Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.  

SciTech Connect (OSTI)

The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

Holderman, Charles

2009-06-26T23:59:59.000Z

2

Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).  

SciTech Connect (OSTI)

Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

Jamieson, Bob; Braatne, Jeffrey H.

2001-10-01T23:59:59.000Z

3

Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.  

SciTech Connect (OSTI)

The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a result, restoration work is in the planning stages for Canadian tributaries that flow into the Moyie River in northern Idaho and the Yaak River in northwest Montana.

Munson, Bob; Munson, Vicki (Kootenai River Network, Libby, MT); Rogers, Rox (US Fish and Wildlife Service, Libby, MT)

2003-10-01T23:59:59.000Z

4

Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3  

SciTech Connect (OSTI)

The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes in the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant effect (p<0.0001) on invertebrate abundance, biomass, and richness at sites KR-9 and KR-9.1 combined (the zone of maximum biological response). Richness, a valuable ecological metric, increased more than abundance and biomass, which were subject to greater sampling bias. Cascading trophic interactions were observed as increased algal accrual, increased in-river invertebrate abundance, and increased invertebrate counts in mountain whitefish (Prosopium williamsonii) guts samples, but were not quantitatively tested. Sampling and analyses across trophic levels are currently ongoing and are expected to better characterize ecological responses to experimental nutrient addition in the Kootenai River.

Holderman, Charlie [Kootenai Tribe of Idaho Bonners

2009-02-19T23:59:59.000Z

5

Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.  

SciTech Connect (OSTI)

The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and stream table education--at every opportunity. We continue to seek ideas to guide us as we grow. We want to enlarge that sense of ownership that the river does indeed run through it, and belongs to us all. Through a continued and common effort, we hope to carry forward the good work and the momentum that underscores our intent. We are proud to report our accomplishments of this past year because they reflect our renewed sense of purpose. In alliance with diverse citizen groups, individuals, business, industry and tribal and government water resource management agencies, we strive to continue to protect and restore the beauty and integrity that is the Kootenai River watershed.

Kruse, Gretchen (Kootenai River Network, Libby, MT)

2002-07-01T23:59:59.000Z

6

EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County, Idaho  

Broader source: Energy.gov [DOE]

Draft EA: Public Comment Period Ends 03/05/2015Bonneville Power Administration (BPA) is preparing an EA to assess the potential environmental impacts of funding the Kootenai Tribe of Idaho to restore portions of the Kootenai River near the town of Bonners Ferry, Idaho. The proposed project involves installing structures on the river banks, excavating areas in the river to create deeper pools, and developing and enhancing islands that would be planted with native vegetation.

7

EA-1901: Kootenai River White Sturgeon and Burbot Hatcheries Project, Bonners Ferry, Boundary County, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal for DOE’s Bonneville Power Administration to support the Kootenai Tribe of Idaho’s construction of a new hatchery on property owned by the Tribe at the confluence of the Moyie and Kootenai Rivers, approximately eight miles upstream from Bonners Ferry, Idaho. The proposed location of the new hatchery facility is currently the site of the Twin Rivers Canyon Resort.

8

Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.  

SciTech Connect (OSTI)

This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo [Idaho Department of Fish and Game

2009-04-09T23:59:59.000Z

9

Pecos River Ecosystem Monitoring Project  

E-Print Network [OSTI]

TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

McDonald, A.; Hart, C.

2004-01-01T23:59:59.000Z

10

Kootenai Tribe of Idaho Fi h d Wildlif PFish and Wildlife Program  

E-Print Network [OSTI]

and Burbot) Kootenai River Operation Mitigation & Evaluation Building on Success · All Tribal projects objectives, and to guide and refine future project design and implementation Monitoring Corrective Evaluation Meets objectives Does not meet objectives Corrective action #12;4/11/2013 5 Integrated Ecosystem Based

11

The Pecos River Ecosystem Project Progress Report  

E-Print Network [OSTI]

to administer the project. Phase one of the project began in October 1999. During the initial meetings to begin planning the process of saltcedar removal, several major concerns emerged. First, the treatment method selected should provide a high rate...SR- 2004-01 The Pecos River Ecosystem Project Progress Report C. Hart Texas Water Resources Institute Texas A&M University 1 2003 The Pecos River Ecosystem Project...

Hart, C.

12

Linking ecosystem services, rehabilitation, and river hydrogeomorphology  

E-Print Network [OSTI]

of all services for all FPZs combined. Table 1 includes only 5 of the 14 to 15 variables used to delineate FPZs in our river-typing methods, but these are sufficient to illustrate why ecosystem services should vary among FPZs. The first three.... Ecological Applications 13: 1762–1772. Loomis J, Kent P, Strange L, Fausch K, Covich A. 2000. Measuring the total economic value of restoring ecosystem services in an impaired river basin: Results from contingent valuation survey. Ecological Economics 33: 103...

Thorp, James H.

2010-01-01T23:59:59.000Z

13

Fisher Research and the Kings River Sustainable Forest Ecosystems Project  

E-Print Network [OSTI]

of the Sierra National Forest, Fresno County, California, with fieldwork beginning in 1994 (Verner and Figure 1--The Kings River administrative study area in the Sierra National Forest in central California includesFisher Research and the Kings River Sustainable Forest Ecosystems Project: Current Results

Standiford, Richard B.

14

Green River Lake and Dam interim plan benefits ecosystem By John Hickey  

E-Print Network [OSTI]

11 Green River Lake and Dam interim plan benefits ecosystem By John Hickey Hydrologic Engineering that water is released from Green River Dam in Kentucky. In May 2006, the interim plan was approved shown that operation of Green River Dam can be changed in ways that improve ecosystems while continuing

US Army Corps of Engineers

15

Kootenai River Habitat Restoration Project 200200200  

E-Print Network [OSTI]

.98 maf 600 MW Capacity (5 units) Max powerhouse discharge 25 kcfs Ave annual discharge 11.3 kcfs 238 MWa

16

Kootenai River Native Fish Conservation Aquaculture Master  

E-Print Network [OSTI]

) · Continue small scale extensive rearing experiments in local ponds · Monitor experimental releases imprinting with upstream rearing site ­ spread the risk · Implement critical upgrades to existing facility

17

Proceedings of the Columbia River Estuary Conference on Ecosystem Restoration.  

SciTech Connect (OSTI)

The 2008 Columbia River Estuary Conference was held at the Liberty Theater in Astoria, Oregon, on April 19-20. The conference theme was ecosystem restoration. The purpose of the conference was to exchange data and information among researchers, policy-makers, and the public, i.e., interrelate science with management. Conference organizers invited presentations synthesizing material on Restoration Planning and Implementation (Session 1), Research to Reduce Restoration Uncertainties (Session 2), Wetlands and Flood Management (Session 3), Action Effectiveness Monitoring (Session 4), and Management Perspectives (Session 5). A series of three plenary talks opened the conference. Facilitated speaker and audience discussion periods were held at the end of each session. Contributed posters conveyed additional data and information. These proceedings include abstracts and notes documenting questions from the audience and clarifying answers from the presenter for each talk. The proceedings also document key points from the discussion periods at the end of each session. The conference program is outlined in the agenda section. Speaker biographies are presented in Appendix A. Poster titles and authors are listed in Appendix B. A list of conference attendees is contained in Appendix C.

U.S. Bonneville Power Administration

2008-08-01T23:59:59.000Z

18

Kootenai Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida:Kenyon MunicipalKineticSmartKootenai

19

Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River Basins of North-Central  

E-Print Network [OSTI]

................................................................................................... 37 Appendix C. Ecosystem Service Valuation Studies Focused on North Florida1 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee and Santa Fe River: Mark Long) #12;2 Economic Contributions and Ecosystem Services of Springs in the Lower Suwannee

Florida, University of

20

Evaluation of Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2010  

SciTech Connect (OSTI)

This is the seventh and final annual report of a project (2004–2010) addressing evaluation of the cumulative effects of habitat restoration actions in the 235-km-long lower Columbia River and estuary. The project, called the Cumulative Effects (CE) study, was conducted for the U.S. Army Corps of Engineers Portland District by a collaboration of research agencies led by the Pacific Northwest National Laboratory. We achieved the primary goal of the CE study to develop a methodology to evaluate the cumulative effects of habitat actions in the Columbia Estuary Ecosystem Restoration Program. We delivered 1) standard monitoring protocols and methods to prioritize monitoring activities; 2) the theoretical and empirical basis for a CE methodology using levels-of-evidence; 3) evaluations of cumulative effects using ecological relationships, geo-referenced data, hydrodynamic modeling, and meta-analyses; and 4) an adaptive management process to coordinate and coalesce restoration efforts in the LCRE. A solid foundation has been laid for future comprehensive evaluations of progress made by the Columbia Estuary Ecosystem Restoration Program to understand, conserve, and restore ecosystems in the lower Columbia River and estuary.

Johnson, Gary E.; Diefenderfer, Heida L.; Thom, Ronald M.; Roegner, G. Curtis; Ebberts, Blaine D.; Skalski, John R.; Borde, Amy B.; Dawley, Earl; Coleman, Andre M.; Woodruff, Dana L.; Breithaupt, Stephen A.; Cameron, April; Corbett, C.; Donley, Erin E.; Jay, D. A.; Ke, Yinghai; Leffler, K.; McNeil, C.; Studebaker, Cindy; Tagestad, Jerry D.

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Kootenai Tribe of Idaho Fish and Wildlife Dept.  

E-Print Network [OSTI]

by defining the problem, understanding ecological functions and processes, identifying restoration processes that were historically supported by nutrients supplied by the natural flood pulse of the Kootenai), and evaluation of new opportunities and incentives to create long-term, sustainable floodplain restoration

22

The effects of PAT on the Savannah River ecosystem, particularly fisheries  

SciTech Connect (OSTI)

The main purpose of this study was to determine whether or not the pre-startup activities at K-Reactor, i.e., Power Ascension Testing (PAT), have caused damage because of temperature rises in the Savannah River. Therefore, the biological studies were mainly aimed at providing information as to changes that might cause the damage of the fish population, and to other important organisms in the ecosystem. To determine if deleterious effects had occurred, one had to review the past studies to determine the condition and diversity of aquatic life before these PAT studies started. Therefore old reports were reviewed and a current study made in 1992.

Patrick, R.

1994-03-01T23:59:59.000Z

23

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2004  

SciTech Connect (OSTI)

The restoration of wetland salmon habitat in the tidal portion of the Columbia River is occurring at an accelerating pace and is anticipated to improve habitat quality and effect hydrological reconnection between existing and restored habitats. Currently multiple groups are applying a variety of restoration strategies in an attempt to emulate historic estuarine processes. However, the region lacks both a standardized means of evaluating the effectiveness of individual projects as well as methods for determining the cumulative effects of all restoration projects on a regional scale. This project is working to establish a framework to evaluate individual and cumulative ecosystem responses to restoration activities in order to validate the effectiveness of habitat restoration activities designed to benefit salmon through improvements to habitat quality and habitat opportunity (i.e. access) in the Columbia River from Bonneville Dam to the ocean. The review and synthesis of approaches to measure the cumulative effects of multiple restoration projects focused on defining methods and metrics of relevance to the CRE, and, in particular, juvenile salmon use of this system. An extensive literature review found no previous study assessing the cumulative effects of multiple restoration projects on the fundamental processes and functions of a large estuarine system, although studies are underway in other large land-margin ecosystems including the Florida Everglades and the Louisiana coastal wetlands. Literature from a variety of scientific disciplines was consulted to identify the ways that effects can accumulate (e.g., delayed effects, cross-boundary effects, compounding effects, indirect effects, triggers and thresholds) as well as standard and innovative tools and methods utilized in cumulative effects analyses: conceptual models, matrices, checklists, modeling, trends analysis, geographic information systems, carrying capacity analysis, and ecosystem analysis. Potential indicators for detecting a signal in the estuarine system resulting from the multiple projects were also reviewed, i.e. organic matter production, nutrient cycling, sedimentation, food webs, biodiversity, salmon habitat usage, habitat opportunity, and allometry. In subsequent work, this information will be used to calculate the over net effect on the ecosystem. To evaluate the effectiveness of habitat restoration actions in the lower Columbia River and estuary, a priority of this study has been to develop a set of minimum ecosystem monitoring protocols based on metrics important for the CRE. The metrics include a suite of physical measurements designed to evaluate changes in hydrological and topographic features, as well as biological metrics that will quantify vegetation and fish community structure. These basic measurements, intended to be conducted at all restoration sites in the CRE, will be used to (1) evaluate the effectiveness of various restoration procedures on target metrics, and (2) provide the data to determine the cumulative effects of many restoration projects on the overall system. A protocol manual is being developed for managers, professional researchers, and informed volunteers, and is intended to be a practical technical guide for the design and implementation of monitoring for the effects of restoration activities. The guidelines are intended to standardize the collection of data critical for analyzing the anticipated ecological change resulting from restoration treatments. Field studies in 2005 are planned to initiate the testing and evaluation of these monitoring metrics and protocols and initiate the evaluation of higher order metrics for cumulative effects.

Diefenderfer, Heida L.; Roegner, Curtis; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Johnson, Gary E.; Sobocinski, Kathryn L.; Anderson, Michael G.; Ebberts, Blaine

2005-12-15T23:59:59.000Z

24

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2007  

SciTech Connect (OSTI)

The goal of this multi-year study (2004-2010) is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the lower Columbia River and estuary. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. Field research in 2005, 2006, and 2007 involved intensive, comparative studies paired by habitat type (tidal swamp vs. marsh), trajectory (restoration vs. reference site), and restoration action (tide gate vs. culvert vs. dike breach). The field work established two kinds of monitoring indicators for eventual cumulative effects analysis: core and higher-order indicators. Management implications of limitations and applications of site-specific effectiveness monitoring and cumulative effects analysis were identified.

Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Russell, Micah; Skalski, John R.; Thom, Ronald M.; Vavrinec, John

2008-10-01T23:59:59.000Z

25

EA-1973: Kootenai River Restoration at Bonners Ferry, Boundary County,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935: FinalDraftDraftBOregonPinal County,2:Idaho

26

Lower Columbia River and Estuary Ecosystem Restoration Program Reference Site Study: 2011 Restoration Analysis - FINAL REPORT  

SciTech Connect (OSTI)

The Reference Site (RS) study is part of the research, monitoring, and evaluation (RME) effort developed by the Action Agencies (Bonneville Power Administration [BPA], U.S. Army Corps of Engineers, Portland District [USACE], and U.S. Bureau of Reclamation) in response to Federal Columbia River Power System (FCRPS) Biological Opinions (BiOp). While the RS study was initiated in 2007, data have been collected at relatively undisturbed reference wetland sites in the LCRE by PNNL and collaborators since 2005. These data on habitat structural metrics were previously summarized to provide baseline characterization of 51 wetlands throughout the estuarine and tidal freshwater portions of the 235-km LCRE; however, further analysis of these data has been limited. Therefore, in 2011, we conducted additional analyses of existing field data previously collected for the Columbia Estuary Ecosystem Restoration Program (CEERP) - including data collected by PNNL and others - to help inform the multi-agency restoration planning and ecosystem management work underway in the LCRE.

Borde, Amy B.; Cullinan, Valerie I.; Diefenderfer, Heida L.; Thom, Ronald M.; Kaufmann, Ronald M.; Zimmerman, Shon A.; Sagar, Jina; Buenau, Kate E.; Corbett, C.

2012-05-31T23:59:59.000Z

27

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2009  

SciTech Connect (OSTI)

This is the sixth annual report of a seven-year project (2004 through 2010) to evaluate the cumulative effects of habitat restoration actions in the lower Columbia River and estuary (LCRE). The project, called the Cumulative Effects Study, is being conducted for the U.S. Army Corps of Engineers Portland District (USACE) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL), the Pt. Adams Biological Field Station of the National Marine Fisheries Service (NMFS), the Columbia River Estuary Study Taskforce (CREST), and the University of Washington. The goal of the Cumulative Effects Study is to develop a methodology to evaluate the cumulative effects of multiple habitat restoration projects intended to benefit ecosystems supporting juvenile salmonids in the 235-km-long LCRE. Literature review in 2004 revealed no existing methods for such an evaluation and suggested that cumulative effects could be additive or synergistic. From 2005 through 2009, annual field research involved intensive, comparative studies paired by habitat type (tidal swamp versus marsh), trajectory (restoration versus reference site), and restoration action (tidegate replacement vs. culvert replacement vs. dike breach).

Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Bryson, Amanda J.; Cameron, April; Coleman, Andre M.; Corbett, C.; Dawley, Earl M.; Ebberts, Blaine D.; Kauffman, Ronald; Roegner, G. Curtis; Russell, Micah T.; Silva, April; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Woodruff, Dana L.; Zimmerman, Shon A.

2010-10-26T23:59:59.000Z

28

EA-2003: Sandy River Delta Section 536 Ecosystem Restoration Project, Multnomah County, Oregon  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers, with DOE’s Bonneville Power Administration as a cooperating agency, prepared an EA that assessed the potential environmental impacts of the proposed removal of a dam from the east channel of the Sandy River. The proposal would help fulfill a portion of the 2010-2013 Federal Columbia River Power System Biological Opinion Implementation Plan to improve estuary habitat for salmon and steelhead species listed under the Endangered Species Act.

29

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic ecosystem sustainability?  

E-Print Network [OSTI]

Emerging contaminants in wastewater and river water: Risks for human water security and aquatic and Environmental Science (BRGM), Orléans, France ; 2 National Research Institute for Rural Engineering, Water systems. Since degradation rates in conventional sewage treatment plants (STP) are rather low, ECs enter

Paris-Sud XI, Université de

30

A Levels-of-Evidence Approach for Assessing Cumulative Ecosystem Response to Estuary and River Restoration Programs  

SciTech Connect (OSTI)

Even though large-scale ecological restoration programs are beginning to supplement isolated projects implemented on rivers and tidal waterways, the effects of restoration success often continue to be evaluated at project scales or by integration in an additive manner. Today our scientific understanding is sufficient that we can begin to apply lessons learnt from assessing cumulative impacts of anthropogenic stressors on ecosystems to the assessment of ecological restoration. Integration of this knowledge has the potential to increase the efficacy of restoration projects conducted at several locations but co-managed within the confines of a larger integrative program. We introduce here a framework based on a levels-of-evidence approach that facilitates assessment of the cumulative landscape effects of individual restoration actions taken at many different locations. It incorporates data collection at restoration and reference sites, hydrodynamic modeling, geographic information systems, and meta-analyses in a five-stage process: design, data, analysis, synthesis and evaluation, and application. This framework evolved from the need to evaluate the efficacy of restoration projects designed to increase rearing habitat for outmigrating juvenile salmonids, which are being implemented in numerous wetlands on the 235-km tidal portion of the Columbia River, U.S.A.

Diefenderfer, Heida L.; Thom, Ronald M.; Johnson, Gary E.; Skalski, J. R.; Vogt, Kristiina A.; Ebberts, Blaine D.; Roegner, G. Curtis; Dawley, Earl

2011-03-01T23:59:59.000Z

31

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2006  

SciTech Connect (OSTI)

This report is the third annual report of a six-year project to evaluate the cumulative effects of habitat restoration action in the Columbia River Estuary (CRE). The project is being conducted for the U.S. Army Corps of Engineers (Corps) by the Marine Sciences Laboratory of the Pacific Northwest National Laboratory, the Pt. Adams Biological Field Station of the National Marine Fisheries Service, and the Columbia River Estuary Study Taskforce. Measurement of the cumulative effects of ecological restoration projects in the Columbia River estuary is a formidable task because of the size and complexity of the estuarine landscape and the meta-populations of salmonids in the Columbia River basin. Despite the challenges presented by this system, developing and implementing appropriate indicators and methods to measure cumulative effects is the best way to enable estuary managers to track the overall effectiveness of investments in estuarine restoration projects. This project is developing methods to quantify the cumulative effects of multiple restoration activities in the CRE. The overall objectives of the 2006 study were to continue to develop techniques to assess cumulative effects, refine the standard monitoring protocols, and initiate development of an adaptive management system for Corps of Engineers’ habitat restoration monitoring efforts in the CRE. (The adaptive management effort will be reported at a later date.) Field studies during 2006 were conducted in tidal freshwater at Kandoll Farm on the lower Grays River and tidal brackish water at Vera Slough on Youngs Bay. Within each of area, we sampled one natural reference site and one restoration site. We addressed the overall objectives with field work in 2006 that, coupled with previous field data, had specific objectives and resulted in some important findings that are summarized here by chapter in this report. Each chapter of the report contains data on particular monitored variables for pre- and post-restoration conditions at both the Kandoll and Vera study areas.

Johnson, Gary E.; Borde, Amy B.; Dawley, Earl; Diefenderfer, Heida L.; Ebberts, Blaine D.; Putman, Douglas A.; Roegner, G. C.; Thom, Ronald M.; Vavrinec, John; Whiting, Allan H.

2007-12-06T23:59:59.000Z

32

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Columbia River Estuary, Annual Report 2005  

SciTech Connect (OSTI)

This report is the second annual report of a six-year project to evaluate the cumulative effects of habitat restoration projects in the Columbia River Estuary, conducted by Pacific Northwest National Laboratory's Marine Sciences Laboratory, NOAA's National Marine Fisheries Service Pt. Adams Biological Field Station, and the Columbia River Estuary Study Taskforce for the US Army Corps of Engineers. In 2005, baseline data were collected on two restoration sites and two associated reference sites in the Columbia River estuary. The sites represent two habitat types of the estuary--brackish marsh and freshwater swamp--that have sustained substantial losses in area and that may play important roles for salmonids. Baseline data collected included vegetation and elevation surveys, above and below-ground biomass, water depth and temperature, nutrient flux, fish species composition, and channel geometry. Following baseline data collection, three kinds of restoration actions for hydrological reconnection were implemented in several locations on the sites: tidegate replacements (2) at Vera Slough, near the city of Astoria in Oregon State, and culvert replacements (2) and dike breaches (3) at Kandoll Farm in the Grays River watershed in Washington State. Limited post-restoration data were collected: photo points, nutrient flux, water depth and temperature, and channel cross-sections. In subsequent work, this and additional post-restoration data will be used in conjunction with data from other sites to estimate net effects of hydrological reconnection restoration projects throughout the estuary. This project is establishing methods for evaluating the effectiveness of individual projects and a framework for assessing estuary-wide cumulative effects including a protocol manual for monitoring restoration and reference sites.

Diefenderfer, Heida L.; Thom, Ronald M.; Borde, Amy B.; Roegner, G. C.; Whiting, Allan H.; Johnson, Gary E.; Dawley, Earl; Skalski, John R.; Vavrinec, John; Ebberts, Blaine D.

2006-12-20T23:59:59.000Z

33

Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River Site  

SciTech Connect (OSTI)

As a result of operations at the Savannah River Site (SRS), over 50 radionuclides have been released to the atmosphere and to onsite streams and seepage basins. Now, many of these radionuclides are available to aquatic and/or terrestrial organisms for uptake and cycling through the food chain. Knowledge about the uptake and cycling of these radionuclides is now crucial in evaluating waste management and clean-up alternatives for the site. Numerous studies have been conducted at the SRS over the past forty years to study the uptake and distribution of radionuclides in the Savannah River Site environment. In many instances, bioconcentration factors have been calculated to quantify the uptake of a radionuclide by an organism from the surrounding medium (i.e., soil or water). In the past, it has been common practice to use bioconcentration factors from the literature because site-specific data were not readily available. However, because of the variability of bioconcentration factors due to experimental or environmental conditions, site-specific data should be used when available. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at the Savannah River Site (SRS). An extensive literature search yielded site-specific bioconcentration factors for cesium, strontium, cobalt, plutonium, americium, curium, and tritium. These eight radionuclides have been the primary radionuclides studied at SRS because of their long half lives or because they are major contributors to radiological dose from exposure. For most radionuclides, it was determined that the site-specific bioconcentration factors were higher than those reported in literature. This report also summarizes some conditions that affect radionuclide bioavailability to and bioconcentration by aquatic and terrestrial organisms.

Cummins, C.L.

1994-09-01T23:59:59.000Z

34

Radiological bioconcentration factors for aquatic, terrestrial, and wetland ecosystems at the Savannah River site  

SciTech Connect (OSTI)

Since the early 1950s, the Savannah River Site (SRS) released over 50 radionuclides into the environment while producing nuclear defense materials. These releases directly exposed aquatic and terrestrial biota to ionizing radiation from surface water, soil, and sediment, and also indirectly by the ingestion of items in the food chain. As part of new missions to develop waste management strategies and identify cost-effective environmental restoration options, knowledge concerning the uptake and distribution of these radionuclides is essential. This report compiles and summarizes site-specific bioconcentration factors for selected radionuclides released at SRS.

Friday, G.P.; Cummins, C.L.; Schwartzman, A.L.

1996-12-31T23:59:59.000Z

35

Proceedings of the Columbia River Estuary Conference on Ecosystem Restoration, April 29-30, 2008, Astoria, Oregon.  

SciTech Connect (OSTI)

The 2008 Columbia River Estuary Conference was held at the Liberty Theater in Astoria, Oregon, on April 19-20. The conference theme was ecosystem restoration. The purpose of the conference was to exchange data and information among researchers, policy-makers, and the public, i.e., interrelate science with management. Conference organizers invited presentations synthesizing material on Restoration Planning and Implementation (Session 1), Research to Reduce Restoration Uncertainties (Session 2), Wetlands and Flood Management (Session 3), Action Effectiveness Monitoring (Session 4), and Management Perspectives (Session 5). A series of three plenary talks opened the conference. Facilitated speaker and audience discussion periods were held at the end of each session. Contributed posters conveyed additional data and information. These proceedings include abstracts and notes documenting questions from the audience and clarifying answers from the presenter for each talk. The proceedings also document key points from the discussion periods at the end of each session. The conference program is outlined in the agenda section. Speaker biographies are presented in Appendix A. Poster titles and authors are listed in Appendix B. A list of conference attendees is contained in Appendix C. A compact disk, attached to the back cover, contains material in hypertext-markup-language from the conference website (http://cerc.labworks.org/) and the individual presentations.

Johnson, Gary E. [Pacific Northwest National Laboratory; Sutherland, G. Bruce [Oregon Department of Environmental Quality (retired)

2008-09-29T23:59:59.000Z

36

Negotiating river ecosystems: Impact assessment and conflict mediation in the cases of hydro-power construction  

SciTech Connect (OSTI)

In this paper we discuss how the legitimacy of the impact assessment process is a key issue in conflict mediation in environmental impact assessment. We contrast two EIA cases in hydro-power generation plans made for the Ii River, Finland in different decades, and evaluate how impact assessment in these cases has contributed to the creation, mediation and resolution of conflicts. We focus on the elements of distributional and procedural justice that made the former EIA process more legitimate and consensual and the latter more conflictual. The results indicate that it is crucial for conflict mediation to include all the values and interests of the parties in the goal-setting process and in the definition and assessment of alternatives. The analysis also indicates that procedural justice is the most important to help the people and groups involved to accept the legitimacy of the impact assessment process: how different parties and their values and interests are recognized, and how participation and distribution of power are organized in an impact assessment process. It is confirmed in this article that SIA may act as a mediator or a forum providing a process through which competing knowledge claims, various values and interests can be discussed and linked to the proposed alternatives and interventions.

Karjalainen, Timo P., E-mail: timopauli.karjalainen@oulu.f [Thule Institute, University of Oulu, P.O. Box 7300, FI-90014 University of Oulu (Finland); Jaervikoski, Timo, E-mail: timo.jarvikoski@oulu.f [Unit of Sociology, University of Oulu, P.O. Box 2000, FI-90014 University of Oulu (Finland)

2010-09-15T23:59:59.000Z

37

An Evidence-Based Evaluation of the Cumulative Effects of Tidal Freshwater and Estuarine Ecosystem Restoration on Endangered Juvenile Salmon in the Columbia River: Final Report  

SciTech Connect (OSTI)

The listing of 13 salmon and steelhead stocks in the Columbia River basin (hereafter collectively referred to as “salmon”) under the Endangered Species Act of 1973, as amended, has stimulated tidal wetland restoration in the lower 235 kilometers of the Columbia River and estuary for juvenile salmon habitat functions. The purpose of the research reported herein was to evaluate the effect on listed salmon of the restoration effort currently being conducted under the auspices of the federal Columbia Estuary Ecosystem Restoration Program (CEERP). Linking changes in the quality and landscape pattern of tidal wetlands in the lower Columbia River and estuary (LCRE) to salmon recovery is a complex problem because of the characteristics of the ecosystem, the salmon, the restoration actions, and available sampling technologies. Therefore, we designed an evidence-based approach to develop, synthesize, and evaluate information to determine early-stage (~10 years) outcomes of the CEERP. We developed an ecosystem conceptual model and from that, a primary hypothesis that habitat restoration activities in the LCRE have a cumulative beneficial effect on juvenile salmon. There are two necessary conditions of the hypothesis: • habitat-based indicators of ecosystem controlling factors, processes, and structures show positive effects from restoration actions, and • fish-based indicators of ecosystem processes and functions show positive effects from restoration actions and habitats undergoing restoration. Our evidence-based approach to evaluate the primary hypothesis incorporated seven lines of evidence, most of which are drawn from the LCRE. The lines of evidence are spatial and temporal synergies, cumulative net ecosystem improvement, estuary-wide meta-analysis, offsite benefits to juvenile salmon, landscape condition evaluation, and evidence-based scoring of global literature. The general methods we used to develop information for the lines of evidence included field measurements, data analyses, modeling, meta-analysis, and reanalysis of previously collected data sets. We identified a set of 12 ancillary hypotheses regarding habitat and salmon response. Each ancillary hypothesis states that the response metric will trend toward conditions at relatively undisturbed reference sites. We synthesized the evidence for and against the two necessary conditions by using eleven causal criteria: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, analogy, complete exposure pathway, and predictive performance. Our final evaluation included cumulative effects assessment because restoration is occurring at multiple sites and the collective effect is important to salmon recovery. We concluded that all five lines of evidence from the LCRE indicated positive habitat-based and fish-based responses to the restoration performed under the CEERP, although tide gate replacements on small sloughs were an exception. Our analyses suggested that hydrologic reconnections restore access for fish to move into a site to find prey produced there. Reconnections also restore the potential for the flux of prey from the site to the main stem river, where our data show that they are consumed by salmon. We infer that LCRE ecosystem restoration supports increased juvenile salmon growth and enhanced fitness (condition), thereby potentially improving survival rates during the early ocean stage.

Diefenderfer, Heida L.; Johnson, Gary E.; Thom, Ronald M.; Borde, Amy B.; Woodley, Christa M.; Weitkamp, Laurie A.; Buenau, Kate E.; Kropp, Roy K.

2013-12-01T23:59:59.000Z

38

Using Conceptual Models in Ecosystem Restoration Decision Making: An Example from the Sacramento-San Joaquin River Delta, California  

E-Print Network [OSTI]

frequency and duration of Yolo Bypass flooding to at leastRiver to pass through the Yolo Bypass. The increase inthe proposed action. For the Yolo Bypass example, three

2012-01-01T23:59:59.000Z

39

SUSTAINABLE RESERVOIR OPERATION: CAN WE GENERATE HYDROPOWER AND PRESERVE ECOSYSTEM VALUES?y  

E-Print Network [OSTI]

and to quantify these relationships, (2) develop valuation methods to assess the total value of river health operation; hydropower; sustainability; riverine ecosystems; ecological valuation; natural flow regime, influence the health of the downstream ecosystem. Healthy riverine ecosystems provide ecosystem services

Jager, Henriette I.

40

PERSPECTIVE Restoration of Ecosystem Services for  

E-Print Network [OSTI]

, are not pro- viding all the services of healthy ecosystems (6, 7). Stream and river restoration projectsPERSPECTIVE Restoration of Ecosystem Services for Environmental Markets Margaret A. Palmer1,2 * and Solange Filoso1 Ecological restoration is an activity that ideally results in the return of an ecosystem

Palmer, Margaret A.

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

E-Print Network 3.0 - aquatic ecosystems endocrine Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Geosciences 3 Executive Summary HEALTH OF THE FRASER RIVER AQUATIC ECOSYSTEM The purpose of the Fraser River Action Plan (FRAP) was to restore the environmental...

42

INTERIM RESULTS FROM A STUDY OF THE IMPACTS OF TIN(II) BASED MERCURY TREATMENT IN A SMALL STREAM ECOSYSTEM: TIMS BRANCH, SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Mercury (Hg) has been identified as a 'persistent, bioaccumulative and toxic' pollutant with widespread impacts throughout North America and the world (EPA. 1997a, 1997b, 1998a, 1998b, 2000). Although most of the mercury in the environment is inorganic Hg, a small proportion of total Hg is transformed through the actions of aquatic microbes into methylmercury (MeHg). In contrast to virtually all other metals, MeHg biomagnifies or becomes increasingly concentrated as it is transferred through aquatic food chains so that the consumption of mercury contaminated fish is the primary route of this toxin to humans. For this reason, the ambient water quality criterion (AWQC) for mercury is based on a fish tissue endpoint rather than an aqueous Hg concentration, as the tissue concentration (e.g., < 0.3 {mu}g/g fillet) is considered to be a more consistent indicator of exposure and risk (EPA, 2001). Effective mercury remediation at point-source contaminated sites requires an understanding of the nature and magnitude of mercury inputs, and also knowledge of how these inputs must be controlled in order to achieve the desired reduction of mercury contamination in biota necessary for compliance with AWQC targets. One of the challenges to remediation is that mercury body burdens in fish are more closely linked to aqueous MeHg than to inorganic Hg concentrations (Sveinsdottir and Mason 2005), but MeHg production is not easily predicted or controlled. At point-source contaminated sites, mercury methylation is not only affected by the absolute mercury load, but also by the form of mercury loaded. In addition, once MeHg is formed, the hydrology, trophic structure, and water chemistry of a given system affect how it is transformed and transferred through the food chain to fish. Decreasing inorganic Hg concentrations and loading may often therefore be a more achievable remediation goal, but has led to mixed results in terms of responses in fish bioaccumulation. A number of source control measures have resulted in rapid responses in lake or reservoir fisheries (Joslin 1994, Turner and Southworth 1999; Orihel et al., 2007), but examples of similar responses in Hg-contaminated stream ecosystems are less common. Recent work suggests that stream systems may actually be more susceptible to mercury bioaccumulation than lakes, highlighting the need to better understand the ecological drivers of mercury bioaccumulation in stream-dwelling fish (Chasar et al. 2009, Ward et al. 2010). In the present study we examine the response of fish to remedial actions in Tims Branch, a point-source contaminated stream on the Department of Energy's (DOE) Savannah River Site in Aiken, South Carolina. This second order stream received inorganic mercury inputs at its headwaters from the 1950s-2000s which contaminated the water, sediments, and biota downstream. In 2007, an innovative mercury removal system using tin (II) chloride (stannous chloride, SnCl{sub 2}) was implemented at a pre-existing air stripper. Tin(II) reduces dissolved Hg (II) to Hg (0), which is removed by the air stripper. During this process, tin(II) is oxidized to tin (IV) which is expected to precipitate as colloidal tin(IV) oxides and hydroxides, particulate materials with relatively low toxicity (Hallas and Cooney, 1981, EPA 2002, ATSDR, 2005). The objectives of the present research are to provide an initial assessment of the net impacts of the tin(II) based mercury treatment on key biota and to document the distribution and fate of inorganic tin in this small stream ecosystem after the first several years of operating a full scale system. To support these objectives, we collected fish, sediment, water, invertebrates, and biofilm samples from Tims Branch to quantify the general behavior and accumulation patterns for mercury and tin in the ecosystem and to determine if the treatment process has resulted in: (1) a measurable beneficial impact on (i.e., decrease of) mercury concentration in upper trophic level fish and other biota; this is a key environmental endpoint since reducing mercury concen

Looney, B.; Bryan, L.; Mathews, T.

2012-03-30T23:59:59.000Z

43

Project ID: 35062 ~ Impacts of Flow Regulation on Riparian Cottonwood Ecosystems in the Columbia River Basin ~ Response to ISRP/RME Proposal Review Comments  

E-Print Network [OSTI]

, Synder et al. 2002). The shifting habitat mosaic is controlled by the coupled relationship between flowProject ID: 35062 ~ Impacts of Flow Regulation on Riparian Cottonwood Ecosystems in the Columbia. 1. The ISRP cited a need to "provide better evidence of the linkages of changes in flow regimes

44

Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.  

SciTech Connect (OSTI)

This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

Columbia River System Operation Review (U.S.)

1995-11-01T23:59:59.000Z

45

Interim Results from a Study of the Impacts of Tin (II) Based Mercury Treatment in a Small Stream Ecosystem: Tims Branch, Savannah River Site  

SciTech Connect (OSTI)

A research team is assessing the impacts of an innovative mercury treatment system in Tims Branch, a small southeastern stream. The treatment system, installed in 2007, reduces and removes inorganic mercury from water using tin(II) (stannous) chloride addition followed by air stripping. The system results in discharge of inorganic tin to the ecosystem. This screening study is based on historical information combined with measurements of contaminant concentrations in water, fish, sediment, biofilms and invertebrates. Initial mercury data indicate that first few years of mercury treatment resulted in a significant decrease in mercury concentration in an upper trophic level fish, redfin pickerel, at all sampling locations in the impacted reach. For example, the whole body mercury concentration in redfin pickerel collected from the most impacted pond decreased approximately 72% between 2006 (pre-treatment) and 2010 (post-treatment). Over this same period, mercury concentrations in the fillet of redfin pickerel in this pond were estimated to have decreased from approximately 1.45 {micro}g/g (wet weight basis) to 0.45 {micro}g/g - a decrease from 4.8x to 1.5x the current EPA guideline concentration for mercury in fillet (0.3 {micro}g/g). Thermodynamic modeling, scanning electron microscopy, and other sampling data for tin suggest that particulate tin (IV) oxides are a significant geochemical species entering the ecosystem with elevated levels of tin measured in surficial sediments and biofilms. Detectable increases in tin in sediments and biofilms extended approximately 3km from the discharge location. Tin oxides are recalcitrant solids that are relatively non-toxic and resistant to dissolution. Work continues to develop and validate methods to analyze total tin in the collected biota samples. In general, the interim results of this screening study suggest that the treatment process has performed as predicted and that the concentration of mercury in upper trophic level fish, as a surrogate for all of the underlying transport and transformation processes in a complex ecosystem, has declined as a direct result of the elimination of inorganic mercury inputs. Inorganic tin released to the ecosystem has been found in compartments where particles accumulate with notable levels measured in biofilms.

Looney, Brian [Savannah River National Laboratory (SRNL); BryanJr., Larry [Savannah River Ecology Laboratory; Mathews, Teresa J [ORNL; Peterson, Mark J [ORNL; Roy, W Kelly [ORNL; Jett, Robert T [ORNL; Smith, John G [ORNL

2012-03-01T23:59:59.000Z

46

Ecosystems and Sustainable Development  

E-Print Network [OSTI]

Review: Ecosystems and Sustainable Development Editors: J.L.Ecosystems and Sustainable Development. Southhampton, UK:as well. Ecosystems and Sustainable Development is a strong

Tufford, Dan

1999-01-01T23:59:59.000Z

47

Valey-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana  

SciTech Connect (OSTI)

Subsurface data is being collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ½ of the exploration wells in the area have been incorporated into the data base. All of the four 30? X 60? geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Formal technical review prior to publication has been completed for the Billings and Bridger Quadrangles; and are underway for the Hardin and Lodge Grass Quadrangles. Field investigations were completed during the last quarter. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.

David A. Lopez

1998-04-07T23:59:59.000Z

48

Valley-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana  

SciTech Connect (OSTI)

Subsurface data continues to be collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ¾ of the exploration wells in the area have been incorporated into the data base. All of the four 30? X 60? geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Formal technical review prior to publication has been completed for all the quadrangles; Billings, Bridger; Hardin, and Lodge Grass. Final GIS edits are being made before being forwarded to the Bureau?s Publications Department. Field investigations were completed during the third quarter, 1997. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.

David A. Lopez

1998-07-03T23:59:59.000Z

49

VALLEY-FILL SANDSTONE IN THE KOOTENAI FORMATION ON THE CROW INDIAN RESERVATION, SOUTH-CENTRAL MONTANA  

SciTech Connect (OSTI)

The subsurface database has been completed for the project. An ACCESS database converted to PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from all of the exploration wells in the area have been incorporated into the data base, except for some wells that have no available logs or other information. All of the four 30 x 60 feet geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Formal technical review prior to publication has been completed for all the quandrangles; Billings, Bridger; Hardin, and Lodge Grass. All four quadrangles are in the Bureau's Publications Department being prepared for submittal to a printer. Field investigations were completed during the third quarter, 1997. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has been traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel was submitted and the paper was presented at the Williston Basin Symposium in October, 1998. A follow on proposal to conduct a soil gas geochemical survey of the reservation was approved and the contract was received in late August. The sampling will be conducted next summer and will involve Crow students.

David A. Lopez

1999-04-12T23:59:59.000Z

50

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy reve  

SciTech Connect (OSTI)

Hydroelectric power provides a cheap source of electricity with few carbon emissions. Yet, reservoirs are not operated sustainably, which we define as meeting societal needs for water and power while protecting long-term health of the river ecosystem. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue, while meeting other legal water requirements. Reservoir optimization schemes used in practice do not seek flow regimes that maximize aquatic ecosystem health. Here, we review optimization studies that considered environmental goals in one of three approaches. The first approach seeks flow regimes that maximize hydropower generation, while satisfying legal requirements, including environmental (or minimum) flows. Solutions from this approach are often used in practice to operate hydropower projects. In the second approach, flow releases from a dam are timed to meet water quality constraints on dissolved oxygen (DO), temperature and nutrients. In the third approach, flow releases are timed to improve the health of fish populations. We conclude by suggesting three steps for bringing multi-objective reservoir operation closer to the goal of ecological sustainability: (1) conduct research to identify which features of flow variation are essential for river health and to quantify these relationships, (2) develop valuation methods to assess the total value of river health and (3) develop optimal control softwares that combine water balance modelling with models that predict ecosystem responses to flow.

Jager, Yetta [ORNL; Smith, Brennan T [ORNL

2008-02-01T23:59:59.000Z

51

E-Print Network 3.0 - arizona forest ecosystem Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Forest, Arizona (Photo by P.B. Shafroth) 12;Water Resources Research Center College... Riparian Ecosystem Restoration in the Gila River Basin: Opportunities and...

52

RIVER RESEARCH AND APPLICATIONS River Res. Applic. 21: 849864 (2005)  

E-Print Network [OSTI]

to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We under future climate scenarios to describe the extent and type of changes predicted to occur. Daily

Poff, N. LeRoy

53

Woody Debris as a Resource for Aquatic Macroinvertebrates in Stream and River Habitats of the Southeastern United States: A Review.  

SciTech Connect (OSTI)

Woody debris is a valuable resource to most stream and river ecosystems, especially for the resident aquatic macroinvertebrate fauna.

Pitt, Daniel [Department of Entomology,University of Georgia, Athens, Georgia 30602] [Department of Entomology,University of Georgia, Athens, Georgia 30602; Batzer, Darold [Department of Entomology,University of Georgia, Athens, Georgia 30602] [Department of Entomology,University of Georgia, Athens, Georgia 30602

2010-02-07T23:59:59.000Z

54

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA)  

E-Print Network [OSTI]

Upper White River Watershed Alliance Upper White River Watershed Alliance (UWRWA) P.O. Box 2065 integrity of the White River ecosystem. To successfully accomplish the vision of UWRWA, a 16-county was formed. It exists to improve and protect water quality on a watershed basis in the larger Upper White

55

Ecosystems and Sustainable Development  

E-Print Network [OSTI]

Ecosystems and Sustainable Development Editors: J.L. Uso,Ecosystems and Sustainable Development. Southhampton, UK:ISBN: 1-85312-502-4. Sustainable development research is a

Tufford, Dan

1999-01-01T23:59:59.000Z

56

River Thames River Thames  

E-Print Network [OSTI]

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

57

Evaluating Cumulative Ecosystem Evaluating Cumulative Ecosystem Response of the Columbia River Response of the Columbia River  

E-Print Network [OSTI]

StudiesHeida Diefenderfer, PNNL Modeling Ron Thom, PNNL Scaling Catherine Corbett, LCREP Meta AnalysisRoughness Index #12;#12;24Diefenderfer and Montgomery (2008) #12;25 #12;26 Accretion Rate ~2-3 cm y-1 #12;Juvenile

58

Engineering the global ecosystem  

E-Print Network [OSTI]

of humans deliberately engineering agricultural landscapes.010-0302-8 EDITORIAL Engineering the global ecosystemtale about human explorers engineering the ecosystem of Mars

Stringfellow, William T.; Jain, Ravi

2010-01-01T23:59:59.000Z

59

Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.  

SciTech Connect (OSTI)

The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

Cope, R.S.; Morris, K.J.

2001-03-01T23:59:59.000Z

60

Graduate studies Ecosystem Science  

E-Print Network [OSTI]

Graduate studies in Ecosystem Science and Management Ph.D. M.S. M.Agr. or Natural Resources Development MNRD Department of Ecosystem Science and Management College of Agriculture and Life Sciences. The thesisbased Master of Science and Ph.D. degrees are designed for research or academic careers

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Soil community composition and ecosystem processes Comparing agricultural ecosystems with natural ecosystems  

E-Print Network [OSTI]

Soil community composition and ecosystem processes Comparing agricultural ecosystems with natural, nitrogen, pesticides Abstract. Soil organisms play principal roles in several ecosystem functions, i decomposition, and acting as an environmental buffer. Agricultural soils would more closely resemble soils

Neher, Deborah A.

62

River otter foraging opportunities at a coastal wetland  

E-Print Network [OSTI]

monitored otter latrines at two wetland types (a saltwater lake and freshwater treatment ponds), 5 times perRiver otter foraging opportunities at a coastal wetland Results DiscussionIntroduction River otters (Lontra canadensis) are the top predator in functioning wetland ecosystems. Kruuk (1995) proposed

Johnson, Matthew

63

How We Got Started Sheyenne River  

E-Print Network [OSTI]

for Riparian Ecosystems · Field Tours · Rancher Meetings · Educational Materials #12;Project Collaborators Source Program #12;· The goals of this project is to improve and strengthen the ability of resource Project #12;· 6 New Riparian ESDs · MLRA 54 · Knife River · Spring Creek · MLRA 55B · Baldhill Creek

64

Prospective Climate Change Impact on Large Rivers  

E-Print Network [OSTI]

.g. long-term trends could affect hydropower, ecosystems and aquatic species...). 1917 2005 Athabasca; #12;4 Reduced Water Supply from Reservoirs Climate Change Issues in the US 1. Rainfall vs Snowmelt; 21 Prospective Climate Change Impact on Large Rivers in the US and South Korea Pierre Y. Julien Dept

Julien, Pierre Y.

65

Antarctic terrestrial ecosystems  

SciTech Connect (OSTI)

The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

Walton, D.W.H.

1987-01-01T23:59:59.000Z

66

Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation?  

E-Print Network [OSTI]

from the gas balance at night (when GPP is zero) and then GPP is calculated from Eq. 2. This gas COMMENTARY Is Net Ecosystem Production Equal to Ecosystem Carbon Accumulation? Gary M. Lovett ABSTRACT Net ecosystem production (NEP), defined as the difference between gross primary production

Berkowitz, Alan R.

67

Shelf-sea ecosystems  

SciTech Connect (OSTI)

An analysis of the food chain dynamics of the Oregon, Alaskan, and New York shelves is made with respect to differences in physical forcing of these ecosystems. The world's shelves are 10% of the area of the ocean, yield 99% of the world's fish catch, and may be a major sink in the global CO/sub 2/ budget.

Walsh, J J

1980-01-01T23:59:59.000Z

68

Simulation of Flow and Sediment Mobility Using a Multidimensional Flow Model for the White Sturgeon  

E-Print Network [OSTI]

Critical-Habitat Reach, Kootenai River near Bonners Ferry, Idaho Scientific Investigations Report 2005 with the Kootenai Tribe of Idaho and Bonneville Power Administration Scientific Investigations Report 2005-5230 U­5230 Prepared in cooperation with the Kootenai Tribe of Idaho and Bonneville Power Administration U

69

Food web architecture in natural and impounded rivers of the Upper Parana drainage basin, Brazil  

E-Print Network [OSTI]

Freshwater ecosystems are some of the most threatened on the planet. Efforts to conserve, restore, or otherwise manage large rivers and the services they provide are hindered by limited understanding of the functional dynamics of these systems...

Hoeinghaus, David Joseph

2007-04-25T23:59:59.000Z

70

Linking Water Conservation and Natural Resource Stewardship in the Trinity River Basin  

E-Print Network [OSTI]

Water conservation is a critical issue in Texas today. This publication explores the relationship between ecosystem health and land stewardship in the Trinity River Basin. It also describes how responsible land stewardship can be applied in urban...

Cathey, James; Locke, Shawn; Feldpausch, A.M.; Parker, I.D.; Frentress, C.; Whiteside, J.; Mason, C.; Wagner, M.

2007-09-04T23:59:59.000Z

71

Pennsylvania Scenic Rivers Program  

Broader source: Energy.gov [DOE]

Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

72

Applied Ecosystem Analysis - Background : EDT the Ecosystem Diagnosis and Treatment Method.  

SciTech Connect (OSTI)

This volume consists of eight separate reports. We present them as background to the Ecosystem Diagnosis and Treatment (EDT) methodology. They are a selection from publications, white papers, and presentations prepared over the past two years. Some of the papers are previously published, others are currently being prepared for publication. In the early to mid 1980`s the concern for failure of both natural and hatchery production of Columbia river salmon populations was widespread. The concept of supplementation was proposed as an alternative solution that would integrate artificial propagation with natural production. In response to the growing expectations placed upon the supplementation tool, a project called Regional Assessment of Supplementation Project (RASP) was initiated in 1990. The charge of RASP was to define supplementation and to develop guidelines for when, where and how it would be the appropriate solution to salmon enhancement in the Columbia basin. The RASP developed a definition of supplementation and a set of guidelines for planning salmon enhancement efforts which required consideration of all factors affecting salmon populations, including environmental, genetic, and ecological variables. The results of RASP led to a conclusion that salmon issues needed to be addressed in a manner that was consistent with an ecosystem approach. If the limitations and potentials of supplementation or any other management tool were to be fully understood it would have to be within the context of a broadly integrated approach - thus the Ecosystem Diagnosis and Treatment (EDT) method was born.

Mobrand, Lars E.

1996-05-01T23:59:59.000Z

73

Ecosystem Science | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as they respond to a variety of stresses, ranging from contamination to climate change to energy extraction and conversion. ORNL researcher Ken Lowe with drill rig Ecosystem...

74

Grassland diversity and ecosystem services within a Platte River agroecosystem  

E-Print Network [OSTI]

: Modified from Foley et al. 2005, Falkenmark et al. 2007. · Width of every plant (basal stem cover) touching Dornbos, Michelle Hellman, Ashley Pella. Invertebrate identification: Hank Guarisco, James Trager, Foster. Earthscan, London. Foley, J.A. et al. 2005. Glob

Nebraska-Lincoln, University of

75

Contributed Paper Effects of River Impoundment on Ecosystem Services  

E-Print Network [OSTI]

´ios Tropicales sobre los Servicios del Ecosistema: Energ´ia Virtual y Valor de Mercado de las Pesquer´ias requiere del entendimiento del efecto de los impactos ambientales sobre la ecolog´ia de especies clave o ecosistema proporcionado por r´ios tropicales (i.e., pesquer´ias artesanales). La importancia social y econ

Hoeinghaus, David J.

76

Lynnhaven River Basin Ecosystem Restoration Project Virginia Beach, Virginia  

E-Print Network [OSTI]

contains established stands of the nonnative, invasive, emergent plant (Phragmites australis). Two sites. australis would not be successful due to tidal restriction and reestablishing the full tidal range the homogeneous P. australis stands. #12;Submerged Aquatic Vegetation. Twelve sites have been selected in Broad

US Army Corps of Engineers

77

Ecosystems & Fisheries-Oceanography Coordinated Investigations  

E-Print Network [OSTI]

Ecosystems & Fisheries-Oceanography Coordinated Investigations · Healthy and productive coastal Communities Fishing Industry & Coastal Infrastructure Marine Ecosystem Original Paradigm #12;We had Consumers & Coastal Communities Fishing Industry & Coastal Infrastructure Marine Ecosystem Control

78

Ecosystem Vulnerability Assessment - Patterns of Climate Change...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ecosystem Vulnerability Assessment - Patterns of Climate Change Vulnerability in the Southwest Ecosystem Vulnerability Assessment - Patterns of Climate Change Vulnerability in the...

79

Microsoft Word - LowerJocko_Acquisition_CX_final_081310.doc  

Broader source: Energy.gov (indexed) [DOE]

Salish and Kootenai Tribes (CSKT) for purchase of the Lower Jocko River Property Fish and Wildlife Project No.: 2002-003-00, Contract BPA-44646 Categorical Exclusion...

80

EA-1973 Public Hearing  

Broader source: Energy.gov [DOE]

Comments on the Draft EA should refer to “Kootenai River Habitat Restoration at Bonners Ferry” and be submitted by March 5, 2015:

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Entrepreneurial ecosystems around the world  

E-Print Network [OSTI]

Entrepreneurship is a vehicle of growth and job creation. America has understood it and benefitted most from following this philosophy. Governments around the world need to build and grow their entrepreneurial ecosystems ...

Kumar, Anand R

2013-01-01T23:59:59.000Z

82

Red River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

83

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

84

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

85

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

86

Ecosystem Services and Trade-Offs Mediated by Urban Water Bodies for Homeless Popula@ons in Phoenix Wolf, A.1,2, M.M. Palta,2 N.B. Grimm,2 J. Gwiszcz,3 O. Schwake,4  

E-Print Network [OSTI]

Ecosystem Services and Trade-Offs Mediated by Urban Water Bodies for Homeless · Urban runoff entering stormwater ouPalls in Phoenix have created "accidental" wetlands in the otherwise dry Salt River bed · Urban wetland environments

Hall, Sharon J.

87

Wabash River Heritage Corridor (Indiana)  

Broader source: Energy.gov [DOE]

The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

88

Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)  

SciTech Connect (OSTI)

In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

Matthews, R. A.

1982-04-01T23:59:59.000Z

89

Ecotoxicology of tropical marine ecosystems  

SciTech Connect (OSTI)

The negative effects of chemical contaminants on tropical marine ecosystems are of increasing concern as human populations expand adjacent to these communities. Watershed streams and ground water carry a variety of chemicals from agricultural, industrial, and domestic activities, while winds and currents transport pollutants from atmospheric and oceanic sources to these coastal ecosystems. The implications of the limited information available on impacts of chemical stressors on mangrove forests, seagrass meadows, and coral reefs are discussed in the context of ecosystem management and ecological risk assessment. Three classes of pollutants have received attention: heavy metals, petroleum, and synthetic organics. Heavy metals have been detected in all three ecosystems, causing physiological stress, reduced reproductive success, and outright mortality in associated invertebrates and fishes. Oil spills have been responsible for the destruction of entire coastal shallow-water communities, with recovery requiring years. Herbicides are particularly detrimental to mangroves and seagrasses and adversely affect the animal-algal symbioses in corals. Pesticides interfere with chemical cues responsible for key biological processes, including reproduction and recruitment of a variety of organisms. Information is lacking with regard to long-term recovery, indicator species, and biomarkers for tropical communities. Critical areas that are beginning to be addressed include the development of appropriate benchmarks for risk assessment, baseline monitoring criteria, and effective management strategies to protect tropical marine ecosystems in the face of mounting anthropogenic disturbance.

Peters, E.C. [Tetra Tech, Inc., Fairfax, VA (United States); Gassman, N.J.; Firman, J.C. [Univ. of Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Richmond, R.H. [Univ. of Guam, Mangilao (Guam). Marine Lab.; Power, E.A. [EVS Environment Consultants, Ltd., North Vancouver, British Columbia (Canada)

1997-01-01T23:59:59.000Z

90

azov coastal ecosystem: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software Ecosystems Mircea Lungua , Michele Lanzaa, research groups or even the open-source communities. We call these contexts software ecosystems of project ecosystems through...

91

RESOLVING EQUIVOCALITY IN ECOSYSTEM MANAGEMENT  

E-Print Network [OSTI]

OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the School of Resource and Environmental Management of Philosophy Title of Dissertation: Resolving Equivocality in Ecosystem Management Examining Committee: Chair. A case study approach compared information available for selecting protected areas for species-at-risk

92

Lessons from IT Ecosystems Michael Kster  

E-Print Network [OSTI]

-Transport-Systems Smart-Energy-Systems etc. Smart Airport as a smaller instance of a Smart City Michael Köster · CIG, TU and interact massively. IT Ecosystem: analogue to biological ecosystems based on the balance between and continuously evolving IT Ecosystems requires deep understanding of this balance. Michael Köster · CIG, TU

Zachmann, Gabriel

93

Fish Migration, Dams, and Loss of Ecosystem Services in the Mekong Basin  

SciTech Connect (OSTI)

The past decade has seen increased international recognition of the importance of the services provided by natural ecosystems. It is unclear however whether such international awareness will lead to improved environmental management in many regions. We explore this issue by examining the specific case of fish migration and dams on the Mekong river. We determine that dams on the Mekong mainstem and major tributaries will have a major impact on the basin's fisheries and the people who depend upon them for food and income. We find no evidence that current moves towards dam construction will stop, and consider two scenarios for the future of the fisheries and other ecosystems of the basin. We conclude that major investment is required in innovative technology to reduce the loss of ecosystem services, and alternative livelihood strategies to cope with the losses that do occur

Dugan, Patrick J. [WorldFish Center; Barlow, Chris [Australian Center for International Agricultural Research (ACIAR); Agostinho, Angelo A. [Fundacao University, Parana Brazil; Baran, Eric [WorldFish Center; Cada, Glenn F [ORNL; Chen, Daqing [Yangtze River Fisheries Research Institute, People's Republic of China; Cowx, Ian G. [Hull International Fisheries Research Institute, England; Ferguson, John W. [North West Fisheries Science Center, Seattle, WA; Jutagate, Tuantong [Ubon Ratchathani University, Ubon Ratchathani, Thailand; Mallen-Cooper, Martin [Fishway Consulting Service, Australia; Marmulla, Gerd [Food and Agriculture Organization of the United Nations (FAO), Rome, Italy; Nestler, John [USA Corps Engineers, Concord, MA USA; Petrere, Miquel [Universidade Estadual Paulista, Rio Claro, Brazil; Winemiller, Kirk O. [Texas A& M University

2010-06-01T23:59:59.000Z

94

Canadian River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

95

Pecos River Compact (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

96

Consideration of Ecosystem for ICME  

SciTech Connect (OSTI)

As the Integrated Computational Materials Engineering (ICME) emerges as a hot topic, computation, experimentation, and digital database are identified as its three major components. Efforts are being actively made from various aspects to bring ICME to reality. However, many factors that would affect ICEM development still remain vague. This paper is an attempt to discuss the needs for establishing a database centered ecosystem to facilitate ICEM development.

Ren, Weiju [ORNL

2013-01-01T23:59:59.000Z

97

Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes  

E-Print Network [OSTI]

1 Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al

Hickey, Barbara

98

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect (OSTI)

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

99

More than two-thirds of the Earth's surface is covered with water, so it is not surprising that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural  

E-Print Network [OSTI]

that the planet's oceans, lakes, rivers, streams and wetlands are considered valuable natural resources and/stream ecology, wetland science, aquatic- conservation biology and Great Lakes ecosystems. Because of the breadth

Edwards, Paul N.

100

The Role of Science in Ecosystem Restoration and Management: The South Florida Ecosystem Restoration Initiative  

E-Print Network [OSTI]

) Reuse Wastewater Seepage Management Surface Water Storage Reservoir Removing Barriers to SheetflowThe Role of Science in Ecosystem Restoration and Management: The South Florida Ecosystem Restoration Initiative Frank J. Mazzotti University of Florida Fort Lauderdale Research and Education Center

Mazzotti, Frank

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Human impacts on Caribbean coral reef ecosystems  

E-Print Network [OSTI]

The tissue biomass of common Caribbean reef corals. xv VITAJackson, JBC. “Structure of Caribbean coral reef communitiesHuman impacts on Caribbean coral reef ecosystems by Marah

Hardt, Marah Justine

2007-01-01T23:59:59.000Z

102

Energy, Water Ecosystem Engineering | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy-Water Resource Systems SHARE Energy-Water Resource Systems Examine sustainable energy production and water availability in healthy ecosystems through technology development,...

103

Energy, Water Ecosystem Engineering | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resource Systems SHARE Energy-Water Resource Systems Examine sustainable energy production and water availability in healthy ecosystems through technology development,...

104

Manufacturing Ecosystems and Keystone Technologies (Text Version)  

Broader source: Energy.gov [DOE]

This is a text version of the Manufacturing Ecosystems and Keystone Technologies video, originally presented on March 12, 2012 at the MDF Workshop held in Chicago, Illinois.

105

Wind River Watershed Restoration: 1999 Annual Report.  

SciTech Connect (OSTI)

This document represents work conducted as part of the Wind River Watershed Restoration Project during its first year of funding through the Bonneville Power Administration (BPA). The project is a comprehensive effort involving public and private entities seeking to restore water quality and fishery resources in the basin through cooperative actions. Project elements include coordination, watershed assessment, restoration, monitoring, and education. Entities involved with implementing project components are the Underwood Conservation District (UCD), USDA Forest Service (USFS), U.S. Geological Survey--Columbia River Research Lab (USGS-CRRL), and WA Department of Fish & Wildlife (WDFW). Following categories given in the FY1999 Statement of Work, the broad categories, the related objectives, and the entities associated with each objective (lead entity in boldface) were as follows: Coordination--Objective 1: Coordinate the Wind River watershed Action Committee (AC) and Technical Advisory Committee (TAC) to develop a prioritized list of watershed enhancement projects. Monitoring--Objective 2: Monitor natural production of juvenile, smolt, and adult steelhead in the Wind River subbasin. Objective 3: Evaluate physical habitat conditions in the Wind River subbasin. Assessment--Objective 4: Assess watershed health using an ecosystem-based diagnostic model that will provide the technical basis to prioritize out-year restoration projects. Restoration--Objective 5: Reduce road related sediment sources by reducing road densities to less than 2 miles per square mile. Objective 6: Rehabilitate riparian corridors, flood plains, and channel morphology to reduce maximum water temperatures to less than 61 F, to increase bank stability to greater than 90%, to reduce bankfull width to depth ratios to less than 30, and to provide natural levels of pools and cover for fish. Objective 7: Maintain and evaluate passage for adult and juvenile steelhead at artificial barriers. Education--Objective 8: Promote watershed stewardship among students, the community, private landowners, and local governments. Progress towards six of eight of these objectives is described within nine separate reports included in a four-volume document.

Connolly, Patrick J.

2001-09-01T23:59:59.000Z

106

Landscape and Urban Planning 78 (2006) 5070 Room for rivers: An integrative search  

E-Print Network [OSTI]

for floodplain restoration S. Rohdea,, M. Hostmannb, A. Peterc, K.C. Ewaldd a Swiss Federal Institute for Forest restoration aims to re-establish the ecological integrity of a river ecosystem. However, restoration measures to identify stream systems where present environmental (e.g. natural flow, sufficient bed load material

107

Energy flow and ecosystem dynamics and wood energy in forest ecosystems  

E-Print Network [OSTI]

Energy flow and ecosystem dynamics and wood energy in forest ecosystems S.M.C.U.P. Subasinghe respectively. The forests are the most important ecosystems in wood energy aspect. Other than the energy all Originally published in the Proceedings of Workshop of Training of Trainers in Wood Energy Aspects in Sri

108

Temporal Land Cover Analysis for Net Ecosystem Improvement  

SciTech Connect (OSTI)

We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

2013-04-09T23:59:59.000Z

109

Columbia River Treaty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

110

Saving a Dwindling River  

E-Print Network [OSTI]

information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

Wythe, Kathy

2007-01-01T23:59:59.000Z

111

"Ecosystem Services, Biodiversity and Poverty Reduction  

E-Print Network [OSTI]

"Ecosystem Services, Biodiversity and Poverty Reduction: Is conservation the answer?" Paul van. Most ecosystems will change in the future. 2. Loss of species and biodiversity will continue to happen Energy Demand Urbanisation Climate Change Water Availability Infectious Diseases Biodiversity Loss #12

112

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

113

Sabine River Compact (Multiple States)  

Broader source: Energy.gov [DOE]

The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

114

Eawag GL search Theoretical Evolutionary Ecosystems Ecology Half day symposium  

E-Print Network [OSTI]

Eawag GL search Theoretical Evolutionary Ecosystems Ecology Half day symposium ,,Theoretical of natural communities #12;Eawag GL search Theoretical Evolutionary Ecosystems Ecology Abstracts Carlos data sets and theory in a flexible framework. #12;Eawag GL search Theoretical Evolutionary Ecosystems

Wehrli, Bernhard

115

River Edge Redevelopment Zone (Illinois)  

Broader source: Energy.gov [DOE]

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

116

Terrestrial Climate Change and Ecosystem Response Recorded in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Terrestrial Climate Change and Ecosystem Response Recorded in Lake Sediments and Related Deposits Reconstruction of past terrestrial climate and ecosystem response relies on...

117

Ecosystem-Based Management Tools Network Webinar: Community-Based...  

Energy Savers [EERE]

Ecosystem-Based Management Tools Network Webinar: Community-Based Sea Level Rise Projections Ecosystem-Based Management Tools Network Webinar: Community-Based Sea Level Rise...

118

Modeling Ocean Ecosystems: The PARADIGM Program  

E-Print Network [OSTI]

The role of the oceans in Earth systems ecology, and the effects of climate variability on the ocean and its ecosystems, can be understood only by observing, describing, and ultimately predicting the state of the ocean as ...

Rothstein, Lewis M.

119

Digital Ecosystems: Evolving Service-Orientated Architectures  

E-Print Network [OSTI]

A novel optimisation technique inspired by natural ecosystems is presented, where the optimisation works at two levels: a first optimisation, migration of services which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. Through this twofold process, the local search is accelerated and will yield better local optima, because the distributed optimisation already provides a good sampling of the search space by making use of computations already performed in other peers with similar constraints. We call this new distributed optimisation architecture a Digital Ecosystem, an Ecosystem Orientated Architecture (EOA) created by extending a Service-Oriented Architecture (SOA) with Distributed Evolutionary Computing (DEC). The Digital Ecosystem will allow services to recombine and evolve over time, ...

Briscoe, G

2007-01-01T23:59:59.000Z

120

Ecosystem services and human culture Judith Hanna  

E-Print Network [OSTI]

, pollination Cultural: Aesthetic, spiritual, educational, recreational Security: personal safety, secureEcosystem services and human culture Judith Hanna (Social science principal specialist) Judith, happiness, social/community acceptance, recognition, etc) #12;Some problems: · ***What is `culture

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report  

SciTech Connect (OSTI)

The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

Borde, Amy B.; Kaufmann, Ronald M.; Cullinan, Valerie I.; Zimmerman, Shon A.; Thom, Ronald M.; Wright, Cynthia L.

2012-03-22T23:59:59.000Z

122

Air pollutants effects on forest ecosystems  

SciTech Connect (OSTI)

This book presents the papers given at a conference on the effects of acid rain on forests. The conference was sponsored by the National Acid Precipitation Assessment Program (NAPAP). Topics considered at the conference included the status of US research on acid deposition and its effects contributing factors to the decline of forests, evidence for effects on ecosystems, the effects of air pollutants on forest ecosystems in North America and Europe, forest management, and future scientific research programs and management approaches.

Not Available

1985-01-01T23:59:59.000Z

123

Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.  

SciTech Connect (OSTI)

Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River drainage. Forty-three sites in Red River, South Fork Clearwater River, and their tributaries were electrofished in 2001. Sampling yielded a total of 442 juvenile/larval Pacific lamprey. Findings indicate Pacific lamprey juveniles/larvae are not numerous or widely distributed. Pacific lamprey distribution in the South Fork of the Clearwater River drainage was confined to lower reaches of Red River and the South Fork Clearwater River.

Cochnauer, Tim; Claire, Christopher

2002-12-01T23:59:59.000Z

124

Economic Value of Ecosystem Services Provided by Agricultural Lands  

E-Print Network [OSTI]

No reward for agricultural producers to provide ecosystem services 7 #12;Methods for Valuing Ecosystem's ecosystem service provision Contingent valuation: surveying people about their willingness-to-pay / accept in ecosystem service provision Replacement costs methods: costs of mitigating / replacing the service Factor

Demers, Nora Egan

125

Grays River Watershed and Biological Assessment Final Report 2006.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

2008-02-04T23:59:59.000Z

126

Grays River Watershed and Biological Assessment, 2006 Final Report.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher; Geist, David [Pacific Northwest National Laboratory

2007-04-01T23:59:59.000Z

127

SOURCES OF FINE-GRAINED SUSPENDED SEDIMENT IN MILL STREAM BRANCH WATERSHED, CORSICA RIVER BASIN, A TRIBUTARY TO THE  

E-Print Network [OSTI]

affected the Chesapeake Bay ecosystem (Phillips, 2002). In order to reduce sediment and nutrients Corsica River Basin from the State's impaired water bodies (303D) list (http://www.dnr.state.md.us watershed, the largest estuary in the United States, was listed as an "impaired water body" in 2000 under

128

Biodiversity and the Recovery of Threatened and Endangered Salmon Species in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report of 8 of 11.  

SciTech Connect (OSTI)

The stated purpose of the Endangered Species Act is to provide a means whereby the ecosystem upon which endangered species and threatened species depend may be conserved. Conservation of the Columbia River ecosystem and the diversity of gene pools, life histories, species, and communities that comprise it, should become a major objective of species recovery and fish and wildlife management programs in the Columbia River Basin. Biodiversity is important to both species and ecosystem health, and is a prerequisite to long-term sustainability of biological resources. In this paper, I provide an overview of various approaches to defining, measuring, monitoring, and protecting biodiversity. A holistic approach is stressed that simultaneously considers diverse species and resource management needs. Emphasis is on threatened and endangered species of salmon and their associated habitat.

Steward, C. R. (Cleveland R.)

1993-06-01T23:59:59.000Z

129

Building sustainable ecosystem-oriented architectures  

E-Print Network [OSTI]

Currently, organizations are transforming their business processes into e-services and service-oriented architectures to improve coordination across sales, marketing, and partner channels, to build flexible and scalable systems, and to reduce integration-related maintenance and development costs. However, this new paradigm is still fragile and lacks many features crucial for building sustainable and progressive computing infrastructures able to rapidly respond and adapt to the always-changing market and environmental business. This paper proposes a novel framework for building sustainable Ecosystem- Oriented Architectures (EOA) using e-service models. The backbone of this framework is an ecosystem layer comprising several computing units whose aim is to deliver universal interoperability, transparent communication, automated management, self-integration, self-adaptation, and security to all the interconnected services, components, and devices in the ecosystem. Overall, the proposed model seeks to deliver a co...

Bassil, Youssef

2012-01-01T23:59:59.000Z

130

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

131

Yellowstone River Compact (North Dakota)  

Broader source: Energy.gov [DOE]

The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

132

P. Julien S. Ikeda River Engineering and  

E-Print Network [OSTI]

1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

Julien, Pierre Y.

133

Muddy River Restoration Project Begins  

E-Print Network [OSTI]

Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

US Army Corps of Engineers

134

Pollution of Aquatic Ecosystems Spring 2006  

E-Print Network [OSTI]

Cycle 24 Dr. Longley gone to NPS Workshop 26 Surface H20 Environments . 31 Water Treatment Feb 2Pollution of Aquatic Ecosystems Spring 2006 Jan. 17 Introduction 19 Water Characteristics & Water Wastewater Treatment 7 Chlorination & other Treatment methods 9 San Marcos Treatment Plants tours 14 Species

Aspbury, Andrea S. - Department of Biology, Texas State University

135

JIANGXIAO QIU Ecosystem and Landscape Ecology Lab  

E-Print Network [OSTI]

focus: Trade-offs and synergies among ecosystem services in an urbanizing agricultural landscape-Madison Project: NSF Water Sustainability and Climate (WSC)--Climate change, shifting land use, and urbanization Center for Eco-Environmental Sciences, Beijing China Thesis: Landscape pattern and urban morphology

Turner, Monica G.

136

Soil as natural capital Ecosystem services and  

E-Print Network [OSTI]

threats Decline in: Lead to: soil carbon soil erosion biological ac2 tool box Information on sustainable soil use incentives After Daiily et al 2009 "decision loop" #12;Soil is a natural capital Ecosystem services Nutrient retention Carbon storage Water retention

137

ANTARCTIC CLIMATE & ECOSYSTEMS COOPERATIVE RESEARCH CENTRE  

E-Print Network [OSTI]

, including economic damage or loss or injury to person or property, regardless of whether the Antarctic Centre Program. A U S T R A L I A ACE also has formal partnerships with the Department of the Environment be addressed to: The Manager Communications Antarctic Climate & Ecosystems Cooperative Research Centre Private

Phipps, Steven J.

138

UNEP MOOC Disasters and Ecosystems: Resilience in a Changing Climate  

Broader source: Energy.gov [DOE]

The United Nations Environment Programme (UNEP) is launching the first Massive Open Online Course (MOOC) on Disasters and Ecosystems, which features ecosystem-based solutions for disaster risk reduction and climate change adaptation, case studies, guest speakers, etc.

139

Rainfall-River Forecasting  

E-Print Network [OSTI]

;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

US Army Corps of Engineers

140

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Comprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems  

E-Print Network [OSTI]

, carbon sequestration, ecosystem, multi-tier, multi-modal, multi-scale, self organized, sensor array to comprehensively monitor ecosystem carbon sequestration. The network consists of CO2, Weather (pressureComprehensive Monitoring of CO2 Sequestration in Subalpine Forest Ecosystems and Its Relation

Han, Richard Y.

142

The Value of New Jersey's Ecosystem Services and Natural Capital  

E-Print Network [OSTI]

The Value of New Jersey's Ecosystem Services and Natural Capital Robert Costanza Matthew Wilson services are are mainly provided by ecosystems. Examples of ecosystem services ("ecoservices") include of ecoservices in a variety of locations using a variety of valuation methods and applies them to New Jersey

143

White Space Ecosystem: A Secondary Network Operator's Perspective  

E-Print Network [OSTI]

1 White Space Ecosystem: A Secondary Network Operator's Perspective Yuan Luo, Lin Gao, and Jianwei Huang Abstract--The successful deployment of a TV white space network requires the coordination-users), which form the White Space Ecosystem. In this paper, we study the white space ecosystem from

Huang, Jianwei

144

RESEARCH ARTICLE Response of an aridland ecosystem to interannual climate  

E-Print Network [OSTI]

on ecosystem structure and function. In the south- western US, interactions among regional climate drivers (e drivers strongly affect the distribution and composition of ecosystems worldwide. Indeed, potential to which increased climate variability will affect ecosystem processes requires long-term analysis

145

Status of the Coral Reef Ecosystems of Guam  

E-Print Network [OSTI]

of U.S. and international coral reef ecosystems. The CRCA also required that the National OceanicStatus of the Coral Reef Ecosystems of Guam By Val Porter, Trina Leberer, Mike Gawel, Jay Gutierrez Marine Laboratory Technical Report No. 113 October 2005 #12;Status of the Coral Reef Ecosystems of Guam

Mcilwain, Jenny

146

Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production, and Tradeoffs at Landscape Scales  

E-Print Network [OSTI]

Modeling Multiple Ecosystem Services, Biodiversity Conservation, Commodity Production ECOSYSTEM SERVICES_ 4 o Modeling multiple ecosystem services, biodiversity conservation, commodity tradeoff between biodiversity conservation and J?l ecosystem services. Scenarios involving more development

Vermont, University of

147

THE YEAR IN ECOLOGY AND CONSERVATION BIOLOGY, 2009 Mapping and Valuing Ecosystem Services  

E-Print Network [OSTI]

society through unaccounted-for ecosystem services. A major challenge in mov- ing to a more ecosystem

Weiblen, George D

148

factsheet  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 acres of land in northern Idaho along Smith Creek in the Kootenai River floodplain for wildlife habitat mitigation (see map). Located in Boundary County, the property is partly...

149

Hood River Passive House  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hales, D.

2013-03-01T23:59:59.000Z

150

River Influences on Shelf Ecosystems: Introduction and synthesis B. M. Hickey,1  

E-Print Network [OSTI]

. Nash,3 K. W. Bruland,2 W. T. Peterson,4 P. MacCready,1 E. J. Lessard,1 D. A. Jay,5 N. S. Banas,6 A. M

Kurapov, Alexander

151

Evaluating Cumulative Ecosystem Response to Restoration Projects in the Lower Columbia River and Estuary, 2008  

SciTech Connect (OSTI)

Draft annual report for the Cumulative Effects Study for the US Army Corps of Engineers, Portland District

Johnson, Gary E.; Diefenderfer, Heida L.; Borde, Amy B.; Dawley, Earl M.; Ebberts, Blaine D.; Roegner, G. Curtis; Russell, Micah T.; Skalski, John R.; Thom, Ronald M.; Vavrinec, John; Zimmerman, Shon A.

2009-12-17T23:59:59.000Z

152

The Transport of Chemicals and Biota into Coastal Rivers and Marine Ecosystems  

E-Print Network [OSTI]

ng/g), DDD (max. 234 ng/g), DDT (max. 152 ng/g), dieldrin (p,p’- DDE, p,p’-DDD, p,p’-DDT, aldrin, dieldrin, endrin,that of a previous study on DDT on the Monterey Bay shelf (

Ng, Charlene Marie

2012-01-01T23:59:59.000Z

153

Ecosystem effects of environmental flows: modelling and experimental floods in a dryland river  

E-Print Network [OSTI]

physical system using: (1) a reservoir operations model to simulate reservoir releases and reservoir water experimental floods on the differential mortality of native and exotic riparian trees, on beaver dam integrity of model applications and experimental flow releases are contributing to adaptive flow management

154

Flloodplains of large rivers are among the most productive of ecosystems; they are also among the  

E-Print Network [OSTI]

and Cummings 1995). Information on the eco- logical characteristics of these few floodplains is the only the impression of great eco- logical complexity. The combination of constant physical change, which is driven (fishes); functioning of food webs and energy flow; and reciprocal biogeochemical relation- ships between

Lewis Jr., William M.

155

Successes, Failures and Suggested Future Directions for Ecosystem Restoration of the Middle Sacramento River, California  

E-Print Network [OSTI]

Castro JM, editors. Stream restoration in dynamic fluvialas part of the stream meander corridor restoration. Naturalwith stream meander corridor restoration and restored flow

2013-01-01T23:59:59.000Z

156

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

157

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

158

Aquatic Supplement Hood River Subbasin  

E-Print Network [OSTI]

.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

159

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

160

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

South Carolina Scenic Rivers Act (South Carolina)  

Broader source: Energy.gov [DOE]

The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

162

Ohio River Greenway Development Commission (Indiana)  

Broader source: Energy.gov [DOE]

The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

163

Natural, Scenic, and Recreational River System (Indiana)  

Broader source: Energy.gov [DOE]

Rivers may fall under the categories of natural, scenic, or recreational. These rivers are designated, acquired, and preserved by the state, and development on or adjacent to these rivers is...

164

Enforcement Letter, Westinghouse Savannah River Company - November...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

165

Independent Oversight Review, Savannah River Operations Office...  

Energy Savers [EERE]

Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

166

Independent Activity Report, Savannah River Operation - June...  

Broader source: Energy.gov (indexed) [DOE]

Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification...

167

Independent Activity Report, Savannah River Site - September...  

Office of Environmental Management (EM)

September 2010 Independent Activity Report, Savannah River Site - September 2010 Savannah River Site Salt Waste Processing Facility Effectiveness Review The U.S. Department of...

168

New Savannah River Site Deputy Manager Named  

Broader source: Energy.gov [DOE]

AIKEN, S.C. – DOE’s Savannah River Operations Office selected Terrel “Terry” J. Spears as the deputy manager of the Savannah River Site (SRS) this month.

169

Independent Oversight Activity Report, Savannah River Site -...  

Office of Environmental Management (EM)

Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

170

PIA - Savannah River Nuclear Solutions Electronic Safeguards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions...

171

Hood River Passive House  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

Hales, D.

2014-01-01T23:59:59.000Z

172

arctic ecosystems dominated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by: Arctic Institute of North America Stable URL: http Vermont, University of 7 Improved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems...

173

arctic marine ecosystem: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Bamboung marine protected area social-ecosystem. Key words Social-ecological system, climate Paris-Sud XI, Universit de 6 Perfluoroalkyl Contaminants in an Arctic Marine...

174

Environmental Genomics Reveals a Single-Species Ecosystem Deep Earth  

E-Print Network [OSTI]

Environmental Genomics Reveals a Single-Species EcosystemTechnology Program, DOE Joint Genomics Institute, Berkeley,and Environmental Research, Genomics:GTL program through

Arkin, Adam P.

2014-01-01T23:59:59.000Z

175

Processes that influence biodiversity, ecosystem functioning, and stability in grasslands.  

E-Print Network [OSTI]

??Biodiversity is rapidly declining worldwide, and this may lead to subsequent declines in ecosystem functioning and stability. Here I consider whether: (i) stabilizing species interactions,… (more)

Isbell, Forest Isaac

2010-01-01T23:59:59.000Z

176

Processes that influence biodiversity, ecosystem functioning, and stability in grasslands.  

E-Print Network [OSTI]

?? Biodiversity is rapidly declining worldwide, and this may lead to subsequent declines in ecosystem functioning and stability. Here I consider whether: (i) stabilizing species… (more)

Isbell, Forest Isaac

2010-01-01T23:59:59.000Z

177

Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan  

E-Print Network [OSTI]

the rivers to the Golden Gate Bridge is termed the Northernconcentrations near the Golden Gate Bridge (Cutter and

Presser, Theresa S.; Luoma, Samuel N.

2013-01-01T23:59:59.000Z

178

Wood River Levee Reconstruction, Madison County, IL  

E-Print Network [OSTI]

Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

US Army Corps of Engineers

179

RiverFalls,Wisconsin SolarinSmall  

E-Print Network [OSTI]

, the local government, and the citizens of River Falls have made energy conservation and renewable energy. Inspiring Interest in Renewables River Falls' energy conservation efforts benefit from RFMU's membership energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

180

SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY  

E-Print Network [OSTI]

OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

Georgia, University of

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Columbia River Estuary the Columbia River Basin  

E-Print Network [OSTI]

" fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

182

Columbia River Hatchery Reform System-Wide Report.  

SciTech Connect (OSTI)

The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit

Warren, Dan [Hatchery Scientific Review Group

2009-04-16T23:59:59.000Z

183

EA-2006: Columbia Estuary Ecosystem Restoration Program  

Broader source: Energy.gov [DOE]

The U.S. Army Corps of Engineers, with DOE’s Bonneville Power Administration as a cooperating agency, is preparing a programmatic EA for actions recommended by the Northwest Power and Conservation Council to help restore ecological structure, function, and biodiversity within the Columbia River estuary. Activities under this program could include full reconnection of tidal influence through breaching dikes and levees; partial reconnection of tidal influence through culverts, bridges, and tidegates; enhancement of the quantity and quality of tidal channels; removal of invasive species; and restoration of riparian habitat conditions, such as planting native vegetation.

184

Biomass and productivity of trematode parasites in pond ecosystems  

E-Print Network [OSTI]

Biomass and productivity of trematode parasites in pond ecosystems Daniel L. Preston*, Sarah A often measure the biomass and productivity of organisms to understand the importance of populations and dissections of over 1600 aquatic invertebrate and amphib- ian hosts, we calculated the ecosystem-level biomass

Johnson, Pieter

185

Air Pollution Impacts on Ecosystems and Biological Diversity  

E-Print Network [OSTI]

Air Pollution Impacts on Ecosystems and Biological Diversity in the Eastern United States Threats CITATION Lovett, G.M., and T.H. Tear. 2008. Threats from Above: Air Pollution Impacts on Ecosystems and nitrogen pollution. © Eric Middelkoop/BigStockPhoto.com Botom: A newly hatched common loon chick is watched

186

DECISION-MAKING AND ECOSYSTEM-BASED MANAGEMENT  

E-Print Network [OSTI]

options is reviewed and applied to ecosystem-based management. The model recommends a public decision process unless developing new alternatives is not possible, in which case segmented public consultation question involves the kind of public participation strategy to use. For ecosystem-based management to reach

Lawrence, Rick L.

187

Climate Change in Mountain Ecosystems Areas of Current Research  

E-Print Network [OSTI]

Climate Change in Mountain Ecosystems Areas of Current Research · Glacier Research · Snow Initiative Glacier Research A Focus on Mountain Ecosystems Climate change is widely acknowledged to be having in the western U.S. and the Northern Rockies in particular are highly sensitive to climate change. In fact

188

A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field  

E-Print Network [OSTI]

A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field Deborah S. Kelley,1 * Jeffrey A. Baross,1 Roger E. Summons,7 Sean P. Sylva4 The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately

Gilli, Adrian

189

Ecology and Restoration of Invaded Ecosystems FOR 4934 (3 credits)  

E-Print Network [OSTI]

Ecology and Restoration of Invaded Ecosystems FOR 4934 (3 credits) Spring 2014 Course Description This advanced ecosystem management course will begin with an overview of the ecological basis for plant in ecology and applied plant science, graduate students in the Masters of Science, Ecological Restoration

Slatton, Clint

190

Ecology and Restoration of Invaded Ecosystems FOR 6934 (3 credits)  

E-Print Network [OSTI]

Ecology and Restoration of Invaded Ecosystems FOR 6934 (3 credits) Spring 2014 Course Description This advanced ecosystem management course will begin with an overview of the ecological basis for plant in ecology and applied plant science, graduate students in the Masters of Science, Ecological Restoration

Watson, Craig A.

191

CSPH 3101: ECOSYSTEMS OF WELLBEING UMORE Park Design Plan  

E-Print Network [OSTI]

CSPH 3101: ECOSYSTEMS OF WELLBEING UMORE Park Design Plan Envision a Dynamic Community of Wellbeing for innovation that can be exported outside of its boundaries. Umore Park: Ecosystems of Infrastructure it every day in the form of roads, buildings, power lines, stoplights, energy plants, water pipes, when

Netoff, Theoden

192

Software Platforms for Smart Building Ecosystems: Understanding the  

E-Print Network [OSTI]

Software Platforms for Smart Building Ecosystems: Understanding the Key Architectural-ready software platform for the smart building domain. We analyzed the type of contributors that may exist in a smart building ecosystem, the quality attributes that those roles are concerned with, and the key

193

EXPLORING ABORIGINAL FORESTRY AND ECOSYSTEM-BASED MANAGEMENT  

E-Print Network [OSTI]

EXPLORING ABORIGINAL FORESTRY AND ECOSYSTEM-BASED MANAGEMENT: A CASE STUDY OF COWICHAN TRIBES of Resource Management Title of Research Project: Exploring Aboriginal Forestry and Ecosystem-based Management aboriginal forestry will be required. First Nations share a common desire for control over their forest

194

USING COMMERCIAL FORESTRY FOR ECOSYSTEM RESTORATION IN SENSITIVE BADGER HABITAT  

E-Print Network [OSTI]

USING COMMERCIAL FORESTRY FOR ECOSYSTEM RESTORATION IN SENSITIVE BADGER HABITAT by Melissa Hogg BSc of Thesis: Using commercial forestry for ecosystem restoration in sensitive badger habitat Project Number prescribed fire. Commercial forestry can subsidize restoration work, but machinery may damage important

195

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes  

E-Print Network [OSTI]

ANCHIALINE ECOSYSTEMS Microbial hotspots in anchialine blue holes: initial discoveries from+Business Media B.V. 2011 Abstract Inland blue holes of the Bahamas are anchialine ecosystems with distinct fresh and geomicrobiology exploration of blue holes are providing a first glimpse of the geochemistry and microbial life

Iliffe, Thomas M.

196

Introduction Hall and Tank (2005) present estimates of ecosystem metab-  

E-Print Network [OSTI]

213 Introduction Hall and Tank (2005) present estimates of ecosystem metab- olism for Giltner in the estimation of ecosystem metabolism by open-channel methods (McCutchan et al. 2002; Hall and Tank 2005). To estimate metabolism in Giltner Spring Creek, Hall and Tank (2005) employ a mass-balance equation

Lewis Jr., William M.

197

Tourism destinations as digital business ecosystems  

E-Print Network [OSTI]

Tourism has been experiencing very relevant changes since when Information and Communication Technologies (ICTs), in all their forms, have started to pervade the industry and the market. In the last decade, a new concept gained the attention of both researchers and practitioners, that of Digital Business Ecosystem (DBE). It can be considered as a technological infrastructure aimed at creating a digital environment to support and enhance networking between enterprises and stakeholders operating within a sector. Aim of this paper is to assess the extent to which the technological connection has affected the structural configuration of the tourism system and, specifically, of tourism destinations. The present study argues that two components can be considered when assessing the relationships among stakeholders within a tourism destination: a real and a virtual one. Further it shows how these two components are structurally strongly coupled and co-evolve forming a single system.

Baggio, Rodolfo

2012-01-01T23:59:59.000Z

198

Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems  

E-Print Network [OSTI]

Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems enrichment, or eutrophication, can lead to highly undesirable changes in ecosystem structure and function eutrophication in freshwater, marine, and terrestrial ecosystems. We present two brief case studies (one

Minnesota, University of

199

Principal Paper Sessions Cultivating Ecosystem Services from Agriculture (Scott M. Swinton, Michigan  

E-Print Network [OSTI]

Principal Paper Sessions Cultivating Ecosystem Services from Agriculture (Scott M. Swinton, Michigan State University, Organizer) ECOSYSTEM SERVICES FROM AGRICULTURE: LOOKING BEYOND THE USUAL. The lens is especially revealing when applied to agriculture, the most widespread managed ecosystem

Landis, Doug

200

Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program  

SciTech Connect (OSTI)

The purpose ofthis document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision-making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows. 1. Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. 2. Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. 3. Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. 4. Maintain the food web to benefit salmonid performance. 5. Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. In conclusion, the estuary RME effort is designed to meet the research and monitoring needs of the estuary Program using an adaptive management process. Estuary RME's success and usefulness will depend on the actual conduct of adaptive management, as embodied in the objectives, implrementation, data, reporting, and synthesis, evaluation, and decision-making described herein.

Johnson, Gary E.; Diefenderfer, Heida L.; Ebberts, Blaine D.; Tortorici, Cathy; Yerxa, Tracey; Leary, J.; Skalski, John R.

2008-02-05T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Massachusetts Rivers Protection Act (Massachusetts)  

Broader source: Energy.gov [DOE]

The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

202

Case Studies in River Management  

E-Print Network [OSTI]

of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

Julien, Pierre Y.

203

Star Lakes and Rivers (Minnesota)  

Broader source: Energy.gov [DOE]

An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district may apply to the Star Lake Board for...

204

Running Head: Ecosystem Energy and Conservation1 Ecosystem Energy as a Framework for Prioritizing Conservation Vulnerabilities and3  

E-Print Network [OSTI]

1 Running Head: Ecosystem Energy and Conservation1 2 Ecosystem Energy as a Framework energy levels as a strategic framework to help identify conservation priorities and22 those management of three energy levels to achieve conservation objectives. The24 #12;2 geographic distribution of each

Hansen, Andrew J.

205

Savannah River | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah RiverSite

206

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

207

Enforcement Documents - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

208

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Farmers Electric Riverside Electric Minidoka Soda Springs Idaho Falls Lower Valley Energy Lost River Electric Coop. Fall River Rural Electric Coop. Salmon River Electric...

209

E-Print Network 3.0 - aquatic ecosystems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for survival. Aquatic ecosystems consist of living organisms together... filled with rainwater, and is trans- formed from an aquatic ecosystem into a terrestrial one when......

210

E-Print Network 3.0 - aquatic ecosystems final Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECOSYSTEMS JOINT MODULE WITH UNIVERSITY OF COSTA RICA Summary: environments Fresh Water Ecosystems Aquatic policies Spanish Spanish Spanish Spanish Spanish Terrestrial... and...

211

E-Print Network 3.0 - animal ecosystem engineers Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the approach with regards to ecosystem engineering... in an engineered ecosystem (e.g., water purification, biomass production, etc.). In the short term, the objective......

212

E-Print Network 3.0 - aerobic microbial ecosystems Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Starch Glucose Complex anaerobic... 12;Microbial Systems as Model Ecosystems P C R Energy Heat ... Source: Vallino, Joseph J. - Ecosystems Center, Marine Biological...

213

E-Print Network 3.0 - anthropogenic ecosystem perturbations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

processes and functions How do we define and quantify relationships between biodiversity, ecosystem function and Summary: biodiversity, ecosystem function and services at...

214

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

215

Insect community structure and function in Upper Three Runs, Savannah River Site, South Carolina  

SciTech Connect (OSTI)

A project to document the insect species in the upper reaches of Upper Three Runs at the Savannah River site was recently completed. This research was supported by the US Department of Energy under the National Environmental Research Park Program. The work was performed by the Department of Entomology at Clemson University in clemson, SC, by John C. Morse (principal investigator), William R. English and their colleagues. The major output from this study was the dissertation of Dr. William R. English entitled ``Ecosystem Dynamics of a South Carolina Sandhills Stream.`` He investigated selected environmental resources and determined their dynamics and the dynamics of the aquatic invertebrate community structure in response to them.

Morse, J.C.; English, W.R. [Clemson Univ., SC (United States). Dept. of Entomology; Looney, B.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

1993-07-08T23:59:59.000Z

216

Kootenai County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak,Kooskia, Idaho: Energy°

217

Microsoft Word - Final Kootenai EA FONSI_May 2013  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 Master EMAZINFO Department ofBalanced ScorecardThis

218

Ecosystem-scale Selenium Model for the San Francisco Bay-Delta Regional Ecosystem Restoration Implementation Plan  

E-Print Network [OSTI]

Canal • Sacramento Valley ? Yolo Bypass (drains, west-sideSe effluents* North Bay streams Inflow (import) YoloBypass Yolo Bypass Sacramento/San Joaquin River Delta • Los

Presser, Theresa S.; Luoma, Samuel N.

2013-01-01T23:59:59.000Z

219

arctic ecosystem final: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FROST-BOIL ECOSYSTEMS A PROJECT SUMMARY The central goal of this project to changing climate. We focus on frost-boils because: (1) The processes that are involved in the self...

220

Incorporating Representation of Agricultural Ecosystems and Management Within IBIS  

E-Print Network [OSTI]

Incorporating Representation of Agricultural Ecosystems and Management Within IBIS: The development of Agro-IBIS Chris Kucharik Department of Agronomy & Center for Sustainability and the Global Environment balance Soil and canopy physics Leaf physiology Minutes Phenology Budburst, senescence, dormancy Daily

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Livestock Management in the Riparian Ecosystem1 Larry D. Bryant  

E-Print Network [OSTI]

Livestock Management in the Riparian Ecosystem1 2 Larry D. Bryant (' Abstract.--Intensive, long at the North American Conference tthe University of Arizona, ~n, April 16-18, 1985]. Larry D. Bryant

222

Final Strategic Plan Released by Gulf Coast Ecosystem Restoration Taskforce  

Broader source: Energy.gov [DOE]

Today (December 5) the Gulf Coast Ecosystem Restoration Task Force released its final strategy for long-term restoration in the Gulf, a path forward based on input from states, tribes, federal...

223

Anthropogenic Impacts on Polar Bear Biology and the Arctic Ecosystem.  

E-Print Network [OSTI]

Despite its relative distance from most populated regions of the world, the Arctic has been significantly impacted by anthropogenic contamination and climate change. The entire Arctic ecosystem has been affected, with upper trophic level predators...

Jordan, John E.

2013-12-16T23:59:59.000Z

224

agro-ecosystems caratterizzazione biologica: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Previous Page 1 2 3 4 5 6 Next Page Last Page Topic Index 1 Predicting and mitigating the global warming potential of agro-ecosystems Physics Websites Summary: Predicting and...

225

Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems  

E-Print Network [OSTI]

#12;Center for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems Personnel. Blaine Metting #12;vii Abstract The Center for Research on Enhancing Carbon Sequestration in Terrestrial needed to evaluate the feasibility of environmentally sound strategies for enhancing carbon sequestration

226

California Water Policy Seminar Series Reconciling Ecosystem And Economy  

E-Print Network [OSTI]

; Hap Dunning and Richard Frank, UC Davis School of Law Feb. 24 Farms, floods, fowl and fish on the Yolo, Yolo County; others TBA Mar. 10 Science and ecosystem reconciliation for the Delta. Peter Goodwin

Ferrara, Katherine W.

227

STUART E.G. FINDLAY Cary Institute of Ecosystem Studies  

E-Print Network [OSTI]

and K.A. Kuehn. 2002. Microbial growth and nitrogen retention in litter of Phragmites australis.M. Groffman and S. Dye. 2003. Trade-offs among ecosystem functions during restoration: Phragmites removal from

228

Enterprise Assessments Review, Savannah River Site 2014 Site...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Independent Oversight Inspection, Savannah River Site - January 2010 Independent Oversight Review, Savannah River Site Tritium Facilities - December...

229

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

230

Managing for ocean biodiversity to sustain marine ecosystem services  

E-Print Network [OSTI]

partitioning among marine species (Kohn 1959). Facilitation, which occurs when one species improves envi- ronmental conditions for others, is well documented in such marine ecosystems as salt marshes, coral reefs, and kelp forests (Knowlton 1999; Bruno et al... food per acre as a commercial shrimp farm. These complex services are provided by thousands of plant, animal, and microbial species. (c) Kelp forests and (d) coral reefs are some of the most productive ecosystems on Earth. Recreational, commercial...

Palumbi, Stephen R.; Sandifer, Paul A.; Allan, J. David; Beck, Michael W.; Fautin, Daphne G.; Fogarty, Michael J.; Halpern, Benjamin S.; Incze, Lewis S.; Leong, Jo-Ann C.; Norse, Elliott; Stachowicz, John J.; Wall, Diana H.

2009-05-01T23:59:59.000Z

231

Grays River Watershed Geomorphic Analysis  

SciTech Connect (OSTI)

This investigation, completed for the Pacific Northwest National Laboratory (PNNL), is part of the Grays River Watershed and Biological Assessment commissioned by Bonneville Power Administration under project number 2003-013-00 to assess impacts on salmon habitat in the upper Grays River watershed and present recommendations for habitat improvement. This report presents the findings of the geomorphic assessment and is intended to support the overall PNNL project by evaluating the following: 􀂃 The effects of historical and current land use practices on erosion and sedimentation within the channel network 􀂃 The ways in which these effects have influenced the sediment budget of the upper watershed 􀂃 The resulting responses in the main stem Grays River upstream of State Highway 4 􀂃 The past and future implications for salmon habi

Geist, David R.

2005-04-30T23:59:59.000Z

232

River System Hydrology in Texas  

E-Print Network [OSTI]

,700 86,700 Proctor Leon River USACE 1963 59,400 54,702 310,100 Belton Leon River USACE 1954 457,600 432,978 640,000 Stillhouse Hollow Lampasas River USACE 1968 235,700 224,279 390,660 Georgetown San Gabriel R USACE 1980 37,100 36,980 87,600 Granger... San Gabriel R USACE 1980 65,500 50,540 162,200 Somerville Yequa Creek USACE 1967 160,110 154,254 337,700 Hubbard Creek Hubbard Creek WCTMWD 1962 317,750 317,750 í Post NF Double Mt WRMWD proposed 57,420 í í Alan Henry SF Double Mt Lubbock 1993 115...

Wurbs, R.; Zhang, Y.

2014-01-01T23:59:59.000Z

233

An Inside Look at River Corridor  

Broader source: Energy.gov [DOE]

In the seventh chapter of The Handford Story, the Energy Department takes a look at the River Corridor -- a 50-mile stretch of the Columbia River that flows through the Hanford site in southeast...

234

Preliminary Notice of Violation, Westinghouse Savannah River...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

235

Lakes and Rivers Improvement Act (Ontario, Canada)  

Broader source: Energy.gov [DOE]

The Lakes and Rivers Improvement Act proscribes the management, protection, preservation and use of the waters of the lakes and rivers of Ontario and the land under them. The Act also details...

236

Youghiogheny Wild and Scenic River (Maryland)  

Broader source: Energy.gov [DOE]

Portions of the Youghiogheny River are protected under the Scenic and Wild Rivers Act, and development on or near these areas is restricted. COMAR section 08.15.02 addresses permitted uses and...

237

Belle Fourche River Compact (South Dakota)  

Broader source: Energy.gov [DOE]

The Belle Fourche River Compact, agreed to by South Dakota and Wyoming, seeks to provide for the most efficient use of the waters of the Belle Fourche River Basin for multiple purposes, and to...

238

Preliminary Notice of Violation, Westinghouse Savannah River...  

Broader source: Energy.gov (indexed) [DOE]

December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

239

Columbia River Component Data Evaluation Summary Report  

SciTech Connect (OSTI)

The purpose of the Columbia River Component Data Compilation and Evaluation task was to compile, review, and evaluate existing information for constituents that may have been released to the Columbia River due to Hanford Site operations. Through this effort an extensive compilation of information pertaining to Hanford Site-related contaminants released to the Columbia River has been completed for almost 965 km of the river.

C.S. Cearlock

2006-08-02T23:59:59.000Z

240

Bayer Material Science (TRL 1 2 3 System)- River Devices to Recover Energy with Advanced Materials(River DREAM)  

Broader source: Energy.gov [DOE]

Bayer Material Science (TRL 1 2 3 System) - River Devices to Recover Energy with Advanced Materials(River DREAM)

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SRO -NERP-1 THE SAVANNAH RIVER PLANT  

E-Print Network [OSTI]

AND TREATMENT by Whit Gibbons Savannah River Ecology Laboratory Aiken , South Carolina A PUBLICATION OF EROA 'S SAVANNAH RIVER NATIONAL ENVIRONMENTAL RESEARCH PARK -SEPTEMBER 1977 COPIES MAY BE OBTAINEO FROM SAVANNAHSRO -NERP-1 SNAKES OF THE SAVANNAH RIVER PLANT WITH INFORMATION ABOUT SNAKEBITE PREVENTION

Georgia, University of

242

Atlas of the Columbia River Basin  

E-Print Network [OSTI]

#12;Atlas of the Columbia River Basin Oregon State University Computer-Assisted Cartography Course & GEOVISUALIZATION GROUP UNIVERSITY #12;2013 Oregon State University Atlas of the Columbia River Basin FOREWORDAtlas, Montana, Nevada, Wyoming, and Utah. 2013 Oregon State University Atlas of the Columbia River Basin

Jenny, Bernhard

243

Balancing the Need to Develop Coastal Areas with the Desire for an Ecologically Functioning Coastal Environment: Is Net Ecosystem Improvement Possible?  

SciTech Connect (OSTI)

The global human population is growing exponentially, a majority lives and works near the coast, and coastal commerce and development are critical to the economies of many nations. Hence, coastal areas will continue to be a major focus of development and economic activity. People want and need the economics provided by coastal development but they also want and need the fisheries and social commodities supported by estuarine and coastal ecosystems. Because of these facts, we view the challenge of balancing coastal development with enhancing nearshore marine and estuarine ecosystems (i.e., net ecosystem improvement) as the top priority for coastal researchers in this century. Our restoration research in Pacific Northwest estuaries and participation in the design and mitigation of nearshore structures has largely dealt with these competing goals. To this end, we have applied conceptual models, comprehensive assessment methods, and principles of restoration ecology, conservation biology and adaptive management to incorporate science into decisions about use of estuarine systems. Case studies of Bainbridge Island and the Columbia River demonstrate the use of objective, defensible methods to prioritize estuarine areas for preservation, conservation and restoration. Case studies of Clinton, WA and Port Townsend, WA demonstrate the incorporation of an ecological perspective and technological solutions into design projects that affect the nearshore. Adaptive management has allowed coastal development and restoration uncertainties to be better evaluated, with the information used to improve management decisions. Although unproven on a large scale, we think that these kinds of methods can contribute to the net improvement of already degraded ecosystems. The challenges include applied science to understand the issues, education, incentives, empirical data (not rehashing of reviews), cumulative impact analysis, and an effective adaptive management program. Because the option of net ecosystem improvement is often more costly than other alternatives, commitment by the local or regional community to this approach is essential.

Thom, Ronald M.; Williams, Greg D.; Diefenderfer, Heida L.

2005-03-01T23:59:59.000Z

244

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect (OSTI)

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

245

HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN  

SciTech Connect (OSTI)

In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

John A. McLachlan

2003-12-01T23:59:59.000Z

246

Wildlife Response to Riparian Restoration on the Sacramento River  

E-Print Network [OSTI]

ecological indicators of both aquatic and terrestrial ecosystem health. non-native species, such as house

2008-01-01T23:59:59.000Z

247

Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health  

SciTech Connect (OSTI)

Measurement of ecosystem health is a very important but often difficult and sometimes fractious topic for applied ecologists. It is important because it can provide information about effects of various external influences like chemical, nuclear, and physical disturbance, and invasive species. Ecosystem health is also a measure of the rate or trajectory of degradation or recovery of systems that are currently suffering impact or those where restoration or remediation have taken place. Further, ecosystem health is the single best indicator of the quality of long term environmental stewardship because it not only provides a baseline condition, but also the means for future comparison and evaluation. Ecosystem health is difficult to measure because there are a nearly infinite number of variables and uncertainty as to which suites of variables are truly indicative of ecosystem condition. It would be impossible and prohibitively expensive to measure all those variables, or even all the ones that were certain to be valid indicators. Measurement of ecosystem health can also be a fractious topic for applied ecologists because there are a myriad of opinions as to which variables are the most important, most easily measured, most robust, and so forth. What is required is an integrative means of evaluating ecosystem health. All ecosystems are dynamic and undergo change either stochastically, intrinsically, or in response to external influences. The basic assumption about change induced by exogenous antropogenic influences is that it is directional and measurable. Historically measurements of surrogate parameters have been used in an attempt to quantify these changes, for example extensive water chemistry data in aquatic systems. This was the case until the 1980's when the Index of Biotic Integrity (IBI) (Karr et al. 1986), was developed. This system collects an array of metrics and fish community data within a stream ecosystem and develops a score or rating for the relative health of the ecosystem. The IBI, though originally for Midwestern streams, has been successfully adapted to other ecoregions and taxa (macroinvertebrates, Lombard and Goldstein, 2004) and has become an important tool for scientists and regulatory agencies alike in determining health of stream ecosystems. The IBI is a specific type of a larger group of methods and procedures referred to as Rapid Bioassessment (RBA). These protocols have the advantage of directly measuring the organisms affected by system perturbations, thus providing an integrated evaluation of system health because the organisms themselves integrate all aspects of their environment and its condition. In addition to the IBI, the RBA concept has also been applied to seep wetlands (Paller et al. 2005) and terrestrial systems (O'Connell et al. 1998, Kremen et al. 1993, Rodriguez et al. 1998, Rosenberg et al. 1986). Terrestrial RBA methods have lagged somewhat behind those for aquatic systems because terrestrial systems are less distinctly defined and seem to have a less universal distribution of an all-inclusive taxon, such as fish in the IBI, upon which to base an RBA. In the last decade, primarily in Australia, extensive development of an RBA using ant communities has shown great promise. Ants have the same advantage for terrestrial RBAs that fish do for aquatic systems in that they are an essential and ubiquitous component of virtually all terrestrial ecosystems. They occupy a broad range of niches, functional groups, and trophic levels and they possess one very important characteristic that makes them ideal for RBA because, similar to the fishes, there is a wide range of tolerance to conditions within the larger taxa. Within ant communities there are certain groups, genera, or species that may be very robust and abundant under even the harshest impacts. There are also taxa that are very sensitive to disturbance and change and their presence or absence is also indicative of the local conditions. Also, as with the aquatic RBAs using macroinvertebrates, ants have a wide variety of functional foragi

Wike, L

2005-06-01T23:59:59.000Z

248

Ecosystems: Issues and problems. (Latest citations from the ABI/Inform database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning issues and problems relating to ecosystems in different parts of the world. Preservation of resources, environmental protection, industrial impacts on ecosystems, ecological economics, biodiversity of specific ecosystems, and effects of deforestation and erosion are examined. Citations review impacts of human inhabitants, eco-tourism, and alien species on an ecosystem. The relationship to an ecosystem of pests and microbial infections is covered, and long-range planning for ecosystems is cited. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-02-01T23:59:59.000Z

249

The Columbia River System : the Inside Story.  

SciTech Connect (OSTI)

The Columbia Ricer is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Northwest-from providing the world-famous Pacific salmon to supplying the clean natural fuel for over 75 percent of the region's electrical generation. Since early in the century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system. And through cooperative efforts, the floods that periodically threaten developments near the river can be controlled. This publication presents a detailed explanation of the planning and operation of the multiple-use dams and reservoirs of the Columbia River system. It describes the river system, those who operate and use it, the agreements and policies that guide system operation, and annual planning for multiple-use operation.

United States. Bonneville Power Administration.

1991-09-01T23:59:59.000Z

250

The River Runs Dry: Examining Water Shortages in the Yellow River Basin  

E-Print Network [OSTI]

Runs Dry: Examining Water Shortages in the Yellow Riverof the severity of water shortages in the river’s basin. Ina median level of runoff water shortages in the basin would

Zusman, Eric

2000-01-01T23:59:59.000Z

251

E.2. Electronic Appendix -Food Web Elements of the Fraser River Upper River (above rkm 210)  

E-Print Network [OSTI]

1 E.2. Electronic Appendix - Food Web Elements of the Fraser River Basin Upper River (above rkm 210, but improvements at pulp mills and waste water treatment plant upgrades are thought to have improved water quality

252

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky  

E-Print Network [OSTI]

Green River Locks and Dams 3, 4, 5, 6 and Barren River Lock and Dam 1 Disposition, Kentucky 16 September 2014 ABSTRACT: Green River Locks and Dams 3 through 6 and Barren River Lock and Dam 1 were. The Green River Locks and Dams 5 and 6 ceased operations in 1951 due to a marked decline in navigation

US Army Corps of Engineers

253

The Columbia River System Inside Story  

SciTech Connect (OSTI)

The Columbia River is one of the greatest natural resources in the western United States. The river and its tributaries touch the lives of nearly every resident of the Pacific Northwest—from fostering world-famous Pacific salmon to supplying clean natural fuel for 50 to 65 percent of the region’s electrical generation. Since early in the 20th century, public and private agencies have labored to capture the benefits of this dynamic river. Today, dozens of major water resource projects throughout the region are fed by the waters of the Columbia Basin river system.

none,

2001-04-01T23:59:59.000Z

254

Savannah River Remediation (SRR) Expanded Staff Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Savannah River Remediation Delivering the Mission Dave Olson President and Project Manager January 27, 2012 SRS Executive Management Community Discussion 2 * Liquid Waste Funding...

255

Methow River Conservation Easement - May 2009.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Yakama Nation to fund the Methow Conservancy's acquisition of a 44-acre conservation easement in the Methow River watershed in Okanogan County, Wash., for fi sh habitat...

256

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

257

Savannah River Laboratory monthly report, November 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation; tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

258

Wild and Scenic Rivers Act (Maryland)  

Broader source: Energy.gov [DOE]

It is state policy to protect the outstanding scenic, geologic, ecologic, historic, recreational, agricultural, fish, wildlife, cultural, and other similar values of certain rivers and adjacent...

259

South River EMC- Energy Efficient Rebate Program  

Broader source: Energy.gov [DOE]

South River EMC offers a variety of rebates encouragings its members to invest in energy efficient appliances, equipment, and home upgrades. Incentives are available for clothes washers,...

260

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. [comp.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Savannah River Laboratory monthly report, August 1991  

SciTech Connect (OSTI)

This document details monthly activities at the Savannah River Laboratory. Topics addressed are reactor operation, tritium facilities and production; separation operations; environmental concerns; and waste management. (FI)

Ferrell, J.M. (comp.)

1991-01-01T23:59:59.000Z

262

New Columbia River Estuary purchases benefit salmon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the mouth of the Columbia River to permanently protect riverside habitat for Northwest fish and wildlife, including threatened and endangered salmon and steelhead. The...

263

Preliminary Notice of Violation, Westinghouse Savannah River...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

264

Valuing ecosystem services: A shadow price for net primary production  

E-Print Network [OSTI]

, Boston University, Boston, MA 02215, United States c Center for Energy & Environmental Studies, Boston 2007 We analyze the contribution of ecosystem services to GDP and use this contribution to calculate production per unit output. The rate of technical substitution indicates that the quantity of capital needed

Myneni, Ranga B.

265

INTRODUCTION Coastal ecosystems have been exposed to serious pollution for  

E-Print Network [OSTI]

4010 INTRODUCTION Coastal ecosystems have been exposed to serious pollution for several decades because of increased human activity. Modern agriculture is a major contributor to coastal pollution levels of pollution and potentially harming marine organisms (Banerjee et al., 1996). Some organisms

Alvarez, Nadir

266

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America  

E-Print Network [OSTI]

ORIGINAL ARTICLE Ecosystem services and hydroelectricity in Central America: modelling service services provided to the Costa Rican and Nicaraguan hydroelectric sectors, which are crucial sectors for the conservation and restoration of forests for the services they provide to the hydroelectric sector. As such

Paris-Sud XI, Université de

267

REVIEW PAPER Ecosystem Impacts of Geoengineering: A Review for Developing  

E-Print Network [OSTI]

REVIEW PAPER Ecosystem Impacts of Geoengineering: A Review for Developing a Science Plan Lynn M September 2011 / Accepted: 31 January 2012 / Published online: 20 March 2012 Abstract Geoengineering methods and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon

Jackson, Robert B.

268

Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report  

E-Print Network [OSTI]

net C uptake by terrestrial Arctic ecosystems. Predicting the fate of permafrost- sequestered carbon of these changes in the carbon cycle will depend on climate-driven changes in Arctic biogeochemical, vegetation, and hydrological processes, creating a critical feedback loop. A goal of the NGEE project is to assess the CO2

269

Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau  

E-Print Network [OSTI]

RESEARCH PAPER Carbon dynamics of terrestrial ecosystems on the Tibetan Plateau during the 20th tundra to evergreen tropics. Its soils are dominated by permafrost and are rich in organic carbon. Its, the carbon dynamics of the Tibetan Plateau have not been well quantified under changes of climate and per

Xiao, Jingfeng

270

Integrated Water, Atmosphere, Ecosystems, Education and Research Program  

E-Print Network [OSTI]

I-WATER Integrated Water, Atmosphere, Ecosystems, Education and Research Program #12;I Graduate Education and Research Traineeship program ¤ IGERT intends to ¤ meet the challenges of educating U a cultural change in graduate education by establishing innovative new models for graduate education

271

Regional Management of Mediterranean Ecosystems in Spain1  

E-Print Network [OSTI]

Regional Management of Mediterranean Ecosystems in Spain1 Jose A. Carrera, Estanislao de Simon Conservacion de la Naturaleza), Madrid, Spain. Abstract: Management of the fragile and greatly modified level studies on reforestation, hydrol- ogy, and desert control. Most of Spain has a typical

Standiford, Richard B.

272

BEE 371, Physical Hydrology for Ecosystems Spring 2007  

E-Print Network [OSTI]

BEE 371, Physical Hydrology for Ecosystems Spring 2007 Credit: 3 hours Catalogue description: This is an introduction to fundamental hydrology emphasizing physical hydrological processes and the roles interactions among hydrology, ecology, biogeochemistry, and human activities. This course focuses on surface and near

Walter, M.Todd

273

BEE 3710: Syllabus Spring 2013 Physical Hydrology for Ecosystems  

E-Print Network [OSTI]

BEE 3710: Syllabus Spring 2013 01/21/13 Physical Hydrology for Ecosystems BEE 3710 www.hydrology: Physical Hydrology, second edition. S. Lawrence Dingman. 2002. Prentice Hall. pp. 600. Meeting: TR 9 to fundamental hydrology emphasizing physical hydrological processes and the interactions among hydrology

Walter, M.Todd

274

"Green Gold" pasture ecosystem management programme 16 .06.2008  

E-Print Network [OSTI]

desertification process; B) May affect economic and social resilience and further sustainable socio-economic right and organizations 5. Economic mechanisms of Self- governing Organizations "Green Gold" pasture to the changing conditions. "Green Gold" pasture ecosystem management programme 8 Community Development Processes

275

Ecosystem Respiration in a Cool Temperate Bog Depends on Peat  

E-Print Network [OSTI]

Ecosystem Respiration in a Cool Temperate Bog Depends on Peat Temperature But Not Water Table P-summer (July-August). As anticipated, there was a strong relationship between ER and peat temperatures (r2 = 0-table depth (r2 = 0.11). A laboratory incubation of peat cores at different moisture contents showed that CO2

Roulet, Nigel T.

276

Sensors for ecology Towards integrated knowledge of ecosystems  

E-Print Network [OSTI]

Sensors for ecology Towards integrated knowledge of ecosystems CNRS Institut Ã?cologie et scales. This book provides an overview of current sensors for ecology and makes a strong case of practical ecological applications, this text is meant to be an invaluable resource for students, researchers

van Tiggelen, Bart

277

A new way to study the changing Arctic ecosystem  

ScienceCinema (OSTI)

Berkeley Lab scientists Susan Hubbard and Margaret Torn discuss the proposed Next Generation Ecosystem Experiment, which is designed to answer one of the most urgent questions facing researchers today: How will a changing climate impact the Arctic, and how will this in turn impact the planet's climate? More info: http://newscenter.lbl.gov/feature-stories/2011/09/14/alaska-climate-change/

Hubbard, Susan

2013-05-29T23:59:59.000Z

278

Interactive Visualization of Complex Plant Ecosystems Oliver Deussen1  

E-Print Network [OSTI]

a method for interactive rendering of large outdoor scenes. Complex polygonal plant models and whole plant most of the geometry drastically. With our system, we are able to interactively render very complex naturally. The importance of interactive yet realistic rendering of these very complex ecosystem models

Reiterer, Harald

279

Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on  

E-Print Network [OSTI]

to determine how trees affect the behavior of these nutrients in soil water, both during growth and afterTree Harvest in an Experimental Sand Ecosystem: Plant Effects on Nutrient Dynamics and Solute Sciences/US Department of Agriculture, Washington State University, Pullman, Washington 99164, USA; 4 USDA

Vermont, University of

280

Seasonal patterns in energy partitioning of two freshwater marsh ecosystems  

E-Print Network [OSTI]

). The study period included several wet and dry seasons and variable water levels, allowing us to gain better and affect the magnitude of seasonal change in water levels through water loss as LE (evapotranspiration (ET that produce considerable variation in the hydrologic cycle, affecting nutrient delivery, ecosystem primary

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Climate change-induced shifts in fire for Mediterranean ecosystems  

E-Print Network [OSTI]

RESEARCH PAPER Climate change-induced shifts in fire for Mediterranean ecosystems Enric Batllori1 Climate change, climate uncertainty, fire-climate relationship, fire shifts, Mediterranean biome Mediterranean biome and identify potential shifts in fire activity under an ensemble of global climate

Moritz, Max A.

282

Fire and Thinning Effects on Mixed-Conifer Ecosystems  

E-Print Network [OSTI]

for low-intensity underburns but is now estimated to be over 600 years. · Tree density has dramatically out of a key question raised in the Sierra Nevada Ecosystem Project: Critical Findings Section, 1996. · Old-growth has fairly stable carbon and nutrient pools. · Old forest conditions are often what

North, Malcolm

283

Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance  

E-Print Network [OSTI]

Invited Paper: Wireless Sensor Networks for Ecosystem Monitoring & Port Surveillance A. Mansour*1 of the most up-to-date innovations in sensor technology and sensor networks, our current project should as well as the second phase of the project which consists in analyzing living underwater micro

Paris-Sud XI, Université de

284

Functional consequences of realistic biodiversity changes in a marine ecosystem  

E-Print Network [OSTI]

Functional consequences of realistic biodiversity changes in a marine ecosystem Matthew E. S, 2007) Declines in biodiversity have prompted concern over the conse- quences of species loss the functional consequences of realistic, nonrandom changes in biodiversity. Instead, most designs have used

Brody, James P.

285

Restoration of ecosystem services and biodiversity: conflicts and  

E-Print Network [OSTI]

, explicitly link the conservation of biodiversity with the provision of ecosys- tem services to support services might be at the expense of biodiversity conservation [8,9], whereas others have suggestedRestoration of ecosystem services and biodiversity: conflicts and opportunities James M. Bullock1

Rey Benayas, José María

286

Ecosystem-Service Science and the Way Forward for Conservation  

E-Print Network [OSTI]

and enjoying traction in places where ethical argu- ments for biodiversity conservation are given short shriftEditorial Ecosystem-Service Science and the Way Forward for Conservation Conservation biology began life as a crisis discipline, its central tenet to understand and help reverse losses of biodiversity

Vermont, University of

287

Methane in lakes and wetlands Microbiological production, ecosystem  

E-Print Network [OSTI]

Methane in lakes and wetlands Microbiological production, ecosystem uptake, climatological significance LAKES AND WETLANDS ­ A RELEVANT METHANE SOURCE Lakes and other wetlands are an important source of methane, the third most important greenhouse gas in the atmosphere. However, the absolute contribution

Mühlemann, Oliver

288

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations  

E-Print Network [OSTI]

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations R E B E C C and lit- ter decomposition varied between Short Rotation Coppice (SRC) willow bioenergy plantations., 2009). Willow (Salix spp) short rotation coppice (SRC) is one of the most widely planted second

289

Original article Nutrient cycling in deciduous forest ecosystems  

E-Print Network [OSTI]

Castanea sativa chestnut coppice located in the Sierra de Gata mountains (Cen- tral System, western Spain coppice lie in the fact that in the latter ecosystem potentially more N, P, K, Mg, Na and Mn return). Additionally, the relative importance of some bioelements (N, P, K and Mn) in the chestnut coppice is different

Paris-Sud XI, Université de

290

Dispersants Forum: Gulf of Mexico Oil Spill & Ecosystem Science  

E-Print Network [OSTI]

Dispersants Forum: Gulf of Mexico Oil Spill & Ecosystem Science Conference What have we & Restoration, Gulf of Mexico Disaster Response Center 2.3. Characterizing Dispersant and Dispersed Oil Effects The content for this workshop was developed in cooperation with the Gulf of Mexico Research Initiative (Go

New Hampshire, University of

291

ECOSYSTEM COMPONENT CHARACTERIZATION 461 Failing or nearby septic tank systems  

E-Print Network [OSTI]

ECOSYSTEM COMPONENT CHARACTERIZATION 461 · Failing or nearby septic tank systems · Exfiltration from sanitary sewers in poor repair · Leaking underground storage tanks and pipes · Landfill seepage or natural environment Leaks from underground storage tanks and pipes are a common source of soil

Pitt, Robert E.

292

Restoring Stream Ecosystems: Lessons from a Midwestern State  

E-Print Network [OSTI]

Restoring Stream Ecosystems: Lessons from a Midwestern State Ashley H. Moerke1,2 and Gary A. Lamberti1 Abstract Reach-scale stream restorations are becoming a common approach to repair degraded and nature of reach-scale stream restorations in this midwestern U.S. state. For 10 attempted restorations

Lamberti, Gary A.

293

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem  

E-Print Network [OSTI]

Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

White, Luther

294

Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem  

E-Print Network [OSTI]

#12;Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem John R. Spear*, Jeffrey J of organisms of the kinds that derive energy for primary productivity from the oxidation of molecular hydrogen of energy for primary production in the Yellowstone high-temperature ecosys- tem. Hydrogen concentrations

295

Ecosystem recovery after climatic extremes enhanced by genotypic diversity  

E-Print Network [OSTI]

Ecosystem recovery after climatic extremes enhanced by genotypic diversity Thorsten B. H. Reusch with such climatic extremes is a question central to contem- porary ecology and biodiversity conservation. Previous, and it may buffer against extreme climatic events. In a manipulative field experiment, increasing

Myers, Ransom A.

296

Main Ecosystem Characteristics and Distribution of Wetlands in Boreal and  

E-Print Network [OSTI]

9 Main Ecosystem Characteristics and Distribution of Wetlands in Boreal and Alpine Landscapes. Nilsson and J. Svensson Swedish University of Agricultural Sciences Sweden 1. Introduction Wetlands filters in the landscape. Many kinds of wetlands and peatlands can be found, each with a particular

297

Development and application of mass-balanced ecological network models for kelp forest ecosystems  

E-Print Network [OSTI]

Ecological network models for kelp forest ecosystems . . 1.23 Ecosystem-wide e?ects of giant kelp, Macrocystis pyrifera,3.2.6 Characterization of giant kelp biomass density

Beas, Rodrigo

2014-01-01T23:59:59.000Z

298

Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types  

E-Print Network [OSTI]

Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types surface, including radiation balance, energy partitioning, aerodynamic characteristics, leaf area index records of the surface energy balance are currently available for grassland ecosystems, especially

Chen, Jiquan

299

Application of conditional sampling for measuring ecosystem-scale carbon dioxide exchange in coastal wetlands  

E-Print Network [OSTI]

and seasonal carbon cycles in these ecosystems as well as the response of these systems to environmental change. One convenient method for continuously measuring CER in remote ecosystems is tower-based conditional sampling. With conditional sampling, CER...

Cobos, Douglas Russell

2012-06-07T23:59:59.000Z

300

SciTech Connect: Synthesis of Scrub-Oak Ecosystem Responses to...  

Office of Scientific and Technical Information (OSTI)

Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2 Citation Details In-Document Search Title: Synthesis of Scrub-Oak Ecosystem Responses to Elevated CO2 This report...

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Community Page A Holistic Approach to Marine Eco-Systems Biology  

E-Print Network [OSTI]

Community Page A Holistic Approach to Marine Eco-Systems Biology Eric Karsenti1 *, Silvia G. Acinas-year study of the global ocean ecosystem aboard the ship Tara. A unique sampling programme encompass

Sullivan, Matthew B.

302

Methane in lakes and wetlands -Microbiological production, ecosystem uptake, climatological significance  

E-Print Network [OSTI]

1 Methane in lakes and wetlands - Microbiological production, ecosystem Zürcher, Fortunat Joos Global methane emissions from wet ecosystems 9:50 - 10 Were tropical wetlands C4-dominated during the glacial? A view from methane

Mühlemann, Oliver

303

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT  

SciTech Connect (OSTI)

The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

2012-05-31T23:59:59.000Z

304

Three Rivers Builders The Three Rivers House Project Summary  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)TechnologyPhoenix,Further ThirdDOEThree Rivers

305

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network [OSTI]

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

306

Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas  

E-Print Network [OSTI]

and pollution of coastal watersheds can have far-reaching effects on marine ecosystems, for example, the Gulf of Mexico ‘‘

2009-01-01T23:59:59.000Z

307

TECHNICAL EVALUATION OF THE INTERACTION OF GROUNDWATER WITH THE COLUMBIA RIVER AT THE DEPARTMENT OF ENERGY HANFORD SITE 100-D AREA  

SciTech Connect (OSTI)

Groundwater beneath much of Hanford's 100 Areas is contaminated with hexavalent chromium (Cr{sup +6}) as a consequence of treating reactor cooling water to prevent corrosion. Several treatment systems are in place to remove Cr{sup +6} from the groundwater; however, these systems currently do not reduce Cr{sup +6} to concentrations below aquatic standards. Of concern is the transport of Cr{sup +6} to areas within the channel of the river, as sensitive species inhabit the river and its associated transition zone. The aquatic standard for Cr{sup +6} is currently 11 ug/l under the Record of Decision (ROD) for Interim Action and Department of Energy (DOE) currently plans to pursue remediation of the groundwater to achieve the 11 ug/l standard. Because the compliance wells used to monitor the current remediation systems are located some distance from the river, they may not provide an accurate indication of Cr{sup +6} concentrations in the water that reaches the riverbed. In addition, because salmon spawning areas are considered a high priority for protection from Hanford contaminants, it would be advantageous to understand (1) to what extent Cr{sup +6} discharged to the near-shore or river ecosystems is diluted or attenuated and (2) mechanisms that could mitigate the exposure of the river ecosystems to the discharging Cr{sup +6}. The current concentration target for Cr{sup +6} at near-river groundwater monitoring locations is 20 {micro}g/L; it is assumed that this groundwater mixes with river water that contains virtually no chromium to meet Washington Department of Ecology's (Ecology) water quality standard of 10 {micro}g/L in the river environment. This dynamic mixing process is believed to be driven by daily and seasonal changes in river stage and groundwater remediation system operations, and has been validated using analytical data from numerous groundwater samples obtained adjacent to and within the banks of the river. Although the mean mixing factor of river water and site groundwater in this zone has been estimated to be equal parts of groundwater and river water, a wide range of mixing ratios likely occurs at various times of the day and year. The degree of mixing and dilution appears to be greatly influenced by the river stage and other groundwater/surface water interaction. The extent of mixing, thus, has implications for the design and operation of the groundwater remediation systems. Improved understanding of this 'dilution' mechanism is needed to design an optimum 'systems approach' to accelerate remediation of the near-shore contaminant plumes. More information on the pathway from near-river mapped plumes to riverbed receptor locations is also needed to develop a defensible proposed plan for a future ROD for final remedial action of contaminated groundwater. In April 2008, an expert panel of scientists was convened to review existing information and provide observations and suggestions to improve the current understanding of groundwater surface water interactions in the 100 Areas (primarily focusing on 100-D Area), and to identify what additional analyses or approaches may provide critical information needed to design and implement remediation systems that will minimize impacts to river aquatic systems. Specific objectives provided to the panel included: (1) comment on approaches and methods to improve the current understanding of groundwater-surface water interactions, specifically how contaminated groundwater enters the riverbed and how this relates to remediation of chromate in the groundwater in the 100 Areas; (2) evaluate past and current data collection methods, data analysis techniques, assumptions, and groundwater transport and mixing mechanisms; (3) evaluate the current monitoring network (monitoring wells, aquifer tubes, and shoreline/river monitoring); (4) evaluate the role played by modeling; and (5) suggest additional research to fill data gaps and perform modeling.

PETERSEN SW

2008-11-05T23:59:59.000Z

308

BIOTROPICA 28(4a): 414-423 1996 Introduction: Disturbance and Caribbean Ecosystems1  

E-Print Network [OSTI]

BIOTROPICA 28(4a): 414-423 1996 Introduction: Disturbance and Caribbean Ecosystems1 Jess K in Caribbean ecosystems. Most (11) of the articles describe the responses of Caribbean forests to hurricane of the comparative responses of Caribbean ecosystems to different disturbances. Finally, we identify those areas

Willig, Michael

309

GLOBAL CHANGE ECOLOGY -ORIGINAL RESEARCH Ecosystems effects 25 years after Chernobyl: pollinators,  

E-Print Network [OSTI]

GLOBAL CHANGE ECOLOGY - ORIGINAL RESEARCH Ecosystems effects 25 years after Chernobyl: pollinators, fruit abundance and abundance of frugivores. Given that the Chernobyl disaster happened 25 years ago of a suppressed pollinator community on ecosystem functioning. Keywords Chernobyl Á Ecosystem functioning Á Fruits

Mousseau, Timothy A.

310

GLOBAL CHANGE ECOLOGY -ORIGINAL RESEARCH Ecosystems effects 25 years after Chernobyl: pollinators,  

E-Print Network [OSTI]

GLOBAL CHANGE ECOLOGY - ORIGINAL RESEARCH Ecosystems effects 25 years after Chernobyl: pollinators, pollinator abundance, fruit abundance and abundance of frugivores. Given that the Chernobyl disaster happened of a suppressed pollinator community on ecosystem functioning. Keywords Chernobyl Á Ecosystem functioning Á Fruits

Mousseau, Timothy A.

311

Utilization of Biomass in Mediterranean-Type Ecosystems: A Summary and Synthesis1  

E-Print Network [OSTI]

Utilization of Biomass in Mediterranean-Type Ecosystems: A Summary and Synthesis1 C. Eugene Conrad of Mediterranean- type ecosystems to supply biomass as a supplemen- tal source of energy is a natural result to less than 25° C. Also, wet-season precip- itation approaches 1000 mm. Biomass from such ecosystems

Standiford, Richard B.

312

This Page Intentionally Left Blank Next-Generation Ecosystem Experiments (NGEE Arctic)  

E-Print Network [OSTI]

Lincoln #12;This Page Intentionally Left Blank #12;#12;Next-Generation Ecosystem Experiments--Arctic iv#12;This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments (NGEE Arctic This Page Intentionally Left Blank #12;Next-Generation Ecosystem Experiments--Arctic Contents v CONTENTS

313

A Community on Ecosystem Services Linking Science, Practice and Decision Making  

E-Print Network [OSTI]

, and on topics related to urban ecosystem services and their valuation. This conference will once again provideACES 2014 A Community on Ecosystem Services Linking Science, Practice and Decision Making December, DC, USA 1 Welcome to ACES 2014! On behalf of A Community on Ecosystem Services (ACES) and our

Florida, University of

314

Estimating the economic value of cultural ecosystem services in an urbanizing area using hedonic pricing  

E-Print Network [OSTI]

Keywords: Ecosystem services Economic valuation Hedonic pricing Spatial econometrics a b s t r a c t A need. These include production function methods in which an ecosystem service or amenity is viewed as an inputEstimating the economic value of cultural ecosystem services in an urbanizing area using hedonic

Fried, Jeremy S.

315

Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year  

E-Print Network [OSTI]

, such as temperature anomalies, on NEE and carbon sequestration of ecosystems at interannual timescales have beenLETTERS Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year , Yiqi Luo5 & David S. Schimel6 Terrestrial ecosystems control carbon dioxide fluxes to and from

Cai, Long

316

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger  

E-Print Network [OSTI]

Carbon Sequestration in Terrestrial Ecosystems (CSiTE) PRINCIPAL INVESTIGATOR: Stan D. Wullschleger://csite.eds.ornl.gov PROJECT DESCRIPTION The Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project conducts research of switchgrass growing in the field. #12;Carbon Sequestration in Terrestrial Ecosystems (CSiTE) tion of inputs

317

Hood River Passive House, Hood River, Oregon (Fact Sheet)  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

Not Available

2014-02-01T23:59:59.000Z

318

Lesson Learned by Savannah River Site Activity-level Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Bonnie Barnes, Savannah River Remediation. Work Planning and Control at Savannah River Remediation.

319

Savannah River Tank Waste Residuals  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1SandraSavannah River Savannah

320

Ecotoxicology | Savannah River Ecology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It is the mission ofEconomicSavannah River

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Columbia River Treaty Review #2 - April 2009.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Columbia River Treaty has provided signifi cant benefi ts to the United States and Canada through coordinated river management by the two countries. It remains the standard...

322

PIA - Savannah River Nuclear Solutions (SRNS) Human Resource...  

Office of Environmental Management (EM)

Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear Solutions (SRNS) Human Resource Management System (HRMS) PIA - Savannah River Nuclear...

323

CRAD, Engineering - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System...

324

CRAD, Conduct of Operations - Office of River Protection K Basin...  

Broader source: Energy.gov (indexed) [DOE]

Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System May 2004 A...

325

CRAD, Management - Office of River Protection K Basin Sludge...  

Broader source: Energy.gov (indexed) [DOE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste System CRAD,...

326

CRAD, Occupational Safety & Health - Office of River Protection...  

Broader source: Energy.gov (indexed) [DOE]

K Basin Sludge Waste System CRAD, Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Office of River Protection K Basin Sludge Waste...

327

PIA - Savannah River Nuclear Solution SRNS ProRad Environment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management PIA - Savannah River Nuclear Solution SRNS ProRad Environment Management...

328

Independent Oversight Follow-up Review, Savannah River National...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River National Laboratory - January 2012 Independent Oversight Follow-up Review, Savannah River National Laboratory - January 2012 January 2012 Follow-up Review of...

329

PIA - Savannah River Operations Office Executive Commitment Action...  

Energy Savers [EERE]

Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations Office Executive Commitment Action Tracking System PIA - Savannah River Operations...

330

Independent Activity Report, Savannah River Site - May 2010 ...  

Broader source: Energy.gov (indexed) [DOE]

May 2010 Independent Activity Report, Savannah River Site - May 2010 May 2010 Savannah River Site Salt Waste Processing Facility Construction Site Walkthrough The U.S. Department...

331

Independent Activity Report, Savannah River Site - June 2010...  

Broader source: Energy.gov (indexed) [DOE]

June 2010 Independent Activity Report, Savannah River Site - June 2010 June 2010 Savannah River Site Salt Waste Processing Facility Construction Site Orientation Visit The U.S....

332

Savannah River Remediation Donates $10,000 to South Carolina...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Donates 10,000 to South Carolina State Nuclear Engineering Program Savannah River Remediation Donates 10,000 to South Carolina State Nuclear...

333

Independent Oversight Review, Savannah River Site - July 2011...  

Broader source: Energy.gov (indexed) [DOE]

Independent Oversight Review, Savannah River Site - July 2011 July 2011 Review of Electrical System Configuration Management and Design Change Control at the Savannah River...

334

Independent Oversight Review, Savannah River Site Tritium Facilities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

June 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - June 2012 June 2012 Review of the Savannah River Site Tritium Facilities Implementation...

335

Independent Oversight Review, Savannah River Site Tritium Facilities...  

Energy Savers [EERE]

Savannah River Site Tritium Facilities - December 2012 Independent Oversight Review, Savannah River Site Tritium Facilities - December 2012 December 2012 Review of Site...

336

The investigation of anomalous magnetization in the Raft River...  

Open Energy Info (EERE)

River valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: The investigation of anomalous magnetization in the Raft River...

337

CRAD, Emergency Management - Office of River Protection K Basin...  

Energy Savers [EERE]

CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

338

allegheny river: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by meandering rivers Geosciences Websites Summary: Numerical simulations of bedrock valley evolution by meandering rivers with variable bank material of many landscapes, and...

339

PIA - Savannah River Nuclear Solution SRNS Electronic Document...  

Office of Environmental Management (EM)

Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear Solution SRNS Electronic Document Workflow RECORDS System (EDWS) PIA - Savannah River Nuclear...

340

Savannah River Remediation Intern Sees Nuclear Industry as Job...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity Savannah River Remediation Intern Sees Nuclear Industry as Job Opportunity July 9, 2012 - 10:00am Addthis...

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oversight Reports - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

April 22, 2013 Independent Activity Report, Savannah River Site - March 2013 Oversight Scheduling an Operational Awareness at the Savannah River Site HIAR-SRS-2013-03-25...

342

OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP)  

E-Print Network [OSTI]

1 OHIO RIVER SHORELINE, PADUCAH, KENTUCKY, (PADUCAH, KENTUCKY LFPP) RECONSTRUCTION PROJECT 22 June and private infrastructure to Paducah, Kentucky, from flooding by the Ohio River through reconstruction

US Army Corps of Engineers

343

PIA - Savannah River Nuclear Solutions Training Records and Informatio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River Nuclear Solutions Training Records and Information Network (TRAIN) PIA - Savannah River...

344

PIA - Savannah River Nuclear Solutions Badge Request and Site...  

Office of Environmental Management (EM)

Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear Solutions Badge Request and Site Personnel Roster Systems PIA - Savannah River Nuclear...

345

California's Russian River: A Conservation Partnership  

E-Print Network [OSTI]

. Improve weather and river flow forecasting to maximize water captured for reservoirs and fisheries support forecast-based reservoir operations and allow for improved water management. It may also provide's Russian River Habitat Blueprint #12;Restore floodplain habitat through reclamation of abandoned gravel

346

CedarCreekanticlineCedarCreekanticline Yellowstone River  

E-Print Network [OSTI]

Principal Aquifer Systems in the Williston and Powder River Structural Basins, United States and Canada #12;Cover. Conceptual block diagram of groundwater flow in the Williston structural basin. #12;Conceptual Model of the Uppermost Principal Aquifer Systems in the Williston and Powder River Structural Basins

347

Savannah River Site Environmental Report for 1998  

SciTech Connect (OSTI)

The mission at the Savannah River Site (SRS) is focused primarily on support of the national defense, nonproliferation, and environmental cleanup. SRS-through its prime operating contractor, Westinghouse Savannah River Company-continues to maintain a comprehensive environmental monitoring program.

Arnett, M.

1999-06-09T23:59:59.000Z

348

Restoring our Rivers By Bridget Avila  

E-Print Network [OSTI]

, the first-ever comprehensive database of more than 37,000 stream and restoration projects nationwideRestoring our Rivers By Bridget Avila Maryland has the largest number of river restoration projects restoration and conservation. On a sweltering July afternoon, an assortment of men and women clad in T

Palmer, Margaret A.

349

River Influences on Shelf Ecosystems: Introduction and Synthesis1 , B.M. and R.M. Kudela2  

E-Print Network [OSTI]

.M. Kudela2 , J.D. Nash3 , K.W. Bruland2 , W.T. Peterson4 , P.4 MacCready1 , E.J. Lessard1 , D.A. Jay5 , N

Hickey, Barbara

350

Nitrogen is a natural and necessary part of every healthy ecosystem, but too much nitrogen in our rivers,  

E-Print Network [OSTI]

), sewage treatment plants, and animal ma- nure. Once in water, nitrogen can change in chemical form

Torgersen, Christian

351

Relative importance of multiple factors on terrestrial loading of DOC to Arctic river networks  

SciTech Connect (OSTI)

Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to controlling carbon fluxes between the land surface and the atmosphere. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that the pan-arctic watershed has contributed, on average, 32 Tg C/yr of DOC to the Arctic Ocean over the 20th century with most coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of increases in air temperatures and precipitation. These increases have been partially compensated by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both compensated and enhanced concurrent effects on hydrology to influence terrestrial DOC loading. Future increases in riverine DOC concentrations and export may occur from warming-induced increases in terrestrial DOC production associated with enhanced microbial metabolism and the exposure of additional organic matter from permafrost degradation along with decreases in water yield associated with warming-induced increases in evapotranspiration. Improvements in simulating terrestrial DOC loading to pan-arctic rivers in the future will require better information on the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

Kicklighter, David W. [Ecosystem Center, The] [Ecosystem Center, The; Hayes, Daniel J [ORNL] [ORNL; Mcclelland, James W [University of Texas] [University of Texas; Peterson, Bruce [Marine Biological Laboratory] [Marine Biological Laboratory; Mcguire, David [University of Alaska] [University of Alaska; Melillo, Jerry [Marine Biological Laboratory] [Marine Biological Laboratory

2014-01-01T23:59:59.000Z

352

Rescuing ecosystems from extinction cascades through compensatory perturbations  

E-Print Network [OSTI]

Food-web perturbations stemming from climate change, overexploitation, invasive species, and habitat degradation often cause an initial loss of species that results in a cascade of secondary extinctions, posing considerable challenges to ecosystem conservation efforts. Here we devise a systematic network-based approach to reduce the number of secondary extinctions using a predictive modeling framework. We show that the extinction of one species can often be compensated by the concurrent removal or population suppression of other specific species, which is a counterintuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not evident from local predator-prey relationships. In numerous cases, even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. These compensatory perturbations only exploit resources available in the system, and illustrate the potential of human intervention combined with predictive modeling for ecosystem management.

Sagar Sahasrabudhe; Adilson E. Motter

2011-03-08T23:59:59.000Z

353

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company  

SciTech Connect (OSTI)

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-03-26T23:59:59.000Z

354

Annual Tour Ready to Explore New Mexico's Lower Pecos River  

E-Print Network [OSTI]

Annual Tour Ready to Explore New Mexico's Lower Pecos River By Steve Ress The itinerary is set and the seats have been filled for an early June bus tour to New Mexico's lower Pecos River basin compacts on Nebraska's Republican River and New Mexico's Pecos River to see what can be learned from

Nebraska-Lincoln, University of

355

Columbia-Snake River Irrigators Association Eastern Oregon Irrigators Association  

E-Print Network [OSTI]

to river flows, reservoir elevations and hydroelectric power production. Its results are currently being

356

Independent Oversight Inspection, Savannah River Site, Summary Report- February 2004  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety, and Health Management and Emergency Management at the Savannah River Site

357

Pecos River Watershed Protection Plan Update  

E-Print Network [OSTI]

that connects the pump, distribution tank and holding ponds. As of April 15, 2013, three of the ponds were completed and have been lined with a synthetic liner to prevent seepage and leakage as this was a major problem in early projects. Pecos River WPP...Pecos River Watershed Protection Plan Update Funding Provided by the Texas State Soil and Water Conservation Board through a Clean Water Act §319(h) Nonpoint Source Grant from the U.S Environmental Protection Agency TR-447 October 2013 Pecos River...

Gregory, L.; Hauck, L.; Blumenthal, B.; Brown, M.; Porter, A.

2013-01-01T23:59:59.000Z

358

EA-1981: Bonneville-Hood River Transmission Line Rebuild, Multnomah and Hood River Counties, Oregon  

Broader source: Energy.gov [DOE]

Bonneville Power Administration (BPA) is preparing an EA to assess potential environmental impacts of a proposal to rebuild its 24-mile long, 115 kilovolt Bonneville-Hood River transmission line. The existing line runs between the Bonneville Powerhouse at Bonneville Dam in Multnomah County, Oregon, and BPA's existing Hood River Substation in Hood River County, Oregon. The project would include replacing structures and conductor wires, improving access roads, and constructing new access roads or trails where needed.

359

River Data Package for the 2004 Composite Analysis  

SciTech Connect (OSTI)

Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.

Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.

2004-08-01T23:59:59.000Z

360

Scenic River Protection Policy, Minnesota Wild and Scenic Rivers Act (Minnesota)  

Broader source: Energy.gov [DOE]

The State aims to preserve and protect Minnesota rivers and adjacent lands with outstanding scenic, recreational, natural, historical, scientific and similar values. Chapter 103F defines...

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Savannah River Site Environmental Report for 1997  

SciTech Connect (OSTI)

The mission at the Savannah River Site has changed from the production of nuclear weapons materials for national defense to the management of waste, restoration of the environment, and the development of industry in and around the site.

Arnett, M.W.; Mamatey, A.R. [eds.

1998-08-01T23:59:59.000Z

362

Delaware River Basin Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

363

Savannah River Technology Center, monthly report  

SciTech Connect (OSTI)

This is the monthly report to detail the research currently being conducted at the Savannah River Technology Center. The areas of research are in Tritium, Seperation processes, Environmental Engineering, and Waste Management.

Not Available

1994-04-01T23:59:59.000Z

364

Microsoft Word - CX_Okanogan_River.docx  

Broader source: Energy.gov (indexed) [DOE]

Confederated Tribes for the purchase of two parcels of land along the Okanogan River. Fish and Wildlife Project No.: 2007-224-00 Categorical Exclusion Applied (from Subpart D, 10...

365

Lower Columbia River Estuary Partnership. The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of land on the north side of the Columbia River in Cowlitz County, Wash., to protect fish habitat. An additional 75 acres of land will be donated by the Port of Longview. BPA...

366

Clinch River MRS Task Force Recommendations  

Broader source: Energy.gov [DOE]

The Clinch River HRS Task Force was appointed in July 1985 by the Roane County Executive and the Oak Ridge City Council to evaluate the Monitored Retrievable Storage (MRS) facility proposed by the...

367

Flint River Drought Protection Act (Georgia)  

Broader source: Energy.gov [DOE]

The purpose of the Flint River Drought Protection Act is to maintain in-stream flow in times of drought by providing incentives for farmers to take acres out of irrigation. It allows Environmental...

368

Project Management Institute Highlights Savannah River Nuclear...  

Office of Environmental Management (EM)

Site's H Canyon Work Ensures Future Missions for Facility Restoration of a 90-acre powerhouse ash basin at the Savannah River Site, pictured here, is under way as workers remove...

369

Savannah River Site 1991 Road Erosion Inventory.  

SciTech Connect (OSTI)

Final Report. USDA Forest Service, Savannah River, Aiken, SC. 28 pp. Abstract - This paper explains the rationale and results of a 1991 road erosion inventory conducted by members of the USDA Forest Service – Savannah River (FS-SR) and USDA Natural Resources Conservation Service (NRCS). The inventory provided information for the Department of Energy - Savannah River (DOE-SR) to justify the need for developing an erosion and sediment control program with appropriate funding, personnel, and equipment. Federally managed since the early 1950’s, the SRS is located on 198,344 acres (80,301 hectares) in the South Carolina counties of Aiken, Barnwell, and Allendale. Located along the eastern border of the Savannah River, the SRS is located within the Upper and Lower Coastal Plains of South Carolina.

Jones, Cliff.

2007-06-22T23:59:59.000Z

370

The Ecology of the Navasota River, Texas  

E-Print Network [OSTI]

COLLEGE OF AGRICULTURE AND LIFE SCIENCES TR-44 1973 The Ecology of the Navasota River, Texas By: William J. Clark Texas Water Resources Institute Technical Report No. 44 Texas A&M University System...

Clark, W. J.

371

River Falls Municipal Utilities- Distributed Solar Tariff  

Broader source: Energy.gov [DOE]

River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special...

372

River Basins Advisory Commissions (South Carolina)  

Broader source: Energy.gov [DOE]

The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

373

Lumbee River EMC- Residential Weatherization Loan Program  

Broader source: Energy.gov [DOE]

Lumbee River Electric Membership Corporation (LREMC) offers low interest loans to help its residential members increase the energy efficiency of their homes. Loans up to $10,000 are available for...

374

Think water : reconditioning the Malden River  

E-Print Network [OSTI]

The purpose of this thesis is to link water, history and culture through architectural and urban design by researching the potential for the rejuvenation of a neglected industrial site at the edge of a river. The Malden ...

Oda, Kazuyo, 1969-

2003-01-01T23:59:59.000Z

375

Seismic interpretation of the Wind River Mountains  

E-Print Network [OSTI]

SEISMIC INTERPBETATICN OF THE BIND RIVER MOUNTAINS A Thesis DAVID VAN VOORHIS Submitted to the Graduate College of Texas ACM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Auqust 'l982 Majcr Subject...: Geophysics SEISNIC INTERFRETATION OF THE HIND RIVER NOUNTAINS A Thes is by DAVID VAN VOORBIS Approved as to style and content by: (Chairman cf. Committee) (N em ber } m (Head of Department) August l 982 ABSTRACT Seismic Interpretation of the Wind...

Van Voorhis, David

1982-01-01T23:59:59.000Z

376

Columbia River Component Data Gap Analysis  

SciTech Connect (OSTI)

This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

L. C. Hulstrom

2007-10-23T23:59:59.000Z

377

Savannah River Site | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River Site

378

Savannah River Site | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah River

379

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

380

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste management and treatment facilities, (8) Developing and implementing technical solutions to mitigate the impact from substantial1y increased estimates of Na added during the pretreatment of the tank waste solids, This involves a combination of: (1) refining or modifying the flowsheet to reduce the required amount of additional sodium, (2) increasing the overall LAW vitrification capacity, (3) increasing the incorporation of sodium into the LAW glass, or (4) accepting an increase in mission duration, ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks, Key elements of the implementation of this strategy are included within the scope of the Tank Operations Contract, currently in procurement Since 2003, the ORP has conducted over 30 design oversight assessments of the Waste Treatment and Immobilization Plant (WTP). The estimated cost at completion has increased and the schedule for construction and commissioning of the WTP has extended, The DOE, Office of Environmental Management (EM), sanctioned a comprehensive review of the WTP flowsheet, focusing on throughput. In 2005, the TFC completed interim stabilization of the SSTs and as of March 2007, has completed the retrieval of seven selected SSTs. Demonstration of supplemental treatment technologies continues. The ongoing tank waste retrieval experience, progress with supplemental treatment technologies, and changes in WTP schedule led to the FY 2007 TFC baseline submittal in November 2006. The TFC baseline submittal was developed before the WTP schedule was fully understood and approved by ORP, and therefore reflects an earlier start date for the WTP facilities. This System Plan is aligned with the current WTP schedule with hot commissioning beginning in 2018 and full operations beginning in 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of

CERTA PJ

2008-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

E-Print Network 3.0 - assessment columbia river Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: assessment columbia river Page: << < 1 2 3 4 5 > >> 1 352000 Columbia river Basin Fish and Wildlife Program "...the Council is adopting Summary: 352000 Columbia river Basin...

382

Savannah River Ecology Laboratory. Annual technical progress report of ecological research, period ending July 31, 1994  

SciTech Connect (OSTI)

The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) that is managed in conjunction with the University`s Institute of Ecology. The laboratory`s overall mission is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under an M&O contract with the US Department of Energy at the Savannah River Site. Significant accomplishments were made during the year ending July 31, 1994 in the areas of research, education and service. Reviewed in this document are research projects in the following areas: Environmental Operations Support (impacted wetlands, streams, trace organics, radioecology, database synthesis, wild life studies, zooplankton, safety and quality assurance); wood stork foraging and breeding ecology; defence waste processing facility; environmental risk assessment (endangered species, fish, ash basin studies); ecosystem alteration by chemical pollutants; wetlands systems; biodiversity on the SRS; Environmental toxicology; environmental outreach and education; Par Pond drawdown studies in wildlife and fish and metals; theoretical ecology; DOE-SR National Environmental Research Park; wildlife studies. Summaries of educational programs and publications are also give.

Not Available

1994-07-31T23:59:59.000Z

383

Indian River Hydroelectric Project Grant  

SciTech Connect (OSTI)

This Final Technical Report provides a concise retrospective and summary of all facets of the Sheldon Jackson College electrical Infrastructure Renovation portion of the Indian River Hydroelectric Project Grant of the City and Borough of Sitka, Alaska. The Project Overview describes the origins of the project, the original conditions that provided the impetus for the grant funding, how the grant amendment was developed, the conceptual design development, and the actual parameters of the final project as it went out to bid. The Project Overview also describes the ''before and after'' conditions of the project. The Objectives division of this Final Technical Report describes the amendment-funded goals of the project. It also describes the milestones of project development and implementation, as well as, the rationale behind the milestone array. The Description of Activities Performed division of this report provides an in-depth chronological analysis of progressive project implementation. Photographs will provide further illustration of particular functional aspects of the renovation project within project parameters. The Conclusions and Recommendations division of this report provides a comprehensive retrospective analysis of the project.

Rebecca Garrett

2005-04-29T23:59:59.000Z

384

Comparing aquatic and terrestrial grazing ecosystems: is the grass really greener?  

E-Print Network [OSTI]

and kelp forests (Burkepile and Hay 2006). Likewise, in freshwater ecosystems, waterfowl, zooplankton and benthic invertebrates impact the rates of primary production and nutrient regeneration (Lamberti and Resh

Burkepile, Deron

385

Plant Root Characteristics and Dynamics in Arctic Tundra Ecosystems, 1960-2012  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A synthesis of the available literature on tundra root distribution and dynamics, and their role in key ecosystem processes in the Arctic.

Sullivan, Paddy; Sloan, Victoria; Warren, Jeff; McGuire, Dave; Euskirchen, Eugenie; Norby, Richard; Iversen, Colleen; Walker, Anthony; Wullschleger, Stan

386

Environmental genomics reveals a single species ecosystem deep within the Earth  

E-Print Network [OSTI]

Environmental genomics reveals a single species ecosystemMaterial for Environmental genomics reveals a single speciesTechnology Program, DOE Joint Genomics Institute, Berkeley,

Chivian, Dylan

2008-01-01T23:59:59.000Z

387

E-Print Network 3.0 - alpine lake ecosystems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: alpine lake ecosystems Page: << < 1 2 3 4 5 > >> 1 Sustainable Sediment Management of ine oirs considering ecological and economical aspects Summary:...

388

E-Print Network 3.0 - aquatic ecosystem including Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

submergedmacrophytes.Ecosystems9:112. Aquatic Ecology Laboratory at the Lake Erie Center (419) 530-4570; FAX: (419) 530... ... Source: Toledo, University of - Lake...

389

Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas  

E-Print Network [OSTI]

009-9346-0 Climate Change, Coral Reef Ecosystems, andresult- ing from climate change, as evidenced by massmore suscep- tible to climate change stressors (Hughes and

2009-01-01T23:59:59.000Z

390

Litter-Carbon Dynamics: The Importance of Decomposition, Accretion, and Sequestration in Understanding Ecosystem Carbon Cycling.  

E-Print Network [OSTI]

??The atmospheric CO2 concentration has been increasing since the industrial revolution. A proposed mitigation strategy is sequestering carbon (C) in terrestrial ecosystems, either in plant… (more)

Kochsiek, Amy

2010-01-01T23:59:59.000Z

391

E-Print Network 3.0 - agro-ecosystems annual progress Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to allow time... .V. All rights reserved. Keywords: Agro-ecosystem; Bio-indicators; Farming systems; Micro Source: Adl, Sina - Department of Biology, Dalhousie University...

392

2010 U.S. Smart Grid Vendor Ecosystem Report on the companies...  

Broader source: Energy.gov (indexed) [DOE]

Smart Grid vendor ecosystem is an increasingly interdependent web of companies. Vendors of Advanced Metering Infrastructure (AMI) products (meters, communication units, and related...

393

E-Print Network 3.0 - aquatic ecosystems pollution Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for implementing aquatic ecosystem restoration projects pursuant to Section 206 of the Water Resources Development... for Section 206 projects (and separable elements thereof)...

394

E-Print Network 3.0 - aquatic ecosystem restoration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Ecosystem Prediction- Aquatic... In a world where the demand for fresh surface water increases every ... Source: Great Lakes Environmental Research Laboratory, NOAA...

395

E-Print Network 3.0 - agricultural landscapes ecosystem Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

uncertainty in ecosystem and ... Source: Minnesota, University of - Department of Soil, Water and Climate, Biometeorology Group Collection: Environmental Sciences and Ecology 5...

396

E-Print Network 3.0 - affect ecosystem metabolism Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

America Summary: . Stoichiometry of the net ecosystem metabolism in a coastal inlet affected by upwelling. The Ria de Arousa (NW... act as resource subsidies to many...

397

E-Print Network 3.0 - applied ecosystem analysis Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

life cycle assessment analysis (LCA), the article... of the problems with LCA. Linking industrial models with spatially explicit, dynamic and site-specific ecosystem......

398

Climate Change, Coral Reef Ecosystems, and Management Options for Marine Protected Areas  

E-Print Network [OSTI]

009-9346-0 Climate Change, Coral Reef Ecosystems, andresult- ing from climate change, as evidenced by massby direct effects of climate change including ocean warming,

2009-01-01T23:59:59.000Z

399

Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)  

SciTech Connect (OSTI)

Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

Paller, M.

1990-11-01T23:59:59.000Z

400

Restoring a disappearing ecosystem: the Longleaf Pine Savanna.  

SciTech Connect (OSTI)

Longleaf pine (Pinus palustris) savannas of the southeastern United States contain some of the worlds most diverse plant communities, along with a unique complement of wildlife. Their traditionally open canopy structure and rich understory of grasses and herbs were critical to their vigor. However, a long history of land-use practices such as logging, farming, and fire exclusion have reduced this once-widespread ecosystem to only 3 percent of its original range. At six longleaf pine plantations in South Carolina, Tim Harrington with the Pacific Northwest Research Station and collaborators with the Southern Research Station used various treatments (including prescribed burns, tree thinning, and herbicide applications) to alter the forest structure and tracked how successful each one was in advancing savanna restoration over a 14-year period. They found that typical planting densities for wood production in plantations create dense understory shade that excludes many native herbaceous species important to savannas and associated wildlife. The scientists found that although tree thinning alone did not result in sustained gains, a combination of controlled burning, thinning, and herbicide treatments to reduce woody plants was an effective strategy for recovering the savanna ecosystem. The scientists also found that these efforts must be repeated periodically for enduring benefits.

Harrington, Timothy B. [USFS; Miller, Karl V. [University of Georgia; Park, Noreen

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Representation of Dormant and Active Microbial Dynamics for Ecosystem Modeling  

SciTech Connect (OSTI)

Dormancy is an essential strategy for microorganisms to cope with environmental stress. However, global ecosystem models typically ignore microbial dormancy, resulting in notable model uncertainties. To facilitate the consideration of dormancy in these large-scale models, we propose a new microbial physiology component that works for a wide range of substrate availabilities. This new model is based on microbial physiological states and the major parameters are the maximum specific growth and maintenance rates of active microbes and the ratio of dormant to active maintenance rates. A major improvement of our model over extant models is that it can explain the low active microbial fractions commonly observed in undisturbed soils. Our new model shows that the exponentially-increasing respiration from substrate-induced respiration experiments can only be used to determine the maximum specific growth rate and initial active microbial biomass, while the respiration data representing both exponentially-increasing and non-exponentially-increasing phases can robustly determine a range of key parameters including the initial total live biomass, initial active fraction, the maximum specific growth and maintenance rates, and the half-saturation constant. Our new model can be incorporated into existing ecosystem models to account for dormancy in microbially-driven processes and to provide improved estimates of microbial activities.

Wang, Gangsheng [ORNL; Mayes, Melanie [ORNL; Gu, Lianhong [ORNL; Schadt, Christopher Warren [ORNL

2014-01-01T23:59:59.000Z

402

USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH  

SciTech Connect (OSTI)

Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

2007-01-12T23:59:59.000Z

403

Planning the Next Generation of Arctic Ecosystem Experiments  

SciTech Connect (OSTI)

Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

2011-01-01T23:59:59.000Z

404

Lower Red River Meadow Restoration Project : Biennial Report 1996-97.  

SciTech Connect (OSTI)

The Red River has been straightened and the riparian vegetation corridor eliminated in several reaches within the watershed. The river responded by incision resulting in over-steepened banks, increased sedimentation, elevated water temperatures, depressed groundwater levels, reduced floodplain function, and degraded fish habitat. The Lower Red River Meadow Restoration Project is a multi-phase ecosystem enhancement effort that restores natural physical and biological processes and functions to stabilize the stream channel and establish high quality habitats for fish and wildlife. A natural channel restoration philosophy guides the design and on the ground activities, allowing the channel to evolve into a state of dynamic equilibrium. Two years of planning, two years of restoration in Phases I and II, and one year post-restoration monitoring are complete. By excavating new bends and reconnecting historic meanders, Phase I and II channel realignment increased channel length by 3,060 feet, decreased channel gradient by 25 percent, and increased sinuosity from 1.7 to 2.3. Cross-sectional shapes and point bars were modified to maintain deep pool habitat at low flow and to reconnect the meadow floodplain. Improved soil moisture conditions will help sustain the 31,500 native riparian plantings reestablished within these two phases. Overall, short-term restoration performance was successful. Analyses of long-term parameters document either post-restoration baseline conditions or early stages of evolution toward desired conditions. An adaptive management strategy has helped to improve restoration designs, methods, and monitoring. Lessons learned are being transferred to a variety of audiences to advance the knowledge of ecological restoration and wise management of watersheds.

LRK Communications; Wildlife Habitat Institute; Pocket Water, Inc.

2003-07-01T23:59:59.000Z

405

Soil ecosystem functioning under climate change: plant species and community effects  

SciTech Connect (OSTI)

Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.

Kardol, Paul [ORNL; Cregger, Melissa [ORNL; Campany, Courtney E [ORNL; Classen, Aimee T [ORNL

2010-01-01T23:59:59.000Z

406

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Miller, Clay

407

Savannah River Site (SRS) environmental overview  

SciTech Connect (OSTI)

The environmental surveillance activities at and in the vicinity of the Savannah River Site (SRS) (formerly the Savannah River Plant (SRP)) comprise one of the most comprehensive and extensive environmental monitoring programs in the United States. This overview contains monitoring data from routine and nonroutine radiological and nonradiological environmental surveillance activities, summaries of environmental protection programs in progress, a summary of National Environmental Policy Act (NEPA) activities, and a listing of environmental permits (Appendix A) issued by regulatory agencies. This overview provides information about the impact of SRS operations on the public and the environment. The SRS occupies a large area of approximately 300 square miles along the Savannah River, principally in Aiken and Barnwell counties of South Carolina. SRS's primary function is the production of tritium, plutonium, and other special nuclear materials for national defense, for other governmental uses, and for some civilian purposes. From August 1950 to March 31, 1989, SRS was operated for the Department of Energy (DOE) by E. I. du Pont de Nemours Co. On April 1, 1989 the Westinghouse Savannah River Company assumed responsibility as the prime contractor for the Savannah River Site.

O'Rear, M.G. (USDOE Savannah River Operations Office, Aiken, SC (USA)); Steele, J.L.; Kitchen, B.G. (Westinghouse Savannah River Co., Aiken, SC (USA)) (eds.)

1990-01-01T23:59:59.000Z

408

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Miller, Clay

2013-11-15T23:59:59.000Z

409

Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.  

SciTech Connect (OSTI)

This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

A.G. Crook Company; United States. Bonneville Power Administration

1993-07-01T23:59:59.000Z

410

Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program.  

SciTech Connect (OSTI)

The purpose of this document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program, hereafter called 'the Estuary Program'. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows: (1) Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. (2) Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. (3) Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. (4) Maintain the food web to benefit salmonid performance. (5) Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. The goal leads to three primary management questions pertaining to the main focus of the Estuary Program: estuary habitat conservation and restoration. (1) Are the estuary habitat actions achieving the expected biological and environmental performance targets? (2) Are the offsite habitat actions in the estuary improving juvenile salmonid performance and which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives? (3) What are the limiting factors or threats in the estuary/ocean preventing the achievement of desired habitat or fish performance objectives? Performance measures for the estuary are monitored indicators that reflect the status of habitat conditions and fish performance, e.g., habitat connectivity, survival, and life history diversity. Performance measures also pertain to implementation and compliance. Such measures are part of the monitoring, research, and action plans in this estuary RME document. Performance targets specific to the estuary were not included in the 2007 draft Biological Opinion.

Johnson, Gary E.; Diefenderfer, Heida L. (Pacific Northwest National Laboratory)

2008-02-20T23:59:59.000Z

411

Mapping ecosystem functions to the valuation of ecosystem services: implications of species–habitat associations for coastal land-use decisions  

E-Print Network [OSTI]

ecosystem service values that, in turn, will impact coastal land-use decisions. While refining valuation methodsecosystem service values that, in turn, will impact coastal land-use decisions. While refining valuation methods

Sanchirico, James N.; Mumby, Peter

2009-01-01T23:59:59.000Z

412

T.G. Hinton: Radioactive Contaminants in Aquatic Ecosystems | Savannah  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. Department ofRiver Ecology

413

T.G. Hinton: Radioactive Contaminants in Terrestrial Ecosystems | Savannah  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. Department ofRiver

414

T.G. Hinton: Remediation of Radioactively Contaminated Ecosystems |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. Department ofRiverSavannah

415

Long-Term Ecosystem Response to the Exxon Valdez Oil Spill  

E-Print Network [OSTI]

extending now for more than 14 years (2­5). The release of 42 million liters of Alaskan North Slope crudeLong-Term Ecosystem Response to the Exxon Valdez Oil Spill Charles H. Peterson,1 * Stanley D. Rice The ecosystem response to the 1989 spill of oil from the Exxon Valdez into Prince William Sound, Alaska, shows

416

14 Climate control of biological UV exposure in polar and alpine aquatic ecosystems  

E-Print Network [OSTI]

+ ) = the incident solar irradiance in relative energy units; F = factor modifying that flux as a function of ozone14 Climate control of biological UV exposure in polar and alpine aquatic ecosystems Warwick F in these ecosystems may also be more vulnerable to UV toxicity because of the inhibiting effects of cold tempera

Vincent, Warwick F.

417

An Inventory of Ecosystem Service Valuation Micah Effron, NOAA's Office of Program Planning  

E-Print Network [OSTI]

should NOAA value where? What valuation methods should be used? Is a NOAA valuation strategy evenAn Inventory of Ecosystem Service Valuation Studies Micah Effron, NOAA's Office of Program Planning and Integration 5/22/13 #12; What are ecosystem services? How are they valued? NOAA drivers for valuations

418

North Pacific Gyre Oscillation links ocean climate and ecosystem E. Di Lorenzo,1  

E-Print Network [OSTI]

North Pacific Gyre Oscillation links ocean climate and ecosystem change E. Di Lorenzo,1 N Pacific Gyre Oscillation links ocean climate and ecosystem change, Geophys. Res. Lett., 35, L08607, doi:10 to explain physical and biological fluctuations in the Northeast Pacific Ocean [Lynn et al., 1998; Lavaniegos

Paris-Sud XI, Université de

419

Technology Transfer for Ecosystem Management1 Tim O'Keefe2  

E-Print Network [OSTI]

into the "ecosystem management" program. This new program is a belated effort to redirect public forest management). In response to the Thomas report, and growing public pressures for a diverse, sustainable management system management is composed of both biological (ecosystem sustainablitily and diversity) and sociological (public

Standiford, Richard B.

420

EcoGIS GIS Tools for Ecosystem Approaches to Fisheries Management  

E-Print Network [OSTI]

EcoGIS ­ GIS Tools for Ecosystem Approaches to Fisheries Management May 2009 NOAA TechnicalGIS ­ GIS Tools for Ecosystem Approaches to Fisheries Management. NOAA Technical Memorandum NOS NCCOS 75. 38 Fisheries Science Centers, NOAA Fisheries Regional Offices, NatureServe's EBM Tools Network, and other

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ecological Economics 41 (2002) 375392 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services: Integrating  

E-Print Network [OSTI]

synthesis of these concepts in order to address the issue of valuation of ecosystem services. We wantEcological Economics 41 (2002) 375­392 SPECIAL ISSUE: The Dynamics and Value of Ecosystem Services is to elucidate concepts of value and methods of valuation that will assist in guiding human decisions vis

Vermont, University of

2002-01-01T23:59:59.000Z

422

Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global  

E-Print Network [OSTI]

Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass haÃ?1 yrÃ?1 . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least

Zhuang, Qianlai

423

Summary We estimated total ecosystem respiration from a ponderosa pine (Pinus ponderosa Dougl. ex Laws.) plantation  

E-Print Network [OSTI]

Forest ecosystems are important in global carbon cycling be- cause 80% of the carbon stored in terrestrial vegetation is for- est biomass and forest soil contains more than 70% of the world's soil carbon- aged not only for timber and non-timber products, but also for CO2 sequestration. Therefore, ecosystem

Cohen, Ronald C.

424

Linkages between leaf traits and productivity in two resource-limited ecosystems   

E-Print Network [OSTI]

of ecosystem level processes such as nutrient cycling and carbon allocation. To explore the linkages between leaf traits and productivity, we worked in two resource-limited ecosystems (a grassland and a forest), and used leaf traits to understand how species...

Chinchilla Soto, Isabel

2014-06-30T23:59:59.000Z

425

Adaptation policies to increase terrestrial ecosystem resilience: potential utility of a multicriteria approach  

SciTech Connect (OSTI)

Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in the realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.

de Bremond, Ariane; Engle, Nathan L.

2014-03-01T23:59:59.000Z

426

FOR 4110/5159 Ecology and Restoration of the Longleaf Pine Ecosystem  

E-Print Network [OSTI]

FOR 4110/5159 Ecology and Restoration of the Longleaf Pine Ecosystem 3 credits Spring 2013 Instructors: Dr. Debbie Miller, Ph.D. Associate Professor Wildlife Ecology and Conservation 5988 Hwy. 90, Bldg description: History, structure, function and ecological and economic importance of longleaf pine ecosystems

Slatton, Clint

427

NREL Fall 2013 Seminar Series "Using Aquatic Ecosystem Science to Inform Freshwater Resource Use and Sustainability"  

E-Print Network [OSTI]

affected by the combination of physical, biological and chemical transformations within aquatic ecosystems Freshwater Ecosystems" Dec 6 Ted Stets, US Geological Survey Title: "Century of Trends: Historical Perspectives on the Evolution of Water Quality in the US" Dec 13 Brian Bledsoe, CSU's Department of Civil

MacDonald, Lee

428

Lake Ecosystems Nelson G Hairston Jr, Cornell University, Ithaca, New York, USA  

E-Print Network [OSTI]

are inland bodies of water that lack any direct exchange with an ocean. Lake ecosystems are made up water, waste removal, fisheries, agricultural irrigation, industrial activity and recreationLake Ecosystems Nelson G Hairston Jr, Cornell University, Ithaca, New York, USA Gregor F Fussmann

Fussman, Gregor

429

Influence of ocean winds on the pelagic ecosystem in upwelling regions  

E-Print Network [OSTI]

Influence of ocean winds on the pelagic ecosystem in upwelling regions Ryan R. Rykaczewski-rich, subsurface water sustains high produc- tivity in the ocean's eastern boundary currents. These ecosystems.g., poultry, swine, and tuna) industries that depend on the fisheries' landings for income and feed. Because

Kudela, Raphael M.

430

Why Sweat the Small Stuff: the Importance of Microalgae in Hawaiian Stream Ecosystems  

E-Print Network [OSTI]

Why Sweat the Small Stuff: the Importance of Microalgae in Hawaiian Stream Ecosystems MATTHEW L: mljulius@stcloudstate.edu Abstract Microalgae are well known for their importance in aquatic ecosystems and for their utility as environ- mental indicators. These attributes are emphasized here for microalgae, especially

Julius, Matthew L.

431

IT Revolutions in the Industry: From the Command Economy to the eNetworked Industrial Ecosystem  

E-Print Network [OSTI]

IT ­ Revolutions in the Industry: From the Command Economy to the eNetworked Industrial Ecosystem of the traditional hierarchy ­ as backbone of last Century's Industrial Revolution - towards the eNetworked Industrial Ecosystem ­ as backbone for this Century's on-going IT-Revolution. Socio-cultural and economic

Ulieru, Mihaela

432

Predicting and mitigating the global warming potential of agro-ecosystems  

E-Print Network [OSTI]

Predicting and mitigating the global warming potential of agro-ecosystems S. Lehugera 1 , B and methane are the main biogenic greenhouse gases (GHG) con-2 tributing to the global warming potential (GWP to design productive16 agro-ecosystems with low global warming impact.17 Keywords18 Global warming potential

Paris-Sud XI, Université de

433

Cary Institute of Ecosystem Studies 1 FACTORS REGULATING NET METHANE FLUX IN  

E-Print Network [OSTI]

Cary Institute of Ecosystem Studies 1 FACTORS REGULATING NET METHANE FLUX IN URBAN FORESTS Cary Institute of Ecosystem Studies, Millbrook, NY 12545 USA Abstract. Methane is a potent greenhouse investigated four factors that could be causing this inhibition; reduced diffusion of methane into soils

Lovett, Gary M.

434

Historical river flow rates for dose calculations  

SciTech Connect (OSTI)

Annual average river flow rates are required input to the LADTAP Computer Code for calculating offsite doses from liquid releases of radioactive materials to the Savannah River. The source of information on annual river flow rates used in dose calculations varies, depending on whether calculations are for retrospective releases or prospective releases. Examples of these types of releases are: Retrospective - releases from routine operations (annual environmental reports) and short term release incidents that have occurred. Prospective - releases that might be expected in the future from routine or abnormal operation of existing or new facilities (EIS`s, EID`S, SAR`S, etc.). This memorandum provides historical flow rates at the downstream gauging station at Highway 301 for use in retrospective dose calculations and derives flow rate data for the Beaufort-Jasper and Port Wentworth water treatment plants.

Carlton, W.H.

1991-06-10T23:59:59.000Z

435

Snake and Columbia Rivers Sediment Sampling Project  

SciTech Connect (OSTI)

The disposal of dredged material in water is defined as a discharge under Section 404 of the Clean Water Act and must be evaluated in accordance with US Environmental Protection Agency regulation 40 CFR 230. Because contaminant loads in the dredged sediment or resuspended sediment may affect water quality or contaminant loading, the US Army Corps of Engineers (USACE), Walla Walla District, has requested Battelle/Marine Sciences Laboratory to collect and chemically analyze sediment samples from areas that may be dredged near the Port Authority piers on the Snake and Columbia rivers. Sediment samples were also collected at River Mile (RM) stations along the Snake River that may undergo resuspension of sediment as a result of the drawdown. Chemical analysis included grain size, total organic carbon, total volatile solids, ammonia, phosphorus, sulfides, oil and grease, total petroleum hydrocarbons, metals, polynuclear aromatic hydrocarbons, pesticides, polychlorinated biphenyls, and 21 congeners of polychlorinated dibenzodioxins and dibenzofurans.

Pinza, M.R.; Word, J.Q; Barrows, E.S.; Mayhew, H.L.; Clark, D.R. (Battelle/Marine Sciences Lab., Sequim, WA (United States))

1992-12-01T23:59:59.000Z

436

Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.  

SciTech Connect (OSTI)

Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

2009-05-07T23:59:59.000Z

437

Savannah River Ecology Laboratory 2005 Annual Technical Progress Report  

SciTech Connect (OSTI)

2005 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site, Aiken, South Carolina

Paul M. Bertsch

2005-07-19T23:59:59.000Z

438

RETURN OF THE RIVER -2000 Chapter 5 Freshwater Habitats131  

E-Print Network [OSTI]

rivers of the world and also one of the most developed with ten major hydroelectric dams on the main the major hydroelectric projects and the owner-operator of each project. #12;RETURN OF THE RIVER - 2000

439

Floodplain River Foodwebs in the Lower Mekong Basin  

E-Print Network [OSTI]

dynamics in tropical rivers undergo significant seasonal shifts and emphasizes that river food webs are altered by dams and flow regulation. Seston and benthic algae were the most important production sources supporting fish biomass during the dry season...

Ou, Chouly

2013-11-15T23:59:59.000Z

440

Savannah River Ecology Laboratory FY2006 Annual Technical Progress Report  

SciTech Connect (OSTI)

FY2006 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of the University of Georgia operating on the Savannah River Site in Aiken, County, SC.

Paul M. Bertsch

2006-10-23T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Columbia River Food Webs: Developing a Broader Scientific Foundation for  

E-Print Network [OSTI]

Columbia River Food Webs: Developing a Broader Scientific Foundation for Fish and Wildlife and Conservation Council #12;i Columbia River Food Webs: Developing a Broader Scientific Foundation for Fish

442

Little Missouri State Scenic River Act (North Dakota)  

Broader source: Energy.gov [DOE]

This legislation aims to preserve the Little Missouri River in its present, free-flowing natural condition. The Little Missouri River Commission is established to administer and manage these...

443

Type B Accident Investigation of the Savannah River Site Arc...  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site Arc Flash Burn Injury on September 23, 2009, in the D Area Powerhouse Type B Accident Investigation of the Savannah River Site Arc Flash Burn Injury on...

444

Preliminary Notice of Violation, Savannah River Nuclear Solutions...  

Office of Environmental Management (EM)

River Nuclear Solutions (SRNS), LLC, related to a Worker Fall from a Scaffold in the K-Area Complex at the Savannah River Site On November 9, 2012, the U.S. Department of...

445

Savannah River Ecology Laboratory 2004 Annual Technical Progress Report  

SciTech Connect (OSTI)

2004 annual report of research conducted by the Savannah River Ecology Laboratory, a research unit of The University of Georgia operating on the Savannah River Site in Aiken, South Carolina

Paul M. Bertsch

2004-07-29T23:59:59.000Z

446

Ohio River Valley Water Sanitation Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Ohio River Valley Water Sanitation Commission (ORSANCO), was established on June 30, 1948 to control and abate pollution in the Ohio River Basin. ORSANCO is an interstate commission...

447

Interstate Commission on the Potomac River Basin (Multiple States)  

Broader source: Energy.gov [DOE]

The Interstate Commission on the Potomac River Basin's (ICPRB) mission is to enhance, protect, and conserve the water and associated land resources of the Potomac River and its tributaries through...

448

Wekiva River and Wekiva Parkway Protection Acts (Florida)  

Broader source: Energy.gov [DOE]

The Wekiva River Protection Act directs the Orange, Lake, and Seminole Counties to emphasize the Wekiva River Protection Area in their planning efforts and regulations. Each county’s local...

449

SAVANNAH RIVER TECHNOLOGY CENTER MONTHLY REPORT AUGUST 1992  

SciTech Connect (OSTI)

'This monthly report summarizes Programs and Accomplishments of the Savannah River Technology Center in support of activities at the Savannah River Site. The following categories are addressed: Reactor, Tritium, Separations, Environmental, Waste Management, General, and Items of Interest.'

Ferrell, J.M.

1999-06-21T23:59:59.000Z

450

Wild and Scenic River Acts (Lower St. Croix Riverway)  

Broader source: Energy.gov [DOE]

The lower portion of the St. Croix River in Minnesota and Wisconsin is regulated under the National Wild and Scenic Rivers Program. Most new residential, commercial, and industrial uses are...

451

NATURAL ATTENUATION FOR ECOSYSTEM RESTORATION IN NY/NJ HARBOR  

SciTech Connect (OSTI)

We have investigated the feasibility of using natural attenuation methods for ecosystem restoration in New York/New Jersey Harbor. Measurements were made of the most probable number of sulfate-reducing bacteria (SRB) in native sediments and in samples, which had been supplemented with an appropriate electron donor and electron acceptor. The results showed that the activity of the endogenous microbial population in the native sediment was high enough to make possible adequate chemical transformation rates. The bioavailability of the zinc in the sediments was measured using the BIOMET biosensor technique. The bioavailability of the zinc was effectively eliminated following the microbial activities. We concluded that natural attenuation could be used effectively in treating sediments from Newark Bay and surrounding waters and that the resultant materials could likely be used in environmental restoration projects of the type proposed for construction in South Kearny, NJ.

VAN DER LELIE,D.JONES,K.W.REID-GREEN,J.D.STERN,E.A.

2003-12-31T23:59:59.000Z

452

Independent Oversight Review, Savannah River Site- August 2011  

Broader source: Energy.gov [DOE]

Review of Commercial Grade Dedication Plans for the Safety Instrumented System at the Savannah River Site Waste Solidification Building Project

453

Exploring the Raft River geothermal area, Idaho, with the dc...  

Open Energy Info (EERE)

SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL...

454

Terrestrial Carbon Inventory at the Savannah River Site, 1951 – 2001.  

SciTech Connect (OSTI)

A Power Point slide presentation/report on the terestrial carbon inventory at the Savannah River Site.

US Forest Service - Annonymous,

2012-02-01T23:59:59.000Z

455

Ekstrom, Draft 11/14/08 California Current Large Marine Ecosystem: Publicly Available Dataset of State and  

E-Print Network [OSTI]

: Engineering Informatics Group Structural Engineering and Geomechanics Civil & Environmental Engineering Jerry, ocean law, large marine ecosystem INTRODUCTION Historically, governments have managed ocean uses within approach, widely recognized as a major contributor to the deterioration of ocean ecosystems, has created

Stanford University

456

Global Conservation of Biodiversity and Ecosystem Services Author(s): WILL R. TURNER, KATRINA BRANDON, THOMAS M. BROOKS, ROBERT COSTANZA,  

E-Print Network [OSTI]

Global Conservation of Biodiversity and Ecosystem Services Author(s): WILL R. TURNER, KATRINA, to analyze poten- tial synergies between conserving biodiversity and safe- guarding ecosystem services. Global-scale prioritization for biodiversity conservation is essential because biodiversity, threats

Vermont, University of

457

Money flows in the Internet ecosystem : strategic opportunities for telecom operators and other Internet agents in the digital age  

E-Print Network [OSTI]

The question about where the money goes is something really interesting for all the companies in the Internet ecosystem. While there is a huge interest, no clear answers have been provided, partially because the ecosystem ...

Valentin Vinagrero, Israel

2014-01-01T23:59:59.000Z

458

Ecological Responses to Hydrogeomorphic Fluctuations in a Sand Bed Prairie River: River Complexity, Habitat Availability, and Benthic Invertebrates  

E-Print Network [OSTI]

Rivers with stochastic precipitation have fauna that overcome unique challenges. Organisms surmount these challenges by using refugia. Research was conducted on the sand bed Kansas River (Kaw). I (a) quantified how the hydrology affects the Kaw...

O'Neill, Brian James

2010-04-02T23:59:59.000Z

459

Fraser River Hydro and Fisheries Research Project fonds  

E-Print Network [OSTI]

Fraser River Hydro and Fisheries Research Project fonds Revised by Erwin Wodarczak (1998 Fraser River Hydro and Fisheries Research Project fonds. ­ 19561961. 13 cm of textual records. Administrative History The Fraser River Hydro and Fisheries Research Project was established in 1956, financed

Handy, Todd C.

460

SURVEY OF THE COLUMBIA RIVER AND ITS TRIBUTARIES -Part VII  

E-Print Network [OSTI]

SURVEY OF THE COLUMBIA RIVER AND ITS TRIBUTARIES - Part VII I ^^^^'fie^BkJioJS SPECIAL SCIENTIFIC, Director Special Scientific Report - Fisheries No. UO SURVEY OF THE COLUMBIA RIVER AND ITS TRIBUTARIES PART these have been divided for con- venience into four sub-areas. On the Idaho side of the Snake River

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Kentucky River Pleasant Hill/ S.R.33 Burgin  

E-Print Network [OSTI]

Lexington U.S.68 S.R.1268 Wilmore S.R. 33 Kentucky River Mt. Zion Church Pleasant Hill/ S.R.33 Lexington on US 68 heading SSW. Drive across the Kentucky River ­ down palisades and up the other side, Mercer Co. Ky The church is located between the Kentucky River and Shaker Village. There is no indoor

Finkel, Raphael

462

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER,  

E-Print Network [OSTI]

CREEL CENSUS AND EXPENDITURE STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological STUDY, NORTH FORK SUN RIVER, MONTANA, 1951 Marine Biological Laboratory JUN16 1954 WOODS HOLE, MASS MAP CREEL CENSUS SUN RIVER MONTANA DRAWN i*^ ^ TRACED- _2£jLt:l SUBMITTED . 1 V N 01 1 VN ei

463

Habitat restoration and sediment transport in rivers Streams and rivers or any bodies of flowing water are dynamic by nature. Through erosion and  

E-Print Network [OSTI]

Habitat restoration and sediment transport in rivers Streams and rivers or any bodies of flowing water are dynamic by nature. Through erosion and deposition, streams and rivers transport and transform important. Current Projects: Fish habitat restoration in rivers: In the past rivers' dynamic nature has been

Barthelat, Francois

464

EIS-0268: Shutdown of River Water System at the Savannah River Site  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impacts of a proposal to shut down the Savannah R]ver Site River Water System in order to save money; that is, to prevent further expenditure of the...

465

851 SW Sixth Avenue, Suite 300 | Pacific First Building | Portland, OR 97204-1339 Phone: 503-229-0191 | Fax: 503-229-0443 | Website: www.cbfwa.org  

E-Print Network [OSTI]

and restoration of fish, wildlife, and their habitat in the Columbia River Basin. The Authority is comprised of the following tribes and fish and wildlife agencies: Burns Paiute Tribe Coeur d'Alene Tribe Confederated Salish Confederated Tribes and Bands of the Yakama Nation Idaho Department of Fish and Game Kootenai Tribe of Idaho

466

Response to ISRP Comments for Project 35044 Determine the Effects of Contaminants on White Sturgeon Reproduction and Parental Transfer  

E-Print Network [OSTI]

, such as dioxins, furans, and heavy metals. Significant contamination of the upper Columbia River and the Kootenai was acutely toxic to rainbow trout (CRIEMP, 1994). Chlorinated dioxins and furans, although not detectable dioxin and furan regulations. Cominco has been operating since 1906 (MacDonald Environmental Sciences Ltd

467

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River  

E-Print Network [OSTI]

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

Hansen, James E.

468

EIS-0351: Operation of Flaming Gorge Dam, Colorado River Storage Project, Colorado River, UT  

Broader source: Energy.gov [DOE]

The Secretary of the United States Department of the Interior (Secretary), acting through the Bureau of Reclamation (Reclamation), is considering whether to implement a proposed action under which Flaming Gorge Dam would be operated to achieve the flow and temperature regimes recommended in the September 2000 report Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam (2000 Flow and Temperature Recommendations), published by the Upper Colorado River Endangered Fish Recovery Program (Recovery Program).

469

Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah RiverSite |

470

The Savannah River Site's Groundwater Monitoring Program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

Not Available

1992-08-03T23:59:59.000Z

471

BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND  

E-Print Network [OSTI]

BITTERROOT RIVER SUBBASIN INVENTORY FOR FISH AND WILDLIFE CONSERVATION AUGUST 2009 A report prepared for the Northwest Power and Conservation Council #12;#12;Bitterroot Subbasin Inventory for Fish (Inventory Volume), and Part III (Management Plan Volume), its appendices, and electronically linked

472

Savannah River Technology Center. Monthly report  

SciTech Connect (OSTI)

This document contains information about the research programs being conducted at the Savannah River Plant. Topics of discussion include: thermal cycling absorption process, development of new alloys, ion exchange, oxalate precipitation, calcination, environmental research, remedial action, ecological risk assessments, chemical analysis of salt cakes, natural phenomena hazards assessment, and sampling of soils and groundwater.

Not Available

1994-02-01T23:59:59.000Z

473

OkanoganRiver SpringChinookSalmon  

E-Print Network [OSTI]

: Species or Hatchery Stock: Agency/Operator: Watershed and Region: Date Submitted: Date Last Updated: NOTE Chinook Above Wells Dam Table 3. Tribal Incidental Take Thresholds for ESA-Listed 44 Upper Columbia River Steelhead Table 4. Tribal & Recreational Incidental Take Thresholds 45 for Unmarked Spring Chinook Table 5

474

The State of the Columbia River Basin  

E-Print Network [OSTI]

, and Washington. The Act authorized the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Overview 11 Sixth Northwest Power Plan boosts energy efficiency, renewable energy, Energy efficiency

475

Fast Facts About the Columbia River Basin  

E-Print Network [OSTI]

Administration, the federal agency that markets the electricity generated at federal dams in the Columbia River Energy Regulatory Commission; electric utilities; and state energy regulatory agencies. State, tribal directs more than $220 million annually in federal electricity revenues to implement more than 400

476

The Savannah River Site's groundwater monitoring program  

SciTech Connect (OSTI)

This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

Not Available

1991-10-18T23:59:59.000Z

477

Land Use Baseline Report Savannah River Site  

SciTech Connect (OSTI)

This document is to serve as a resource for Savannah River Site managers, planners, and SRS stakeholders by providing a general description of the site and land-use factors important to future use decisions and plans. The intent of this document is to be comprehensive in its review of SRS and the surrounding area.

Noah, J.C.

1995-06-29T23:59:59.000Z

478

Savannah River Technology Center. Monthly report  

SciTech Connect (OSTI)

This is a monthly progress report from the Savannah River Laboratory for the month of January 1993. It has sections with work in the areas of reactor safety, tritium processes and absorption, separations programs and wastes, environmental concerns and responses, waste management practices, and general concerns.

Not Available

1993-01-01T23:59:59.000Z

479

Savannah River Laboratory monthly report, February 1992  

SciTech Connect (OSTI)

This report is a progress report for the Savannah River Laboratory for the month of February 1992. The progress and activities in six categories were described in the report. The categories are reactor, tritium, separations, environmental, waste management, and general. Each category described numerous and varied activities. Some examples of these activities described are such things as radiation monitoring, maintenance, modifications, and remedial action.

Ferrell, J.M. (comp.); Ice, L.W. (ed.)

1992-02-01T23:59:59.000Z

480

Carolina bays of the Savannah River Plant  

SciTech Connect (OSTI)

Much of the research to date on the Carolina bays of the Savannah River Plant and elsewhere has focused on certain species or on environmental features. Different levels of detail exist for different groups of organisms and reflect the diverse interests of previous investigators. This report summarizes aspects of research to date and presents data from numerous studies. 70 refs., 14 figs., 12 tabs.

Schalles, J.F. (Creighton Univ., Omaha, NE (USA)); Sharitz, R.R.; Gibbons, J.W.; Leversee, G.J.; Knox, J.N. (Savannah River Ecology Lab., Aiken, SC (USA))

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kootenai river ecosystem" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Trough to trough The Colorado River  

E-Print Network [OSTI]

Trough to trough The Colorado River and the Salton Sea Robert E. Reynolds, editor Trough to trough....................................................................................5 Robert E. Reynolds The vegetation of the Mojave and Colorado deserts geological excursions and observations of the Colorado Desert region by William Phipps Blake, 1853 and 1906

de Lijser, Peter

482

2008 Peconic River Monitoring Report Highlights  

E-Print Network [OSTI]

?? Fish Identification (Area - Age (years)) Mercury(mg/kg) Largemouth bass tissue mercury (mg/kg) EPA Criterion (0.3 mg/kg) Average largemouth bass tissue mercury (0.41 mg/kg) ?? Fish large for age 5 #12;6 2008 Pickerel Largemouth Bass Pumpkinseed 6 #12;8 Fish 2008 Peconic River Average Fish Tissue Mercury by Area 0

Homes, Christopher C.

483

Council's Columbia River Fish and Wildlife Program  

E-Print Network [OSTI]

· Walleye · Smallmouth bass · Northern pike · Others 5 Native and Non-native Fish Predators #12;· At dams#12;#12;#12;#12;#12;#12;#12;Council's Columbia River Fish and Wildlife Program Summary of Predation Event Center #12;Council's 2009 Fish and Wildlife Program Piscivorous Predator Control · Implement

484

Peconic River Update Environmental Protection Division  

E-Print Network [OSTI]

largemouth bass from Donahue's Pond Fish age and Hg content · 5-year old brown bullhead from Area C had 0 · Fish 5-Year Review update and recommendations for changes to the Peconic River monitoring program · Sediment · Water · Fish 2 #12;Refresher - The Clean-up ROD Goals ­ Mercury in Sediment · Onsite ­ Average

Homes, Christopher C.

485

3. Hydrogeomorphic Variability and River Restoration  

E-Print Network [OSTI]

. It is difficult to design effective stream and channel restoration measures, or evaluate project performance expansion of efforts in and expenditures for stream restoration. Increasingly, resto- ration efforts focus39 3. Hydrogeomorphic Variability and River Restoration D. R. MONTGOMERY1 AND S. M. BOLTON2

Montgomery, David R.

486

Flathead River Creel Report, 1992-1993. Final Report.  

SciTech Connect (OSTI)

A roving creel survey was conducted on the Flathead River system, May 1992 through May 1993, as part of Hungry Horse Dam Fisheries Mitigation, funded by Bonneville Power Administration. The Flathead River system is a tributary to the Clarks Fork of the Columbia River originating in northwest Montana and southern British Columbia. The river creel survey was conducted in conjunction with a Flathead Lake creel survey. This document summarizes the creel survey on the river system. The purpose of these creel surveys was to quantify fishery status prior to mitigation efforts and provide replicative survey methodology to measure success of future mitigation activities. 4 figs., 21 tabs.

Hanzel, Delano

1995-09-01T23:59:59.000Z

487

E-Print Network 3.0 - aquatic ecosystems review Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dever, Edward P. - College of Oceanic and Atmospheric Sciences, Oregon State University Collection: Geosciences 3 atural aquatic habitats include ponds, lakes, rivers, streams,...

488

Persistence of chlorinated hydrocarbon contamination in a California marine ecosystem  

SciTech Connect (OSTI)

Despite major reductions in the dominant DDT and polychlorinated biphenyls (PCB) input off Los Angeles (California, U.S.A.) in the early 1970s, the levels of these pollutants decreased only slightly from 1972 to 1975 both in surficial bottom sediments and in a flatfish bioindicator (Dover sole, Microstomus pacificus) collected near the submarine outfall. Concentrations of these pollutants in the soft tissues of the mussel Mytilus californianus, collected intertidally well inshore of the highly contaminated bottom sediments, followed much more closely the decreases in the outfall discharges. These observations suggest that contaminated sediments on the seafloor were the principal (although not necessarily direct) cause of the relatively high and persistent concentrations of DDT and PCB residues in tissues. The study indicated that residues of the higher-molecular-weight chlorinated hydrocarbons, such as DDT and PCB, can be highly persistent once released to coastal marine ecosystems and that their accumulation in surficial bottom sediments is the most likely cause of this persistence observed in the biota of the discharge zone.

Young, D.R.; Gossett, R.W.; Heesen, T.C.

1989-01-01T23:59:59.000Z

489

The Lifecycles of Apps in a Social Ecosystem  

E-Print Network [OSTI]

Apps are emerging as an important form of on-line content, and they combine aspects of Web usage in interesting ways --- they exhibit a rich temporal structure of user adoption and long-term engagement, and they exist in a broader social ecosystem that helps drive these patterns of adoption and engagement. It has been difficult, however, to study apps in their natural setting since this requires a simultaneous analysis of a large set of popular apps and the underlying social network they inhabit. In this work we address this challenge through an analysis of the collection of apps on Facebook Login, developing a novel framework for analyzing both temporal and social properties. At the temporal level, we develop a retention model that represents a user's tendency to return to an app using a very small parameter set. At the social level, we organize the space of apps along two fundamental axes --- popularity and sociality --- and we show how a user's probability of adopting an app depends both on properties of t...

Kloumann, Isabel; Kleinberg, Jon; Wu, Shaomei

2015-01-01T23:59:59.000Z

490

Aquatic Ecosystem Enhancement at Mountaintop Mining Sites Symposium  

SciTech Connect (OSTI)

Welcome to this symposium which is part of the ongoing effort to prepare an Environmental Impact Statement (EIS) regarding mountaintop mining and valley fills. The EIS is being prepared by the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, U.S. Office of Surface Mining, and U.S. Fish and Wildlife Service, in cooperation with the State of West Virginia. Aquatic Ecosystem Enhancement (AEE) at mountaintop mining sites is one of fourteen technical areas identified for study by the EIS Interagency Steering Committee. Three goals were identified in the AEE Work Plan: 1. Assess mining and reclamation practices to show how mining operations might be carried out in a way that minimizes adverse impacts to streams and other environmental resources and to local communities. Clarify economic and technical constraints and benefits. 2. Help citizens clarify choices by showing whether there are affordable ways to enhance existing mining, reclamation, mitigation processes and/or procedures. 3. Ide identify data needed to improve environmental evaluation and design of mining projects to protect the environment. Today’s symposium was proposed in the AEE Team Work Plans but coordinated planning for the event began September 15, 1999 when representatives from coal industry, environmental groups and government regulators met in Morgantown. The meeting participants worked with a facilitator from the Canaan Valley Institute to outline plans for the symposium. Several teams were formed to carry out the plans we outlined in the meeting.

Black, D. Courtney; Lawson, Peter; Morgan, John; Maggard, Randy; Schor, Horst; Powell, Rocky; Kirk, Ed. J.

2000-01-12T23:59:59.000Z

491

South Fork Salmon River Watershed Restoration, 2008-2009 Annual Report.  

SciTech Connect (OSTI)

The watershed restoration work elements within the project area, the South Fork Salmon River Watershed, follow the watershed restoration approach adopted by the Nez Perce Tribe Department of Fisheries Resource Management (DFRM) - Watershed Division. The vision of the Nez Perce Tribe DFRM-Watershed Division focuses on protecting, restoring, and enhancing watersheds and treaty resources within the ceded territory of the Nez Perce Tribe under the Treaty of 1855 with the United States Federal Government. The program uses a holistic approach, which encompasses entire watersheds, ridge top to ridge top, emphasizing all cultural aspects and strategies that rely on natural fish production and healthy river ecosystems. The Nez Perce Tribe DFRM-Watershed Division strives towards maximizing historic ecosystem productivity and health for the restoration of anadromous and resident fish populations and the habitat on which all depend on for future generations Originally, this project was funded to create a step/pool stream channel that was appropriate to restore fish passage where the 'Glory Hole Cascade' is currently located at the Stibnite Mine. Due to unforeseen circumstances at the time, the project is unable to move forward as planned and a request for a change in scope of the project and an expansion of the geographic area in which to complete project work was submitted. No additional funds were being requested. The ultimate goal of this project is to work with the holistic, ridge top to ridge top approach to protect and restore the ecological and biological functions of the South Fork Salmon River Watershed to assist in the recovery of threatened and endangered anadromous and resident fish species. FY 2008 Work Elements included two aquatic organism passage (AOP) projects to restore habitat connectivity to two fish-bearing tributaries to the East Fork South Fork Salmon River, Salt and Profile Creeks. The Work Elements also included road survey and assessment activities that move toward road decommissioning to reduce sediment delivery to spawning gravels and rearing habitats by reducing sedimentation from road related, man-made sources. For FY08, the project included the design and implementation of two fish barrier replacement structures mentioned above, the Salt and Profile Creek Bridges. These work elements were to be implemented on Valley County easements within the Payette National Forest. The existing culverts are full or partial barriers to most aquatic life species and all juvenile anadromous and resident fish species. Implementation will reconnect 9.34 miles of habitat, and provide natural stream channels to facilitate complete passage for all aquatic life forms. All designs were completed and a construction subcontract was awarded to construct free span, pre-cast concrete bridges. For 2008, the project statement of work also included all the necessary work elements to manage, coordinate, plan, and develop continuing strategies for restoration and protection activities.

Reaney, Mark D. [Nez Perce Tribe Department of Fisheries Resource Management

2009-04-15T23:59:59.000Z

492

Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms  

E-Print Network [OSTI]

Energy Division, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, P Department of Physical Geography and Ecosystems Analysis, Lund University, 223 62 Lund, Sweden; 9 Atmospheric, Switzerland; 16 European Commission, Joint Research Center, Institute for Environment and Sustainability

Martin, Timothy

493

Agriculture, Ecosystems and Environment 84 (2001) 120 Economic and environmental threats of alien plant,  

E-Print Network [OSTI]

Agriculture, Ecosystems and Environment 84 (2001) 1­20 Economic and environmental threats of alien. Precise economic costs associated with some of the most ecologically damaging alien species; Animals; Alien; Economic; Ecology; Environment; Agriculture; Non-indigenous 1. Introduction Quantifying

California at Berkeley, University of

494

Environmental genomics reveals a single species ecosystem deep within the Earth  

E-Print Network [OSTI]

ecosystem deep within the Earth Dylan Chivian 1,2 *, Eoin L.and Survival, Berkeley, CA Earth Sciences Division, Lawrenceecosystem deep within the Earth Dylan Chivian 1,2* , Eoin L.

Chivian, Dylan

2008-01-01T23:59:59.000Z

495

A Process-based Analysis of Methane Exchanges Between Alaskan Terrestrial Ecosystems and the Atmosphere  

E-Print Network [OSTI]

We developed and used a new version of the Terrestrial Ecosystem Model (TEM) to study how rates of methane (CH4) emissions and consumption in Alaskan soils have changed over the past century in response to observed changes ...

Zhuang, Qianlai.

496

Making European Fisheries Ecosystem Plans Operational EC FP7 project # 212881  

E-Print Network [OSTI]

.2.1.4 Deep Water................................................................................................. 143 1.2.3.4 Deep WaterMEFEPO Making European Fisheries Ecosystem Plans Operational EC FP7 project # 212881 Work Package 1

Hansen, René Rydhof

497

Landscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem  

E-Print Network [OSTI]

rust by examining changes in the spatial scale of significant stress and mortality clusters computedLandscape-scale patterns of forest pest and pathogen damage in the Greater Yellowstone Ecosystem

Moorcroft, Paul R.

498

E-Print Network 3.0 - african lake ecosystems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Record amounts of dissolved phosphorus hit Lake Erie Algae blooms could threaten Lake Erie... ecosystem (http:www.youtube.comwatch?v5TlXQazNx00) Oil disaster in the...

499

Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration, and Challenges for Agriculture  

E-Print Network [OSTI]

Chesapeake Bay Eutrophication: Scientific Understanding, Ecosystem Restoration, and Challenges'scultural eutrophication and extensive efforts to reduce nutrient inputs. In 1987 a commitment was made to reduce of eutrophication were incompletely known. research, policies, and concerted management action Subsequent research

500

Sustaining Healthy Freshwater EcosystemsIssuesinEcologyPublishedbytheEcologicalSocietyofAmericaNumber10,Winter2003  

E-Print Network [OSTI]

commodities and services to society. These services include flood control, transportation, recreation. · Aquatic ecosystems additionally require that sediments and shorelines, heat and light properties, chemical restoration efforts using well-grounded ecological principles as guidelines. 5) Maintaining and protecting

Jackson, Robert B.