National Library of Energy BETA

Sample records for kinematic structural analysis

  1. CARMA Large Area Star Formation Survey: project overview with analysis of dense gas structure and kinematics in Barnard 1

    SciTech Connect (OSTI)

    Storm, Shaye; Mundy, Lee G.; Lee, Katherine I.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Gong, Hao; Fernndez-Lpez, Manuel; Looney, Leslie W.; Segura-Cox, Dominique M.; Rosolowsky, Erik; Arce, Hctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Volgenau, Nikolaus H.; Shirley, Yancy L.; Tobin, John J.; Kwon, Woojin; Isella, Andrea; and others

    2014-10-20

    We present details of the CARMA Large Area Star Formation Survey (CLASSy), while focusing on observations of Barnard 1. CLASSy is a CARMA Key Project that spectrally imaged N{sub 2}H{sup +}, HCO{sup +}, and HCN (J = 1 ? 0 transitions) across over 800 square arcminutes of the Perseus and Serpens Molecular Clouds. The observations have angular resolution near 7'' and spectral resolution near 0.16 km s{sup 1}. We imaged ?150 square arcminutes of Barnard 1, focusing on the main core, and the B1 Ridge and clumps to its southwest. N{sub 2}H{sup +} shows the strongest emission, with morphology similar to cool dust in the region, while HCO{sup +} and HCN trace several molecular outflows from a collection of protostars in the main core. We identify a range of kinematic complexity, with N{sub 2}H{sup +} velocity dispersions ranging from ?0.05 to 0.50 km s{sup 1} across the field. Simultaneous continuum mapping at 3 mm reveals six compact object detections, three of which are new detections. A new, non-binary dendrogram algorithm is used to analyze dense gas structures in the N{sub 2}H{sup +} position-position-velocity (PPV) cube. The projected sizes of dendrogram-identified structures range from about 0.01 to 0.34 pc. Size-linewidth relations using those structures show that non-thermal line-of-sight velocity dispersion varies weakly with projected size, while rms variation in the centroid velocity rises steeply with projected size. Comparing these relations, we propose that all dense gas structures in Barnard 1 have comparable depths into the sky, around 0.1-0.2 pc; this suggests that overdense, parsec-scale regions within molecular clouds are better described as flattened structures rather than spherical collections of gas. Science-ready PPV cubes for Barnard 1 molecular emission are available for download.

  2. Finding Large Aperture Fractures in Geothermal Resource Areas Using a Three-Component Long-Offset Surface Seismic Survey, PSInSAR and Kinematic Structural Analysis

    SciTech Connect (OSTI)

    Teplow, William J.; Warren, Ian

    2015-08-12

    The DOE cost-share program applied innovative and cutting edge seismic surveying and processing, permanent scatter interferometry-synthetic aperture radar (PSInSAR) and structural kinematics to the exploration problem of locating and mapping largeaperture fractures (LAFs) for the purpose of targeting geothermal production wells. The San Emidio geothermal resource area, which is under lease to USG, contains production wells that have encountered and currently produce from LAFs in the southern half of the resource area (Figure 2). The USG lease block, incorporating the northern extension of the San Emidio geothermal resource, extends 3 miles north of the operating wellfield. The northern lease block was known to contain shallow thermal waters but was previously unexplored by deep drilling. Results of the Phase 1 exploration program are described in detail in the Phase 1 Final Report (Teplow et al., 2011). The DOE cost shared program was completed as planned on September 30, 2014. This report summarizes results from all of Phase 1 and 2 activities.

  3. Dynamic simulation of kinematic Stirling engines: Coupled and decoupled analysis

    SciTech Connect (OSTI)

    Fischer, K.; Lemrani, H.; Stouffs, P.

    1995-12-31

    A coupled analysis modelling method of Stirling engines is presented. The main feature of this modelling method is the use of a software package combining the capabilities of a pre-/post-processor with a differential algebraic equations solver. As a result, modelling is merely a matter of linking appropriate objects from a model library and the outcoming tool is very flexible and powerful. Some simulation results are presented and compared with those obtained from a decoupled analysis. It clearly appears that the main imperfection of the model does not come from the modelling process itself but from their incomplete knowledge of the physics behind the Stirling engine operation.

  4. Safety assessment of historical masonry churches based on pre-assigned kinematic limit analysis, FE limit and pushover analyses

    SciTech Connect (OSTI)

    Milani, Gabriele Valente, Marco

    2014-10-06

    This study presents some results of a comprehensive numerical analysis on three masonry churches damaged by the recent Emilia-Romagna (Italy) seismic events occurred in May 2012. The numerical study comprises: (a) pushover analyses conducted with a commercial code, standard nonlinear material models and two different horizontal load distributions; (b) FE kinematic limit analyses performed using a non-commercial software based on a preliminary homogenization of the masonry materials and a subsequent limit analysis with triangular elements and interfaces; (c) kinematic limit analyses conducted in agreement with the Italian code and based on the a-priori assumption of preassigned failure mechanisms, where the masonry material is considered unable to withstand tensile stresses. All models are capable of giving information on the active failure mechanism and the base shear at failure, which, if properly made non-dimensional with the weight of the structure, gives also an indication of the horizontal peak ground acceleration causing the collapse of the church. The results obtained from all three models indicate that the collapse is usually due to the activation of partial mechanisms (apse, faade, lateral walls, etc.). Moreover the horizontal peak ground acceleration associated to the collapse is largely lower than that required in that seismic zone by the Italian code for ordinary buildings. These outcomes highlight that structural upgrading interventions would be extremely beneficial for the considerable reduction of the seismic vulnerability of such kind of historical structures.

  5. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    SciTech Connect (OSTI)

    Malo, Lison; Doyon, Rene; Lafreniere, David; Artigau, Etienne; Gagne, Jonathan; Baron, Frederique; Riedel, Adric E-mail: doyon@astro.umontreal.ca E-mail: artigau@astro.umontreal.ca E-mail: baron@astro.umontreal.ca

    2013-01-10

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the {beta} Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as H{alpha} and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in {beta} Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for {beta} Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 A equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the {beta} Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  6. CARMA LARGE AREA STAR FORMATION SURVEY: STRUCTURE AND KINEMATICS OF DENSE GAS IN SERPENS MAIN

    SciTech Connect (OSTI)

    Lee, Katherine I.; Storm, Shaye; Mundy, Lee G.; Teuben, Peter; Pound, Marc W.; Salter, Demerese M.; Chen, Che-Yu; Fernndez-Lpez, Manuel; Looney, Leslie W.; Segura-Cox, Dominique; Rosolowsky, Erik; Arce, Hctor G.; Plunkett, Adele L.; Ostriker, Eve C.; Shirley, Yancy L.; Kwon, Woojin; Kauffmann, Jens; Tobin, John J.; Volgenau, N. H.; Tassis, Konstantinos; and others

    2014-12-20

    We present observations of N{sub 2}H{sup +} (J = 1 ? 0), HCO{sup +} (J = 1 ? 0), and HCN (J = 1 ? 0) toward the Serpens Main molecular cloud from the CARMA Large Area Star Formation Survey (CLASSy). We mapped 150 arcmin{sup 2} of Serpens Main with an angular resolution of ?7''. The gas emission is concentrated in two subclusters (the NW and SE subclusters). The SE subcluster has more prominent filamentary structures and more complicated kinematics compared to the NW subcluster. The majority of gas in the two subclusters has subsonic to sonic velocity dispersions. We applied a dendrogram technique with N{sub 2}H{sup +}(1-0) to study the gas structures; the SE subcluster has a higher degree of hierarchy than the NW subcluster. Combining the dendrogram and line fitting analyses reveals two distinct relations: a flat relation between nonthermal velocity dispersion and size, and a positive correlation between variation in velocity centroids and size. The two relations imply a characteristic depth of 0.15 pc for the cloud. Furthermore, we have identified six filaments in the SE subcluster. These filaments have lengths of ?0.2 pc and widths of ?0.03 pc, which is smaller than a characteristic width of 0.1 pc suggested by Herschel observations. The filaments can be classified into two types based on their properties. The first type, located in the northeast of the SE subcluster, has larger velocity gradients, smaller masses, and nearly critical mass-per-unit-length ratios. The other type, located in the southwest of the SE subcluster, has the opposite properties. Several YSOs are formed along two filaments which have supercritical mass per unit length ratios, while filaments with nearly critical mass-per-unit-length ratios are not associated with YSOs, suggesting that stars are formed on gravitationally unstable filaments.

  7. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOE Patents [OSTI]

    Martin, H. Lee; Williams, Daniel M.; Holt, W. Eugene

    1989-01-01

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive.

  8. Modular multimorphic kinematic arm structure and pitch and yaw joint for same

    DOE Patents [OSTI]

    Martin, H.L.; Williams, D.M.; Holt, W.E.

    1987-04-21

    A multimorphic kinematic manipulator arm is provided with seven degrees of freedom and modular kinematic redundancy through identical pitch/yaw, shoulder, elbow and wrist joints and a wrist roll device at the wrist joint, which further provides to the manipulator arm an obstacle avoidance capability. The modular pitch/yaw joints are traction drive devices which provide backlash free operation with smooth torque transmission and enhanced rigidity. A dual input drive arrangement is provided for each joint resulting in a reduction of the load required to be assumed by each drive means and providing selective pitch and yaw motions by control of the relative rotational directions of the input drive means. 12 figs.

  9. STRUCTURE AND KINEMATICS OF THE STELLAR HALOS AND THICK DISKS OF THE MILKY WAY BASED ON CALIBRATION STARS FROM SLOAN DIGITAL SKY SURVEY DR7

    SciTech Connect (OSTI)

    Carollo, Daniela; Norris, John E.; Freeman, Ken C.; Beers, Timothy C.; Lee, Young Sun; Chiba, Masashi; Ivezic, Zeljko; Rockosi, Constance M.; Yanny, Brian E-mail: jen@mso.anu.edu.a E-mail: beers@pa.msu.ed E-mail: chiba@astr.tohoku.ac.j E-mail: crockosi@ucolick.or

    2010-03-20

    The structure and kinematics of the recognized stellar components of the Milky Way are explored, based on well-determined atmospheric parameters and kinematic quantities for 32360 'calibration stars' from the Sloan Digital Sky Survey (SDSS) and its first extension, SDSS-II, which included the sub-survey Sloan Extension for Galactic Understanding and Exploration (SEGUE). Full space motions for a sub-sample of 16,920 stars, exploring a local volume within 4 kpc of the Sun, are used to derive velocity ellipsoids for the inner- and outer-halo components of the Galaxy, as well as for the canonical thick-disk and proposed metal-weak thick-disk (MWTD) populations. This new sample of calibration stars represents an increase of 60% relative to the numbers used in a previous analysis. We first examine the question of whether the data require the presence of at least a two-component halo in order to account for the rotational behavior of likely halo stars in the local volume, and whether more than two components are needed. We also address the question of whether the proposed MWTD is kinematically and chemically distinct from the canonical thick disk, and point out that the Galactocentric rotational velocity inferred for the MWTD, as well as its mean metallicity, appear quite similar to the values derived previously for the Monoceros stream, suggesting a possible association between these structures. In addition, we consider the fractions of each component required to understand the nature of the observed kinematic behavior of the stellar populations of the Galaxy as a function of distance from the plane. Scale lengths and scale heights for the thick-disk and MWTD components are determined. Spatial density profiles for the inner- and outer-halo populations are inferred from a Jeans theorem analysis. The full set of calibration stars (including those outside the local volume) is used to test for the expected changes in the observed stellar metallicity distribution function

  10. CRISS-CROSS MAPPING OF BD+30 3639: A NEW KINEMATIC ANALYSIS TECHNIQUE

    SciTech Connect (OSTI)

    Steffen, Wolfgang; Koning, Nico E-mail: nkoning@iras.ucalgary.ca

    2011-03-15

    We introduce a new method to analyze kinematic proper motion data. The method is called 'criss-cross' mapping. It emphasizes regions where proper motion vector extensions cross or converge. From a superposition of lines through the vectors a map is generated which helps to interpret the kinematic data. The new mapping technique is applied to the young planetary nebula BD+30 3639. The data are more than 200 internal proper motion measurements from Li et al. From the criss-cross mapping of BD+30 3639, we conclude that the kinematic center is approximately 0.5 arcsec off-set to the southeast from the central star. The mapping also shows evidence for a non-homologous expansion of the nebula that is consistent with a disturbance due to the bipolar molecular bullets.

  11. Kinematic morphology of large-scale structure: evolution from potential to rotational flow

    SciTech Connect (OSTI)

    Wang, Xin; Szalay, Alex; Aragn-Calvo, Miguel A.; Neyrinck, Mark C.; Eyink, Gregory L.

    2014-09-20

    As an alternative way to describe the cosmological velocity field, we discuss the evolution of rotational invariants constructed from the velocity gradient tensor. Compared with the traditional divergence-vorticity decomposition, these invariants, defined as coefficients of the characteristic equation of the velocity gradient tensor, enable a complete classification of all possible flow patterns in the dark-matter comoving frame, including both potential and vortical flows. We show that this tool, first introduced in turbulence two decades ago, is very useful for understanding the evolution of the cosmic web structure, and in classifying its morphology. Before shell crossing, different categories of potential flow are highly associated with the cosmic web structure because of the coherent evolution of density and velocity. This correspondence is even preserved at some level when vorticity is generated after shell crossing. The evolution from the potential to vortical flow can be traced continuously by these invariants. With the help of this tool, we show that the vorticity is generated in a particular way that is highly correlated with the large-scale structure. This includes a distinct spatial distribution and different types of alignment between the cosmic web and vorticity direction for various vortical flows. Incorporating shell crossing into closed dynamical systems is highly non-trivial, but we propose a possible statistical explanation for some of the phenomena relating to the internal structure of the three-dimensional invariant space.

  12. STELLAR KINEMATICS AND STRUCTURAL PROPERTIES OF VIRGO CLUSTER DWARF EARLY-TYPE GALAXIES FROM THE SMAKCED PROJECT. III. ANGULAR MOMENTUM AND CONSTRAINTS ON FORMATION SCENARIOS

    SciTech Connect (OSTI)

    Toloba, E.; Guhathakurta, P.; Peletier, R. F.; Emsellem, E.; Lisker, T.; Van de Ven, G.; Simon, J. D.; Adams, J. J.; Benson, A. J.; Falcón-Barroso, J.; Ryś, A.; Gorgas, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Salo, H.; Paudel, S.

    2015-02-01

    We analyze the stellar kinematics of 39 dwarf early-type galaxies (dEs) in the Virgo Cluster. Based on the specific stellar angular momentum λ{sub Re} and the ellipticity, we find 11 slow rotators and 28 fast rotators. The fast rotators in the outer parts of the Virgo Cluster rotate significantly faster than fast rotators in the inner parts of the cluster. Moreover, 10 out of the 11 slow rotators are located in the inner 3° (D < 1 Mpc) of the cluster. The fast rotators contain subtle disk-like structures that are visible in high-pass filtered optical images, while the slow rotators do not exhibit these structures. In addition, two of the dEs have kinematically decoupled cores and four more have emission partially filling in the Balmer absorption lines. These properties suggest that Virgo Cluster dEs may have originated from late-type star-forming galaxies that were transformed by the environment after their infall into the cluster. The correlation between λ{sub Re} and the clustercentric distance can be explained by a scenario where low luminosity star-forming galaxies fall into the cluster, their gas is rapidly removed by ram-pressure stripping, although some of it can be retained in their core, their star formation is quenched but their stellar kinematics are preserved. After a long time in the cluster and several passes through its center, the galaxies are heated up and transformed into slow rotating dEs.

  13. Bridge Structural Analysis Using CSM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridge Structural Analysis Using Computational Structural Mechanics Background Bridge failure due to wind has been observed as far back as 1823. The latest concept for an efficient and cost-effective bridge design is the cable-stayed bridge. Bridge stay cables, however, have exhibited large-amplitude vibrations as a result of wind loadings, sometimes in combination with rain. In recent years, attempts have been made to model this problem both in the laboratory and on the computer. Several wind

  14. Structural analysis of thermostabilizing mutations of cocaine...

    Office of Scientific and Technical Information (OSTI)

    Structural analysis of thermostabilizing mutations of cocaine esterase Citation Details In-Document Search Title: Structural analysis of thermostabilizing mutations of cocaine ...

  15. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Linker, K.L.; Rawlinson, K.S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  16. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Linker, K.L.; Rawlinson, K.S.; Smith, G.

    1991-10-01

    The Department of Energy`s Solar Thermal Program has as one of its program elements the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program`s goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc., kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia`s Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  17. Three tooth kinematic coupling

    DOE Patents [OSTI]

    Hale, Layton C. (Livermore, CA)

    2000-01-01

    A three tooth kinematic coupling based on having three theoretical line contacts formed by mating teeth rather than six theoretical point contacts. The geometry requires one coupling half to have curved teeth and the other coupling half to have flat teeth. Each coupling half has a relieved center portion which does not effect the kinematics, but in the limit as the face width approaches zero, three line contacts become six point contacts. As a result of having line contact, a three tooth coupling has greater load capacity and stiffness. The kinematic coupling has application for use in precision fixturing for tools or workpieces, and as a registration device for a work or tool changer or for optics in various products.

  18. Protein Structure Recognition: From Eigenvector Analysis to Structural

    Office of Scientific and Technical Information (OSTI)

    Threading Method (Thesis/Dissertation) | SciTech Connect Thesis/Dissertation: Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method Citation Details In-Document Search Title: Protein Structure Recognition: From Eigenvector Analysis to Structural Threading Method In this work, they try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. They found a strong correlation

  19. Protein Structure Recognition: From Eigenvector Analysis to Structural...

    Office of Scientific and Technical Information (OSTI)

    ThesisDissertation: Protein Structure Recognition: From Eigenvector Analysis to ... The sensitivity and specificity of this method is discussed, along with a case of blind ...

  20. Structural Analysis of the Desert Peak-Brady Geothermal Fields...

    Open Energy Info (EERE)

    Structures and Geothermal Reservoirs in the Humboldt Structural Zone Citation James E. Faulds,Larry J. Garside,Gary L. Oppliger. 2003. Structural Analysis of the Desert...

  1. Structural Analysis of Sandwich Foam Panels

    SciTech Connect (OSTI)

    Kosny, Jan; Huo, X. Sharon

    2010-04-01

    The Sandwich Panel Technologies including Structural Insulated Panels (SIPs) can be used to replace the conventional wooden-frame construction method. The main purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and SGI Venture, Inc. was to design a novel high R-value type of metal sandwich panelized technology. This CRADA project report presents design concept discussion and numerical analysis results from thermal performance study of this new building envelope system. The main objective of this work was to develop a basic concept of a new generation of wall panel technologies which will have R-value over R-20 will use thermal mass to improve energy performance in cooling dominated climates and will be 100% termite resistant. The main advantages of using sandwich panels are as follows: (1) better energy saving structural panels with high and uniform overall wall R-value across the elevation that could not be achieved in traditional walls; and (2) reducing the use of raw materials or need for virgin lumber. For better utilization of these Sandwich panels, engineers need to have a thorough understanding of the actual performance of the panels and system. Detailed analysis and study on the capacities and deformation of individual panels and its assembly have to be performed to achieve that goal. The major project activity was to conduct structural analysis of the stresses, strains, load capacities, and deformations of individual sandwich components under various load cases. The analysis simulated the actual loading conditions of the regular residential building and used actual material properties of the steel facings and foam.

  2. Dromion-like structures and stability analysis in the variable...

    Office of Scientific and Technical Information (OSTI)

    Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg-Landau equation Citation Details In-Document Search Title: Dromion-like structures and ...

  3. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that...

  4. System for Analysis of Soil-Structure Interaction (SASSI) Verification...

    Broader source: Energy.gov (indexed) [DOE]

    the System for Analysis of Soil-Structure Interaction, a computer code for performing finite element analyses of soil-structure interaction during seismic ground motions. It was...

  5. Kinematic evolution of simulated star-forming galaxies

    SciTech Connect (OSTI)

    Kassin, Susan A.; Brooks, Alyson; Governato, Fabio; Weiner, Benjamin J.; Gardner, Jonathan P.

    2014-08-01

    Recent observations have shown that star-forming galaxies like our own Milky Way evolve kinematically into ordered thin disks over the last ?8 billion years since z = 1.2, undergoing a process of 'disk settling'. For the first time, we study the kinematic evolution of a suite of four state of the art 'zoom in' hydrodynamic simulations of galaxy formation and evolution in a fully cosmological context and compare with these observations. Until now, robust measurements of the internal kinematics of simulated galaxies were lacking because the simulations suffered from low resolution, overproduction of stars, and overly massive bulges. The current generation of simulations has made great progress in overcoming these difficulties and is ready for a kinematic analysis. We show that simulated galaxies follow the same kinematic trends as real galaxies: they progressively decrease in disordered motions (?{sub g}) and increase in ordered rotation (V{sub rot}) with time. The slopes of the relations between both ?{sub g} and V{sub rot} with redshift are consistent between the simulations and the observations. In addition, the morphologies of the simulated galaxies become less disturbed with time, also consistent with observations. This match between the simulated and observed trends is a significant success for the current generation of simulations, and a first step in determining the physical processes behind disk settling'.

  6. System for Analysis of Soil-Structure Interaction (SASSI) Verification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System for Analysis of Soil-Structure Interaction (SASSI) Verification & Validation (V&V) Problem Set SASSI is the System for Analysis of Soil-Structure Interaction, a computer ...

  7. Adjustable link for kinematic mounting systems

    DOE Patents [OSTI]

    Hale, L.C.

    1997-07-01

    An adjustable link for kinematic mounting systems is disclosed. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two. 3 figs.

  8. Adjustable link for kinematic mounting systems

    DOE Patents [OSTI]

    Hale, Layton C.

    1997-01-01

    An adjustable link for kinematic mounting systems. The adjustable link is a low-cost, passive device that provides backlash-free adjustment along its single constraint direction and flexural freedom in all other directions. The adjustable link comprises two spheres, two sockets in which the spheres are adjustable retain, and a connection link threadly connected at each end to the spheres, to provide a single direction of restraint and to adjust the length or distance between the sockets. Six such adjustable links provide for six degrees of freedom for mounting an instrument on a support. The adjustable link has applications in any machine or instrument requiring precision adjustment in six degrees of freedom, isolation from deformations of the supporting platform, and/or additional structural damping. The damping is accomplished by using a hollow connection link that contains an inner rod and a viscoelastic separation layer between the two.

  9. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Robust, High-Throughput Analysis of Protein Structures Print Wednesday, 28 October 2009 00:00 Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling

  10. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  11. Residual Stresses for Structural Analysis and Fatigue Life Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Prediction in Vehicle Components: Success stories from the High Temperature Materials Laboratory (HTML) User Program Residual Stresses for Structural Analysis and Fatigue Life ...

  12. Structural Analysis of the NCSX Vacuum Vessel

    SciTech Connect (OSTI)

    Fred Dahlgren; Art Brooks; Paul Goranson; Mike Cole; Peter Titus

    2004-09-28

    The NCSX (National Compact Stellarator Experiment) vacuum vessel has a rather unique shape being very closely coupled topologically to the three-fold stellarator symmetry of the plasma it contains. This shape does not permit the use of the common forms of pressure vessel analysis and necessitates the reliance on finite element analysis. The current paper describes the NCSX vacuum vessel stress analysis including external pressure, thermal, and electro-magnetic loading from internal plasma disruptions and bakeout temperatures of up to 400 degrees centigrade. Buckling and dynamic loading conditions are also considered.

  13. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  14. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  15. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  16. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  17. Robust, High-Throughput Analysis of Protein Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robust, High-Throughput Analysis of Protein Structures Print Scientists have developed a fast and efficient way to determine the structure of proteins, shortening a process that often takes years into a matter of days. The Structurally Integrated BiologY for Life Sciences (SIBYLS) beamline at the ALS has implemented the world's highest-throughput biological-solution x-ray scattering beamline enabling genomic-scale protein-structure characterization. Coupling brilliant x rays from one of the

  18. Kinematics of compressional and extensional ductile shearing...

    Open Energy Info (EERE)

    the kinematics of two main ductile-shearing events (D1 and D2) to be established in the Raft River, Grouse Creek and Albion 'metamorphic core complex'. The first event (D1) is a...

  19. Saybolt universal viscosity converted to kinematic

    SciTech Connect (OSTI)

    Anaya, C.; Bermudez, O.

    1987-09-21

    This article describes a program for personal and handheld computers, written in Basic, which has been developed for the conversion of Saybolt universal viscosity in Saybolt Universal Seconds (SSU or SUS) to kinematic viscosity in centistokes (cSt), at any selected temperature. It was developed using the mathematical relationship presented in the American Society for Testing and Materials (ASTM) standard D2161-82. In the standard, an equation is presented to convert kinematic viscosity to Saybolt universal viscosity, but nothing is presented to convert from Saybolt to kinematic because it is necessary to find the roots of a nonexplicit function. There are several numerical methods that can be used to determine the roots of the nonexplicit function, and therefore, convert Saybolt universal viscosity to kinematic viscosity. In the program, the first iteration of the second-order Newton-Raphson method is followed by the Wegstein method as a convergence accelerator.

  20. Virtual sine arm kinematic mount system

    SciTech Connect (OSTI)

    Xu, Z.; Randall, K.J.

    1997-09-01

    A novel kinematic mount system for a vertical focusing mirror of the soft x-ray spectroscopy beamline at the Advanced Photon Source is described. The system contains three points in a horizontal plane. Each point consists of two horizontal linear precision stages, a spherical ball bearing, and a vertical precision stage. The horizontal linear stages are aligned orthogonally and are conjoined by a spherical ball bearing, supported by the vertical linear stage at each point. The position of each confined horizontal stage is controlled by a motorized micrometer head by spring-loading the flat tip of the micrometer head onto a tooling ball fixing on the carriage of the stage. A virtual sine arm is formed by tilting the upstream horizontal stage down and the two downstream horizontal stages up by a small angle. The fine pitch motion is achieved by adjusting the upstream stage. This supporting structure is extremely steady due to a relatively large span across the supporting points and yields extremely high resolution on the pitch motion. With a one degree tilt and a microstepping motor, the authors achieved a 0.4 nanoradian resolution on the mirror pitch motion.

  1. Probabilistic Computer Analysis for Rapid Evaluation of Structures.

    Energy Science and Technology Software Center (OSTI)

    2007-03-29

    P-CARES 2.0.0, Probabilistic Computer Analysis for Rapid Evaluation of Structures, was developed for NRC staff use to determine the validity and accuracy of the analysis methods used by various utilities for structural safety evaluations of nuclear power plants. P-CARES provides the capability to effectively evaluate the probabilistic seismic response using simplified soil and structural models and to quickly check the validity and/or accuracy of the SSI data received from applicants and licensees. The code ismore » organized in a modular format with the basic modules of the system performing static, seismic, and nonlinear analysis.« less

  2. Structural and functional analysis of Nup120 suggests ring formation...

    Office of Scientific and Technical Information (OSTI)

    Title: Structural and functional analysis of Nup120 suggests ring formation of the Nup84 complex Authors: Seo, Hyuk-Soo ; Ma, Yingli ; Debler, Erik W. ; Wacker, Daniel ; Kutik, ...

  3. Depth-resolved magnetic and structural analysis of relaxing epitaxial...

    Office of Scientific and Technical Information (OSTI)

    Depth-resolved magnetic and structural analysis of relaxing epitaxial Sr 2 CrReO 6 <...

  4. Highly damped kinematic coupling for precision instruments

    DOE Patents [OSTI]

    Hale, Layton C.; Jensen, Steven A.

    2001-01-01

    A highly damped kinematic coupling for precision instruments. The kinematic coupling provides support while causing essentially no influence to its nature shape, with such influences coming, for example, from manufacturing tolerances, temperature changes, or ground motion. The coupling uses three ball-cone constraints, each combined with a released flexural degree of freedom. This arrangement enables a gain of higher load capacity and stiffness, but can also significantly reduce the friction level in proportion to the ball radius divided by the distance between the ball and the hinge axis. The blade flexures reduces somewhat the stiffness of the coupling and provides an ideal location to apply constrained-layer damping which is accomplished by attaching a viscoelastic layer and a constraining layer on opposite sides of each of the blade flexures. The three identical ball-cone flexures provide a damped coupling mechanism to kinematically support the projection optics system of the extreme ultraviolet lithography (EUVL) system, or other load-sensitive apparatus.

  5. Synchrotron IR microspectroscopy for protein structure analysis: Potential and questions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Peiqiang

    2006-01-01

    Synchrotron radiation-based Fourier transform infrared microspectroscopy (S-FTIR) has been developed as a rapid, direct, non-destructive, bioanalytical technique. This technique takes advantage of synchrotron light brightness and small effective source size and is capable of exploring the molecular chemical make-up within microstructures of a biological tissue without destruction of inherent structures at ultra-spatial resolutions within cellular dimension. To date there has been very little application of this advanced technique to the study of pure protein inherent structure at a cellular level in biological tissues. In this review, a novel approach was introduced to show the potential of the newly developed, advancedmore » synchrotron-based analytical technology, which can be used to localize relatively “pure“ protein in the plant tissues and relatively reveal protein inherent structure and protein molecular chemical make-up within intact tissue at cellular and subcellular levels. Several complex protein IR spectra data analytical techniques (Gaussian and Lorentzian multi-component peak modeling, univariate and multivariate analysis, principal component analysis (PCA), and hierarchical cluster analysis (CLA) are employed to relatively reveal features of protein inherent structure and distinguish protein inherent structure differences between varieties/species and treatments in plant tissues. By using a multi-peak modeling procedure, RELATIVE estimates (but not EXACT determinations) for protein secondary structure analysis can be made for comparison purpose. The issues of pro- and anti-multi-peaking modeling/fitting procedure for relative estimation of protein structure were discussed. By using the PCA and CLA analyses, the plant molecular structure can be qualitatively separate one group from another, statistically, even though the spectral assignments are not known. The synchrotron-based technology provides a new approach for protein structure research in

  6. Large-scale computations in analysis of structures

    SciTech Connect (OSTI)

    McCallen, D.B.; Goudreau, G.L.

    1993-09-01

    Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.

  7. Process for structural geologic analysis of topography and point data

    DOE Patents [OSTI]

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  8. KINEMATICS OF THE CO GAS IN THE INNER REGIONS OF THE TW Hya DISK

    SciTech Connect (OSTI)

    Rosenfeld, Katherine A.; Qi Chunhua; Andrews, Sean M.; Wilner, David J.; Corder, Stuartt A.; Dullemond, C. P.; Lin Shinyi; Hughes, A. M.; D'Alessio, Paola; Ho, P. T. P.

    2012-10-01

    We present a detailed analysis of the spatially and spectrally resolved {sup 12}CO J = 2-1 and J = 3-2 emission lines from the TW Hya circumstellar disk, based on science verification data from the Atacama Large Millimeter/submillimeter Array (ALMA). These lines exhibit substantial emission in their high-velocity wings (with projected velocities out to 2.1 km s{sup -1}, corresponding to intrinsic orbital velocities >20 km s{sup -1}) that trace molecular gas as close as 2 AU from the central star. However, we are not able to reproduce the intensity of these wings and the general spatio-kinematic pattern of the lines with simple models for the disk structure and kinematics. Using three-dimensional non-local thermodynamic equilibrium molecular excitation and radiative transfer calculations, we construct some alternative models that successfully account for these features by modifying either (1) the temperature structure of the inner disk (inside the dust-depleted disk cavity; r < 4 AU), (2) the intrinsic (Keplerian) disk velocity field, or (3) the distribution of disk inclination angles (a warp). The latter approach is particularly compelling because a representative warped disk model qualitatively reproduces the observed azimuthal modulation of optical light scattered off the disk surface. In any model scenario, the ALMA data clearly require a substantial molecular gas reservoir located inside the region where dust optical depths are known to be substantially diminished in the TW Hya disk, in agreement with previous studies based on infrared spectroscopy. The results from these updated model prescriptions are discussed in terms of their potential physical origins, which might include dynamical perturbations from a low-mass companion with an orbital separation of a few AU.

  9. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    SciTech Connect (OSTI)

    Ennis, Brandon Lee; Paquette, Joshua A.

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  10. ANALYTIC MODELING OF THE MORETON WAVE KINEMATICS

    SciTech Connect (OSTI)

    Temmer, M.; Veronig, A. M.

    2009-09-10

    The issue whether Moreton waves are flare-ignited or coronal mass ejection (CME)-driven, or a combination of both, is still a matter of debate. We develop an analytical model describing the evolution of a large-amplitude coronal wave emitted by the expansion of a circular source surface in order to mimic the evolution of a Moreton wave. The model results are confronted with observations of a strong Moreton wave observed in association with the X3.8/3B flare/CME event from 2005 January 17. Using different input parameters for the expansion of the source region, either derived from the real CME observations (assuming that the upward moving CME drives the wave), or synthetically generated scenarios (expanding flare region, lateral expansion of the CME flanks), we calculate the kinematics of the associated Moreton wave signature. Those model input parameters are determined which fit the observed Moreton wave kinematics best. Using the measured kinematics of the upward moving CME as the model input, we are not able to reproduce the observed Moreton wave kinematics. The observations of the Moreton wave can be reproduced only by applying a strong and impulsive acceleration for the source region expansion acting in a piston mechanism scenario. Based on these results we propose that the expansion of the flaring region or the lateral expansion of the CME flanks is more likely the driver of the Moreton wave than the upward moving CME front.

  11. Constrained tri-sphere kinematic positioning system

    DOE Patents [OSTI]

    Viola, Robert J

    2010-12-14

    A scalable and adaptable, six-degree-of-freedom, kinematic positioning system is described. The system can position objects supported on top of, or suspended from, jacks comprising constrained joints. The system is compatible with extreme low temperature or high vacuum environments. When constant adjustment is not required a removable motor unit is available.

  12. Design and Analysis of Muon Beam Stop Support Structures

    SciTech Connect (OSTI)

    Okafor, Udenna

    2015-01-01

    The primary objective of this thesis is to design and analyze support structures to be used in the installation, test and final positioning of the MBS throughout the life of the Mu2e experiment. There several requirements for the MBS imposed by both the scope of the experiment and, other components within the DS bore. The functions of the MBS are: 1. To limit the induced rates in the Tracker, the Calorimeter and the Cosmic Ray Veto due to backsplash-and-secondary interactions, and 2. To reduce radiation levels external to the Detector solenoid. The structures used in supporting the MBS will also adhere to requirements imposed by its functions. These requirements are critical to the support structures and affect design decisions. Other requirements critical to the design are imposed by the weight, positional tolerance and assembly procedure of the MBS, and also, the magnetic field and vacuum dose rate of the DS bore. A detailed breakdown of how each requirement affects the structural design can be found in chapter 2. Chapter 3 describes the design of each support structure and its attachment to the MBS while chapter 4 describes the results from structural analysis of the support structures. Chapter 5 describes evaluation for the design through testing and calculations while the conclusion in chapter 6 reports the current status at the time of this thesis submission with a plan for future work to be completed until final design and installation.

  13. Analysis of fine structure in the nuclear continuum

    SciTech Connect (OSTI)

    Shevchenko, A.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Usman, I.; Cooper, G. R. J.; Fearick, R. W.

    2008-02-15

    Fine structure has been shown to be a general phenomenon of nuclear giant resonances of different multipolarities over a wide mass range. In this article we assess various techniques that have been proposed to extract quantitative information from the fine structure in terms of characteristic scales. These include the so-called local scaling dimension, the entropy index method, Fourier analysis, and continuous and discrete wavelet transforms. As an example, results on the isoscalar giant quadrupole resonance in {sup 208}Pb from high-energy-resolution inelastic proton scattering and calculations with the quasiparticle-phonon model are analyzed. Wavelet analysis, both continuous and discrete, of the spectra is shown to be a powerful tool to extract the magnitude and localization of characteristic scales.

  14. WEC and Support Bridge Control Structural Dynamic Interaction Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Support Bridge Control Structural Dynamic Interaction Analysis David Wilson 1 , Giorgio Bacelli 1 , Ryan G. Coe 1 , Rush D. Robinett III 2 , Gareth Thomas 3 , Daniel Linehan 3 , David Newborn 4 , Miguel Quintero 4 1 Sandia National Laboratories 2 Michigan Technological University 3 ATA Engineering, Inc. 4 Naval Surface Warfare Center Carderock Division ABSTRACT Experimental testing is a critical step in the development of models describing the behavior of a system. The objective of the

  15. Crystal Structure and Functional Analysis Identify Evolutionary Secret of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SerRS in Vascular Development | Stanford Synchrotron Radiation Lightsource Crystal Structure and Functional Analysis Identify Evolutionary Secret of SerRS in Vascular Development Wednesday, July 31, 2013 Aminoacyl-tRNA synthetases (aaRS) have been essential enzymes for protein synthesis throughout evolution. As the tree of life was ascended, tRNA synthetases added new domains, which are generally dispensable for aminoacylation, in a progressive and accretive manner. The acquisitions were

  16. KINEMATICS OF OUTER HALO GLOBULAR CLUSTERS IN M31

    SciTech Connect (OSTI)

    Veljanoski, J.; Ferguson, A. M. N.; Bernard, E. J.; Penarrubia, J.; Mackey, A. D.; Huxor, A. P.; Irwin, M. J.; Chapman, S. C.; Cote, P.; Tanvir, N. R.; McConnachie, A.; Ibata, R. A.; Martin, N. F.; Fardal, M.; Lewis, G. F.

    2013-05-10

    We present the first kinematic analysis of the far outer halo globular cluster (GC) population in the Local Group galaxy M31. Our sample contains 53 objects with projected radii of {approx}20-130 kpc, 44 of which have no previous spectroscopic information. GCs with projected radii {approx}> 30 kpc are found to exhibit net rotation around the minor axis of M31, in the same sense as the inner GCs, albeit with a smaller amplitude of 79 {+-} 19 km s{sup -1}. The rotation-corrected velocity dispersion of the full halo GC sample is 106 {+-} 12 km s{sup -1}, which we observe to decrease with increasing projected radius. We find compelling evidence for kinematic coherence among GCs that project on top of halo substructure, including a clear signature of infall for GCs lying along the northwest stream. Using the tracer mass estimator, we estimate the dynamical mass of M31 within 200 kpc to be M{sub M31} = (1.2-1.5) {+-} 0.2 Multiplication-Sign 10{sup 12} M{sub Sun }. This value is highly dependent on the chosen model and assumptions within.

  17. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    SciTech Connect (OSTI)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A.; Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher; Strader, Jay; Spitler, Lee R.; Foster, Caroline

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ?2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (?{sub inst} ? 25 km s{sup 1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, ?, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  18. Analysis of large structures in separated shear layers

    SciTech Connect (OSTI)

    Panigrahi, P.; Acharya, S.

    1999-07-01

    Large scale structures play an important role in the development of free shear layers and jets, and there is a large body of literature dealing with this subject. For meaningful interpretation of data, different analysis techniques have been used. However, these methods have been plagued with problems associated with phase jitter in the coherent modes. The primary goal of the data analysis techniques is to identify the individual modes present and to accurately determine the evolution of the amplitudes and phases of these modes. The goal of the present work is to develop suitable data analysis techniques for accurately evaluating the amplitude and phases of the coherent structures. In this paper, a pattern recognition technique that has the potential of computing the amplitudes of the large-scale structures correctly has been developed and further extended to include the calculation of the phase jitter. The pattern recognition technique is based on characterizing the coherent components in the form of a Fourier-cosine series with each mode identified by a frequency, amplitude and phase. The series is truncated by pre-selecting the modes (based on a spectral analysis of the signal). The evaluation of the Fourier components for the different modes is then made by segmenting the whole time-series into different segments such that in one segment one period of the corresponding wave is present. The mode corresponding to the lowest frequency is evaluated first, the coherent components corresponding to this mode is then subtracted from the signal, and then the components of the next higher mode is evaluated, and the process continued till all modes have been determined. A second approach has been used in the evaluation of phase jitter, and is based on an extension of a method proposed by Ho and co-workers (referred to as the HZFB method) in this paper. Using simulated data, the HZFB method is shown to produce inaccurate results in the presence of multiple modes and small

  19. Structural analysis of flexible proteins in solution by SmallAngle...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Structural analysis of flexible proteins in solution by SmallAngle X-ray ... Combining SAXS results with atomic resolution structures enables detailed ...

  20. Kinematic model for postorogenic Basin and Range extension |...

    Open Energy Info (EERE)

    Article: Kinematic model for postorogenic Basin and Range extension Abstract The Raft River extensional shear zone is exposed in the Albion-Raft River-Grouse Creek...

    1. Code System for Analysis of 3-D Reinforced Concrete Structures.

      Energy Science and Technology Software Center (OSTI)

      1999-11-22

      Version 00 NONSAP-C is a finite element program for determining the static and dynamic response of three-dimensional reinforced concrete structures. Long-term, or creep, behavior of concrete structures can also be analyzed. Nonlinear constitutive relations for concrete under short-term loads are incorporated in two time-independent models, a variable-modulus approach with orthotropic behavior induced in the concrete due to the development of different tangent moduli in different directions and an elastic-plastic model in which the concrete ismore » assumed to be a continuous, isotropic, and linearly elastic-plastic strain-hardening-fracture material. A viscoelastic constitutive model for long-term thermal creep of concrete is included. Three-dimensional finite elements available in NONSAP-C include a truss element, a multinode tendon element for prestressed and post tensioned concrete structures, an elastic-plastic membrane element to represent the behavior of cavity liners, and a general isoparametric element with a variable number of nodes for analysis of solids and thick shells.« less

    2. THE SPLASH SURVEY: KINEMATICS OF ANDROMEDA's INNER SPHEROID

      SciTech Connect (OSTI)

      Dorman, Claire E.; Guhathakurta, Puragra; and others

      2012-06-20

      The combination of large size, high stellar density, high metallicity, and Sersic surface brightness profile of the spheroidal component of the Andromeda galaxy (M31) within R{sub proj} {approx} 20 kpc suggests that it is unlike any subcomponent of the Milky Way. In this work we capitalize on our proximity to and external view of M31 to probe the kinematical properties of this 'inner spheroid'. We employ a Markov chain Monte Carlo (MCMC) analysis of resolved stellar kinematics from Keck/DEIMOS spectra of 5651 red giant branch stars to disentangle M31's inner spheroid from its stellar disk. We measure the mean velocity and dispersion of the spheroid in each of five spatial bins after accounting for a locally cold stellar disk as well as the Giant Southern Stream and associated tidal debris. For the first time, we detect significant spheroid rotation (v{sub rot} {approx} 50 km s{sup -1}) beyond R{sub proj} {approx} 5 kpc. The velocity dispersion decreases from about 140 km s{sup -1} at R{sub proj} = 7 kpc to 120 km s{sup -1} at R{sub proj} = 14 kpc, consistent to 2{sigma} with existing measurements and models. We calculate the probability that a given star is a member of the spheroid and find that the spheroid has a significant presence throughout the spatial extent of our sample. Lastly, we show that the flattening of the spheroid is due to velocity anisotropy in addition to rotation. Though this suggests that the inner spheroid of M31 more closely resembles an elliptical galaxy than a typical spiral galaxy bulge, it should be cautioned that our measurements are much farther out (2-14r{sub eff}) than for the comparison samples.

    3. Analysis of transient heat loss in earth-sheltered structures

      SciTech Connect (OSTI)

      Szydlowski, R.F.

      1980-09-01

      The two-dimensional transient Fourier heat conduction equation has been solved in cartesian coordinates using an alternating direction implicit finite difference technique for several earth sheltered building configurations. The model has been computer coded and verified by comparing results with data taken from an instrumented conventional residence basement. The present model considers variable soil properties, different types of below grade configurations, and various types, thicknesses, and locations of insulation. The model has been used to analyze the thermal impact of varying levels of interior and exterior insulation on conventional basements, earth bermed walls, and earth covered structures. Local and integrated heat transfer through the exterior building envelope versus time of year are given as functions of construction materials, insulation, and soil geometry. Temperature distributions within the building envelope material and in the surrounding soil are presented versus time of year. An economic analysis is also given to indicate the cost effectiveness of the insulation levels analyzed.

    4. Design and Structural Analysis of Mars Rover RTG

      SciTech Connect (OSTI)

      Schock, Alfred; Hamrick, T.; Sankarankandath, V.; Shirbacheh, M.

      1989-09-29

      The paper describes the design and the structural and mass analysis of a Radioisotope Thermoelectric Generators (RTGs) for powering the MARS Rover vehicle, which is a critical element of the unmanned Mars Rover and Sample Return mission (MRSR). The RTG design study was conducted by Fairchild Space Company for the U.S. Department of Energy, in support of the Jet Propulsion Laboratory's MRSR project.; The paper briefly describes a reference mission scenario, an illustrative Rover design and activity pattern on Mars, and its power system requirements and environmental constraints, including the RTG cooling requirements during transit to Mars. It identifies the key RTG design problem, i.e. venting the helium generated by the fuel's alpha decay without intrusion of the Martian atmosphere into the RTG, and proposes a design approach for solving that problem.; Using that approach, it describes a very conservative baseline RTG design. The design is based on the proven and safety-qualified General Purpose Heat Source module, and employs standard thermoelectric unicouples whose reliability and performance stability has been extensively demonstrated on previous space missions. The heat source of the 250-watt RTG consists of a stack of 18 separate modules that is supported at its ends but not along its length. The paper describes and analyzes the structure that holds the stack together during Earth launch and Mars operations but allows it to come apart in case of an inadvertent reentry.; A companion paper presented at this conference describes the RTG's thermal and electrical analysis, and compares its performance with that of several lighter but less conservative design options.; There is a duplicate copy in the ESD files. This document is not relevent to OSTI Library. Do not send.

    5. Advancements in 3D Structural Analysis of Geothermal Systems

      SciTech Connect (OSTI)

      Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

      2013-06-23

      Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

    6. Radial transmission line analysis of multi-layer structures

      SciTech Connect (OSTI)

      Hahn, H.; Hammons, L.

      2011-03-28

      The analysis of multi-layer beam tubes is a standard problem and involves axially propagating waves. This treatment is ill suited to a short multi-layer structure such as the present example of a ferrite covered ceramic break in the beam tube at the ERL photo-cathode electron gun. This paper demonstrates that such structure can better be treated by radial wave propagation. The theoretical method is presented and numerical results are compared with measured network analyser data and Microwave Studio generated simulations. The results confirm the concept of radial transmission lines as a valid analytical method. An Energy Recovery Linac (ERL) is being constructed at this laboratory for the purpose of research towards an envisioned Electron Ion Collider. One of the pertinent topics is damping of Higher Order Modes (HOM). In this ERL, the damping is provided by ferrite absorbers in the beam tube. A modified version thereof, a ceramic break surrounded by ferrite, is planed for the superconducting electron gun. The damper here is located at room temperature just outside of the gun. If used in a cavity chain, the ceramic break is in the vacuum tube at helium temperature whereas the ferrite is moved into the cryostat insulating vacuum allowing higher temperatures. The general properties of the ferrite HOM dampers have been published but are more detailed in this paper.

    7. GLOBAL H I KINEMATICS IN DWARF GALAXIES

      SciTech Connect (OSTI)

      Stilp, Adrienne M.; Dalcanton, Julianne J.; Warren, Steven R.; Skillman, Evan; Ott, Juergen; Koribalski, Baerbel

      2013-03-10

      H I line widths are typically interpreted as a measure of interstellar medium turbulence, which is potentially driven by star formation (SF). In an effort to better understand the possible connections between line widths and SF, we have characterized H I kinematics in a sample of nearby dwarf galaxies by co-adding line-of-sight spectra after removing the rotational velocity to produce average global H I line profiles. These ''superprofiles'' are composed of a central narrow peak ({approx}6-10 km s{sup -1}) with higher-velocity wings to either side that contain {approx}10%-15% of the total flux. The superprofiles are all very similar, indicating a universal global H I profile for dwarf galaxies. We compare characteristics of the superprofiles to various galaxy properties, such as mass and measures of SF, with the assumption that the superprofile represents a turbulent peak with energetic wings to either side. We use these quantities to derive average scale heights for the sample galaxies. When comparing to physical properties, we find that the velocity dispersion of the central peak is correlated with ({Sigma}{sub HI}). The fraction of mass and characteristic velocity of the high-velocity wings are correlated with measures of SF, consistent with the picture that SF drives surrounding H I to higher velocities. While gravitational instabilities provide too little energy, the SF in the sample galaxies does provide enough energy through supernovae, with realistic estimates of the coupling efficiency, to produce the observed superprofiles.

    8. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

      SciTech Connect (OSTI)

      1995-08-01

      This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 {times} 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical {1/2}-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi.

    9. Aerodynamic, structural, and trajectory analysis of ASTRID-1 vehicle

      SciTech Connect (OSTI)

      Glover, L.S.; Iwaskiw, A.P.; Oursler, M.A.; Perini, L.L.; Schaefer, E.D.

      1994-02-10

      The Johns Hopkins University/Applied Physics Laboratory, JHU/API, in support of Lawrence Livermore National Laboratory, LLNL, is conducting aerodynamic, trajectory, and structural analysis of the Advanced Single Stage Technology Rapid Insertion Demonstration (ASTRID) vehicle, being launched out of Vandenberg Air Force Base (VAFB) in February 1994. The launch is designated ASTRID-1 and is the first in a series of three that will be launched out of VAFB. Launch dates for the next two flights have not been identified, but they are scheduled for the 1994-1995 time frame. The primary goal of the ASTRID-1 flight is to test the LLNL light weight thrust on demand bi-propellant pumped divert propulsion system. The system is employed as the main thrusters for the ASTRID-1 vehicle and uses hydrazine as the mono-propellant. The major conclusions are: (1) The vehicle is very stable throughout flight (stability margin = 17 to 24 inches); (2) The aerodynamic frequency and the roll rate are such that pitch-roll interactions will be small; (3) The high stability margin combined with the high launcher elevation angle makes the vehicle flight path highly sensitive to perturbations during the initial phase of flight, i.e., during the first second of flight after leaving the rail; (4) The major impact dispersions for the test flight are due to winds. The wind impact dispersions are 90% dictated by the low altitude, 0 to 1000 ft., wind conditions; and (5) In order to minimize wind dispersions, head wind conditions are favored for the launch as November VAFB mean tail winds result in land impacts. The ballistic wind methodology can be employed to assess the impact points of winds at the launch site.

    10. Structure and Kinetic Analysis of H[subscript 2]S Production...

      Office of Scientific and Technical Information (OSTI)

      of Hsubscript 2S Production by Human Mercaptopyruvate Sulfurtransferase Citation Details In-Document Search Title: Structure and Kinetic Analysis of Hsubscript 2S ...

    11. Three-Dimensional Structural Analysis of MgO-Supported Osmium...

      Office of Scientific and Technical Information (OSTI)

      Three-Dimensional Structural Analysis of MgO-Supported Osmium Clusters by Electron Microscopy with Single-Atom Sensitivity Citation Details In-Document Search Title: ...

    12. System for Analysis of Soil-Structure Interaction (SASSI) Verification &

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Validation (V&V) Problem Set | Department of Energy System for Analysis of Soil-Structure Interaction (SASSI) Verification & Validation (V&V) Problem Set System for Analysis of Soil-Structure Interaction (SASSI) Verification & Validation (V&V) Problem Set System for Analysis of Soil-Structure Interaction (SASSI) Verification & Validation (V&V) Problem Set SASSI is the System for Analysis of Soil-Structure Interaction, a computer code for performing finite element

    13. Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis

      Broader source: Energy.gov [DOE]

      Application of Random Vibration Theory Methodology for Seismic Soil-Structure Interaction Analysis Farhang Ostadan Nan Deng Lisa Anderson Bechtel National, Inc. USDOE NPH Workshop October 2014

    14. Performance analysis of high quality parallel preconditioners applied to 3D finite element structural analysis

      SciTech Connect (OSTI)

      Kolotilina, L.; Nikishin, A.; Yeremin, A.

      1994-12-31

      The solution of large systems of linear equations is a crucial bottleneck when performing 3D finite element analysis of structures. Also, in many cases the reliability and robustness of iterative solution strategies, and their efficiency when exploiting hardware resources, fully determine the scope of industrial applications which can be solved on a particular computer platform. This is especially true for modern vector/parallel supercomputers with large vector length and for modern massively parallel supercomputers. Preconditioned iterative methods have been successfully applied to industrial class finite element analysis of structures. The construction and application of high quality preconditioners constitutes a high percentage of the total solution time. Parallel implementation of high quality preconditioners on such architectures is a formidable challenge. Two common types of existing preconditioners are the implicit preconditioners and the explicit preconditioners. The implicit preconditioners (e.g. incomplete factorizations of several types) are generally high quality but require solution of lower and upper triangular systems of equations per iteration which are difficult to parallelize without deteriorating the convergence rate. The explicit type of preconditionings (e.g. polynomial preconditioners or Jacobi-like preconditioners) require sparse matrix-vector multiplications and can be parallelized but their preconditioning qualities are less than desirable. The authors present results of numerical experiments with Factorized Sparse Approximate Inverses (FSAI) for symmetric positive definite linear systems. These are high quality preconditioners that possess a large resource of parallelism by construction without increasing the serial complexity.

    15. Two worlds collide: Image analysis methods for quantifying structural variation in cluster molecular dynamics

      SciTech Connect (OSTI)

      Steenbergen, K. G.; Gaston, N.

      2014-02-14

      Inspired by methods of remote sensing image analysis, we analyze structural variation in cluster molecular dynamics (MD) simulations through a unique application of the principal component analysis (PCA) and Pearson Correlation Coefficient (PCC). The PCA analysis characterizes the geometric shape of the cluster structure at each time step, yielding a detailed and quantitative measure of structural stability and variation at finite temperature. Our PCC analysis captures bond structure variation in MD, which can be used to both supplement the PCA analysis as well as compare bond patterns between different cluster sizes. Relying only on atomic position data, without requirement for a priori structural input, PCA and PCC can be used to analyze both classical and ab initio MD simulations for any cluster composition or electronic configuration. Taken together, these statistical tools represent powerful new techniques for quantitative structural characterization and isomer identification in cluster MD.

    16. Geothermal Resource Analysis And Structure Of Basin And Range...

      Open Energy Info (EERE)

      And Structure Of Basin And Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal...

    17. Robust, High-Throughput Analysis of Protein Structures

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      applying SAXS to focused biological problems. Current directions include the analysis of DNA repair pathways, which, if malfunctioning, are a leading cause of cancer. An equally...

    18. FAQS Gap Analysis Qualification Card – Civil Structural Engineering

      Office of Energy Efficiency and Renewable Energy (EERE)

      Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

    19. Code System for Fluid-Structure Interaction Analysis.

      Energy Science and Technology Software Center (OSTI)

      2001-05-30

      Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

    20. Seismic fragility analysis of structural components for HFBR facilities

      SciTech Connect (OSTI)

      Park, Y.J.; Hofmayer, C.H.

      1992-01-01

      The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations.

    1. Seismic fragility analysis of structural components for HFBR facilities

      SciTech Connect (OSTI)

      Park, Y.J.; Hofmayer, C.H.

      1992-04-01

      The paper presents a summary of recently completed seismic fragility analyses of the HFBR facilities. Based on a detailed review of past PRA studies, various refinements were made regarding the strength and ductility evaluation of structural components. Available laboratory test data were analysed to evaluate the formulations used to predict the ultimate strength and deformation capacities of steel, reinforced concrete and masonry structures. The biasness and uncertainties were evaluated within the framework of the fragility evaluation methods widely accepted in the nuclear industry. A few examples of fragility calculations are also included to illustrate the use of the presented formulations.

    2. Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

      SciTech Connect (OSTI)

      Mitchell, John Anthony; Fuller, Timothy Jesse

      2013-09-01

      This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gauss's law and Faraday's law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples.

    3. Moisture and Structural Analysis for High Performance Hybrid Wall Assemblies

      SciTech Connect (OSTI)

      Grin, A.; Lstiburek, J.

      2012-09-01

      Based on past experience in the Building America program, BSC has found that combinations of materials and approachesin other words, systemsusually provide optimum performance. Integration is necessary, as described in this research project. The hybrid walls analyzed utilize a combination of exterior insulation, diagonal metal strapping, and spray polyurethane foam and leave room for cavity-fill insulation. These systems can provide effective thermal, air, moisture, and water barrier systems in one assembly and provide structure.

    4. ARM - PI Product - Kinematic and Hydrometer Data Products from Scanning

      Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

      Radars during MC3E ProductsKinematic and Hydrometer Data Products from Scanning Radars during MC3E Citation DOI: 10.5439/1241493 [ What is this? ] ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Kinematic and Hydrometer Data Products from Scanning Radars during MC3E [ research data - ASR funded ] Recently the Radar Meteorology Group at Colorado State University has completed major case studies of

    5. Geography-based structural analysis of the Internet

      SciTech Connect (OSTI)

      Kasiviswanathan, Shiva; Eidenbenz, Stephan; Yan, Guanhua

      2010-01-01

      In this paper, we study some geographic aspects of the Internet. We base our analysis on a large set of geolocated IP hop-level session data (including about 300,000 backbone routers, 150 million end hosts, and 1 billion sessions) that we synthesized from a variety of different input sources such as US census data, computer usage statistics, Internet market share data, IP geolocation data sets, CAJDA's Skitter data set for backbone connectivity, and BGP routing tables. We use this model to perform a nationwide and statewide geographic analysis of the Internet. Our main observations are: (1) There is a dominant coast-to-coast pattern in the US Internet traffic. In fact, in many instances even if the end-devices are not near either coast, still the traffic between them takes a long detour through the coasts. (2) More than half of the Internet paths are inflated by 100% or more compared to their corresponding geometric straight-line distance. This circuitousness makes the average ratio between the routing distance and geometric distance big (around 10). (3) The weighted mean hop count is around 5, but the hop counts are very loosely correlated with the distances. The weighted mean AS count (number of ASes traversed) is around 3. (4) The AS size and the AS location number distributions are heavy-tailed and strongly correlated. Most of the ASes are medium sized and there is a wide variability in the geographic dispersion size (measured in terms of the convex hull area) of these ASes.

    6. A STRUCTURAL ANALYSIS OF STAR-FORMING REGION AFGL 490

      SciTech Connect (OSTI)

      Masiunas, L. C.; Gutermuth, R. A.; Pipher, J. L.; Megeath, S. T.; Myers, P. C.; Kirk, H. M.; Fazio, G. G.; Allen, L. E.

      2012-06-20

      We present Spitzer IRAC and MIPS observations of the star-forming region containing intermediate-mass young stellar object (YSO) AFGL 490. We supplement these data with near-IR Two Micron All Sky Survey photometry and with deep Simultaneous Quad Infrared Imaging Device observations off the central high-extinction region. We have more than doubled the known membership of this region to 57 Class I and 303 Class II YSOs via the combined 1-24 {mu}m photometric catalog derived from these data. We construct and analyze the minimum spanning tree of their projected positions, isolating one locally overdense cluster core containing 219 YSOs (60.8% of the region's members). We find this cluster core to be larger yet less dense than similarly analyzed clusters. Although the structure of this cluster core appears irregular, we demonstrate that the parsec-scale surface densities of both YSOs and gas are correlated with a power-law slope of 2.8, as found for other similarly analyzed nearby molecular clouds. We also explore the mass segregation implications of AFGL 490's offset from the center of its core, finding that it has no apparent preferential central position relative to the low-mass members.

    7. Integration of Noise and Coda Correlation Data into Kinematic and Waveform

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Inversions | Department of Energy Noise and Coda Correlation Data into Kinematic and Waveform Inversions Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions presentation at the April 2013 peer review meeting held in Denver, Colorado. fugro_peer2013.pdf (6.19 MB) More Documents & Publications Integration of Noise and Coda Correlation Data into Kinematic and Waveform

    8. Finite element strategies for the efficient analysis and evaluation of solar collector structures

      SciTech Connect (OSTI)

      Koteras, J. R.

      1980-01-01

      Concentrating or reflecting structures for solar energy systems must be evaluated as to their structural integrity and optical performance. Computer studies can be used as an integral part of these evaluations. The computer studies make use of finite element structural codes coupled with post-processors that calculate optical data. If the analysis of a solar structure is to be carried out in an efficient manner, these computer codes must have certain capabilities. A number of solar energy projects at Sandia National Laboratories have made extensive use of finite element analyses. The analyses have been useful in evaluating design concepts which hold promise for large scale use in solar energy projects. Analysis procedures have been developed for some structures so that evaluations can be carried out in a straightforward manner.

    9. Ionized gas kinematics at high resolution. IV. Star formation and a rotating core in the Medusa (NGC 4194)

      SciTech Connect (OSTI)

      Beck, Sara C.; Lacy, John; Turner, Jean; Greathouse, Thomas; Neff, Susan

      2014-05-20

      NGC 4194 is a post-merger starburst known as The Medusa for its striking tidal features. We present here a detailed study of the structure and kinematics of ionized gas in the central 0.65 kpc of the Medusa. The data include radio continuum maps with resolution up to 0.''18 (35 pc) and a 12.8 ?m [Ne II] data cube with spectral resolution ?4 km s{sup 1}: the first high-resolution, extinction-free observations of this remarkable object. The ionized gas has the kinematic signature of a core in solid-body rotation. The starburst has formed a complex of bright compact H II regions, probably excited by deeply embedded super star clusters, but none of these sources is a convincing candidate for a Galactic nucleus. The nuclei of the merger partners that created the Medusa have not yet been identified.

    10. OVERVIEW ON BNL ASSESSMENT OF SEISMIC ANALYSIS METHODS FOR DEEPLY EMBEDDED NPP STRUCTURES.

      SciTech Connect (OSTI)

      XU,J.; COSTANTINO, C.; HOFMAYER, C.; GRAVES, H.

      2007-04-01

      A study was performed by Brookhaven National Laboratory (BNL) under the sponsorship of the U. S. Nuclear Regulatory Commission (USNRC), to determine the applicability of established soil-structure interaction analysis methods and computer programs to deeply embedded and/or buried (DEB) nuclear power plant (NPP) structures. This paper provides an overview of the BNL study including a description and discussions of analyses performed to assess relative performance of various SSI analysis methods typically applied to NPP structures, as well as the importance of interface modeling for DEB structures. There are four main elements contained in the BNL study: (1) Review and evaluation of existing seismic design practice, (2) Assessment of simplified vs. detailed methods for SSI in-structure response spectrum analysis of DEB structures, (3) Assessment of methods for computing seismic induced earth pressures on DEB structures, and (4) Development of the criteria for benchmark problems which could be used for validating computer programs for computing seismic responses of DEB NPP structures. The BNL study concluded that the equivalent linear SSI methods, including both simplified and detailed approaches, can be extended to DEB structures and produce acceptable SSI response calculations, provided that the SSI response induced by the ground motion is very much within the linear regime or the non-linear effect is not anticipated to control the SSI response parameters. The BNL study also revealed that the response calculation is sensitive to the modeling assumptions made for the soil/structure interface and application of a particular material model for the soil.

    11. THE MILKY WAY TOMOGRAPHY WITH SDSS. III. STELLAR KINEMATICS

      SciTech Connect (OSTI)

      Bond, Nicholas A.; Ivezic, Zeljko; Sesar, Branimir; Kowalski, Adam; Loebman, Sarah; Roskar, Rok; Dalcanton, Julianne; Juric, Mario; Munn, Jeffrey A.; Beers, Timothy C.; Lee, Young Sun; Sivarani, Thirupathi; Rockosi, Constance M.; Yanny, Brian; Newberg, Heidi J.; Allende Prieto, Carlos; Wilhelm, Ron; Majewski, Steven R.; Norris, John E.; Bailer-Jones, Coryn A. L.

      2010-06-10

      We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r < 20 and proper-motion measurements derived from Sloan Digital Sky Survey (SDSS) and POSS astrometry, including {approx}170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric-parallax relation, covering a distance range from {approx}100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20{sup 0}). We find that in the region defined by 1 kpc kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.

    12. Analysis of shared data structures for compile-time garbage collection in logic programs

      SciTech Connect (OSTI)

      Mulkers, A.; Bruynooghe, M. . Dept. Computerwetenschappen); Winsborough, W. )

      1990-01-01

      One of the central problems in program analysis for compile-time garbage collection is detecting the sharing of term substructure that can occur during program execution. We present an abstract domain for representing possibly shared structures and an abstract unification operation based on this domain. When supplied to an abstract interpretation framework, this domain induces a powerful analysis of shared structures. We show that the analysis is sound by relating the abstract domain and operation to variants of the concrete domain and operation (substitutions with term unification) that are augmented with information about the term structures shared in actual implementations. We show these instrumented versions of the concrete domain and operation characterize the takes place in standard implementations. 22 refs., 3 figs.

    13. Thermal-Structural Analysis of the MacArthur Maze Freeway Collapse

      SciTech Connect (OSTI)

      Noble, C R; Wemhoff, A P; McMichael, L D

      2008-02-26

      At approximately 3:41 AM on the morning of April 29, 2007, a tractor-trailer rig carrying 8,600 gallons (32.6 m{sup 3}) of fuel overturned on Interstate 880 in Oakland, CA. The resultant fire weakened the surrounding steel superstructure and caused a 50-yard (45.7 m) long section of the above connecting ramp from Interstate 80 to Interstate 580 to fail in approximately 18 minutes. In this study, we performed a loosely-coupled thermal-structural finite element analysis of the freeway using the LLNL Engineering codes NIKE3D, DYNA3D and TOPAZ3D. First, we applied an implicit structural code to statically initialize the stresses and displacements in the roadway at ambient conditions due to gravity loading. Next, we performed a thermal analysis by approximating the tanker fire as a moving box region of uniform temperature. This approach allowed for feasible calculation of the fire-to-structure radiative view factors and convective heat transport. We used a mass scaling methodology in the thermal analysis to reduce the overall simulation time so an explicit structural analysis could be used, which provided a more computationally efficient simulation of structural failure. Our approach showed structural failure of both spans due to thermal softening under gravity loading at approximately 20 minutes for a fixed fire temperature of 1200 C and fixed thermal properties. When temperature-dependent thermal properties were applied, the south and north spans collapsed at approximately 10 minutes and 16 minutes, respectively. Finally, we performed a preliminary fully-coupled analysis of the system using the new LLNL implicit multi-mechanics code Diablo. Our investigation shows that our approach provides a reasonable first-order analysis of the system, but improved modeling of the transport properties and the girder-box beam connections is required for more accurate predictions.

    14. Methods for simulation-based analysis of fluid-structure interaction.

      SciTech Connect (OSTI)

      Barone, Matthew Franklin; Payne, Jeffrey L.

      2005-10-01

      Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

    15. Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

      Broader source: Energy.gov [DOE]

      Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques Justin Coleman, P.E. October 25th, 2011

    16. Structural and Energetic Analysis of Activiation by a Cyclic Nucleotide Binding Domain

      SciTech Connect (OSTI)

      Altieri,S.; Clayton, G.; Silverman, W.; Olivares, A.; De La Cruz, E.; Thomas, L.; Morais-Cabral, J.

      2008-01-01

      MlotiK1 is a prokaryotic homolog of cyclic-nucleotide-dependent ion channels that contains an intracellular C-terminal cyclic nucleotide binding (CNB) domain. X-ray structures of the CNB domain have been solved in the absence of ligand and bound to cAMP. Both the full-length channel and CNB domain fragment are easily expressed and purified, making MlotiK1 a useful model system for dissecting activation by ligand binding. We have used X-ray crystallography to determine three new MlotiK1 CNB domain structures: a second apo configuration, a cGMP-bound structure, and a second cAMP-bound structure. In combination, the five MlotiK1 CNB domain structures provide a unique opportunity for analyzing, within a single protein, the structural differences between the apo state and the bound state, and the structural variability within each state. With this analysis as a guide, we have probed the nucleotide selectivity and importance of specific residue side chains in ligand binding and channel activation. These data help to identify ligand-protein interactions that are important for ligand dependence in MlotiK1 and, more globally, in the class of nucleotide-dependent proteins.

    17. Rapid analysis of scattering from periodic dielectric structures using accelerated Cartesian expansions

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Baczewski, Andrew David; Miller, Nicholas C.; Shanker, Balasubramaniam

      2012-03-22

      Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectricmore » structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.« less

    18. Preliminary Dynamic Siol-Structure-Interaction Analysis for the Waste Handling Building

      SciTech Connect (OSTI)

      G. Wagenblast

      2000-05-01

      The objective of this analysis package is to document a preliminary dynamic seismic evaluation of a simplified design concept of the Wade Handling Building (WHB). Preliminary seismic ground motions and soil data will be used. Loading criteria of the WHB System Design Description will be used. Detail design of structural members will not be performed.. The results of the analysis will be used to determine preliminary sizes of structural concrete and steel members and to determine whether the seismic response of the structure is within an acceptable level for future License Application design of safety related facilities. In order to complete this preliminary dynamic evaluation to meet the Site Recommendation (SR) schedule, the building configuration was ''frozen in time'' as the conceptual design existed in October 1999. Modular design features and dry or wet waste storage features were intentionally excluded from this preliminary dynamic seismic evaluation. The document was prepared in accordance with the Development Plan for the ''Preliminary/Dynamic Soil Structure Interaction Analysis for the Waste Handling Building'' (CRWMS M&O 2000b), which was completed, in accordance with AP-2.13Q, ''Technical Product Development Planning''.

    19. Detection of the kinematic Sunyaev-Zel'dovich effect with DES...

      Office of Scientific and Technical Information (OSTI)

      Citation Details In-Document Search Title: Detection of the kinematic Sunyaev-Zel'dovich ... we measure the average central optical depth of the cluster sample, bartaue ...

    20. Multi Canister Overpack (MCO) Handling Machine Independent Review of Seismic Structural Analysis

      SciTech Connect (OSTI)

      SWENSON, C.E.

      2000-09-22

      The following separate reports and correspondence pertains to the independent review of the seismic analysis. The original analysis was performed by GEC-Alsthom Engineering Systems Limited (GEC-ESL) under subcontract to Foster-Wheeler Environmental Corporation (FWEC) who was the prime integration contractor to the Spent Nuclear Fuel Project for the Multi-Canister Overpack (MCO) Handling Machine (MHM). The original analysis was performed to the Design Basis Earthquake (DBE) response spectra using 5% damping as required in specification, HNF-S-0468 for the 90% Design Report in June 1997. The independent review was performed by Fluor-Daniel (Irvine) under a separate task from their scope as Architect-Engineer of the Canister Storage Building (CSB) in 1997. The comments were issued in April 1998. Later in 1997, the response spectra of the Canister Storage Building (CSB) was revised according to a new soil-structure interaction analysis and accordingly revised the response spectra for the MHM and utilized 7% damping in accordance with American Society of Mechanical Engineers (ASME) NOG-1, ''Rules for Construction of Overhead and Gantry Cranes (Top Running Bridge, Multiple Girder).'' The analysis was re-performed to check critical areas but because manufacturing was underway, designs were not altered unless necessary. FWEC responded to SNF Project correspondence on the review comments in two separate letters enclosed. The dispositions were reviewed and accepted. Attached are supplier source surveillance reports on the procedures and process by the engineering group performing the analysis and structural design. All calculation and analysis results are contained in the MHM Final Design Report which is part of the Vendor Information File 50100. Subsequent to the MHM supplier engineering analysis, there was a separate analyses for nuclear safety accident concerns that used the electronic input data files provided by FWEC/GEC-ESL and are contained in document SNF-6248

    1. Composite structures 4; Proceedings of the Fourth International Conference, Paisley College of Technology, Scotland, July 27-29, 1987. Volume 1 - Analysis and design studies

      SciTech Connect (OSTI)

      Marshall, I.H.

      1987-01-01

      Various papers on analysis and design studies in composite structures are presented. The general topics addressed include: space studies, mechanical fasteners, buckling and postbuckling of platework structures, aerospace structures, wind turbine design, pipes and pressure vessels, analysis and buckling of shell-type structures. Also considered are: structural sections and optimization, thermal loading, vibration of platework structures and shell-type structures, dynamic loading, and finite element analysis.

    2. Voronoi analysis of the short–range atomic structure in iron and iron–carbon melts

      SciTech Connect (OSTI)

      Sobolev, Andrey; Mirzoev, Alexander

      2015-08-17

      In this work, we simulated the atomic structure of liquid iron and iron–carbon alloys by means of ab initio molecular dynamics. Voronoi analysis was used to highlight changes in the close environments of Fe atoms as carbon concentration in the melt increases. We have found, that even high concentrations of carbon do not affect short–range atomic order of iron atoms — it remains effectively the same as in pure iron melts.

    3. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Integrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High-Enthalpy, Extensional Geothermal Systems Principal Investigator: Philip E. Wannamaker University of Utah Energy & Geoscience Institute 423 Wakara Way, Ste 300 Salt Lake City, UT 84108 pewanna@egi.utah.edu April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Track1: Geophysics McGinness Hills, NV October, 2011 2 | US DOE

    4. Structural Analysis of a Highly Glycosylated and Unliganded gp120-Based Antigen Using Mass Spectrometry

      SciTech Connect (OSTI)

      L Wang; Y Qin; S Ilchenko; J Bohon; W Shi; M Cho; K Takamoto; M Chance

      2011-12-31

      Structural characterization of the HIV-1 envelope protein gp120 is very important for providing an understanding of the protein's immunogenicity and its binding to cell receptors. So far, the crystallographic structure of gp120 with an intact V3 loop (in the absence of a CD4 coreceptor or antibody) has not been determined. The third variable region (V3) of the gp120 is immunodominant and contains glycosylation signatures that are essential for coreceptor binding and entry of the virus into T-cells. In this study, we characterized the structure of the outer domain of gp120 with an intact V3 loop (gp120-OD8) purified from Drosophila S2 cells utilizing mass spectrometry-based approaches. We mapped the glycosylation sites and calculated the glycosylation occupancy of gp120-OD8; 11 sites from 15 glycosylation motifs were determined as having high-mannose or hybrid glycosylation structures. The specific glycan moieties of nine glycosylation sites from eight unique glycopeptides were determined by a combination of ECD and CID MS approaches. Hydroxyl radical-mediated protein footprinting coupled with mass spectrometry analysis was employed to provide detailed information about protein structure of gp120-OD8 by directly identifying accessible and hydroxyl radical-reactive side chain residues. Comparison of gp120-OD8 experimental footprinting data with a homology model derived from the ligated CD4-gp120-OD8 crystal structure revealed a flexible V3 loop structure in which the V3 tip may provide contacts with the rest of the protein while residues in the V3 base remain solvent accessible. In addition, the data illustrate interactions between specific sugar moieties and amino acid side chains potentially important to the gp120-OD8 structure.

    5. Uncertainty in soil-structure interaction analysis of a nuclear power plant due to different analytical techniques

      SciTech Connect (OSTI)

      Chen, J.C.; Chun, R.C.; Goudreau, G.L.; Maslenikov, O.R.; Johnson, J.J.

      1984-01-01

      This paper summarizes the results of the dynamic response analysis of the Zion reactor containment building using three different soil-structure interaction (SSI) analytical procedures which are: the substructure method, CLASSI; the equivalent linear finite element approach, ALUSH; and the nonlinear finite element procedure, DYNA3D. Uncertainties in analyzing a soil-structure system due to SSI analysis procedures were investigated. Responses at selected locations in the structure were compared through peak accelerations and response spectra.

    6. DOE-STD-3014-96; DOE Standard Accident Analysis For Aircraft...

      Energy Savers [EERE]

      ... crash kinematics; impacting missiles; local, global, and vibratory structural ... Missile: A general term used to denote both primary and secondary missiles. See also ...

    7. Real time markerless motion tracking using linked kinematic chains

      DOE Patents [OSTI]

      Luck, Jason P.; Small, Daniel E.

      2007-08-14

      A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.

    8. Evaluation of the STM4-120 kinematic Stirling engine

      SciTech Connect (OSTI)

      Linker, K.L.; Rawlinson, K.S.; Smith, G.

      1990-01-01

      The Department of Energy's (DOE) Solar Thermal Program has identified the Stirling cycle heat engine as the conversion device for dish-electric systems with the most potential for meeting the program's goals. To advance the technology toward commercialization in a dish-electric system, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. During the past year this engine has been operating at Sandia's Engine Test Facility. The engine's heat input has been provided through fossil fuel combustion and sodium heat pipes, while the output power has been absorbed with an eddy-current dynamometer. This paper presents the evaluation of the engine performance during the past year. 8 refs., 7 figs., 1 tab.

    9. Data publication with the structural biology data grid supports live analysis

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Meyer, Peter A.; Socias, Stephanie; Key, Jason; Ransey, Elizabeth; Tjon, Emily C.; Buschiazzo, Alejandro; Lei, Ming; Botka, Chris; Withrow, James; Neau, David; et al

      2016-03-07

      Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data.sbgrid.org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of themore » original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. In conclusion, it is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis.« less

    10. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

      SciTech Connect (OSTI)

      Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek

      2012-02-15

      For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

    11. Memory Efficient Sequence Analysis Using Compressed Data Structures (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

      ScienceCinema (OSTI)

      Simpson, Jared [Wellcome Trust Sanger Institute

      2013-01-22

      Wellcome Trust Sanger Institute's Jared Simpson on "Memory efficient sequence analysis using compressed data structures" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011

    12. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ginn, Helen M.; Messerschmidt, Marc; Ji, Xiaoyun; Zhang, Hanwen; Axford, Danny; Gildea, Richard J.; Winter, Graeme; Brewster, Aaron S.; Hattne, Johan; Wagner, Armin; et al

      2015-03-09

      The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and proteinmore » core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.« less

    13. NASTRAN-based computer program for structural dynamic analysis of horizontal axis wind turbines

      SciTech Connect (OSTI)

      Lobitz, D.W.

      1984-01-01

      This paper describes a computer program developed for structural dynamic analysis of horizontal axis wind turbines (HAWTs). It is based on the finite element method through its reliance on NASTRAN for the development of mass, stiffness, and damping matrices of the tower and rotor, which are treated in NASTRAN as separate structures. The tower is modeled in a stationary frame and the rotor in one rotating at a constant angular velocity. The two structures are subsequently joined together (external to NASTRAN) using a time-dependent transformation consistent with the hub configuration. Aerodynamic loads are computed with an established flow model based on strip theory. Aeroelastic effects are included by incorporating the local velocity and twisting deformation of the blade in the load computation. The turbulent nature of the wind, both in space and time, is modeled by adding in stochastic wind increments. The resulting equations of motion are solved in the time domain using the implicit Newmark-Beta integrator. Preliminary comparisons with data from the Boeing/NASA MOD2 HAWT indicate that the code is capable of accurately and efficiently predicting the response of HAWTs driven by turbulent winds.

    14. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

      SciTech Connect (OSTI)

      Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

      2015-01-15

      Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al{sub 2}O{sub 3} and TiO{sub 2} processes from Me{sub 3}Al/H{sub 2}O and TiCl{sub 4}/H{sub 2}O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes.

    15. Structural Analysis of a Ternary Complex of Allantoate Amidohydrolase from Escherichia Coli Reveals its Mechanics

      SciTech Connect (OSTI)

      Agarwal,R.; Burley, S.; Swaminathan, S.

      2007-01-01

      Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amidohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 {angstrom} resolution X-ray structure reveals an {alpha}/{beta} scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the ({beta}/{alpha}){sub 8}-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to co-catalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site.

    16. A Visual Analytics Approach to Structured Data Analysis to Enhance Nonproliferation and Arms Control Verification Activities

      SciTech Connect (OSTI)

      Gillen, David S.

      2014-08-07

      Analysis activities for Nonproliferation and Arms Control verification require the use of many types of data. Tabular structured data, such as Excel spreadsheets and relational databases, have traditionally been used for data mining activities, where specific queries are issued against data to look for matching results. The application of visual analytics tools to structured data enables further exploration of datasets to promote discovery of previously unknown results. This paper discusses the application of a specific visual analytics tool to datasets related to the field of Arms Control and Nonproliferation to promote the use of visual analytics more broadly in this domain. Visual analytics focuses on analytical reasoning facilitated by interactive visual interfaces (Wong and Thomas 2004). It promotes exploratory analysis of data, and complements data mining technologies where known patterns can be mined for. Also with a human in the loop, they can bring in domain knowledge and subject matter expertise. Visual analytics has not widely been applied to this domain. In this paper, we will focus on one type of data: structured data, and show the results of applying a specific visual analytics tool to answer questions in the Arms Control and Nonproliferation domain. We chose to use the T.Rex tool, a visual analytics tool developed at PNNL, which uses a variety of visual exploration patterns to discover relationships in structured datasets, including a facet view, graph view, matrix view, and timeline view. The facet view enables discovery of relationships between categorical information, such as countries and locations. The graph tool visualizes node-link relationship patterns, such as the flow of materials being shipped between parties. The matrix visualization shows highly correlated categories of information. The timeline view shows temporal patterns in data. In this paper, we will use T.Rex with two different datasets to demonstrate how interactive exploration of

    17. Model independent x-ray standing wave analysis of periodic multilayer structures

      SciTech Connect (OSTI)

      Yakunin, S. N.; Pashaev, E. M.; Subbotin, I. A.; Makhotkin, I. A.; Kruijs, R. W. E. van de; Zoethout, E.; Chuev, M. A.; Louis, E.; Seregin, S. Yu.; Novikov, D. V.; Bijkerk, F.; Kovalchuk, M. V.

      2014-04-07

      We present a model independent approach for the analysis of X-ray fluorescence yield modulated by an X-ray standing wave (XSW), that allow a fast reconstruction of the atomic distribution function inside a sample without fitting procedure. The approach is based on the direct regularized solution of the system of linear equations that characterizes the fluorescence yield. The suggested technique was optimized for, but not limited to, the analysis of periodic layered structures where the XSW is formed under Bragg conditions. The developed approach was applied to the reconstruction of the atomic distribution function for LaN/BN multilayers with 50 periods of 43 Å thick layers. The object is especially difficult to analyze with traditional methods, as the estimated thickness of the interface region between the constituent materials is comparable to the individual layer thicknesses. However, using the suggested technique, it was possible to reconstruct width of the La atomic distribution showing that the La atoms stay localized within the LaN layers and interfaces and do not diffuse into the BN layer. The analysis of the reconstructed profiles showed that the positions of the center of the atomic distribution function can be estimated with an accuracy of 1 Å.

    18. A structural analysis of natural gas consumption by income class from 1987 to 1993

      SciTech Connect (OSTI)

      Poyer, D.A.

      1996-12-01

      This study had two major objectives: (1) assess and compare changes in natural gas consumption between 1987 and 1993 by income group and (2) assess the potential influence of energy policy on observed changes in natural gas consumption over time and across income groups. This analysis used U.S. Department of Energy (DOE) data files and involved both the generation of simple descriptive statistics and the use of multivariate regression analysis. The consumption of natural gas by the groups was studied over a six-year period. The results showed that: (1) natural gas use was substantially higher for the highest income group than for the two lower income groups and (2) natural gas consumption declined for the lowest and middle income quintiles and increased for the highest income quintile between 1987 and 1990; between 1990 and 1993, consumption increased for the lowest and middle income quintile, but remained relatively constant for the highest income quintile. The relative importance of the structural and variable factors in explaining consumption changes between survey periods varies by income group. The analysis provides two major energy policy implications: (1) natural gas intensity has been the highest for the lowest income group, indicating that this group is more vulnerable to sudden changes in demand-indicator variables, in particular weather-related variables, than increase natural gas consumption, and (2) the fall in natural gas intensity between 1987 and 1993 may indicate that energy policy has had some impact on reducing natural gas consumption. 11 refs., 4 figs., 16 tabs.

    19. Why baryons matter: The kinematics of dwarf spheroidal satellites

      SciTech Connect (OSTI)

      Brooks, Alyson M. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Zolotov, Adi, E-mail: abrooks@physics.rutgers.edu, E-mail: zolotov@physics.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

      2014-05-10

      We use high-resolution cosmological simulations of Milky Way (MW) mass galaxies that include both baryons and dark matter (DM) to show that baryonic physics (energetic feedback from supernovae and subsequent tidal stripping) significantly reduces the DM mass in the central regions of luminous satellite galaxies. The reduced central masses of the simulated satellites reproduce the observed internal dynamics of MW and M31 satellites as a function of luminosity. We use these realistic satellites to update predictions for the observed velocity and luminosity functions of satellites around MW-mass galaxies when baryonic effects are accounted for. We also predict that field dwarf galaxies in the same luminosity range as the MW classical satellites should not exhibit velocities as low as the satellites because the field dwarfs do not experience tidal stripping. Additionally, the early formation times of the satellites compared to field galaxies at the same luminosity may be apparent in the star formation histories of the two populations. Including baryonic physics in cold dark matter (CDM) models naturally explains the observed low DM densities in the MWs dwarf spheroidal population. Our simulations therefore resolve the tension between kinematics predicted in CDM theory and observations of satellites, without invoking alternative forms of DM.

    20. CHARACTERISTICS OF KINEMATICS OF A CORONAL MASS EJECTION DURING THE 2010 AUGUST 1 CME-CME INTERACTION EVENT

      SciTech Connect (OSTI)

      Temmer, Manuela; Rollett, Tanja; Bein, Bianca; Moestl, Christian; Veronig, Astrid M.; Flor, Olga; Vrsnak, Bojan; Zic, Tomislav; De Koning, Curt A.; Liu, Ying; Bosman, Eckhard; Davies, Jackie A.; Bothmer, Volker; Harrison, Richard; Nitta, Nariaki; Bisi, Mario; Eastwood, Jonathan; Forsyth, Robert; Odstrcil, Dusan

      2012-04-10

      We study the interaction of two successive coronal mass ejections (CMEs) during the 2010 August 1 events using STEREO/SECCHI COR and heliospheric imager (HI) data. We obtain the direction of motion for both CMEs by applying several independent reconstruction methods and find that the CMEs head in similar directions. This provides evidence that a full interaction takes place between the two CMEs that can be observed in the HI1 field of view. The full de-projected kinematics of the faster CME from Sun to Earth is derived by combining remote observations with in situ measurements of the CME at 1 AU. The speed profile of the faster CME (CME2; {approx}1200 km s{sup -1}) shows a strong deceleration over the distance range at which it reaches the slower, preceding CME (CME1; {approx}700 km s{sup -1}). By applying a drag-based model we are able to reproduce the kinematical profile of CME2, suggesting that CME1 represents a magnetohydrodynamic obstacle for CME2 and that, after the interaction, the merged entity propagates as a single structure in an ambient flow of speed and density typical for quiet solar wind conditions. Observational facts show that magnetic forces may contribute to the enhanced deceleration of CME2. We speculate that the increase in magnetic tension and pressure, when CME2 bends and compresses the magnetic field lines of CME1, increases the efficiency of drag.

    1. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. II. DISCOVERY OF A DOUBLE INFRARED CLUSTER IN II Zw 40

      SciTech Connect (OSTI)

      Beck, Sara; Lahad, Ohr; Turner, Jean; Lacy, John; Greathouse, Thomas

      2013-04-10

      The nearby dwarf galaxy II Zw 40 hosts an intense starburst. At the center of the starburst is a bright compact radio and infrared source, thought to be a giant dense H II region containing Almost-Equal-To 14, 000 O stars. Radio continuum images suggest that the compact source is actually a collection of several smaller emission regions. We accordingly use the kinematics of the ionized gas to probe the structure of the radio-infrared emission region. With TEXES on the NASA-IRTF we measured the 10.5 {mu}m [S IV] emission line with effective spectral resolutions, including thermal broadening, of {approx}25 and {approx}3 km s{sup -1} and spatial resolution {approx}1''. The line profile shows two distinct, spatially coextensive, emission features. The stronger feature is at galactic velocity and has FWHM 47 km s{sup -1}. The second feature is {approx}44 km s{sup -1} redward of the first and has FWHM 32 km s{sup -1}. We argue that these are two giant embedded clusters, and estimate their masses to be Almost-Equal-To 3 Multiplication-Sign 10{sup 5} M{sub Sun} and Almost-Equal-To 1.5 Multiplication-Sign 10{sup 5} M{sub Sun }. The velocity shift is unexpectedly large for such a small spatial offset. We suggest that it may arise in a previously undetected kinematic feature remaining from the violent merger that formed the galaxy.

    2. BANYAN. II. Very low mass and substellar candidate members to nearby, young kinematic groups with previously known signs of youth

      SciTech Connect (OSTI)

      Gagn, Jonathan; Lafrenire, David; Doyon, Ren; Malo, Lison; Artigau, tienne

      2014-03-10

      We present Bayesian Analysis for Nearby Young AssociatioNs II (BANYAN II), a modified Bayesian analysis for assessing the membership of later-than-M5 objects to any of several Nearby Young Associations (NYAs). In addition to using kinematic information (from sky position and proper motion), this analysis exploits 2MASS-WISE color-magnitude diagrams in which old and young objects follow distinct sequences. As an improvement over our earlier work, the spatial and kinematic distributions for each association are now modeled as ellipsoids whose axes need not be aligned with the Galactic coordinate axes, and we use prior probabilities matching the expected populations of the NYAs considered versus field stars. We present an extensive contamination analysis to characterize the performance of our new method. We find that Bayesian probabilities are generally representative of contamination rates, except when a parallax measurement is considered. In this case contamination rates become significantly smaller and hence Bayesian probabilities for NYA memberships are pessimistic. We apply this new algorithm to a sample of 158 objects from the literature that are either known to display spectroscopic signs of youth or have unusually red near-infrared colors for their spectral type. Based on our analysis, we identify 25 objects as new highly probable candidates to NYAs, including a new M7.5 bona fide member to Tucana-Horologium, making it the latest-type member. In addition, we reveal that a known L2? dwarf is co-moving with a bright M5 dwarf, and we show for the first time that two of the currently known ultra red L dwarfs are strong candidates to the AB Doradus moving group. Several objects identified here as highly probable members to NYAs could be free-floating planetary-mass objects if their membership is confirmed.

    3. KINEMATIC PROPERTIES AS PROBES OF THE EVOLUTION OF DWARF GALAXIES IN THE VIRGO CLUSTER

      SciTech Connect (OSTI)

      Toloba, E.; Gorgas, J.; De Paz, A. Gil; Boselli, A.; Peletier, R. F.; Yildiz, U.; Cenarro, A. J.; Gadotti, D. A.; Pedraz, S.

      2009-12-10

      We present new observational results on the kinematical, morphological, and stellar population properties of a sample of 21 dEs located both in the Virgo Cluster and in the field, which show that 52% of the dEs (1) are rotationally supported, (2) exhibit structural signs of typical rotating systems such as disks, bars, or spiral arms, (3) are younger (approx3 Gyr) than non-rotating dEs, and (4) are preferentially located either in the outskirts of Virgo or in the field. This evidence is consistent with the idea that rotationally supported dwarfs are late-type spirals or irregulars that recently entered the cluster and lost their gas through a ram pressure stripping event, quenching their star formation and becoming dEs through passive evolution. We also find that all, but one, galaxies without photometric hints for hosting disks are pressure supported and are all situated in the inner regions of the cluster. This suggests a different evolution from the rotationally supported systems. Three different scenarios for these non-rotating galaxies are discussed (in situ formation, harassment, and ram pressure stripping).

    4. Morphological and kinematic evolution of three interacting coronal mass ejections of 2011 February 13-15

      SciTech Connect (OSTI)

      Mishra, Wageesh; Srivastava, Nandita

      2014-10-10

      During 2011 February 13-15, three Earth-directed coronal mass ejections (CMEs) launched in succession were recorded as limb CMEs by STEREO/SECCHI coronagraphs (COR). These CMEs provided an opportunity to study their geometrical and kinematic evolution from multiple vantage points. In this paper, we examine the differences in geometrical evolution of slow and fast CMEs during their propagation in the heliosphere. We also study their interaction and collision using STEREO/SECCHI COR and Heliospheric Imager (HI) observations. We have found evidence of interaction and collision between the CMEs of February 15 and 14 in the COR2 and HI1 field of view (FOV), respectively, while the CME of February 14 caught up with the CME of February 13 in the HI2 FOV. By estimating the true mass of these CMEs and using their pre- and post-collision dynamics, the momentum and energy exchange between them during the collision phase are studied. We classify the nature of the observed collision between the CMEs of February 14 and 15 as inelastic, reaching close to the elastic regime. Relating imaging observations with in situ WIND measurements at L1, we find that the CMEs move adjacent to each other after their collision in the heliosphere and are recognized as distinct structures in in situ observations. Our results highlight the significance of HI observations in studying CME-CME collision for the purpose of improved space weather forecasting.

    5. Integration of Noise and Coda Correlation Data into Kinematic and Waveform

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Inversions | Department of Energy Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions This project will focus on using microearthquakes (MEQ) and noise correlation Green's functions (NCF) obtained from MEQs and ambient noise and coda-wave interferometry to image the physical properties of geothermal reservoirs and detect and map changes in reservoir properties with time.

    6. DIFFERENTIAL EMISSION MEASURE ANALYSIS OF MULTIPLE STRUCTURAL COMPONENTS OF CORONAL MASS EJECTIONS IN THE INNER CORONA

      SciTech Connect (OSTI)

      Cheng, X.; Ding, M. D. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Zhang, J. [School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, VA 22030 (United States); Saar, S. H., E-mail: xincheng@nju.edu.cn, E-mail: jzhang7@gmu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

      2012-12-10

      In this paper, we study the temperature and density properties of multiple structural components of coronal mass ejections (CMEs) using differential emission measure (DEM) analysis. The DEM analysis is based on the six-passband EUV observations of solar corona from the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory. The structural components studied include the hot channel in the core region (presumably the magnetic flux rope of the CME), the bright loop-like leading front (LF), and coronal dimming in the wake of the CME. We find that the presumed flux rope has the highest average temperature (>8 MK) and density ({approx}1.0 Multiplication-Sign 10{sup 9} cm{sup -3}), resulting in an enhanced emission measure over a broad temperature range (3 {<=} T(MK) {<=} 20). On the other hand, the CME LF has a relatively cool temperature ({approx}2 MK) and a narrow temperature distribution similar to the pre-eruption coronal temperature (1 {<=} T(MK) {<=} 3). The density in the LF, however, is increased by 2%-32% compared with that of the pre-eruption corona, depending on the event and location. In coronal dimmings, the temperature is more broadly distributed (1 {<=} T(MK) {<=} 4), but the density decreases by {approx}35%-{approx}40%. These observational results show that: (1) CME core regions are significantly heated, presumably through magnetic reconnection; (2) CME LFs are a consequence of compression of ambient plasma caused by the expansion of the CME core region; and (3) the dimmings are largely caused by the plasma rarefaction associated with the eruption.

    7. High-throughput analysis of T-DNA location and structure using sequence capture

      SciTech Connect (OSTI)

      Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; Comai, Luca

      2015-10-07

      Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously, using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.

    8. High-throughput analysis of T-DNA location and structure using sequence capture

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Inagaki, Soichi; Henry, Isabelle M.; Lieberman, Meric C.; Comai, Luca

      2015-10-07

      Agrobacterium-mediated transformation of plants with T-DNA is used both to introduce transgenes and for mutagenesis. Conventional approaches used to identify the genomic location and the structure of the inserted T-DNA are laborious and high-throughput methods using next-generation sequencing are being developed to address these problems. Here, we present a cost-effective approach that uses sequence capture targeted to the T-DNA borders to select genomic DNA fragments containing T-DNA—genome junctions, followed by Illumina sequencing to determine the location and junction structure of T-DNA insertions. Multiple probes can be mixed so that transgenic lines transformed with different T-DNA types can be processed simultaneously,more » using a simple, index-based pooling approach. We also developed a simple bioinformatic tool to find sequence read pairs that span the junction between the genome and T-DNA or any foreign DNA. We analyzed 29 transgenic lines of Arabidopsis thaliana, each containing inserts from 4 different T-DNA vectors. We determined the location of T-DNA insertions in 22 lines, 4 of which carried multiple insertion sites. Additionally, our analysis uncovered a high frequency of unconventional and complex T-DNA insertions, highlighting the needs for high-throughput methods for T-DNA localization and structural characterization. Transgene insertion events have to be fully characterized prior to use as commercial products. As a result, our method greatly facilitates the first step of this characterization of transgenic plants by providing an efficient screen for the selection of promising lines.« less

    9. THE KINEMATICS OF THE LOCAL GROUP IN A COSMOLOGICAL CONTEXT

      SciTech Connect (OSTI)

      Forero-Romero, J. E.; Hoffman, Y.; Bustamante, S.; Gottloeber, S.; Yepes, G.

      2013-04-10

      Recent observations constrained the tangential velocity of M31 with respect to the Milky Way to be v{sub M31,tan} < 34.4 km s{sup -1}and the radial velocity to be in the range v{sub M31,rad} = -109 {+-} 4.4 km s{sup -1}. In this study we use a large volume high-resolution N-body cosmological simulation (Bolshoi) together with three constrained simulations to statistically study this kinematics in the context of the {Lambda} cold dark matter ({Lambda}CDM). The comparison of the ensembles of simulated pairs with the observed Local Group (LG) at the 1{sigma} level in the uncertainties has been done with respect to the radial and tangential velocities, the reduced orbital energy (e{sub tot}), angular momentum (l{sub orb}), and the dimensionless spin parameter, {lambda}. Our main results are (1) the preferred radial and tangential velocities for pairs in {Lambda}CDM are v{sub r} = -80 {+-} 20 km s{sup -1} and v{sub t} = 50 {+-} 10 km s{sup -1}, (2) pairs around that region are 3-13 times more common than pairs within the observational values, (3) 15%-24% of LG-like pairs in {Lambda}CDM have energy and angular momentum consistent with observations, while (4) 9%-13% of pairs in the same sample show similar values in the inferred dimensionless spin parameter. It follows that within current observational uncertainties the quasi-conserved quantities that characterize the orbit of the LG, i.e., e{sub tot}, l{sub orb}, and {lambda}, do not challenge the standard {Lambda}CDM model, but the model is in tension with regard to the actual values of the radial and tangential velocities. This might hint to a problem of the {Lambda}CDM model to reproduce the observed LG.

    10. Structure analysis reveals the flexibility of the ADAMTS-5 active site

      SciTech Connect (OSTI)

      Shieh, Huey-Sheng; Tomasselli, Alfredo G.; Mathis, Karl J.; Schnute, Mark E.; Woodard, Scott S.; Caspers, Nicole; Williams, Jennifer M.; Kiefer, James R.; Munie, Grace; Wittwer, Arthur; Malfait, Anne-Marie; Tortorella, Micky D.

      2012-03-02

      A ((1S,2R)-2-hydroxy-2,3-dihydro-1H-inden-1-yl) succinamide derivative (here referred to as Compound 12) shows significant activity toward many matrix metalloproteinases (MMPs), including MMP-2, MMP-8, MMP-9, and MMP-13. Modeling studies had predicted that this compound would not bind to ADAMTS-5 (a disintegrin and metalloproteinase with thrombospondin motifs-5) due to its shallow S1' pocket. However, inhibition analysis revealed it to be a nanomolar inhibitor of both ADAMTS-4 and -5. The observed inconsistency was explained by analysis of crystallographic structures, which showed that Compound 12 in complex with the catalytic domain of ADAMTS-5 (cataTS5) exhibits an unusual conformation in the S1' pocket of the protein. This first demonstration that cataTS5 can undergo an induced conformational change in its active site pocket by a molecule like Compound 12 should enable the design of new aggrecanase inhibitors with better potency and selectivity profiles.

    11. Characterizing the AB Doradus moving group via high-resolution spectroscopy and kinematic traceback

      SciTech Connect (OSTI)

      McCarthy, Kyle; Wilhelm, Ronald J.

      2014-10-01

      We present a detailed analysis of 10 proposed F and G members of the nearby, young moving group AB Doradus (ABD). Our sample was obtained using the 2.7 m telescope at the McDonald Observatory with the coude echelle spectrograph, achieving R ? 60,000 and signal-to-noise ratio ?200. We derive spectroscopic T {sub eff}, log(g), [Fe/H], and microturbulance (v{sub t} ) using a bootstrap method of the TGVIT software resulting in typical errors of 33K in T {sub eff}, 0.08 dex in log(g), 0.03 dex in [Fe/H], and 0.13 km s{sup 1} in v{sub t} . Characterization of the ABD sample is performed in three ways: (1) chemical homogeneity, (2) kinematic traceback, and (3) isochrone fitting. We find the average metal abundance is [M/H] = 0.03 0.06 with a traceback age of 125 Myr. Our stars were fit to three different evolutionary models and we found that the best match to our ABD sample is the YREC [M/H] = 0.1 model. In our sample of 10 stars, we identify 1 star that is a probable non-member, 3 enigmatic stars, and 6 stars with confirmed membership. We also present a list of chemically coherent stars from this study and the Barenfeld et al. study.

    12. Studies of Single-Particle Structure in the N=16 Region Using Transfer Reactions

      SciTech Connect (OSTI)

      Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Fernandez-Dominguez, B.; Chartier, M.; Timis, C.; Catford, W. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Rejmund, M.; Labiche, M.; Amzal, N.; Burns, M.; Chapman, R.; Liang, X.; Spohr, K.; Ashwood, N.; Curtis, N.; Freer, M.

      2006-08-14

      We have developed a new experimental setup based at the GANIL/SPIRAL facility in Caen, France to measure one-nucleon transfer reactions in inverse kinematics in order to study the evolution of the single particle structure of exotic nuclei. The setup couples together three state-of-the-art detection systems: the TIARA Si array, the large-acceptance magnetic spectrometer VAMOS and the high-efficiency segmented Ge {gamma}-ray array EXOGAM. In a first experiment, the 24Ne(d,p)25Ne reaction has been studied to probe the N=16 shell closure. Details of the setup, data analysis and preliminary results are presented.

    13. Integration of Noise and Coda Correlation Data into Kinematic...

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      More Documents & Publications Integration of Noise and Coda Correlation Data into ... Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure

    14. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Zhang, Jisen; Sharma, Anupma; Yu, Qingyi; Wang, Jianping; Li, Leiting; Zhu, Lin; Zhang, Xingtan; Chen, Youqiang; Ming, Ray

      2016-06-10

      Here, sugarcane is a major sugar and biofuel crop, but genomic research and molecular breeding have lagged behind other major crops due to the complexity of auto-allopolyploid genomes. Sugarcane cultivars are frequently aneuploid with chromosome number ranging from 100 to 130, consisting of 70-80 % S. officinarum, 10-20 % S. spontaneum, and 10 % recombinants between these two species. Analysis of a genomic region in the progenitor autoploid genomes of sugarcane hybrid cultivars will reveal the nature and divergence of homologous chromosomes. As a result, to investigate the origin and evolution of haplotypes in the Bru1 genomic regions in sugarcanemore » cultivars, we identified two BAC clones from S. spontaneum and four from S. officinarum and compared to seven haplotype sequences from sugarcane hybrid R570. The results clarified the origin of seven homologous haplotypes in R570, four haplotypes originated from S. officinarum, two from S. spontaneum and one recombinant.. Retrotransposon insertions and sequences variations among the homologous haplotypes sequence divergence ranged from 18.2 % to 60.5 % with an average of 33. 7 %. Gene content and gene structure were relatively well conserved among the homologous haplotypes. Exon splitting occurred in haplotypes of the hybrid genome but not in its progenitor genomes. Tajima's D analysis revealed that S. spontaneum hapotypes in the Bru1 genomic regions were under strong directional selection. Numerous inversions, deletions, insertions and translocations were found between haplotypes within each genome. In conclusion, this is the first comparison among haplotypes of a modern sugarcane hybrid and its two progenitors. Tajima's D results emphasized the crucial role of this fungal disease resistance gene for enhancing the fitness of this species and indicating that the brown rust resistance gene in R570 is from S. spontaneum. Species-specific InDel, sequences similarity and phylogenetic analysis of homologous genes can

    15. Aluminum doped zirconia nanopowders: Wet-chemical synthesis and structural analysis by Rietveld refinement

      SciTech Connect (OSTI)

      Srdic, Vladimir V. Rakic, Srdan; Cvejic, Zeljka

      2008-10-02

      Alumina/zirconia nanopowders, with up to 20 mol% Al{sub 2}O{sub 3}, were prepared by wet-chemical synthesis technique, using controlled hydrolysis of alkoxides. The as-synthesized powders are amorphous, have very high specific surface area and the corresponding particle size smaller than 4 nm. Amorphous powders with 0, 10 and 20 mol% Al{sub 2}O{sub 3} crystallize at 460, 692 and 749 deg. C, respectively, as a single-phase tetragonal zirconia, without any traces of alumina phases. Rietvled refinement of X-ray diffraction data, used for the detailed structural analysis of annealed nanopowders, showed that the high-temperature zirconia phase is stabilized due to the formation of ZrO{sub 2}/Al{sub 2}O{sub 3} solid solutions. High solubility of alumina in the tetragonal zirconia (up to 28.6 at% Al{sup 3+}) and stabilization of tetragonal zirconia solid solution up to high temperature (as high as 1150 deg. C) were also confirmed.

    16. Structure-sequence based analysis for identification of conserved regions in proteins

      DOE Patents [OSTI]

      Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth

      2013-05-28

      Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.

    17. Argument structure hierarchy system and method for facilitating analysis and decision-making processes

      DOE Patents [OSTI]

      Janssen, Terry

      2000-01-01

      A system and method for facilitating decision-making comprising a computer program causing linkage of data representing a plurality of argument structure units into a hierarchical argument structure. Each argument structure unit comprises data corresponding to a hypothesis and its corresponding counter-hypothesis, data corresponding to grounds that provide a basis for inference of the hypothesis or its corresponding counter-hypothesis, data corresponding to a warrant linking the grounds to the hypothesis or its corresponding counter-hypothesis, and data corresponding to backing that certifies the warrant. The hierarchical argument structure comprises a top level argument structure unit and a plurality of subordinate level argument structure units. Each of the plurality of subordinate argument structure units comprises at least a portion of the grounds of the argument structure unit to which it is subordinate. Program code located on each of a plurality of remote computers accepts input from one of a plurality of contributors. Each input comprises data corresponding to an argument structure unit in the hierarchical argument structure and supports the hypothesis or its corresponding counter-hypothesis. A second programming code is adapted to combine the inputs into a single hierarchical argument structure. A third computer program code is responsive to the second computer program code and is adapted to represent a degree of support for the hypothesis and its corresponding counter-hypothesis in the single hierarchical argument structure.

    18. A serial-kinematic nanopositioner for high-speed atomic force microscopy

      SciTech Connect (OSTI)

      Wadikhaye, Sachin P. Yong, Yuen Kuan; Reza Moheimani, S. O.

      2014-10-15

      A flexure-guided serial-kinematic XYZ nanopositioner for high-speed Atomic Force Microscopy is presented in this paper. Two aspects influencing the performance of serial-kinematic nanopositioners are studied in this work. First, mass reduction by using tapered flexures is proposed to increased the natural frequency of the nanopositioner. 25% increase in the natural frequency is achieved due to reduced mass with tapered flexures. Second, a study of possible sensor positioning in a serial-kinematic nanopositioner is presented. An arrangement of sensors for exact estimation of cross-coupling is incorporated in the proposed design. A feedforward control strategy based on phaser approach is presented to mitigate the dynamics and nonlinearity in the system. Limitations in design approach and control strategy are discussed in the Conclusion.

    19. Effects of q-profile structure on turbulence spreading: A fluctuation intensity transport analysis

      SciTech Connect (OSTI)

      Yi, S.; Kwon, J. M.; Diamond, P. H.; Hahm, T. S.

      2014-09-15

      This paper studies effects of q-profile structure on turbulence spreading. It reports results of numerical experiments using global gyrokinetic simulations. We examine propagation of turbulence, triggered by an identical linear instability in a source region, into an adjacent, linearly stable region with variable q-profile. The numerical experiments are designed so as to separate the physics of turbulence spreading from that of linear stability. The strength of turbulence spreading is measured by the penetration depth of turbulence. Dynamics of spreading are elucidated by fluctuation intensity balance analysis, using a model intensity evolution equation which retains nonlinear diffusion and damping, and linear growth. It is found that turbulence spreading is strongly affected by magnetic shear s, but is hardly altered by the safety factor q itself. There is an optimal range of modest magnetic shear which maximizes turbulence spreading. For high to modest shear values, the spreading is enhanced by the increase of the mode correlation length with decreasing magnetic shear. However, the efficiency of spreading drops for sufficiently low magnetic shear even though the mode correlation length is comparable to that for the case of optimal magnetic shear. The reduction of spreading is attributed to the increase in time required for the requisite nonlinear mode-mode interactions. The effect of increased interaction time dominates that of increased mode correlation length. Our findings of the reduction of spreading and the increase in interaction time at weak magnetic shear are consistent with the well-known benefit of weak or reversed magnetic shear for core confinement enhancement. Weak shear is shown to promote locality, as well as stability.

    20. Final Report for Geometric Analysis for Data Reduction and Structure Discovery DE-FG02-10ER25983, STRIPES award # DE-SC0004096

      SciTech Connect (OSTI)

      Vixie, Kevin R

      2014-11-27

      This is the final report for the project "Geometric Analysis for Data Reduction and Structure Discovery" in which insights and tools from geometric analysis were developed and exploited for their potential to large scale data challenges.

    1. EARLIEST STAGES OF PROTOCLUSTER FORMATION: SUBSTRUCTURE AND KINEMATICS OF STARLESS CORES IN ORION

      SciTech Connect (OSTI)

      Lee, Katherine; Looney, Leslie W.; Schnee, Scott; Li Zhiyun

      2013-08-01

      We study the structure and kinematics of nine 0.1 pc scale cores in Orion with the IRAM 30 m telescope and at higher resolution eight of the cores with CARMA, using CS(2-1) as the main tracer. The single-dish moment zero maps of the starless cores show single structures with central column densities ranging from 7 to 42 Multiplication-Sign 10{sup 23} cm{sup -2} and LTE masses from 20 M{sub Sun} to 154 M{sub Sun }. However, at the higher CARMA resolution (5''), all of the cores except one fragment into 3-5 components. The number of fragments is small compared to that found in some turbulent fragmentation models, although inclusion of magnetic fields may reduce the predicted fragment number and improve the model agreement. This result demonstrates that fragmentation from parsec-scale molecular clouds to sub-parsec cores continues to take place inside the starless cores. The starless cores and their fragments are embedded in larger filamentary structures, which likely played a role in the core formation and fragmentation. Most cores show clear velocity gradients, with magnitudes ranging from 1.7 to 14.3 km s{sup -1} pc{sup -1}. We modeled one of them in detail, and found that its spectra are best explained by a converging flow along a filament toward the core center; the gradients in other cores may be modeled similarly. We infer a mass inflow rate of {approx}2 Multiplication-Sign 10{sup -3} M{sub Sun} yr{sup -1}, which is in principle high enough to overcome radiation pressure and allow for massive star formation. However, the core contains multiple fragments, and it is unclear whether the rapid inflow would feed the growth of primarily a single massive star or a cluster of lower mass objects. We conclude that fast, supersonic converging flow along filaments play an important role in massive star and cluster formation.

    2. Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure

      SciTech Connect (OSTI)

      Gee, Anthony; Shin, Young-Min

      2013-01-01

      A multi-beam traveling wave amplifier designed with an overmoded staggered double grating array was examined by small signal analysis combined with simulation. Eigenmode and S-parameter analyses show that the 2cm long slow wave structure (SWS) has 1-5dB insertion loss over the passband (TM31 mode) with ~28% cold bandwidth. Analytic gain calculation indicates that in the SWS, TM31-mode is amplified with 15–20 dB/beam at 64–84GHz with three elliptical beams of 10kV and 150mA/beam, which was compared with particle-in-cell (PIC) simulations. PIC analysis on the analysis of instability with zero-input driving excitations demonstrated that background noises and non-operating lower order modes are noticeably suppressed by implanting equidistant dielectric absorbers; the overmoded structure only allowed the desired 3rd order mode to propagate in the structure. The designed circuit structure can be widely applied to multi-beam devices for high power RF generation.

    3. Structure of Light Neutron-rich Nuclei Studied with Transfer Reactions

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Wuosmaa, A. H.

      2015-01-01

      Transfer reactions have been used for many years to understand the shell structure of nuclei. Recent studies with rare-isotope beams extend this work and make it possible to probe the evolution of shell structure far beyond the valley of stability, requiring measurements in inverse kinematics. We present a novel technical approach to measurements in inverse kinematics, and apply this method to different transfer reactions, each of which probes different properties of light, neutron-rich nuclei.

    4. Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg–Landau equation

      SciTech Connect (OSTI)

      Wong, Pring; Pang, Li-Hui; Huang, Long-Gang; Li, Yan-Qing; Lei, Ming; Liu, Wen-Jun

      2015-09-15

      The study of the complex Ginzburg–Landau equation, which can describe the fiber laser system, is of significance for ultra-fast laser. In this paper, dromion-like structures for the complex Ginzburg–Landau equation are considered due to their abundant nonlinear dynamics. Via the modified Hirota method and simplified assumption, the analytic dromion-like solution is obtained. The partial asymmetry of structure is particularly discussed, which arises from asymmetry of nonlinear and dispersion terms. Furthermore, the stability of dromion-like structures is analyzed. Oscillation structure emerges to exhibit strong interference when the dispersion loss is perturbed. Through the appropriate modulation of modified exponent parameter, the oscillation structure is transformed into two dromion-like structures. It indicates that the dromion-like structure is unstable, and the coherence intensity is affected by the modified exponent parameter. Results in this paper may be useful in accounting for some nonlinear phenomena in fiber laser systems, and understanding the essential role of modified Hirota method.

    5. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

      SciTech Connect (OSTI)

      Shkolnik, Evgenya L.; Anglada-Escude, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

      2012-10-10

      We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

    6. Structural analysis of multiport riser 5A installation on tank 241SY101

      SciTech Connect (OSTI)

      Strehlow, J.P.

      1994-09-16

      The Tank 101-SY multiport riser assembly in the 241-SY-101 waste tank will replace the existing 42 inch riser with four smaller ports. Each smaller port can be used independently to access the tank interior with equipment and instruments needed to mitigate the concentration of hydrogen in the tank. This document provides a design report on the structural evaluation of the multiport riser assembly as well as its anchorage. The multiport riser assembly is a steel structure installed directly above the 42-inch riser and sealed at the existing riser flange. The assembly is structurally supported by the concrete pad placed around the 42 inch riser. The multiport riser assembly will provide two 8-inch penetrations, one 12-inch penetration and one 24-inch penetration. Each penetration will have a shielding plate. These penetrations will be used to insert equipment such as a sonic probe into the tank. In addition to normal loads, non-reactor Safety Class 1 structures, systems and components are to withstand the effects of extreme environmental loads including Design Basis Earthquake (DBE), Design Basis Wind (DBW), Design Basis Flood, Volcanic Eruptions and other abnormal loads considered on a case by case basis. Non-reactor Safety Class 2, 3 and 4 structures, systems and components are those that are not Safety Class 1 and are respectively specified as onsite safety related, occupational safety related and non-safety related items. The 241-SY-101 tank is considered as a non-reactor Safety Class 1 structure. The multiport riser assembly is considered as a non-reactor Safety Class 2 structure since it serves to contain the radioactive and toxic materials under normal operating conditions. However, the pressure relief doors provided on the assembly are considered as Safety Class 1 structures.

    7. Structural investigations of Great Basin geothermal fields: Applications and implications

      SciTech Connect (OSTI)

      Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

      2010-11-01

      Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

    8. Structure-function analysis of human protein Ero1-L{alpha}

      SciTech Connect (OSTI)

      Chu, Yanyan [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)] [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Yang, Charles; Chen, Xianjun; Zheng, Wenyun [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China) [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Yang, Yi, E-mail: yiyang@ecust.edu.cn [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China) [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China); Tang, Yun, E-mail: ytang234@ecust.edu.cn [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)] [Department of Pharmaceutical Sciences, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237 (China)

      2009-11-27

      Human Ero1-L{alpha} catalyzes the formation of disulfide bond and hence plays an essential role in protein folding. Understanding the mechanism of disulfide bond formation in mammals is important because of the involvement of protein misfolding in conditions such as diabetes, arthritis, cancer, and aging. However, the crystal structure of the enzyme is not available yet, which seriously hinders the understanding of biological function of Ero1-L{alpha}. Based on the crystal structure of yeast Ero1p, a rational three-dimensional structural model of Ero1-L{alpha} was built and the characteristics of the enzyme were hence investigated. The characteristic similarities and differences between Ero1-L{alpha} and Ero1p were compared on the basis of computational and experimental results, providing the first insight into the structure-function relationships of the enzymes. Both calculation and experiment got the concordant conclusion that FAD binds more tightly with Ero1-L{alpha} than Ero1p. In addition, the probable electron transfer pathway was proposed on the basis of the structural models.

    9. Structural analysis of the KRIT1 ankyrin repeat and FERM domains reveals a conformationally stable ARD-FERM interface

      SciTech Connect (OSTI)

      Zhang, Rong; Li, Xiaofeng; Boggon, Titus J.

      2015-10-14

      Cerebral cavernous malformations (CCM) are vascular dysplasias that usually occur in the brain and are associated with mutations in the KRIT1/CCM1, CCM2/MGC4607/OSM/Malcavernin, and PDCD10/CCM3/ TFAR15 genes. Here we report the 2.9 Å crystal structure of the ankyrin repeat domain (ARD) and FERM domain of the protein product of KRIT1 (KRIT1; Krev interaction trapped 1). The crystal structure reveals that the KRIT1 ARD contains 4 ankyrin repeats. There is also an unusual conformation in the ANK4 repeat that is stabilized by Trp-404, and the structure reveals a solvent exposed ankyrin groove. Domain orientations of the three copies within the asymmetric unit suggest a stable interaction between KRIT1 ARD and FERM domains, indicating a globular ARD–FERM module. It resembles the additional F0 domain found N-terminal to the FERM domain of talin. Structural analysis of KRIT1 ARD–FERM highlights surface regions of high evolutionary conservation, and suggests potential sites that could mediate interaction with binding partners. The structure therefore provides a better understanding of KRIT1 at the molecular level.

    10. Late Cenozoic fault kinematics and basin development, Calabrian arc, Italy

      SciTech Connect (OSTI)

      Knott, S.D.; Turco, E.

      1988-08-01

      Current views for explaining the present structure of the Calabrian arc emphasize bending or buckling of an initially straight zone by rigid indentation. Although bending has played an important role, bending itself cannot explain all structural features now seen in the arc for the following reasons: (1) across-arc extension is inconsistent with buckling, (2) north-south compression predicted by a bending mechanism to occur in the internal part of a curved mountain belt is not present in the Calabrian arc, and (3) lateral shear occurs throughout the arc, not just along the northern and southern boundaries. The model presented here is based on lateral bending of mantle and lower crust (demonstrated by variation in extension in the Tyrrhenian basin) and semibrittle faulting and block rotation in the upper crust. These two styles of deformation are confined to the upper plate of the Calabrian subduction system. This deformation is considered to have been active from the beginning of extension in the Tyrrhenian basin (late Tortonian) and is still active today (based on Holocene seismicity). Block rotations are a consequence of lateral heterogeneous shear during extension. Therefore, some of the observed rotation of paleo-magnetic declinations may have occurred in areas undergoing extension and not just during thrusting. Inversion of sedimentary basins by block rotation is predicted by the model. The model will be a useful aid in interpreting reflection seismic data and exploring and developing offshore and onshore sedimentary basins in southern Italy.

    11. Structural analysis of Cr aggregation in ferromagnetic semiconductor (Zn,Cr)Te

      SciTech Connect (OSTI)

      Kobayashi, H.; Yamawaki, K.; Nishio, Y.; Kanazawa, K.; Kuroda, S.; Mitome, M.; Bando, Y.

      2013-12-04

      The Cr aggregation in a ferromagnetic semiconductor (Zn,Cr)Te was studied by performing precise analyses using TEM and XRD of microscopic structure of the Cr-aggregated regions formed in iodine-doped Zn{sub 1?x}Cr{sub x}Te films with a relatively high Cr composition x ? 0.2. It was found that the Cr-aggregated regions are composed of Cr{sub 1??}Te nanocrystals of the hexagonal structure and these hexagonal precipitates are stacked preferentially on the (111)A plane of the zinc-blende (ZB) structure of the host ZnTe crystal with its c-axis nearly parallel to the (111){sub ZB} plane.

    12. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

      SciTech Connect (OSTI)

      Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

      2009-07-15

      The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

    13. A Massively Parallel Sparse Eigensolver for Structural Dynamics Finite Element Analysis

      SciTech Connect (OSTI)

      Day, David M.; Reese, G.M.

      1999-05-01

      Eigenanalysis is a critical component of structural dynamics which is essential for determinating the vibrational response of systems. This effort addresses the development of numerical algorithms associated with scalable eigensolver techniques suitable for use on massively parallel, distributed memory computers that are capable of solving large scale structural dynamics problems. An iterative Lanczos method was determined to be the best choice for the application. Scalability of the eigenproblem depends on scalability of the underlying linear solver. A multi-level solver (FETI) was selected as most promising for this component. Issues relating to heterogeneous materials, mechanisms and multipoint constraints have been examined, and the linear solver algorithm has been developed to incorporate features that result in a scalable, robust algorithm for practical structural dynamics applications. The resulting tools have been demonstrated on large problems representative of a weapon's system.

    14. Dynamic structural analysis of a head assembly for a large loop-type LMFBR

      SciTech Connect (OSTI)

      Kulak, R.F.; Fiala, C.

      1984-01-01

      An investigation is presented on the dynamic structural response of the primary vessel's head closure to slug impact loadings generated from a 1000 MJ source term. The reference reactor considered was designed in a loop configuration. The head structure consisted of a deck and a triple rotatable plug assembly. Two designs were considered for the deck structure: a reference design and an alternate design. The reference deck was designed as a single flat annular plate. For the alternate design, the deck plate was reinforced by adding an extender cylinder with a flange and flanged webs between the deck-plate and cylinder. The investigation showed that the reference design cannot maintain containment integrity when subjected to slug loading generated by a 1000 MJ source term. It was determined that the head deformed excessively.

    15. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

      SciTech Connect (OSTI)

      Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

      2000-12-15

      Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

    16. Analysis of ground response data at Lotung large-scale soil- structure interaction experiment site. Final report

      SciTech Connect (OSTI)

      Chang, C.Y.; Mok, C.M.; Power, M.S.

      1991-12-01

      The Electric Power Research Institute (EPRI), in cooperation with the Taiwan Power Company (TPC), constructed two models (1/4-scale and 1/2-scale) of a nuclear plant containment structure at a site in Lotung (Tang, 1987), a seismically active region in northeast Taiwan. The models were constructed to gather data for the evaluation and validation of soil-structure interaction (SSI) analysis methodologies. Extensive instrumentation was deployed to record both structural and ground responses at the site during earthquakes. The experiment is generally referred to as the Lotung Large-Scale Seismic Test (LSST). As part of the LSST, two downhole arrays were installed at the site to record ground motions at depths as well as at the ground surface. Structural response and ground response have been recorded for a number of earthquakes (i.e. a total of 18 earthquakes in the period of October 1985 through November 1986) at the LSST site since the completion of the installation of the downhole instruments in October 1985. These data include those from earthquakes having magnitudes ranging from M{sub L} 4.5 to M{sub L} 7.0 and epicentral distances range from 4.7 km to 77.7 km. Peak ground surface accelerations range from 0.03 g to 0.21 g for the horizontal component and from 0.01 g to 0.20 g for the vertical component. The objectives of the study were: (1) to obtain empirical data on variations of earthquake ground motion with depth; (2) to examine field evidence of nonlinear soil response due to earthquake shaking and to determine the degree of soil nonlinearity; (3) to assess the ability of ground response analysis techniques including techniques to approximate nonlinear soil response to estimate ground motions due to earthquake shaking; and (4) to analyze earth pressures recorded beneath the basemat and on the side wall of the 1/4 scale model structure during selected earthquakes.

    17. KINEMATICS OF CLASSICAL CEPHEIDS IN THE NUCLEAR STELLAR DISK

      SciTech Connect (OSTI)

      Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Kobayashi, Naoto; Hamano, Satoshi; Inno, Laura; Genovali, Katia; Bono, Giuseppe; Baba, Junichi; Fujii, Michiko S.; Aoki, Wako; Tsujimoto, Takuji; Kondo, Sohei; Ikeda, Yuji; Nishiyama, Shogo; Nagata, Tetsuya

      2015-01-20

      Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic center, three of which were reported in 2011 and a fourth being reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the nuclear stellar disk, a group of stars and interstellar matter occupying a region of ?200pc around the center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the nuclear stellar disk like younger stars and stellar clusters therein.

    18. Thermal analysis of tank 241-SY-101 to support structural assessment

      SciTech Connect (OSTI)

      Beaver, T.R.

      1994-10-14

      This report documents a thermal model of tank 241-SY-101 and the surrounding soil column that was used to predict tank temperatures resulting from heating of the annulus ventilation air. Transient results from the model were input to a structural model of the tank for evaluation of the annulus heat-up event.

    19. The Beta Environmental Fine Structure (BEFS): The XAFS Nuclear Analogue

      SciTech Connect (OSTI)

      Monfardini, A.; Benedek, G.; Cremonesi, O.; Nucciotti, A.; Sisti, M.; Filipponi, A.

      2007-02-02

      The Beta Environmental Fine Structure (BEFS) effect is an oscillatory modulation on the otherwise smooth spectrum of electrons emitted by beta-decaying nuclei. The existence of this effect was theoretically proposed in 1991, for condensed emitters, in analogy with XAFS. In BEFS the electron, playing the role of the XAFS photoelectron, originates directly from the nucleus and an anti-neutrino is emitted at the same time. We present evidence for BEFS oscillations observed in Silver Perrhenate (AgReO4) low-temperature (0.1K) microbolometers, together with a XAFS-like analysis that allowed for the first time a direct measurement of the anti-neutrino angular momentum. We discuss the physical analogies and differences between BEFS and XAFS and the implications for the next generation experiments aimed at measuring the neutrino mass on purely kinematic grounds. Moreover, we briefly discuss the potential and the limits of BEFS-based techniques with respect to the classical XAFS.

    20. Nonlinear thermal and structural analysis of a brazed solar-central-receiver panel

      SciTech Connect (OSTI)

      Napolitano, L.M. Jr.; Kanouff, M.P.

      1981-07-01

      One part of the evaluation program for a molten sodium central receiver was to be a test of a reduced-scale panel at Sandia's Central Receiver Test Facility in Albuquerque. The panel incorporates a new way of joining tubes - brazing to intermediate filler strips - which can affect the panel's lifetime. To calculate the stresses and strains for the worst-case section of the experimental panel, we have done a nonlinear elastic-plastic analysis with the MARC finite element computer code, which takes the temperature dependence of the material properties into account. From the results, tube design lifetimes are predicted. The analysis shows that concerns for cracking and reduction in lifetime are warranted, but a more detailed fracture analysis is necessary to determine whether there is a stable-crack-growth problem.

    1. Handbook on dynamics of jointed structures.

      SciTech Connect (OSTI)

      Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

      2009-07-01

      The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

    2. X-rays structural analysis and thermal stability studies of the ternary compound {alpha}-AlFeSi

      SciTech Connect (OSTI)

      Roger, J.; Bosselet, F.; Viala, J.C.

      2011-05-15

      From literature data presently available, the decomposition temperature and the nature of the decomposition reaction of the ternary compound {alpha}-AlFeSi (also designated as {alpha}{sub H} or {tau}{sub 5}) are not clearly identified. Moreover, some uncertainties remain concerning its crystal structure. The crystallographic structure and thermochemical behaviour of the ternary compound {alpha}-AlFeSi were meticulously studied. The crystal structure of {alpha}-AlFeSi was examined at room temperature from X-ray single crystal intensity data. It presents hexagonal symmetry, space group P6{sub 3}/mmc with unit cell parameters (293 K) a=12.345(2) A and c=26.210(3) A (V=3459 A{sup 3}). The average chemical formula obtained from refinement is Al{sub 7.1}Fe{sub 2}Si. From isothermal reaction-diffusion experiments and Differential Thermal Analysis, the title compound decomposes peritectically upon heating into {theta}-Fe{sub 4}Al{sub 13}(Si), {gamma}-Al{sub 3}FeSi and a ternary Al-rich liquid. Under atmospheric pressure, the temperature of this reversible transformation has been determined to be 772{+-}12 {sup o}C. -- Graphical abstract: Partial representation of the crystal structure of the {alpha}-Al{sub 7.1}Fe{sub 2}Si compound. Display Omitted Highlights: The main findings of our work are: {yields} a detailed X-rays crystal structure determination of the ternary compound {alpha}-AlFeSi. {yields} The precision of the silicon atoms positions in the crystal structure. {yields} A precised determination of the decomposition temperature of this compound.

    3. Low amplitude insult project: Structural analysis and prediction of low order reaction

      SciTech Connect (OSTI)

      Scammon, R.J.; Browning, R.V.; Middleditch, J.; Dienes, J.K.; Haberman, K.S.; Bennett, J.G.

      1998-12-31

      The low velocity impact sensitivity of PBX 9501 has been investigated through a series of experiments based on the Steven Test targets and a set of Shear Impact experiments. The authors describe calculations done using DYNA2D, SPRONTO and DYNA3D to support these, and other, low amplitude insult experiments. The calculations allow them to study pressure and strain rate variables, to investigate structural aspects of the experiment, and to predict velocities required for reaction. Structural analyses have played an active role in this project beginning with the original target design and continuing through analyses of the experimental results. Alternative designs and various ideas for active instrumentation were examined as part of the experiment evolution process. Predictions of reaction are used to guide these design studies, even though the authors do not yet have enough experimental data to fully calibrate any of the models.

    4. Structural analysis of fuel assembly clads for the Upgraded Transient Reactor Test Facility (TREAT Upgrade)

      SciTech Connect (OSTI)

      Ewing, T.F.; Wu, T.S.

      1986-01-01

      The Upgraded Transient Reactor Test Facility (TREAT Upgrade) is designed to test full-length, pre-irradiated fuel pins of the type used in large LMFBRs under accident conditions, such as severe transient overpower and loss-of-coolant accidents. In TREAT Upgrade, the central core region is to contain new fuel assemblies of higher fissile loadings to maximize the energy deposition to the test fuel. These fuel assemblies must withstand normal peak clad temperatures of 850/sup 0/C for hundreds of test transients. Due to high temperatures and gradients predicted in the clad, creep and plastic strain effects are significant, and the clad structural behavior cannot be analyzed by conventional linear techniques. Instead, the detailed elastic-plastic-creep behavior must be followed along the time-dependent load history. This paper presents details of the structural evaluations of the conceptual TREAT Upgrade fuel assembly clads.

    5. Monte Carlo analysis of critical phenomenon of the Ising model on memory stabilizer structures

      SciTech Connect (OSTI)

      Viteri, C. Ricardo; Tomita, Yu; Brown, Kenneth R.

      2009-10-15

      We calculate the critical temperature of the Ising model on a set of graphs representing a concatenated three-bit error-correction code. The graphs are derived from the stabilizer formalism used in quantum error correction. The stabilizer for a subspace is defined as the group of Pauli operators whose eigenvalues are +1 on the subspace. The group can be generated by a subset of operators in the stabilizer, and the choice of generators determines the structure of the graph. The Wolff algorithm, together with the histogram method and finite-size scaling, is used to calculate both the critical temperature and the critical exponents of each structure. The simulations show that the choice of stabilizer generators, both the number and the geometry, has a large effect on the critical temperature.

    6. Soil structural analysis tools and properties for Hanford site waste tank evaluation

      SciTech Connect (OSTI)

      Moore, C.J.; Holtz, R.D.; Wagenblast, G.R.; Weiner, E.D.; Marlow, R.S.

      1995-09-01

      As Hanford Site contractors address future structural demands on nuclear waste tanks, built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice guidelines for soil modeling are suitable as preliminary design tools, future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current code based structural capabilities. For example, waste removal may include cutting a large hole in a tank. This report addresses both spring modeling of site soils and finite-element modeling of soils. Additionally seismic dynamic modeling of Hanford Site soils is also included. Of new and special interest is Section 2.2 that Professor Robert D. Holtz of the University of Washington wrote on plane strain soil testing versus triaxial testing with Hanford Site application to large buried waste tanks.

    7. Quantum-information analysis of electronic states of different molecular structures

      SciTech Connect (OSTI)

      Barcza, G.; Legeza, Oe.; Marti, K. H.; Reiher, M. [Fachbereich Physik, Philipps-Universitaet Marburg, D-35032 Marburg (Germany); Research Institute for Solid State Physics and Optics, H-1525 Budapest, P. O. Box 49 (Hungary); Laboratorium fuer Physikalische Chemie, ETH Zurich, CH-8093 Zurich (Switzerland)

      2011-01-15

      We have studied transition metal clusters from a quantum information theory perspective using the density-matrix renormalization group (DMRG) method. We demonstrate the competition between entanglement and interaction localization and discuss the application of the configuration interaction-based dynamically extended active space procedure, which significantly reduces the effective system size and accelerates the speed of convergence for complicated molecular electronic structures. Our results indicate the importance of taking entanglement among molecular orbitals into account in order to devise an optimal DMRG orbital ordering and carry out efficient calculations on transition metal clusters. Apart from these algorithmic observations, which lead to a recipe for black-box DMRG calculations, our work provides physical understanding of electron correlation in molecular and cluster structures in terms of entropy measures of relevance also to recent work on tensor-network representations of electronic states. We also identify those molecular orbitals which are highly entangled and discuss the consequences for chemical bonding and for the structural transition from an dioxygen binding copper cluster to an bis-oxygen-bridged system with broken O-O bond.

    8. Analysis of phases in the structure determination of an icosahedral virus

      SciTech Connect (OSTI)

      Plevka, Pavel; Kaufmann, Bärbel; Rossmann, Michael G.

      2012-03-15

      The constraints imposed on structure-factor phases by noncrystallographic symmetry (NCS) allow phase improvement, phase extension to higher resolution and hence ab initio phase determination. The more numerous the NCS redundancy and the greater the volume used for solvent flattening, the greater the power for phase determination. In a case analyzed here the icosahedral NCS phasing appeared to have broken down, although later successful phase extension was possible when the envelope around the NCS region was tightened. The phases from the failed phase-determination attempt fell into four classes, all of which satisfied the NCS constraints. These four classes corresponded to the correct solution, opposite enantiomorph, Babinet inversion and opposite enantiomorph with Babinet inversion. These incorrect solutions can be seeded from structure factors belonging to reciprocal-space volumes that lie close to icosahedral NCS axes where the structure amplitudes tend to be large and the phases tend to be 0 or {pi}. Furthermore, the false solutions can spread more easily if there are large errors in defining the envelope designating the region in which NCS averaging is performed.

    9. Structural integrity analysis of the degraded drywell containment at the Oyster Creek Nuclear generating station.

      SciTech Connect (OSTI)

      Petti, Jason P.

      2007-01-01

      This study examines the effects of the degradation experienced in the steel drywell containment at the Oyster Creek Nuclear Generating Station. Specifically, the structural integrity of the containment shell is examined in terms of the stress limits using the ASME Boiler and Pressure Vessel (B&PV) Code, Section III, Division I, Subsection NE, and examined in terms of buckling (stability) using the ASME B&PV Code Case N-284. Degradation of the steel containment shell (drywell) at Oyster Creek was first observed during an outage in the mid-1980s. Subsequent inspections discovered reductions in the shell thickness due to corrosion throughout the containment. Specifically, significant corrosion occurred in the sandbed region of the lower sphere. Since the presence of the wet sand provided an environment which supported corrosion, a series of analyses were conducted by GE Nuclear Energy in the early 1990s. These analyses examined the effects of the degradation on the structural integrity. The current study adopts many of the same assumptions and data used in the previous GE study. However, the additional computational recourses available today enable the construction of a larger and more sophisticated structural model.

    10. Structural and functional analysis of human HtrA3 protease and its subdomains

      SciTech Connect (OSTI)

      Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara; van Raaij, Mark J.

      2015-06-25

      Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that the protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.

    11. Structural and functional analysis of human HtrA3 protease and its subdomains

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Glaza, Przemyslaw; Osipiuk, Jerzy; Wenta, Tomasz; Zurawa-Janicka, Dorota; Jarzab, Miroslaw; Lesner, Adam; Banecki, Bogdan; Skorko-Glonek, Joanna; Joachimiak, Andrzej; Lipinska, Barbara; et al

      2015-06-25

      Human HtrA3 protease, which induces mitochondria-mediated apoptosis, can be a tumor suppressor and a potential therapeutic target in the treatment of cancer. However, there is little information about its structure and biochemical properties. HtrA3 is composed of an N-terminal domain not required for proteolytic activity, a central serine protease domain and a C-terminal PDZ domain. HtrA3S, its short natural isoform, lacks the PDZ domain which is substituted by a stretch of 7 C-terminal amino acid residues, unique for this isoform. This paper presents the crystal structure of the HtrA3 protease domain together with the PDZ domain (ΔN-HtrA3), showing that themore » protein forms a trimer whose protease domains are similar to those of human HtrA1 and HtrA2. The ΔN-HtrA3 PDZ domains are placed in a position intermediate between that in the flat saucer-like HtrA1 SAXS structure and the compact pyramidal HtrA2 X-ray structure. The PDZ domain interacts closely with the LB loop of the protease domain in a way not found in other human HtrAs. ΔN-HtrA3 with the PDZ removed (ΔN-HtrA3-ΔPDZ) and an N-terminally truncated HtrA3S (ΔN-HtrA3S) were fully active at a wide range of temperatures and their substrate affinity was not impaired. This indicates that the PDZ domain is dispensable for HtrA3 activity. As determined by size exclusion chromatography, ΔN-HtrA3 formed stable trimers while both ΔN-HtrA3-ΔPDZ and ΔN-HtrA3S were monomeric. This suggests that the presence of the PDZ domain, unlike in HtrA1 and HtrA2, influences HtrA3 trimer formation. The unique C-terminal sequence of ΔN-HtrA3S appeared to have little effect on activity and oligomerization. Additionally, we examined the cleavage specificity of ΔN-HtrA3. Results reported in this paper provide new insights into the structure and function of ΔN-HtrA3, which seems to have a unique combination of features among human HtrA proteases.« less

    12. Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions

      Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

      Noise and Coda Correlation Data into Kinematic and Waveform Inversions Daniel R.H. O'Connell, PhD Fugro Consultants Modeling Project Officer: William Vandermeer Total Project Funding: $1,406,745 April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research Project Objectives * Obtain high-accuracy (10 m or less) absolute geothermal field earthquake locations and

    13. Neural network system and methods for analysis of organic materials and structures using spectral data

      DOE Patents [OSTI]

      Meyer, B.J.; Sellers, J.P.; Thomsen, J.U.

      1993-06-08

      Apparatus and processes are described for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.

    14. Neural network system and methods for analysis of organic materials and structures using spectral data

      DOE Patents [OSTI]

      Meyer, Bernd J.; Sellers, Jeffrey P.; Thomsen, Jan U.

      1993-01-01

      Apparatus and processes for recognizing and identifying materials. Characteristic spectra are obtained for the materials via spectroscopy techniques including nuclear magnetic resonance spectroscopy, infrared absorption analysis, x-ray analysis, mass spectroscopy and gas chromatography. Desired portions of the spectra may be selected and then placed in proper form and format for presentation to a number of input layer neurons in an offline neural network. The network is first trained according to a predetermined training process; it may then be employed to identify particular materials. Such apparatus and processes are particularly useful for recognizing and identifying organic compounds such as complex carbohydrates, whose spectra conventionally require a high level of training and many hours of hard work to identify, and are frequently indistinguishable from one another by human interpretation.

    15. POTENTIAL MEMBERS OF STELLAR KINEMATIC GROUPS WITHIN 30 pc OF THE SUN

      SciTech Connect (OSTI)

      Nakajima, Tadashi; Morino, Jun-Ichi

      2012-01-15

      We analyze the kinematic histories of stars within 30 pc of the Sun, for which three-dimensional spatial coordinates and three-dimensional velocity vectors are available. From this sample, we extract members of stellar kinematic groups (SKGs) in the following manner. First, we consider in the three-dimensional velocity space centered on the local standard of rest, a sphere with a radius of 8 km s{sup -1} centered on the mean velocity vector of a particular SKG. Around each SKG velocity center, we have found a significant excess of stars compared to background field stars. For each candidate, in the three-dimensional spatial coordinate space, its trajectory is traced back in time by the age of the relevant SKG to obtain the estimated distance from the SKG center at the time of the SKG's birth by the epicyclic approximation and harmonic vertical motion. It often happens that a star is a candidate member of multiple SKGs. Then we rank the candidacy to multiple SKGs based on the smallness of distance separations. In this manner, we have kinematically selected 238 candidates. We further impose at least one of the following qualitative criteria for being a member: spectral type A or B, variability, or EUV and X-ray emission. We have finally selected 137 candidate members of SKGs out of a sample of 966 stars.

    16. SPATIAL ANISOTROPY OF GALAXY KINEMATICS IN SLOAN DIGITAL SKY SURVEY GALAXY CLUSTERS

      SciTech Connect (OSTI)

      Skielboe, Andreas; Wojtak, Radoslaw; Pedersen, Kristian; Rozo, Eduardo; Rykoff, Eli S.

      2012-10-10

      Measurements of galaxy cluster kinematics are important in understanding the dynamical state and evolution of clusters of galaxies, as well as constraining cosmological models. While it is well established that clusters exhibit non-spherical geometries, evident in the distribution of galaxies on the sky, azimuthal variations of galaxy kinematics within clusters have yet to be observed. Here we measure the azimuthal dependence of the line-of-sight velocity dispersion profile in a stacked sample of 1743 galaxy clusters from the Sloan Digital Sky Survey (SDSS). The clusters are drawn from the SDSS DR8 redMaPPer catalog. We find that the line-of-sight velocity dispersion of galaxies lying along the major axis of the central galaxy is larger than those that lie along the minor axis. This is the first observational detection of anisotropic kinematics of galaxies in clusters. We show that the result is consistent with predictions from numerical simulations. Furthermore, we find that the degree of projected anisotropy is strongly dependent on the line-of-sight orientation of the galaxy cluster, opening new possibilities for assessing systematics in optical cluster finding.

    17. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center

      SciTech Connect (OSTI)

      Ponomarenko, Nina S.; Li, Liang; Marino, Antony R.; Tereshko, Valentina; Ostafin, Agnes; Popova, Julia A.; Bylina, Edward J.; Ismagilov, Rustem F.; Norris, Jr., James R.

      2010-07-22

      Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 {micro}m, belonged to space group P4{sub 3}2{sub 1}2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 {angstrom} resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C{sub 380}, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.

    18. Tectonic history and analysis of structures in eastern Kansas and western Missouri

      SciTech Connect (OSTI)

      Berendsen, P.; Wilson, F.W. . Kansas Geological Survey)

      1993-03-01

      Orogenic events in and around the midcontinent in Proterozoic time were responsible for the formation of the dominant master set of younger northeast- and older northwest-trending faults that dominate the structure of the area today. Reactivation of these faults throughout geologic time gave rise to tectonic zones consisting of sets of anastomosing faults or other complex patterns. These zones are likely important in helping to determine the configuration of major uplifts and basins that involve the crust. The Nemaha tectonic zone defines the western boundary of both the Forest City and Cherokee basins, while a structural block delineated by the Chesapeake and Bolivar-Mansfield regional faults coincides with the approximate position of the Bourbon Arch, which is reflected in the thickness of Mississippian carbonate rocks. Rocks of the Ozark uplift began to be uplifted by the end of Maquoketa time. The uplift has historically been described as a landform, rather than a geologic structure. Hence, the extent and the boundaries of the uplift are ill-defined. The northeast-trending line forming the contact between Mississippian and Pennsylvanian rocks is commonly regarded as the western boundary. This boundary coincides with a major tectonic zone, extending northeastward from Oklahoma through Kansas and Missouri into at least southern Iowa. In the Tri-State area of Kansas, Oklahoma, and Missouri the zone is referred to as the Miami trough and features prominently in the localization of major ore deposits. This zone may then also be regarded as the eastern boundary of the Forest City and Cherokee basins.

    19. Networks of silicon nanowires: A large-scale atomistic electronic structure analysis

      SciTech Connect (OSTI)

      Kele?, mit; Bulutay, Ceyhun; Liedke, Bartosz; Heinig, Karl-Heinz

      2013-11-11

      Networks of silicon nanowires possess intriguing electronic properties surpassing the predictions based on quantum confinement of individual nanowires. Employing large-scale atomistic pseudopotential computations, as yet unexplored branched nanostructures are investigated in the subsystem level as well as in full assembly. The end product is a simple but versatile expression for the bandgap and band edge alignments of multiply-crossing Si nanowires for various diameters, number of crossings, and wire orientations. Further progress along this line can potentially topple the bottom-up approach for Si nanowire networks to a top-down design by starting with functionality and leading to an enabling structure.

    20. Structure analysis of O,O’-propane-1,3-diyl bis[diphenyl(phosphinothioate)

      SciTech Connect (OSTI)

      Karaman, M.; Irisli, S.; Büyükgüngör, O.

      2013-12-15

      A new diphosphine disulphide compound with the formula C{sub 27}H{sub 26}O{sub 2} vertical bar P{sub 2}S{sub 2}, was synthesized from the reaction between PPh{sub 2}SCl and 1,3-propanediol and characterized with different spectroscopic methods. Its structure has also been studied by X-ray diffraction. The compound crystallizes in the triclinic space group P-bar1. Pentavalent phosphorus atoms in the molecule are in distorted tetrahedral environments.

    1. Impact and structural analysis of the INEL 55 gallon recycled shielded storage container

      SciTech Connect (OSTI)

      Richins, W.D.

      1996-07-01

      The INEL Recycled Shielded Storage Containers (RSSC) are designed primarily for the transportation and storage of mixed RH-TRU solid waste using recycled, potentially contaminated lead and stainless steel construction materials. Two versions of the RSSC have been developed accommodating either 30 or 55 gallon drums. This report addresses the structural qualification of the 55 gallon version of the RSSC to DOT 7A Type A requirements. The controlling qualification test is a 4 ft drop onto a rigid surface. During and after this test, the container contents must remain within the container and shielding must not be reduced. The container is also designed to withstand stacking, internal pressure, lifting loads, tiedown failure, penetration, and a range of temperatures. Nonlinear dynamic finite element analyses were performed using a range of material properties. Loads in the major connections and strains in the stainless steel and lead were monitored as a function of time during impact analyses for three simulated drop orientations. Initial results were used to develop the final design. For the final design, the stainless steel and lead have maximum strains well below ultimate levels except at an impact corner where additional deformation is acceptable. The predicted loads in the connections indicate that some yielding will occur but the containment and shielding will remain intact. The results presented here provide assurance that the container will pass the DOT 7A Type A drop tests as well as the other structural requirements.

    2. Analysis of structure and orientation of adsorbed polymers in solution subject to a dynamic shear stress

      SciTech Connect (OSTI)

      Smith, G.; Baker, S.; Toprakcioglu, C.

      1996-09-01

      This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymer-based separation techniques rely on the ability of a binding portion of the polymer to interact with a specific molecule in a solution flowing past the polymer. The location of the binding site within or out of the entangled polymer chains is thus crucial to the effectiveness of these methods. For this reason, the details of flow induced deformation of the polymer chains is important in such applications as exclusion chromatography, waste water treatment, ultrafiltration, enhanced oil recovery and microbial adhesion. Few techniques exist to examine the structure and orientation of polymeric materials, and even fewer to examine systems in a dynamic fluid flow. The goal of this project was to understand the molecular structure and orientation of adsorbed polymers with and without active binding ligands as a function of solvent shear rate, solvent power, polymer molecular weight, surface polymer coverage and heterogeneity of the surface polymer chains by neutron reflectometry in a newly designed shear cell. Geometrical effects on binding of molecules in the flow was also studied subject to the same parameters.

    3. Kinematic modeling of the Milky Way using the RAVE and GCS stellar surveys

      SciTech Connect (OSTI)

      Sharma, S.; Bland-Hawthorn, J.; Binney, J.; Freeman, K. C.; Steinmetz, M.; Williams, M. E. K.; Boeche, C.; Grebel, E. K.; Bienaymé, O.; Siebert, A.; Gibson, B. K.; Gilmore, G. F.; Kordopatis, G.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W. A.; Seabroke, G. M.; Watson, F.; and others

      2014-09-20

      We investigate the kinematic parameters of the Milky Way disk using the Radial Velocity Experiment (RAVE) and Geneva-Copenhagen Survey (GCS) stellar surveys. We do this by fitting a kinematic model to the data and taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (ℓ, b, v {sub los}). Using the Markov Chain Monte Carlo technique, we investigate the full posterior distributions of the parameters given the data. We investigate the age-velocity dispersion relation for the three kinematic components (σ {sub R}, σ{sub φ}, σ {sub z}), the radial dependence of the velocity dispersions, the solar peculiar motion (U {sub ☉}, V {sub ☉}, W {sub ☉}), the circular speed Θ{sub 0} at the Sun, and the fall of mean azimuthal motion with height above the midplane. We confirm that the Besançon-style Gaussian model accurately fits the GCS data but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles noncircular orbits more accurately and provides a better fit to the kinematic data. The Gaussian DF not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. The radial scale length of the velocity dispersion profile of the thick disk was found to be smaller than that of the thin disk. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in V {sub ☉} and Θ{sub 0}. We find that, for an extended sample of stars, Θ{sub 0} is underestimated by as much as 10% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without

    4. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system

      SciTech Connect (OSTI)

      Seslija, Petar; Teeter, Matthew G.; Yuan Xunhua; Naudie, Douglas D. R.; Bourne, Robert B.; MacDonald, Steven J.; Peters, Terry M.; Holdsworth, David W.

      2012-10-15

      Purpose: The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. Methods: An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. Results: The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07 Degree-Sign in-plane, and 0.24 mm and 0.6 Degree-Sign out-of-plane. The repeatability of kinematics measurements performed

    5. DYNA3D (Nonlinear Dynamic Analysis of Structures in Three Dimensions) user's manual

      SciTech Connect (OSTI)

      Hallquist, J.O.

      1988-04-01

      This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-eight material models and eleven equations of state to cover a wide range of material behavior. 56 refs., 46 figs.

    6. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions)

      SciTech Connect (OSTI)

      Hallquist, J.O.; Benson, D.J.

      1987-07-01

      This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains twenty-five material models and eleven equations of state to cover a wide range of material behavior.

    7. DYNA3D user's manual: (Nonlinear dynamic analysis of structures in three dimensions): Revision 5

      SciTech Connect (OSTI)

      Hallquist, J.O.; Whirley, R.G.

      1989-05-01

      This report provides an updated user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation response of inelastic solids and structures. A contact-impact algorithm permits gaps and sliding along material interfaces with friction. Using a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. The 1989 version of DYNA3D contains thirty material models and ten equations of state to cover a wide range of material behavior.

    8. DYNA3D user's manual (nonlinear dynamic analysis of structures in three dimensions). Revision 2

      SciTech Connect (OSTI)

      Hallquist, J.O.; Benson, D.J.

      1986-03-01

      The user's manual for DYNA3D, an explicit three-dimensional finite element code for analyzing the large deformation dynamic response of inelastic solids and structures is updated. A contact-impact algorithm permit gaps and sliding along material interfaces with friction. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 8-node solid elements, 2-node beam elements, 4-node shell elements, 8-node solid shell elements, and rigid bodies. The equations-of-motion are integrated in time by the central difference method. DYNA3D contains sixteen material models and nine equations of state to cover a wide range of material behavior. 40 refs., 43 figs.

    9. Advanced NMR-based techniques for pore structure analysis of coal. Final project report

      SciTech Connect (OSTI)

      Smith, D.M.; Hua, D.W.

      1996-02-01

      During the 3 year term of the project, new methods have been developed for characterizing the pore structure of porous materials such as coals, carbons, and amorphous silica gels. In general, these techniques revolve around; (1) combining multiple techniques such as small-angle x-ray scattering (SAXS) and adsorption of contrast-matched adsorbates or {sup 129}Xe NMR and thermoporometry (the change in freezing point with pore size), (2) combining adsorption isotherms over several pressure ranges to obtain a more complete description of pore filling, or (3) applying NMR ({sup 129}Xe, {sup 14}N{sub 2}, {sup 15}N{sub 2}) techniques with well-defined porous solids with pores in the large micropore size range (>1 nm).

    10. Analysis of the electronic structure of ZrO{sub 2} by Compton spectroscopy

      SciTech Connect (OSTI)

      Mahammad, F. M.; Mahammed, S. F.; Kumar, R.; Vijay, Y. K.; Sharma, B. K.; Sharma, G.

      2013-07-15

      The electronic structure of ZrO{sub 2} is studied using the Compton scattering technique. The first-ever Compton profile measurement on polycrystalline ZrO{sub 2} was obtained using 59.54 keV gamma-rays emanating from the {sup 241}Am radioisotope. To explain the experimental data, we compute theoretical Compton profile values using the method of linear combination of atomic orbitals in the framework of density functional theory. The correlation scheme proposed by Perdew-Burke-Ernzerhof and the exchange scheme of Becke are considered. The ionic-model-based calculations for a number of configurations, i.e., Zr{sup +x}(O{sup -x/2}){sub 2} (0 {<=} x {<=} 2), are also performed to estimate the charge transfer on compound formation, and the study supports transfer of 1.5 electrons from Zr to O atoms.

    11. Blunt-crack band propagation in finite-element analysis for concrete structures. [LMFBR

      SciTech Connect (OSTI)

      Pfeiffer, P.A.; Bazant, Z.P.; Marchertas, A.H.

      1983-01-01

      The knowledge of concrete fracture is needed in nuclear reactor safety. The question of safety arises from the potential of concrete to crack under thermal loading. It has been postulated that structural concrete could be exposed to very high temperature, which may result from hot reactor coolant or even core debris coming in direct contact with the concrete. The utilization of the blunt crack approach for simulating concrete cracking in a general-purpose code is explored. The difficulties encountered in establishing the proper direction of crack propagation in an arbitrary discretization are described. Crack propagation is considered within the context of two types of solution techniques: (1) implicit solution of the static crack advance, and (2) explicit time integration using a dynamic relaxation technique to simulate the static crack advance. Also, in both solution techniques an elastic model is used to characterize the concrete.

    12. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

      SciTech Connect (OSTI)

      K.R. Maskaly

      2005-06-01

      increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

    13. Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

      SciTech Connect (OSTI)

      Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

      2012-01-01

      Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

    14. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

      SciTech Connect (OSTI)

      Waldron, P.J.; Wu, L.; Van Nostrand, J.D.; Schadt, C.W.; Watson, D.B.; Jardine, P.M.; Palumbo, A.V.; Hazen, T.C.; Zhou, J.

      2009-06-15

      To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

    15. Functional gene array-based analysis of microbial community structure in groundwater with gradient of contaminant levels

      SciTech Connect (OSTI)

      Wu, Liyou; Van Nostrand, Joy; Schadt, Christopher Warren; Watson, David B; Jardine, Philip M; Palumbo, Anthony Vito; Hazen, Terry; Zhou, Jizhong

      2009-04-01

      To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity but greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17?70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.

    16. Large deformation analysis of laminated composite structures by a continuum-based shell element with transverse deformation

      SciTech Connect (OSTI)

      Wung, Pey Min.

      1989-01-01

      In this work, a finite element formulation and associated computer program is developed for the transient large deformation analysis of laminated composite plate/shell structures. In order to satisfy the plate/shell surface traction boundary conditions and to have accurate stress description while maintaining the low cost of the analysis, a newly assumed displacement field theory is formulated by adding higher-order terms to the transverse displacement component of the first-order shear deformation theory. The laminated shell theory is formulated using the Updated Lagrangian description of a general continuum-based theory with assumptions on thickness deformation. The transverse deflection is approximated through the thickness by a quartic polynomial of the thickness coordinate. As a result both the plate/shell surface tractions (including nonzero tangential tractions and nonzero normal pressure) and the interlaminar shear stress continuity conditions at interfaces are satisfied simultaneously. Furthermore, the rotational degree of freedoms become layer dependent quantities and the laminate possesses a transverse deformation capability (i.e the normal strain is no longer zero). Analytical integration through the thickness direction is performed for both the linear analysis and the nonlinear analysis. Resultants of the stress integrations are expressed in terms of the laminate stacking sequence. Consequently, the laminate characteristics in the normal direction can be evaluated precisely and the cost of the overall analysis is reduced. The standard Newmark method and the modified Newton Raphson method are used for the solution of the nonlinear dynamic equilibrium equations. Finally, a variety of numerical examples are presented to demonstrate the validity and efficiency of the finite element program developed herein.

    17. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

      SciTech Connect (OSTI)

      El-Hanbaly, A. M.; Sallah, M.; El-Shewy, E. K.; Darweesh, H. F.

      2015-10-15

      Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions are related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.

    18. Image analysis of jet structure on electrospinning from free liquid surface

      SciTech Connect (OSTI)

      Kula, Jiri Linka, Ales Tunak, Maros; Lukas, David

      2014-06-16

      The work analyses intra-jet distances during electrospinning from a free surface of water based poly(vinyl alcohol) solution confined by two thin metallic plates employed as a spinning electrode. A unique computer vision system and digital image processing were designed in order to track position of every polymer jet. Here, we show that jet position data are in good compliance with theoretically predicted intra-jet distances by linear stability analysis. Jet density is a critical parameter of electrospinning technology, since it determines the process efficiency and homogeneity of produced nanofibrous layer. Achievements made in this research could be used as essential approach to study jetting from two-dimensional spinning electrodes, or as fundamentals for further development of control system related to Nanospider{sup ™} technology.

    19. Structural analysis of three global land models on carbon cycle simulations using a traceability framework

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Rafique, R.; Xia, J.; Hararuk, O.; Luo, Y.

      2014-06-27

      Modeled carbon (C) storage capacity is largely determined by the C residence time and net primary productivity (NPP). Extensive research has been done on NPP dynamics but the residence time and their relationships with C storage are much less studied. In this study, we implemented a traceability analysis to understand the modeled C storage and residence time in three land surface models: CSIRO's Atmosphere Biosphere Land Exchange (CABLE) with 9 C pools, Community Land Model (version 3.5) combined with Carnegie-Ames-Stanford Approach (CLM3.5-CASA) with 12 C pools and Community Land Model (version 4) (CLM4) with 26 C pools. The globally averagedmoreC storage and residence time was computed at both individual pool and total ecosystem levels. The spatial distribution of total ecosystem C storage and residence time differ greatly among the three models. The CABLE model showed a closer agreement with measured C storage and residence time in plant and soil pools than CLM3.5-CASA and CLM4. However, CLM3.5-CASA and CLM4 were close to each other in modeled C storage but not with measured data. CABLE stores more C in root whereas CLM3.5-CASA and CLM4 store more C in woody pools, partly due to differential NPP allocation in respective pools. The C residence time in individual C pools is greatly different among models, largely because of different transfer coefficient values among pools. CABLE had higher bulk residence time for soil C pools than the other two models. Overall, the traceability analysis used in this study can help fully characterizes the behavior of complex land models.less

    20. P2P-based botnets: structural analysis, monitoring, and mitigation

      SciTech Connect (OSTI)

      Yan, Guanhua; Eidenbenz, Stephan; Ha, Duc T; Ngo, Hung Q

      2008-01-01

      Botnets, which are networks of compromised machines that are controlled by one or a group of attackers, have emerged as one of the most serious security threats on the Internet. With an army of bots at the scale of tens of thousands of hosts or even as large as 1.5 million PCs, the computational power of botnets can be leveraged to launch large-scale DDoS (Distributed Denial of Service) attacks, sending spamming emails, stealing identities and financial information, etc. As detection and mitigation techniques against botnets have been stepped up in recent years, attackers are also constantly improving their strategies to operate these botnets. The first generation of botnets typically employ IRC (Internet Relay Chat) channels as their command and control (C&C) centers. Though simple and easy to deploy, the centralized C&C mechanism of such botnets has made them prone to being detected and disabled. Against this backdrop, peer-to-peer (P2P) based botnets have emerged as a new generation of botnets which can conceal their C&C communication. Recently, P2P networks have emerged as a covert communication platform for malicious programs known as bots. As popular distributed systems, they allow bots to communicate easily while protecting the botmaster from being discovered. Existing work on P2P-based hotnets mainly focuses on measurement of botnet sizes. In this work, through simulation, we study extensively the structure of P2P networks running Kademlia, one of a few widely used P2P protocols in practice. Our simulation testbed incorporates the actual code of a real Kademlia client software to achieve great realism, and distributed event-driven simulation techniques to achieve high scalability. Using this testbed, we analyze the scaling, reachability, clustering, and centrality properties of P2P-based botnets from a graph-theoretical perspective. We further demonstrate experimentally and theoretically that monitoring bot activities in a P2P network is difficult

    1. Nano-Hydroxyapatite/Fluoridated and Unfluoridated Bioactive Glass Composites: Structural Analysis and Bioactivity Evaluation

      SciTech Connect (OSTI)

      Batra, Uma; Kapoor, Seema; Sharma, J. D.

      2011-12-12

      Biphasic bioceramic composites containing nano-hydroxyapatite (HAP) and nanosized bioactive glasses have been prepared in the form of pellets and have been examined for the effects of bioglass concentrations and sintering temperature on the structural transformations and bioactivity behavior. Pure stoichiometric nano-HAP was synthesized using sol-gel technique. Two bioglasses synthesized in this work--fluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}-CaF{sub 2}) and unfluoridated bioglass (Cao-P{sub 2}O{sub 5}-Na{sub 2}O{sub 3}) designated as FBG and UFBG respectively, were added to nano-HAP with concentrations of 5, 10, 12 and 15%. The average particle sizes of synthesized HAP and bioglasses were 23 nm and 35 nm, respectively. The pellets were sintered at four different temperatures i.e. 1000 deg. C, 1150 deg. C, 1250 deg. C and 1350 deg. C. The investigations involved study of structural and bioactivity behavior of green and sintered pellets and their deviations from original materials i.e. HAP, FBG and UFBG, using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The phase composition of the sintered pellets was found to be non-stoichiometric HAP with {alpha}-TCP (tricalcium phosphate) and {beta}-TCP. It was revealed from SEM images that bonding mechanism was mainly solid state sintering for all pellets sintered at 1000 deg. C and 1150 deg. C and also for pellets with lower concentrations of bioglass i.e. 5% and 10% sintered at 1250 deg. C. Partly liquid phase sintering was observed for pellets with higher bioglass concentrations of 12% and 15% sintered at 1250 deg. C and same behaviour was noted for pellets at all concentrations of bioglasses at 1350 deg. C. The sintered density, hardness and compression strength of pellets have been influenced both by the concentration of the bioglasses and sintering temperature. It was observed that the biological HAP layer formation was faster on the green pellets surface than on pure HAP and

    2. Structural Analysis of N- and O-glycans Using ZIC-HILIC/Dialysis Coupled to NMR Detection

      SciTech Connect (OSTI)

      Qu, Yi; Feng, Ju; Deng, Shuang; Cao, Li; Zhang, Qibin; Zhao, Rui; Zhang, Zhaorui; Jiang, Yuxuan; Zink, Erika M.; Baker, Scott E.; Lipton, Mary S.; Pasa-Tolic, Ljiljana; Hu, Jian Z.; Wu, Si

      2014-11-19

      Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation,) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we employed SEC, Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC), and ZIC-HILIC coupled with dialysis strategies to enrich the glycopeptides from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is the most efficient, which was thus applied to the analysis of biological complex sample, the pronase E digest of the secreted proteins from the fungi Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core and O-linked glycans bearing mannose and glucose with 1->3 and 1->6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled to dialysis is superior to the commonly used SEC separation to prepare glycopeptides for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.

    3. Structural analysis of palladium-decorated gold nanoparticles as colloidal bimetallic catalysts.

      SciTech Connect (OSTI)

      Fang, Y. L.; Miller, J. T.; Guo, N.; Heck, K. N.; Alvarez, P. J. J.; Wong, M. S. (Chemical Sciences and Engineering Division); (Rice Univ.)

      2011-02-02

      Bimetallic palladium-decorated gold nanoparticle (Pd/Au NP) catalysts are significantly more active than palladium-only catalysts, but the mechanism for enhancement is not completely clear for most reactions, like the aqueous-phase hydrodechlorination of trichloroethene. In this study, we conducted X-ray absorption spectroscopy on carbon-supported Pd/Au NPs to obtain information about the local atomic environment (i.e., oxidation states, coordination numbers, and bond distances) of the two metals under different treatment conditions. The as-synthesized NPs were confirmed to have a Pd-shell/Au-core nanostructure, in which the Pd was found as surface ensembles. Upon exposure to room temperature in air, a portion of the Pd, but not the Au, was oxidized. In comparison, nearly the entire surface of monometallic Pd NPs was oxidized, suggesting that Au in Pd/Au NPs imparts oxidation resistance to Pd atoms. The surface Pd was found randomly distributed, presumably as a PdAu surface alloy, after reduction at 300 C. X-ray absorption spectroscopy provides direct evidence for the Pd-shell/Au-core structure of Pd/Au NPs, and suggests that metallic Pd in the Pd/Au NPs is a source for higher catalytic activity for aqueous-phase trichloroethene hydrodechlorination.

    4. Structural Analysis of Protein Folding by the Long-Chain Archaeal Chaperone FKBP26

      SciTech Connect (OSTI)

      E Martinez-Hackert; W Hendrickson

      2011-12-31

      In the cell, protein folding is mediated by folding catalysts and chaperones. The two functions are often linked, especially when the catalytic module forms part of a multidomain protein, as in Methanococcus jannaschii peptidyl-prolyl cis/trans isomerase FKBP26. Here, we show that FKBP26 chaperone activity requires both a 50-residue insertion in the catalytic FKBP domain, also called 'Insert-in-Flap' or IF domain, and an 80-residue C-terminal domain. We determined FKBP26 structures from four crystal forms and analyzed chaperone domains in light of their ability to mediate protein-protein interactions. FKBP26 is a crescent-shaped homodimer. We reason that folding proteins are bound inside the large crescent cleft, thus enabling their access to inward-facing peptidyl-prolyl cis/trans isomerase catalytic sites and ipsilateral chaperone domain surfaces. As these chaperone surfaces participate extensively in crystal lattice contacts, we speculate that the observed lattice contacts reflect a proclivity for protein associations and represent substrate interactions by FKBP26 chaperone domains. Finally, we find that FKBP26 is an exceptionally flexible molecule, suggesting a mechanism for nonspecific substrate recognition.

    5. Structural Design and Thermal Analysis for Thermal Shields of the MICE Coupling Magnets

      SciTech Connect (OSTI)

      Green, Michael A.; Pan, Heng; Liu, X. K.; Wang, Li; Wu, Hong; Chen, A. B.; Guo, X.L.

      2009-07-01

      A superconducting coupling magnet made from copper matrix NbTi conductors operating at 4 K will be used in the Muon Ionization Cooling Experiment (MICE) to produce up to 2.6 T on the magnet centerline to keep the muon beam within the thin RF cavity indows. The coupling magnet is to be cooled by two cryocoolers with a total cooling capacity of 3 W at 4.2 K. In order to keep a certain operating temperature margin, the most important is to reduce the heat leakage imposed on cold surfaces of coil cold mass assembly. An ntermediate temperature shield system placed between the coupling coil and warm vacuum chamber is adopted. The shield system consists of upper neck shield, main shields, flexible connections and eight supports, which is to be cooled by the first stage cold heads of two ryocoolers with cooling capacity of 55 W at 60 K each. The maximum temperature difference on the shields should be less than 20 K, so the thermal analyses for the shields with different thicknesses, materials, flexible connections for shields' cooling and structure design for heir supports were carried out. 1100 Al is finally adopted and the maximum temperature difference is around 15 K with 4 mm shield thickness. The paper is to present detailed analyses on the shield system design.

    6. Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis

      SciTech Connect (OSTI)

      Berry, D.M.

      1992-01-01

      Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

    7. Thermal and Structural Analysis of Beamline Components in the Mu2e Experiment

      SciTech Connect (OSTI)

      Martin, Luke Daniel

      2016-01-01

      Fermi National Accelerator Laboratory will be conducting the high energy particle physics experiment Muons to Electrons (Mu2e). In this experiment, physicists will attempt to witness and understand an ultra-rare process which is the conversion of a muon into the lighter mass electron, without creating additional neutrinos. The experiment is conducted by first generating a proton beam which will be collided into a target within the production solenoid (PS). This creates a high-intensity muon beam which passes through a transport solenoid (TS) and into the detector solenoid (DS). In the detector solenoid the muons will be stopped in an aluminum target and a series of detectors will measure the electrons produced. These components have been named the DS train since they are coupled and travel on a rail system when being inserted or extracted from the DS. To facilitate the installation and removal of the DS train, a set of external stands and a support stand for the instrumentation feed-through bulkhead (IFB) have been designed. Full analysis of safety factors and performance of these two designs has been completed. The detector solenoid itself will need to be maintained to a temperature of 22°C ± 10°C. This will minimize thermal strain and ensure the accurate position of the components is maintained to the tolerance of 2 mm. To reduce the thermal gradient, a passive heating system has been developed and reported.

    8. Group 10 complexes containing phosphinomethylamine ligands: Synthesis, structural analysis and electrochemical studies

      SciTech Connect (OSTI)

      Waggoner, Nolan W.; Spreer, Lindsay S.; Boro, Brian J.; DuBois, Daniel L.; Helm, Monte L.

      2012-01-15

      The reaction of [M(triphos)OTf](OTf) (M = Pd, Pt; triphos = (Ph2PCH2CH2)2PPh; OTf = triflate) with one equivalent of a diphenylphosphinomethylamine ligand (PPh2NPh(R), R = Ph or Me) leads to the formation of the M(II) complexes [Pd(triphos)PPh2NPh(R)](OTf)2 (1a, R = Ph; 1b, R = Me) and [Pt(triphos)PPh2NPh(R)]- (OTf)2 (2a, R = Ph; 2b, R = Me). Complexes 1a, 1b, 2a and 2b were obtained in moderate yields and characterized by elemental analysis, 1H, 13C, 31P NMR and X-ray diffraction. The redox behavior of these complexes shows a reversible reduction wave with half-wave potentials ranging from -1.04 to -1.23 V. Electrocatalytic proton reduction studies demonstrate these complexes function as hydrogen production catalysts with turn over frequencies ranging from 120 to 200 s-1. We thank Research Corporation Cottrell Science Award (7293) and Fort Lewis College for financial support of this project. Pacific Northwest National Laboratory collaborators would like to acknowledge the support of the US Department of Energy Basic Energy Sciences Chemical Sciences, Geosciences, and Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

    9. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

      SciTech Connect (OSTI)

      Fernando, I.?P.; Goity, J.?L.

      2015-02-01

      The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0?] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.

    10. Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Fernando, I. P.; Goity, J. L.

      2015-02-01

      The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,lP=0⁺] ground state and excited baryons, and the [56,2+] and [70}},1-] excited states are analyzed. The analyses are carried out to order O(1/Nc) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubo and Equal Spacing relations,more » as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less

    11. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

      SciTech Connect (OSTI)

      Rezvani, M.A.; Ziada, H.H.

      1992-12-01

      This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in[sup 2]). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

    12. Structural design, analysis, and code evaluation of an odd-shaped pressure vessel

      SciTech Connect (OSTI)

      Rezvani, M.A.; Ziada, H.H.

      1992-12-01

      This paper is the result of an effort to design, analyze and evaluate a rectangular pressure vessel. Normally pressure vessels are designed in circular or spherical shapes to prevent stress concentrations. In this case, because of operational limitations, the choice of vessels was limited to a rectangular pressure box with a removable cover plate. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code is used as a guideline for pressure containments whose width or depth exceeds 15.24 cm (6.0 in.) and where pressures will exceed 103.4 KPa (15.0 lbf/in{sup 2}). This evaluation used Section VIII of this Code, hereafter referred to as the Code. The dimensions and working pressure of the subject vessel fall within the pressure vessel category of the Code. The Code design guidelines and rules do not directly apply to this vessel. Therefore, finite-element methodology was used to analyze the pressure vessel, and the Code then was used in qualifying the vessel to be stamped to the Code. Section VIII, Division 1 of the Code was used for evaluation. This action was justified by selecting a material for which fatigue damage would not be a concern. The stress analysis results were then chocked against the Code, and the thicknesses adjusted to satisfy Code requirements. Although not directly applicable, the Code design formulas for rectangular vessels were also considered and presented in this study.

    13. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

      SciTech Connect (OSTI)

      Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

      2010-06-30

      The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are

    14. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

      SciTech Connect (OSTI)

      Bowyer, J.M.

      1984-04-15

      The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

    15. Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics

      SciTech Connect (OSTI)

      Adams, Joshua J.; Simon, Joshua D. [Observatories of the Carnegie Institution of Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fabricius, Maximilian H.; Bender, Ralf; Thomas, Jens [Max-Planck Institut fr extraterrestrische Physik, Giessenbachstrae, D-85741 Garching bei Mnchen (Germany); Van den Bosch, Remco C. E.; Van de Ven, Glenn [Max-Planck Institut fr Astronomie, Knigstuhl 17, D-69117 Heidelberg (Germany); Barentine, John C.; Gebhardt, Karl; Hill, Gary J. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Murphy, Jeremy D. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Swaters, R. A., E-mail: jjadams@obs.carnegiescience.edu, E-mail: jja439@gmail.com [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

      2014-07-01

      We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, ?, are generally robust. The mean and standard deviation of the logarithmic slope for the population are ? = 0.67 0.10 when measured in the stars and ? = 0.58 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of ? elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three

    16. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

      2014-12-18

      The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coilmore » case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.« less

    17. Electromagnetic and Mechanical Analysis of the Coil Structure for the CLAS12 Torus for 12 GeV Upgrade

      SciTech Connect (OSTI)

      Ghoshal, P. K.; Pastor, O.; Kashy, D.; Schneider, W.; Wiseman, M.; Zarecky, M.; Young, G.; Rode, C.; Elouadrhiri, L.; Burkert, V.

      2014-12-18

      The torus magnet for the CLAS12 spectrometer is a 3.6 T superconducting magnet being designed and built as part of the Jefferson Lab 12 GeV Upgrade. The magnet consists of six coil case assemblies mounted to a cold central hub. The coil case assembly consists of an aluminum case and cover enclosing an epoxy vacuum impregnated coil pack. The coil pack consists of a 117 turn double-pancake winding wrapped with 2 layers of 0.635 mm thick copper cooling sheets. The coil case assembly is cooled by supercritical helium at 4.6 K. This report details the structural analysis of the coil case assembly and the assessment of the coil pack stresses. For the normal operation of the torus magnet, the coil case assembly was analyzed for cool down to 4.6 K and the Lorentz forces at normal operating current. In addition to the normal operating configuration, the coil case assembly was analyzed for Lorentz forces arising from coil misalignment and current imbalances. The allowable stress criteria for the magnet followed the approach of the ASME codes. Primary stresses were limited to the lesser of 2/3 times the yield strength or 1/3 times the ultimate tensile strength. Primary plus secondary stresses were limited to 3 times the primary stress allowable. The analysis was performed using ANSYS Maxwell to calculate the magneto-static loads and ANSYS Mechanical to calculate the stresses.

    18. Validation of seismic soil-structure interaction analysis methods: EPRI (Electric Power Research Institute)/NRC (Nuclear Regulatory Commission) cooperation in Lotung, Taiwan, experiments

      SciTech Connect (OSTI)

      Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Tang, Y.K.; Kassawara, R.P.

      1986-10-31

      The cooperative program between NRC/ANL and EPRI on the validation of soil-structure interaction analysis methods with actual seismic response data is described. A large scale-model of a containment building has been built by EPRI/Taipower in a highly seismic region of Taiwan. Vibration tests were performed, first on the basemat before the superstructure was built and then on the completed structure. Since its completion, the structure has experienced many earthquakes. The site and structural response to these earthquakes have been recorded with field (surface and downhole) and structural instrumentation. The validation program involves blind predictions of site and structural response during vibration tests and a selected seismic event, and subsequent comparison between the predictions and measurements. The predictive calculations are in progress. The results of the correlation are expected to lead to the evaluation of the methods as to their conservatisms and sensitivities.

    19. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

      SciTech Connect (OSTI)

      Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

      2015-12-01

      Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in size following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.

    20. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; Chapman, Karena W.; Chupas, Peter J.; Du, Pingwu; Tiede, David M.

      2015-12-01

      Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

    1. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

      SciTech Connect (OSTI)

      Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

      2015-10-22

      To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

    2. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

      2015-10-22

      To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

    3. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

      SciTech Connect (OSTI)

      Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

      2015-07-05

      By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as deposited (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

    4. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Jensen, K. M.Ø.; Blichfeld, A. B.; Bauers, S. R.; Wood, S. R.; Dooryhee, E.; Johnson, D. C.; Iversen, B. B.; Billinge, S.

      2015-07-05

      By means of normal incidence, high flux and high energy x-rays, we have obtained total scattering data for Pair Distribution Function (PDF) analysis from thin films (tf), suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. We illustrate the ‘tfPDF’ method through studies of as depositedmore » (i.e. amorphous) and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows predicting whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.« less

    5. Studies of the Single Particle Structure of Exotic Nuclei using Transfer Reactions

      SciTech Connect (OSTI)

      Fernandez-Dominguez, B.; Chartier, M.; Lemmon, R. C.; Pucknell, V. P. E.; Warner, D. D.; Timis, C.; Catford, W. N.; Baldwin, T. D.; Gelletly, W.; Pain, S. D.; Labiche, M.; Amzal, N.; Burns, M.; Chapman, R.; Liang, X.; Spohr, K.; Ashwood, N.; Curtis, N.; Freer, M.; Caballero, L.

      2006-04-26

      The TIARA+VAMOS+EXOGAM set-up has recently been installed at GANIL to study the single-particle structure of exotic nuclei. The unique characteristics of the TIARA array, combined with the large acceptance spectrometer VAMOS and the high efficiency Germanium detector array EXOGAM, has allowed high-resolution measurements of transfer reactions in inverse kinematics using low intensity exotic beams. We will describe the experimental set-up, data analysis and preliminary results of the first experiments using a 24Ne beam from SPIRAL, concentrating in particular on the performance of VAMOS that has been used to detect the heavy fragments after the (d,p) (d,d) and (d,t) reactions.

    6. Halo mass dependence of H I and O VI absorption: evidence for differential kinematics

      SciTech Connect (OSTI)

      Mathes, Nigel L.; Churchill, Christopher W.; Nielsen, Nikole M.; Trujillo-Gomez, Sebastian; Kacprzak, Glenn G.; Charlton, Jane; Muzahid, Sowgat

      2014-09-10

      We studied a sample of 14 galaxies (0.1 < z < 0.7) using HST/WFPC2 imaging and high-resolution HST/COS or HST/STIS quasar spectroscopy of Lyα, Lyβ, and O VI λλ1031, 1037 absorption. The galaxies, having 10.8 ≤ log (M {sub h}/M {sub ☉}) ≤ 12.2, lie within D = 300 kpc of quasar sightlines, probing out to D/R {sub vir} = 3. When the full range of M {sub h} and D/R {sub vir} of the sample are examined, ∼40% of the H I absorbing clouds can be inferred to be escaping their host halo. The fraction of bound clouds decreases as D/R {sub vir} increases such that the escaping fraction is ∼15% for D/R {sub vir} < 1, ∼45% for 1 ≤ D/R {sub vir} < 2, and ∼90% for 2 ≤ D/R {sub vir} < 3. Adopting the median mass log M {sub h}/M {sub ☉} = 11.5 to divide the sample into 'higher' and 'lower' mass galaxies, we find a mass dependency for the hot circumgalactic medium kinematics. To our survey limits, O VI absorption is found in only ∼40% of the H I clouds in and around lower mass halos as compared to ∼85% around higher mass halos. For D/R {sub vir} < 1, lower mass halos have an escape fraction of ∼65%, whereas higher mass halos have an escape fraction of ∼5%. For 1 ≤ D/R {sub vir} < 2, the escape fractions are ∼55% and ∼35% for lower mass and higher mass halos, respectively. For 2 ≤ D/R {sub vir} < 3, the escape fraction for lower mass halos is ∼90%. We show that it is highly likely that the absorbing clouds reside within 4R {sub vir} of their host galaxies and that the kinematics are dominated by outflows. Our finding of 'differential kinematics' is consistent with the scenario of 'differential wind recycling' proposed by Oppenheimer et al. We discuss the implications for galaxy evolution, the stellar to halo mass function, and the mass-metallicity relationship of galaxies.

    7. Analysis of the structural parameters that influence gas production from the Devonian shale. Annual progress report, 1979-1980. Volume II. Data repository and reports published during fiscal year 1979-1980: regional structure, surface structure, surface fractures, hydrology

      SciTech Connect (OSTI)

      Negus-De Wys, J.; Dixon, J. M.; Evans, M. A.; Lee, K. D.; Ruotsala, J. E.; Wilson, T. H.; Williams, R. T.

      1980-10-01

      This volume comprises appendices giving regional structure data, surface structure data, surface fracture data, and hydrology data. The fracture data covers oriented Devonian shale cores from West Virginia, Ohio, Virginia, Pennsylvania, and Kentucky. The subsurface structure of the Eastern Kentucky gas field is also covered. (DLC)

    8. IS THE COSMIC MICROWAVE BACKGROUND ASYMMETRY DUE TO THE KINEMATIC DIPOLE?

      SciTech Connect (OSTI)

      Naselsky, P.; Zhao, W.; Kim, J.; Chen, S.

      2012-04-10

      Parity violation found in the cosmic microwave background (CMB) radiation is a crucial clue for the non-standard cosmological model or the possible contamination of various foreground residuals and/or calibration of the CMB data sets. In this paper, we study the directional properties of the CMB parity asymmetry by excluding the m = 0 modes in the definition of parity parameters. We find that the preferred directions of the parity parameters coincide with the CMB kinematic dipole, which implies that the CMB parity asymmetry may be connected with the possible contamination of the residual dipole component. We also find that such tendency is not only localized at l = 2, 3, but in the extended multipole ranges up to l {approx} 22.

    9. The white dwarfs within 25 pc of the Sun: Kinematics and spectroscopic subtypes

      SciTech Connect (OSTI)

      Sion, Edward M.; McCook, George P.; Wasatonic, Richard; Myszka, Janine; Holberg, J. B.; Oswalt, Terry D. E-mail: george.mccook@villanova.edu E-mail: janine.myszka@villanova.edu E-mail: toswalt@fit.edu

      2014-06-01

      We present the fractional distribution of spectroscopic subtypes, range and distribution of surface temperatures, and kinematical properties of the white dwarfs (WDs) within 25 pc of the Sun. There is no convincing evidence of halo WDs in the total 25 pc sample of 224 WDs. There is also little to suggest the presence of genuine thick disk subcomponent members within 25 pc. It appears that the entire 25 pc sample likely belongs to the thin disk. We also find no significant kinematic differences with respect to spectroscopic subtypes. The total DA to non-DA ratio of the 25 pc sample is 1.8, a manifestation of deepening envelope convection, which transforms DA stars with sufficiently thin H surface layers into non-DAs. We compare this ratio with the results of other studies. We find that at least 11% of the WDs within 25 pc of the Sun (the DAZ and DZ stars) have photospheric metals that likely originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, then it suggests the possibility that a similar percentage have planets, asteroid-like bodies, or debris disks orbiting them. Our volume-limited sample reveals a pileup of DC WDs at the well-known cutoff in DQ WDs at T {sub eff} ? 6000 K. Mindful of small number statistics, we speculate on its possible evolutionary significance. We find that the incidence of magnetic WDs in the 25 pc sample is at least 8% in our volume-limited sample, dominated by cool WDs. We derive approximate formation rates of DB and DQ degenerates and present a preliminary test of the evolutionary scenario that all cooling DB stars become DQ WDs via helium convective dredge-up with the diffusion tail of carbon extending upward from their cores.

    10. The effect of spatial micro-CT image resolution and surface complexity on the morphological 3D analysis of open porous structures

      SciTech Connect (OSTI)

      Pyka, Grzegorz; Kerckhofs, Greet

      2014-01-15

      In material science microfocus X-ray computed tomography (micro-CT) is one of the most popular non-destructive techniques to visualise and quantify the internal structure of materials in 3D. Despite constant system improvements, state-of-the-art micro-CT images can still hold several artefacts typical for X-ray CT imaging that hinder further image-based processing, structural and quantitative analysis. For example spatial resolution is crucial for an appropriate characterisation as the voxel size essentially influences the partial volume effect. However, defining the adequate image resolution is not a trivial aspect and understanding the correlation between scan parameters like voxel size and the structural properties is crucial for comprehensive material characterisation using micro-CT. Therefore, the objective of this study was to evaluate the influence of the spatial image resolution on the micro-CT based morphological analysis of three-dimensional (3D) open porous structures with a high surface complexity. In particular the correlation between the local surface properties and the accuracy of the micro-CT-based macro-morphology of 3D open porous Ti6Al4V structures produced by selective laser melting (SLM) was targeted and revealed for rough surfaces a strong dependence of the resulting structure characteristics on the scan resolution. Reducing the surface complexity by chemical etching decreased the sensitivity of the overall morphological analysis to the spatial image resolution and increased the detection limit. This study showed that scan settings and image processing parameters need to be customized to the material properties, morphological parameters under investigation and the desired final characteristics (in relation to the intended functional use). Customization of the scan resolution can increase the reliability of the micro-CT based analysis and at the same time reduce its operating costs. - Highlights: • We examine influence of the image resolution

    11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT ESTABLISHMENT OF METHODOLOGY FOR TIME DOMAIN SOIL STRUCTURE INTERACTION ANALYSIS OF HANFORD DST

      SciTech Connect (OSTI)

      MACKEY, T.C.

      2006-03-14

      M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank DSV Integrity Project-DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work statement provided to M&D (PNNL 2003) required that the seismic analysis of the DST assess the impacts of potentially non-conservative assumptions in previous analyses and account for the additional soil mass due to the as-found soil density increase, the effects of material degradation, additional thermal profiles applied to the full structure including the soil-structure response with the footings, the non-rigid (low frequency) response of the tank roof, the asymmetric seismic-induced soil loading, the structural discontinuity between the concrete tank wall and the support footing and the sloshing of the tank waste. The seismic analysis considers the interaction of the tank with the surrounding soil, and the effects of the primary tank contents. The DST and the surrounding soil are modeled as a system of finite elements. The depth and width of the soil incorporated into the analysis model are sufficient to obtain appropriately accurate analytical results. The analyses required to support the work statement differ from previous analysis of the DSTs in that the soil-structure interaction (SSI) model includes several (nonlinear) contact surfaces in the tank structure, and the contained waste must be modeled explicitly in order to capture the fluid-structure interaction behavior between the primary tank and contained waste. Soil-structure interaction analyses are traditionally solved in the frequency

    12. Structural And Functional Analysis of the Ligand Specificity of the HtrA2/OmI PDZ Domain

      SciTech Connect (OSTI)

      Zhang, Y.; Appleton, B.A.; Wu, P.; Wiesmann, C.; Sidhu, S.S.

      2009-06-04

      The mitochondrial serine protease HtrA2/Omi helps to maintain mitochondrial function by handling misfolded proteins in the intermembrane space. In addition, HtrA2/Omi has been implicated as a proapoptotic factor upon release into the cytoplasm during the cell death cascade. The protein contains a C-terminal PDZ domain that packs against the protease active site and inhibits proteolytic activity. Engagement of the PDZ domain by peptide ligands has been shown to activate the protease and also has been proposed to mediate substrate recognition. We report a detailed structural and functional analysis of the human HtrA2/Omi PDZ domain using peptide libraries and affinity assays to define specificity, X-ray crystallography to view molecular details of PDZ-ligand interactions, and alanine-scanning mutagenesis to probe the peptide-binding groove. We show that the HtrA2/Omi PDZ domain recognizes both C-terminal and internal stretches of extended, hydrophobic polypeptides. High-affinity ligand recognition requires contacts with up to five hydrophobic side chains by distinct sites on the PDZ domain. However, no particular residue type is absolutely required at any position, and thus, the HtrA2/Omi PDZ domain appears to be a promiscuous module adapted to recognize unstructured, hydrophobic polypeptides. This type of specificity is consistent with the biological role of HtrA2/Omi in mitochondria, which requires the recognition of diverse, exposed stretches of hydrophobic sequences in misfolded proteins. The findings are less consistent with, but do not exclude, a role for the PDZ domain in targeting the protease to specific substrates during apoptosis.

    13. RSA calibration accuracy of a fluoroscopy-based system using nonorthogonal images for measuring functional kinematics

      SciTech Connect (OSTI)

      Kedgley, Angela E.; Jenkyn, Thomas R.

      2009-07-15

      When performing radiostereometric analysis (RSA) in a clinical setting it may be desirable to orient the two imaging devices nonorthogonally to obtain the best views of an anatomical structure. In this study, a calibration frame was constructed that allowed the relative angles of fiducial and control planes to be adjusted. Precision and accuracy were quantified across multiple trials and orientations. The 90 deg. frame was always of equivalent or greater accuracy than a calibration frame with the fiducial and control planes aligned parallel to the image intensifiers. This study also showed that RSA may be performed with imaging devices at relative angles other than 90 deg. without compromising accuracy. This allows researchers greater freedom in positioning equipment.

    14. Astrophysical tests of modified gravity: the morphology and kinematics of dwarf galaxies

      SciTech Connect (OSTI)

      Vikram, Vinu; Cabr, Anna; Jain, Bhuvnesh; VanderPlas, J.T. E-mail: annanusca@gmail.com E-mail: jakevdp@cs.washington.edu

      2013-08-01

      This paper is the third in a series on tests of gravity using observations of stars and nearby dwarf galaxies. We carry out four distinct tests using published data on the kinematics and morphology of dwarf galaxies, motivated by the theoretical work of Hui et al. (2009) and Jain and Vanderplas (2011). In a wide class of gravity theories a scalar field couples to matter and provides an attractive fifth force. Due to their different self-gravity, stars and gas may respond differently to the scalar force leading to several observable deviations from standard gravity. HI gas, red giant stars and main sequence stars can be displaced relative to each other, and the stellar disk can display warps or asymmetric rotation curves aligned with external potential gradients. To distinguish the effects of modified gravity from standard astrophysical phenomena, we use a control sample of galaxies that are expected to be screened from the fifth force. In all cases we find no significant deviation from the null hypothesis of general relativity. The limits obtained from dwarf galaxies are not yet competitive with the limits from cepheids obtained in our first paper, but can be improved to probe regions of parameter space that are inaccessible using other tests. We discuss how our methodology can be applied to new radio and optical observations of nearby galaxies.

    15. METALLICITY AND KINEMATIC DISTRIBUTIONS OF RED HORIZONTAL-BRANCH STARS FROM THE SDSS SURVEY

      SciTech Connect (OSTI)

      Chen, Y. Q.; Zhao, G.; Zhao, J. K.; Xue, X. X.; Schuster, W. J. E-mail: schuster@astrosen.unam.m

      2010-08-15

      On the basis of a recently derived color-metallicity relation and stellar parameters from the Sloan Digital Sky Survey Data Release 7 spectroscopic survey, a large sample of red horizontal-branch (RHB) candidates have been selected to serve as standard candles. The metallicity and kinematic distributions of these stars indicate that they mainly originate from the thick-disk and the halo populations. The typical thick disk is characterized by the first group peaking at [Fe/H] {approx} -0.6, V{sub rot} {approx} 170 km s{sup -1} with a vertical scale height around |Z| {approx} 1.2 kpc, while stars with [Fe/H] < -0.9 are dominated by the halo population. Two sub-populations of the halo are suggested by the RHB stars peaking at [Fe/H] {approx} -1.3: one component with V{sub rot} > 0 km s{sup -1} (Halo I) shows a sign of metallicity gradient in the [Fe/H] versus |Z| diagram, while the other with V{sub rot} < 0 km s{sup -1} (Halo II) does not. The Halo I mainly clumps at the inner halo with R < 10 kpc and the Halo II comes both from the inner halo with R < 10 kpc and the outer halo with R > 10 kpc based on the star distribution in the R versus |Z| diagram.

    16. Litho-kinematic facies model for large landslide deposits in arid settings

      SciTech Connect (OSTI)

      Yarnold, J.C.; Lombard, J.P.

      1989-04-01

      Reconnaissance field studies of six large landslide deposits in the S. Basin and Range suggest that a set of characteristic features is common to the deposits of large landslides in an arid setting. These include a coarse boulder cap, an upper massive zone, a lower disrupted zone, and a mixed zone overlying disturbed substrate. The upper massive zone is dominated by crackel breccia. This grades downward into a lower disrupted zone composed of a more matrix-rich breccia that is internally sheared, intruded by clastic dikes, and often contains a cataclasite layer at its base. An underlying discontinuous mixed zone is composed of material from the overlying breccia mixed with material entrained from the underlying substrate. Bedding in the substrate sometimes displays folding and contortion that die out downward. The authors work suggests a spatial zonation of these characteristic features within many landslide deposits. In general, clastic dikes, the basal cataclasite, and folding in the substrate are observed mainly in distal parts of landslides. In most cases, total thickness, thickness of the basal disturbed and mixed zones, and the degree of internal shearing increase distally, whereas maximum clast size commonly decreases distally. Zonation of these features is interpreted to result from kinematics of emplacement that cause generally increased deformation in the distal regions of the landslide.

    17. Linking the spin evolution of massive black holes to galaxy kinematics

      SciTech Connect (OSTI)

      Sesana, A.; Barausse, E.; Dotti, M.; Rossi, E. M. E-mail: barausse@iap.fr E-mail: emr@strw.leidenuniv.nl

      2014-10-20

      We present the results of a semianalytical model that evolves the masses and spins of massive black holes together with the properties of their host galaxies across the cosmic history. As a consistency check, our model broadly reproduces a number of observations, e.g., the cosmic star formation history; the black hole mass, luminosity, and galaxy mass functions at low redshift; the black hole-bulge mass relation; and the morphological distribution at low redshift. For the first time in a semianalytical investigation, we relax the simplifying assumptions of perfect coherency or perfect isotropy of the gas fueling the black holes. The dynamics of gas is instead linked to the morphological properties of the host galaxies, resulting in different spin distributions for black holes hosted in different galaxy types. We compare our results with the observed sample of spin measurements obtained through broad K? iron line fitting. The observational data disfavor both accretion along a fixed direction and isotropic fueling. Conversely, when the properties of the accretion flow are anchored to the kinematics of the host galaxy, we obtain a good match between theoretical expectations and observations. A mixture of coherent accretion and phases of activity in which the gas dynamics is similar to that of the stars in bulges (i.e., with a significant velocity dispersion superimposed to a net rotation) best describes the data, adding further evidence in support of the coevolution of massive black holes and their hosts.

    18. A DOUBLE-RING ALGORITHM FOR MODELING SOLAR ACTIVE REGIONS: UNIFYING KINEMATIC DYNAMO MODELS AND SURFACE FLUX-TRANSPORT SIMULATIONS

      SciTech Connect (OSTI)

      Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu; Yeates, Anthony R. E-mail: dnandi@iiserkol.ac.i E-mail: anthony@maths.dundee.ac.u

      2010-09-01

      The emergence of tilted bipolar active regions (ARs) and the dispersal of their flux, mediated via processes such as diffusion, differential rotation, and meridional circulation, is believed to be responsible for the reversal of the Sun's polar field. This process (commonly known as the Babcock-Leighton mechanism) is usually modeled as a near-surface, spatially distributed {alpha}-effect in kinematic mean-field dynamo models. However, this formulation leads to a relationship between polar field strength and meridional flow speed which is opposite to that suggested by physical insight and predicted by surface flux-transport simulations. With this in mind, we present an improved double-ring algorithm for modeling the Babcock-Leighton mechanism based on AR eruption, within the framework of an axisymmetric dynamo model. Using surface flux-transport simulations, we first show that an axisymmetric formulation-which is usually invoked in kinematic dynamo models-can reasonably approximate the surface flux dynamics. Finally, we demonstrate that our treatment of the Babcock-Leighton mechanism through double-ring eruption leads to an inverse relationship between polar field strength and meridional flow speed as expected, reconciling the discrepancy between surface flux-transport simulations and kinematic dynamo models.

    19. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Ly? BLOB 2

      SciTech Connect (OSTI)

      Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

      2014-05-10

      The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Ly? blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Ly? emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Ly? emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 10{sup 11} M {sub ?}, and the dark halo mass is at least 2 10{sup 12} M {sub ?}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have

    20. THE GRAVITATIONAL POTENTIAL NEAR THE SUN FROM SEGUE K-DWARF KINEMATICS

      SciTech Connect (OSTI)

      Zhang Lan; Liu Chao; Zhao Gang; Rix, Hans-Walter; Van de Ven, Glenn; Bovy, Jo

      2013-08-01

      To constrain the Galactic gravitational potential near the Sun ({approx}1.5 kpc), we derive and model the spatial and velocity distributions for a sample of 9000 K-dwarfs with spectra from SDSS/SEGUE, which yield radial velocities and abundances ([Fe/H] and [{alpha}/Fe]). We first derive the spatial density distribution for three abundance-selected sub-populations of stars accounting for the survey's selection function. The vertical profiles of these sub-populations are simple exponentials and their vertical dispersion profile is nearly isothermal. To model these data, we apply the 'vertical' Jeans equation, which relates the observable tracer number density and vertical velocity dispersion to the gravitational potential or vertical force. We explore a number of functional forms for the vertical force law, fit the dispersion and density profiles of all abundance-selected sub-populations simultaneously in the same potential, and explore all parameter co-variances using a Markov Chain Monte Carlo technique. Our fits constrain a disk mass scale height {approx}< 300 pc and the total surface mass density to be 67 {+-} 6 M{sub Sun} pc{sup -2} at |z| = 1.0 kpc of which the contribution from all stars is 42 {+-} 5 M{sub Sun} pc{sup -2} (assuming a contribution from cold gas of 13 M{sub Sun} pc{sup -2}). We find significant constraints on the local dark matter density of 0.0065 {+-} 0.0023 M{sub Sun} pc{sup -3} (0.25 {+-} 0.09 GeV cm{sup -3}). Together with recent experiments this firms up the best estimate of 0.0075 {+-} 0.0021 M{sub Sun} pc{sup -3} (0.28 {+-} 0.08 GeV cm{sup -3}), consistent with global fits of approximately round dark matter halos to kinematic data in the outskirts of the Galaxy.

    1. KINEMATICS OF SUPERBUBBLES AND SUPERSHELLS IN THE IRREGULAR GALAXY, NGC1569

      SciTech Connect (OSTI)

      Snchez-Cruces, M.; Rosado, M.; Rodrguez-Gonzlez, A.; Reyes-Iturbide, J.

      2015-02-01

      We present observations in the optical lines of H? and [S II](??6717, 6731 ) and in X-rays of the irregular galaxy, NGC1569. The observations in H? and [S II] were made with the UNAM scanning Fabry-Perot interferometer (PUMA) and the X-ray data were obtained from the Chandra data archive. We detected several superbubbles, filaments, and supershells in NGC1569 for which we determined size as well as their kinematic properties. We present a catalog of expansion velocities of 12 superbubbles, listing their positions, diameters, and physical parameters. Likewise, we present a catalog of 15 filaments and 4 supershells. In order to identify possible X-ray emission from the superbubbles in this galaxy, we analyzed the X-ray emission of NGC1569 in two energy bands: 0.2-2.0 keV (soft X-rays) and 2.0-8.0 keV (hard X-rays). Based on X-ray images, we detected X-ray emission that could possibly be related to some of the superbubbles. The spectrum of the X-ray superbubbles can be described by an optically thin thermal plasma model. In order to identify the possible coexistence of galactic super winds and superbubbles we have performed adiabatic three-dimensional N-body/smoothed particle hydrodynamics simulations to follow the evolution of the most important stellar clusters in this galaxy, SSCA and SSCB, using the GADGET-2 code. Those simulations demonstrate that depending on the specific initial conditions, the formation of superbubbles or a galactic superwind can result in NGC1569.

    2. Constraining sub-parsec binary supermassive black holes in quasars with multi-epoch spectroscopy. II. The population with kinematically offset broad Balmer emission lines

      SciTech Connect (OSTI)

      Liu, Xin; Shen, Yue; Bian, Fuyan; Loeb, Abraham; Tremaine, Scott

      2014-07-10

      A small fraction of quasars have long been known to show bulk velocity offsets (of a few hundred to thousands of km s{sup 1}) in the broad Balmer lines with respect to the systemic redshift of the host galaxy. Models to explain these offsets usually invoke broad-line region gas kinematics/asymmetry around single black holes (BHs), orbital motion of massive (?sub-parsec (sub-pc)) binary black holes (BBHs), or recoil BHs, but single-epoch spectra are unable to distinguish between these scenarios. The line-of-sight (LOS) radial velocity (RV) shifts from long-term spectroscopic monitoring can be used to test the BBH hypothesis. We have selected a sample of 399 quasars with kinematically offset broad H? lines from the Sloan Digital Sky Survey (SDSS) Seventh Data Release quasar catalog, and have conducted second-epoch optical spectroscopy for 50 of them. Combined with the existing SDSS spectra, the new observations enable us to constrain the LOS RV shifts of broad H? lines with a rest-frame baseline of a few years to nearly a decade. While previous work focused on objects with extreme velocity offset (>10{sup 3} km s{sup 1}), we explore the parameter space with smaller (a few hundred km s{sup 1}) yet significant offsets (99.7% confidence). Using cross-correlation analysis, we detect significant (99% confidence) radial accelerations in the broad H? lines in 24 of the 50 objects, of ?10-200 km s{sup 1} yr{sup 1} with a median measurement uncertainty of ?10 km s{sup 1} yr{sup 1}, implying a high fraction of variability of the broad-line velocity on multi-year timescales. We suggest that 9 of the 24 detections are sub-pc BBH candidates, which show consistent velocity shifts independently measured from a second broad line (either H? or Mg II) without significant changes in the broad-line profiles. Combining the results on the general quasar population studied in Paper I, we find a tentative anti-correlation between the velocity offset in the first-epoch spectrum and

    3. Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure, Part 1: Volumetric Measurements of the Heterogeneous Structure

      SciTech Connect (OSTI)

      Grew, Kyle N.; Peracchio, Aldo A.; Joshi, Abhijit S.; Izzo, Jr., John R.; Chiu, W. K. S.

      2010-12-15

      Advanced imaging and characterization methods have permitted the 3-D and phase-specific reconstruction of dense and opaque samples with features that have a length scale on the order of tens of nanometers and comprised of materials with large X-ray mass absorption coefficients. Engineered materials, like those found in solid oxide fuel cell (SOFC) electrodes, use complex materials that have often limited opportunities to perform 3-D characterization and analysis. Still, characterization and analysis methods are needed to better understand these structures and their functional impact. The development, verification, and validation of methods used by the authors for the characterization and analysis of the heterogeneous SOFC anode are discussed in this work. These methods include the measurement of the volume fractions of the individual phases, contiguity or volumetric connectivity, tortuosity, and interfacial properties. A second and complementary part of this work will examine quantitative methods that provide detailed descriptions of the structure and its relations to the transport processes that it must support. These efforts are intended to describe the formulation of methods developed to provide insight into the SOFC anode nano/microstructure.

    4. Surface structure determinations of ordered sulfur overlayers on Mo(100) and Re(0001) by low-energy electron diffraction intensity analysis

      SciTech Connect (OSTI)

      Jentz, D.W.

      1992-11-01

      A newly developed method for surface structure determination, tensor LEED, combined with automated search was used to analyze the structures. The ordered structures of S on Mo(100) which were studied formed a c(2 {times} 2), c(4 {times} 2), and p(2 {times} l) periodicities at coverages of 0.5, 0.75, 1.0 ML (monolayers, of one sulfur atom per one molybdenum atom) respectively. A MO{sub 2}S-like overlayer, which formed at coverages greater than 1.0 ML, is also discussed. Calculations for the c(2 {times} 2) structure gave a best fit geometry with S adsorbed in a four-fold symmetric hollow site and the second layer buckled by 0.09{Angstrom}. The S-Mo bond length is 2.45{Angstrom} and the Pendry R-factor is 0.21. Preliminary calculations for the c(4 {times} 2) structure did not yield an acceptable fit. The three models tried are discussed. Calculations for p(2 {times} l) data did not yield an acceptable geometry either. The types of models that were tried are discussed. Implications of this analysis are discussed along with results of a scanning tunneling microscopy (STM) investigation. The ordered structures on the RE(0001) surface studied have p(2 {times} 2) and (2{radical}3 {times} 2{radical}3)R30{degree} periodicities and occurred at S coverages of 0.25 and 0.5 ML respectively. Best fit structure for p(2 {times} 2) structure has S adsorbed in a three-fold hollow hcp site and exhibits a buckling of the first and second Re layers. The first layer is buckled by 0.05{Angstrom} and the second layer is buckled by 0.06{Angstrom}. Re-S bond length is 2.32{Angstrom} and Pendry R-factor is 0.21. Preliminary results of dynamical LEED investigation of (2{radical}3 {times} 2{radical}3)R30{degree} structure show reasonable agreement with a model with a 6-S atom basis.

    5. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

      SciTech Connect (OSTI)

      Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

      2013-03-22

      Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

    6. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily

      SciTech Connect (OSTI)

      Lewis, P.M.; Crosier, K.E.; Crosier, P.S.

      1996-01-01

      The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5{prime} region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. 38 refs., 3 figs., 1 tab.

    7. Supramolecular cobaloxime assemblies for H{sub 2} photocatalysis: an initial solution state structure-function analysis.

      SciTech Connect (OSTI)

      Mulfort, K. L.; Tiede, D. M.

      2010-01-01

      In this report, we have investigated the correlations between structure and light-induced electron transfer of one known and three new axially coordinated cobaloxime-based supramolecular photocatalysts for the reduction of protons to hydrogen. Solution-phase X-ray scattering and ultrafast transient optical spectroscopy analyses were used in tandem to correlate the self-assembled photocatalysts structural integrity in solution with electron transfer and charge separation between the photosensitizer and catalyst fragments. Biphasic excited state decay kinetics were observed for several of the assemblies, suggesting that configurational dispersion plays a role in limiting photoinduced electron transfer. Notably, an assembly featuring a 'push-pull' donor-photosensitizer-acceptor triad motif exhibits considerable ultrafast excited state quenching and, of the assemblies examined, presents the strongest opportunity for efficient solar energy conversion. These results will assist in the design and development of next-generation supramolecular photocatalyst architectures.

    8. Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis

      DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

      Jeong, I.-K.; Lee, Seunghun; Jeong, Se-Young; Won, C. J.; Hur, N.; Llobet, A.

      2011-08-29

      Oxygen-deficient BaTiO3-δ exhibits an insulator-metal transition with increasing δ. We performed neutron total scattering measurements to study structural evolution across an insulator-metal transition in BaTiO3-δ. Despite its significant impact on resistivity, slight oxygen reduction (δ=0.09) caused only a small disturbance on the local doublet splitting of Ti-O bond. This finding implies that local polarization is well preserved under marginal electric conduction. In the highly oxygen-deficient metallic state (δ=0.25), however, doublet splitting of the Ti-O bond became smeared. The smearing of the local Ti-O doublet is complemented with long-range structural analysis and demonstrates that the metallic conduction in the highly oxygen-reducedmore » BaTiO3-δ is due to the appearance of nonferroelectric cubic lattice.« less

    9. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

      SciTech Connect (OSTI)

      MACKEY, T.C.

      2006-03-14

      M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis

    10. MHD Structure Analysis by Singular Value Decomposition as a Tool for ECRH RT-Control of Instabilities on FTU

      SciTech Connect (OSTI)

      Marchetto, C.; Cirant, S.; Granucci, G.; Lazzaro, E.; Gandini, F.; Esposito, B.

      2009-11-26

      In this work we present the results obtained applying Singular Value Decomposition (SVD) on a Mirnov coil array in FTU discharges where experiments on MHD stabilization or disruption avoidance via ECRH were performed. In these shots the mode analysis has been consolidated off line by means of FFT and SXR-tomography. Although the Mirnov setting was not necessarily optimised, results show that the algorithm based on SVD is able to detect the mode with a precision equal or better than the FFT, while acting on a smaller time interval. The short execution time required, even in the present preliminary form, suggests that this analysis can be a suitable tool to be implemented in a real time control chain.