Toyo Aluminium KK | Open Energy Information
Aluminium KK Jump to: navigation, search Name: Toyo Aluminium KK Place: Japan Sector: Solar Product: Japan-based aluminium powder maker for solar cell electrodes. References: Toyo...
Canadian Solar Japan KK | Open Energy Information
Japan KK Jump to: navigation, search Name: Canadian Solar Japan KK Place: Shinjuku-ku, Tokyo, Japan Zip: 160-0022 Sector: Solar Product: Tokyo-based subsidiary of Canadian Solar,...
Nippon Yusen KK NYK Link | Open Energy Information
Link Jump to: navigation, search Name: Nippon Yusen KK (NYK Link) Place: Tokyo, Tokyo, Japan Zip: 100-0005 Sector: Solar Product: Logistics and shipping company moving to use...
SG Biofuels | Open Energy Information
Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...
SG BioFuels | Open Energy Information
SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....
Measurement of indirect CP-violating asymmetries in D0?K+K- and D0??+?- decays at CDF
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, Timo Antero
2014-12-30
We report a measurement of the indirect CP-violating asymmetries (A?) between effective lifetimes of anticharm and charm mesons reconstructed in D0?K+K- and D0??+?- decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb-1 of integrated luminosity. The strong-interaction decay D*+?D0?+ is used to identify the meson at production as D0 or D¯0. We statistically subtract D0 and D¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charm decays as a function of decay time. We measure A?(K+K-)=(-0.19±0.15(stat)±0.04(syst))%and A?(?+?-)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistentmore »with the hypothesis of CP symmetry and their combination yields A?=(-0.12±0.12)%.« less
SG Network System Requirements Specification- Interim Release 3 |
Department of Energy SG Network System Requirements Specification- Interim Release 3 SG Network System Requirements Specification- Interim Release 3 This document has been created to support NIST Smart Grid Interoperability Priority Action Plans (PAP) 1 & 2 and provide Utilities, Vendors and Standard Development Organizations a system requirements specification for Smart Grid Communication. PDF icon SG Network System Requirements Specification- Interim Release 3 More Documents &
T-651: Blue Coat ProxySG Discloses Potentially Sensitive Information in Core Files
Broader source: Energy.gov [DOE]
A vulnerability was reported in Blue Coat ProxySG. A local user can obtain potentially sensitive information
Copy of FINAL SG Demo Project List 11 13 09-External.xls | Department of
Office of Environmental Management (EM)
Energy Copy of FINAL SG Demo Project List 11 13 09-External.xls Copy of FINAL SG Demo Project List 11 13 09-External.xls PDF icon Copy of FINAL SG Demo Project List 11 13 09-External.xls More Documents & Publications Smart Grid Regional and Energy Storage Demonstration Projects: Awards Energy Storage Activities in the United States Electricity Grid. May 2011 Fact Sheet: Grid-Scale Energy Storage Demonstration Using UltraBattery Technology (August 2013)
Materials Data on FeS2 (SG:205) by Materials Project (Dataset) | Data
Office of Scientific and Technical Information (OSTI)
Explorer FeS2 (SG:205) by Materials Project Title: Materials Data on FeS2 (SG:205) by Materials Project Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations Authors: Kristin Persson Publication Date: 2014-11-02 OSTI Identifier: 1183906 Report Number(s): mp-226 DOE Contract
Materials Data on NdMg3 (SG:225) by Materials Project (Dataset) | Data
Office of Scientific and Technical Information (OSTI)
Explorer NdMg3 (SG:225) by Materials Project Title: Materials Data on NdMg3 (SG:225) by Materials Project Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations Authors: Kristin Persson Publication Date: 2014-11-02 OSTI Identifier: 1183907 Report Number(s): mp-1787 DOE Contract
Kk electronic A S | Open Energy Information
Sector: Wind energy Product: Provides electronic wind turbine controllers. Coordinates: 56.137415, 8.97689 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...
Measurement of the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg excitation function
Folden III, C. M.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Hoffman, D. C.; Nitsche, H.; Duellmann, Ch. E.; Sudowe, R.; Gregorich, K. E.; Eichler, R.
2009-02-15
The excitation function for the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of 320{sub -100}{sup +110} pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from {sup 259}Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the {sup 208}Pb({sup 52}Cr,2n){sup 258}Sg reaction was obtained, and an improved {sup 258}Sg half-life of 2.6{sub -0.4}{sup +0.6} ms was calculated by combining all available experimental data.
Materials Data on LaH4C4NO8 (SG:14) by Materials Project (Dataset) | Data
Office of Scientific and Technical Information (OSTI)
Explorer Data Explorer Search Results Materials Data on LaH4C4NO8 (SG:14) by Materials Project Title: Materials Data on LaH4C4NO8 (SG:14) by Materials Project Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations Authors: Kristin Persson Publication Date: 2014-11-02 OSTI
Materials Data on Na3H5(CO2)4 (SG:2) by Materials Project (Dataset) | Data
Office of Scientific and Technical Information (OSTI)
Explorer Na3H5(CO2)4 (SG:2) by Materials Project Title: Materials Data on Na3H5(CO2)4 (SG:2) by Materials Project Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations Authors: Kristin Persson Publication Date: 2014-11-02 OSTI Identifier: 1183905 Report Number(s): mp-555083 DOE
Resonances in Coupled ?K??K Scattering from Quantum Chromodynamics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.
2014-10-01
Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled ?K, ?K scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.
Seul, K.W.; Bang, Y.S.; Lee, S.; Kim, H.J.
1996-09-01
The objective of the present work is to identify the predictability of RELAP5/MOD3.1 regarding thermal-hydraulic behavior during a steam generator tube rupture (SGTR). To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR that occurred at the Mihama Unit 2 in 1991 are used. Also, some sensitivity studies of the code change in RELAP5, the break simulation model, and the break valve discharge coefficient are performed. The calculation results indicate that the RELAP5/MOD3.1 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system (RCS) cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator (SG) relief valve, and so on. However, there are some differences from the experimental data in the number of the relief valve cycling in the affected SG, and the flow regime of the hot leg with the pressurizer, and the break flow rates. Finally, the calculation also indicates that the coolant in the core could remain in a subcooled state as a result of the heat transfer caused by the natural circulation flow even if the reactor coolant pumps (RCPs) turned off and that the affected SG could be properly isolated to minimize the radiological release after the SGTR.
Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes
Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E. [Politecnico di Milano, Dept. of Energy, Nuclear Engineering Div. - CeSNEF, Via La Masa 34, 20156, Milano (Italy)
2012-07-01
Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have been studied at mass flux from 100 to 400 kg/m{sup 2}s and pressure from 10 to 20 bar, to confirm the particular behavior of the stability boundary in helical geometry at low pressure and low mass flow rate. Finally, starting from the unstable regions identified from the experimental channel characteristics, Ledinegg type instabilities have been investigated to drawn stability maps with complete stable and unstable regions in the dimensionless plane N sub-N pch. (authors)
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bioâ€“nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. CellsmoreÂ Â» are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cellâ€“silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.Â«Â less
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bioâ€“nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cellâ€“silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Filter Results Filter by Subject Filter by Author Bolstad, Paul V (1) Chen, Jiquan (1) Cook, Bruce D (1) Davis, Kenneth (1) Desai, Desai Ankur R. (1) Euskirchen, Eugenie S (1)...
S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites
David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri
2010-06-07
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.
PATRICIA HOFFMAN ACTING ASSISTANT SECRETARY FOR ELECTRICITY DELIVERY AND ENERGY RELIABILITY U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND ENVIRONMENT COMMITTEE ON SCIENCE AND TECHNOLOGY U.S. HOUSE OF REPRESENTATIVES JULY 23, 2009 Thank you Mr. Chairman and members of the Subcommittee for the opportunity to provide an update on the current status of smart grid activities at the Department of Energy as well as our future directions and priorities. The Energy Independence and
Cobalt Scheduler | Argonne Leadership Computing Facility
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Narayan Desai, "Bandwidth-Aware Resource Management for Extreme Scale Systems", IEEEACM International Conference for High Performance Computing, Networking, Storage, and...
Energy Science and Technology Software Center (OSTI)
2011-08-30
GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.
Study of CP violation in Dalitz-plot analyses of B0 to K K-KS, B to K K-K , and B to KSKSK
Lees, J.P.
2012-03-20
We perform amplitude analyses of the decays B{sup 0} {yields} K{sup +}K{sup -}K{sub s}{sup 0}, B{sup +} {yields} K{sup +}K{sup -}K{sup +}, and B{sup +} {yields}, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470 x 10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory. For B{sup +} {yields} K{sup +}K{sup -}K{sup +}, we find a direct CP asymmetry in B{sup +} {yields} {phi}(1020)K{sup +} of A{sub CP} = (12.8 {+-} 4.4 {+-} 1.3)%, which differs from zero by 2.8{sigma}. For B{sup 0} {yields} K{sup +}K{sup -}K{sub s}{sup 0}, we measure the CP-violating phase {beta}{sub eff} ({phi}(1020)K{sub s}{sup 0}) = (21 {+-} 6 {+-} 2){sup o}. For B{sup +} {yields} K{sub s}{sup 0}K{sub s}{sup 0}K{sup +}, we measure an overall direct CP asymmetry of A{sub CP} = (4{sub -5}{sup +4} {+-} 2)%. We also perform an angular-moment analysis of the three channels, and determine that the f{sub X}(1500) state can be described well by the sum of the resonances f{sub 0}(1500), f{prime}{sub 2}(1525), and f{sub 0}(1710).
Measurement of CP--violating asymmetries in $D^0\\to\\pi^+\\pi^-$ and $D^0\\to K^+K^-$ decays at CDF
Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M
2011-11-01
We report on a measurement of CP-violating asymmetries (A{sub CP}) in the Cabibbo-suppressed D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays reconstructed in a data sample corresponding to 5.9 fb{sup -1} of integrated luminosity collected by the upgraded Collider Detector at Fermilab. We use the strong decay D*{sup +} {yields} D{sup 0}{pi}{sup +} to identify the flavor of the charmed meson at production and exploit CP-conserving strong c{bar c} pair-production in p{bar p} collisions. High-statistics samples of Cabibbo-favored D{sup 0} {yields} K{sup -}{pi}{sup +} decays with and without a D*{sup {+-}} tag are used to correct for instrumental effects and significantly reduce systematic uncertainties. We measure A{sub CP}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (+0.22 {+-} 0.24(stat) {+-} 0.11 (syst))% and A{sub CP}(D{sup 0} {yields} K{sup +}K{sup -}) = (-0.24 {+-} 0.22 (stat) {+-} 0.09 (syst))%, in agreement with CP conservation. These are the most precise determinations from a single experiment to date. Under the assumption of negligible direct CP violation in D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays, the results provide an upper limit to the CP-violating asymmetry in D{sup 0} mixing, |A{sub CP}{sup ind}(D{sup 0})| < 0.13% at the 90% confidence level.
Desai, Narayan [ANL
2013-01-22
Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
070109-SG_Interoperability_Standards_ARRA.PDF
Office of Environmental Management (EM)
070709-SG_Investment_Grants.pdf
Office of Environmental Management (EM)
Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network
Focued- Open SG/SG-Network TF | Department of Energy Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF Smart Grid data flow diagram. PDF icon Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF More Documents & Publications Report to NIST on the Smart Grid Interoperability Standards Roadmap SG
Materials Data on PPd6 (SG:14) by Materials Project
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on URh3 (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WSCl4 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:185) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WBr6 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BW2 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WS2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on W (SG:223) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PW (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl6 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PWO5 (SG:33) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl5 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl3 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft PowerPoint - Create Business Case for SG Implement...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Powering the 21 st ... Increased Transportation Fuels Business 5 Consumer Conservation 20 ...
Materials Data on Th (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te (SG:152) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UF6 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pa (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PNO (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PNF2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NO (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KNO3 (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAu2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCN (SG:44) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHg2 (SG:74) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCd13 (SG:226) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KNO2 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBi (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBO2 (SG:167) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:139) by Materials Project
Kristin Persson
2014-11-14
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KI (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Yb (SG:225) by Materials Project
Kristin Persson
2014-11-14
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KPHNO2 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PHF2 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UAl2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft Word - BBEE_BPA_in_template_SG__011013.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
utility programs focused on encouraging adoption of EE technology. There is a substantial body of knowledge and experience associated with behavior change that is rooted in the...
Materials Data on UIN (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CI4 (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PICl6 (SG:113) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on I (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on IF7 (SG:41) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ICl3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UPd3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pd (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO5 (SG:2) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YPS4 (SG:142) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USO (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on S (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CO2 (SG:136) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cr (SG:223) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HRh (SG:225) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HBr (SG:225) by Materials Project
Kristin Persson
2015-04-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HCl (SG:225) by Materials Project
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UH3 (SG:223) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YH3 (SG:194) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:166) by Materials Project
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VFe (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VOs (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:134) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BN (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAg2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBH4 (SG:137) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHS (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PHN2 (SG:24) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HBr (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-03
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO5 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VAu2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on V (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hg (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHg11 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hg (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SBr (SG:41) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YS (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SF4 (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BSBr (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SCl2 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SNCl (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SCl (SG:43) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UPS (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USCl9 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SOF2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CSO (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on He (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on He (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn12 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YOF (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YSF (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YHg2 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YGa6 (SG:125) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn5 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YCBr (SG:59) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YOF (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YHg3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te (SG:51) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on URu3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Se (SG:148) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USb (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO4 (SG:63) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCO3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YC2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:206) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YIr (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YIr2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UIr3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ir (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:130) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:60) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft Word - SG_Roadmap_9-16.doc
Office of Environmental Management (EM)
Smart Grid Roadmap for the State of New York September 15, 2010 Table of Contents New York State Smart Grid Consortium September 2010 i 1 Introduction ............................................................................................................................ 1 2 Executive Summary ............................................................................................................... 3 3 The Consortium Smart Grid Vision
Materials Data on BPS4 (SG:23) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn (SG:217) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
2012 Smart Grid Peer Review Presentations - Day 2 First Afternoon...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
SG Peer Review - Recovery Act: NSTAR Automated Mater Reading Based Dynamic Pricing - Douglas Horton, NSTAR Electric & Gas PDF icon 2012 SG Peer Review - LANL Smart Grid Technology ...
Gasoline and Diesel Fuel Update (EIA)
INDIA: Short- and medium-term economic outlook Seema Desai Analyst, Asia desai@eurasiagroup.net (020) 7553 9833 7 April 2008 Prepared for Energy Information Administration Unmistakable economic slowdown gathering pace 0 2 4 6 8 10 12 14 16 J a n - 0 2 J u l - 0 2 J a n - 0 3 J u l - 0 3 J a n - 0 4 J u l - 0 4 J a n - 0 5 J u l - 0 5 J a n - 0 6 J u l - 0 6 J a n - 0 7 J u l - 0 7 J a n - 0 8 %y/y Industrial production Economic outlook for 2008-2010 * Government facing growth/inflation
Pennsylvania State University: Technical Design Report
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
A Review of the Conceptual Design Process and the Analysis of the Remote Wind PSU Turbine Prepared for: The DOE Collegiate Wind Turbine Design Competition Principle Contributors: Ken Palamara Parth Patel Mike Popp Sahil Desai Greg Liptak Jake Lampenfield Armstrong Liu Kevin Knechtel Advisors Dr. Susan Stewart Dr. Dennis McLaughlin Assistant Professor & Research Associate, Aerospace Engineering Professor of Aerospace Engineering Mr. Brian Wallace Ph.D. Candidate in Aerospace Engineering 1
Pennsylvania State University | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Pennsylvania State University Pennsylvania State University Charles McDonald, Jeremy Ogorzalek, Peter Tavantowicz, Kody Veit, Brian Wallace, Michael Popp, Parth Patel, Susan Stewart, Angelina Conti, Yande Liu, Bridget Dougherty, Nicholas Ward, Danhgo Ma, Sahil Desai, Ken Palamara. Photo by Susan Stewart. Charles McDonald, Jeremy Ogorzalek, Peter Tavantowicz, Kody Veit, Brian Wallace, Michael Popp, Parth Patel, Susan Stewart, Angelina Conti, Yande Liu, Bridget Dougherty, Nicholas Ward, Danhgo Ma,
BloomEnergy | Open Energy Information
Jump to: navigation, search Name: BloomEnergy Place: Amsterdam, Netherlands Zip: 1076 KK Product: Netherlands-based large scale PV project development firm. References:...
Limits on Large Extra Dimensions Based on Observations of Neutron...
Office of Scientific and Technical Information (OSTI)
on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently...
Materials Data on PdF4 (SG:43) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UNiSn (SG:216) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La2W2O9 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CsWCl6 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuW3Br7 (SG:201) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb(WO3)6 (SG:71) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba2CoWO6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3(WO3)4 (SG:71) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P2W (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on W(ClO)2 (SG:26) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn2SnW (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on W3Br8 (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rh3W (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl(WO3)6 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na(WO3)2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe3W3N (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-18
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B2W (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaNdMnWO6 (SG:4) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P2W (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al12W (SG:204) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl4O (SG:79) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoPb2WO6 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3W2Cl9 (SG:176) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3(WO3)4 (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-26
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on W2N (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on As3W2 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WBr4O (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WI3O (SG:136) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrLaMnWO6 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Be22W (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Bi2WO8 (SG:1) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaPWO6 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Si3W5 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoBW (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te2W (SG:31) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Co(BW)3 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3(WO3)10 (SG:10) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-03
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3(W2O3)2 (SG:44) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cr2WO6 (SG:136) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Be2W (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyP (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
U-068:Linux Kernel SG_IO ioctl Bug Lets Local Users Gain Elevated Privileges
Broader source: Energy.gov [DOE]
Vulnerability was reported in FreeBSD Telnet. A remote user can execute arbitrary code on the target system.
Materials Data on Th(SiOs)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KTh6F25 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGe2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2Fe7 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThAu2 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThTi2O6 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th7Co3 (SG:186) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(SiPt)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na2ThF6 (SG:150) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(NiP)2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThSi2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3Sn13Rh4 (SG:223) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3N4 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGeO4 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(MnGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(NiGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThSn3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3Ge2 (SG:127) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGa (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-20
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThSn2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K5ThF9 (SG:36) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThBi (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeThO4 (SG:123) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2FeB10 (SG:55) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(SiAu)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(CrGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThS (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(SiRh)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(CuGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th5Sn3 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2MnN3 (SG:71) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3Ga2 (SG:127) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThCoSn (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2Ag (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(PS3)2 (SG:84) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th5Sn4 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li3ThF7 (SG:130) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(MnSi)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th6CoBr15 (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2BiN2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThSe (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th6Cd7 (SG:55) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(PRu)2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(FeGe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th6CBr14 (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(Al2Fe)4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThI4 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThGa4Co (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GePt)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThI2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThFe3 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThNiSn (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThCo (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2CoB10 (SG:55) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GeRh)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThMnSe3 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GePd)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(MoO4)2 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th6Mn23 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th2Cu (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThFe5 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThBrN (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cs2ThCl6 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3Co3Sb4 (SG:220) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThNCl (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on DyTh (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th3As4 (SG:220) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThMn12 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(GeAu)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThP7 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-18
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThC (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThRu3C (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThCrB4 (SG:55) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThNi2 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th(Fe2P)2 (SG:58) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Si19Te8 (SG:161) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl9SbTe6 (SG:79) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ag2Te (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AlSiTe3 (SG:162) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tb2Te4O11 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiGa3Te5 (SG:146) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CrSiTe3 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr5Te4 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn2Te3O8 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sn(BiTe2)2 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr2UTe4 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ga2Te3 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(InTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrLiPrTeO6 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc6Te2Rh (SG:189) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr(TeCl)6 (SG:57) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(SbTe2)2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UTeO5 (SG:57) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc2Te3 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(PrTe2)2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(GaTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg3TeO6 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrGeTe (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge2Sb2Te5 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TlGaTe2 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(GaTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La5TlTe8 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb5Te4 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrTe3O8 (SG:84) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(AlTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sb2Te2Se (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te3P2O11 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaLiLaTeO6 (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HgTe (SG:152) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCaPrTeO6 (SG:7) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl9BiTe6 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BiTe3 (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ThTeO (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuTe2Br (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NbCuTe2 (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sm(BiTe2)2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd2TeO6 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UGeTe (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuTe2Cl (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on In10Sb9Te (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni2SbTe2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sb2Te4Pb (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TbAgTe2 (SG:113) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SmTe (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te2Pt (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mg(InTe2)2 (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce2Te3 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Bi2TeSe2 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(NdTe2)2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AgTe2Au (SG:51) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr(InTe2)2 (SG:87) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce2Te4O11 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(TeP2)2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cd(Ga3Te5)2 (SG:5) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hf(TeCl)6 (SG:57) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuTe2I (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Eu2Te4O11 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb(TeO3)2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ta2Te2O9 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La2UTe4 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hg3TeO6 (SG:206) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl(FeTe)3 (SG:176) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl2TeBr6 (SG:128) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Bi2Te3 (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ga2Te3 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-06
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl4CuTe3 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb6Te2O9 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(LaTe2)2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(AlTe2)2 (SG:97) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on AgTe4Au (SG:13) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La2Te3 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HfTe2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La2Te4O11 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd2UTe4 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on In2HgTe4 (SG:119) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoGeTe (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl2TeI6 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BiTeBr (SG:156) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr2Te3 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaPrO3 (SG:62) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:156) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ag3AuS2 (SG:1) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr5CuSe8 (SG:82) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnIn2O4 (SG:227) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NdMnO3 (SG:62) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaBiSe2 (SG:141) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2Mn15O32 (SG:160) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li31Zr2Sb13 (SG:160) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiAlO2 (SG:115) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al2FeO4 (SG:8) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgGeP2 (SG:122) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn(FeO2)2 (SG:160) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3UO4 (SG:65) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pa3Sb4 (SG:220) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on RbPaF6 (SG:67) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaCl4 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaO (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaCl5 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaBr4 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaAs2 (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaAs (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pa3As4 (SG:220) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaO2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaBr5 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on GdPaO4 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PaRh3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na3PaF8 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe2C (SG:58) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaNO (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MnSiN2 (SG:33) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3SbN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-22
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb16N13 (SG:71) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er3InN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Be(CN)2 (SG:102) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U16N25 (SG:146) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr4N2O5 (SG:1) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuCN (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CsTaN2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li6WN4 (SG:137) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca7Tl3N2 (SG:65) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr4Se3N2 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn(CN)2 (SG:102) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li6Br3N (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaZrN2 (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SiPN3 (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca2NF (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CsNO2 (SG:152) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr3MoN4 (SG:61) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ho3InN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on MgSiN2 (SG:33) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Bi5NO10 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2ZrN2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UTeN (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pr3NF6 (SG:1) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc5NCl8 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiUN2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li6NCl3 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca3BiN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2AsN2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc3InN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ti(NO3)4 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sn(NO3)4 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U2SeN2 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr7(NO2)4 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ag7NO11 (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on U4N7 (SG:108) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ta5N6 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hf4N3 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Dy3InN (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr5Mo2N7 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al(CN)3 (SG:113) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCaN (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cd(CN)2 (SG:102) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuCN2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiNbN2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrUN2 (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on S3(NO)2 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiPN2 (SG:122) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca(NO3)2 (SG:205) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2NaAs (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAlO (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KClO2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KSnSb (SG:186) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K4P21I (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAuS5 (SG:72) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(BH)6 (SG:202) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KFeS2 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3AsS4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAuSe5 (SG:72) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(BH)5 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KRb2ZrOF5 (SG:107) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K7LiSi8 (SG:205) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2TaF7 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2CoO2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K6Fe2O5 (SG:8) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(V5S8)2 (SG:13) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2(SO2)3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCe5S8 (SG:82) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2Hg7 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K4C2O3 (SG:1) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-10
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3Bi (SG:185) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAl2Br7 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3CoO2 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KSnAs (SG:186) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K6Si2O7 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2PSe3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3PbAu5 (SG:74) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(SnAu2)2 (SG:120) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(CoSe)2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2MgF4 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K4GaAu8 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K(OsO3)2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2SbF5 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K3PSe4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KN3O4 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCuF3 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2TaCl6 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KTeAu (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KTaO3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KPb2Br5 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2CO3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K2TiF6 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations