Toyo Aluminium KK | Open Energy Information
Aluminium KK Jump to: navigation, search Name: Toyo Aluminium KK Place: Japan Sector: Solar Product: Japan-based aluminium powder maker for solar cell electrodes. References: Toyo...
Canadian Solar Japan KK | Open Energy Information
Japan KK Jump to: navigation, search Name: Canadian Solar Japan KK Place: Shinjuku-ku, Tokyo, Japan Zip: 160-0022 Sector: Solar Product: Tokyo-based subsidiary of Canadian Solar,...
Nippon Yusen KK NYK Link | Open Energy Information
Link Jump to: navigation, search Name: Nippon Yusen KK (NYK Link) Place: Tokyo, Tokyo, Japan Zip: 100-0005 Sector: Solar Product: Logistics and shipping company moving to use...
SG Biofuels | Open Energy Information
Biofuels Jump to: navigation, search Name: SG Biofuels Address: 132. N. El Camino Real Place: Encinitas, California Zip: 92024 Region: Southern CA Area Sector: Biofuels Product:...
SG BioFuels | Open Energy Information
SG BioFuels Jump to: navigation, search Name: SG BioFuels Place: Encinitas, California Zip: 92024 Product: California-based biofuel producer operating across the United States....
Measurement of indirect CP-violating asymmetries in D0?K+K- and D0??+?- decays at CDF
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Aaltonen, Timo Antero
2014-12-30
We report a measurement of the indirect CP-violating asymmetries (A?) between effective lifetimes of anticharm and charm mesons reconstructed in D0?K+K- and D0??+?- decays. We use the full data set of proton-antiproton collisions collected by the Collider Detector at Fermilab experiment and corresponding to 9.7 fb-1 of integrated luminosity. The strong-interaction decay D*+?D0?+ is used to identify the meson at production as D0 or D¯0. We statistically subtract D0 and D¯0 mesons originating from b-hadron decays and measure the yield asymmetry between anticharm and charm decays as a function of decay time. We measure A?(K+K-)=(-0.19±0.15(stat)±0.04(syst))%and A?(?+?-)=(-0.01±0.18(stat)±0.03(syst))%. The results are consistentmore »with the hypothesis of CP symmetry and their combination yields A?=(-0.12±0.12)%.« less
T-651: Blue Coat ProxySG Discloses Potentially Sensitive Information in Core Files
Office of Energy Efficiency and Renewable Energy (EERE)
A vulnerability was reported in Blue Coat ProxySG. A local user can obtain potentially sensitive information
Copy of FINAL SG Demo Project List 11 13 09-External.xls | Department...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
of FINAL SG Demo Project List 11 13 09-External.xls More Documents & Publications Smart Grid Regional and Energy Storage Demonstration Projects: Awards Energy Storage Activities...
Malli, Gulzari L.
2015-02-14
Our ab initio all-electron fully relativistic Diracâ€“Fock (DF) and nonrelativistic (NR) Hartree-Fock calculations predict the DF relativistic and NR energies for the reaction: Sg + 6 CO â†’ Sg(CO){sub 6} as âˆ’7.39 and âˆ’6.96 eV, respectively, i.e., our calculated ground state total DF relativistic and NR energies for the reaction product Sg(CO){sub 6} are lower by 7.39 and 6.96 eV than the total DF and NR ground state energies of the reactants, viz., one Sg atom plus six CO molecules, respectively. Our calculated DF relativistic and NR atomization energies (Ae) are 65.23 and 64.82 eV, respectively, and so the contribution of relativistic effects to the Ae of âˆ¼0.40 eV is marginal. The Sgâ€“C and Câ€“O optimized bond distances for the octahedral geometry as calculated in our DF (NR) calculations are 2.151 (2.318 Ã…) and 1.119 (1.114 Ã…), respectively. The BSSE correction calculated using the DIRAC code âˆ¼14 kcal/mol. The relativistic DF and NR mean energies predicted by us are 118.8 and 111.9 kJ/mol, respectively, and the contribution of âˆ¼7 kJ/mol due to relativistic effects to the mean energy of Sg(CO){sub 6} is negligible. Ours are the first calculations of the relativistic effects for the atomization energy, mean bond energy, and energy of the reaction for possible formation of Sg(CO){sub 6}, and both our relativistic DF and the NR treatments clearly predict for the first time the existence of hexacarbonyl of the transactinide superheavy element seaborgium Sg. In conclusion, relativistic effects are not significant for Sg(CO){sub 6}.
Kk electronic A S | Open Energy Information
Sector: Wind energy Product: Provides electronic wind turbine controllers. Coordinates: 56.137415, 8.97689 Show Map Loading map... "minzoom":false,"mappingservice":"googlemap...
Measurement of the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg excitation function
Folden III, C. M.; Dragojevic, I.; Garcia, M. A.; Gates, J. M.; Nelson, S. L.; Hoffman, D. C.; Nitsche, H.; Duellmann, Ch. E.; Sudowe, R.; Gregorich, K. E.; Eichler, R.
2009-02-15
The excitation function for the {sup 208}Pb({sup 52}Cr,n){sup 259}Sg reaction has been measured using the Berkeley Gas-filled Separator at the Lawrence Berkeley National Laboratory 88-Inch Cyclotron. The maximum cross section of 320{sub -100}{sup +110} pb is observed at a center-of-target laboratory-frame energy of 253.0 MeV. In total, 25 decay chains originating from {sup 259}Sg were observed and the measured decay properties are in good agreement with previous reports. In addition, a partial excitation function for the {sup 208}Pb({sup 52}Cr,2n){sup 258}Sg reaction was obtained, and an improved {sup 258}Sg half-life of 2.6{sub -0.4}{sup +0.6} ms was calculated by combining all available experimental data.
STAC -- a new Swedish code for statistical analysis of cracks in SG-tubes
Poern, K.
1997-02-01
Steam generator (SG) tubes in pressurized water reactor plants are exposed to various types of degradation processes, among which stress corrosion cracking in particular has been observed. To be able to evaluate the safety importance of such cracking of SG-tubes one has to have a good and empirically founded knowledge about the scope and the size of the cracks as well as the rate of their continuous growth. The basis of experience is to a large extent constituted of the annually performed SG-inspections and crack sizing procedures. On the basis of this experience one can estimate the distribution of existing crack lengths, and modify this distribution with regard to maintenance (plugging) and the predicted rate of crack propagation. Finally, one can calculate the rupture probability of SG-tubes as a function of a given critical crack length. On account of the Swedish Nuclear Power Inspectorate an introductory study has been performed in order to get a survey of what has been done elsewhere in this field. The study resulted in a proposal of a computerizable model to be able to estimate the distribution of true cracks, to modify this distribution due to the crack growth and to compute the probability of tube rupture. The model has now been implemented in a compute code, called STAC (STatistical Analysis of Cracks). This paper is aimed to give a brief outline of the model to facilitate the understanding of the possibilities and limitations associated with the model.
Resonances in Coupled ?K??K Scattering from Quantum Chromodynamics
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; Wilson, David J.
2014-10-01
Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled ?K, ?K scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.
Seul, K.W.; Bang, Y.S.; Lee, S.; Kim, H.J.
1996-09-01
The objective of the present work is to identify the predictability of RELAP5/MOD3.1 regarding thermal-hydraulic behavior during a steam generator tube rupture (SGTR). To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR that occurred at the Mihama Unit 2 in 1991 are used. Also, some sensitivity studies of the code change in RELAP5, the break simulation model, and the break valve discharge coefficient are performed. The calculation results indicate that the RELAP5/MOD3.1 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system (RCS) cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator (SG) relief valve, and so on. However, there are some differences from the experimental data in the number of the relief valve cycling in the affected SG, and the flow regime of the hot leg with the pressurizer, and the break flow rates. Finally, the calculation also indicates that the coolant in the core could remain in a subcooled state as a result of the heat transfer caused by the natural circulation flow even if the reactor coolant pumps (RCPs) turned off and that the affected SG could be properly isolated to minimize the radiological release after the SGTR.
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bioâ€“nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cells are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cellâ€“silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.
DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)
Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; Tartis, Michaelann
2014-12-12
In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bioâ€“nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. CellsmoreÂ Â» are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Furthermore, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cellâ€“silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.Â«Â less
Experimental characterization of pressure drops and channel instabilities in helical coil SG tubes
Colombo, M.; Cammi, A.; De Amicis, J.; Ricotti, M. E.
2012-07-01
Helical tube heat exchangers provide better heat transfer characteristics, an improved capability to accommodate stresses due to thermal expansions and a more compact design with respect to straight tube heat exchangers. For these advantages they are considered as an option for the Steam Generator (SG) of many new reactor projects of Generation III+ and Generation IV. In particular, their compactness fits well with the requirements of Small-medium Modular Reactors (SMRs) of integral design, where all the primary system components are located inside the reactor vessel. In this framework, thermal hydraulics of helical pipes has been studied in recent years by Politecnico di Milano in different experimental campaigns. Experiments have been carried out in a full-scale open loop test facility installed at SIET labs in Piacenza (Italy)), to simulate the SG of a typical SMR. The facility includes two helical pipes (1 m coil diameter, 32 m length, 8 m height), connected via lower and upper headers. Following recently completed experimental campaigns dedicated to pressure drops and density wave instabilities, this paper deals with a new experimental campaign focused on both pressure drops (single-phase flow and two-phase flow, laminar and turbulent regimes) and flow instabilities. The availability of a large number of experimental data, in particular on two-phase flow, is of fundamental interest for correlation development, model validation and code assessment. Two-phase pressure drops have been measured in adiabatic conditions, ranging from 200 to 600 kg/m{sup 2}s for the mass flux, from 30 to 60 bar for the pressure and from 0.1 to 1.0 for the flow quality. The channel characteristics mass flow rate - pressure drop has been determined experimentally in the range 10-40 bar, varying the mass flow rate at a fixed value of the thermal flux. In addition, single-phase pressure drops have been measured in both laminar and turbulent conditions. Density wave instabilities have
Search for: All records | SciTech Connect
Office of Scientific and Technical Information (OSTI)
Filter Results Filter by Subject Filter by Author Bolstad, Paul V (1) Chen, Jiquan (1) Cook, Bruce D (1) Davis, Kenneth (1) Desai, Desai Ankur R. (1) Euskirchen, Eugenie S (1)...
S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites
David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri
2010-06-07
The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.
Hao, Liang; Zhao, Yiqing; Hu, Xiaoyan; Zou, Shiyang; Yang, Dong; Wang, Feng; Peng, Xiaoshi; Li, Zhichao; Li, Sanwei; Xu, Tao; Wei, Huiyue; Liu, Zhanjun; Zheng, Chunyang
2014-07-15
Experiments about the observations of stimulated Raman backscatter (SRS) and stimulated Brillouin backscatter (SBS) in Hohlraum were performed on Shenguang-III (SG-III) prototype facility for the first time in 2011. In this paper, relevant experimental results are analyzed for the first time with a one-dimension spectral analysis code, which is developed to study the coexistent process of SRS and SBS in Hohlraum plasma condition. Spectral features of the backscattered light are discussed with different plasma parameters. In the case of empty Hohlraum experiments, simulation results indicate that SBS, which grows fast at the energy deposition region near the Hohlraum wall, is the dominant instability process. The time resolved spectra of SRS and SBS are numerically obtained, which agree with the experimental observations. For the gas-filled Hohlraum experiments, simulation results show that SBS grows fastest in Au plasma and amplifies convectively in C{sub 5}H{sub 12} gas, whereas SRS mainly grows in the high density region of the C{sub 5}H{sub 12} gas. Gain spectra and the spectra of backscattered light are simulated along the ray path, which clearly show the location where the intensity of scattered light with a certain wavelength increases. This work is helpful to comprehend the observed spectral features of SRS and SBS. The experiments and relevant analysis provide references for the ignition target design in future.
Office of Environmental Management (EM)
... Currently AMI comprises about 4.7% of all electric meters and their use for demand response is growing. Approximately 52 million meters are projected to be installed by 2012. As ...
Past Middle School National Science Bowl Winners (2002 - 2015...
Office of Science (SC) Website
First Place Team: Hopkins Junior High School, Fremont, California Team Members: Raghu ... First Place Team: Challenger School, Newark, California Team Members: Nikhil Desai, Rahul ...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... Knierim, Marcin Zemla, Michael Joo, David Larson, Roseann Csencsits, Bahram Parvin, ... Amita Gorur, Mitalee Desai, Manfred Auer, W.J. Costerton, J. Berleman, Trent Northen, D. ...
Energy Science and Technology Software Center (OSTI)
2011-08-30
GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.
Measurement of CP--violating asymmetries in $D^0\\to\\pi^+\\pi^-$ and $D^0\\to K^+K^-$ decays at CDF
Aaltonen, T.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Arisawa, T.; Artikov, A.; /Dubna, JINR /Texas A-M
2011-11-01
We report on a measurement of CP-violating asymmetries (A{sub CP}) in the Cabibbo-suppressed D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays reconstructed in a data sample corresponding to 5.9 fb{sup -1} of integrated luminosity collected by the upgraded Collider Detector at Fermilab. We use the strong decay D*{sup +} {yields} D{sup 0}{pi}{sup +} to identify the flavor of the charmed meson at production and exploit CP-conserving strong c{bar c} pair-production in p{bar p} collisions. High-statistics samples of Cabibbo-favored D{sup 0} {yields} K{sup -}{pi}{sup +} decays with and without a D*{sup {+-}} tag are used to correct for instrumental effects and significantly reduce systematic uncertainties. We measure A{sub CP}(D{sup 0} {yields} {pi}{sup +}{pi}{sup -}) = (+0.22 {+-} 0.24(stat) {+-} 0.11 (syst))% and A{sub CP}(D{sup 0} {yields} K{sup +}K{sup -}) = (-0.24 {+-} 0.22 (stat) {+-} 0.09 (syst))%, in agreement with CP conservation. These are the most precise determinations from a single experiment to date. Under the assumption of negligible direct CP violation in D{sup 0} {yields} {pi}{sup +}{pi}{sup -} and D{sup 0} {yields} K{sup +}K{sup -} decays, the results provide an upper limit to the CP-violating asymmetry in D{sup 0} mixing, |A{sub CP}{sup ind}(D{sup 0})| < 0.13% at the 90% confidence level.
Study of CP violation in Dalitz-plot analyses of B0 to K K-KS, B to K K-K , and B to KSKSK
Lees, J.P.
2012-03-20
We perform amplitude analyses of the decays B{sup 0} {yields} K{sup +}K{sup -}K{sub s}{sup 0}, B{sup +} {yields} K{sup +}K{sup -}K{sup +}, and B{sup +} {yields}, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470 x 10{sup 6} B{bar B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the SLAC National Accelerator Laboratory. For B{sup +} {yields} K{sup +}K{sup -}K{sup +}, we find a direct CP asymmetry in B{sup +} {yields} {phi}(1020)K{sup +} of A{sub CP} = (12.8 {+-} 4.4 {+-} 1.3)%, which differs from zero by 2.8{sigma}. For B{sup 0} {yields} K{sup +}K{sup -}K{sub s}{sup 0}, we measure the CP-violating phase {beta}{sub eff} ({phi}(1020)K{sub s}{sup 0}) = (21 {+-} 6 {+-} 2){sup o}. For B{sup +} {yields} K{sub s}{sup 0}K{sub s}{sup 0}K{sup +}, we measure an overall direct CP asymmetry of A{sub CP} = (4{sub -5}{sup +4} {+-} 2)%. We also perform an angular-moment analysis of the three channels, and determine that the f{sub X}(1500) state can be described well by the sum of the resonances f{sub 0}(1500), f{prime}{sub 2}(1525), and f{sub 0}(1710).
Bauer, Christian W.; Rothstein, Ira Z.; Stewart, Iain W.
2006-08-01
B{yields}K{pi} and related decays are studied in the heavy quark limit of QCD using the soft collinear effective theory (SCET). We focus on results that follow solely from integrating out the scale m{sub b}, without expanding the amplitudes for the physics at smaller scales such as {alpha}{sub s}({radical}(E{sub {pi}}{lambda}{sub QCD})). The reduction in the number of hadronic parameters in SCET leads to multiple predictions without the need of SU(3). We find that the CP-asymmetry in B{sup -}{yields}{pi}{sup 0}K{sup -} should have a similar magnitude and the same sign as the well measured asymmetry in B{sup 0}{yields}{pi}{sup +}K{sup -}. Our prediction for Br(K{sup +}{pi}{sup -}) exceeds the current experimental value at the 2{sigma} level. We also use our results to determine the corrections to the Lipkin and CP-asymmetry sum rules in the standard model and find them to be quite small, thus sharpening their utility as a tool to look for new physics.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
... Carter, Sandy Jowers (SWB receptionist) and John Haschets. Front row (L to R) Bob Weeks, Julie Desai and Tom Klein. Team ... Johnna was born at 5:10 a.m. on November 17. She weighed 8 ...
Desai, Narayan [ANL
2013-01-22
Argonne National Lab's Narayan Desai on "Scaling MG-RAST to Terabases" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
070109-SG_Interoperability_Standards_ARRA.PDF
Office of Environmental Management (EM)
30 AUDIT REPORT PROJECT HANFORD MANAGEMENT CONTRACT COSTS AND PERFORMANCE U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES NOVEMBER 1998 November 5, 1998 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION : Audit Report on "The U.S. Department of Energy's Project Han- ford Management Contract Costs and Performance" BACKGROUND To offset the negative impact of downsizing its facilities, the Department of Energy
070709-SG_Investment_Grants.pdf
Office of Environmental Management (EM)
SG Network System Requirements Specification- Interim Release...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
This document has been created to support NIST Smart Grid Interoperability Priority Action ... More Documents & Publications Report to NIST on the Smart Grid Interoperability Standards ...
Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Focued- Open SG/SG-Network TF | Department of Energy Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF Smart Grid data flow diagram. Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain Network Focued- Open SG/SG-Network TF (523.02 KB) More Documents & Publications Report to NIST on the Smart Grid Interoperability Standards Roadmap SG
Materials Data on UGa3 (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on He (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on He (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ni (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn (SG:217) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Th (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft Word - BBEE_BPA_in_template_SG__011013.doc
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
utility programs focused on encouraging adoption of EE technology. There is a substantial body of knowledge and experience associated with behavior change that is rooted in the...
Materials Data on Te (SG:51) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on URu3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on B (SG:134) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BN (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UAl2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UPd3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pd (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YPS4 (SG:142) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USO (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on S (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BPS4 (SG:23) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:130) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:60) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:139) by Materials Project
Kristin Persson
2014-11-14
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KI (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Yb (SG:225) by Materials Project
Kristin Persson
2014-11-14
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAu2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCN (SG:44) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on K (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHg2 (SG:74) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCd13 (SG:226) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBi (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBO2 (SG:167) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO5 (SG:2) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KNO3 (SG:11) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PHN2 (SG:24) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UO2 (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PNO (SG:1) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KNO2 (SG:8) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UB2 (SG:191) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ce (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SBr (SG:41) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YS (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SF4 (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BSBr (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SCl2 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SNCl (SG:11) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SCl (SG:43) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UPS (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USCl9 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SOF2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CSO (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UIN (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-24
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CI4 (SG:121) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PICl6 (SG:113) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on I (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on IF7 (SG:41) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ICl3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:141) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sr (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PPd6 (SG:14) by Materials Project
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KAg2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO4 (SG:63) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WC (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on W (SG:223) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:129) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BW2 (SG:140) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WSe2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YIr (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YIr2 (SG:227) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UIr3 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ir (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ca (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VCl3 (SG:148) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Gd (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:148) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ge (SG:69) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Gd (SG:229) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Se (SG:148) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PNO (SG:9) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PNF2 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NO (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBH4 (SG:137) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHS (SG:160) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HBr (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on URh3 (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VFe (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VOs (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La (SG:225) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KBS2 (SG:167) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SNF (SG:148) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CO2 (SG:136) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pa (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft PowerPoint - Create Business Case for SG Implement...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 ...
Materials Data on Os (SG:194) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UOs2 (SG:227) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on USb (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UAu2 (SG:191) by Materials Project
Kristin Persson
2015-02-18
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YAl (SG:63) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hg (SG:191) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VIr3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UCo2 (SG:227) by Materials Project
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YAl3 (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YAl (SG:221) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KPHNO2 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PHF2 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Microsoft Word - SG_Roadmap_9-16.doc
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Smart Grid Roadmap for the State of New York September 15, 2010 Table of Contents New York State Smart Grid Consortium September 2010 i 1 Introduction ............................................................................................................................ 1 2 Executive Summary ............................................................................................................... 3 3 The Consortium Smart Grid Vision
Materials Data on UF6 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cr (SG:223) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HRh (SG:225) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HBr (SG:225) by Materials Project
Kristin Persson
2015-04-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on HCl (SG:225) by Materials Project
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UH3 (SG:223) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YH3 (SG:194) by Materials Project
Kristin Persson
2015-04-29
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VO2 (SG:166) by Materials Project
Kristin Persson
2015-03-07
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Hg (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KHg11 (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on KCO3 (SG:14) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YC2 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on C (SG:206) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn12 (SG:139) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn3 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YOF (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YSF (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YHg2 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YGa6 (SG:125) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YZn5 (SG:191) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YCBr (SG:59) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-15
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Y (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YOF (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on YHg3 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te (SG:221) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Te (SG:152) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:64) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:166) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on P (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO4 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-03
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VPO5 (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on VAu2 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on V (SG:229) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WSCl4 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:185) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WBr6 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WS2 (SG:194) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PW (SG:62) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl6 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on PWO5 (SG:33) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl5 (SG:12) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WO3 (SG:193) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on WCl3 (SG:148) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
U.S. Energy Information Administration (EIA) Indexed Site
INDIA: Short- and medium-term economic outlook Seema Desai Analyst, Asia desai@eurasiagroup.net (020) 7553 9833 7 April 2008 Prepared for Energy Information Administration Unmistakable economic slowdown gathering pace 0 2 4 6 8 10 12 14 16 J a n - 0 2 J u l - 0 2 J a n - 0 3 J u l - 0 3 J a n - 0 4 J u l - 0 4 J a n - 0 5 J u l - 0 5 J a n - 0 6 J u l - 0 6 J a n - 0 7 J u l - 0 7 J a n - 0 8 %y/y Industrial production Economic outlook for 2008-2010 * Government facing growth/inflation
Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility Fault-Aware Utility-Based Job Scheduling on Blue Gene/P systems Authors: Tang, W., Lan, Z., Desai, N., Buettner, D. Job scheduling on large-scale systems is increasingly a complicated affair, with numerous factors influencing scheduling policy. Addressing these concerns results in sophisticated scheduling policies that can be difficult to reason about. In this paper, we present a general utility-based scheduling framework to balance different scheduling
Multi-domain Job Coscheduling for Leadership Computing Systems | Argonne
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Leadership Computing Facility Multi-domain Job Coscheduling for Leadership Computing Systems Authors: Tang, W., Desai, N., Vishwanath, V., Buettner, D., Lan, Z. Current supercomputing centers usually deploy a large-scale compute system together with an associated data analysis or visualization system. Multiple scenarios have driven the demand that some associated jobs co-execute on different machines. We propose a multi-domain coscheduling mechanism, providing the ability to coordinate
Analyzing and Adjusting User Runtime Estimates to Improve Job Scheduling on
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Blue Gene/P | Argonne Leadership Computing Facility Analyzing and Adjusting User Runtime Estimates to Improve Job Scheduling on Blue Gene/P Authors: Tang, W., Desai, N., Buettner, D., Lan, Z. Backfilling and short-job-first are widely acknowledged enhancements to the simple but popular first-come, first-served job scheduling policy. However, both enhancements depend on user-provided estimates of job runtime, which research has repeatedly shown to be inaccurate. We have investigated the
Pennsylvania State University: Technical Design Report
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
A Review of the Conceptual Design Process and the Analysis of the Remote Wind PSU Turbine Prepared for: The DOE Collegiate Wind Turbine Design Competition Principle Contributors: Ken Palamara Parth Patel Mike Popp Sahil Desai Greg Liptak Jake Lampenfield Armstrong Liu Kevin Knechtel Advisors Dr. Susan Stewart Dr. Dennis McLaughlin Assistant Professor & Research Associate, Aerospace Engineering Professor of Aerospace Engineering Mr. Brian Wallace Ph.D. Candidate in Aerospace Engineering 1
Search for Large Extra Dimensions Based on Observations of Neutron...
Office of Scientific and Technical Information (OSTI)
Large extra dimensions (LED) have been proposed to account for the apparent weakness of gravitation. These theories also indicate that the postulated massive Kaluza-Klein (KK) ...
BloomEnergy | Open Energy Information
Jump to: navigation, search Name: BloomEnergy Place: Amsterdam, Netherlands Zip: 1076 KK Product: Netherlands-based large scale PV project development firm. References:...
Microsoft Word - 09102641_DVP.doc
Office of Legacy Management (LM)
... Date Uranium (mgL) L(SG) OBS-3 S(SG) Location Page 65 Attachment 3 Sampling and Analysis ... 13, 2009 TO: Dick Johnson FROM: Jeff Price SUBJECT: Trip Report Site: Bluewater, New ...
2012 Smart Grid Peer Review Presentations - Day 2 Second Afternoon...
Broader source: Energy.gov (indexed) [DOE]
- Bill Becker, Spirae (978.28 KB) 2012 SG Peer Review - Interoperability of Demand Response Resources in New York - Andre Wellington, ConEd NY (136.92 KB) 2012 SG Peer Review ...
2012 Smart Grid Peer Review Presentations - Day 1 Afternoon Session...
Broader source: Energy.gov (indexed) [DOE]
Day 1 afternoon sessions are below. Moderators: Eric Lightner and Merrill Smith 2012 SG Peer Review - GridWise Architecture Council - Ron Melton, PNNL (493.9 KB) 2012 SG Peer ...
Materials Data on Al5W (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe3N (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb3FeS6 (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on SrGa2 (SG:191) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaCu5S3 (SG:182) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zr3O (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Mn(NbS2)3 (SG:182) by Materials Project
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeF3 (SG:182) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(FeO2)2 (SG:182) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Fe3C (SG:182) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb3VS6 (SG:182) by Materials Project
Kristin Persson
2015-03-08
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on BaAl2O4 (SG:182) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CuH12C4(NO)6 (SG:118) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CoP3 (SG:204) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on CeCo2 (SG:227) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Na2Mn(H2N)4 (SG:14) by Materials Project
Kristin Persson
2014-07-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Zn2CuAu (SG:225) by Materials Project
Kristin Persson
2015-01-27
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on NaBeH3 (SG:221) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Al4(B2O5)3 (SG:146) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Cr4(PO4)3 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-05-16
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li13(Ga7Cu2)3 (SG:204) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-23
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Co(PO3)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-04
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCr(PO3)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCo(PO3)3 (SG:19) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCr2(PO4)3 (SG:15) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-06
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCr2(PO4)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-04-06
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er2(SeO3)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba(RhPb2)3 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on La(SbO3)3 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nd(ClO4)3 (SG:176) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiCr2(PO4)3 (SG:167) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Er4(Al8Pt3)3 (SG:2) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Sc2(SeO3)3 (SG:176) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Nb3Se12I (SG:128) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-02-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Rb2Si2O5 (SG:15) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li2B2S5 (SG:63) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaTe2 (SG:129) by Materials Project
Kristin Persson
2015-02-09
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LaGe (SG:62) by Materials Project
Kristin Persson
2015-01-21
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Pb2WO5 (SG:12) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Li3TiF6 (SG:15) by Materials Project
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Tl4Bi2S5 (SG:62) by Materials Project
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on ZrNi4Sn (SG:216) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2015-03-19
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on Ba3Ta2NiO9 (SG:164) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on LiNiPO4 (SG:63) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on TiGaNi2 (SG:225) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations
Materials Data on UGa3Ni (SG:119) by Materials Project
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kristin Persson
2014-11-02
Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations