High Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments-University of Connecticut Background Improved turbine materials are needed to withstand higher component surface temperatures and water vapor content for successful development and deployment of integrated gasification combined cycle (IGCC) power plants. Thermal barrier coatings (TBCs) in particular are required to have higher surface temperature capability, lower thermal conductivity, and resistance to attack at high temperature by contaminants such as calcium-magnesium-alumina-silicate (CMAS) and water vapor. There is also a concurrent need to address cost and availability issues associated with rare earth elements used in all low thermal conductivity TBCs.

240

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reducing Uncertainties in Model Reducing Uncertainties in Model Predictions via History Matching of CO2 Migration and Reactive Transport Modeling of CO2 Fate at the Sleipner Project, Norwegian North Sea Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is todevelop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molecular Separations Using Micro- Molecular Separations Using Micro- Defect Free Ultra-Thin Films Background Current methods for separating carbon dioxide (CO 2 ) from methane (CH 4 ) in fuel gas streams are energy and cost-intensive. Molecular sieve membrane development for carbon capture has been pursued for several decades because of the potential these membranes have for high selectivity while using less energy than cryogenic separation methods and greater flux (permselectivity) than is possible from polymeric membranes. However, the adoption of molecular sieve membrane technology has been hindered by high production costs and the micro-defect fissures that always accompany this type of membrane when fabricated using conventional techniques. The Department of Energy's (DOE) National Energy Technology Laboratory (NETL), has

242

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of the South Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional

243

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Joshua Hull Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-0906 joshua.hull@netl.doe.gov Erik Westman Principal Investigator Virginia Polytechnic Institute and State University 100 Holden Hall Blacksburg, VA 24061 540-0231-7510 Fax: 540-231-4070 ewestman@vt.edu PROJECT DURATION Start Date End Date 12/01/2009 12/31/2012 COST Total Project Value $257,818 DOE/Non-DOE Share $248,441 / $9,377 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. P R OJ E C T FAC T

244

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Scale Liquids Production Laboratory Scale Liquids Production and Assessment: Coal and Biomass to Drop-In Fuels Background A major problem with the production of liquid fuels from coal is that the production process and subsequent combustion of the fuel generate excessive greenhouse gases over the entire production and usage lifecycle. Adding lignocellulosic biomass (as a raw feed material) along with coal has the potential to reduce lifecycle greenhouse gas emissions to below those of petroleum products. Altex Technologies Corporation (Altex) has developed an innovative thermo-chemical process capable of converting coal and biomass to transportation fuel ready for blending. The Department of Energy (DOE) National Energy Technology Laboratory (NETL) has partnered with Altex to

245

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Capture and Storage Training Carbon Capture and Storage Training Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification, and accounting (MVA); geology-related

246

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Program Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Dawn Deel Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4133 dawn.deel@netl.doe.gov Sherry Mediati Business Contact California Energy Commission 1516 9th Street, MS 1 Sacramento, CA 95814 916-654-4204 smediati@energy.state.ca.us Mike Gravely Principal Investigator California Energy Commission 1516 Ninth Street, MS 43 Sacramento, CA 95814 916-327-1370 mgravely@energy.state.ca.us Elizabeth Burton Technical Director Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90-1116 Berkeley, CA 94720 925-899-6397 eburton@lbl.gov West Coast Regional Carbon

247

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrea Dunn Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Marte Gutierrez Principal Investigator Colorado School of Mines 1600 Illinois Street Golden, CO 80401 303-273-3468 Fax: 303-273-3602 mgutierr@mines.edu PROJECT DURATION Start Date 12/01/2009 End Date 5/31/2013 COST Total Project Value $297,505 DOE/Non-DOE Share $297,505 / $0 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

248

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Efficiency Molten Bed Oxy- Coal Combustion with Low Flue Gas Recirculation Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO 2 ) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO 2 capture. Additionally, the program looks to accomplish this while maintaining near

249

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Characteristics of Gasification Characteristics of Coal/Biomass Mixed Fuels Background Domestically abundant coal is a primary energy source and when mixed with optimum levels of biomass during the production of liquid fuels may have lower carbon footprints compared to petroleum fuel baselines. Coal and biomass mixtures are converted via gasification into synthesis gas (syngas), a mixture of predominantly carbon monoxide and hydrogen, which can be subsequently converted to liquid fuels by Fischer-Tropsch chemistry. The Department of Energy (DOE) is supporting research focused on using coal and biomass to produce clean and affordable power, fuels and chemicals. The DOE's National Energy Technology Laboratory (NETL) is partnering with Leland Stanford Junior

250

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbonaceous Chemistry for Carbonaceous Chemistry for Computational Modeling (C3M) Description C3M is chemistry management software focused on computational modeling of reacting systems. The primary function of C3M is to provide direct links between r e l i a b l e s o u r c e s o f k i n e t i c information (kinetic modeling soft- ware, databases, and literature) and commonly used CFD software su ch as M FIX , FLUEN T, an d BARRACUDA with minimal effort from the user. C3M also acts as a virtual kinetic laboratory to allow a CFD practitioner or researcher to evaluate complex, large sets of kinetic expressions for reliability and suitability and can interact with spreadsheet and process models. Once the chemical model is built within C3M, the software also allows the user to directly export

251

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Electro-deposited Phase III Xlerator Program: Electro-deposited Mn-Co Alloy Coating for Solid Oxide Fuel Cell Interconnects-Faraday Technology Background Based on preliminary cost analysis estimates, Faraday Technology has shown that its FARADAYIC TM electrodeposition process for coating interconnects is cost competitive. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed toward developing, optimizing, and validating the FARADAYIC process as an effective and economical manufacturing method for coating interconnect materials with a manganese-cobalt (Mn-Co) alloy for use in solid oxide fuel cell (SOFC) stacks. This project is managed by the U.S. Department of Energy (DOE) National Energy

252

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology to Mitigate Syngas Technology to Mitigate Syngas Cooler Fouling Background Coal gasification, in conjunction with integrated gasification combined cycle (IGCC) power production, is under development to increase efficiency and reduce greenhouse gas emissions associated with coal-based power production. However, coal gasification plants have not achieved their full potential for superior performance and economics due to challenges with reliability and availability. In particular, performance of the syngas cooler located downstream of the gasifier has been an issue. The syngas cooler is a fire tube heat exchanger located between the gasifier and the gas turbine. The purpose of the syngas cooler is to cool the raw syngas from the gasifier and recover heat. Although

253

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Studies to Enable Robust, Studies to Enable Robust, Reliable, Low Emission Gas Turbine Combustion of High Hydrogen Content Fuels-University of Michigan Background The University of Michigan will perform experimental and computational studies which can provide an improved and robust understanding of the reaction kinetics and other fundamental characteristics of combustion of high hydrogen content (HHC) fuels that are vital to advancing HHC turbine design and to making coal gasification power plants environmentally sustainable and cost- competitive. The scope of work includes Rapid Compression Facility (RCF) studies of HHC ignition delay times and hydroxyl radical (OH) time-histories, flame speeds, and flammability limits. A range of temperatures, pressures, and test gas mixture compositions will

254

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maria Reidpath Maria Reidpath Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304- 285-4140 maria.reidpath@netl.doe.gov Bogdan Gurau Principal Investigator NuVant Systems, Inc. 130 N West Street Crown Point, IN 46307 219-644-3232 b.gurau@nuvant.com PARTNERS None PROJECT DURATION Start Date End Date 08/01/2009 05/31/2013 COST Total Project Value $1,142,481 DOE/Non-DOE Share $913,985 / $228,496 AWARD NUMBER Improved Flow-field Structures for Direct Methanol Fuel Cells-NuVant Systems, Inc. Background In this congressionally directed project, NuVant Systems, Inc. (NuVant) will improve the performance of direct methanol fuel cells (DMFCs) by designing anode flow-fields specifically for the delivery of liquid methanol. The goal is to deliver concentrated

255

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Considerations and Environmental Considerations and Cooling Strategies for Vane Leading Edges in a Syngas Environment- University of North Dakota Background Cooling airfoil leading edges of modern first stage gas turbine vanes presents a con- siderable challenge due to the aggressive heat transfer environment and efficiency penalties related to turbine hot gas path cooling. This environment is made more complex when natural gas is replaced by high hydrogen fuels (HHF) such as synthesis gas (syngas) derived from coal gasification with higher expected levels of impurities. In this project the University of North Dakota (UND) and The Ohio State University (OSU) will explore technology opportunities to improve the reliability of HHF gas turbines by analyzing the effects

256

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alternative Low-Cost Process for Alternative Low-Cost Process for Deposition of MCrAlY Bond Coats for Advanced Syngas/Hydrogen Turbine Applications-Tennessee Technological University Background One of the material needs for the advancement of integrated gasification combined cycle (IGCC) power plants is the development of low-cost effective manufacturing processes for application of coating architectures with enhanced performance and durability in coal derived synthesis gas (syngas)/hydrogen environments. Thermal spray technologies such as air plasma spray (APS) and high-velocity oxy-fuel (HVOF) are currently used to fabricate thermal barrier coating (TBC) systems for large land- based turbine components. In this research Tennessee Technological University (TTU) will develop metal chromium-aluminum-yttrium (MCrAlY; where M = nickel [Ni], cobalt

257

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid-Fueled Pressurized Chemical Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and CO2 Capture Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while

258

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hafnia-Based Nanostructured Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology- University of Texas at El Paso Background Thermal barrier coatings (TBCs) are protective layers of low thermal conductivity ceramic refractory material that protect gas turbine components from high temperature exposure. TBCs improve efficiency by allowing gas turbine components to operate at higher temperatures and are critical to future advanced coal-based power generation systems. Next generation gas turbine engines must tolerate fuel compositions ranging from natural gas to a broad range of coal-derived synthesis gasses (syngas) with high hydrogen content. This will require TBCs to withstand surface temperatures much higher than those currently experienced by standard materials. In this project the University of Texas at El Paso (UTEP)

259

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Utilization of Coal Syngas in High Direct Utilization of Coal Syngas in High Temperature Fuel Cells-West Virginia University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. West Virginia University's (WVU) project will establish the tolerance limits of contaminant

260

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Geotechnical Site and Geotechnical Site Investigations for the Design of a CO2 Rich Flue Gas Direct Injection and Storage Facility in an Underground Mine in the Keweenaw Basalts Background Fundamental and applied research on carbon capture, utilization and storage (CCUS) technologies is necessary in preparation for future commercial deployment. These technologies offer great potential for mitigating carbon dioxide (CO2) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCUS technical and non-technical disciplines that are currently under-represented in the United States. Education and training

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Risk Assessment Partnership National Risk Assessment Partnership The Need for Quantitative Risk Assessment for Carbon Utilization and Storage Carbon utilization and storage-the injection of carbon dioxide (CO2) into permanent underground and terrestrial storage sites-is an important part of our nation's strategy for managing CO2 emissions. Several pilot- to intermediate-scale carbon storage projects have been performed in the U.S. and across the world. However, some hurdles still exist before carbon storage becomes a reality in the U.S. at a large scale. From a technical point of view, carbon storage risk analysis is complicated by the fact that all geologic storage sites are not created equally. Every potential site comes with an individual set of characteristics, including type of storage formation, mineral make-

262

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FACTS FACTS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Joseph Labuz Principal Investigator University of Minnesota 500 Pillsbury Drive SE Room 122 CivE 0851 Minneapolis, MN 55455 612-625-9060 jlabuz@umn.edu PARTNERS None PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,568 DOE/Non-DOE Share $299,568 / $0 PROJECT NUMBER DE-FE0002020 Government funding for this project is provided in whole or in part through the

263

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Model Development-LG Fuel Model Development-LG Fuel Cell Systems Background In this congressionally directed project, LG Fuel Cell Systems Inc. (LGFCS), formerly known as Rolls-Royce Fuel Cell Systems (US) Inc., is developing a solid oxide fuel cell (SOFC) multi-physics code (MPC) for performance calculations of their fuel cell structure to support product design and development. The MPC is based in the computational fluid dynamics software package STAR-CCM+ (from CD-adapco) which has been enhanced with new models that allow for coupled simulations of fluid flow, porous flow, heat transfer, chemical, electrochemical and current flow processes in SOFCs. Simulations of single cell, five-cell, substrate and bundle models have been successfully validated against experimental data obtained by LGFCS. The MPC is being

264

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of the Highest- of the Highest- Priority Geologic Formations for CO 2 Storage in Wyoming Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strand- plain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef.

265

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Assessment of Factors Influencing Assessment of Factors Influencing Effective CO2 Storage Capacity and Injectivity in Eastern Gas Shales Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

266

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reflection Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

267

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Sorbent Technology Dry Sorbent Technology for Pre-Combustion CO 2 Capture Background An important component of the Department of Energy (DOE) Carbon Capture Program is the development of carbon capture technologies for power systems. Capturing carbon dioxide (CO 2 ) from mixed-gas streams is a first and critical step in carbon sequestration. To be technically and economically viable, a successful separation method must be applicable to industrially relevant gas streams at realistic temperatures and practical CO 2 loading volumes. Current technologies that are effective at separating CO 2 from typical CO 2 -containing gas mixtures, such as coal-derived shifted synthesis gas (syngas), are both capital and energy intensive. Research and development is being conducted to identify technologies that will provide improved economics and

268

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Turbine Thermal Gas Turbine Thermal Performance-Ames Laboratory Background Developing turbine technologies to operate on coal-derived synthesis gas (syngas), hydrogen fuels, and oxy-fuels is critical to the development of advanced power gener-ation technologies such as integrated gasification combined cycle and the deployment of near-zero-emission type power plants with capture and separation of carbon dioxide (CO 2 ). Turbine efficiency and service life are strongly affected by the turbine expansion process, where the working fluid's high thermal energy gas is converted into mechanical energy to drive the compressor and the electric generator. The most effective way to increase the efficiency of the expansion process is to raise the temperature of the turbine's

269

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Turbines Hydrogen Turbines CONTACTS Richard A. Dennis Technology Manager, Turbines National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4515 richard.dennis@netl.doe.gov Travis Shultz Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507-0880 304-285-1370 travis.shultz@netl.doe.gov Jacob A. Mills Principal Investigator Florida Turbine Technologies, Inc 1701 Military Trail Suite 110 Jupiter, FL 33458-7887 561-427-6349 jmills@fttinc.com PARTNERS None PROJECT DURATION Start Date End Date 06/28/2012 08/13/2015 COST Total Project Value $1,149,847 DOE/Non-DOE Share $1,149,847 / $0 AWARD NUMBER SC0008218 Air-Riding Seal Technology for Advanced Gas Turbine Engines-Florida Turbine

270

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rodosta Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Darin Damiani Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507 304-285-4398 darin.damiani@netl.doe.gov Vivak Malhotra Principal Investigator Southern Illinois University Neckers 483A Mailcode: 4401 Carbondale, IL 62901 618-453-2643 Fax: 618-453-1056 vmalhotra@physics.siu.edu PARTNERS None Risk Assessment and Monitoring of Stored CO2 in Organic Rock under Non-Equilibrium Conditions Background Fundamental and applied research on carbon capture, utilization and storage (CCUS)

271

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Statistical Analysis of CO2 Exposed Wells Statistical Analysis of CO2 Exposed Wells to Predict Long Term Leakage through the Development of an Integrated Neural-Genetic Algorithm Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

272

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Development Phase Illinois Basin - Decatur Project Site Background The U.S. Department of Energy Regional Carbon Sequestration Partnership (RCSP) Initiative consists of seven partnerships. The purpose of these partnerships is to determine the best regional approaches for permanently storing carbon dioxide (CO2) in geologic formations. Each RCSP includes stakeholders comprised of state and local agencies, private companies, electric utilities, universities, and nonprofit organizations. These partnerships are the core of a nationwide network helping to establish the most suitable technologies, regulations, and infrastructure needs for carbon storage. The partnerships include more than 400 distinct organizations, spanning 43 states

273

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigations and Investigations and Rational Design of Durable High- Performance SOFC Cathodes- Georgia Institute of Technology Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/ NETL is leading the research, development, and demonstration of solid SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Cathode durability is critical to long-term SOFC performance for commercial deployment.

274

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen Carriers for Coal-Fueled Oxygen Carriers for Coal-Fueled Chemical Looping Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

275

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel Supercritical Carbon Dioxide Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion in Conjunction with Cryogenic Compression Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near

276

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PO Box 880 PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Charles D. Gorecki Technical Contact Senior Research Manager Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5355 cgorecki@undeerc.org Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23 rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota

277

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological & Environmental Sciences Geological & Environmental Sciences Subsurface Experimental Laboratories Autoclave and Core Flow Test Facilities Description Researchers at NETL study subsurface systems in order to better characterize and understand gas-fluid-rock and material interactions that impact environmental and resource issues related to oil, gas, and CO2 storage development. However, studying the wide variety of subsurface environments related to hydrocarbon and CO2 systems requires costly and technically challenging tools and techniques. As a result, NETL's Experimental Laboratory encompasses multi-functional, state-of-the-art facilities that perform a wide spectrum of geological studies providing an experimental basis for modeling of various subsurface phenomena and processes. This includes, but is not

278

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improving Durability of Turbine Components through Trenched Film Cooling and Contoured Endwalls-University of Texas at Austin Background Gas turbine operation utilizing coal-derived high hydrogen fuels (synthesis gas, or syngas) requires new cooling configurations for turbine components. The use of syngas is likely to lead to degraded cooling performance resulting from rougher surfaces and partial blockage of film cooling holes. In this project the University of Texas at Austin (UT) in cooperation with The Pennsylvania State University (Penn State) will investigate the development of new film cooling and endwall cooling designs for maximum performance when subjected to high levels of contaminant depositions. This project was competitively selected under the University Turbine Systems Research

279

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single-Crystal Sapphire Optical Fiber Single-Crystal Sapphire Optical Fiber Sensor Instrumentation for Coal Gasifiers Background Accurate temperature measurement inside a coal gasifier is essential for safe, efficient, and cost-effective operation. However, current sensors are prone to inaccurate readings and premature failure due to harsh operating conditions including high temperatures (1,200-1,600 degrees Celsius [°C]), high pressures (up to 1000 pounds per square inch gauge [psig]), chemical corrosiveness, and high flow rates, all of which lead to corrosion, erosion, embrittlement, and cracking of gasifier components as well as sensor failure. Temperature measurement is a critical gasifier control parameter because temperature is a critical factor influencing the gasification and it leads to impacts in efficiency and

280

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unraveling the Role of Transport, Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode Oxygen Reduction Reaction-Boston University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture The electrochemical performance of SOFCs can be substantially influenced by

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Swirl Injectors for Hydrogen Gas Low-Swirl Injectors for Hydrogen Gas Turbines in Near-Zero Emissions Coal Power Plants-Lawrence Berkeley National Laboratory Background The U.S. Department of Energy Hy(DOE) Lawrence Berkeley National Laboratory (LBNL) is leading a project in partnership with gas turbine manufacturers and universities to develop a robust ultra-low emission combustor for gas turbines that burn high hydrogen content (HHC) fuels derived from gasification of coal. A high efficiency and ultra-low emissions HHC fueled gas turbine is a key component of a near-zero emis- sions integrated gasification combined cycle (IGCC) clean coal power plant. This project is managed by the DOE National Energy Technology Laboratory (NETL). NETL is researching advanced turbine technology with the goal of producing reliable,

282

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of a Coal-Based Demonstration of a Coal-Based Transport Gasifier Background Coal is an abundant and indigenous energy resource and currently supplies almost 38 percent of the United States' electric power. Demand for electricity, vital to the nation's economy and global competitiveness, is projected to increase by almost 28 percent by 2040. The continued use of coal is essential for providing an energy supply that supports sustainable economic growth. Unfortunately, nearly half of the nation's electric power generating infrastructure is more than 30 years old and in need of substantial refurbishment or replacement. Additional capacity must also be put in service to keep pace with the nation's ever-growing demand for electricity. It is in the public interest

283

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Foamed Wellbore Cement Foamed Wellbore Cement Stability under Deep Water Conditions Background Foamed cement is a gas-liquid dispersion that is produced when an inert gas, typically nitrogen, is injected into a conventional cement slurry to form microscopic bubbles. Foamed cements are ultralow-density systems typically employed in formations that are unable to support annular hydrostatic pressure exerted by conventional cement slurries. More recently, the use of foamed cement has expanded into regions with high-stress environments, for example, isolating problem formations typical in the Gulf of Mexico. In addition to its light-weight application, foamed cement has a unique resistance to temperature and pressure-induced stresses. Foamed cement exhibits superior fluid

284

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scale Computational Design and Scale Computational Design and Synthesis of Protective Smart Coatings for Refractory Metal Alloys Background The goal of the University Coal Research (UCR) Program within the Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to further the understanding of coal utilization. Since the program's inception in 1979, its primary objectives have been to (1) improve understanding of the chemical and physical processes involved in the conversion and utilization of coal so it can be used in an environmentally acceptable manner, (2) maintain and upgrade the coal research capabilities of and facilities at U.S. colleges and universities, and (3) support the education of students in the area of coal science. The National Energy Technology Laboratory's Office of Coal and Power Systems supports

285

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conversion of CO2 in Commercial Conversion of CO2 in Commercial Materials using Carbon Feedstocks Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

286

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Experimental and Chemical Kinetics Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels- Pennsylvania State University Background Pennsylvania State University is teaming with Princeton University to enhance scientific understanding of the underlying factors affecting combustion for turbines in integrated gasification combined cycle (IGCC) plants operating on synthesis gas (syngas). The team is using this knowledge to develop detailed, validated combustion kinetics models that are useful to support the design and future research and development needed to transition to fuel flexible operations, including high hydrogen content (HHC) fuels derived from coal syngas, the product of gasification of coal. This project also funda- mentally seeks to resolve previously reported discrepancies between published ex-

287

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coating Issues in Coal-Derived Synthesis Coating Issues in Coal-Derived Synthesis Gas/Hydrogen-Fired Turbines-Oak Ridge National Laboratory Background The Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) is leading research on the reliable operation of gas turbines when fired with synthesis gas (syngas) and hydrogen-enriched fuel gases with respect to firing temperature and fuel impurity levels (water vapor, sulfur, and condensable species). Because syngas is derived from coal, it contains more carbon and more impurities than natural gas. In order to achieve the desired efficiency, syngas-fired systems need to operate at very high temperatures but under combustion conditions necessary to reduce nitrogen oxide (NO X ) emissions. ORNL's current project is focused on understanding the performance of high-

288

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochemical Processes Electrochemical Processes for CO2 Capture and Conversion to Commodity Chemicals Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the

289

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preparation and Testing of Corrosion- Preparation and Testing of Corrosion- and Spallation-Resistant Coatings- University of North Dakota Background The life of turbine components is a significant issue in gas fired turbine power systems. In this project the University of North Dakota (UND) will advance the maturity of a process capable of bonding oxide-dispersion strengthened alloy coatings onto nickel-based superalloy turbine parts. This will substantially improve the lifetimes and maximum use temperatures of parts with and without thermal barrier coatings (TBCs). This project is laboratory research and development and will be performed by UND at their Energy & Environmental Research Center (EERC) facility and the Department of Mechanical Engineering. Some thermal cycle testing will occur at Siemens Energy

290

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Assessment Model for Predicting Integrated Assessment Model for Predicting Potential Risks to Groundwater and Surface Water Associated with Shale Gas Development Background The EPAct Subtitle J, Section 999A-999H established a research and development (R&D) program for ultra-deepwater and unconventional natural gas and other petroleum resources. This legislation identified three program elements to be administered by a consortium under contract to the U.S. Department of Energy. Complementary research performed by the National Energy Technology Laboratory's (NETL) Office of Research and Development (ORD) is a fourth program element of this cost-shared program. NETL was also tasked with managing the consortium: Research Partnership to Secure Energy for America (RPSEA). Historically, the Complementary R&D Program being carried out by NETL's ORD has focused

291

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demonstration of Enabling Spar-Shell Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines - Florida Turbine Technologies Background The Florida Turbine Technologies (FTT) spar-shell gas turbine airfoil concept has an internal structural support (the spar) and an external covering (the shell). This concept allows the thermal-mechanical and aerodynamic requirements of the airfoil design to be considered separately, thereby enabling the overall design to be optimized for the harsh environment these parts are exposed to during operation. Such optimization is one of the major advantages of the spar-shell approach that is not possible with today's conventional monolithic turbine components. The proposed design integrates a novel cooling approach based on Advanced Recircu-

292

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos National Laboratory - Los Alamos National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization and Pre-Combustion Capture Goals Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop technologies to capture, separate, and store carbon dioxide (CO 2 ) to aid in reducing greenhouse gas (GHG) emissions without adversely influencing energy use or hindering economic growth. Carbon capture and sequestration (CCS) - the capture of CO 2 from large point sources and subsequent injection into deep geologic formations for permanent storage - is one option that is receiving considerable attention. NETL is devoted to improving geologic carbon sequestration technology by funding research projects aimed at removing barriers to commercial-scale

293

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials for Robust Repair Materials for Robust Repair of Leaky Wellbores in CO2 Storage Formations Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

294

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-fired Pressurized Fluidized Bed Oxy-fired Pressurized Fluidized Bed Combustor Development and Scale-up for New and Retrofit Coal-fired Power Plants Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy-combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available carbon dioxide (CO2) capture and storage technologies significantly reduce the efficiency of the power cycle. The ACS Program is focused on developing advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to

295

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantification Quantification of Wellbore Leakage Risk Using Non-Destructive Borehole Logging Techniques Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

296

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Sequestration Training and Research Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO2). Carbon capture and storage (CCS) technologies offer great potential for reducing CO2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the skills required for implementing and deploying CCS technologies.

297

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R& R& D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

298

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gulf of Mexico Miocene CO Gulf of Mexico Miocene CO 2 Site Characterization Mega Transect Background Carbon capture and storage (CCS) technologies offer the potential for reducing CO 2 emissions without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires adequate geologic formations capable of (1) storing large volumes of CO 2 , (2) receiving injected CO 2 at efficient and economic rates, and (3) retaining CO 2 safely over extended periods. Research efforts are currently focused on conventional and unconventional storage formations within depositional environments such as: deltaic, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Conventional storage types are porous permeable clastic or carbonate rocks that have

299

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

General Electric General Electric Background GE Power & Water, along with GE Global Research Center, has an ongoing U.S. Depart- ment of Energy (DOE) program to develop gas turbine technology for coal-based integrated gasification combined cycle (IGCC) power generation that will improve efficiency, reduce emissions, lower costs, and allow for carbon capture and storage (CCS). GE is broadening this development effort, along with expanding applicability to industrial applications such as refineries and steel mills under the American Recovery and Reinvestment Act (ARRA). ARRA funding will be utilized to facilitate a set of gas turbine technology advancements that will improve the efficiency, emissions, and cost performance of turbines with industrial CCS. ARRA industrial technology acceleration,

300

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Livermore National Laboratory Livermore National Laboratory - Advancing the State of Geologic Sequestration Technologies towards Commercialization Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is helping to develop carbon capture and storage (CCS) technologies to capture, separate, and store carbon dioxide (CO 2 ) in order to reduce green-house gas emissions without adversely influencing energy use or hindering economic growth. Carbon sequestration technologies capture and store CO 2 by injecting and permanently storing it in underground geologic formations. NETL is working to advance geologic carbon sequestration technology by funding research projects that aim to accelerate deployment and remove barriers to commercial-scale carbon sequestration. Lawrence Livermore National Laboratory

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxy-Fuel Turbo Machinery Oxy-Fuel Turbo Machinery Development for Energy Intensive Industrial Applications-Clean Energy Systems Background Clean Energy Systems (CES), with support from Siemens Energy and Florida Turbine Technologies (FTT), has an ongoing U.S. Department of Energy (DOE) program to develop an oxy-fuel combustor for highly efficient near zero emission power plants. CES is expanding this development for an industrial-scale, oxy-fuel reheat combustor- equipped intermediate-pressure oxy-fuel turbine (IP-OFT) under the American Recovery and Reinvestment Act (ARRA). Through the design, analysis, and testing of a modified Siemens SGT-900 gas turbine, the team will demonstrate a simple-cycle oxy-fuel system. ARRA funding is accelerating advancement in OFT technology for

302

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Passive Wireless Acoustic Wave Sensors Passive Wireless Acoustic Wave Sensors for Monitoring CO 2 Emissions for Geological Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

303

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Criteria for Flame- Criteria for Flame- holding Tendencies within Premixer Passages for High Hydrogen Content Fuels-University of California, Irvine Background The gas turbine community must develop low emissions systems while increasing overall efficiency for a widening source of fuels. In this work, the University of California, Irvine (UCI) will acquire the fundamental knowledge and understanding to facilitate the development of robust, reliable, and low emissions combustion systems with expanded high hydrogen content (HHC) fuel flexibility. Specifically, understanding flashback and the subsequent flameholding tendencies associated with geometric features found within combustor fuel/air premixers will enable the development of design guides to estimate flame holding tendencies for lean, premixed emission combustion systems

304

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Space Geodesy, Seismology, Combining Space Geodesy, Seismology, and Geochemistry for MVA of CO2 in Sequestration Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO2) leakage at CO2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO2, with a high level of confidence that the CO2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

305

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Analytical Simulation Tool for Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

306

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactive Transport Models with Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

307

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Prototype Commercial a Prototype Commercial Gasifier Sensor Background Integrated gasification combined cycle (IGCC) technology has the potential to improve the efficiency and environmental performance of fossil fuel based electric power production. During the IGCC process, coal and/or biomass is gasified at high temperature and pressure to form synthesis gas (syngas), a mixture of hydrogen, carbon monoxide, carbon dioxide, and small amounts of contaminants such as hydrogen sulfide. The syngas can be used to produce power, chemicals, and/or fuels. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Gasification Technologies Program is focused on enhancing the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of

308

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase III Xlerator Program: Rapid Phase III Xlerator Program: Rapid Commercialization of Advanced Turbine Blades for IGCC Power Plants-Mikro Systems Background Mikro Systems, Inc. is developing their proprietary TOMO SM manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that are beyond current manufacturing state-of-the-art, thus enabling higher operating temperatures. Funding from the American Recovery and Reinvestment Act (ARRA) under the Small Business Innovation Research (SBIR) Phase III Xlerator Program will be directed towards accelerating commercial adoption of TOMO SM technology by leading turbine manufacturers through the demonstration of superior manufacturability, cost, and performance. Ultimately, this technology will lead to improved efficiency

309

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Non-Thermal Plasma for Fossil Energy Non-Thermal Plasma for Fossil Energy Related Applications Background The U.S. Department of Energy is investigating various non-thermal plasma tech- nologies for their catalytic properties related to fossil energy conversion and carbon dioxide decomposition. Non-thermal plasma is an ionized gas comprised of a mixture of charged particles (electrons, ions), active chemical radicals (O 3 , O, OH), and highly excited species that are known to accelerate reforming reactions in

310

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROJEC PROJEC T FAC TS Carbon Storage - ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-1345 traci.rodosta@netl.doe.gov Robert Noll Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7597 robert.noll@netl.doe.gov Gordon Bierwagen Principal Investigator North Dakota State University P.O. Box 6050 Department 2760 Fargo, ND 58108-6050 701-231-8294 gordon.bierwagen@ndsu.edu PARTNERS None PROJECT DURATION Start Date 12/01/2009 End Date 11/30/2011 COST Total Project Value $298,949 DOE/Non-DOE Share $298,949 / $0 PROJECT NUMBER DE-FE0002054 Government funding for this project is provided in whole or in part through the

311

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Training Toward Advanced 3-D Seismic Training Toward Advanced 3-D Seismic Methods for CO 2 Monitoring, Verification, and Accounting Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effective- ness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO 2 ) to reduce greenhouse gas (GHG) emissions without adversely af fecting energy use or hindering economic grow th. Geologic carbon storage involves the injection of CO 2 into underground formations that have the ability to securely contain the CO

312

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cathode Surface Chemistry and Cathode Surface Chemistry and Optimization Studies-Carnegie Mellon University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Carnegie Mellon University's (CMU) project was selected to acquire the fundamental knowledge and understanding that will facilitate research and development to enhance

313

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARRA - GSRA CONTACTS Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Andrea Dunn Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-7594 andrea.dunn@netl.doe.gov Jose Castillo Principal Investigator San Diego State University 5500 Campanile Drive San Diego, CA 92122 619-594-7205 castillo@myth.sdsu.edu PARTNERS Sienna Geodynamics and Consulting, Inc. PROJECT DURATION Start Date End Date 12/01/2009 11/30/2012 COST Total Project Value $299,993 DOE/Non-DOE Share $299,993 / $0 PROJECT NUMBER DE-FE0002069 Government funding for this project is provided in whole or in part through the

314

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Coal-Biomass to Liquids a Coal-Biomass to Liquids Plant in Southern West Virginia Background Concerns regarding global supplies of oil, energy security, and climate change have generated renewed interest in alternative energy sources. The production of liquid fuels from coal provides an option for reducing petroleum use in the U.S. transportation sector and enhancing national and economic security by decreasing the nation's reliance on foreign oil. Two basic methods can be employed to produce liquid fuels

315

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Creep-Fatigue-Environment Creep-Fatigue-Environment Interactions in Steam Turbine Rotor Materials for Advanced Ultrasupercritical Coal Power Plants Background The U.S. Department of Energy (DOE) promotes the advancement of computational capabilities to develop materials for advanced fossil energy power systems. The DOE's National Energy Technology Laboratory (NETL) Advanced Research (AR) Program is working to enable the next generation of Fossil Energy (FE) power systems. One goal of the AR Materials Program is to conduct research leading to a scientific understanding of high-performance materials capable of service in the hostile environments associated with advanced ultrasupercritical (A-USC) coal-fired power plants. A-USC plants will increase coal-fired power plant efficiency by allowing operation

316

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NETL's Fluid Chemistry Analysis NETL's Fluid Chemistry Analysis Capacity Background Establishing the geochemistry of surface and ground waters requires an arsenal of techniques devoted to determining the constituents these waters contain and the environment in which they exist. Many standard techniques have been developed over the years, and new ones continue to be explored as more complex matrices and harsher environments are encountered. Deep geologic storage of carbon dioxide and the development of unconventional oil and gas resourses are two areas of current concern where the study of geochemical processes is challenging due to the complex nature of the natural samples, and where routine analytical techniques are being pushed to their limits. The facilities at NETL include both conventional and cutting-edge instrumentation

317

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

29,759 29,759 PROJECT NUMBER FWP-2012.03.03 Task 3 Conversion and Fouling Background Coal and biomass gasification is an approach to cleaner power generation and other uses of these resources. Currently, the service life of gasifiers does not meet the performance needs of users. Gasifiers fail to achieve on-line availability of 85-95 percent in utility applications and 95 percent in applications such as chemical production. The inability to meet these goals has created a potential roadblock to widespread acceptance and commercialization of advanced gasification technologies. Gasifier output is a hot gas mixture consisting primarily of hydrogen and carbon monoxide (CO), known as synthesis gas (syngas). The syngas cooler is one of the key components identified as negatively impacting gasifier availability. Ash originating from impurities

318

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compact Eye-safe Scanning Differential Compact Eye-safe Scanning Differential Absorption LIDAR (DIAL) for Spatial Mapping of Carbon Dioxide for MVA at Geologic Carbon Sequestration Sites Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that

319

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Energy California Project Hydrogen Energy California Project Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. Under the Clean Coal Power Initiative (CCPI) Round 3 program, the U.S. Department of Energy (DOE) is providing financial assistance, including funding under the American Recovery and Reinvestment Act (ARRA) of 2009, to industry to demonstrate the commercial viability of technologies that will capture CO

320

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Simulation of CO Simulation of CO 2 Leakage and Caprock Remediation Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the environment, and can provide the basis for establishing carbon credit trading markets

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pressure Membrane Contactors for Pressure Membrane Contactors for CO 2 Capture Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Carbon Capture Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. The Carbon Capture R&D Program portfolio of carbon dioxide (CO 2 ) emissions control technologies and CO 2 compression is focused on advancing technological options for new and existing coal- fired power plants in the event of carbon constraints. Post-combustion separation and capture of CO

322

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTACTS Joseph Stoffa Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-0285 joseph.stoffa@netl.doe.gov Xingbo Liu Principal Investigator Dept. MechanaWest Virginia University P.O. Box 6106 Morgantown, WV 26506-6106 304-293-3339 xingbo.liu@mail.wvu.edu Shailesh D. Vora Technology Manager, Fuel Cells National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-7515 shailesh.vora@netl.doe.gov PARTNERS None PROJECT DURATION Start Date End Date 08/31/2012 09/30/2015 COST Total Project Value $634,839 DOE/Non-DOE Share $499,953 / $134,886 AWARD NUMBER FE0009675 Fundamental Understanding of Oxygen Reduction and Reaction Behavior and Developing High Performance and Stable

323

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shizhong Yang Shizhong Yang Principal Investigator Department of computer science/LoNI southern University and a&M college Baton rouge, Louisiana 70813 225-771-2060 shizhong_yang@subr.edu PROJECT DURATION Start Date End Date 06/01/2012 05/31/2015 COST Total Project Value $200,000 DOE/Non-DOE Share $200,000 / $0 Novel Nano-Size Oxide Dispersion Strengthened Steels Development through Computational and Experimental Study Background Ferritic oxide dispersion strengthened (oDs) steel alloys show promise for use at higher temperatures than conventional alloys due to their high-temperature oxidation resistance and dislocation creep properties. the development of oDs alloys with nanoscale powders of transition metal oxides (yttrium and chromium) dispersed in

324

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Coal Power Initiative (CCPI 3) Clean Coal Power Initiative (CCPI 3) NRG Energy: W.A. Parish Post-Combustion CO2 Capture and Sequestration Project Background Additional development and demonstration is needed to improve the cost and efficiency of carbon management technologies that capture and store carbon dioxide (CO 2 ) that would otherwise be emitted from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and mitigating global climate change, while minimizing the economic impacts of the solution. The U.S. Department of Energy (DOE) is providing financial assistance through the Clean Coal Power Initiative (CCPI) Round 3, which includes funding from the American Recovery and Reinvestment Act (ARRA), to demonstrate the commercial viability

325

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiocarbon as a Reactive Tracer for Radiocarbon as a Reactive Tracer for Tracking Permanent CO2 Storage in Basaltic Rocks Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

326

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Degradation of TBC Systems in Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems- University of Pittsburgh Background The conditions inside integrated gasification combined cycle (IGCC) systems, such as high steam levels from hydrogen firing, high carbon dioxide steam mixtures in oxy- fired systems, and different types of contaminants, introduce complexities associated with thermal barrier coating (TBC) durability that are currently unresolved. In this work the University of Pittsburgh will team with Praxair Surface Technologies (PST) to deter- mine the degradation mechanisms of current state-of-the-art TBCs in environments consisting of deposits and gas mixtures that are representative of gas turbines using coal-derived synthesis gas (syngas).

327

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Alloys for High-Temperature Low-Cost Alloys for High-Temperature SOFC Systems Components - QuesTek Innovations Background One of the key opportunities for cost reduction in a solid oxide fuel cell (SOFC) system is the set of balance of plant (BOP) components supporting the fuel cell itself, including the heat exchanger and air/fuel piping. These represent about half of the overall cost of the system. A major enabling technological breakthrough is to replace incumbent nickel-based superalloys in high-temperature BOP components with low-cost ferritic stainless steel. However, the ferritic alloys are unsuitable for SOFC application without additional coatings due to the inherent volatile nature of the alloy's chromium oxide (Cr2O3) element, which tends to poison the fuel cell's cathode

328

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Southwestern United States Carbon Southwestern United States Carbon Sequestration Training Center Background Carbon capture, utilization, and storage (CCUS) technologies offer great potential for mitigating carbon dioxide (CO2) emissions emitted into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications will require a drastically expanded workforce trained in CCUS related disciplines, including geologists, engineers, scientists, and technicians. Training to enhance the existing CCUS workforce and to develop new professionals can be accomplished through focused educational initiatives in the CCUS technology area. Key educational topics include simulation and risk assessment; monitoring, verification,

329

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beneficial Use of CO2 in Precast Beneficial Use of CO2 in Precast Concrete Products Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

330

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Barrier Coatings for Thermal Barrier Coatings for Operation in High Hydrogen Content Fueled Gas Turbines-Stony Brook University Background Traditional thermal barrier coatings (TBCs) based on yttria-stabilized zirconia (YSZ) will likely not be suitable in gas turbines used in integrated gasification combined cycle (IGCC) power plants. This is due to higher operating temperatures that will not only affect phase stability and sintering but will accelerate corrosive degradation phenomena. Coatings provide a framework to combat degradation issues and provide performance improvements needed for higher temperature environments. The Center for Thermal Spray Research (CTSR) at Stony Brook University, in partnership with its industrial Consortium for Thermal Spray Technology, is investigating science and

331

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cooling for IGCC Turbine Cooling for IGCC Turbine Blades-Mikro Systems Background Turbine blade and vane survivability at higher operating temperatures is the key to improving turbine engine performance for integrated gasification combined cycle (IGCC) power plants. Innovative cooling approaches are a critical enabling technology to meet this need. Mikro Systems, Inc. is applying their patented Tomo-Lithographic Molding (TOMO) manufacturing technology to produce turbine blades with significantly improved internal cooling geometries that go beyond the current manufacturing state-of-the-art to enable higher operating temperatures. This project addresses two important aspects. First is the need to increase the quality and reliability of the core manufacturing process capability to

332

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combustion Dynamics in Multi-Nozzle Combustion Dynamics in Multi-Nozzle Combustors Operating on High- Hydrogen Fuels-Pennsylvania State University Background Combustion dynamics is a major technical challenge to the development of efficient, low emission gas turbines. Current information is limited to single-nozzle combustors operating on natural gas and neglects combustors with configurations expected to meet operability requirements using a range of gaseous fuels such as coal derived synthesis gas (syngas). In this project, Pennsylvania State University (Penn State) in collaboration with Georgia Institute of Technology (Georgia Tech) will use multiple-nozzle research facilities to recreate flow conditions in an actual gas turbine to study complicated interactions between flames that can aggravate the combustion dynamics in syngas-

333

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summit Texas Clean Energy, LLC: Texas Summit Texas Clean Energy, LLC: Texas Clean Energy Project: Pre-Combustion CO 2 Capture and Sequestration Background A need exists to further develop carbon management technologies that capture and store, or beneficially reuse, carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture and storage (CCS) technologies offer the potential to significantly reduce CO 2 emissions and mitigate the anthropogenic contribution to global climate change, while substantially reducing or minimizing the economic impacts of the solution. Under Round 3 of the Clean Coal Power Initiative (CCPI), the U.S. Department of Energy (DOE) is providing up to $450 million in co-funded financial assistance to industry,

334

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency Solar-Based Catalytic Efficiency Solar-Based Catalytic Structure for CO2 Reforming Background The Department of Energy's (DOE) Carbon Storage Program encompasses five Technology Areas: (1) Geologic Storage and Simulation and Risk Assessment (GSRA), (2) Monitoring, Verification, Accounting and Assessment (MVAA), (3) Carbon Dioxide (CO2) Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Areas for Sequestration Science. The first three Technology Areas comprise the Core Research and Development (R&D), which includes studies ranging from applied laboratory to pilot-scale research focused on developing new technologies and systems for greenhouse gas (GHG) mitigation through carbon storage. This project is part of the Core R&D CO2 Use and Re-use Technology Area and focuses on developing pathways

335

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOE-WRI Cooperative Research and DOE-WRI Cooperative Research and Development Program for Fossil Energy- Related Resources Background Our nation's demand for cleaner and more efficient fossil energy production will increase during the coming decades, necessitating the development of new energy technologies to achieve energy independence in an environmentally responsible manner. The University of Wyoming (UW) Research Corporation's Western Research Institute (WRI) has been supporting the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) and its mission of developing fossil energy and related environmental technologies for over two decades. Federal funding for these research efforts has usually been provided through congressionally mandated cooperative agreements, with cost share

336

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unconventional Resources Unconventional Resources Background Natural gas and crude oil provide two-thirds of our Nation's primary energy supply and will continue to do so for at least the next several decades, as the Nation transitions to a more sustainable energy future. The natural gas resource estimated to exist within the United States has expanded significantly, but because this resource is increasingly harder to locate and produce, new technologies are required to extract it. Under the Energy Policy Act of 2005, the National Energy Technology Laboratory is charged with developing a complementary research program supportive of improving safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology

337

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staged, High-Pressure Oxy-Combustion Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-up Background The Advanced Combustion Systems (ACS) Program of the U.S. Department of Energy/ National Energy Technology Laboratory (DOE/NETL) is aiming to develop advanced oxy- combustion systems that have the potential to improve the efficiency and environmental impact of coal-based power generation systems. Currently available CO2 capture and storage significantly reduces efficiency of the power cycle. The aim of the ACS program is to develop advanced oxy-combustion systems capable of achieving power plant efficiencies approaching those of air-fired systems without CO2 capture. Additionally, the program looks to accomplish this while maintaining near zero emissions of other flue gas pollutants.

338

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cells Operating on Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels- Pennsylvania State University Background In this congressionally directed project, the Earth and Mineral Science (EMS) Energy Institute at Pennsylvania State University (PSU) focuses on the development of fuel processors, reforming catalysts, and chemical sorbents to support the production of electricity from anaerobic digester gas (ADG) and ultra-low sulfur diesel (ULSD) via solid-oxide fuel cells (SOFCs). PSU will use the fuel processors, reforming catalysts, and chemical sorbents developed under this work to transform and clean ADG and ULSD into a syngas stream suitable as a feedstock for SOFCs. This project is managed by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), whose mission is to advance energy options to fuel

339

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Oxide Fuel Cell Cathode Enhancement Solid Oxide Fuel Cell Cathode Enhancement Through a Vacuum-assisted Infiltration- Materials and Systems Research, Inc. Background Solid oxide fuel cell (SOFC) technology promises to provide an efficient method to generate electricity from coal-derived synthesis gas (syngas), biofuels, and natural gas. The typical SOFC composite cathode (current source) possesses excellent performance characteristics but is subject to chemical stability issues at elevated temperatures both during manufacturing and power generation. Costs attributed to the cathode and its long-term stability issues are a current limitation of SOFC technologies. These must be addressed before commercial SOFC power generation can be realized. Materials and Systems Research, Inc. (MSRI) will develop a vacuum-assisted infiltration

340

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of the Durability of Doped Study of the Durability of Doped Lanthanum Manganite and Cobaltite Based Cathode Materials under "Real World" Air Exposure Atmospheres- University of Connecticut Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Briggs White Briggs White Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-5437 briggs.white@netl.doe.gov Jeff Stevenson Principal Investigator Pacific Northwest National Laboratory P.O. Box 999, MS K2-44 Richland, WA 99352 509-372-4697 jeff.stevenson@pnl.com PARTNERS Oak Ridge National Laboratory University of Connecticut PROJECT DURATION Start Date End Date 10/01/1999 09/30/2013 (annual continuations) COST Total Project Value $52,889,667 DOE/Non-DOE Share $52,889,667 / $0 AWARD NUMBER FWP40552 PR OJ E C T FAC T S Fuel Cells Low Cost Modular SOFC Development- Pacific Northwest National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security,

342

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Traci Rodosta Traci Rodosta Carbon Storage Technology Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-1345 traci.rodosta@netl.doe.gov Karen Kluger Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-6667 karen.kluger@netl.doe.gov Gary Mavko Principal Investigator Stanford University 397 Panama Mall Stanford, CA 94305-2215 650-723-9438 Fax: 650-723-1188 mavko@stanford.edu PROJECT DURATION Start Date 12/01/2009 End Date 06/30/2013 COST Total Project Value $385,276 DOE/Non-DOE Share $295,777/ $89,499 Government funding for this project is provided in whole or in part through the American Recovery and Reinvestment Act. Rock Physics of Geologic Carbon Sequestration/Storage

343

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comprehensive Comprehensive Monitoring Techniques to Verify the Integrity of Geological Storage Reservoirs Containing Carbon Dioxide Background Research aimed at monitoring the long-term storage stability and integrity of carbon dioxide (CO2) stored in geologic formations is one of the most pressing areas of need if geological storage is to become a significant factor in meeting the United States' stated objectives to reduce greenhouse gas emissions. The most promising geologic formations under consideration for CO2 storage are active and depleted oil and gas formations, brine formations, and deep, unmineable coal seams. Unfortunately, the long-term CO2 storage capabilities of these formations are not yet well understood. Primary Project Goal The goal of this effort is to develop

344

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies for Monitoring Technologies for Monitoring CO 2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic

345

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monitoring and Numerical Modeling of Monitoring and Numerical Modeling of Shallow CO 2 Injection, Greene County, Missouri Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess the

346

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagging Carbon Dioxide to Enable Tagging Carbon Dioxide to Enable Quantitative Inventories of Geological Carbon Storage Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both

347

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoporous, Metal Carbide, Surface Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations Background Both coal and biomass are readily available in the U.S. and can be thermally processed to produce hydrogen and/or power. The produced hydrogen can be sent directly to a fuel cell or hydrogen turbines for efficient and environmentally clean power generation. More efficient hydrogen production processes need to be developed before coal and biomass can become economically viable sources of hydrogen. To meet this need, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is partnering with the Colorado School of Mines and Pall Corporation to develop nanoporous metal carbide surface diffusion membranes for use in high temperature

348

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigation on Flame Characteristics Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently underrepresented in the United States. Education and training activities

349

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Object Optimization Approaches Object Optimization Approaches for the Design of Carbon Geological Sequestration Systems Background Increased attention is being placed on research into technologies that capture and store carbon dioxide (CO 2 ). Carbon capture and storage (CCS) technologies offer great potential for reducing CO 2 emissions and, in turn, mitigating global climate change without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS specialties that are currently under- represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who possess

350

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensors and Control Sensors and Control CONTACTS Ben Chorpening Sensors & Controls Technical Team Coordinator 304-285-4673 benjamin.chorpening@netl.doe.gov Steven Woodruff Principal Investigator 304-285-4175 steven.woodruff@netl.doe.gov Michael Buric Co-Principal Investigator 304-285-2052 michael.buric@netl.doe.gov Raman Gas Composition Sensor System for Natural Gas and Syngas Applications Goal The goal of this project is to develop and test a Raman laser spectroscopy system for responsive gas composition monitoring, and to transfer the technology to industry for commercial implementation. The instrument provides state-of-the-art improvement of reduced size and increased sensitivity and sample rate to facilitate the process control

351

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Joining of Advanced Joining of Advanced High-Temperature Materials Background To remain economically competitive, the coal-fired power generation industry needs to increase system efficiency, improve component and system reliability, and meet ever tightening environmental standards. In particular, cost-effective improvements in thermal efficiency are particularly attractive because they offer two potential benefits: (1) lower variable operating cost via increased fuel utilization (fuel costs represent over 70 percent of the variable operating cost of a fossil fuel-fired power plant) and (2) an economical means of reducing carbon dioxide (CO2) and other emissions. To achieve meaningful gains, steam pressure and temperature must be increased to

352

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basin-Scale Leakage Risks from Geologic Basin-Scale Leakage Risks from Geologic Carbon Sequestration: Impact on Carbon Capture and Storage Energy Market Competitiveness Background Through its core research and development program administered by the National Energy Technology Laboratory (NETL), the U.S. Department of Energy (DOE) emphasizes monitoring, verification, and accounting (MVA), as well as computer simulation and risk assessment, of possible carbon dioxide (CO 2 ) leakage at CO 2 geologic storage sites. MVA efforts focus on the development and deployment of technologies that can provide an accurate accounting of stored CO 2 , with a high level of confidence that the CO 2 will remain stored underground permanently. Effective application of these MVA technologies will ensure the safety of geologic storage projects with respect to both human health and the

353

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R R &D FAC T S Natural Gas & Oil R&D CONTACTS George Guthrie Focus Area Lead Office of Research and Development National Energy Technology Laboratory 626 Cochrans Mill Road Pittsburgh, PA 15236-0940 412-386-6571 george.guthrie@netl.doe.gov Kelly Rose Technical Coordinator Office of Research and Development National Energy Technology Laboratory 1450 Queen Avenue SW Albany, OR 97321-2152 541-967-5883 kelly.rose@netl.doe.gov PARTNERS Carnegie Mellon University Pittsburgh, PA Oregon State University Corvallis, OR Pennsylvania State University State College, PA University of Pittsburgh Pittsburgh, PA URS Corporation Pittsburgh, PA Virginia Tech Blacksburg, VA West Virginia University Morgantown, WV

354

Alaska Justice Forum Page 1 Winter 1997 UNIVERSITY OF ALASKA ANCHORAGE Vol. 13, No. 4  

E-Print Network [OSTI]

of stuttering, making grammar errors or leaving sentences unfin- ished. If she focuses too much attention on her

Pantaleone, Jim

355

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Surface-Modified Electrodes: Enhancing Surface-Modified Electrodes: Enhancing Performance Guided by In-Situ Spectroscopy and Microscopy- Stanford University Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. The electrochemical performance of SOFCs can be substantially influenced by mass and

356

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Large Eddy Simulation Modeling of Large Eddy Simulation Modeling of Flashback and Flame Stabilization in Hydrogen-Rich Gas Turbines using a Hierarchical Validation Approach- University of Texas at Austin Background The focus of this project is the development of advanced large eddy simulation (LES)-based combustion modeling tools that can be used to design low emissions combustors burning high hydrogen content fuels. The University of Texas at Austin (UT) will develop models for two key topics: (1) flame stabilization, lift- off, and blowout when fuel-containing jets are introduced into a crossflow at high pressure, and (2) flashback dynamics of lean premixed flames with detailed description of flame propagation in turbulent core and near-wall flows. The jet- in-crossflow (JICF) configuration is widely used for rapid mixing of reactants

357

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficient Efficient Regeneration of Physical and Chemical Solvents for CO 2 Capture Background Fundamental and applied research on carbon capture and storage (CCS) technologies is necessary to allow the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. These technologies offer great potential for mitigating carbon dioxide (CO 2 ) emissions into the atmosphere without adversely influencing energy use or hindering economic growth. Deploying these technologies in commercial-scale applications requires a significantly expanded workforce trained in various CCS technical and non-technical disciplines that are currently under-represented in the United States. Education and training activities are needed to develop a future generation of geologists, scientists, and engineers who

358

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Scale CO2 Injection and Commercial Scale CO2 Injection and Optimization of Storage Capacity in the Southeastern United States Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and 2030. Research conducted to develop these technologies will ensure safe and permanent storage of carbon dioxide (CO2) to reduce greenhouse gas (GHG) emissions without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to securely contain the CO2 permanently. Technologies being

359

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Turbine Thermal Management-NETL-RUA Turbine Thermal Management-NETL-RUA Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is researching advanced turbine technology with the goal of producing reliable, affordable, and environmentally friendly electric power in response to the nation's increasing energy challenges. With the Hydrogen Turbine Program, NETL is leading the research, development, and demonstration of technologies to achieve power production from high-hydrogen-content fuels derived from coal that is clean, efficient, and cost-effective, and minimizes carbon dioxide (CO 2 ) emissions, and will help maintain the nation's leadership in the export of gas turbine equipment. The NETL Regional University Alliance (RUA) is an applied research collaboration that

360

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scoping Studies to Evaluate the Benefits Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low Rank Coal in Integrated Gasification Combined Cycle Background Gasification of coal or other solid feedstocks (biomass, petroleum coke, etc.) produces synthesis gas (syngas), which can be cleaned and used to produce electricity and a variety of commercial products that support the U.S. economy, decrease U.S. dependence on oil imports, and meet current and future environmental emission standards. The major challenge is cost, which needs to be reduced to make integrated gasification combined cycle (IGCC) technology competitive. An IGCC plant combines a combustion turbine operating on a gasified fuel stream--syngas--with a steam turbine to capture what would otherwise be waste heat. Currently, the estimated cost of power from IGCC is higher than

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reliability and Durability of Materials Reliability and Durability of Materials and Components for SOFCs - Oak Ridge National Laboratory Background The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) has a mission to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid Oxide Fuel Cells (SOFCs) program and systems coordination from the Solid State Energy Conversion Alliance (SECA), DOE/NETL is leading the research, development, and demonstration of SOFCs for both domestic coal and natural gas fueled central generation power systems that enable low cost, high efficiency, near-zero emissions and water usage, and carbon dioxide (CO 2 ) capture. Oak Ridge National Laboratory's (ORNL) project was selected to acquire the fundamental

362

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOFC Protection Coatings Based on a SOFC Protection Coatings Based on a Cost-Effective Aluminization Process- NexTech Materials Background To make solid oxide fuel cell (SOFC) systems easier to manufacture and reduce costs, less expensive stainless steels have been substituted into the stack design as alternatives to ceramic interconnects. Stainless has also been substituted for high-cost, nickel-based superalloys in balance of plant (BOP) components. For successful implementation of these steels, protective coatings are necessary to protect the air-facing metal surfaces from high-temperature corrosion/oxidation and chromium (Cr) volatilization. NexTech Materials Ltd. (NexTech) will develop an aluminide diffusion coating as a low- cost alternative to conventional aluminization processes and evaluate the ability of the

363

A Comparison of Two Gasoline and Two Diesel Cars with Varying...  

Broader source: Energy.gov (indexed) [DOE]

(Sweden) Volkswagen (Sweden) F F Klaus Klaus - - Peter Schindler, Volkswagen, Germany Peter Schindler, Volkswagen, Germany F F John Fairbanks, DOE John Fairbanks, DOE 2002...

364

Torrey Pine and Climate Change  

E-Print Network [OSTI]

San Diego, Ca. , 98pp. Peltier, W.R. , and R.G. Fairbanks,24,000 years according to Peltier and Fairbanks, 2006 (black

Berger, Wolfgang H

2007-01-01T23:59:59.000Z

365

Fishery Notes Alaska Plans New  

E-Print Network [OSTI]

IS remote, but there is plenty of good water and room for future expansion. The Kotzebue hatchery was added was severe," he said. Since high salinities Waste Heat Boosts Growth of Salmon Use of waste heat from

366

Abnormal Sensitivity of Human Fibroblasts from Xeroderma Pigmentosum Variants to Transformation to Anchorage Independence by Ultraviolet Radiation  

Science Journals Connector (OSTI)

...2-Nitroimidazole (EF5) Binding Predicts Radiation Resistance in Individual 9L s.c...Terashima,and H. Yamaguchi (eds.), Radiation Research, pp. 885 "892.Tokyo, Japan: Japanese Association for Radiation Research, 1979. 9. Franko, A...

J. Justin McCormick; Suzanne Kateley-Kohler; Masami Watanabe; and Veronica M. Maher

1986-02-01T23:59:59.000Z

367

Anchorage-Independent Transcription of the Cyclin A Gene Induced by the E7 Oncoprotein of Human Papillomavirus Type 16  

Science Journals Connector (OSTI)

...Zerfass-Thome Werner Zwerschke Pidder Jansen-Durr Forschungsschwerpunkt Angewandte...49-6221-424902. E-mail: p.jansen-duerr@dkfz-heidelberg.de. To...somatic A-type cyclin at gastrulation. . Jansen-Durr P. Meichle A. Steiner P. Pagano...

Almut Schulze; Boris Mannhardt; Karin Zerfass-Thome; Werner Zwerschke; Pidder Jansen-Drr

1998-03-01T23:59:59.000Z

368

In Proceedings of the Information Resources Management Association Conference May 21-24, 2000 Anchorage, Alaska, USA  

E-Print Network [OSTI]

In Proceedings of the Information Resources Management Association Conference May 21-24, 2000 and multimedia present an opportunity for cross-platform multimedia applications. However, little research has to the desktop. These new streaming multimedia applications promise to enrich our interactions with the power

Claypool, Mark

369

Inhibition of BUB1 Results in Genomic Instability and Anchorage-independent Growth of Normal Human Fibroblasts  

Science Journals Connector (OSTI)

...suggesting that the two processes are interrelated and may be affected by...suggesting that the two processes are interrelated and may be affected by...suggesting that the two processes are interrelated and may be affected by...

Antonio Musio; Cristina Montagna; Desire Zambroni; Esterina Indino; Ottavia Barbieri; Lorenzo Citti; Anna Villa; Thomas Ried; and Paolo Vezzoni

2003-06-01T23:59:59.000Z

370

IGFS2 2010, Fairbanks, Alaska, September 20 -22, 2010 MONITORING MASS TRANSPORT IN THE MURRAY-DARLING BASIN, AUSTRALIAMONITORING MASS TRANSPORT IN THE MURRAY-DARLING BASIN, AUSTRALIA  

E-Print Network [OSTI]

-situ hydrology data. Using only SMCs and precipitation data mass trans- port can be revealed through phase-VARIABLE GRAVITY, TRMM PRECIPITATION AND RIVER LEVEL/FLOW OBSERVATIONSAND RIVER LEVEL/FLOW OBSERVATIONS M. Kuhn(1-variable gravity, TRMM precipitation and river level/flow observations between May 2003 and April 2009 (6 years

Stuttgart, Universität

371

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

4,1,3942,21413,4558,28817,739,5855,1176,7577,10414,63662 4,1,3942,21413,4558,28817,739,5855,1176,7577,10414,63662 213,"Alaska Electric Light&Power Co","AK",94,1,1254,14352,302,3707,280,4089,404,6010,2240,28158 599,"Anchorage City of","AK",94,1,1396,15234,4303,56805,0,0,128,2069,5827,74108 3522,"Chugach Electric Assn Inc","AK",94,1,4520,47430,3152,42695,198,3504,129,867,7999,94496 6129,"Fairbanks City of","AK",94,1,326,3601,1139,11896,0,0,109,1201,1574,16698 7353,"Golden Valley Elec Assn Inc","AK",94,1,2238,24010,1467,16106,785,11322,12,120,4502,51558 10210,"Ketchikan Public Utilities","AK",94,1,564,6660,499,6419,95,1324,36,249,1194,14652 10433,"Kodiak Electric Assn Inc","AK",94,1,417,2581,268,1751,656,4502,16,78,1357,8912

372

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

6,1,4776,24339,4871,29393,1032,7712,1328,8823,12008,70266 6,1,4776,24339,4871,29393,1032,7712,1328,8823,12008,70266 213,"Alaska Electric Light&Power Co","AK",96,1,1402,15500,331,3855,340,4756,441,6343,2514,30454 599,"Anchorage City of","AK",96,1,1463,15345,4538,58554,0,0,156,1953,6157,75852 3522,"Chugach Electric Assn Inc","AK",96,1,4888,51647,3255,44649,161,2797,109,529,8413,99622 6129,"Fairbanks City of","AK",96,1,392,3320,1096,10817,0,0,110,1224,1598,15361 7353,"Golden Valley Elec Assn Inc","AK",96,1,2519,26527,1624,17308,1053,14756,14,136,5210,58727 10210,"Ketchikan Public Utilities","AK",96,1,403,4208,424,4840,67,828,28,111,922,9987 10433,"Kodiak Electric Assn Inc","AK",96,1,452,2868,301,2020,867,6161,17,70,1637,11119

373

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

2,1,2977,21737,4371,26706,122,668,639,3188,8109,52299 2,1,2977,21737,4371,26706,122,668,639,3188,8109,52299 213,"Alaska Electric Light&Power Co","AK",92,1,1119,13141,257,3165,235,3715,468,5610,2079,25631 221,"Alaska Village Elec Coop Inc","AK",92,1,702,1675,188,513,0,0,607,1745,1497,3933 599,"Anchorage City of","AK",92,1,1404,15097,4238,55346,0,0,115,1356,5757,71799 3522,"Chugach Electric Assn Inc","AK",92,1,4098,47343,2678,39679,146,2608,114,747,7036,90377 6129,"Fairbanks City of","AK",92,1,278,2999,1003,9762,0,0,114,1166,1395,13927 7353,"Golden Valley Elec Assn Inc","AK",92,1,2084,22084,1418,15680,645,9884,11,116,4158,47764 9680,"Klukwan Indian Village","AK",92,1,6,84,0,0,0,0,0,0,6,84

374

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

0,1,2793,22377,4245,26473,1051,9324,549,3057,8638,61231 0,1,2793,22377,4245,26473,1051,9324,549,3057,8638,61231 213,"Alaska Electric Light&Power Co","AK",90,1,1095,14242,243,3072,233,3806,429,5357,2000,26477 221,"Alaska Village Elec Coop Inc","AK",90,1,651,1598,166,477,0,0,537,1601,1354,3676 599,"Anchorage City of","AK",90,1,1567,17705,4596,57345,0,0,111,986,6274,76036 3522,"Chugach Electric Assn Inc","AK",90,1,3886,50405,2419,39292,126,2737,102,760,6533,93194 6129,"Fairbanks City of","AK",90,1,300,3318,1012,9834,0,0,103,1107,1415,14259 7353,"Golden Valley Elec Assn Inc","AK",90,1,2156,22656,1350,14187,583,8460,11,145,4100,45448 9680,"Klukwan Indian Village","AK",90,1,5,130,0,0,0,0,0,0,5,130

375

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

5,1,4233,22738,4568,28565,876,8305,1275,6350,10952,65958 5,1,4233,22738,4568,28565,876,8305,1275,6350,10952,65958 213,"Alaska Electric Light&Power Co","AK",95,1,1334,15309,317,3885,306,4454,430,6735,2387,30383 599,"Anchorage City of","AK",95,1,1536,16097,4662,58853,0,0,132,1783,6330,76733 3522,"Chugach Electric Assn Inc","AK",95,1,4772,49632,3411,45661,178,3099,116,644,8477,99036 6129,"Fairbanks City of","AK",95,1,305,3169,1034,10808,0,0,111,1165,1450,15142 7353,"Golden Valley Elec Assn Inc","AK",95,1,2343,24816,1537,16745,836,11423,13,129,4729,53113 10210,"Ketchikan Public Utilities","AK",95,1,474,5035,378,4252,60,796,38,240,950,10323 10433,"Kodiak Electric Assn Inc","AK",95,1,429,2669,284,1863,849,5885,17,78,1579,10495

376

UTILITYID","UTILNAME","STATE","YEAR","MONTH","RES_REV (Thousand $)","RES_SALES (  

U.S. Energy Information Administration (EIA) Indexed Site

3,1,4510,27326,4382,33333,938,7507,1096,8210,10926,76377 3,1,4510,27326,4382,33333,938,7507,1096,8210,10926,76377 213,"Alaska Electric Light&Power Co","AK",93,1,1414,17003,300,3870,257,4005,406,6718,2377,31596 599,"Anchorage City of","AK",93,1,1565,16933,4680,61826,0,0,103,1013,6348,79772 3522,"Chugach Electric Assn Inc","AK",93,1,4584,51522,2820,41415,152,2720,79,749,7635,96406 6129,"Fairbanks City of","AK",93,1,265,2828,985,9745,0,0,107,1143,1357,13716 7353,"Golden Valley Elec Assn Inc","AK",93,1,2219,23244,1438,15286,795,10906,12,118,4464,49554 10433,"Kodiak Electric Assn Inc","AK",93,1,386,2509,259,1782,586,4255,14,72,1245,8618 11824,"Matanuska Electric Assn Inc","AK",93,1,2923,29106,1115,13208,0,0,5,25,4043,42339

377

Reference Buildings by Climate Zone and Representative City:...  

Broader source: Energy.gov (indexed) [DOE]

8 Fairbanks, Alaska Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska In addition to the ZIP file for each building type, you can directly view the...

378

Microsoft Word - ISDAC_orientation_pkt.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

If you have any questions please feel free to contact Debbie at 509.392.1854. Contents Cell Phone Numbers Fairbanks * Campaign Info Site Locations in Fairbanks Badging and...

379

Miklankovitch Theory - Hits and Misses  

E-Print Network [OSTI]

Leipzig, 1199pp. Peltier, W.R. , and R.G. Fairbanks, 2006.N.J. , A. Berger, and W. R. Peltier, 1990. An alternative1990, 1996; Shinn, 2001; Peltier and Fairbanks, 2006), with

Berger, W H

2012-01-01T23:59:59.000Z

380

336 VOLUME 14J O U R N A L O F C L I M A T E 2001 American Meteorological Society  

E-Print Network [OSTI]

Research and Engineering Laboratory, Fort Wainwright, Alaska Department of Integrative Biology, University, Fort Collins, Colorado @ Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks of Atmospheric Science, Col- orado State University, Fort Collins, Colorado. Corresponding author address: Dr

Sturm, Matthew

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

National Strategy for the Arctic Region Stakeholder Outreach...  

Office of Environmental Management (EM)

Outreach Meeting: Anchorage October 24, 2014 10:00AM to 12:00PM AKDT Anchorage, Alaska U.S. Fish and Wild Service Office, Gordon Watson Room 1011 E. Tudor Rd. Anchorage, AK 9950...

382

Electric currents in power transmission line induced by auroral activity  

Science Journals Connector (OSTI)

... the induced current in the Healy-Fairbanks transmission line at one of the transformer sites (substations) in Fairbanks. We show here the simultaneous H component magnetic record and the induced ... approximately the total current flowing in the Healy-Fairbanks line from our measurement at the substation. On the basis of our measurement and the model study, it is indicated that ...

S.-I. AKASOFU; R. P. MERRITT

1979-05-24T23:59:59.000Z

383

ISDAC - NRC Convair-580 Flight Hours Date Flight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

19:54Z 23:36Z 3.9 040908 F17-Project-09 Barrow Fairbanks 00:12Z 01:58Z 2 041308 F18-Project-10 Fairbanks Barrow 15:21Z 18:57Z 3.8 041308 F19-Project-11 Barrow Fairbanks...

384

3211 Providence Drive, Gordon Hartlieb Hall, Room 111, Anchorage, AK 99508 P: 907.786.6475 | F: 907.786.6474 | www.uaa.alaska.edu/transportation  

E-Print Network [OSTI]

or higher wages. The UAA grant program will also provide North Slope Training Cooperative instruction completing this cohort will also receive North Slope Training Cooperative Safety instruction. Course Number to Work in the Oil & Gas Industry Grant Pays Student Tuition & Fees A group of 12 students

Pantaleone, Jim

385

Variation in Capacity for Anchorage-independent Growth among Agar-derived Clones of Spontaneously Transformed BALB/3T3 Cells  

Science Journals Connector (OSTI)

...cells had a colony-forming efficiency (CFE) in agar of 5 to 20%. Individual agar...selection also failed to increase the mean CFE in agar. Randomly selected clones isolated...cells) and reseeded in agar had a higher CFE than the unselected tumor cell lines. In...

Cynthia A. Romerdahl and Harry Rubin

1984-12-01T23:59:59.000Z

386

Welcome to the Efficient Windows Collaborative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Selection Tool: New Construction Windows Window Selection Tool: New Construction Windows The Window Selection Tool will take you through a series of design conditions pertaining to your design and location. It is a step-by-step decision-making tool to help determine the most energy efficient window for your house. SELECT LOCATION: AK Anchorage AK Fairbanks AL Birmingham AL Mobile AR Little Rock AZ Flagstaff AZ Phoenix AZ Tucson CA Arcata CA Bakersfield CA Daggett CA Fresno CA Los Angeles CA Red Bluff CA Sacramento CA San Diego CA San Francisco CO Denver CO Grand Junction CT Hartford DC Washington DE Wilmington FL Daytona Beach FL Jacksonville FL Miami FL Tallahassee FL Tampa GA Atlanta GA Savannah HI Honolulu IA Des Moines ID Boise IL Chicago IL Springfield IN Indianapolis KS Wichita KY Lexington KY Louisville LA Lake Charles LA New Orleans LA Shreveport MA Boston MD Baltimore ME Portland MI Detroit MI Grand Rapids MI Houghton MN Duluth MN Minneapolis MO Kansas City MO St. Louis MS Jackson MT Billings MT Great Falls NC Raleigh ND Bismarck NE Omaha NH Concord NJ Atlantic City NM Albuquerque NV Las Vegas NV Reno NY Albany NY Buffalo NY New York OH Cleveland OH Dayton OK Oklahoma City OR Medford OR Portland PA Philadelphia PA Pittsburgh PA Williamsport RI Providence SC Charleston SC Greenville SD Pierre TN Memphis TN Nashville TX Brownsville TX El Paso TX Fort Worth TX Houston TX Lubbock TX San Antonio UT Cedar City UT Salt Lake City VA Richmond VT Burlington WA Seattle WA Spokane WI Madison WV Charleston WY Cheyenne AB Edmonton MB Winnipeg ON Toronto PQ Montreal SELECT HOUSE TYPE:

387

Resource Characterization and Quantification of Natural Gas-Hydrate and Associated Free-Gas Accumulations in the Prudhoe Bay - Kuparuk River Area on the North Slope of Alaska  

SciTech Connect (OSTI)

Natural gas hydrates have long been considered a nuisance by the petroleum industry. Hydrates have been hazards to drilling crews, with blowouts a common occurrence if not properly accounted for in drilling plans. In gas pipelines, hydrates have formed plugs if gas was not properly dehydrated. Removing these plugs has been an expensive and time-consuming process. Recently, however, due to the geologic evidence indicating that in situ hydrates could potentially be a vast energy resource of the future, research efforts have been undertaken to explore how natural gas from hydrates might be produced. This study investigates the relative permeability of methane and brine in hydrate-bearing Alaska North Slope core samples. In February 2007, core samples were taken from the Mt. Elbert site situated between the Prudhoe Bay and Kuparuk oil fields on the Alaska North Slope. Core plugs from those core samples have been used as a platform to form hydrates and perform unsteady-steady-state displacement relative permeability experiments. The absolute permeability of Mt. Elbert core samples determined by Omni Labs was also validated as part of this study. Data taken with experimental apparatuses at the University of Alaska Fairbanks, ConocoPhillips laboratories at the Bartlesville Technology Center, and at the Arctic Slope Regional Corporation's facilities in Anchorage, Alaska, provided the basis for this study. This study finds that many difficulties inhibit the ability to obtain relative permeability data in porous media-containing hydrates. Difficulties include handling unconsolidated cores during initial core preparation work, forming hydrates in the core in such a way that promotes flow of both brine and methane, and obtaining simultaneous two-phase flow of brine and methane necessary to quantify relative permeability using unsteady-steady-state displacement methods.

Shirish Patil; Abhijit Dandekar

2008-12-31T23:59:59.000Z

388

Non-destructive inspection protocol for reinforced concrete barriers and bridge railings  

SciTech Connect (OSTI)

Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

2014-02-18T23:59:59.000Z

389

FACT SHEET! 2013 What is ShoreZone?  

E-Print Network [OSTI]

, British Columbia, Washington and Oregon. The North Slope and Kotzebue Sound mapping is now completed trackline by a unique time code, providing a GPS position on the coastline for each image. Figure 3. Oil and sediment type. Highest values indicate an oil residence time of months to years. Hig Higman/ShoreZone Mary

390

Marine Habitat Mapping Technology for Alaska, J.R. Reynolds and H.G. Greene (eds.) 185 Alaska Sea Grant College Program, University of Alaska Fairbanks. doi:10.4027/mhmta.2008.13  

E-Print Network [OSTI]

, and depth based on current standards used in California fisher- ies management. Both the GIS layer nautical miles from shore. CCSWMP is managed by the California Ocean Protection Council through. 2004, Harney et al. 2006). The California State Marine Life Protection Act (MLPA) calls for protecting

391

The University of Alaska Fairbanks is accredited by the Northwest Commission on Colleges and Universities. UAF is an affirmative action/equal opportunity employer and educational institution. 10/2013  

E-Print Network [OSTI]

"Class Schedule Search." (You may also select "Register/ Add/Drop Classes" and then "Class Search.") In either case, be sure to choose the proper semester or term, and choose "UAF-Main Campus" from the list.uaf.edu/coursefinder/.) 3 Add your classes. In the "Add Classes Worksheet" on the "Register/Add/Drop Classes" page, enter

Ickert-Bond, Steffi

392

Nutrient cycling at the landscape scale: The role of diel foraging ...  

Science Journals Connector (OSTI)

Rates of digestion and temperate or wind effects on flight frequencies .... mill. Samples were shipped in airtight vials to the University of Alaska-Fairbanks for...

1999-05-10T23:59:59.000Z

393

Alaska Native Village Energy Development Workshop Agenda  

Broader source: Energy.gov [DOE]

Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

394

E-Print Network 3.0 - accidents home Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks AccidentIncident Report (personal injury) To report an automobile... accident, do not use this form, please go to: http:www.alaska.eduswrisk...

395

E-Print Network 3.0 - atmospheric deposition flux Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Institute, University of Alaska Fairbanks Collection: Geosciences 50 The sediment resuspension event scours dissolved phase contaminants from the water column. As a result, a...

396

DOE Final Report  

SciTech Connect (OSTI)

This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

Hinzman, Larry D.; Long, James; Newby, Greg B.

2014-01-08T23:59:59.000Z

397

Posters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Posters Solar Heating in the Upper Ocean K. Stamnes and Z. Jin Geophysical Institute University of Alaska Fairbanks, Alaska A discrete ordinate method has been developed to solve...

398

E-Print Network 3.0 - acid patterns early Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks Collection: Environmental Sciences and Ecology 15 Response of surface water chemistry to the Clean Air Act Amendments of 1990 John L. Stoddard1 Summary: lakes)...

399

E-Print Network 3.0 - actual doe savannah Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska Fairbanks Collection: Environmental Sciences and Ecology 28 Hydrogen Delivery Pipeline Working Group Workshop September 25-26, 2007 Center for Hydrogen Research, Aiken, GA...

400

On the Rates of Sea Level Rise -- Clues From the Distant Past  

E-Print Network [OSTI]

o d a y . 1 9 , 4 - 1 0 . Peltier. W. R. , a nd R . G . F acorresponding depth in the Peltier and Fairbanks graph (4

Berger, Wolfgang H

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - alaska native villages Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

... Source: Wagner, Diane - Institute of Arctic Biology, Department of Biology and Wildlife, University of Alaska Fairbanks Collection: Environmental Sciences and Ecology 25...

402

BROMEX Logistics Meeting plan  

E-Print Network [OSTI]

BROMEX Logistics Meeting plan Fairbanks, Alaska 22-23 Feb 2011 #12;22 Feb 2011 ­ Photo taken by Son

Rigor, Ignatius G.

403

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

integration activities, and flight planning scenarios. More than 80 scientists and logistics personnel will gather in Fairbanks, Alaska, to participate in the April campaign,...

404

The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate  

E-Print Network [OSTI]

, University of Colorado at Boulder, Boulder, CO, USA 2 Geophysical Institute, University of Alaska Fairbanks and climate warming. Keywords: permafrost, wildfires, active layer, carbon cycle, climate change, GIPL

Ickert-Bond, Steffi

405

Solid-State Energy Conversion Overview  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 1 Solid-State Energy Conversion Overview John W. Fairbanks Department of Energy Vehicle Technologies Annual Merit Review June 11, 2010 Vehicle Technologies Program...

406

E-Print Network 3.0 - arsenic exposure nail Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Earth and Environmental Sciences, Wesleyan University Collection: Geosciences 3 Ground-Water Studies in Fairbanks, Alaska--A Better Understanding of Some of the United States'...

407

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Broader source: Energy.gov (indexed) [DOE]

5, and 7 calculated by recording exhaust and coolant temperatures entering individual modules. is the figure of merit for the TEG Material. 10 From John W Fairbanks, 'Automotive...

408

EA-1183: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

183: Final Environmental Assessment EA-1183: Final Environmental Assessment Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska This EA evaluates the environmental...

409

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Solid-State Energy Conversion Overview Automotive...

410

E-Print Network 3.0 - association news apha Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Alaska Fairbanks Collection: Environmental Sciences and Ecology 12 Electronic Health Care Resource List 1. Montana Area Health Education Center (AHEC) Summary: . http:...

411

E-Print Network 3.0 - adamello batholith northern Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

collecting samples... the northern lights. Mission accomplished This photo was taken at Chena Hot Springs just outside of Fairbanks Source: Jet Propulsion Laboratory,...

412

SREL Reprint #3237  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Tallmon1,4 1Fisheries Division, University of Alaska Fairbanks, Juneau, AK 99801, USA 2Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29802, USA...

413

,"Plant","Primary Energy Source","Operating Company","Net Summer...  

U.S. Energy Information Administration (EIA) Indexed Site

3,"North Pole","Petroleum","Golden Valley Elec Assn Inc",144 4,"Bradley Lake","Hydroelectric","Homer Electric Assn Inc",126 5,"Anchorage 1","Natural Gas","Anchorage Municipal...

414

SWAMC Economic Summit | Department of Energy  

Office of Environmental Management (EM)

SWAMC Economic Summit SWAMC Economic Summit March 4, 2015 6:00AM AKST to March 6, 2015 3:00PM AKST Anchorage, Alaska Hotel Captain Cook 939 West 5th Avenue Anchorage, AK 99501 The...

415

United States of Agriculture  

E-Print Network [OSTI]

in Ecological, Traditional, and Ecotourism Values 2001 May 15­16; Anchorage, Alaska #12;USDA Forest Service

Brown, Gregory G.

416

Kelly L. Drew, Ph.D. November 7, 2011 Curriculum Vitae  

E-Print Network [OSTI]

Kelly L. Drew, Ph.D. November 7, 2011 Curriculum Vitae 1 CURRICULUM VITAE Kelly L. Drew, Ph Institute of Arctic Biology University of Alaska Fairbanks, Fairbanks, AK #12;Kelly L. Drew, Ph.D. November) $3,000 (Summer 2000) 2001 American Heart Association #12;Kelly L. Drew, Ph.D. November 7, 2011

417

Kelly L. Drew, Ph.D. August 16, 2010 Curriculum Vitae  

E-Print Network [OSTI]

Kelly L. Drew, Ph.D. August 16, 2010 Curriculum Vitae 1 CURRICULUM VITAE Kelly L. Drew, Ph.D. Personal: Born: September 19, 1959 Mailing Address: Institute of Arctic University of Alaska Fairbanks, Fairbanks, AK #12;Kelly L. Drew, Ph.D. August 16, 2010

Wagner, Diane

418

New handbook for standardised measurement of plant functional traits worldwide  

E-Print Network [OSTI]

. S Ecological Farming Systems, Agroscope Reckenholz Tänikon, Research Station ART, Reckenholzstrasse 191, 8046, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA. F Systems Ecology, Faculty of Earth and Life Sciences, Department of Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam

Sack, Lawren

419

This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details  

E-Print Network [OSTI]

-9326/8/3/035017) Home Search Collections Journals About Contact us My IOPscience #12;IOP PUBLISHING ENVIRONMENTAL, 2332 Cordes Way, Fairbanks, AK 99709, USA 2 US Geological Survey, Menlo Park, CA 94025, USA 3 Park Service, Fairbanks, AK 99709, USA 5 US Geological Survey, Boulder, CO 80303, USA 6 Department

Ickert-Bond, Steffi

420

ABSTRACT FINAL ID: SM13A-2029 TITLE: Particle-in-Cell Simulations of Two-dimensional Bernstein-Greene-Kruskal (BGK)  

E-Print Network [OSTI]

ABSTRACT FINAL ID: SM13A-2029 TITLE: Particle-in-Cell Simulations of Two-dimensional Bernstein, University of Alaska Fairbanks, Fairbanks, AK, United States. Title of Team: ABSTRACT BODY: Electrostatic with modulations having frequency of the order of electron cyclotron frequency. This work is supported

Ng, Chung-Sang

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Page not found | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

11 - 8720 of 28,905 results. 11 - 8720 of 28,905 results. Download TBZ-0087- In the Matter of David P. Sanchez This Decision will consider a Motion to Dismiss filed by Los Alamos National Laboratory ("LANL" or "the Respondent"). LANL seeks dismissal of a pending complaint filed by David P. Sanchez ("Mr.... http://energy.gov/oha/downloads/tbz-0087-matter-david-p-sanchez Download EA-1245: Finding of No Significant Impact Kotzebue Wind Installation Project, Kotzebue, Alaska http://energy.gov/nepa/downloads/ea-1245-finding-no-significant-impact Download Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 Quality Assurance Exchange Winter 2010 Volume 6 Issue 1 U.S. Department of Energy Office of Quality Assurance Policy and Assistance http://energy.gov/hss/downloads/quality-assurance-exchange-winter-2010-volume-6-issue-1

422

Microsoft Word - DOE Report Quarter Oct - Dec 2010.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0) 0) Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Submitted by: University of Alaska Fairbanks, AK 99775 Prepared for: United States Department of Energy National Energy Technology Laboratory February 21, 2011 Office of Fossil Energy 2 Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to arctic climate change CONTRACT NO. NT0005665 QUARTERLY PROGRESS REPORT Reporting Period: Oct. 1 2010- Dec. 31, 2010 Prepared by Matthew J. Wooller and Katey Walter Institute of Northern Engineering University of Alaska Fairbanks Fairbanks, Alaska 99775 Phone: (907) 474 6738

423

Final Report Limited Soil Investigation of Project Chariot Test Holes  

Office of Legacy Management (LM)

Limited Soil Investigation of Project Limited Soil Investigation of Project Chariot Test Holes Cape Thompson, Alaska December 2010 Prepared for U.S. Department of Energy and U.S. Army Corps of Engineers, Alaska District Post Office Box 6898 Elmendorf AFB, Alaska 99506-6898 Contract W911KB-08-D-0003 Task Order 12, Mod 001 Prepared by Fairbanks Environmental Services 3538 International Street Fairbanks, Alaska 99701 (907) 452-1006 FES Project No. 5012-06 Final Report Limited Soil Investigation of Project Chariot Test Holes, Cape Thompson, Alaska Fairbanks Environmental Services 5012-06 TABLE OF CONTENTS Page Number EXECUTIVE SUMMARY 1.0 INTRODUCTION ................................................................................................... 1-1

424

Evaluation of Wax Deposition and its Control during Production of Alaska North Slope Oils  

Office of Scientific and Technical Information (OSTI)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41248 Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Petroleum Development Laboratory Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755880 Fairbanks, Alaska 99775-5880 Prepared for: United States Department of Energy National Energy Technology Laboratory December 2008 Office of Fossil Energy Evaluation of Wax Deposition and Its Control During Production of Alaskan North Slope Oils Final Report Reporting Period: October 1, 2005-September 30, 2008 Principal Investigator: Tao Zhu University of Alaska Fairbanks P.O. Box 755880 Fairbanks, AK 99775-5880 fftz@uaf.edu, 907-474-5141 External Principal Investigator: Jack A. Walker

425

CX-006509: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9: Categorical Exclusion Determination 9: Categorical Exclusion Determination CX-006509: Categorical Exclusion Determination Fairbanks Geothermal Energy Project CX(s) Applied: A9, B3.1, B5.12 Date: 08/25/2011 Location(s): Fairbanks, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide funding to Fairbanks North Star Borough (FNSB) to deepen existing privately owned production and injection geothermal wells to increase the power generation at the existing power plant to form and sustain the geothermal reservoir in the Fairbanks North Star Borough, Alaska at the Chena Hot Springs Resort. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006509.pdf More Documents & Publications CX-003691: Categorical Exclusion Determination EA-1759: Final Environmental Assessment

426

Minto Upgrades Community Lodge with START Support  

Broader source: Energy.gov [DOE]

The Lakeview Lodge is the heart of Minto, a small Alaska Native village 126 miles northwest of Fairbanks. The 12,000-square-foot building is used daily for school and senior lunch programs,...

427

VOLUNTARY LEAVE TRANSFER PROGRAM  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

VOLUNTARY LEAVE TRANSFER PROGRAM LIST Name Organization Fairbanks, Mary H. AU Garnett-Harris, Deborah A. AU James, Debra A. AU Johnston, Robyne AU May, Melanie P. AU Pickens,...

428

Stress in the lithosphere from non-tectonic loads with implications for plate boundary processes  

E-Print Network [OSTI]

Res. , 112 (B03402). Peltier, W.R. (2004), Global glacialearth.32.082503.144359. Peltier, W.R. , and R. Drummond (10.1029/2008GL034586. Peltier, W.R. , and R.G. Fairbanks (

Luttrell, Karen M

2010-01-01T23:59:59.000Z

429

Alaska Rural Energy Conference | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

430

Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment  

Science Journals Connector (OSTI)

...Department of Biology and Wildlife, University of Alaska Fairbanks, , Alaska, USA 6 WSL Institute for Snow and Avalanche Research - SLF, Mountain Ecosystems, Switzerland 7 Faroese Museum of Natural History, Faroe Islands 8 Department of Geography, University...

2013-01-01T23:59:59.000Z

431

EA-1183: Finding of No Significant Impact | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

183: Finding of No Significant Impact EA-1183: Finding of No Significant Impact Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska Based on analysis in the EA, DOE...

432

Studying Altocumulus Plus Virga with Ground-based Active and Passive Remote Sensors Zhien Wang1, Kenneth Sassen2, David Whiteman3, and Belay Demoz3 1University of Maryland, Baltimore County, Catonsville, MD 21228 2University of Alaska, Fairbanks, Alaska 99775 3NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: zhien@agnes.gsfc.nasa.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Seasonal and Interannual Variations of Boundary-layer Mixed-phase Seasonal and Interannual Variations of Boundary-layer Mixed-phase Cloud Properties Observed at the ARCF NSA site Zhien Wang, Ming Zhao, and Min Deng University of Wyoming , Laramie, Wyoming, 82071, zwang@uwyo.edu References Curry, J. et al., 1996: Overview of Arctic cloud and radiation characteristics. J. Climate., 9, 1731-1764. Wang, Z. and K. Sassen, 2002: Cirrus cloud microphysical property retrieval using lidar and radar measurements, I: algorithm description and comparison with in situ data. J. Appl. Meteor., 41, 218-229. Wang, Z., K. Sassen, D. Whiteman, and B. Demoz, 2004: Studying altocumulus plus virga with ground-based active and passive remote sensors. J. Appl. Meteor.,43, 449-460. Wang, Z., 2007: Refined Two-channel Microwave Radiometer Liquid Water Path Retrieval at Cold Regions by Using Multiple-sensor Measurements. IEEE Geoscience and Remote

433

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

to control power generation and distribution and build electric drives. People trained in computer/equal opportunity employer and educational institution. 08.2011 electricAl engineering College of Engineering and Mines Department of Electrical and Computer Engineering 907-474-7137 www.uaf.edu/cem/ece/ B.s. Degree

Ickert-Bond, Steffi

434

U N I V E R S I T Y O F A L A S K A F A I R B A N K S Admissions and the Registrar P.O. Box 757480 Fairbanks, AK 99775-7480 admissions@uaf.edu www.uaf.edu  

E-Print Network [OSTI]

/equal opportunity employer and educational institution. 08.2011 proceSS technology College of Rural and Community and milling, transportation and refining, chem- ical manufacturing, power generation, utilities, wastewater treatment facilities maintenance, and food processing. This

Ickert-Bond, Steffi

435

Instrumentation of Current Technology Testing and Replicating Harsh Environments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Abrasion Testing of Critical Components Abrasion Testing of Critical Components of Hydrokinetic Devices 10/17/2012 University of Alaska Anchorage 2 Project Team o Ocean Renewable Power Company (ORPC) o Jarlath McEntee o Monty Worthington o University of Alaska Anchorage (UAA) o Faculty o Thomas Ravens o Todd Petersen o Muhammad Ali o Research Assistants o Tim Kirk o Jacob Clark o Angus Bromaghin 10/17/2012 University of Alaska Anchorage 3 ORPC Technology o TideGen Power System (TGU) o Designed to generate electricity at water depths of 50 to 100 feet 10/17/2012 University of Alaska Anchorage 4 ORPC Technology 10/17/2012 University of Alaska Anchorage 5 TGU Performance Test Results o ORPC field testing on TGU prototype in 2008 showed significant wear on bearings and seals. 10/17/2012 University of Alaska Anchorage 6

436

The U.S. Department of Energy Office of Indian Energy Policy and Programs  

Broader source: Energy.gov (indexed) [DOE]

Anchorage, Alaska, Roundtable Summary Anchorage, Alaska, Roundtable Summary April 14, 2011 Prepared by: The Udall Foundation's U.S. Institute for Environmental Conflict Resolution 2 DOE Tribal Roundtable on Tribal Energy Anchorage, Alaska April 14, 2011 ANCHORAGE EXECUTIVE SUMMARY The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15 th , at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director-Policy of the Office of Indian Energy, represented DOE. Approximately twenty-seven people attended the

437

Alaska BIA Providers Conference  

Broader source: Energy.gov [DOE]

The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

438

E-Print Network 3.0 - adhesion deficiency-i case Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

plant cell. Swimming spores... of the green alga Enteromorpha linza (L.) J. Ag. (710 lm) secrete an adhesive glycoprotein which provides rm... anchorage to the substratum....

439

Energy Incentive Programs, Alaska | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

parties are advised to check the website for updates. What load managementdemand response options are available to me? Anchorage Municipal Light & Power has an...

440

E-Print Network 3.0 - advanced corrosion research Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

39 Technical Report Documentation Page 1. Report No. Summary: Figure 2.6 Advanced Corrosion of Strands within Anchorage Niles Channel Bridge16 ...21 Figure 2... ....

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DOE Funds 21 Research, Development and Demonstration Projects...  

Energy Savers [EERE]

of UtahEnergy and Geoscience Institute (EGI) (Anchorage, Alaska): to identify open fracture systems by their Fluid Inclusion Stratigraphy (FIS) chemical signature; differences...

442

Arctic Energy Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

S Strategic Center for Natural Gas & Oil CONTACTS Joel Lindstrom Arctic Energy Office National Energy Technology Laboratory 420 L Street, Suite 305 Anchorage, Alaska 99501...

443

DOE/NREL supported wind energy activities in Alaska  

SciTech Connect (OSTI)

This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system, also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.

Drouilhet, S.

1997-12-01T23:59:59.000Z

444

Characteristics of AFRP Bars for Prestressing Applications  

E-Print Network [OSTI]

Plastic wedge roughened surface and regular surface ..................................... 29 Figure 11 Hydraulic jack and pump ................................................................................. 30 Figure 12 Steel pipes used for anchorage... Plastic wedge roughened surface and regular surface ..................................... 29 Figure 11 Hydraulic jack and pump ................................................................................. 30 Figure 12 Steel pipes used for anchorage...

Medina, Jose

2012-02-14T23:59:59.000Z

445

Biological & Environmental Research Abstracts Database  

Office of Scientific and Technical Information (OSTI)

Search Term(s) Search Term(s) (supports AND and OR operators and phrase in "double quotes") Register Number Title Abstract Principal Investigator PI Lookup Institution Institution Lookup City Adelaide SA 5001 Aiken Albany Albuquerque Alcoa Center Alexandria Ames Amherst Anchorage Ann Arbor Ardmore Argonne Arlington Asheville Athens Atlanta Auburn Auburn University Augusta Aurora Austin Bailrigg, Lancaster UK, LA1 4Y Baltimore Bar Harbor Batavia Baton Rouge Beaufort Beaverton Belleville Bellevue Bellingham Beltsville Berkeley Bern Bethesda Billerica Bilthoven Binghamton Birmingham Blacksburg Bloomington Boise Boston Bothell Boulder Bozeman Bronx Bronxville Brooklyn Buffalo Burlington Calverton Cambridge Cambridge CB1 4RN Canal Point Carbondale Champaign Chapel Hill Charleston Charlottesville Chestnut Hill Chicago Chico Cincinnati Claremont Clayton Clemson Cleveland Clifton Park Colchester Cold Spring Harbor College Park College Station Colorado Springs Columbia Columbus Concord Cookeville Copenhagen Coral Gables Corvallis Dallas Danville Davis Dayton DeBilt DeKalb Delft Denton Denver Des Plaines Detroit Docklands, Victoria Downsview Duarte Durham East Lansing El Paso Esch-sur-Alzette Essen Eugene Evanston Fairbanks Fairfax Falmouth Flagstaff Fort Collins Gainesville Gaithersburg Galveston Germantown Gloucester Point Golden Grand Forks Grand Junction Great Falls Greenbelt Greenville Guelph Halifax Hamburg Hamilton, Ontario Hampton Hanover Hattiesburg Helsinki Hershey Honolulu Houghton Houston Hunt Valley Huntsville Hyde Park Idaho Falls Indianapolis Iowa City Irvine Ithaca Jerusalem Kalamazoo Kansas City Kennewick Kent Keystone Kingston Kingsville Klamath Falls Knoxville LS2 9JT La Jolla La Jolla, Lafayette Lake Placid Lakewood Lanham Laramie Las Cruces Las Vegas Lausanne Lawrence Lawrenceville Leawood Lethbridge Lewes Lexington Lincoln Little Rock Livermore Loma Linda London London NW1 2BE Los Alamos Los Angeles Louisville Lubbock Lutherville Lyngby Madison Manchester Manhattan Mayaguez McLean Medford Melbourne Memphis Menands Menlo Park Merced Mercer Island Miami Middlesex Middletown Millbrook Milwaukee Minneapolis Mississippi State Missoula Moab Mobile Modena Moffett Field Monash, Australia Monterey Montreal Montreal (Quebec) Morgantown Moscow Moss Landing Mountain View Nashua Nashville New Brunswick New Haven New Orleans New York Newark Newport News Newtown Square Norfolk Norman North Dartmouth Norwich Notre Dame Oak Brook Oak Ridge Oakdale Oakland Oklahoma City Old Westbury Omaha Ontario Ontario K1N 6N5 Orlando Orono Ottawa Oxford Oxon Palisades Palo Alto Pasadena Pasco Peoria Philadelphia Phoenix Piscataway Pittsburgh Placitas Plymouth Portland Potsdam Princeton Providence Pullman Radnor Raleigh Rapid City Reading Redmond Reno Rensselaer Research Triangle Pk Reston Richland Richmond Riverside Roanoke Rochester Rockville Rohnert Park Rome Royal Oak Salt Lake City San Antonio San Diego San Francisco San Fransisco San Jose San Marcos Santa Barbara Santa Cruz Santa Fe Santa Monica Santiago Savannah Scranton Seattle Sequims Sharon Hill Shreveport Silver Spring Silverthorne Sioux Falls Socorro Sonoma St. Louis St. Paul St. Petersburg Stanford State College Stennis Space Center Stennis Space Ctr. Stillwater Stockholm Stockton Stony Brook Storrs Storrs Mansfield Stowe Syracuse Tallahassee Tampa Tempe Thousand Oaks Toledo Toronto Toronto, ON Troy Tucson Tulsa Tuscaloosa Tuskegee Ulm University University Park Upton Urbana Victoria Walpole Waltham Washington Watkinsville West Kingston West Lafayette Westhampton Beach Wheeling Winston-Salem Woodland Park Woods Hole Worcester Yorktown Heights

446

NANA Wind Resource Assessment Program Final Report  

SciTech Connect (OSTI)

NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

Jay Hermanson

2010-09-23T23:59:59.000Z

447

Microsoft Word - _NT000565_ Revised NETL Report Covers.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January - March 2011) January - March 2011) Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Submitted by: University of Alaska Fairbanks, AK 99775 Prepared for: United States Department of Energy National Energy Technology Laboratory May 6, 2011 Office of Fossil Energy 2 Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to arctic climate change CONTRACT NO. NT0005665 QUARTERLY PROGRESS REPORT Reporting Period: Jan. 1 - Mar. 31, 2011 Prepared by Matthew J. Wooller and Katey Walter Institute of Northern Engineering University of Alaska Fairbanks Fairbanks, Alaska 99775 Phone: (907) 474 6738

448

Task 6  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reporting Period: Oct 1, 2008 - Mar 31, 2013 North Slope Decision Support for Water Resource Planning and Management Principal Investigator: William Schnabel, University of Alaska Fairbanks Co-Investigators: Kelly Brumbelow, Texas A&M University Stephen Bourne, PBS&J Project Number: DE-NT0005683 Report Date: July 2013 Name and Address of Submitting Organization: University of Alaska Fairbanks Dr. William Schnabel Institute of Northern Engineering PO Box 755910 Fairbanks, Alaska 99775-5910 Acknowledgement Acknowledgment: "This material is based upon work supported by the Department of Energy under Award Number DE- NT0005683." Disclaimer This report was prepared as an account of work sponsored by an agency of the United States

449

NETL: Methane Hydrates - Barrow Gas Fields - North Slope Borough, Alaska  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 Phase 2- Drilling and Production Testing the Methane Hydrate Resource Potential associated with the Barrow Gas Fields Last Reviewed 04/06/2010 DE-FC26-06NT42962 Goal The goal of this project is to evaluate, design, drill, log, core and production test methane hydrate resources in the Barrow Gas Fields near Barrow, Alaska to determine its impact on future free gas production and its viability as an energy source. Photo of Barrow welcome sign Performers North Slope Borough, Barrow, Alaska 99723 Petrotechnical Resources Alaska (PRA), Fairbanks, AK 99775 University of Alaska Fairbanks, Fairbanks, AK 99775 Background Phase 1 of the Barrow Gas Fields Hydrate Study provided very strong evidence for the existence of hydrates updip of the East Barrow and Walakpa Gas Fields. Full-field history matched reservoir modeling supported the

450

NETL: Oil & Natural Gas Projects: Alaska North Slope Oil and Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 Alaska North Slope Oil and Gas Transportation Support System Last Reviewed 12/23/2013 DE-FE0001240 Goal The primary objectives of this project are to develop analysis and management tools related to Arctic transportation networks (e.g., ice and snow road networks) that are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho National Laboratory, Idaho Falls, ID 83415 Background Oil and gas development on the North Slope is critical for maintaining U.S. energy supplies and is facing a period of new growth to meet the increasing energy needs of the nation. A majority of all exploration and development activities, pipeline maintenance, and other field support projects take

451

Microsoft Word - _NT000565_ Revised NETL Report Covers.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March - June 2010) March - June 2010) Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Submitted by: University of Alaska Fairbanks, AK 99775 Prepared for: United States Department of Energy National Energy Technology Laboratory August 31, 2010 Office of Fossil Energy 2 Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to arctic climate change CONTRACT NO. NT0005665 QUARTERLY PROGRESS REPORT Reporting Period: March. 1- June. 30, 2010 Prepared by Matthew J. Wooller and Katey Walter Anthony Institute of Northern Engineering University of Alaska Fairbanks Fairbanks, Alaska 99775 Phone: (907) 474 6738

452

ARM - Publications: Science Team Meeting Documents: Deployment of a  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment of a scintillometer for optical turbulence investigation at NSA Deployment of a scintillometer for optical turbulence investigation at NSA - Barrow Moudry, Dana University of Alaska Fairbanks Sassen, Kenneth University of Alaska Fairbanks Vaucher, Gail Army Research Laboratory Zak, Bernard Sandia National Laboratories The University of Alaska Fairbanks in collaboration with the White Sands Army Research Lab deployed a reciprocal-path scintillometer to the ARM - NSA site at Barrow in fall 2004 for investigation of optical turbulence over the course of a year. The instrument consists of a transmitter and a receiver located approximately 1km apart. The instrument transmitter includes two arrays of nearIR LEDs which emit light in a 125-Hz pulsed mode. The receiver measures the temporal variability of the radiation after

453

Microsoft Word - _NT000565_ Revised NETL Report Covers.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October - December 2009) October - December 2009) (Actual period November 2009 - February 2010) Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to Arctic climate change Submitted by: University of Alaska Fairbanks, AK 99775 Prepared for: United States Department of Energy National Energy Technology Laboratory February 22, 2010 Office of Fossil Energy 2 Source characterization and temporal variation of methane seepage from thermokarst lakes on the Alaska North Slope in response to arctic climate change CONTRACT NO. NT0005665 QUARTERLY PROGRESS REPORT Reporting Period: Nov. 1- Feb. 28, 2010 Prepared by Matthew J. Wooller and Katey Walter Institute of Northern Engineering University of Alaska Fairbanks

454

2014 Alaska Native Village Energy Development Workshop | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy Tribal Energy Program...

455

Office of Indian Energy Announces New Staff  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Indian Energy is pleased to announce the addition of new program staff in Washington, D.C. and Anchorage, Alaska. Since 2011, the Office of Indian...

456

Energy Ambassadors to Provide Front Line Support for Alaska Native...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

457

Laying the Foundation for a More Energy-Secure Future in Rural...  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

458

Alaska Feature Articles and Blogs | Department of Energy  

Office of Environmental Management (EM)

in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

459

E-Print Network 3.0 - akashi kaikyo bridge Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biology and Medicine 87 By-Products Utilization Summary: of bridges. In 1990, self-compacting concrete was used in the construction of the two anchorages of Akashi... Straights...

460

Alaska Justice Forum 18(1), Winter 2001 1 ALASKA JUSTICE FORUM  

E-Print Network [OSTI]

arose in Broward County, Florida in 1997; in King County, Washington in 1999; inAnchorage in 1999 and in San Bernardino, California in 1999. All except the San Bernardino court deal with misdemeanor

Pantaleone, Jim

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CASH / CHECK (EnCloSEd) ToTAl: Cash Check (Payable to the UAA Community Campaign)  

E-Print Network [OSTI]

. 96802 Life Alaska Donor Services 93898 Pathway Counseling & Family Center 50737 Renewable Energy Alaska Anchorage 35694 Kid's Corps, Inc. 30881 Lutheran Social Services of Alaska, Inc. 55632 Mabel T. Caverly

Pantaleone, Jim

462

Alaska Renewable Energy Fair  

Office of Energy Efficiency and Renewable Energy (EERE)

The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

463

WEEKLY SUMMARY OF THE PROGRESS OF SCIENCE  

Science Journals Connector (OSTI)

...English mission at Ustchiuvaja, -a fine site, with good anchorage, and sufficient...to the mouniids and graves wlhere their productions found their last resting-place. The...STATE INSTITUTIONS. State university of Kansas, Lawrence. WVeather report for May...

1883-06-15T23:59:59.000Z

464

Alaska Native People Shaping Health Care 2011Malcolm Baldrige  

E-Print Network [OSTI]

Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

Magee, Joseph W.

465

Alaska Forum on the Environment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Forum on the Environment Alaska Forum on the Environment February 9, 2015 9:00AM AKST to February 13, 2015 5:00PM AKST Anchorage, Alaska Dena'ina Convention Center 600 W. 7th Ave....

466

Bioreactor Systems for Producing Antibody from Mammalian Cells  

Science Journals Connector (OSTI)

We can classify anchorage-dependent systems as either laboratory- or industrial-scale systems. The laboratory-scale systems use plastic wares capable of providing a suitable surface area to sustain mammalian cell...

Darrin Kuystermans; Mohamed Al-Rubeai

2011-01-01T23:59:59.000Z

467

Miniscrew Assisted Slow Expansion of Mature Sutures  

E-Print Network [OSTI]

The purpose of this study was to evaluate whether complex, mature sutures could be separated using skeletal anchorage and light, continuous forces. Twelve adult female New Zealand White (NZW) rabbits, 8 to 9 months old, were randomly assigned...

Pulver, Ross

2014-04-28T23:59:59.000Z

468

Alaska Plans Geothermal Leasing at Volcano | Department of Energy  

Office of Environmental Management (EM)

at Volcano June 26, 2008 - 4:19pm Addthis ANCHORAGE, Alaska - In Alaska, a state rich in oil and gas, officials are seeking to stir interest in a different source of underground...

469

Religious and Spiritual Life The Office of Religious and Spiritual Life encourages  

E-Print Network [OSTI]

Dean of the Tucker Foundation Visit us at: 6154 Fairbanks Hall Hanover, New Hampshire 03755 Http and readings, discussions with faculty, and public presentations. The Dartmouth Partners in Community Service Center provides a full time rabbi and Shabbat services and dinners, special holiday observances

Lotko, William

470

Taubman College Main Desk: 734.764.1300 2013 Homecoming Roster  

E-Print Network [OSTI]

lecture. Saturday, October 5 Taubman Tailgate 1 pm Taubman College Liberty Annex, 305 W. Liberty St., Ann Kickoff: 3:30 pm Marble Fairbanks Exhibition Liberty Research Annex 305 W. Liberty, Ann Arbor, MI Emergent Project Exhibition (supported by the 2013 Class Gift) Taubman College Gallery, Room 2106 Art

Papalambros, Panos

471

Risk Assessment in Complex Interacting Infrastructure Systems D. E. Newman  

E-Print Network [OSTI]

University of Alaska, Fairbanks, AK 99775 USA ffden@uaf.edu Bertrand Nkei Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA nnb@fed.ornl.g ov B. A. Carreras Oak Ridge National Laboratory, Oak Ridge, TN 37831 dobson@engr. wisc.edu V. E. Lynch Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA lynchve

Dobson, Ian

472

\\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions  

E-Print Network [OSTI]

\\\\due.uci.edu\\due\\Files\\SAC\\CIE\\STAFF\\Duties\\REGIONS.DOC ` 09/06/13 Staff Advisor Regions UCI Study.studyabroad.uci.edu Advisor Countries/Regions (EAP & IOP) EAP Countries Chrystal Fairbanks cfairban@uci.edu (949) 824

Barrett, Jeffrey A.

473

31-3617ja.1 Interested in a Career as a  

E-Print Network [OSTI]

31-3617ja.1 Interested in a Career as a Statistician within the Pharmaceutical Industry? Then Come Fairbanks, a statistician working in the pharmaceutical industry, is visiting the university to talk about careers in the pharmaceutical industry. The aim of the presentation is to raise awareness of the role

Wright, Francis

474

Annual Report: 0232198 Page 1 of 4  

E-Print Network [OSTI]

modeling, atmospheric science, hydrology, and computer modeling. The graduate student contributed a poster Activities and Findings Research and Education Activities: (See PDF version submitted by PI at the end) at the Geophysical Institute (GI) and College of Natural Science, and Mathematics (CNSM), University Alaska Fairbanks

Moelders, Nicole

475

INVESTIGATIONS ON THE IMPACTS OF LAND-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES  

E-Print Network [OSTI]

REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE By Zhao Li RECOMMENDED-COVER CHANGES AND/OR INCREASED CO2 CONCENTRATIONS ON FOUR REGIONAL WATER CYCLES AND THEIR INTERACTIONS WITH THE GLOBAL WATER CYCLE A THESIS Presented to the Faculty of the University of Alaska Fairbanks In Partial

Moelders, Nicole

476

New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)  

SciTech Connect (OSTI)

The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

Grace, R. C.; Gifford, J.

2008-05-01T23:59:59.000Z

477

Auroral effects on power transmission line systems  

Science Journals Connector (OSTI)

... -south direction ( 166 km), is terminated at an autotransformer at the Gold Hill substation which is located just outside the city of Fairbanks. Aurora-induced current fluctuations in ... voltage developed across a 62.5 ?,O resistor inserted between the autotransformer neutral and substation ground.

S.-I. Akasofu; J. D. Aspnes

1982-01-14T23:59:59.000Z

478

FY15 Issue 1 We've Moved  

E-Print Network [OSTI]

! Royalty Check Presentation Event Volcanic Ash Software On Wednesday, July 2, 2014, 9 of the 31 named Dan White in the lobby of IARC for a royalty check presentation ceremony. University of Alaska Fairbanks (UAF) is set to disburse the first round of royalty checks to the 31 named contributors whose

Hartman, Chris

479

Monday September 19, 2011 10:00 AM Chem. Sci. 215  

E-Print Network [OSTI]

arctic marine microorganisms to biodegrade Alaskan North Slope (ANS) crude oil in the presence or absenceD Candidate Department of Biology and Wildlife, University of Alaska Fairbanks Biodegradation of Dispersed Oil in Arctic Marine Environments As oil exploration expands in offshore Arctic regions, it is imperative

480

Photodegradable, Photoadaptable Hydrogels via Radical-Mediated Disulfide Fragmentation Reaction  

Science Journals Connector (OSTI)

Benjamin D. Fairbanks , Samir P. Singh , Christopher N. Bowman , and Kristi S. Anseth * ... Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559 5562 ...

Benjamin D. Fairbanks; Samir P. Singh; Christopher N. Bowman; Kristi S. Anseth

2011-03-16T23:59:59.000Z

Note: This page contains sample records for the topic "kotzebue anchorage fairbanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The following National Sea Grant aquaculture research projects were awarded in FY2010-Program Investigator Investigator Affiliation Project Title  

E-Print Network [OSTI]

The following National Sea Grant aquaculture research projects were awarded in FY2010- 2011: Sea Grant College Program Investigator Investigator Affiliation Project Title FY 10-11 Federal Share* Alaska Sea Grant Eckert University of Alaska Fairbanks Red King Crab Aquaculture in Alaska - Release

482

A U.S. and China Regional Analysis of Distributed Energy Resources in Buildings  

E-Print Network [OSTI]

AC ASHRAE CHP CO 2 DER DER-CAM EUI FYP kW kWh m 2 MEF MWh PVannual energy use intensity (EUI) is 287 kilowatt-hours (in the U.S. , Fairbanks, the EUI is less than 250 kWh/m 2 .

Feng, Wei

2014-01-01T23:59:59.000Z

483

Solvent Interactions and Conformational Choice in a Core N-Glycan Segment: Gas Phase Conformation of the Central,  

E-Print Network [OSTI]

. Gamblin, Emilio J. Cocinero, Jann Frey, Romano T. Kroemer,# Antony J. Fairbanks, Benjamin G. Davis,*, and John P. Simons*, Department of Chemistry, UniVersity of Oxford, Physical and Theoretical Chemistry-mail: john.simons@chem.ox.ac.uk; Ben.Davis@chem.ox.ac.uk Abstract: The intrinsic conformational preferences

Davis, Ben G.

484

Water and Environmental Research Center Annual Technical Report  

E-Print Network [OSTI]

of all nine permafrost conference proceedings on a DVD. There were also pre- and post-extended conference (IARC) on the Fairbanks campus, hosted another IPY activity, the Ninth International Conference on Permafrost (NICOP). This conference, which convenes every five years, attracted 700 scientist and engineers

485

JUNE 2004 409M O L D E R S A N D O L S O N 2004 American Meteorological Society  

E-Print Network [OSTI]

, moisture, and heat on precipitation for Fairbanks, Alaska, a remote city at high latitude. The remote predicted for the innermost domain, but not for the outer domains; prediction efficiency depends on grid increment size because processes are resolved on the finer grid that do not appear on the coarse grid

Moelders, Nicole

486

Flood Control Reservoirs Operable September 30, 2007 Characteristics of Dam  

E-Print Network [OSTI]

Creek Superior 960 34,500 NPP F Earth 25 978 ARKANSAS Blakely Mountain Ouachita Dam Ouachita Hot Springs-Ft.) Permanent Pool (Acreage) or No Pool (NPP) Project Functions Type Height (Feet) Length (Feet) ALASKA Chena River Lakes Chena Tanana Chena River Fairbanks 1979 2,000 NPP FRD Earth 50 40,200 ARIZONA Adobe Gila

US Army Corps of Engineers

487

Flood Control Reservoirs Operable September 30, 2008 Characteristics of Dam  

E-Print Network [OSTI]

Creek Superior 960 34,500 NPP F Earth 25 978 ARKANSAS Blakely Mountain Ouachita Dam Ouachita Hot Springs-Ft.) Permanent Pool (Acreage) or No Pool (NPP) Project Functions Type Height (Feet) Length (Feet) ALASKA Chena River Lakes Chena Tanana Chena River Fairbanks 1979 2,000 NPP FRD Earth 50 40,200 ARIZONA Adobe Gila

US Army Corps of Engineers

488

Data:A57b4490-07d5-4db5-a202-a736b2b48673 | Open Energy Information  

Open Energy Info (EERE)

90-07d5-4db5-a202-a736b2b48673 90-07d5-4db5-a202-a736b2b48673 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kotzebue Electric Assn Inc Effective date: 2013/05/03 End date if known: Rate name: Large Commercial Sector: Commercial Description: Source or reference: Illinois State University Archive Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

489

Data:2b276ae7-89c7-4e33-b01c-666696eac38f | Open Energy Information  

Open Energy Info (EERE)

ae7-89c7-4e33-b01c-666696eac38f ae7-89c7-4e33-b01c-666696eac38f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kotzebue Electric Assn Inc Effective date: 2013/05/06 End date if known: Rate name: Small Commercial Sector: Commercial Description: Source or reference: Illinois State University Archive Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

490

Data:Cfda339b-e313-43b2-b237-9a8d68632be6 | Open Energy Information  

Open Energy Info (EERE)

Cfda339b-e313-43b2-b237-9a8d68632be6 Cfda339b-e313-43b2-b237-9a8d68632be6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kotzebue Electric Assn Inc Effective date: 2013/05/06 End date if known: Rate name: Residential Sector: Residential Description: Source or reference: Illinois State University Archive Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

491

Wales Wind Energy Project | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Project Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Assoc. Energy Purchaser Alaska Village Electric Coop Location Wales AK Coordinates 65.6113°, -168.091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.6113,"lon":-168.091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Selawik Wind Project | Open Energy Information  

Open Energy Info (EERE)

Selawik Wind Project Selawik Wind Project Jump to: navigation, search Name Selawik Wind Project Facility Selawik Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Alaska Village Electric Coop Developer Kotzebue Electric Association Energy Purchaser Alaska Village Electric Coop Location Selawik AK Coordinates 66.608132°, -160.017555° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":66.608132,"lon":-160.017555,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Data:3825b128-dff6-40ac-a3ea-bc2ba75a3f61 | Open Energy Information  

Open Energy Info (EERE)

dff6-40ac-a3ea-bc2ba75a3f61 dff6-40ac-a3ea-bc2ba75a3f61 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kotzebue Electric Assn Inc Effective date: 2013/05/06 End date if known: Rate name: Street Lights Rate Sector: Lighting Description: Source or reference: Illinois State University Binder Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

494

Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

Jacobson, Paul T. [Electric Power Research Institute; Ravens, Thomas M. [University of Alaska Anchorage; Cunningham, Keith W. [University of Alaska Fairbanks; Scott, George [National Renewable Energy Laboratory

2012-12-14T23:59:59.000Z

495

Categorical Exclusion Determinations: Golden Field Office | Department of  

Broader source: Energy.gov (indexed) [DOE]

August 25, 2011 August 25, 2011 CX-006539: Categorical Exclusion Determination Boulder Wind Power Advanced Gearless Drivetrain CX(s) Applied: A9, B3.6 Date: 08/25/2011 Location(s): Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 25, 2011 CX-006509: Categorical Exclusion Determination Fairbanks Geothermal Energy Project CX(s) Applied: A9, B3.1, B5.12 Date: 08/25/2011 Location(s): Fairbanks, Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 24, 2011 CX-006587: Categorical Exclusion Determination Novel Geothermal Development of Deep Sedimentary Systems in the United States CX(s) Applied: A9, B3.6 Date: 08/24/2011 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

496

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 11, 2012 [Education, Facility News] May 11, 2012 [Education, Facility News] Fairbanks Middle Schoolers Enjoy Field Trip to Barrow Bookmark and Share Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! Watershed School's bundled-up 8th grade class and their chaperones stop for a quick photo in front of the U.S. flag near the Arctic sea ice. With its consistently chilly temperatures, student visits to the ARM site in Barrow are somewhat rare, but always welcome! In April, the 8th grade class from Watershed School in Fairbanks, Alaska, made the long trek to the North Slope for a week-long field trip filled

497

CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMISSION CALCULATIONS AND TRENDS EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6335 Robert J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska 99775-5900 ABSTRACT FEB 05 ZS3 OSTI The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- ACO5-840R21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so. for U.S. Government purposes." This paper describes the compilation, calculation, and availability of the most comprehensive CO2 emissions database currently available. The database offers global, regional, and national annual

498

eide-98.PDF  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 Electromagnetic Scattering by Spheroidal Particles H. A. Eide, K. Stamnes, and F. M. Schulz University of Alaska, Fairbanks Fairbanks, Alaska J. J. Stamnes University of Bergen Norway Abstract Clouds are of paramount importance for the global energy balance and, thereby, our climate. Changes in cloud cover and phase (liquid water versus ice), for example, through increased greenhouse forcing, may have significant and as of yet unknown impacts on our climate. The global climate models (GCMs) designed to predict future climate, usually model the effects of clouds using the scattering and absorption properties of spherical particles at high latitudes as well as at high enough altitudes anywhere on our planet. This leads to errors of undetermined magnitude because the

499

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Tale of the Tapes-No More Boxes of Data! The Tale of the Tapes-No More Boxes of Data! Bookmark and Share In October 1997, the ARM Program entered into a contract with the University of Alaska-Fairbanks to obtain image data covering the ARM Climate Research Facility's North Slope of Alaska (NSA) locale. Image data taken by an advanced very high resolution radiometer (AVHRR) are collected by a satellite receiver at Fairbanks and, up until February 2004, were stored on 4mm tapes. These boxes were then shipped by the boxful to the ARM Climate Research Facility External Data Center every six months. Once at the External Data Center, the data was processed into standard "hierarchical data format" or HDF files and transferred to the ARM Climate Research Facility Data Archive for use by ARM researchers. All data from

500

doi:10.1016/j.scitotenv.2006.02.045  

Office of Legacy Management (LM)

use use of biota sampling for environmental contaminant analysis for characterization of benthic communities in the Aleutians Joanna Burger a,b, ⁎ , Stephen Jewett c , Michael Gochfeld b,d , Max Hoberg c , Shawn Harper c , Heloise Chenelot c , Christian Jeitner a,b , Sean Burke a,b a Division of Life Sciences, Rutgers University, 604 Allison Road, Piscataway, New Jersey 08854-8082, USA b Consortium for Risk Evaluation with Stakeholder Participation (CRESP), and Environmental and Occupational Health Sciences Institute (EOHSI), Piscataway, New Jersey, USA c Institute of Marine Science, University of Alaska, Fairbanks, Fairbanks, Alaska 99775-7220, USA d Environmental and Community Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA Received 10 May 2005; received in revised form 17 February 2006; accepted 22 February 2006 Available online