Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Buying a PHOTOVOLTAIC SOLAR ELECTRIC SYSTEM A Consumer Guide 2003 System: A Consumer Guide i Buying a Photovoltaic Solar Electric System A Consumer Guide California Energy water system that uses the sun's energy to heat water, solar electric or photovoltaic technology uses

Krothapalli, Anjaneyulu

2

Photovoltaic solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

3

Expedited Permitting Process for Solar Photovoltaic Systems ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Expedited Permitting Process for Solar Photovoltaic Systems (Vermont) Eligibility Agricultural Commercial...

4

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity....

5

Photovoltaic solar concentrator module  

DOE Patents (OSTI)

This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, C.J.

1991-05-16T23:59:59.000Z

6

Photovoltaic solar concentrator  

SciTech Connect

A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

2012-12-11T23:59:59.000Z

7

Solar photovoltaic panels tracking system  

Science Conference Proceedings (OSTI)

This research project concentrates on the design and control of a two-degrees-of-freedom orientation system for the photovoltaic solar panels in sunny regions which are considered very rich in solar energy. A brief background on the sun path and behavior ... Keywords: altitude, azimuth, closed-loop control, open-loop control, orientation, sensor, solar photovoltaic panels, solar tracking

Ahmed Abu Hanieh

2010-05-01T23:59:59.000Z

8

Chapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy spectrum  

E-Print Network (OSTI)

;Photovoltaic devices or solar cells convert thePhotovoltaic devices or solar cells convert the incident solar 4 Solar cell plant #12;Cars powered by photovoltaic devices PHYS 5320 Chapter Nine 5 #12;SolarChapter 9: Photovoltaic DevicesChapter 9: Photovoltaic Devices Solar energy spectrumSolar energy

Wang, Jianfang

9

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells”, Center for theconcerns is solar photovoltaic cells (PVs), which captureProduction of Solar Photovoltaic Cells Solar PV cells

Borenstein, Severin

2008-01-01T23:59:59.000Z

10

Photovoltaic power system tests on an 8-kilowatt single-phase line-commutated inverter  

SciTech Connect

A commercially available single-phase line-commutated inverter has been tested in a photovoltaic power system. Efficiency and power factor were measured as functions of solar array voltage and current. Also, the effects of input shunt capacitance and series inductance were determined. Tests were conducted from 15 to 75 percent of the 8 kW rated inverter input power. Measured efficiencies ranged from 76 percent (at 160 V and 8.0 A) to 88 percent (at 200 V and 18.7 A) at about 50 percent of rated inverter input power. Power factor ranged from 36 percent (at 160 V and 8.0 A) to 72 percent (at 200 V and 28.6 A).

Stover, J.B.

1978-02-01T23:59:59.000Z

11

Sawnee EMC- Solar Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

12

Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and  ...

13

Terrestrial applications of bifacial photovoltaic solar panels  

Science Conference Proceedings (OSTI)

Bifacial Photovoltaic solar cells (so-called transparent bifacial photovoltaic solar cells) offer additional absorption by rear side, which is a significant advantage over ordinary Photovoltaic solar cells. A range of experiments have been done on bifacial ... Keywords: absorption, panels, photovoltaic, solar cells, terrestrial

P. Ooshaksaraei; R. Zulkifli; S. H. Zaidi; M. Alghoul; A. Zaharim; K. Sopian

2011-10-01T23:59:59.000Z

14

Photon management in thermal and solar photovoltaics  

E-Print Network (OSTI)

Photovoltaics is a technology that directly converts photon energy into electrical energy. Depending on the photon source, photovoltaic systems can be categorized into two groups: solar photovoltaics (PV) and thermophotovoltaics ...

Hu, Lu

2008-01-01T23:59:59.000Z

15

Solar Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Photovoltaic SPECIFICATION, CHECKLIST AND GUIDE Renewable Energy Ready Home Renewable Energy Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar Photovoltaic Specification .............................................................................. 1 Builder and Specification Limitations ............................................................................................................. 2

16

Solar Photovoltaic Technologies Available for Licensing ...  

Site Map; Printable Version; Share this resource. Send a link to Solar Photovoltaic Technologies Available for Licensing - Energy Innovation Portalto ...

17

Energy 101: Solar Photovoltaics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

101: Solar Photovoltaics 101: Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What are the key facts? The literal translation of the word photovoltaic is light-electricity. Photovoltaic systems generate power without pollution - and recent advancements have greatly increased their efficiency. Enough energy from the sun hits the earth every hour to power the planet for an entire year-and solar photovoltaic (PV) systems are a clean, cost-effective way to harness that power for homes and businesses. The literal translation of the word photovoltaic is light-electricity-and this is exactly what photovoltaic materials and devices do-they convert

18

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

Chiang, C.J.

1992-12-01T23:59:59.000Z

19

Planar photovoltaic solar concentrator module  

DOE Patents (OSTI)

A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

Chiang, Clement J. (New Brunswick, NJ)

1992-01-01T23:59:59.000Z

20

New Hampshire Electric Co-Op - Residential Solar Photovoltaic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Solar Photovoltaic Incentive Program New Hampshire Electric Co-Op - Residential Solar Photovoltaic Incentive Program Eligibility Residential Savings For Solar Buying &...

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

World Conference on Photovoltaic Energy Conversion, Volumeof Solar Photovoltaic Cells”, Center for the Study of EnergyPhotovoltaic Subsidies? ” Center for the Study of Energy

Borenstein, Severin

2008-01-01T23:59:59.000Z

22

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

offers residential and business customers a rebate for installing photovoltaic (PV) systems and solar water heaters. The up-front rebate for PV systems up to 10 kilowatts...

23

Solar Photovoltaics development -Status and perspectives  

E-Print Network (OSTI)

Solar Photovoltaics development - Status and perspectives Jørgen Fenhann Risø National Laboratory for the development of solar photovoltaics, contributing to the Macro Task E1 on production cost for fusion.S. with 53 MWp followed by Japan and EU. Until now off-grid installation have dominated the solar PV market

24

Solar Photovoltaic Technology Update - 2005  

Science Conference Proceedings (OSTI)

This report surveys the state of the solar photovoltaic (PV) industry in the United States and worldwide in 2005. The installed capacity of PV has continued recent trends and has increased dramatically in 20058212particularly in Germany and Japan, where government policies encourage its deployment, and to a lesser extent in the United States8212while at the same time manufacturers and vendors continued to make incremental performance improvements. In some markets, shortages of silicon feedstock or finish...

2006-03-28T23:59:59.000Z

25

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

26

A solar concentrating photovoltaic/thermal collector.  

E-Print Network (OSTI)

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

27

Kansas City Power and Light - Solar Photovoltaic Rebates | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaic Rebates Kansas City Power and Light - Solar Photovoltaic Rebates Eligibility Agricultural Commercial Fed. Government Industrial Local Government Multi-Family...

28

Immersion Cooling of Photovoltaic Cells in Highly Concentrated Solar Beams.  

E-Print Network (OSTI)

??Concentrated solar radiation can be utilized to generate electrical power from photovoltaic cells, but concentrated solar radiation increases the photovoltaic cell’s temperature. This increase in… (more)

Darwish, Ahmed

2011-01-01T23:59:59.000Z

29

EIA - International Energy Outlook 2009-Solar Photovoltaic and solar  

Gasoline and Diesel Fuel Update (EIA)

Solar Photovoltaic and Solar Thermal Electric Technologies Solar Photovoltaic and Solar Thermal Electric Technologies International Energy Outlook 2009 Solar Photovoltaic and Solar Thermal Electric Technologies Solar power is one of the fastest-growing sources of renewable energy worldwide. Many nations, concerned about the environmental impacts of electricity generation from fossil fuels or from large-scale hydroelectric plants, have been turning to solar power as an environmentally benign alternative. The solar energy that reaches the earth can be harnessed to generate electric power, and the potential for large-scale applications of solar power has improved markedly in recent years. Two solar power technologies—solar photovoltaic and solar thermal—are widely employed today, and their use is likely to increase in the future.

30

Smart grid adds value to solar photovoltaics  

Science Conference Proceedings (OSTI)

This panel session examines the challenges and opportunities of integrating large scale solar photovoltaic units into the electric power grid. As large solar PV projects (hundreds of MW) come online, their output variation due to weather changes will ...

2012-01-01T23:59:59.000Z

31

Photovoltaic nanocrystal scintillators hybridized on Si solar cells  

E-Print Network (OSTI)

Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit@bilkent.edu.tr Abstract: We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated

Demir, Hilmi Volkan

32

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

1.1 Solar Energy . . . . . . . . .on ?uorescent glass-?lms. Solar Energy Materials and SolarHo?mann. Photovoltaic Solar Energy Gen- eration. Optical

Wang, Chunhua

2011-01-01T23:59:59.000Z

33

Solar photovoltaic applications seminar: design, installation and operation of small, stand-alone photovoltaic power systems  

DOE Green Energy (OSTI)

This seminar material was developed primarily to provide solar photovoltaic (PV) applied engineering technology to the Federal community. An introduction to photoconductivity, semiconductors, and solar photovoltaic cells is included along with a demonstration of specific applications and application identification. The seminar details general systems design and incorporates most known information from industry, academia, and Government concerning small solar cell power system design engineering, presented in a practical and applied manner. Solar PV power system applications involve classical direct electrical energy conversion and electric power system analysis and synthesis. Presentations and examples involve a variety of disciplines including structural analysis, electric power and load analysis, reliability, sizing and optimization; and, installation, operation and maintenance. Four specific system designs are demonstrated: water pumping, domestic uses, navigational and aircraft aids, and telecommunications. All of the applications discussed are for small power requirement (under 2 kilowatts), stand-alone systems to be used in remote locations. Also presented are practical lessons gained from currently installed and operating systems, problems at sites and their resolution, a logical progression through each major phase of system acquisition, as well as thorough design reviews for each application.

Not Available

1980-07-01T23:59:59.000Z

34

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Photochemical and Photovoltaic Solar-Energy Converters. J.Photovoltaic and Photoelectrochemical Conversion of Solar Energy.Electrode Solar Energy Anode Photovoltaic Cell Cathode PP

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

35

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

36

Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be translated as light-electricity.

37

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Adjusting for Time-Varying Production SACRAMENTO flat-rateSolar Photovoltaic Electricity Production Severin BorensteinPhotovoltaic Electricity Production Severin Borenstein 1

Borenstein, Severin

2008-01-01T23:59:59.000Z

38

Tunable Nanocrystalline CZTS for Solar Photovoltaics with No Required Annealing  

Thin-film solar cells are expected to replace the current first generation of solar photovoltaic technology due to their lower manufacturing cost and increased electrical output. Nanocrystal cells, one of the second generation of solar photovoltaics, ...

39

VISUALS: Photovoltaic Solar Cells Close-Up  

Science Conference Proceedings (OSTI)

Jan 10, 2008 ... This site contains very close-up static and portrait shots of photovoltaic solar cells and cell arrays. Two cell types are shown: A silver and gray ...

40

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be...  

NLE Websites -- All DOE Office Websites (Extended Search)

has energized our entire company." Solar Junction, San Jose, California - Concentrated photovoltaic (CPV) manufacturer Solar Junction's multi-junction solar cell recently...

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar photovoltaics for development applications  

DOE Green Energy (OSTI)

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

Shepperd, L.W. [Florida Solar Energy Center, Cape Canaveral, FL (United States)] [Florida Solar Energy Center, Cape Canaveral, FL (United States); Richards, E.H. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States)

1993-08-01T23:59:59.000Z

42

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

electricity from photovoltaic cells to convert CO 2 intoSolar Energy Anode Photovoltaic Cell Cathode PP Mesh SpacerCoupling a Photovoltaic Solar Cell with a Homogeneous

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

43

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

Production of Solar Photovoltaic Cells Severin BorensteinProduction of Solar Photovoltaic Cells Severin Borenstein 1concerns is so- lar photovoltaic cells (PVs), which capture

Borenstein, Severin

2005-01-01T23:59:59.000Z

44

Photovoltaics  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2008-09-01T23:59:59.000Z

45

SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Ballasted Flat Roof Innovative Ballasted Flat Roof Solar Photovoltaic Racking System to someone by E-mail Share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Facebook Tweet about SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Twitter Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Google Bookmark SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Delicious Rank SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on Digg Find More places to share SunShot Initiative: Innovative Ballasted Flat Roof Solar Photovoltaic Racking System on AddThis.com... Concentrating Solar Power Photovoltaics

46

Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2009-10-01T23:59:59.000Z

47

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar | Open Energy  

Open Energy Info (EERE)

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place Shanghai Municipality, China Zip 200336 Sector Solar Product Chinese amorphous thin-film solar cell maker. References Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) is a company located in Shanghai Municipality, China . References ↑ "[ Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)]" Retrieved from "http://en.openei.org/w/index.php?title=Nantong_Qiangsheng_Photovoltaic_Technology_Co_Ltd_QS_Solar&oldid=349037

48

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Time-of-Use Rates Undermine California’s Solar Photovoltaic172, University of California Energy Institute, SeptemberShannon Moynahan, “The California Solar Initiative — Triumph

Borenstein, Severin

2008-01-01T23:59:59.000Z

49

Hybrid photovoltaic/thermal solar energy system  

DOE Green Energy (OSTI)

Heating and cooling systems that use hybrid solar energy collectors (combination photovoltaic-thermal) have the potential for considerable energy savings, particularly when the system includes a heat pump. Economic evaluations show that photovoltaic systems are potentially most economical, but results depend critically on future collector costs as well as energy prices. Results are based on a specially developed computer program that predicted the total auxiliary energy required for five different solar heating/cooling systems. Performance calculations for a modeled residence and small office building were made using meteorological data from four geographic locations. Annual system costs were also calculated.

Kern, E.C. Jr.; Russell, M.C.

1978-03-27T23:59:59.000Z

50

Solar Photovoltaics Market Update, Volume 3: Fall  

Science Conference Proceedings (OSTI)

Volume 3 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight both macro and micro industry developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report offers an account of recent PV pricing and cost trends, an apparent ...

2012-10-30T23:59:59.000Z

51

Industrial solar breeder project using concentrator photovoltaics  

DOE Green Energy (OSTI)

The purpose of this program is to demonstrate the use of a concentrating photovoltaic system to provide the energy for operating a silicon solar cell production facility, i.e., to demonstrate a solar breeder. Solarex has proposed to conduct the first real test of the solar breeder concept by building and operating a 200 kW(e) (peak) concentrating photovoltaic system based on the prototype and system design developed during Phase I. This system will provide all of the electrical and thermal energy required to operate a solar cell production line. This demonstration would be conducted at the Solarex Rockville facility, with the photovoltaic array located over the company parking lot and on an otherwise unusable flood plain. Phase I of this program included a comprehensive analysis of the application, prototype fabrication and evaluation, system design and specification, and a detailed plan for Phases II and III. A number of prototype tracking concentrator solar collectors were constructed and operated. Extensive system analysis was performed to design the Phase II system as a stand-alone power supply for a solar cell production line. Finally, a detailed system fabrication proposal for Phase II and an operation and evaluation plan for Phase III were completed. These proposals included technical, management, and cost plans for the fabrication and exercise of the proposed system.

Hamilton, R.; Wohlgemuth, J.; Burkholder, J.; Levine, A.; Storti, G.; Wrigley, C.; McKegg, A.

1979-08-01T23:59:59.000Z

52

NREL: Photovoltaics Research - Solar Energy Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Research Facility Solar Energy Research Facility Photo of the Solar Energy Research Facility. The exterior stepped clerestory of the Solar Energy Research Facility. Photovoltaics (PV) and basic energy sciences are two major research areas conducted in the Solar Energy Research Facility (SERF). The building incorporates a multitude of energy saving features that make it one of the government's most energy efficient buildings with 40 percent lower energy costs than similar buildings designed to meet federal energy standards. The SERF houses three adjoining modules each containing a laboratory pod and an office pod. Laboratories in the west module are used to develop semiconductor material for high-efficiency crystalline solar cells. Laboratories in the center module are used to fabricate prototype solar

53

POLICIES TO SUPPORT COMMUNITY SOLAR  

E-Print Network (OSTI)

Table 10. Post-2000 PV electrolytic hydrogen system parameters Table 11. Post-2000 solar thermal a variety of sources of hydrogen including electrolytic hydrogen from solar PV, solar thermal, wind be much smaller (tens of kilowatts for each unit). 2.1.1.4. Solar Photovoltaics Solar photovoltaic (PV

Delaware, University of

54

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

dyes. Photovoltaic (PV) solar cells are used to attach atis fa- vored by the silicon PV solar cells for the LSC PVemission properties for PV solar cells. We studied e?ect of

Wang, Chunhua

2011-01-01T23:59:59.000Z

55

Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels  

E-Print Network (OSTI)

1 Net Zero Residential Test Facility Gaithersburg, MD Solar Photovoltaic Panels Solar Thermal R-35 Rim Joist Area 5" open cell spray foam 2" mineral wool insulation blanket R-10 Basement Slab electric WH #12;NZERTF Gaithersburg, MD Solar Photovoltaic Array Roof Mounted South half of main roof

Oak Ridge National Laboratory

56

Solar Photovoltaic System Operations and Maintenance  

Science Conference Proceedings (OSTI)

Grid-connected flat plate solar photovoltaic (PV) systems are being deployed at an accelerating rate worldwide. Representing a growing absolute share of both independent power producer (IPP) and utility generation portfolios, these PV assets are now commanding a greater level of attention to ensure their optimal availability and performance. Contrary to popular belief, PV power plants are not maintenance free; in fact, they require a steady diet of scheduled preventive maintenance and unscheduled service...

2011-12-22T23:59:59.000Z

57

Solar photovoltaic/thermal residential systems  

DOE Green Energy (OSTI)

The results of a conceptual design study using computer simulations to determine the physical and economic performance of combined photovoltaic/thermal collector heat-pump solar systems for a single-family residence are presented. Economic analyses are based upon projected costs for a 1986 system installation. The results show that PV/T collector systems can be economically competitive for a cold climate residence, that systems employing on-site electrical storage batteries are not economically competitive with utility-interactive systems, and that an ambient-air-source heat-pump system has a lower life-cycle cost than a solar-source heat-pump system.

Russell, M.C.

1979-12-28T23:59:59.000Z

58

Direct Use of Solar Photovoltaic (PV) Energy  

Science Conference Proceedings (OSTI)

PV-DC refers to the direct use of photovoltaic (PV) energy in an appliance or other equipment without a grid connection. Most (over 90) of the new deployments of PV solar panels connect to the ac electric grid and do not use dc energy directly. These grid-connected PV systems use an electronic inverter to convert the dc array output to ac power for interfacing with the grid. However, with double-digit growth in all types of PV applications, the direct use of solar for powering end-use loads needs to be m...

2010-12-31T23:59:59.000Z

59

Nanocone-Based Photovoltaic Solar Cells - Oak Ridge National ...  

Nanocone-Based Photovoltaic Solar Cells Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

60

Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...  

Open Energy Info (EERE)

be certified to UL-1703 standards Start Date 06062011 Installation Requirements All solar photovoltaic system installations must obtain appropriate local building permits and...

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

According to EIA's new survey-based estimate of total solar capacity, total on-grid photovoltaic (PV) capacity nearly doubled in 2011, led by particularly strong ...

62

Solar Photovoltaic Cell/Module Shipments Report 2011  

U.S. Energy Information Administration (EIA)

September 2012 U.S. Energy Information Administration | Solar Photovoltaic Cell/Module Shipments Report 2011 7 Table 2. Value, average price, and average efficiency ...

63

Solar photovoltaic technology: The thin film option  

DOE Green Energy (OSTI)

Photovoltaics (PV) the direct conversion of sunlight to electricity was first discovered by scientists at the Bell Labs in 1954. In the late 1960's and 1970's most of the solar cell technology has been used for space applications to power satellites. The main work horse for the PV technology has been crystalline silicon (Si) solar cells. Over the past 15 years this has led to cost reduction from $35/kWh to about $0.30/kWh at the present time. Demonstrated reliability of 20 years or more has resulted in acceptance by several utilities. However, cost reductions in crystalline Si solar cells have been limited by the cost of wafering of ingots and the attendant loss of material. A number of Si sheet solar cells are also being investigated. In the past decade the emphasis of the research and development effort has been focused on thin film solar cells, which have the potential for generating power at much lower cost of $1-2/Wp. Thin film solar cells that are presently being investigated and are generating global attention are: amorphous silicon (a-Si:H), cadmium telluride (CdTe), and copper indium diselenide (CuInSe/sub 2,/ or CIS). In the past few years, considerable progress has been; made by all three of these thin film solar cells. This paper reviews the current status and future potential of these exiting thin film solar cell technologies.

Ullal, H.S.; Zweibel, K.; Sabisky, E.S.; Surek, T.

1988-01-01T23:59:59.000Z

64

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater...

65

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in February 2008, Cobb Energy Management Corporation (EMC) offers rebates for residential solar photovoltaic (PV) systems. Cobb EMC is offering members 450 per kilowatt-AC (kW-AC)...

66

Seeing solar on campus : a visible photovoltaic installation on campus  

E-Print Network (OSTI)

This paper presents a methodology for selecting a site on the MIT campus for a visible solar photovoltaic installation. Visibility, solar exposure, advertising potential, aesthetics, interactivity and direct or important ...

Guarda, Daniel Jair Alves

2006-01-01T23:59:59.000Z

67

Innovation and production in the global solar photovoltaic industry  

Science Conference Proceedings (OSTI)

The global development of solar photovoltaic power is seen as a potentially major technology in the pursuit of alternative energy sources. Given its evolutionary nature, in terms of both technology and the market, there is some discernible divergence ... Keywords: Innovation, Patent, Production, Solar photovoltaic (PV) market

Show-Ling Jang; Li-Ju Chen; Jennifer H. Chen; Yu-Chieh Chiu

2013-03-01T23:59:59.000Z

68

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells  

E-Print Network (OSTI)

Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells Michael D. Kelzenberg, Daniel B Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response

Heaton, Thomas H.

69

Solar Photovoltaics for Sustainable Agriculture and  

E-Print Network (OSTI)

Solar photovoltaic (PV) systems have shown their potential in rural electrification projects around the world, especially concerning Solar Home Systems. With continuing price decreases of PV systems, other applications are becoming economically attractive and growing experience is gained with the use of PV in such areas as social and communal services, agriculture and other productive activities, which can have a significant impact on rural development. There is still a lack of information, however, on the potential and limitations of such PV applications. The main aim of this study is, therefore, to contribute to a better understanding of the potential impact and of the limitations of PV systems on sustainable agriculture and rural development (SARD), especially concerning income-generating activities. It is, in fact, of paramount importance to identify the potential contribution of PV to rural development in order to gain further financial and political commitment for PV projects and programmes and to design appropriate PV projects. One of the main lessons learnt through this study is that success of PV programmes is significantly enhanced when an integrated strategy is followed. Solar photovoltaic systems, through their flexibility in use, offer unique chances for the energy sector to provide “packages ” of energy services to remote rural areas such as for rural health care, education, communication, agriculture, lighting and water supply. It is hoped that this document contributes to the generation of ideas and discussions among the different institutions involved in providing these services to rural areas and thereby to an "informed " decision on the PV technology option.

B. Van Campen; D. Guidi; G. Best

2000-01-01T23:59:59.000Z

70

Solar Photovoltaics: Status, Costs, and Trends  

Science Conference Proceedings (OSTI)

This White Paper addresses the history, status, and trends of flat-plate solar photovoltaic power technologies in both crystalline silicon and thin-film forms. Perspectives are provided on the cost and performance, as well as, the materials used for producing PV modules. The major milestones and trends in PV power system development are described, looking back to the 1970's, and forward to the next 30 years. Current incentives and policies are also discussed with focus on utility engagement in PV power. ...

2009-12-31T23:59:59.000Z

71

Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ground mounted solar Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing theproposed construction of a Photovoltaic System at the San Joaquin National Cemetery (SNC) in San Joaquin,Calofornia. CX rulemaking files More Documents & Publications Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery Department of Energy Technical Support Document National Environmental Policy Act Implementing Procedures Supplement to Notice of Proposed Rulemaking Proposed Changes and Supplemental Supporting Basis

72

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

73

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

74

Cobb EMC- Solar Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Beginning in February 2008, Cobb Energy Management Corporation (EMC) offers rebates for residential solar photovoltaic (PV) systems. Cobb EMC is offering members $450 per kilowatt-AC (kW-AC)...

75

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress Energy Florida - SunSense Solar Photovoltaics Rebate Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) Progress Energy Florida - SunSense Solar Photovoltaics Rebate Program (Florida) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $20,000 Program Info State Florida Program Type Utility Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida (PEF) has allocated $1.9 million per year towards residential photovoltaic (PV) incentives. PEF will accept applications annually from residential customers both wishing to install a PV system and qualifying for a rebate. Reservations for a rebate will be issued on a first-come basis, however a reservation does not guarantee that a rebate

76

Alameda Municipal Power - Solar Photovoltaics Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Photovoltaics Rebate Program Solar Photovoltaics Rebate Program Alameda Municipal Power - Solar Photovoltaics Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Program Info Expiration Date December 31, 2017 State California Program Type Utility Rebate Program Rebate Amount Program is closed Provider Alameda Power and Telecom '''''Note: Alameda Municipal Power had a budget of $4.2 million to support this program. The utility has allocated the full budget and is no longer accepting applications. The information below is provided for historical purposes. ''''' Alameda Municipal Power offers an incentive program to customers who install solar photovoltaic (PV) systems. Rebates will be provided to commercial and residential customers on a per-watt AC basis, which, in

77

Standard Terminology Relating to Photovoltaic Solar Energy Conversion  

E-Print Network (OSTI)

1.1 This terminology pertains to photovoltaic (radiant-to-electrical energy conversion) device performance measurements and is not a comprehensive list of terminology for photovoltaics in general. 1.2 Additional terms used in this terminology and of interest to solar energy may be found in Terminology E 772.

American Society for Testing and Materials. Philadelphia

2005-01-01T23:59:59.000Z

78

Renewable Energies III Photovoltaics, Solar & Geo-Thermal  

E-Print Network (OSTI)

Renewable Energies III Photovoltaics, Solar & Geo-Thermal 21st August - 2nd September 2011 2011 will provide students with a solid foundation in renewable energies (especially photovoltaics of renewable energies. Accommodation is arranged in fully-equipped cosy holiday flats with fellow students

79

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements Eligibility Commercial...

80

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network (OSTI)

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 16: Silicon Solar Cell Fabrication Techniques Dr. Todd J. Kaiser - Bozeman Screen Printed Solar Cells · Starting wafer is about 0.5 mm thick and 10 x 10 cm2. The wafer is p-type and lightly doped with Boron (1016/cm3) 2 Screen Printed Solar Cells · Saw Damage Etch ­ The starting wafer

Kaiser, Todd J.

82

Solar Photovoltaic Capacity F t P f d P li  

E-Print Network (OSTI)

6/19/2013 1 Solar Photovoltaic ­ Capacity F t P f d P li Generating Resources Advisory Committee Advisor Model (SAM), version 2013.1.15 Technology: Solar PV (PVWatts system model)Technology: Solar PV Plant life: 25 years Weather data: Typical/representative of longterm averages; not one full historical

83

Performance and Reliability of the Solar Progress Photovoltaic Plant  

Science Conference Proceedings (OSTI)

Amorphous silicon is presently a leading contender for cost-effective photovoltaic power generation. Findings reported here confirm that the Solar Progress experimental power plant with amorphous silicon modules operated with high reliability, and no unexpected problems arose.

1991-01-23T23:59:59.000Z

84

NREL GIS Data: Hawaii Low Resolution Photovoltaic Solar Resource...  

Open Energy Info (EERE)

April 01st, 2011 (3 years ago) Keywords GIS hawaii NREL photovoltaic shapefile solar Data applicationzip icon Shapefile (zip, 1.2 MiB) Metadata Metadata accessible through...

85

Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells  

E-Print Network (OSTI)

Property Influence of Polyanilines on Photovoltaic Behaviors of Dye-Sensitized Solar Cells Shuxin conductors on the photovoltaic behaviors of dye-sensitized solarcellsisstudied of both the film formation property and the cluster size of polyanilines on the photovoltaic behaviors

86

Udhaya Energy Photovoltaics P Ltd UPV Solar | Open Energy Information  

Open Energy Info (EERE)

Udhaya Energy Photovoltaics P Ltd UPV Solar Udhaya Energy Photovoltaics P Ltd UPV Solar Jump to: navigation, search Name Udhaya Energy Photovoltaics (P) Ltd. (UPV Solar) Place Coimbatore, Tamil Nadu, India Zip 641 407 Sector Solar Product Coimbatore-based manufacturers & exporters Of solar PV cells. Coordinates 11.01167°, 76.98406° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":11.01167,"lon":76.98406,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Modeling of Performance, Cost, and Financing of Concentrating Solar, Photovoltaic, and Solar Heat Systems (Poster)  

SciTech Connect

This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 in Boulder, Colorado, discusses the modeling, performance, cost, and financing of concentrating solar, photovoltaic, and solar heat systems.

Blair, N.; Mehos, M.; Christiansen, C.

2006-10-03T23:59:59.000Z

88

Implementations of electric vehicle system based on solar energy in Singapore : assessment of solar photovoltaic systems  

E-Print Network (OSTI)

To evaluate the feasibility of solar energy based Electric Vehicle Transportation System in Singapore, the state of the art Photovoltaic Systems have been reviewed in this report with a focus on solar cell technologies. ...

Sun, Li

2009-01-01T23:59:59.000Z

89

Modular assembly of a photovoltaic solar energy receiver  

DOE Patents (OSTI)

There is provided a modular assembly of a solar energy concentrator having a photovoltaic energy receiver with passive cooling. Solar cell means are fixedly coupled to a radiant energy concentrator. Tension means bias a large area heat sink against the cell thereby allowing the cell to expand or contract with respect to the heat sink due to differential heat expansion.

Graven, Robert M. (Downers Grove, IL); Gorski, Anthony J. (Lemont, IL); Schertz, William W. (Batavia, IL); Graae, Johan E. A. (Elmhurst, IL)

1978-01-01T23:59:59.000Z

90

EELE408 Photovoltaics Lecture 11: Solar Cell Parameters  

E-Print Network (OSTI)

1 EELE408 Photovoltaics Lecture 11: Solar Cell Parameters Dr. Todd J. Kaiser tjkaiser@ece.montana.edu Department of Electrical and Computer Engineering Montana State University - Bozeman Solar Cell Parameters Light IL 3 Voltage Illluminating the cell adds to the "dark" current of the diode The IV curve shifts

Kaiser, Todd J.

91

Solar photovoltaic systems for residences in the Northeast  

DOE Green Energy (OSTI)

Under sponsorship of the US Department of Energy, MIT Lincoln Laboratory is conducting a program to develop residential solar photovoltaic (PV) systems. The first phase of this activity involves the design, construction and testing of four prototype systems at the Northeast Residential Experiment Station. The systems employ roof-mounted photovoltaic arrays of 500 to 800 square feet which provide solar-generated electricity sufficient to cut in half the electrical demand of an energy-efficient, passive-solar residence. Construction of these systems will be complete by December 1980, and will be followed by a one-year test period.

Russell, M.C.

1980-01-01T23:59:59.000Z

92

NREL: Learning - Photovoltaics for Electricity Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaics for Electricity Providers Photovoltaics for Electricity Providers Photo of a photovoltaic system in Virginia. This 15-kilowatt photovoltaic system in Virginia feeds clean energy into the utility grid that supplies the Pentagon with electricity. Utility companies can use the resources on this page to find out more about how utilities are using solar photovoltaics (PV) as well as information about designing solar energy programs. Research, Development and Deployment Utility Technical Engagement A central resource for utilities interested in designing solar energy programs and networking with other utilities with existing solar programs from the U.S. Department of Energy (DOE) Solar Program. NREL Photovoltaics Research A central resource for our nation's capabilities in PV, uniting diverse R&D

93

ADAPTIVE HYSTERESIS CURRENT CONTROL OF INVERTER FOR SOLAR PHOTOVOLTAIC APPLICATIONS  

E-Print Network (OSTI)

Abstract – Power inverters are used to convert the D.C power produced by the solar photovoltaic cell into AC. This paper presents a novel Adaptive Hysteresis Current Controller to control the inverter, used in the solar photovoltaic cell. The proposed controller is capable of reducing the total harmonic distortion and to provide constant switching frequency. The mathematical model of Photovoltaic array is developed using the Newton’s method using the parameter obtained from a commercial photovoltaic data sheet under variable weather conditions, in which the effect of irradiance and temperature are considered. The modeled Photovoltaic array is interfaced with DC-DC boost converter, AC-DC inverter and load. A DC-DC boost converter is used to step up the input DC voltage of the Photovoltaic array while the DC-AC single-phase inverter converts the input DC comes from boost converter into AC. The performance of the proposed controller of inverter is evaluated through MATLAB-Simulation. The results obtained with the proposed algorithm are compared with those obtained when using conventional fixed hysteresis current controller for single-phase photovoltaic inverter in terms of THD and switching frequency.

unknown authors

2011-01-01T23:59:59.000Z

94

Operational results from the Saudi Solar Village Photovoltaic power system  

Science Conference Proceedings (OSTI)

The world's largest photovoltaic power system was carried into the operation phase a few months ago. This system was developed and fabricated in the United States and it is providing electrical energy to three remote villages in Saudi Arabia. The facility includes a 350 kW photovoltaic array, 1-MW diesel powered generator, 1100 kWH lead acid batteries, a 300 KVA inverter and a solar weather data monitoring station. The photovoltaic power system is capable of completely automatic operation. It is designed to operate in stand-alone and cogeneration modes of operation.

Huraib, F.; Al-Sani, A.; Khoshami, B.H.

1982-08-01T23:59:59.000Z

95

Solar Photovoltaics Market Update: Volume 2 - Summer 2012  

Science Conference Proceedings (OSTI)

Volume 2 of the Electric Power Research Institute’s (EPRI’s) quarterly Solar PV Market Update provides EPRI members with continued insight into some of the front-line trends throughout the photovoltaic (PV) segment. Whereas Volume 1 of the Solar PV Market Update (1025103) focused more intently on the PV market situation in the United States, this edition explores various solar industry economic, policy, and technology issues from an international perspective. It ...

2012-08-24T23:59:59.000Z

96

1 Copyright 2011 by ASME MATERIAL OPTIMIZATION FOR CONCENTRATED SOLAR PHOTOVOLTAIC AND  

E-Print Network (OSTI)

photovoltaic and hot water co-generation based on various solar cell technologies and micro channel heat sinks. Concentrated solar Photovoltaic (PV) based on multi junction cells can yield around 35-40% efficiency is moderate [3] in comparison to the concentrated solar photovoltaic, for which multi-junction cells

97

Residential Solar Photovoltaics: Comparison of Financing Benefits Innovations and Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Solar Photovoltaics: Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Technical Report NREL/TP-6A20-51644 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options Bethany Speer Prepared under Task Nos. SM10.2442, SM12.3010 Technical Report NREL/TP-6A20-51644 October 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

98

The Social Acceptance of School-based Solar Photovoltaic Projects: An Ontario, Canada Case Study.  

E-Print Network (OSTI)

??The installation of solar photovoltaic (solar PV) technology on elementary and secondary schools has been undertaken around the world in an attempt to tie together… (more)

Beckstead, Claire Louise

2008-01-01T23:59:59.000Z

99

Laminated photovoltaic modules using back-contact solar cells  

DOE Patents (OSTI)

Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.

Gee, James M. (Albuquerque, NM); Garrett, Stephen E. (Albuquerque, NM); Morgan, William P. (Albuquerque, NM); Worobey, Walter (Albuquerque, NM)

1999-09-14T23:59:59.000Z

100

Juice from solar concentrate [photovoltaic collector  

Science Conference Proceedings (OSTI)

Conventional photovoltaic (PV) panels made from silicon to provide electricity to office buildings and homes are still too expensive. Unless they are heavily subsidized, it rarely makes sense to install them where electricity is available from the grid. ...

P. Patel-Predo

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Insuring Solar Photovoltaics: Challenges and Possible Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power - Technology, Costs, and Markets: A Guide to the Impact CSP Technologies will Have on the Solar and Broader Renewable Energy Markets through 2020:...

102

Solar Photovoltaics Market Update: Volume 6: Q2 2013  

Science Conference Proceedings (OSTI)

Volume 6 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report examines recent upheaval in the PV inverter landscape, marked by equipment ...

2013-06-30T23:59:59.000Z

103

Solar Photovoltaics Market Update, Volume 5: Q1 2013  

Science Conference Proceedings (OSTI)

Volume 5 of EPRI's quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. Like previous Updates, it synthesizes primary as well as secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts. Specifically, this report examines global PV installation and market issues, providing key ...

2013-04-04T23:59:59.000Z

104

Solar Photovoltaics Market Update: Volume 8: Q4 2013  

Science Conference Proceedings (OSTI)

Volume 8 of EPRI’s quarterly Solar PV Market Update provides continued insight into some of the front line trends that are afoot throughout the photovoltaic segment. As with previous Updates, it synthesizes primary and secondary data from multiple sources in an effort to highlight economic, policy, and technology developments that are likely to impact utility solar PV investment and planning efforts.This report first highlights PV component, system, and PPA pricing developments ...

2013-12-23T23:59:59.000Z

105

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

DOE Green Energy (OSTI)

This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

2007-06-01T23:59:59.000Z

106

Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Type Utility Rebate Program Rebate Amount Residential: 538.79kW AC and 0.53kWh AC Non-residential: 538.79kW AC and 0.41kWh AC The 2013 Oncor Solar Photovoltaic...

107

Renewable energy options in Saudi Arabia: the economic viability of solar photovoltaics within the residential sector  

Science Conference Proceedings (OSTI)

Renewable energy options, including solar power, are becoming progressively more viable and thus increasingly pose challenges to conventional sources of energy, such as oil, coal and natural gas. Solar Photovoltaic technology is one type of solar energy ... Keywords: Saudi Arabia, feasibility study, renewable energy, residential buildings, solar photovoltaics

Yasser Al-Saleh; Hanan Taleb

2009-02-01T23:59:59.000Z

108

Making the sun work for you. Solar electricity from photovoltaics  

SciTech Connect

Written for homeowners and non-technical users, this guide explains how to harness solar power for homes and other small-scale applications. Step-by-step instructions show how to design, install, and operate photovoltaic systems that meet a wide variety of needs. Methods for sizing, sitting, and wiring these systems are explicitly demonstrated. Information on tax credits, building and safety codes, zoning regulations, and solar access laws along with numerous charts and illustrations help to maximize the benefits of sun-generated electricity. This volume also discusses the history of alternative energy sources and considers future possibilities for solar energy.

1984-01-01T23:59:59.000Z

109

Solar for St. Paul | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar for St. Paul Solar for St. Paul Solar for St. Paul October 24, 2011 - 4:00pm Addthis A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy Chief Scientist Henry Kelly Chief Scientist Henry Kelly Chief Scientist What does this project do? The completed project will have 348 American-made solar photovoltaic panels that will generate 100,000 kilowatt hours of energy annually - enough to power nine homes for a year.

110

Solar Photovoltaic Technologies - Energy Innovation Portal  

In order to better compete with fossil fuels, researchers are attempting to create a second generation of cheaper, more efficient solar cells.

111

Solar Photovoltaics Research and Technology: The Revolution ...  

Science Conference Proceedings (OSTI)

Moreover, technology progress and ownership for next-generation solar PV mandates a ... Dislocations in Si-Doped LEC GaAs Revisited: A Spectrum Image

112

Solar Photovoltaic Financing: Residential Sector Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

(a subsidiary of U.S. Bancorp), AFC First Financial Corporation, and Gemstone Lease Management, LLC, announced a residential solar lease program for homeowners who meet certain...

113

Novel Controls of Photovoltaic (PV) Solar Farms.  

E-Print Network (OSTI)

??Solar Farms are absolutely idle in the night and even during daytime operate below capacity in early mornings and late afternoons. Thus, the entire expensive… (more)

Rahman, Shah Arifur

2012-01-01T23:59:59.000Z

114

Glass for low-cost photovoltaic solar arrays  

DOE Green Energy (OSTI)

In photovoltaic systems, the encapsulant material that protects the solar cells should be highly transparent and very durable. Glass satisfies these two criteria and is considered a primary candidate for low-cost, photovoltaic encapsulation systems. In this report, various aspects of glass encapsulation are treated that are important for the designer of photovoltaic systems. Candidate glasses and available information defining the state of the art of glass encapsulation materials and processes for automated, high volume production of terrestrial photovoltaic devices and related applications are presented. The criteria for consideration of the glass encapsulation systems were based on the LSA (Low-cost Solar Array) Project goals for arrays: (a) a low degradation rate, (b) high reliability, (c) an efficiency greater than 10 percent, (d) a total array price less than $500/kW, and (e) a production capacity of 5 x 10/sup 5/ kW/yr. The glass design areas treated herein include the types of glass, sources and costs, physical properties and glass modifications, such as antireflection coatings. 78 references.

Bouquet, F.L.

1980-02-01T23:59:59.000Z

115

2009 Concentrating Photovoltaic Solar Technology Assessment  

Science Conference Proceedings (OSTI)

This report investigates manufacturers of concentrating photovoltaic (CPV) systems with a special emphasis on companies that may be ready to deploy one or more 50-MW systems by 2012. The report has three main sections: Detailed profiles of 10 companies that appear likely to be able to field utility-scale deployments by 2012 A market study and forecast for CPV over the period 2012–2020 An appendix, listing contacts and other information about the dozens of CPV vendors that were not included in the detail...

2010-04-13T23:59:59.000Z

116

Solar and Photovoltaic Data from the University of Oregon Solar Radiation Monitoring Laboratory (UO SRML)  

DOE Data Explorer (OSTI)

The UO SRML is a regional solar radiation data center whose goal is to provide sound solar resource data for planning, design, deployment, and operation of solar electric facilities in the Pacific Northwest. The laboratory has been in operation since 1975. Solar data includes solar resource maps, cumulative summary data, daily totals, monthly averages, single element profile data, parsed TMY2 data, and select multifilter radiometer data. A data plotting program and other software tools are also provided. Shade analysis information and contour plots showing the effect of tilt and orientation on annual solar electric system perfomance make up a large part of the photovoltaics data.(Specialized Interface)

117

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network (OSTI)

heat US Department of Energy: Parabolic Trough SpectroLab Concentrating Terrestrial PV Cell C1MJ CDO peak load and irradiance hours of the day #12;Design · Parabolic solar collector · GaAs PV cells

Eirinaki, Magdalini

118

Modeling adoption of solar photovoltaics and analysis of net metering in the city of Austin.  

E-Print Network (OSTI)

??Solar photovoltaics have received government support in the form of rebates, tax credits and net metering tariff mechanisms. The intended goal of these incentives is… (more)

Josyula, Siva Kiran

2011-01-01T23:59:59.000Z

119

New EIA data show total grid-connected photovoltaic solar capacity ...  

U.S. Energy Information Administration (EIA)

Using new information, EIA combines data on utility-scale solar photovoltaic (PV) capacity with customer-sited PV capacity, as reported in the graphic.

120

Polycrystalline Thin Film Photovoltaics: From the Laboratory to Solar Fields; Preprint  

DOE Green Energy (OSTI)

We review the status of commercial polycrystalline thin-film solar cells and photovoltaic (PV) modules, including current and projected commercialization activities.

von Roedern, B.; Ullal, H. S.; Zweibel, K.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Flat-Plate Photovoltaic Performance Testing at the Solar Technology Acceleration Center (SolarTAC)  

Science Conference Proceedings (OSTI)

The flat-plate photovoltaic (PV) performance testing project at the Solar Technology Acceleration Center (SolarTAC) is a multi-year, data-driven effort to provide unbiased field testing of a variety of commercial-scale solar PV systems under different environmental and seasonal conditions. Its core aim is to assess and characterize the operation of both well-established as well as less mature PV module technologies to ultimately inform future PV product investment decisions by electric utilities and ...

2013-10-30T23:59:59.000Z

122

Measuring Solar Spectral and Angle-ofIncidence Effects on Photovoltaic Modules and Solar Irradiance Sensors  

E-Print Network (OSTI)

Historically, two time-of-day dependent factors have complicated the characterization of photovoltaic module and array performance; namely, changes in the solar spectrum over the day and optical effects in the module that vary with the solar angle-of-incidence. This paper describes straightforward methods for directly measuring the effects of these two factors. Measured results for commercial modules, as well as for typical solar irradiance sensors (pyranometers) are provided. The empirical relationships obtained from the measurements can be used to improve the methods used for system design, verification of performance after installation, and diagnostic monitoring of performance during operation. INTRODUCTION It is common knowledge to people familiar with photovoltaic technology that the electrical current generated by photovoltaic devices is influenced by the spectral distribution (spectrum) of sunlight. It is also commonly understood that the spectral distribution of sunlight vari...

David L. King; Jay A. Kratochvil; William E. Boyson

1997-01-01T23:59:59.000Z

123

FINAL REPORT OF RESEARCH ON CuxS/ (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 - 9/79  

E-Print Network (OSTI)

Cu X S/(Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS 3/77 -of Research on Photovoltaic Solar Energy Converters CuxSI(Cd

Chin, B.L.

2013-01-01T23:59:59.000Z

124

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

125

Mesa Top Photovoltaic Array, NREL (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mesa Top Photovoltaic Array Mesa Top Photovoltaic Array System Specifications System size: 720 kilowatts (kW) DC Characteristics: Single axis tracker photovoltaic, ground mounted Annual output: 1.2 gigawatt hours (GWh) Location: Top of South Table Mountain, Golden, Colorado Start of operation: December 2008 Financial Terms System ownership: SunEdison financed, built, owns, operates and maintains the system Solar Power and Services Agreement (SPSA): SunEdison and the Western Area Power Administration (WAPA) entered into a 20-year SPSA to provide Solar Energy Services to the Department of Energy (DOE) for use at the National Renewable Energy Laboratory (NREL) Cost to DOE/NREL: There are no up-front costs to DOE or NREL * The price per kilowatt hour (kWh) for the power purchased from the

126

SOLCOST-PHOTOVOLTAIC solar energy design program: User's Guide  

DOE Green Energy (OSTI)

The SOLCOST-PHOTOVOLTAIC solar energy design program is a public domain interactive computer design tool intended for use by non-solar specialists to predict the long term performance for photovoltaic systems. A life cycle cost analysis is included in the program along with the ERDA-EPRI standard economic analysis which predicts levelized busbar energy costs for the photovoltaic system assuming ownership by an electric utility. SOLCOST-PV currently can evaluate flat plate arrays and concentrating arrays which use Fresnel lenses and passive cooling. The methodology could easily be extended to include all the known types of concentrators, however the scope of the version 1.0 activity was limited to only the flat plate and the passive Fresnel concentrators. An overview of the SOLCOST-PV capabilities and methodology is given. A detailed guide to the SOLCOST-PV input parameters is included, and examples showing typical interactive execution sessions and the resulting SOLCOST-PV output are presented. Appendices A and B provide additional information on the SOLCOST-PV analysis.

Not Available

1980-10-01T23:59:59.000Z

127

Solar Photovoltaics Expanding Electric Generation Options  

Science Conference Proceedings (OSTI)

EPRI and others have demonstrated that a broad portfolio of cost-competitive supply technologies will be needed to satisfy the world's rising demands for energy while meeting climate policy and other societal objectives. Solar energy is a particularly attractive renewable energy option because it is well distributed and abundant over most of the earth's surface. This White Paper reviews the status of PV technology and markets, the potential for evolutionary and revolutionary technology advances, the iss...

2007-12-21T23:59:59.000Z

128

Solar for St. Paul | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for St. Paul for St. Paul Solar for St. Paul October 24, 2011 - 4:00pm Addthis A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy A new 82 kilowatt solar photovoltaic installation at the RiverCentre convention complex is unveiled in the heart of downtown St. Paul. | Photo courtesy of the Office of Energy Efficiency and Renewable Energy Chief Scientist Henry Kelly Chief Scientist Henry Kelly Chief Scientist What does this project do? The completed project will have 348 American-made solar photovoltaic panels that will generate 100,000 kilowatt hours of energy annually - enough to power nine homes for a year. On Monday afternoon in St. Paul, Minnesota, I had the opportunity to see

129

Solar Photovoltaic Hydrogen: The Technologies and Their Place in Our Roadmaps and Energy Economics  

DOE Green Energy (OSTI)

Future solar photovoltaics-hydrogen systems are discussed in terms of the evolving hydrogen economy. The focus is on distributed hydrogen, relying on the same distributed-energy strengths of solar-photovoltaic electricity in the built environment. Solar-hydrogen residences/buildings, as well as solar parks, are presented. The economics, feasibility, and potential of these approaches are evaluated in terms of roadmap predictions on photovoltaic and hydrogen pathways-and whether solar-hydrogen fit in these strategies and timeframes. Issues with the ''hydrogen future'' are considered, and alternatives to this hydrogen future are examined.

Kazmerski, L. L.; Broussard, K.

2004-08-01T23:59:59.000Z

130

Photovoltaic effect in InSe Application to Solar Energy Conversion  

E-Print Network (OSTI)

253 Photovoltaic effect in InSe Application to Solar Energy Conversion A. Segura, J. P. Guesdon, J are reported. Photovoltaic spectra are fitted with measured values oftransport and optical parameters. InSe is shown to be a new material with attractive characteristics for solar energy conversion. Performance

Paris-Sud XI, Université de

131

A Control Strategy for Off-Grid Solar Photovoltaic Power System Based on MPPT Algorithm  

Science Conference Proceedings (OSTI)

Off-grid solar photovoltaic (PV) power system characteristics are used widely in many far-away areas during theses years. The new control strategy employs Maximum Power Point Tracking (MPPT) algorithm. The maximum power point tracker is a high efficiency ... Keywords: off-grid solar photovoltaic power system, maximum power point tracking algorithm, perturbation and observation control method

Tianjian Wang; Xia Dang; Dong Liu

2012-10-01T23:59:59.000Z

132

Ligand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells  

E-Print Network (OSTI)

transient photovoltaic behavior in inverted organic solar cells Jong Bok Kim,1,a) Seokhoon Ahn,2,b) Seok JuLigand chemistry of titania precursor affects transient photovoltaic behavior in inverted organic solar cells Jong Bok Kim, Seokhoon Ahn, Seok Ju Kang, Colin Nuckolls, and Yueh-Lin Loo Citation: Appl

133

Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency  

E-Print Network (OSTI)

Pbs photovoltaic cells," Int. J. Energy Res. 16(6), 481­487 (1992). 7. V. Badescu, "ThermodynamicAbsorber and emitter for solar thermo- photovoltaic systems to achieve efficiency exceeding, provides a sharp emissivity peak at the solar cell band-gap while suppressing emission at lower frequencies

Fan, Shanhui

134

Solar Photovoltaic Financing: Residential Sector Deployment  

DOE Green Energy (OSTI)

This report presents the information that homeowners and policy makers need to facilitate PV financing at the residential level. The full range of cash payments, bill savings, and tax incentives is covered, as well as potentially available solar attribute payments. Traditional financing is also compared to innovative solutions, many of which are borrowed from the commercial sector. Together, these mechanisms are critical for making the economic case for a residential PV installation, given its high upfront costs. Unfortunately, these programs are presently limited to select locations around the country. By calling attention to these innovative initiatives, this report aims to help policy makers consider greater adoption of these models to benefit homeowners interested installing a residential PV system.

Coughlin, J.; Cory, K.

2009-03-01T23:59:59.000Z

135

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Solar Project Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 LMS/DUD/S06350 DOE/EA-1770 This page intentionally left blank LMS/DUD/S06350 DOE/EA 1770 Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site Final June 2011 This page intentionally left blank -1- U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy

136

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic  

Open Energy Info (EERE)

aka CG Solar formerly Weihai Bluestar Terra Photovoltaic aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra Photovoltaic Co Ltd) Place Weihai, Shandong Province, China Zip 264205 Sector Solar Product A Sino-US joint venture producing a-si thin-film solar cells Coordinates 37.497898°, 122.114731° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.497898,"lon":122.114731,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

137

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF CdTe SOLAR CELLS IN FORWARD BIAS  

E-Print Network (OSTI)

19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 QUANTUM EFFICIENCY OF Cd;19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 Figure 2 shows the numerical as #12;19th European Photovoltaic Solar Energy Conference Pre-Print 4AV.1.45 CE V( )= J V,100%( )- J V

Sites, James R.

138

Photovoltaic Advanced Research and Development Project: Solar Radiation Research annual report  

DOE Green Energy (OSTI)

This report gives an overview of the fiscal year 1990 research activities and results under the Solar Radiation Research Task of the Photovoltaic Advanced Research and Development Project at the Solar Energy Research Institute. The activities under this task include developing and applying measurement techniques, instrumentation, and data and models to understand and quantify the response of photovoltaic devices to variations in broadband and spectra solar radiation. The information presented in this report was presented at the SERI Photovoltaic Advanced Research and Development Project 10th Review Meeting, October 1990, and will be published in a special issue of Solar Cells dedicated to the meeting.

Riordan, C.; Hulstrom, R.; Cannon, T.; Myers, D.; Stoffel, T.

1990-11-01T23:59:59.000Z

139

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $17.6 Million for Solar Photovoltaic Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of alternative and clean energy technologies such as

140

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Up to $17.6 Million for Solar Photovoltaic DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015.

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work September 2, 2010 - 12:15pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE Grocery shoppers in Burlington, Vt., are picking up much more than food and household items these days. Strolling the aisles of community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars. Reducing energy demand With freezer and refrigerator units running 24/7, energy demand is high at the 16,000 square foot store. The co-op's electricity bill averaged $17,000 a month. With the solar energy system, its conventional energy use is expected to

142

22nd European Photovoltaic Solar Energy Conference, Fiera Milano, Italy, 3-7 September 2007 Version: 30 August 2007  

E-Print Network (OSTI)

(F-gases) which are used, or considered to be used, in crystalline silicon photovoltaic solar cell22nd European Photovoltaic Solar Energy Conference, Fiera Milano, Italy, 3-7 September 2007 Version: 30 August 2007 FLUORINATED GREENHOUSE GASES IN PHOTOVOLTAIC MODULE MANUFACTURING: POTENTIAL EMISSIONS

143

Mandatory Photovoltaic System Cost Estimate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate Mandatory Photovoltaic System Cost Estimate < Back Eligibility Utility Savings Category Solar Buying & Making Electricity Program Info State Colorado Program Type Line Extension Analysis Provider Colorado Public Utilities Commission At the request of a customer or a potential customer, Colorado electric utilities are required to conduct a cost comparison of a photovoltaic (PV) system to any proposed distribution line extension if the customer or potential customer provides the utility with load data (estimated monthly kilowatt-hour usage) requested by the utility to conduct the comparison, and if the customer's or potential customer's peak demand is estimated to be less than 25 kilowatts (kW). In performing the comparison analysis, the

144

Reliability analysis of solar photovoltaic system using hourly mean solar radiation data  

Science Conference Proceedings (OSTI)

This paper presents the hourly mean solar radiation and standard deviation as inputs to simulate the solar radiation over a year. Monte Carlo simulation (MCS) technique is applied and MATLAB program is developed for reliability analysis of small isolated power system using solar photovoltaic (SPV). This paper is distributed in two parts. Firstly various solar radiation prediction methods along with hourly mean solar radiation (HMSR) method are compared. The comparison is carried on the basis of predicted electrical power generation with actual power generated by SPV system. Estimation of solar photovoltaic power using HMSR method is close to the actual power generated by SPV system. The deviation in monsoon months is due to the cloud cover. In later part of the paper various reliability indices are obtained by HMSR method using MCS technique. Load model used is IEEE-RTS. Reliability indices, additional load hours (ALH) and additional power (AP) reduces exponentially with increase in load indicates that a SPV source will offset maximum fuel when all of its generated energy is utilized. Fuel saving calculation is also investigated. Case studies are presented for Sagardeep Island in West Bengal state of India. (author)

Moharil, Ravindra M. [Department of Electrical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, Maharashtra (India); Kulkarni, Prakash S. [Department of Electrical Engineering, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440011, Maharashtra (India)

2010-04-15T23:59:59.000Z

145

Solar kinetics` photovoltaic concentrator module and tracker development  

DOE Green Energy (OSTI)

Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

1995-11-01T23:59:59.000Z

146

Photovoltaic commercialization: an analysis of legal issues affecting a government-accelerated solar industry  

DOE Green Energy (OSTI)

The Photovoltaics Research, Development, and Demonstration Act of 1978 is discussed. Legal issues, including solar access, the need for performance standards, the effects of building codes on photovoltaic system use and commercialization, and manufacturer and installer performance guarantees, are examined. Electric utility policies are examined, including interconnection, and rates and legal issues affecting them. (LEW)

Lamm, D.

1980-06-01T23:59:59.000Z

147

Description of the University of Texas at Arlington Solar Energy Research Facility photovoltaic/thermal residential system  

DOE Green Energy (OSTI)

The addition of a photovoltaic array to a solar-heated single-family residence at the University of Texas at Arlington permits the study of combined photovoltaic/thermal system operation. Equipment and construction details are presented.

Darkazalli, G.

1979-03-16T23:59:59.000Z

148

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photovoltaics Photovoltaic (PV) materials and devices convert sunlight into electrical energy, and PV cells are commonly known as solar cells. Photovoltaics can literally be...

149

Solar Photovoltaic Financing: Deployment on Public Property by...  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal Revenue Service ITC Investment tax credit (federal) kW Kilowatt LED Light emitting diode LEED Leadership in Energy and Environmental Design LSE(s) Load-serving...

150

A two dimensional thermal network model for a photovoltaic solar wall  

Science Conference Proceedings (OSTI)

A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

2009-11-15T23:59:59.000Z

151

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 Nanotubes  

E-Print Network (OSTI)

Enhanced Photovoltaic Performance of Nanostructured Hybrid Solar Cell Using Highly Oriented TiO2 nanotubes can be effectively controlled for the suitable use for a hybrid solar cell by varying the diameter nanotubes to form hybrid solar cells. The open circuit voltage, short circuit current density, fill factor

Cao, Guozhong

152

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption  

E-Print Network (OSTI)

IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 2, APRIL 2012 123 Gallium Arsenide Solar Cell Absorption flat gallium arsenide solar cell, we show that it is possible to modify the flow of light and enhance above the solar cell. The incoupling element is lossless and, thus, has the advantage that no energy

Grandidier, Jonathan

153

Definition: Kilowatt | Open Energy Information  

Open Energy Info (EERE)

Known As kW Related Terms Kilowatt-hour, Power, Watt, power References http:www1.eere.energy.govsiteadministrationglossary.htmlK http:needtoknow.nas.eduenergy...

154

Milk, Eggs and Solar: Grocery Co-Op Puts Photovoltaics to Work...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

community-owned City Market, the 3,000 daily customers also learn about the co-op's 136 rooftop photovoltaic panels and monthly "Solar Made Simple" seminars. Reducing energy...

155

The Installed Price of Solar Photovoltaic Systems in the U.S...  

NLE Websites -- All DOE Office Websites (Extended Search)

to Decline at a Rapid Pace Tracking the Sun VI August 2013 The installed price of solar photovoltaic (PV) power systems in the United States fell substantially in 2012 and...

156

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Conference Proceedings (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

157

Review of Spanish renewable energy policy to encourage investment in solar photovoltaic  

Science Conference Proceedings (OSTI)

The Spanish renewable energy sector has experienced phenomenal growth over the past decade due to implementation of regulatory frameworks that have encouraged the rapid deployment of some renewable energy technologies particularly solar photovoltaic(PV)

Sana Zeeshan Shirazi; Syed Mohammad Zeeshan Shirazi

2012-01-01T23:59:59.000Z

158

Improved Organic Photovoltaics - Energy Innovation Portal  

Solar Photovoltaic Improved Organic Photovoltaics B4 Materials For Organic Semiconductor Applications, Including Molecular Electronics And Organic Photovoltaics

159

Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

A photovoltaic (PV), or solar electric system, is made up of several photovoltaic solar cells. An individual PV cell is usually small, typically producing about 1 or 2 watts of power. To boost the...

160

Insuring Solar Photovoltaics: Challenges and Possible Solutions; (Revised)  

DOE Green Energy (OSTI)

Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection, and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.

Speer, B.; Mendelsohn, M.; Cory, K.

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ECE 414A/514A Photovoltaic Solar Energy Systems  

E-Print Network (OSTI)

, and development of photovoltaic cells and it is expected to continue into the foreseeable future. This trend management optics. The physical limits on photovoltaic cell performance and practical device operation will be analyzed. The main device emphasis will focus on different types of silicon photovoltaic cells including

Arizona, University of

162

3M Austin concentrating photovoltaic plant two-year performance report, 1992--1993. Final report  

DOE Green Energy (OSTI)

The U.S. Department of Energy, the state of Texas, 3M and the City of Austin Electric Utility jointly funded the installation of a nominal 300 kilowatt concentrating solar photovoltaic system above the parking garage of the new 3M facility in Austin. The plants operating performance for the years 1992-1993 are presented.

Hoffner, J. [Austin Municipal Electric Utility System, TX (United States); Jaster, P. [Minnesota Mining and Mfg. Co., Austin, TX (United States). Austin Center

1993-12-31T23:59:59.000Z

163

EEE 565 Solar Cells Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the  

E-Print Network (OSTI)

solar cell technologies, and how they are integrated into solar cell systems. Topics: 1) PhotovoltaicEEE 565 Solar Cells Fall 2012 Course Objective: To introduce the basic concepts of the operation of photovoltaic devices, the major technologies, and the impact of materials and device structure

Zhang, Junshan

164

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL's PV Incubator: Where Solar Photovoltaic Records Go to be NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken NREL's PV Incubator: Where Solar Photovoltaic Records Go to be Broken June 28, 2011 - 11:44am Addthis NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | NREL Principal Engineer Keith Emery prepares to load three-junction concentrator cells into NREL's
 High-Intensity Pulse Solar Simulator to test for efficiency. | Department of Energy Photo | Courtesy of National Renewable Energy Laboratory | Photo by Dennis Schroeder | Public Domain | Minh Le Minh Le

165

City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

San Jose - Solar Hot Water Heaters and Photovoltaic Systems San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements City of San Jose - Solar Hot Water Heaters and Photovoltaic Systems Permit Requirements < Back Eligibility Commercial Construction Industrial Installer/Contractor Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Program Info State California Program Type Solar/Wind Permitting Standards Provider City of San Jose Building, Planning and Electrical Permits are required for Photovoltiac (PV) systems installed in San Jose. In most cases, PV systems must also undergo a Building Plan Review and an Electrical Plan Review. Building Plan Reviews are not required for installations that meet all of the following criteria: 1. Total panel weight (including frame) is not greater than 5 lbs. per

166

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

167

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with Solar Advisor Model  

DOE Green Energy (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. SAM allows users to do complex system modeling with an intuitive graphical user interface (GUI). In fact, all tables and graphics for this paper are taken directly from the model GUI. This model has the capability to compare different solar technologies within the same interface, making use of similar cost and finance assumptions. Additionally, the ability to do parametric and sensitivity analysis is central to this model. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-01-01T23:59:59.000Z

168

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network (OSTI)

Photovoltaic Systems in California and the Southwest RegionTime-of-Use Rates Undermine California’s Solar Photovoltaicof the University of California Energy Institute, a multi-

Borenstein, Severin

2007-01-01T23:59:59.000Z

169

EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.  

DOE Green Energy (OSTI)

Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

BOWERMAN,B.; FTHENAKIS,V.

2001-10-01T23:59:59.000Z

170

Rational Device Design for Highly Efficient Organic Photovoltaic Solar Cells.  

E-Print Network (OSTI)

??Abundant, scalable, environmentally-friendly organic photovoltaic (OPV) technology is increasingly promising in recent years. The power conversion efficiency (PCE) of OPVs has been raised to around… (more)

Yang, Bin

2013-01-01T23:59:59.000Z

171

Mission analysis of photovoltaic solar energy systems. Final report. Volume I. Summary  

SciTech Connect

A summary report of a study program whose principal objective was to develop methods for the technical and economic evaluation of potential missions (applications) for photovoltaic solar energy conversion in the southwestern United States in the 1980 to 2000 period is presented. A secondary objective was to apply the methodology, when developed, to the evaluation of a number of illustrative examples of candidate missions in order to obtain at least a preliminary indication of the competitive position of the photovoltaic technology in the future energy economy of the Southwest. Because of their large potential significance, most of the effort in the study was devoted to two main classes of missions: on-site applications (in which the photovoltaic system serves an electric load point that is colocated with the system) and central station power plant applications. A smaller amount of attention was given to the electrolytic production of hydrogen with electric power generated by the photovoltaic conversion of solar energy. (WHK)

1975-12-01T23:59:59.000Z

172

Energy storage and power conditioning aspects of photovoltaic solar power systems. Volume I. First quarterly report  

SciTech Connect

Solar energy may be utilized as thermal energy or converted into electricity by solar cells. ERDA's National Photovoltaic Conversion Program is concerned with this latter approach and is currently sponsoring industrial programs for photovoltaic systems and devices. In one such program, Spectrolab, Inc., is charged with performing conceptual design and analysis of three photovoltaic solar power systems. The sizes of these three systems will cover the requirements of residential, commercial and electric utility central station applications. In addition to a solar cell array, photovoltaic power systems must also include an energy storage system to enable operation during periods of low insolation and a power conditioning system to control the dc power from the array and convert it into an ac waveshape compatible with existing electrical equipment. The Scientific Development Operation of Bechtel Corporation is participating in the Spectrolab program by compiling and studying data on the energy storage and power conditioning aspects of all three photovoltaic solar power systems and by the conceptual design of the system for electric utility central station applications. The results of the energy storage and power conditioning study effort are presented in this report. (W.D.M.)

1975-10-01T23:59:59.000Z

173

Energy storage and power conditioning aspects of photovoltaic solar power systems. Volume I. First quarterly report  

DOE Green Energy (OSTI)

Solar energy may be utilized as thermal energy or converted into electricity by solar cells. ERDA's National Photovoltaic Conversion Program is concerned with this latter approach and is currently sponsoring industrial programs for photovoltaic systems and devices. In one such program, Spectrolab, Inc., is charged with performing conceptual design and analysis of three photovoltaic solar power systems. The sizes of these three systems will cover the requirements of residential, commercial and electric utility central station applications. In addition to a solar cell array, photovoltaic power systems must also include an energy storage system to enable operation during periods of low insolation and a power conditioning system to control the dc power from the array and convert it into an ac waveshape compatible with existing electrical equipment. The Scientific Development Operation of Bechtel Corporation is participating in the Spectrolab program by compiling and studying data on the energy storage and power conditioning aspects of all three photovoltaic solar power systems and by the conceptual design of the system for electric utility central station applications. The results of the energy storage and power conditioning study effort are presented in this report. (W.D.M.)

Not Available

1975-10-01T23:59:59.000Z

174

2644 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 7, JULY 2008 An Adaptive Solar Photovoltaic Array Using  

E-Print Network (OSTI)

November 21, 2000 PV Lesson Plan 2 ­ Solar Electric Arrays Prepared for the Oregon Million Solar. (­) (+) (­)(+) (­) (+) (­) (+) (+) (+) (­) (­) Solar cells in series boost voltage Solar cells in parallel boost amperage #12;2 A photovoltaic (PV Roofs Coalition By Frank Vignola ­ University of Oregon Solar Radiation Monitoring Lab John Hocken

Lehman, Brad

175

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

SciTech Connect

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

176

Photovoltaic solar panel resistance to simulated hail. Low-Cost Solar Array Project  

DOE Green Energy (OSTI)

As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, test methods have been evaluated and procedures developed for testing photovoltaic flat-plate solar cell modules for resistance to impact by hailstones. Testing has included the use of simulated hailstones (frozen ice spheres projected at terminal velocity), steel balls, and other projectile types applied with three loading methods: pneumatic gun, gravity drop, and static loading. Results are presented that compare the advantages and disadvantages of the three test methods. Dropped-steel-ball tests are shown to exhibit little correlation with high-velocity ice-ball tests, whereas statically-loaded steel balls show a somewhat better correlation with ice-ball tests. Results are also presented on the hail impact strength of 16 flat-plate photovoltaic modules. The module designs tested have been shown to be capable of withstanding as large as 1-1/2-inch diameter and not capable of withstanding as small as 1/2-inch diameter simulated hail. The top surface material of the modules has a dominant influence on the hail impact resistance of the modules. In order of increasing impact strength for a given thickness, the top surface materials encountered in the modules tester were: clear silicone rubber, annealed glass, tempered glass, and acrylic sheet. The critical failure mechanism of each module type is explored and means for improving the hail resistance of future modules are described.

Moore, D.; Wilson, A.

1978-10-15T23:59:59.000Z

177

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

char- acteristics. Solar power is generated during daylightcontext of wind power than solar power, because spatiallythe average valuation of the solar power if the value is the

Borenstein, Severin

2008-01-01T23:59:59.000Z

178

Program on Technology Innovation: Central Station Solar Photovoltaic, Linear Fresnel, and Dish-Engine Technology Assessment  

Science Conference Proceedings (OSTI)

This Technology Innovation (TI) project, performed in conjunction with an EPRI feasibility study for a 50 to 500 megawatt (MW) central station solar power (CSSP) plant to be developed in New Mexico by mid-2010, surveyed and characterized photovoltaic (PV), linear Fresnel, and dish-engine solar technology options. The overall feasibility study also assessed the status of parabolic trough and central receiver solar technologies.

2008-05-06T23:59:59.000Z

179

Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 ENVIRONMENTAL IMPACTS OF PV ELECTRICITY GENERATION -  

E-Print Network (OSTI)

Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September (Franklin #12;Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4;Presented at the 21st European Photovoltaic Solar Energy Conference, Dresden,Germany, 4-8 September 2006 0 5

180

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

by one-sun solar simulator. . . . . . . . . . . . . . .is characterized by one-sun solar simulator as shown in Fig.is characterized by one-sun solar simulator. rials to solar

Wang, Chunhua

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

Process 3.2.2 Solar Simulator Spectrum . . . . . . . . . .500nm to 600nm over the solar spectrum, while QDS like CdSe/e?cient use of the solar spectrum. Solar Energy Materials

Wang, Chunhua

2011-01-01T23:59:59.000Z

182

Solar Leasing for Residential Photovoltaic Systems (Fact Sheet)  

DOE Green Energy (OSTI)

This publication examines the solar lease option for residential PV systems and describes two solar lease programs already in place.

Not Available

2009-02-01T23:59:59.000Z

183

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar Photovoltaic Industry: Looking Through the Storm.Solar Photovoltaic Industry: Looking Through the Storm.

Price, S.

2010-01-01T23:59:59.000Z

184

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network (OSTI)

This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze the energy impact of solar systems installed in commercial buildings. A large prototypical office building (124,000 ft2) was used in simulation modeling. The DOE-2.1e program was used for whole building simulation, F-Chart (Beckman et al., 1977) for solar thermal systems analysis, and PV F-Chart (Klein and Beckman, 1983) for solar PV systems analysis.

Cho, S.; Haberl, J.

2010-08-01T23:59:59.000Z

185

Scattering Properties of nanostructures : applications to photovoltaics  

E-Print Network (OSTI)

2nd World Conf. Photovoltaic Energy Conversion, Vienna, p.the 12th European Photovoltaic Solar Energy Conference, p.12th European Photovoltaic Solar Energy Conf. , p. 1481 (

Derkacs, Daniel

2009-01-01T23:59:59.000Z

186

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS  

E-Print Network (OSTI)

22nd European Photovoltaic Solar Energy Conference, Milan, 3-7 September 2007 Cu(InGa)Se2 THIN-FILM SOLAR CELLS: COMPARATIVE LIFE-CYCLE ANALYSIS OF BUFFER LAYERS Vasilis M. Fthenakis and Hyung Chul Kim National Photovoltaic EH&S Research Center Brookhaven National Laboratory Upton, NY 11973, USA ABSTRACT

187

The solar cube: A building-integrated photovoltaic incubator  

SciTech Connect

A huge tipped glass tube provides instruction to visitors to the Discovery Science Center in Los Angeles, and an educational diversion to commuters on Interstate 5. The project revealed that photovoltaic industry has a lot to learn from those in the construction industry about building-integrated photovoltaics. The industry must develop products pleasing to the architect and the architect's client, and easily adaptable to the rest of the building. This market requires PV manufacturers to look at photovoltaics as a building material that just so happens to produce electricity, too. Hence, price per square rules in this application over cost per watt. Most importantly, of course, demonstrating as pioneers the potential of building-integrated photovoltaics has delighted the client, The Science Discovery Center.

Perlin, J.

2000-06-01T23:59:59.000Z

188

Assessing the drivers of regional trends in solar photovoltaic manufacturing  

E-Print Network (OSTI)

The photovoltaic (PV) industry has grown rapidly as a source of energy and economic activity. Since 2008, the average manufacturer-sale price of PV modules has declined by over a factor of two, coinciding with a significant ...

Goodrich, Alan C.

189

Energy Basics: Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

190

Energy Basics: Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

191

Energy Basics: Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

192

Residential solar photovoltaic systems: Final report for the Northeast Residential Experiment Station  

Science Conference Proceedings (OSTI)

This report covers research and development work conducted by the MIT Energy Lab. from July 1982 through June 1986. This Energy Lab. work in the field of solar photovoltaic systems followed six years of similar work at the MIT Lincoln Lab. under the same contract with the US DOE. The final report from the Lincoln Lab. period was published by Lincoln Lab. in 1983. During the period of Energy Lab. involvement, the project focused on the refinement of residential scale, roof-mounted photovoltaic systems for application in the northeastern US. Concurrent with the conclusion of MIT`s involvement, the New England Electric Co. is building a major field test of residential photovoltaics in Gardner, Massachusetts to determine experimentally the effects of photovoltaics on electric power company operations. Using systems designs and technology developed at MIT, the long-term performance of these thirty residential systems in Gardner will provide a measure of our success.

Kern, E.C. Jr.

1986-06-01T23:59:59.000Z

193

Sri M., Huld T., Dunlop E.D., Albuisson M., Lefvre M., Wald L., 2007. Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. Proceedings of the 22nd  

E-Print Network (OSTI)

Photovoltaic Solar Energy Conference, Milano, Italy 3-7.9.2007 (preprint). UNCERTAINTIES IN PHOTOVOLTAIC European Photovoltaic Solar Energy Conference, Milan : Italy (2007)" #12;SĂşri M., Huld T., Dunlop E fluctuation of solar radiation. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milano

Paris-Sud XI, Université de

194

Solar thermophotovoltaic efficiency potentials : surpassing photovoltaic device efficiencies  

E-Print Network (OSTI)

Solar energy has gained more attention in recent years due to increased concerns about the continued use of fossil fuels. Solar energy is a form of renewable energy, and solar energy technology does not release greenhouse ...

Barnes, Kathryn M

2012-01-01T23:59:59.000Z

195

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

gas reduction from solar PV generation. REFERENCES Asmus,and the Economics of Solar PV: Could Mandatory Time-of-UseAverage Value Per MWh of Solar PV Power from Adjusting for

Borenstein, Severin

2008-01-01T23:59:59.000Z

196

Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells  

E-Print Network (OSTI)

to Third-Generation Photovoltaic Solar Cells A. J. Nozik,*,, M. C. Beard, J. M. Luther, M. Law,§ R. J. Applications: Quantum Dot Solar Cells 6884 6.1. Quantum Dot Solar Cell Configurations 6885 6.1.1. Photoelectrodes Composed of Quantum Dot Arrays 6885 6.1.2. Quantum Dot-Sensitized Nanocrystalline TiO2 Solar Cells

George, Steven C.

197

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

Hour of Day Real-Time Price PV - South PV - West PV output (Correlation Between Prices and Solar PV Production Thecorrelation between prices and solar PV production discussed

Borenstein, Severin

2008-01-01T23:59:59.000Z

198

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

such weather also produces higher solar PV production. Thus,solar PV production increases with hotter, sunnier weathersolar PV production that includes random vari- ation due to weather.

Borenstein, Severin

2008-01-01T23:59:59.000Z

199

Performance, problems, and expectations of concentrator photovoltaic systems  

DOE Green Energy (OSTI)

The photovoltaic cell or solar cell can be used to convert sunlight directly into electrical energy and its relatively simple construction and absence of moving parts make these devices attractive for terrestrial power generation applications. The primary problem preventing large-scale application is the very high cost of solar cell arrays. For example, the most advanced solar cell is the silicon cell and, currently in the United States, silicon solar arrays cost about $15,000 per peak kilowatt in moderately large quantities. One approach to reducing the cost of solar cell arrays is to concentrate sunlight on the cells and increase the specific output power density of the cells. In this approach, expensive solar cell area is replaced by, hopefully, less expensive reflective or refractive concentrator materials. The United States Energy Research and Development Administration (ERDA) is supporting a program to develop concentrator photovoltaic systems with the primary objective to develop low-cost reliable systems for widespread terrestrial applications. The specific long-term cost goal for these systems is $500 per peak kilowatt by 1982. The most promising solar cell systems for concentrator applications are silicon and galium arsenide and these materials have received the most attention to date in the ERDA program. Design, preliminary performance testing results, and cost estimates for concentrator photovoltaic systems are discussed.

Burgess, E.L.

1977-01-01T23:59:59.000Z

200

Airport Solar Photovoltaic Concentrator Project. Phase 1 - final report, June 1, 1978-February 28, 1979  

DOE Green Energy (OSTI)

The system design, analysis, and specification, site preparation, and operation and evaluation plan for a 500 kWe photovoltaic power supply to be located at the Phoenix Sky Harbor International Airport in Phoenix, Arizona, are presented. The solar cell arrays are concentrator silicon solar cells with tracking 70X Cassegrain-type concentrators. The power conditioning system, tracking system, and control systems are described in detal. Environmental impact studies are described. Component specifications and drawings are included. (WHK)

Not Available

1979-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Water harvesting for young trees using Peltier modules powered by photovoltaic solar energy  

Science Conference Proceedings (OSTI)

Young trees transplanted from nursery into open field require a minimum amount of soil moisture to successfully root in their new location, especially in dry-climate areas. One possibility is to obtain the required water from air moisture. This can be ... Keywords: DAQB, Dew condenser, EMF, ETc, Hr, Irrigation, SPV, SPVM, Solar photovoltaic energy, TD, Ta, Tdp, Thermoelectric effect, Ts, Water harvesting

M. A. MuńOz-GarcíA; G. P. Moreda; M. P. Raga-Arroyo; O. MaríN-GonzáLez

2013-04-01T23:59:59.000Z

202

SOLERAS - Photovoltaic Power Systems Project. Rural solar applications. Final report: project summary  

Science Conference Proceedings (OSTI)

The Saudi Solar Village Project photovoltaic system is described, consisting of 160 arrays, a computerized control system, 1100 kW of electrical storage in lead-acid batteries, and an automatic weather data gathering system. Satisfactory overall system performance is reported. Performance degradation due to dust on the array lenses was determined. Field operational problems are discussed. (LEW)

Not Available

1985-01-01T23:59:59.000Z

203

Enhanced photovoltaic characteristics of solar cells based on n-type triphenodioxazine derivative  

Science Conference Proceedings (OSTI)

Polymer solar cells based on poly (2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene) (MEH-PPV):1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61(PCBM):3, 10-di(trifluoromethane) triphenodioxazine (TFTD) was fabricated using spin coating technology. ... Keywords: Absorption spectra, Photoluminescence, Photovoltaics, Polymer

Fen Qiao; Aimin Liu; Yi Xiao; Yang Ping Ou; Ji quan Zhang; Yong chang Sang

2008-12-01T23:59:59.000Z

204

Review article: A review of particle swarm optimization and its applications in Solar Photovoltaic system  

Science Conference Proceedings (OSTI)

Particle swarm optimization is a stochastic optimization, evolutionary and simulating algorithm derived from human behaviour and animal behaviour as well. Special property of particle swarm optimization is that it can be operated in continuous real number ... Keywords: Linearly decreasing inertia weight, PSO parameters & control, Particle swarm optimization, Solar Photovoltaics, Time varying acceleration coefficients

Anula Khare; Saroj Rangnekar

2013-05-01T23:59:59.000Z

205

Definition: Kilowatt-hour | Open Energy Information  

Open Energy Info (EERE)

Kilowatt-hour Kilowatt-hour Jump to: navigation, search Dictionary.png Kilowatt-hour A unit of measure for energy, typically applied to electricity usage; equal to the amount of energy used at a rate of 1,000 watts over the course of one hour. One kWh is equivalent to 3,412 Btu, or 3,600 kJ.[1][2] View on Wikipedia Wikipedia Definition The kilowatt hour, or kilowatt-hour, (symbol kW·h, kW h or kWh) is a unit of energy equal to 1000 watt hours or 3.6 megajoules. For constant power, energy in watt hours is the product of power in watts and time in hours. The kilowatt hour is most commonly known as a billing unit for energy delivered to consumers by electric utilities. Also Known As kWh Related Terms British thermal unit, Electricity, Energy, Kilowatt, energy, electricity generation

206

SURVEILLANCE OF PHOTOVOLTAIC SOLAR ENERGY SYSTEMS USING METEOSAT DERIVED IRRADIANCES  

E-Print Network (OSTI)

which allow for a cheap and reliable check of the power production of grid connected PV systems. These checks are done by calculating the estimated output of the PV system with a simulation-model. The model Utrecht ABSTRACT In this paper, we describe a surveillance procedure for grid connected photovoltaic (PV

Heinemann, Detlev

207

Making Strides to Boost the Use of Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy November 12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? As the price of installing residential solar drops, more Americans can tap into this renewable resource.

208

Making Strides to Boost the Use of Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy November 12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? As the price of installing residential solar drops, more Americans can tap into this renewable resource.

209

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

210

Rocky Flats Site Expands Solar Power for Treating Groundwater | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater Rocky Flats Site Expands Solar Power for Treating Groundwater April 17, 2013 - 1:26pm Addthis Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. Subcontractor personnel install solar panels and other infrastructure on a 40-foot conex box that houses the batteries and control equipment for the 6 kilowatt photovoltaic system that powers the ETPTS groundwater treatment system. DOE was able to minimize impacts to the habitat of a federally protected mouse and provide the potential for relatively easy relocation by mounting the solar panels on the side of the conex box that houses the batteries and other system equipment.

211

Solar Power Generates Big Savings in Salinas, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

212

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer (OSTI)

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

213

Ligitek Photovoltaic | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Ligitek Photovoltaic Jump to: navigation, search Name Ligitek Photovoltaic Place Taiwan Sector Solar Product Ligitek solar...

214

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts  

SciTech Connect

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity, DOE provides technical assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay Area was selected for a 2009 DOE Solar America Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar photovoltaics (PV) projects in school districts across the country.

Kandt, A.

2011-01-01T23:59:59.000Z

215

27Solar Irradiance Changes and the Sunspot Cycle Irradiance (also called insolation) is a measure of the amount of sunlight power  

E-Print Network (OSTI)

system generate in 1989? Space Math http://spacemath.gsfc.nasa.gov #12;27Answer Key Problem 1 - About to be the relationship between sunspot number and solar irradiance? Problem 3 - A homeowner built a solar electricity (photovoltaic) system on his roof in 1985 that produced 3,000 kilowatts-hours of electricity that year. Assuming

216

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

by low price caps, the di?erence between solar PV powersolar PV power using hourly wholesale electricity prices and5. Real-time Prices for Valuing the Power from Solar PVs As

Borenstein, Severin

2008-01-01T23:59:59.000Z

217

Feasibility Study of Economics and Performance of Solar Photovoltaics...  

NLE Websites -- All DOE Office Websites (Extended Search)

land to a solar developer. The savings and payback are deemed reasonable, and as such, a solar PV system represents a viable reuse for the landfill under analyzed conditions. vi...

218

Concentrating Photovoltaic Module Testing at NREL's Concentrating Solar Radiation Users Facility  

DOE Green Energy (OSTI)

There has been much recent interest in photovoltaic modules designed to operate with concentrated sunlight (>100 suns). Concentrating photovoltaic (CPV) technology offers an exciting new opportunity as a viable alternative to dish Stirling engines. Advantages of CPV include potential for>40% cell efficiency in the long term (25% now), no moving parts, no intervening heat transfer surface, near-ambient temperature operation, no thermal mass, fast response, concentration reduces cost of cells relative to optics, and scalable to a range of sizes. Over the last few years, we have conducted testing of several CPV modules for DOEs Concentrating Solar Power (CSP) program. The testing facilities are located at the Concentrating Solar Radiation Users Facility (CRULF) and consist the 10 kW High-Flux Solar Furnace (HFSF) and a 14m2 Concentrating Technologies, LLC (CTEK) dish. This paper will primarily describe the test capabilities; module test results will be detailed in the presentation.

Bingham, C.; Lewandowski, A.; Stone, K.; Sherif, R.; Ortabasi, U.; Kusek, S.

2003-05-01T23:59:59.000Z

219

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

220

Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems  

SciTech Connect

This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

2007-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ORGANIC PHOTOVOLTAIC DEVICE OPTIMIZATION .  

E-Print Network (OSTI)

??Polymer based organic photovoltaic (OPV) is making great progress on solar cell performance in the past decade. As a potential alternative to conventional expensive photovoltaic… (more)

Nie, Wanyi

2012-01-01T23:59:59.000Z

222

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

energy generation from wind, geothermal, biomass, and central station solar thermal, with a 5% annual increase in the real cost

Borenstein, Severin

2008-01-01T23:59:59.000Z

223

Solar Leasing for Residential Photovoltaic Systems (Revised) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

In the past year, the residential solar lease has received In the past year, the residential solar lease has received significant attention in the solar marketplace, primarily for its ability to leverage two key commercial tax credits for the individual homeowner. However, on January 1, 2009, the $2,000 cap on the residential investment tax credit (ITC) was lifted. As a result, the expansion of the solar lease model across the United States may be slower than antici-

224

www.ucei.org Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

Abstract: Solar PV panels generate electricity only during daylight hours and generate more electricity when the sun is shining more intensely. As a result, in summer-peaking electricity systems, such as California and most of the U.S., power from PVs is produced disproportionately at times when the value of electricity is high. Thus, a valuation of solar PV electricity production that uses only the average wholesale cost of electricity will tend to undervalue the power. Yet, that is what happens by default in many installations because solar PVs are generally located at the end-user’s premises and those end-users are often billed on a flat per kilowatt-hour rate that does not reflect time-varying valuation. As a result, the benefits to many owners of solar PV in reduced electricity bills do not reflect thetruetime-varyingvaluationofthepowerthepanelsproduce. IusesolarPVproduction information in conjunction with wholesale price data and simulations to estimate the actual wholesale value of power from solar PVs and the degree of bias that occurs from using a constant price to value electricity generated by solar PVs. I find that in the California locations I analyze, the most credible long-run valuation of solar PV power is 29%-48% greater than results from valuation at a flat-rate tariff, depending on the location of the PV

Severin Borenstein; Severin Borenstein

2005-01-01T23:59:59.000Z

225

Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode  

Science Conference Proceedings (OSTI)

An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

2010-09-15T23:59:59.000Z

226

Residential Solar Photovoltaics: Comparison of Financing Benefits, Innovations, and Options  

DOE Green Energy (OSTI)

This report examines relatively new, innovative financing methods for residential photovoltaics (PV) and compares them to traditional self-financing. It provides policymakers with an overview of the residential PV financing mechanisms, describes relative advantages and challenges, and analyzes differences between them where data is available. Because these innovative financing mechanisms have only been implemented in a few locations, this report can inform their wider adoption.

Speer, B.

2012-10-01T23:59:59.000Z

227

On the Use of Agent-Based Simulation for Efficiency Analysis of Domestic Heating Using Photovoltaic Solar Energy  

E-Print Network (OSTI)

Solar Energy Production Combined with a Heatpump Jan Treur VU University Amsterdam, Agent Systems on a heatpump together with a photovoltaic (PV) solar energy installation. A simulation model for the cost (in to a simulation model for the yields of a PV installation agent to estimate produced solar energy (in kWh per day

Treur, Jan

228

Photovoltaic engineering services pertinent to solar energy conversion  

SciTech Connect

The application of the compound parabolic concentrator (CPC) for use with solar cells has been investigated. Experiments with state-of-the-art Si cells in a CPC and under solar concentration were performed. A theoretical model for calculating the behavior of Si solar cells with concentration was developed. Detailed calculations of the energy distribution in the CPC were made. Finally a cost effectiveness analysis shows that the CPC system will produce power at very much lower cost than will flat panel solar cell arrays. (auth)

Bell, R O; Ho, J C.T.; Kurth, W; Surek, T

1975-06-01T23:59:59.000Z

229

Utility-scale installations lead solar photovoltaic growth - Today ...  

U.S. Energy Information Administration (EIA)

... led by particularly strong growth in both utility-scale PV and commercial sector PV capacity. Although 2011 was a record year for solar PV growth, ...

230

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

are a form of distributed generation. The current directPV. As a form of distributed generation, solar PV is alsoprovisions for distributed generation. hour when electricity

Borenstein, Severin

2008-01-01T23:59:59.000Z

231

Progress Energy Florida - SunSense Solar Photovoltaics Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Amount Varies '''''All funds for Progress Energy Florida's SunSense Solar PV Rebate program have been committed at this time.''''' Progress Energy Florida...

232

NREL: Photovoltaics Research - Solar Policy and Program Technical...  

NLE Websites -- All DOE Office Websites (Extended Search)

and comparison to best practices with suggestions for policy changes to better serve the solar DG market Unbiased analysis of economic and market impacts related to policy changes...

233

Increasing the solar photovoltaic energy capture on sunny and cloudy days  

Science Conference Proceedings (OSTI)

This report analyzes an extensive set of measurements of the solar irradiance made using four identical solar arrays and associated solar sensors (collectively referred to as solar collectors) with different tilt angles relative to the earth's surface, and thus the position of the sun, in order to determine an optimal tracking algorithm for capturing solar radiation. The study included a variety of ambient conditions including different seasons and both cloudy and cloud-free conditions. One set of solar collectors was always approximately pointed directly toward the sun (DTS) for a period around solar noon. These solar collectors thus captured the direct beam component of the solar radiation that predominates on sunny days. We found that on sunny days, solar collectors with a DTS configuration captured more solar energy in accordance with the well-known cosine dependence for the response of a flat-surfaced solar collector to the angle of incidence with direct beam radiation. In particular, a DTS orientation was found to capture up to twice as much solar energy as a horizontal (H) orientation in which the array is tilted toward the zenith. Another set of solar collectors always had an H orientation, and this best captured the diffuse component of the solar radiation that predominates on cloudy days. The dependence of the H/DTS ratio on the solar-collector tilt angle was in approximate agreement with the Isotropic Diffuse Model derived for heavily overcast conditions. During cloudy periods, we found that an H configuration increased the solar energy capture by nearly 40% compared to a DTS configuration during the same period, and we estimate the solar energy increase of an H configuration over a system that tracks the obscured solar disk could reach 50% over a whole heavily-overcast day. On an annual basis the increase is predicted to be much less, typically only about 1%, because the contribution of cloudy days to the total annual solar energy captured by a photovoltaic system is small. These results are consistent with the solar tracking algorithm optimized for cloudy conditions that we proposed in an earlier report and that was based on a much smaller data set. Improving the harvesting of solar energy on cloudy days deserves wider attention due to increasing efforts to utilize renewable solar energy. In particular, increasing the output of distributed solar power systems on cloudy days is important to developing solar-powered home fueling and charging systems for hydrogen-powered fuel-cell electric and battery-powered vehicles, respectively, because it reduces the system size and cost for solar power systems that are designed to have sufficient energy output on the worst (cloudy) days. (author)

Kelly, Nelson A.; Gibson, Thomas L. [General Motors R and D Center, 480-106-269, Chemical Sciences and Materials Systems Laboratory, 30500 Mound Road, Warren, MI 48090-9055 (United States)

2011-01-15T23:59:59.000Z

234

Modesto Irrigation District - Photovoltaic Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program Modesto Irrigation District - Photovoltaic Rebate Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential State Government Savings Category Solar Buying & Making Electricity Maximum Rebate 50% of total project costs. Program Info State California Program Type Utility Rebate Program Rebate Amount Systems >1 kW to 30 kW: $1.00/W AC. Systems >30 kW to 1 MW: performance-based incentive of $0.10/kWh for 5 years. Provider PV Program Coordinator Modesto Irrigation District offers a photovoltaic rebate program for all of their electric customers. The peak output capacity of a system must be 1 kW or greater to participate. Systems up to 30 kilowatts (kW) in capacity can

235

Central Georgia EMC - Photovoltaic Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Georgia EMC - Photovoltaic Rebate Program Central Georgia EMC - Photovoltaic Rebate Program Central Georgia EMC - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount $450/kW installed capacity Provider Central Georgia Electric Membership Corporation In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are interconnected and net-metered. To qualify, PV systems must have a warranty of five or more years and must be installed by a licensed contractor. In addition, PV systems are limited to 10 kW in capacity and must be installed in accordance with all

236

EVALUATION OF FLAT-PLATE PHOTOVOLTAIC THERMAL HYBRID SYSTEMS FOR SOLAR ENERGY UTILIZATION.  

DOE Green Energy (OSTI)

The technical and economic attractiveness of combined photovoltaic/thermal (PV/T) solar energy collectors was evaluated. The study was limited to flat-plate collectors since concentrating photovoltaic collectors require active cooling and thus are inherently PV/T collectors, the only decision being whether to use the thermal energy or to dump it. it was also specified at the outset that reduction in required roof area was not to be used as an argument for combining the collection of thermal and electrical energy into one module. Three tests of economic viability were identified, all of which PV/T must pass if it is to be considered a promising alternative: PV/T must prove to be competitive with photovoltaic-only, thermal-only, and side-by-side photovoltaic-plus-thermal collectors and systems. These three tests were applied to systems using low-temperature (unglazed) collectors and to systems using medium-temperature (glazed) collectors in Los Angeles, New York, and Tampa. For photovoltaics, the 1986 DOE cost goals were assumed to have been realized, and for thermal energy collection two technologies were considered: a current technology based on metal and glass, and a future technology based on thin-film plastics. The study showed that for medium-temperature applications PV/T is not an attractive option in any of the locations studied. For low-temperature applications, PV/T appears to be marginally attractive.

ANDREWS,J.W.

1981-06-01T23:59:59.000Z

237

Photovoltaic  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Columnar p-n Heterostructures Formed by a Thin-Film Self-Assembly Approach: Potential for PV Solar Cells: Tolga Aytug1; Daniela Bogorin1; ...

238

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

DOE Green Energy (OSTI)

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

239

Solar Power Fact Book, Fourth Edition: Volume 1—Photovoltaics  

Science Conference Proceedings (OSTI)

Grid-connected deployment of solar power technologies is accelerating in response to improving economics, consumer preferences, renewable energy mandates and incentives, climate change and energy security considerations, and additional factors. Many electricity providers have incorporated solar technologies in their generation mixes and on their power delivery systems by investing in projects, signing purchase agreements with independent producers, and facilitating consumer applications. Other ...

2013-12-23T23:59:59.000Z

240

SOLAR RADIATION DURABILITY OF MATERIALS, COMPONENTS AND SYSTEMS FOR PHOTOVOLTAICS  

E-Print Network (OSTI)

. Discussions at the NREL PV reliability workshop in 2011 came to the conclusion that while initial performance as a function of total absorbed solar radiation dose. In a reliability engineering framework, these quantitative and published data, comparisons have been made showing the reduction of solar irradiance incident on the PV

Rollins, Andrew M.

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Solar Power Fact Book, Fourth Edition: Volume 1—Photovoltaics  

Science Conference Proceedings (OSTI)

Grid-connected deployment of solar power technologies is accelerating in response to improving economics, consumer preferences, renewable energy mandates and incentives, climate change and energy security considerations, and additional factors. Many electricity providers have incorporated solar technologies in their generation mixes and on their power delivery systems by investing in projects, signing purchase agreements with independent producers, and facilitating consumer applications. Other ...

2014-01-28T23:59:59.000Z

242

NREL: Photovoltaics Research - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

243

NREL: Photovoltaics Research - Solar Decathlon Heads to California for 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Heads to California for 2013 Event Decathlon Heads to California for 2013 Event Photo showing the aerial view of several structures with solar panels on top. Aerial view of the U.S. Department of Energy Solar Decathlon 2011 in Washington, D.C. (Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon) January 11, 2013 For the first time, the U.S. Department of Energy Solar Decathlon will be held outside of Washington, D.C. This fall, 20 collegiate teams will head to the Orange Country Great Park in Irvine, California, to compete in this award-winning showcase of energy-efficient and solar-powered houses. The free event will take place in a specially constructed village Oct. 3-13, 2013. The competition houses will be open to visitors on eight days over two weekends. Public hours will be from 11 a.m. to 7 p.m. daily:

244

OTEC- Residential Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

245

Solar  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) leads a large network of researchers and other partners to deliver innovative solar photovoltaic and concentrating solar power technologies that will make solar...

246

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

247

An investigation of photovoltaic powered pumps in direct solar domestic hot water systems  

DOE Green Energy (OSTI)

The performance of photovoltaic powered pumps in direct solar domestic hot water (PV-SDHW) systems has been studied. The direct PV- SDHW system employs a photovoltaic array, a separately excited DC- motor, a centrifugal pump, a thermal collector, and a storage tank. A search methodology for an optimum PV-SDHW system configuration has been proposed. A comparison is made between the long-term performance of a PV-SDHW system and a conventional SDHW system operating under three control schemes. The three schemes are: an ON-OFF flow controlled SDHW system operating at the manufacturer-recommended constant flow rate, and a linear proportional flow controlled SDHW system with the flow proportional to the solar radiation operating under an optimum proportionality. 13 refs., 6 figs.

Al-Ibrahim, A.M.; Klein, S.A.; Mitchell, J.W.; Beckman, W.A.

1996-09-01T23:59:59.000Z

248

Environmental Assessment Photovoltaic Solar Project at the Durango, Colorado, Disposal Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Office of Legacy Management U.S. Department of Energy Office of Legacy Management DOE/EA 1770 FINDING OF NO SIGNIFICANT IMPACT Photovoltaic Solar Project at the Durango, Colorado, Disposal Site, La Plata County AGENCY: U.S. Department of Energy (DOE), Office of Legacy Management (LM) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: LM prepared an Environmental Assessment (EA) (DOE/EA-1770) that evaluated two action alternatives related to the installation, operation, and removal of a photovoltaic (PV) solar energy system on the Durango, Colorado, Disposal Site and the No Action Alternative. Alternative 1 evaluated the use of the 18-acre (ac) vegetated surface of the disposal cell for the installation of a PV system. The second action alternative (Alternative 2, the Preferred Action) considered the use of the surface of the

249

Chapter 1.03: Solar Photovoltaics Technology: No Longer an Outlier  

Science Conference Proceedings (OSTI)

The status and future technology, market, and industry opportunities for solar photovoltaics are examined and discussed. The co-importance of both policy and technology investments for the future markets and competitiveness of this solar approach is emphasized. This paper underscores the technology side, with a comprehensive overview and insights to technical, policy, market, industry and other investments needed to tip photovoltaics to its next level of contribution as a significant clean-energy partner in the world energy economy. The requirement to venture from near-term and evolutionary approaches into disruptive and revolutionary technology pathways is argued for our needs in the mid-term (the next 10-15 years) and the long-term (beyond the first quarter of this century).

Kazmerski, L. L.

2012-01-01T23:59:59.000Z

250

Proceedings of the flat-plate solar array project research forum on photovoltaic metallization systems  

DOE Green Energy (OSTI)

A Photovoltaic Metallization Research Forum, under the sponsorship of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and the US Department of Energy, was held March 16-18, 1983 at Pine Mountain, Georgia. The Forum consisted of five sessions, covering (1) the current status of metallization systems, (2) system design, (3) thick-film metallization, (4) advanced techniques and (5) future metallization challenges. Twenty-three papers were presented.

None

1983-11-15T23:59:59.000Z

251

Modeling Photovoltaic and Concentrating Solar Power Trough Performance, Cost, and Financing with the Solar Advisor Model: Preprint  

Science Conference Proceedings (OSTI)

A comprehensive solar technology systems analysis model, the Solar Advisor Model (SAM), has been developed to support the federal R&D community and the solar industry by staff at the National Renewable Energy Laboratory (NREL) and Sandia National Laboratory. This model is able to model the finances, incentives, and performance of flat-plate photovoltaic (PV), concentrating PV, and concentrating solar power (specifically, parabolic troughs). The primary function of the model is to allow users to investigate the impact of variations in performance, cost, and financial parameters to better understand their impact on key figures of merit. Figures of merit related to the cost and performance of these systems include, but aren't limited to, system output, system efficiencies, levelized cost of energy, return on investment, and system capital and O&M costs. There are several models within SAM to model the performance of photovoltaic modules and inverters. This paper presents an overview of each PV and inverter model, introduces a new generic model, and briefly discusses the concentrating solar power (CSP) parabolic trough model. A comparison of results using the different PV and inverter models is also presented.

Blair, N.; Mehos, M.; Christensen, C.; Cameron, C.

2008-05-01T23:59:59.000Z

252

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

253

Feasibility Study of Economics and Performance of Solar Photovoltaics...  

NLE Websites -- All DOE Office Websites (Extended Search)

For the Standard Chlorine of Delaware site, there are two area types that could contain solar panels: roof and ground space. Fixed-axis panels will be the system used for covered...

254

System integration issues of residential solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this study is to evaluate the economic effects of residential solar PV systems on the utility's revenue, capacity, and energy requirements from the electric utility's perspective and to estimate the price that it might pay for surplus energy compared to what it would charge for deficits. The power and energy generated by the solar PV systems reduce the capital and operating costs that would otherwise be incurred by the utility. These avoided costs suggest what the utility might pay for surplus solar PV energy. The avoided costs are evaluated under three integration hypotheses, namely: (1) the utility has no system storage, (2) the utility has system storage, and (3) the solar PV systems are supported by dedicated storage devices, the purpose of which is to minimize sales to and purchases from the utility. Findings are reported in detail. (WHK)

Yamayee, Z.A.; Peschon, J.

1980-03-01T23:59:59.000Z

255

Solar Photovoltaic Feasibility Study: City of Nitro, West Virginia  

NLE Websites -- All DOE Office Websites (Extended Search)

energy property and placed it in service. 35% Yes Not specified Hawaii Solar and Wind Energy Credit (Corporate) Hawaii taxpayer that files a corporate net income tax return or...

256

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

2: Hourly Average Real-time Price and Solar PV ProductionWeekdays Hour of Day Real-Time Price PV - South PV - West PVwest if faced with real-time prices, but an analysis of the

Borenstein, Severin

2008-01-01T23:59:59.000Z

257

Engineering and Economic Evaluation of Central-Station Solar Photovoltaic Power Plants  

Science Conference Proceedings (OSTI)

The market for solar photovoltaics (PV) is growing rapidly as the technology continues to mature. By the end of 2010, the installed global PV capacity was upwards of 40,000 MWp, of which roughly 17,000 MW were installed in 2010. Total PV capacity in the U.S. grew to about 2,500 MW.1 As the manufacturing capacity for solar PV cells and modules has increased, the cost of modules has decreased significantly. This engineering and economic evaluation addressed 22 combinations of six PV technologies and four l...

2012-03-15T23:59:59.000Z

258

Incorporation of NREL Solar Advisor Model Photovoltaic Capabilities with GridLAB-D  

SciTech Connect

This report provides a summary of the work updating the photovoltaic model inside GridLAB-D. The National Renewable Energy Laboratory Solar Advisor Model (SAM) was utilized as a basis for algorithms and validation of the new implementation. Subsequent testing revealed that the two implementations are nearly identical in both solar impacts and power output levels. This synergized model aides the system-level impact studies of GridLAB-D, but also allows more specific details of a particular site to be explored via the SAM software.

Tuffner, Francis K.; Hammerstrom, Janelle L.; Singh, Ruchi

2012-10-19T23:59:59.000Z

259

Solar Photovoltaic Economic Development: Building and Growing a Local PV Industry, August 2011 (Book)  

DOE Green Energy (OSTI)

The U.S. photovoltaic (PV) industry is forecast to grow, and it represents an opportunity for economic development and job creation in communities throughout the United States. This report helps U.S. cities evaluate economic opportunities in the PV industry. It serves as a guide for local economic development offices in evaluating their community?s competitiveness in the solar PV industry, assessing the viability of solar PV development goals, and developing strategies for recruiting and retaining PV companies to their areas.

Not Available

2011-08-01T23:59:59.000Z

260

Concentrator Photovoltaic Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrator Photovoltaic Systems Concentrator Photovoltaic Systems August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other...

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nanopillar Photovoltaics: Photon Management and Junction Engineering for Next-Generation Solar Cells  

E-Print Network (OSTI)

for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-for efficient photovoltaic cells, Nat. Nanotechnol. 6, 568-trapping in thin-film photovoltaic cells, Opt. Express 8,

Mariani, Giacomo

2013-01-01T23:59:59.000Z

262

Energy Basics: Photovoltaic Cell Structures  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

263

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

264

Energy Basics: Concentrator Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

265

Energy Basics: Photovoltaic System Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

266

Energy Basics: Photovoltaic Cell Materials  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

267

Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California  

SciTech Connect

This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

2006-01-01T23:59:59.000Z

268

Letting the Sun Shine on Solar Costs: An Empirical Investigation of Photovoltaic Cost Trends in California  

DOE Green Energy (OSTI)

This report provides a comprehensive analysis of grid-connected solar photovoltaic (PV) cost trends in California, which is by far the largest PV market in the United States. The findings of this work may help stakeholders to understand important trends in the California PV market, and policymakers to design more effective solar incentive programs--a particularly important objective given the recent announcement from the California Public Utilities Commission (CPUC) to establish an 11-year, $3.2 billion incentive program for customer-sited solar. The study statistically analyzes the installed cost of grid-connected PV systems funded by the state's two largest solar rebate programs, overseen by the California Energy Commission (CEC) [operating since 1998] and the CPUC [operating since 2001].

Wiser, R.; Bolinger, M.; Cappers, P.; Margolis, R.

2006-01-01T23:59:59.000Z

269

Definition: Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics Jump to: navigation, search Dictionary.png Photovoltaics Pertaining to the direct conversion of light into electricity[1][2] View on Wikipedia Wikipedia Definition Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Materials presently used for photovoltaics include monocrystalline silicon, polycrystalline silicon, amorphous silicon, cadmium telluride, and copper indium gallium selenide/sulfide. Due to the increased demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced

270

Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics  

SciTech Connect

Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020—from $0.15 per kilowatt hour to less than $0.07. 1366’s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today’s state-of-the-art technologies. 1366’s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366’s technology, the cost of silicon wafers could be reduced by 80%.

None

2010-01-15T23:59:59.000Z

271

Mission analysis of photovoltaic solar energy conversion. Volume I. Executive summary  

DOE Green Energy (OSTI)

An investigation of terrestrial applications for the photovoltaic conversion of solar energy is summarized. The specific objectives of the study were: (a) to survey and evaluate near-term (1976--1985) civilian photovoltaic applications in the United States; (b) to evaluate the most promising major missions for the mid-term period (1986--2000) and to determine the conditions under which photovoltaic technology can compete in those applications at array prices consistent with ERDA goals; (c) to address critical external issues and identify the sensitivity of photovoltaic system technical requirements to such factors; and (d) to quantify the societal costs of alternative energy sources and identify equalizing incentives. The study was divided into six separate but interrelated tasks: Task 1, Analysis of Near-Term Applications; Task 2, Analysis of Major Mid-Term Missions; Task 3, Review and Updating of the ERDA Technology Implementation Plan; Task 4, Critical External Issues; Task 5, The Impact of Incentives; and Task 6, The Societal Costs of Conventional Power Generation. The emphasis of the study was on the first two of these tasks, the other four serving to provide supplementary information.

Leonard, S.L.; Rattin, E.J.; Siegel, B.

1977-03-01T23:59:59.000Z

272

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, April 1-June 30, 1979  

DOE Green Energy (OSTI)

The US Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. In its capacity as a Photovoltaic Field Tests and Applications Center, Massachusetts Institute of Technology Lincoln Laboratory has established various experimental test sites, ranging in size from 0.1- to 25-kW-peak power, throughout the United States. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. This report, the fifth in a series of similar reports (1-4), summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Field Tests and Applications Project during the three-month period (4/1/79 to 6/30/79). During this period, inspection trips were made to test sites at the University of Texas at Arlington and at Mead, Nebraska. Modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. Several modules were removed from these sites for more detailed laboratory analysis. In addition, degradation analysis of modules from the rooftop of the Chicago Museum of Science and Industry, and failure analysis of modules from the Lincoln Laboratory Rooftop Test Bed and Residential Test Beds was performed. The results of both field testing and the laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-10-31T23:59:59.000Z

273

Solar Photovoltaic Project: materials, processes, and testing activities. Quarterly report, 1 January-31 March 1979  

DOE Green Energy (OSTI)

The Department of Energy has set a 20-year-lifetime goal for terrestrial photovoltaic modules. Massachusetts Institute of Technology's Lincoln Laboratory, in its capacity as a Photovoltaic Field Tests and Applications Center, has established throughout the United States various experimental test sites which range in size from 0.1 to 25 kW of peak power. These sites include modules from several manufacturers and serve as test beds for photovoltaic system components. The activities of the Materials, Processes, and Testing Laboratory of the Solar Photovoltaic Project during a three-month (1/1/79-3/31/79) period are summarized. During this period, an inspection trip was made to the Mead, Nebraska, test site. The modules were tested in the field to determine the extent of physical and electrical degradation which had taken place since previous inspections. In addition, several modules were removed from the site for more detailed laboratory examination. The results of both the field testing and laboratory analyses are reported.

Forman, S.E.; Themelis, M.P.

1979-06-30T23:59:59.000Z

274

Solar Power Generates Big Savings in Salinas, California | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Generates Big Savings in Salinas, California Power Generates Big Savings in Salinas, California Solar Power Generates Big Savings in Salinas, California October 15, 2012 - 4:40pm Addthis A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County’s Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs. Click here to see a panoramic view of the entire solar array. | Photo courtesy of Santa Cruz Westside Electric, DBA Sandbar. A portion of the new 141 kilowatt solar photovoltaic energy system at Monterey County's Laurel Yard Complex in Salinas, California. The system is expected to save the county thousands of dollars a year in energy costs.

275

Hawaiian Electric Company, Inc. Photovoltaic Energy Park Master Development Planning  

Science Conference Proceedings (OSTI)

This document describes a Master Development Plan to develop, construct, and operate a photovoltaic energy park (PVEP). The central feature of the park would be a large-scale solar power plant with up to 3.0 MW (peak) capacity of single axis tracking and fixed systems. The park would be developed in phases using multiple 100 kilowatt (peak) solar power systems. The plant would utilize proven PV technology commonly available at the time of the construction. In addition, space has been set aside for resear...

2004-02-20T23:59:59.000Z

276

Life Cycle Greenhouse Gas Emissions from Solar Photovoltaics  

E-Print Network (OSTI)

and module manufacturing. · System/Plant Decommissioning · Disposal · PowerPlant Decommissioning · Waste life cycle GHG emissions from solar PV systems are similar to other renewables and nuclear energy.nrel.gov/harmonization. · Life cycle GHG emissions from c-Si and TF PV technologies appear broadly similar; the small number

277

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

than 25 kilowatts (kW). July 12, 2013 Mandatory Photovoltaic System Cost Analysis The Arizona Corporation Commission requires electric utilities to conduct a costbenefit...

278

Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006  

E-Print Network (OSTI)

Presented at the 21th European Photovoltaic Solar Energy Conference, Dresden, Germany, 4-8 September 2006 A COST AND ENVIRONMENTAL IMPACT COMPARISON OF GRID-CONNECTED ROOFTOP AND GROUND-BASED PV Centre of the Netherlands ECN, Unit Solar Energy, P.O. Box 1, 1755 ZG PETTEN, the Netherlands E.A. Alsema

279

THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te-CdTe HETEROJUNCTIONS (1)  

E-Print Network (OSTI)

195 THE PERFORMANCE OF THIN FILM SOLAR CELLS EMPLOYING PHOTOVOLTAIC Cu22014x Te This paper is a short status report on the continuing development of Cu22014xTe-CdTe thin film solar cells thin film work. The most pressing current need is to determine how to extend cell life, particularly

Paris-Sud XI, Université de

280

The Effects of Non-Uniform Electronic Properties on Thin Film Photovoltaics  

E-Print Network (OSTI)

World  Conf.  Photovoltaic   Energy  Conversion  (2003),  Conference  on  Photovoltaic  Energy  Conversion,  May  17 th  European  Photovoltaic  Solar  Energy  Conference,  

Brown, Gregory Ferguson

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrator Application  

DOE Green Energy (OSTI)

The High Efficiency Nanostructured III-V Photovoltaics for Solar Concentrators project seeks to provide new photovoltaic cells for Concentrator Photovoltaics (CPV) Systems with higher cell efficiency, more favorable temperature coefficients and less sensitivity to changes in spectral distribution. The main objective of this project is to provide high efficiency III-V solar cells that will reduce the overall cost per Watt for power generation using CPV systems.This work is focused both on a potential near term application, namely the use of indium arsenide (InAs) QDs to spectrally "tune" the middle (GaAs) cell of a SOA triple junction device to a more favorable effective bandgap, as well as the long term goal of demonstrating intermediate band solar cell effects. The QDs are confined within a high electric field i-region of a standard GaAs solar cell. The extended absorption spectrum (and thus enhanced short circuit current) of the QD solar cell results from the increase in the sub GaAs bandgap spectral response that is achievable as quantum dot layers are introduced into the i-region. We have grown InAs quantum dots by OMVPE technique and optimized the QD growth conditions. Arrays of up to 40 layers of strain balanced quantum dots have been experimentally demonstrated with good material quality, low residual stain and high PL intensity. Quantum dot enhanced solar cells were grown and tested under simulated one sun AM1.5 conditions. Concentrator solar cells have been grown and fabricated with 5-40 layers of QDs. Testing of these devices show the QD cells have improved efficiency compared to baseline devices without QDs. Device modeling and measurement of thermal properties were performed using Crosslight APSYS. Improvements in a triple junction solar cell with the insertion of QDs into the middle current limiting junction was shown to be as high as 29% under one sun illumination for a 10 layer stack QD enhanced triple junction solar cell. QD devices have strong potential for net gains in efficiency at high concentration.

Hubbard, Seth

2012-09-12T23:59:59.000Z

282

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

Use of a two-stage concentrator with a fresnel lens primary and a nonimaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. Some preliminary ray trace studies have shown that with planar lenses, an increase in angular acceptance for a given geometric concentration to about 2/3 of the maximum theoretical limit can be achieved. To demonstrate this, two preprototype concentrators, each having a geometric concentration of 248:1 for a 0.635cm (0.25 inch) diameter cell, have been designed, built, and tested. Measurements of the angular response show an acceptance of 8[degrees] (full angle) which is drastically better than the 1[degrees]--2[degrees] achievable without a secondary, and is in excellent agreement with the ray trace predictions. For these preprototypes, passive cooling was sufficient to prevent any thermal problems for both the cell and secondary. No problems associated with nouuniform cell illumination were found, as evidenced by the fill factor of 71%--73% measured under concentration. Initial measurements of the system electrical efficiency lie in the range 7.5%--9.9% for a variety of individual cells.

O'Gallagher, J.J.

1985-03-07T23:59:59.000Z

283

Published as: Ha T. Nguyen and Joshua M. Pearce, "Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 12451260 (2012). DOI: http://dx.doi.org/10.1016/j.solener.2012.01.017  

E-Print Network (OSTI)

Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86(5), pp. 1245­1260 (2012). DOI: http; Photovoltaic; Renewable energy; Solar energy; Solar irradiation modeling ; Shading Abbreviations (Apv, "Incorporating Shading Losses in Solar Photovoltaic Potential Assessment at the Municipal Scale" Solar Energy 86

Paris-Sud XI, Université de

284

Solar Photovoltaic Financing: Deployment by Federal Government Agencies  

DOE Green Energy (OSTI)

The goal of this report is to examine how federal agencies can finance on-site PV projects. It explains state-level cash incentives available, the importance of solar renewable energy certificate revenues (in certain markets), existing financing structures, as well as innovative financing structures being used by federal agencies to deploy on-site PV. Specific examples from the DOD, DOE, and other federal agencies are highlighted to explain federal project financing in detail.

Cory, K.; Coggeshall, C.; Coughlin, J.; Kreycik, C.

2009-07-01T23:59:59.000Z

285

EELE408 Photovoltaics Lecture 20: Photovoltaic Systems  

E-Print Network (OSTI)

into the grid 2 Application Areas 3 Photovoltaic System Basics · Photovoltaic Systems ­ Cell Panel Array1 EELE408 Photovoltaics Lecture 20: Photovoltaic Systems Dr. Todd J. Kaiser tjkaiser Panel 4 · DC · AC / = ACDC Charge Regulator Inverter Battery DC Load AC Load Modularity: Solar Cell

Kaiser, Todd J.

286

Photovoltaic Technology Incubator Awards  

SciTech Connect

This factsheet gives an overview of the Photovoltaic (PV) Technology Incubator Awards and the Solar America Initiative (SAI).

2007-06-01T23:59:59.000Z

287

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2010-09-01T23:59:59.000Z

288

NIST Photovoltaic carrier dynamics  

Science Conference Proceedings (OSTI)

... carrier dynamics in novel electronic photovoltaic materials being considered and developed for future solar cell and energy capture applications. ...

2013-04-01T23:59:59.000Z

289

Photovoltaics (Fact Sheet)  

DOE Green Energy (OSTI)

The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2011-06-01T23:59:59.000Z

290

Operation o Solar Photovoltaic-Thermal (PVT) Hybrid System in KIER  

E-Print Network (OSTI)

The details of the Photovoltaic Thermal (PVT) hybrid air heating system, UTC air heating system and its effect on the performance of photovoltaic (PV) module and room temperature in KIER are explained in this paper. Two identical test rooms were constructed such that one had unglazed transpired collector on its south facing wall while other had no solar wall. The temperature inside the room with UTC was 10-20oC higher than the temperature inside the room without UTC on a typical winter day. In second set of experiments, 75W PV modules were installed on the south facing walls of each test rooms. The temperature of the PV module with UTC was 5-9?lower than the PV module without UTC resulting in a 6% recovery of output electrical power under the forced ventilation. PVT hybrid system may alleviate burden on conventional energy consumption in Korea for heating the buildings and electricity generation.

Naveed, A.T.; Lee, E. J.; Kang, E. C.

2006-01-01T23:59:59.000Z

291

2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

2010-11-01T23:59:59.000Z

292

Maximally concentrating optics for photovoltaic solar energy conversion  

DOE Green Energy (OSTI)

The use of a two-stage concentrator with a fresnel lens primary and a non-imaging dielectric totally internally reflecting secondary, has unique advantages for photovoltaic concentration. This new design has a much larger acceptance angle than the conventional lens-cell concentrating system. In the continuation of this research, an optimally designed prototype which employs a 13.6-cm diameter flat fresnel tons as the primary focusing device, a dielectric compound hyperbolic concentrator (DCHC) as secondary and a 1-cm diameter high-concentration cell for electricity conversion has been built, tested and analyzed. Measurements under sunlight show that it has an angular acceptance of [plus minus]3.6 degrees, which is dramatically better than the [plus minus]0.5 degree achievable without a secondary concentrator. This performance agrees well with theoretical ray-tracing predictions. The secondary shows an optical efficiency of (91[plus minus]2)% at normal incidence. Combining with the primary fresnel tens which has an optical efficiency of (82[plus minus]2)%, tho two-stage system yields a total optical efficiency of (7l[plus minus]2)%. The measurement of the system electrical performance yielded a net electrical efficiency of 11.9%. No problems associated with non-uniform cell illumination were found, as evidenced by the excellent fill factor of (79[plus minus]2)% measured under concentration. The secondary geometrical properties and the optimal two-stage design procedures for various primary- cell combinations were systematical studied. A general design principle has been developed.

Winston, R.; O'Gallagher, J.; Ning, X.

1986-02-27T23:59:59.000Z

293

SolarTile: A rooftop integrated photovoltaic system. Phase 1, final report  

DOE Green Energy (OSTI)

AstroPower, Royal Group Technologies, and Solar Design Associates are jointly developing an integrated photovoltaic roofing system for residential and light commercial building applications. This family of products will rely heavily on the technological development of a roofing tile made from recycled plastic and innovative module fabrication and encapsulation processes in conjunction with an advanced Silicon-Film{trademark} solar cell product. This solar power generating roofing product is presently being referred to as the SolarTile. A conceptual drawing of the solar roofing tile is shown. The SolarTile will be integrated with non-solar tiles in a single roof installation permitting ease of assembly and the ability to use conventional roofing techniques at ridges, valleys, and eaves. The Phase 1 effort included tasks aimed at the development of the proposed product concept; product manufacturing or fabrication, and installation cost estimates; business planning; and a market assessment of the proposed product, including target selling prices, target market sectors, size estimates for each market sector, and planned distribution mechanisms for market penetration. Technical goals as stated in the Phase 1 proposal and relevant progress are reported.

NONE

1998-03-26T23:59:59.000Z

294

Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)  

Science Conference Proceedings (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.

Salasovich, J.; Mosey, G.

2011-08-01T23:59:59.000Z

295

Solar Power and Me: The Inherent Advantages  

NLE Websites -- All DOE Office Websites (Extended Search)

Grade Level: Grade Level: 8-12 Subjects: Math: Algebra I and II Length: 90 Minutes LESSON PLAN Solar Power and Me: The Inherent Advantages Solar Power and Me: The Inherent Advantages Northwest Halifax High School Solar Panels Littleton, NC Photo credit: Mike Beebe INTRODUCTION This is a uniquely interdisciplinary high school algebra and solar energy lesson geared toward an Algebra I-II class. It uses data from a 2.1-kilowatt photovoltaic solar panel system at a high school in rural North Carolina, historical energy statistics from the U.S. Energy Information Administrations (EIA) on solar and renewable energy growth in the U.S., and the financial savings accrued from a residential solar photovoltaic system to teach students the basics of renewable energy and best-fit regression

296

Functional requirements for component films in a solar thin-film photovoltaic/thermal panel  

SciTech Connect

The functional requirements of the component films of a solar thin-film photovoltaic/thermal panel were considered. Particular emphasis was placed on the new functions, that each layer is required to perform, in addition to their pre-existing functions. The cut-off wavelength of the window layer, required for solar selectivity, can be achieved with charge carrier concentrations typical of photovoltaic devices, and thus does not compromise electrical efficiency. The upper (semiconductor) absorber layer has a sufficiently high thermal conductivity that there is negligible temperature difference across the film, and thus negligible loss in thermal performance. The lower (cermet) absorber layer can be fabricated with a high ceramic content, to maintain high solar selectivity, without significant increase in electrical resistance. A thin layer of molybdenum-based cermet at the top of this layer can provide an Ohmic contact to the upper absorber layer. A layer of aluminium nitride between the metal substrate and the back metal contact can provide electrical isolation to avoid short-circuiting of series-connected cells, while maintaining a thermal path to the metal substrate and heat extraction systems. Potential problems of differential contraction of heated films and substrates were identified, with a recommendation that fabrication processes, which avoid heating, are preferable. (author)

Johnston, David [Power and Energy Research Group, School of Engineering, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST (United Kingdom)

2010-03-15T23:59:59.000Z

297

Statistical Characterization of Solar Photovoltaic Power Variability at Small Timescales: Preprint  

DOE Green Energy (OSTI)

Integrating large amounts of variable and uncertain solar photovoltaic power into the electricity grid is a growing concern for power system operators in a number of different regions. Power system operators typically accommodate variability, whether from load, wind, or solar, by carrying reserves that can quickly change their output to match the changes in the solar resource. At timescales in the seconds-to-minutes range, this is known as regulation reserve. Previous studies have shown that increasing the geographic diversity of solar resources can reduce the short term-variability of the power output. As the price of solar has decreased, the emergence of very large PV plants (greater than 10 MW) has become more common. These plants present an interesting case because they are large enough to exhibit some spatial smoothing by themselves. This work examines the variability of solar PV output among different arrays in a large ({approx}50 MW) PV plant in the western United States, including the correlation in power output changes between different arrays, as well as the aggregated plant output, at timescales ranging from one second to five minutes.

Shedd, S.; Hodge, B.-M.; Florita, A.; Orwig, K.

2012-08-01T23:59:59.000Z

298

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

DOE Green Energy (OSTI)

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

299

Preliminary evaluation of two-element optical concentrators for use in solar photovoltaic systems  

DOE Green Energy (OSTI)

The objective of this program was: to evaluate for photovoltaic applications the use of the compound parabolic concentrator design as a field collector--in conjunction with a primary focusing concentrator. The primary focusing concentrator may be a parabolic reflector, an array of Fresnel mirrors, a Fresnel lens, or some other type; Select several candidate configurations of such compound systems (focusing concentrators/CPC field collectors); Perform an analytic evaluation of the technical performance of these systems; and identify the most promising configurations and perform a cost effectiveness study pertinent to coupling CPC concentrators to solar cells. (WDM)

None

1975-06-30T23:59:59.000Z

300

Feasibility Study of Economics and Performance of Solar Photovoltaics in Nitro, West Virginia  

DOE Green Energy (OSTI)

The study described in this report assessed brownfield sites designated by the City of Nitro, West Virginia for solar photovoltaic (PV) installations. The study analyzed three different types of PV systems for eight sites. The report estimates the cost, performance, and site impacts of thin film technology and crystalline silicon panels (both fixed-axis tracking and single-axis tracking systems). Potential job creation and electrical rate increases were also considered, and the report recommends financing options that could assist in the implementation of a system.

Lisell, L.; Mosey, G.

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Next-Generation Photovoltaic Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Photovoltaic Technologies Next-Generation Photovoltaic Technologies Print Monday, 06 February 2012 15:48 Organic solar cells based on the polymerfullerene bulk...

302

SMUD forges a new path in photovoltaics generation  

SciTech Connect

The Sacramento Municipal Utility District's dedication of a 1 MW photovoltaic power plant that will ultimately deliver alternating current to utility custtomers promises to place the fledgling technology in the realm of future, economic generating options. The foundation of a five-phase 100 MW photovoltaic project aimed at bringing the technology's cost down to competitive levels, the plant is also providing a technological base for the development of utility-designed equipment that may be of broader use in the industry. Despite government involvement, the utility feels its participation was essential. The use of solar power for summer peaking can eliminate incremental fuel costs as the peak climbs. The conversion device is the M52-S photovoltaic flat plate module developed by ARCO. The current 50 cent cost per kilowatt-hour will decline as the program progresses to phase 5. 1 figure, 1 table.

Utroska, D.

1984-08-01T23:59:59.000Z

303

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

EIA). (2008a). Solar Photovoltaic Cell/Module ManufacturingEIA). (2009). Solar Photovoltaic Cell/Module Manufacturing

Price, S.

2010-01-01T23:59:59.000Z

304

The Impact of Solar Photovoltaic Generation on Balancing Requirements in the Southern Nevada System  

Science Conference Proceedings (OSTI)

Abstract—The impact of integrating large-scale solar photovoltaic (PV) generation on the balancing requirements in terms of regulation and load-following requirements in the southern Nevada balancing area is evaluated. The “swinging door” algorithm and the “probability box” method developed by Pacific Northwest National Laboratory (PNNL) were used to quantify the impact of large PV generation on the balancing requirements of the system operations. The system’s actual scheduling, real-time dispatch and regulation processes were simulated. Different levels of distributed generation were also considered in the study. The impact of hourly solar PV generation forecast errors on regulation and load-following requirements was assessed. The sensitivity of balancing requirements with respect to real-time forecast errors of large PV generation was analyzed. Index Terms—Ancillary services, balancing requirements, load following, regulation, renewables integration, swinging door

Ma, Jian; Lu, Shuai; Hafen, Ryan P.; Etingov, Pavel V.; Makarov, Yuri V.; Chadliev, Vladimir

2012-05-07T23:59:59.000Z

305

Solar Sound Arts: Creating Instruments and Devices Powered by Photovoltaic Technologies  

E-Print Network (OSTI)

This paper describes recent developments in the creation of sound-making instruments and devices powered by photovoltaic (PV) technologies. With the rise of more efficient PV products in diverse packages, the possibilities for creating solar-powered musical instruments, sound installations, and loudspeakers are becoming increasingly realizable. This paper surveys past and recent developments in this area, including several projects by the author, and demonstrates how the use of PV technologies can influence the creative process in unique ways. In addition, this paper discusses how solar sound arts can enhance the aesthetic direction taken by recent work in soundscape studies and acoustic ecology. Finally, this paper will point towards future directions and possibilities as PV technologies continue to evolve and improve in terms of performance, and become more affordable.

unknown authors

2011-01-01T23:59:59.000Z

306

Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab  

Science Conference Proceedings (OSTI)

The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

da Silva, R.M.; Fernandes, J.L.M. [Department of Mechanical Engineering, Instituto Superior Tecnico, Lisbon (Portugal)

2010-12-15T23:59:59.000Z

307

NREL: Photovoltaics Research - Company Partners in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Company Partners in Photovoltaic Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices Energy Photovoltaics ENTECH Evergreen Solar First Solar Glasstech Solar Global Photovoltaic Specialists Global Solar Energy Golden Photon Iowa Thin Film Technologies ITN Energy Systems Kopin Mobil Solar Energy Omnion Power Engineering Photon Energy Photovoltaics International PowerLight RWE Schott Solar/Schott Solar

308

Photovoltaic Cells  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV cells are the building blocks of all PV systems because they are the devices that...

309

Photovoltaics I  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... TiO2 is an attractive material for dye sensitized solar cells (DSSC) ... Second, I will discuss our design of photovoltaic (PV) materials that exploit ...

310

Advances in thin-film solar cells for lightweight space photovoltaic power  

SciTech Connect

The present stature and current research directions of photovoltaic arrays as primary power systems for space are reviewed. There have recently been great advances in the technology of thin-film solar cells for terrestrial applications. In a thin-film solar cell the thickness of the active element is only a few microns; transfer of this technology to space arrays could result in ultralow-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper-indium selenide (CuInSe2) and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon:hydrogen and alloys. The best experimental efficiency on thin-film solar cells to date is 12 percent AMO for CuInSe2. This efficiency is likely to be increased in the next few years. The radiation tolerance of thin-film materials is far greater than that of single-crystal materials. CuInSe2 shows no degradation when exposed to 1 MeV electrons. Experimental evidence also suggests that most of all of the radiation damage on thin-films can be removed by a low temperature anneal. The possibility of thin-film multibandgap cascade solar cells is discussed, including the tradeoffs between monolithic and mechanically stacked cells. The best current efficiency for a cascade is 12.5 percent AMO for an amorphous silicon on CuInSe2 multibandgap combination. Higher efficiencies are expected in the future. For several missions, including solar-electric propulsion, a manned Mars mission, and lunar exploration and manufacturing, thin-film photovolatic arrays may be a mission-enabling technology.

Landis, G.A.; Bailey, S.G.; Flood, D.J.

1989-01-01T23:59:59.000Z

311

Methodology for Estimating Solar Potential on Multiple Building Rooftops for Photovoltaic Systems  

SciTech Connect

In this paper, a methodology for estimating solar potential on multiple building rooftops is presented. The objective of this methodology is to estimate the daily or monthly solar radiation potential on individual buildings in a city/region using Light Detection and Ranging (LiDAR) data and a geographic information system (GIS) approach. Conceptually, the methodology is based on the upward-looking hemispherical viewshed algorithm, but applied using an area-based modeling approach. The methodology considers input parameters, such as surface orientation, shadowing effect, elevation, and atmospheric conditions, that influence solar intensity on the earth s surface. The methodology has been implemented for some 212,000 buildings in Knox County, Tennessee, USA. Based on the results obtained, the methodology seems to be adequate for estimating solar radiation on multiple building rooftops. The use of LiDAR data improves the radiation potential estimates in terms of the model predictive error and the spatial pattern of the model outputs. This methodology could help cities/regions interested in sustainable projects to quickly identify buildings with higher potentials for roof-mounted photovoltaic systems.

Kodysh, Jeffrey B [ORNL; Omitaomu, Olufemi A [ORNL; Bhaduri, Budhendra L [ORNL; Neish, Bradley S [ORNL

2013-01-01T23:59:59.000Z

312

Solar Photovoltaic Financing: Deployment on Public Property by State and Local Governments  

DOE Green Energy (OSTI)

State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, and tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.

Cory, K.; Coughlin, J.; Coggeshall, C.

2008-05-01T23:59:59.000Z

313

ECOLOGICAL CONSIDERATIONS OF THE SOLAR ALTERNATIVE  

E-Print Network (OSTI)

Principles of Photovoltaic Solar Energy Conversion, Brownbiomass from energy plantations). Impacts from photovoltaic

Davidson, M.

2010-01-01T23:59:59.000Z

314

NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource | OpenEI  

Open Energy Info (EERE)

8 8 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142278078 Varnish cache server NREL GIS Data: Alaska Low Resolution Photovoltaic Solar Resource Dataset Summary Description Abstract: Monthly and annual average solar resource potential for Alaska. Purpose: Provide information on the solar resource potential for Alaska. The insolation values represent the average solar energy available to a flat plate collector, such as a photovoltaic panel, oriented due south at an angle from horizontal equal to the latitude of the collector location. Supplemental_Information: This data provides monthly average and annual average daily total solar resource averaged over surface cells of approximatley 40 km by 40 km in size. This data was developed from the Climatological Solar Radiation (CSR) Model. The CSR model was developed by the National Renewable Energy Laboratory for the U.S. Department of Energy. Specific information about this model can be found in Maxwell, George and Wilcox (1998) and George and Maxwell (1999). This model uses information on cloud cover, atmostpheric water vapor and trace gases, and the amount of aerosols in the atmosphere to calculate the monthly average daily total insolation (sun and sky) falling on a horizontal surface. The cloud cover data used as input to the CSR model are an 7-year histogram (1985-1991) of monthly average cloud fraction provided for grid cells of approximately 40km x 40km in size. Thus, the spatial resolution of the CSR model output is defined by this database. The data are obtained from the National Climatic Data Center in Ashville, North Carolina, and were developed from the U.S. Air Force Real Time Nephanalysis (RTNEPH) program. Atmospheric water vapor, trace gases, and aerosols are derived from a variety of sources. The procedures for converting the collector at latitude tilt are described in Marion and Wilcox (1994). Where possible, existing ground measurement stations are used to validate the data. Nevertheless, there is uncertainty associated with the meterological input to the model, since some of the input parameters are not avalible at a 40km resolution. As a result, it is believed that the modeled values are accurate to approximately 10% of a true measured value within the grid cell. Due to terrain effects and other micoclimate influences, the local cloud cover can vary significantly even within a single grid cell. Furthermore, the uncertainty of the modeled estimates increase with distance from reliable measurement sources and with the complexity of the terrain.

315

A Cradle to Grave Framework for Environmental Assessment of Photovoltaic Systems  

E-Print Network (OSTI)

th European Photovoltaic Solar Energy Conference, Barcelona,the 24 th European Photovoltaic Solar Energy Conference andof Roof Mounted Photovoltaic Cells,” Energy Bulletin, June

Zhang, Teresa; Dornfeld, David

2010-01-01T23:59:59.000Z

316

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network (OSTI)

21st European Photovoltaic Solar Energy Conference, Dresden,21st European Photovoltaic Solar Energy Conference, Dresden,International Energy Agency Photovoltaic Power System

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

317

Mandatory Photovoltaic System Cost Analysis | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mandatory Photovoltaic System Cost Analysis Mandatory Photovoltaic System Cost Analysis Eligibility Utility Savings For Solar Buying & Making Electricity Program Information...

318

Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing  

E-Print Network (OSTI)

modeling method for photovoltaic cells. ” in Proc. IEEE 35thlosses in solar photovoltaic cell networks. ” Energy 32:Cell Variability Photovoltaic (PV) cells manufactured with

Zeng, Dekong

2012-01-01T23:59:59.000Z

319

Fabrication and Characterization of Organic/Inorganic Photovoltaic Devices  

E-Print Network (OSTI)

processable polymer photovoltaic cells by self-organizationand their influence on photovoltaic cells, Solar EnergyPhotodiodes, and Photovoltaic Cells, Applied Physics Letters

Guvenc, Ali Bilge

2012-01-01T23:59:59.000Z

320

River Falls Municipal Utilities - Distributed Solar Tariff | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff River Falls Municipal Utilities - Distributed Solar Tariff < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info State Wisconsin Program Type Performance-Based Incentive Rebate Amount $0.30/kWh Provider River Falls Municipal Utilities River Falls Municipal Utilities (RFMU), a member of WPPI Energy, offers a special energy purchase rate to its customers that generate electricity using solar photovoltaic (PV) systems. The special rate, $0.30/kilowatt-hour (kWh), is available to all the RFMU customers on a first-come, first-served basis for systems up to 4 kilowatts (kW). The RFMU

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Application of compound parabolic concentrators to solar photovoltaic conversion. Final report  

DOE Green Energy (OSTI)

The final results of an analytical and experimental study of the application of nonimaging concentrators to solar photovoltaic conversion are presented. Two versions of the Compound Parabolic Concentrator (CPC) were considered, the Dielectric Compound Parabolic Concentrator (DCPC) in which the concentrator is filled with a dielectric material that satisfies requirements for Total Internal Reflection (TIR), and a conventional CPC in which metallic reflection is used for the mirror surfaces. Two working prototype panels were constructed and tested during the course of the program. The first was a 1.22 m by 1.22 m DCPC panel that requires only ten adjustments/year, has a panel utilization factor (packing factor) of 96%, and delivered the equivalent of 138 W (peak) under 1 kW/m/sup 2/ direct insolation. The net energy conversion efficiency was 10.3% over the entire panel area. The second panel was a conventional CPC panel measuring 1.22 m by 1.22 m. This panel requires thirty-six adjustments per year, and delivers the equivalent of 97 W when under 1 kW/m/sup 2/ direct insolation. The results of a cost-effectiveness analysis of the concept of using nonimaging concentrators for photovoltaic conversion are also presented. The concentrator panels showed a decided savings in comparison to the cost of flat plate photovoltaic panels, both at present-day silicon costs ($2000/m/sup 2/) and projected lower silicon costs ($200/m/sup 2/). At a silicon cost of $200/m/sup 2/, a two-dimensional (cone) version of the collector has the potential for achieving from $0.60-2.00 per average watt (about $0.15-0.50 per peak watt) while requiring only crude (+-4.5/sup 0/) tracking.

Cole, R.L.; Gorski, A.J.; Graven, R.M.; McIntire, W.R.; Schertz, W.W.; Winston, R.; Zwerdling, S.

1977-02-01T23:59:59.000Z

322

Feasibility Study for Photovoltaics, Wind, solar Hot Water and Hybrid Systems  

DOE Green Energy (OSTI)

Southwestern Indian Polytechnic Institute (SIPI) located in Albuquerque New Mexico is a community college that serves American Indians and Alaska Natives. SIPI’s student body represents over 100 Native American Tribes. SIPI completed a renewable energy feasibility study program and established renewable energy hardware on the SIPI campus, which supplements and creates an educational resource to teach renewable energy courses. The SIPI campus is located, and has as student origins, areas, in which power is an issue in remote reservations. The following hardware was installed and integrated into the campus facilities: small wind turbine, large photovoltaic array that is grid-connected, two photovoltaic arrays, one thin film type, and one polycrystalline type, one dual-axis active tracker and one passive tracker, a hot air system for heating a small building, a portable hybrid photovoltaic system for remote power, and a hot water system to preheat water used in the SIPI Child Care facility. Educational curriculum has been developed for two renewable energy courses one being the study of energy production and use, and especially the roles renewable energy forms like solar, wind, geothermal, hydro, and biomass plays, and the second course being a more advanced in-depth study of renewable energy system design, maintenance, installation, and applications. Both courses rely heavily on experiential learning techniques so that installed renewable energy hardware is continuously utilized in hand-on laboratory activities and are part of the Electronics program of studies. Renewable energy technologies and science has also been included in other SIPI programs of study such as Environmental Science, Natural Resources, Agriculture, Engineering, Network Management, and Geospatial Technology.

Hooks, Ronald; Montoya, Valerie

2008-03-26T23:59:59.000Z

323

Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet)  

DOE Green Energy (OSTI)

This document introduces the Energy Department's new Guide to Community Shared Solar: Utility, Private, and Nonprofit Project Development. The guide is designed to help those who want to develop community shared solar projects - from community organizers and advocates to utility managers and government officials - navigate the process of developing shared systems, from early planning to implementation.

Not Available

2012-06-01T23:59:59.000Z

324

Energy Basics: Flat-Plate Photovoltaic Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

325

Energy Basics: Photovoltaic Cell Quantum Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

326

Energy Basics: Crystalline Silicon Photovoltaic Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

327

Energy Basics: Photovoltaic Cell Conversion Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

328

Energy Basics: Flat-Plate Photovoltaic Modules  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

329

Characterization and Modeling of 3D Photovoltaics  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion – Photovoltaic, Concentrating Solar Power, and ...

330

What Changed in Article 690-Solar Photovoltaic Systems- of the 1999 National Electrical Code?  

DOE Green Energy (OSTI)

Article 690, Solar Photovoltaic Power Systems, has been in the National Electrical Code (NEC) since 1984. An NFPA-appointed Task Group for Article 690 proposed changes to Article 690 for both the 1996 and 1999 codes. The Task Group, supported by more than 50 professionals from throughout the photovoltaic (PV) industry, met seven times during the 1999 code cycle to integrate the needs of the industry with the needs of electrical inspectors and end users to ensure the safety of PV systems. The Task Group proposed 57 changes to Article 690, and all the changes were accepted in the review process. The performance and cost of PV installations were always a consideration as these changes were formed but safety was the number-one priority. All of the proposals were well substantiated and coordinated throughout the PV industry and with representatives of Underwriters Laboratories, Inc (UL). The most significant changes that were made in Article 690 for the 1999 NEC along with some of the rationale are discussed in the remainder of this article.

Bower, W.; Wiles, J.

1999-01-12T23:59:59.000Z

331

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

NLE Websites -- All DOE Office Websites (Extended Search)

Johnson Johnson County Landfill James Salasovich and Gail Mosey Technical Report NREL/TP-6A20-53186 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill James Salasovich and Gail Mosey Prepared under Task No. IGST.1100 Technical Report NREL/TP-6A20-53186 January 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

332

Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells  

Science Conference Proceedings (OSTI)

One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

2012-01-01T23:59:59.000Z

333

Austin Energy - Value of Solar Residential Rate (Texas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) Austin Energy - Value of Solar Residential Rate (Texas) < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Program Info Start Date 10/01/2012 State Texas Austin Energy, the municipal utility of Austin Texas, offers the Value of Solar rate for residential solar photovoltaic (PV) systems. The Value of Solar tariff, designed by Austin Energy and approved by Austin City Council in June 2012, will be available for all past, present and future residential solar customers beginning October 1, 2012. This tariff replaces net billing for residential solar PV systems no larger than 20 kilowatts (kW). Under this new tariff, residential customers will be credited monthly for their solar generation based on the Value of Solar energy generated from

334

PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards  

DOE Green Energy (OSTI)

This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

Basso, T. S.; Chalmers, S.; Barikmo, H. O.

2005-11-01T23:59:59.000Z

335

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

336

CX-002514: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of photovoltaics on buildings, parking facilities or ground mount less than 60 kilowatts; wind less than 20 kilowatts, solar thermal less than 20 kilowatts, solar hot water,...

337

Solar access of residential rooftops in four California cities  

E-Print Network (OSTI)

the 14th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen

2010-01-01T23:59:59.000Z

338

SIXTH QUARTERLY REPORT OF RESEARCH ON CuxS - (Cd,Zn)S PHOTOVOLTAIC SOLAR ENERGY CONVERTERS  

E-Print Network (OSTI)

for use in experimental photovoltaic cells. Hall mobilityvacuum method for photovoltaic cell fabrication" However,

Chin, B.L.

2011-01-01T23:59:59.000Z

339

Residential photovoltaic module and array requirement study. Low-Cost Solar Array Project engineering area. Final report appendices  

DOE Green Energy (OSTI)

This volume contains the appendices to a study to identify design requirements for photovoltaic modules and arrays used in residential applications. Appendices include: (1) codes, standards, and manuals of accepted practice-definition and importance; (2) regional code variations-impact; (3) model and city codes-review; (4) National Electric Code (NEC)-review; (5) types of standards-definition and importance; (6) federal standards-review; (7) standards review method; (8) manuals of accepted practice; (9) codes and referenced standards-summary; (10) public safety testing laboratories; (11) insurance review; (12) studies approach; (13) mounting configurations; (14) module/panel size and shape cost analysis; (15) grounding, wiring, terminal and voltage studies; (16) array installation cost summary; (17) photovoltaic shingle/module comparison; (18) retrofit application; (19) residential photovoltaic module performance criteria; (20) critique of JPL's solar cell module design and test specifications for residential applications; and (21) CSI format specification. (WHK)

Not Available

1979-06-01T23:59:59.000Z

340

Building opportunities for photovoltaics in the U.S. Final report [PV BONUS  

DOE Green Energy (OSTI)

The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

Michael Nicklas

1999-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Implementing Solar Photovoltaic Projects on Historic Buildings and in Historic Districts  

SciTech Connect

Despite a global recession, the number of photovoltaic (PV) installations in the United States grew 30% from 2008 to 2009. A number of trends point toward continued growth of new PV installations. The efficiency of solar panels is increasing, while installation costs are going down. At the same time, federal, state, and local regulations are requiring that greater amounts of energy must come from renewable sources. Incentives for solar power technology implementation are being created and regulatory barriers removed. Corporations and governments are focusing on solar power to demonstrate leadership in environmental sustainability and resource conservation. Architects and builders are including PV arrays as a way to meet green building standards and property owners are seeking PV as a way to reduce their utility bills, as well as their carbon footprints. This publication focuses on the implementation of PV systems on historic properties. Many private property owners, as well as local, state, and national government entities, are seeking guidance on how best to integrate solar PV installations on historic buildings. Historic preservationists maintain that preserving, reusing, and maintaining historic structures is a key sustainable design strategy while also recognizing the importance of accommodating renewable energy technologies where they are appropriate. In some cases, however, conflicts have arisen over the installation of PV panels on historic properties. Addressing these conflicts and providing guidance regarding solutions and best practices is an important step toward resolving or eliminating barriers. Historic properties and districts in the United States provide tangible connections to the nation's past. Thousands of buildings, sites, districts, structures, and objects have been recognized for their historic and architectural significance. Local, state, and national designations of historic properties provide recognition, protection, and incentives that help to preserve those properties for future generations. At the national level, the National Register of Historic Places includes more than 86,000 listings, which encompass a total of more than 1.6 million historic resources. State registers of historic places also provide recognition and protection for historic sites and districts. Locally, more than 2,400 communities have established historic preservation ordinances. Typically implemented through zoning overlays, these local land use regulations manage changes to hundreds of thousands of historic properties. Over a period of 2 years (2007 and 2008) the U.S. Department of Energy (DOE) designated 25 major U.S. cities as Solar America Cities. DOE provided financial and technical assistance to help the cities develop comprehensive approaches to accelerate the adoption of solar energy technologies. The Solar America Cities partnerships represent the foundation of DOE's larger Solar America Communities program. As a part of this program, DOE identified the implementation of solar projects on historic properties and in historic districts as one area to address. A workshop titled 'Implementing Solar Projects on Historic Buildings and in Historic Districts' was held in Denver, Colorado, in June of 2010. Participants included representatives from the solar industry as well as historic preservationists from nonprofit organizations and government agencies at the local, state, and national levels. The workshop provided an opportunity to gain a common understanding of solar technologies and historic preservation procedures and priorities. The workshop participants also discussed some of the challenges involved in locating PV systems on historic properties and identified potential solutions. This publication is based on the discussions that occurred at this workshop and the recommendations that were developed by participants. Ideas expressed by participants in the workshop, and included in this document, do not necessarily reflect the opinion of any government council, agency, or entity.

Kandt, A.; Hotchkiss, E.; Walker, A.

2011-01-01T23:59:59.000Z

342

Feasibility Study of Economics and Performance of Solar Photovoltaics at Johnson County Landfill  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Johnson County Landfill in Shawnee, Kansas, for a feasibility study of renewable energy production. Citizens of Shawnee, city planners, and site managers are interested in redevelopment uses for landfills in Kansas that are particularly well suited for grid-tied solar photovoltaic (PV) installation. This report assesses the Johnson County Landfill for possible grid-tied PV installations and estimates the cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. The report findings are applicable to other landfills in the surrounding area.

Salasovich, J.; Mosey, G.

2012-01-01T23:59:59.000Z

343

NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and...

344

Concentrating Photovoltaics  

Science Conference Proceedings (OSTI)

Concentrating photovoltaics (CPV) are a promising alternative to flat-plate photovoltaics in high direct normal irradiance (DNI) environments. The technology’s basic operating characteristics offer significant upside compared with other solar technologies: higher system efficiencies of upwards of 30%+; higher capacity factors, generated through two-axis tracking, exceeding 30% in ideal locations; lower cellular degradation from heat compared to flat-plate PV; lower water requirements; and reduced footpri...

2010-11-19T23:59:59.000Z

345

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

346

NREL: Learning - Photovoltaics for Students  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Sprint. The following resources will help students find out more information about solar photovoltaic (PV) systems. If you are unfamiliar with PV systems, see introduction...

347

Compound Photovoltaics - Programmaster.org  

Science Conference Proceedings (OSTI)

Sep 15, 2009 ... The growing prospects of current and coming solar-photovoltaic (PV) technologies are envisioned, arguing this solar-electricity source is ...

348

Grid Impacts of Distributed Generation with Advanced Inverter Functions: Hosting Capacity of Large-Scale Solar Photovoltaic Using Smart Inverters  

Science Conference Proceedings (OSTI)

With increasing penetration levels of solar photovoltaics (PV), the need for inverter technology to provide grid support has become more and more critical. Since 2009, the Electric Power Research Institute (EPRI) and industry partners have been working to establish a common set of functions that can provide such capability. The development of a common set of functions is complete; however, very little work to date has addressed the impact that these common functions will have on grid performance, ...

2013-12-20T23:59:59.000Z

349

Cost calculation algorithm for stand-alone photovoltaic systems  

Science Conference Proceedings (OSTI)

Photovoltaics are the technology that generates direct current (DC) electrical power measured in watts or kilowatts from semiconductors when they are illuminated by photons. Photovoltaics are the technological symbol for a future sustainable energy supply ... Keywords: PV system design, life cycle cost, photovoltaic cell, present worth, software, unit energy cost

Irfan Güney; Nevzat Onat; Gökhan Koçyi?it

2009-07-01T23:59:59.000Z

350

Photovoltaics in the Classroom  

NLE Websites -- All DOE Office Websites (Extended Search)

that addresses several important topics, including: basics of electric power and energy; basics of photovoltaics and solar geometry; basics of data analysis for school...

351

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

352

Concentrating Photovoltaics (Presentation)  

SciTech Connect

Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

Kurtz, S.

2009-01-20T23:59:59.000Z

353

SunShot Initiative: Photovoltaic Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaic Research Facilities on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of...

354

SunShot Initiative: Photovoltaics Competitive Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies in Solar Next Generation Photovoltaics Foundational Program to Advance Cell Efficiency SunShot Incubator Program Photovoltaic Supply Chain & Cross-Cutting...

355

Photovoltaic cell efficiency at elevated temperatures.  

E-Print Network (OSTI)

??In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change… (more)

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

356

Photovoltaic Cell Performance Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount...

357

The Adoption of Residential Solar Photovoltaic Systems in the Presence of a Financial Incentive: A Case Study of Consumer Experiences with the Renewable Energy Standard Offer Program in Ontario (Canada).  

E-Print Network (OSTI)

??Traditionally, high initial capital costs and lengthy payback periods have been identified as the most significant barriers that limit the diffusion of solar photovoltaic (PV)… (more)

Adachi, Christopher

2009-01-01T23:59:59.000Z

358

Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network (OSTI)

coupled to a photovoltaic (PV) cell for power generation. By employing a low reflectivity refractory metal using photovoltaic (PV) cells, light trapping and enhanced absorbance by surface plasmons have beenMetamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems

Shvets, Gennady

359

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network (OSTI)

PHOTOVOLTAIC COST TRENDS IN CALIFORNIA Ryan Wiser Lawrencein the United States: California. We find that: (1) solarof PV system costs in California. Through mid-November 2005,

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

360

New results in forecasting of photovoltaic systems output based on solar radiation forecasting  

Science Conference Proceedings (OSTI)

Accurate short term forecasting of photovoltaic (PV) systems output has a great significance for fast development of PV parks in South-East Europe

Laurentiu Fara

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Financial modeling of consumer discount rate in residential solar photovoltaic purchasing decisions.  

E-Print Network (OSTI)

??Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. This thesis uses a uniquely rich… (more)

Sigrin, Benjamin O.

2013-01-01T23:59:59.000Z

362

Estimating solar access of typical residential rooftops: A case study in San Jose, CA  

E-Print Network (OSTI)

the 14 th European Photovoltaic Solar Energy Conference androoftop solar-energy systems, including photovoltaic panelsrooftop solar-energy systems, including photovoltaic panels

Levinson, Ronnen M

2008-01-01T23:59:59.000Z

363

Nanocarbon-Based Photovoltaics  

E-Print Network (OSTI)

Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and maintain superior thermal and photostability. Here we report on solar cells with active ...

Bernardi, Marco

364

Organic photovoltaics and concentrators  

E-Print Network (OSTI)

The separation of light harvesting and charge generation offers several advantages in the design of organic photovoltaics and organic solar concentrators for the ultimate end goal of achieving a lower cost solar electric ...

Mapel, Jonathan King

2008-01-01T23:59:59.000Z

365

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

366

Photovoltaic Advanced Research and Development project: Solar radiation research annual report, 1 October 1990--30 September 1991  

DOE Green Energy (OSTI)

This report is a summary of the year 1991 research activities and results under the Solar Radiation Research task of the Photovoltaic (PV) Advanced Research and Development project at the National Renewable Energy Laboratory (NREL). This task directly supports the characterization, testing, and design of PV cells modules, and systems. The development of a scientific and engineering understanding of incident (i.e., available to PV devices) solar irradiance and the appropriate instrumentation systems and measurement methods are the activities and results of this project. Activities described in this report include the completion of the Atmospheric Optical Calibration Systems (AOCS) and the comparison of instrumentation systems that collect site-specific measurements of solar irradiance for the purpose of PV system feasibility studies and/or design.

Hulstrom, R.; Cannon, T.; Stoffel, T.; Riordan, C.

1992-10-01T23:59:59.000Z

367

Consumers Power, Inc. - Solar Energy System Rebate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc. - Solar Energy System Rebate Inc. - Solar Energy System Rebate Consumers Power, Inc. - Solar Energy System Rebate < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate $3,000 for PV Program Info State Oregon Program Type Utility Rebate Program Rebate Amount SWH: $500/system PV: $500/kW Provider Consumers Power, Inc. Consumers Power, Inc. (CPI) offers rebates to its residential customers who install solar water heating systems or solar photovoltaic (PV) systems from October 1, 2012 to September 30, 2013. The rebate for solar water heaters is $500 for systems with a collector area greater than 31 square feet. Systems used for hot tubs or swimming pools are not eligible. The rebate for solar PV systems is $500 per kilowatt-DC (kW), with a maximum rebate

368

Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown Challenge Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers...

369

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Generation from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.Conversion of Solar Energy. Philos. Trans. R. Soc. A-Math.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

370

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

1 March 2005 Abstract: Solar PV panels generate electricityhigh. Thus, a valuation of solar PV electricity productionbene?ts to many owners of solar PV in reduced electricity

Borenstein, Severin

2005-01-01T23:59:59.000Z

371

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Predicting Efficiency of Solar Powered Hydrogen GenerationGeneration from Water Using Solar Energy. Materials-RelatedSemiconductor/Electrolyte Solar Energy Conversion. J. Phys.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

372

The impact of retail rate structures on the economics of commercial photovoltaic systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew D.

2009-01-01T23:59:59.000Z

373

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2007-01-01T23:59:59.000Z

374

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network (OSTI)

An Assessment of Photovoltaic Energy Availability DuringPhotovoltaic Generation in South Australia. ” Energy Policy,Solar Photovoltaic Cells. ” Center for the Study of Energy

Mills, Andrew

2009-01-01T23:59:59.000Z

375

An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.  

E-Print Network (OSTI)

Effects of Residential Photovoltaic Energy Systems on Homewith existing photovoltaic (PV) energy systems have sold ingrid-connected solar photovoltaic (PV) energy systems were

Cappers, Peter

2012-01-01T23:59:59.000Z

376

High-efficiency one-sun photovoltaic module demonstration using solar-grade CZ silicon. Final report  

DOE Green Energy (OSTI)

This work was performed jointly by Sandia National Laboratories (Albuquerque, NM) and Siemens Solar Industries (Camarillo, CA) under a Cooperative Research and Development Agreement (CRADA 1248). The work covers the period May 1994 to March 1996. The purpose of the work was to explore the performance potential of commercial, photovoltaic-grade Czochralski (Cz) silicon, and to demonstrate this potential through fabrication of high-efficiency cells and a module. Fabrication of the module was omitted in order to pursue further development of advanced device structures. The work included investigation of response of the material to various fabrication processes, development of advanced cell structures using the commercial material, and investigation of the stability of Cz silicon solar cells. Some important achievements of this work include the following: post-diffusion oxidations were found to be a possible source of material contamination; bulk lifetimes around 75 pts were achieved; efficiencies of 17.6% and 15.7% were achieved for large-area cells using advanced cell structures (back-surface fields and emitter wrap-through); and preliminary investigations into photodegradation in Cz silicon solar cells found that oxygen thermal donors might be involved. Efficiencies around 20% should be possible with commercial, photovoltaic-grade silicon using properly optimized processes and device structures.

Gee, J.M.

1996-10-01T23:59:59.000Z

377

Solar Photovoltaics Wedge: Pathways for Growth and Potential Carbon Mitigation in the U.S.  

Science Conference Proceedings (OSTI)

The challenge of stabilizing global carbon emissions over the next 50 years has been framed in the context of finding seven 1.0 Gton C/year carbon reduction wedges. Solar photovoltaics (PV) could provide at least one carbon wedge, but will require significant growth in PV manufacturing capacity. The actual amount of installed PV capacity required to reach wedge-level carbon reductions will vary greatly depending on the mix of avoided fuels and the additional emissions from manufacturing PV capacity. In this work, we find that the US could reduce its carbon emissions by 0.25 Gton C/year, equal to the fraction of a global carbon wedge proportional to its current domestic electricity use, by installing 792-811 GW of PV capacity. We evaluate a series of PV growth scenarios and find that wedge-level reductions could be met by increasing PV manufacturing capacity and annual installations by 0.95 GW/year/year each year from 2009 to 2050 or by increasing up to 4 GW/year/year for a period of 4-17 years for early and late growth scenarios. This challenge of increasing PV manufacturing capacity and market demand is significant but not out of line with the recent rapid growth in both the global and US PV industry. We find that the rapid growth in PV manufacturing capacity leads to a short term increase in carbon emissions from the US electric sector. However, this increase is small, contributing less than an additional 0.3% to electric sector emissions for less than 4.5 years, alleviating recent concern regarding carbon emissions from rapid PV growth scenarios.

Drury, E.; Denholm, P.; Margolis, R. M.

2009-01-01T23:59:59.000Z

378

Energy Basics: Solar Energy Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

379

Energy Basics: Solar Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Solar...

380

Sylcom Solar | Open Energy Information  

Open Energy Info (EERE)

research, distribution, construction, operation, maintenance of products and of Photovoltaic Solar, Thermal Solar and Solar Thermoelectric installations. References Sylcom...

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Energy Basics: Polycrystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

382

Energy Basics: Flat-Plate Photovoltaic Balance of System  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

383

Energy Basics: Photovoltaic Electrical Contacts and Cell Coatings  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

384

Energy Basics: Single-Crystalline Thin Film Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

385

Energy Basics: Types of Silicon Used in Photovoltaics  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Cells Systems Concentrating Solar...

386

Letting The Sun Shine On Solar Costs: An Empirical Investigation Of Photovoltaic Cost Trends In California  

E-Print Network (OSTI)

LETTING THE SUN SHINE ON SOLAR COSTS: AN EMPIRICALLetting the Sun Shine on Solar Costs: An Empirical

Wiser, Ryan; Bolinger, Mark; Cappers, Peter; Margolis, Robert

2006-01-01T23:59:59.000Z

387

Terrestrial Solar Spectral Modeling Tools and Applications for Photovoltaic Devices: Preprint  

SciTech Connect

This conference paper describes the variations in terrestrial spectral irradiance on photovoltaic devices can be an important consideration in photovoltaic device design and performance. This paper describes three available atmospheric transmission models, MODTRAN, SMARTS2, and SPCTRAL2. We describe the basics of their operation and performance, and applications in the photovoltaic community. Examples of model input and output data and comparisons between the model results for each under similar conditions are presented. The SMARTS2 model is shown to be much easier to use, as accurate as the complex MODTRAN model, and more accurate than the historical NREL SPCTRAL2 model.

Myers, D. R.; Emery, K. E.; Gueymard, C.

2002-05-01T23:59:59.000Z

388

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

389

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

photovoltaic performance is widely applicable to any nanowire solar cellfilm solar cells. The principal photovoltaic (PV) materialphotovoltaic performance is widely applicable to any nanowire solar cell

Yang, Peidong

2009-01-01T23:59:59.000Z

390

A uniform economic valuation methodology for solar photovoltaic applications competing in a utility environment  

E-Print Network (OSTI)

The question of how the economic benefits of weather-dependent electric generation technologies should be measured is addressed, with specific reference to dispersed, user-owned photovoltaic systems. The approach to ...

Carpenter, Paul R.

1978-01-01T23:59:59.000Z

391

An economic analysis of grid-connected residential solar photovoltaic power systems  

E-Print Network (OSTI)

The question of the utility grid-connected residential market for photovoltaics is examined from a user-ownership perspective. The price is calculated at which the user would be economically indifferent between

Carpenter, Paul R.

392

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

393

An analysis of the photovoltaic value chain for reviewing solar energy policy in Massachusetts  

E-Print Network (OSTI)

We explore the photovoltaic value chain for 1st generation crystalline silicon, 2nd generation thin film and 3rd generation organic/ dye-sensitized PV in an effort to evaluate two levels of policy options intended to create ...

Dean, Ryan, S. B. (Ryan G.) Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

394

Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications  

E-Print Network (OSTI)

We fabricate near-infrared absorbing organic photovoltaics that are highly transparent to visible light. By optimizing near-infrared optical-interference, we demonstrate power efficiencies of 1.3±0.1% with simultaneous ...

Lunt, Richard R.

395

New Hampshire Electric Co-Op- Residential Solar Photovoltaic Incentive Program  

Energy.gov (U.S. Department of Energy (DOE))

New Hampshire Electric Co-op (NHEC) is offering rebates for residential, grid-tied photovoltaic (PV) systems up to one megawatt (MW) in capacity. The rebate is equal to 20% of the installed cost of...

396

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network (OSTI)

way to do better. A photovoltaic cell, or solar cell, is aFor this thesis, I made photovoltaic cells using a Schottkyphotovoltaic processes oc- cur in a Schottky barrier solar cell. . . . . . . . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

397

Photovoltaic cell efficiency at elevated temperatures  

E-Print Network (OSTI)

In order to determine what type of photovoltaic solar cell could best be used in a thermoelectric photovoltaic hybrid power generator, we tested the change in efficiency due to higher temperatures of three types of solar ...

Ray, Katherine Leung

2010-01-01T23:59:59.000Z

398

Solar: monthly global horizontal (GHI) GIS data at 10km resolution for  

Open Energy Info (EERE)

Central America from SUNY Central America from SUNY Dataset Summary Description (Abstract): Monthly Average Solar Resource for horizontal flat-plate solar collectors for Central America (Purpose): Provide information on the solar resource potential for the data domain. The insolation values represent the average solar energy available to a horizontal flat-plate solar collector, such as a Photovoltaic (PV) solar panel. (Supplemental Information): These data provide monthly average and annual average daily total solar resource averaged over surface cells of approximately 10 km by 10 km in size. The solar resource value is represented as kilowatt-hours per square meter per day for each month. The data were developed from the State University of New York's (SUNY) GOES satellite solar model.

399

photovoltaics | OpenEI  

Open Energy Info (EERE)

photovoltaics photovoltaics Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

400

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

a a Under one sun AM 1.5G peak solar flux (1000W m –2 ),exposed to the sun. The solar resource is variable,one sun irradiance, the limit for a single junction solar

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

regardless of when the solar power is actually produced. 7has not occurred with solar power. Studies such as thethe average valuation of the solar power if the value is the

Borenstein, Severin

2005-01-01T23:59:59.000Z

402

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

18 (A) The total daily solar power production peaks at ~43018 (A) The total daily solar power production peaks at ~430to the Earth. The use of solar power is not a new concept or

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

403

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

of an Electrolyser to a Solar PV System for GeneratingA simple demonstration of solar PV driven bulk electrolysisaxis is the measured solar efficiency ? PV of the PV cell to

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

404

Mobile Solar Tracker Facility  

Science Conference Proceedings (OSTI)

Mobile Solar Tracker Facility. ... NIST's mobile solar tracking facility is used to characterize the electrical performance of photovoltaic panels. ...

2011-11-15T23:59:59.000Z

405

Dazhan Photovoltaic Co | Open Energy Information  

Open Energy Info (EERE)

City, Zhejiang Province, China Sector Solar Product China-based solar energy cell and LED automatic lighting systems manufacturer. References Dazhan Photovoltaic Co1 LinkedIn...

406

Energy Basics: Photovoltaic Cell Performance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Performance Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light...

407

Lab Breakthrough: Microelectronic Photovoltaics | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 7, 2012 - 9:31am Addthis Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon...

408

SunShot Initiative: Multijunction III-V Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Multijunction III-V Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions...

409

EIA Renewable Energy- Shipments of Photovoltaic Cells and Modules ...  

U.S. Energy Information Administration (EIA)

Renewables and Alternate Fuels > Solar Photovoltaic Cell/Module Annual Report > Annual Shipments of Photovoltaic Cells and Modules by Source: Shipments of ...

410

SunShot Initiative: Next Generation Photovoltaics II  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Systems Integration Balance of Systems Next Generation Photovoltaics II Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the...

411

Photovoltaic System Layout for Optimized Self-Consumption.  

E-Print Network (OSTI)

?? Most of the photovoltaic (solar cell) systems in Sweden today are installed on private houses and connected to the public grid. Photovoltaic (PV) power… (more)

Luthander, Rasmus

2013-01-01T23:59:59.000Z

412

Cobb EMC - Solar Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cobb EMC - Solar Rebate Program Cobb EMC - Solar Rebate Program Cobb EMC - Solar Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate PV: $4,500 SWH: $450 per system Program Info State Georgia Program Type Utility Rebate Program Rebate Amount PV: $450/kW-AC SWH: $450 per system Provider Cobb EMC Beginning in February 2008, Cobb Energy Management Corporation (EMC) offers rebates for residential solar photovoltaic (PV) systems. Cobb EMC is offering members $450 per kilowatt-AC (kW-AC) installed, up to a maximum of 10 kW. In order to receive the rebate, PV systems must be interconnected to the grid. A rebate of $450 per system is also offered to solar water heating systems installed. For more information and application forms, see the

413

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

Photovoltaics Photovoltaics (Redirected from - Solar PV) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

414

Analysis of photovoltaic/thermal electric power plant systems  

DOE Green Energy (OSTI)

A conceptual definition and performance evaluation of a 100 megawatt (MW) hybrid photovoltaic/thermal electric power plant has been carried out. The concept utilizes the ability of gallium arsenide photovoltaic cells to achieve high conversion efficiency at high incident fluxes and elevated temperatures. Solar energy is focused by a field of steerable mirrors (heliostats) onto a tower mounted receiver whose outer surface is covered with gallium arsenide (AlGaAs/GaAs) solar cells and whose inner surface is a water boiler. The solar cells convert a fraction of the incident radiation into electrical energy, and the remaining energy is extracted at approximately 200/sup 0/C and used to power a Rankine cycle turbine generator (bottoming cycle). Water is used as the solar cell array coolant, as the thermodynamic working fluid, and as the thermal energy storage medium. Parametric studies were conducted to select conceptual design parameters and operational characteristics which imply the lowest levelized busbar electric energy costs. Parameters varied were collector area, condenser surface area, fan power, ambient temperature, and electric and thermal energy storage capacities. The report describes the concept, outlines the design analysis method, summarizes the parametric study results, and defines the selected plant configuration. The lowest levelized busbar electric energy generation cost, 70 mills/kilowatt-hr., was achieved with a relatively small collector area, 0.8 x 10/sup 6/ square meters, and no stored energy. A rough comparison of this combined power plant with a similar photovoltaic plant, operated at lower solar cell temperature and with no bottoming cycle, showed the busbar cost of electricity (BBEC) from the combined system to be approximately 9% lower.

Gluck, D.F.; Kelley, W.A.

1979-03-01T23:59:59.000Z

415

Phase-one experiment test plan solar photovoltaic/thermal residential experiment  

DOE Green Energy (OSTI)

Objectives, rationale, and method of a one-year experiment using a residential photovoltaic/thermal power system are presented. Data will be both archived and processed to investigate: (1) series heat pump system performance, and (2) electric utility impacts. A parallel heat pump system will be investigated in a subsequent experiment.

Kern, E.C. Jr.

1979-03-15T23:59:59.000Z

416

Solar fuels : integration of molecular catalysts with p-type semiconductor photocathode  

E-Print Network (OSTI)

multi junction photovoltaic cell which can generate agrown Silicon nanowires photovoltaic cell with solid/liquidH. Fundamentals of solar cells : photovoltaic solar energy

Kumar, Bhupendra

2012-01-01T23:59:59.000Z

417

Photovoltaics for residential applications  

DOE Green Energy (OSTI)

Information is given about the parts of a residential photovoltaic system and considerations relevant to photovoltaic power use in homes that are also tied to utility lines. In addition, factors are discussed that influence implementation, including legal and environmental factors such as solar access and building codes, insurance, utility buyback, and system longevity. (LEW)

Not Available

1984-02-01T23:59:59.000Z

418

Structure-Function Relationships in Semiconducting Polymers for Organic Photovoltaics  

E-Print Network (OSTI)

be referenced to the solar spectrum after interactions withpoor overlap with the solar spectrum. The polymers presentedoverlap with the solar spectrum. Figure 2.8 Photovoltaic

Kavulak, David Fredric Joel

2010-01-01T23:59:59.000Z

419

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

of Photochemical and Photovoltaic Solar Energy Converters,”of solar energy in either photovoltaic or solar thermalphotovoltaic (PV) systems,[13,82,83] and solar thermal systems (energy

Coso, Dusan

2013-01-01T23:59:59.000Z

420

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

average price of energy regardless of when the solar powerby low price caps, the di?erence between solar PV powersolar PV power using real-time electricity prices and

Borenstein, Severin

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

Hour of Day Real-Time Price PV - South PV - West PV output (Average Real-time Price and Solar PV Production for JulyCorrelation Between Prices and Solar PV Production The

Borenstein, Severin

2005-01-01T23:59:59.000Z

422

Valuing the Time-Varying Electricity Production of Solar Photovoltaic Cells  

E-Print Network (OSTI)

to a point, such weather also produces higher solar PV pro-solar PV production increases with hotter, sunnier weathersolar PV production that includes random vari- ation due to weather.

Borenstein, Severin

2005-01-01T23:59:59.000Z

423

Experimental and analytical systems studies of a combined thermal-photovoltaic residential solar system. Technical status report No. 5, April 1-May 31, 1980  

DOE Green Energy (OSTI)

The Photovoltaic-Thermal research program schedule is diagrammed. Specifications are given for the combined concentrator Thermal-Photovoltaic Collector Array. The specifications are such as to make the array compatible with a test facility being constructed. Preliminary system checks, manual operation tests, and computer operation tests are described for evaluating the performance of a cooling load simulator. A paper entitled Transient Effects on the Performance of a Residential Solar Absorption Chiller is appended which is concerned with the transient performance of a 3-ton lithium-bromide/water absorption chiller. (LEW)

Not Available

1980-01-01T23:59:59.000Z

424

Efficiency of a liquid desiccant dehumidification system regenerated by using solar collectors/regenerators with photovoltaic fans  

Science Conference Proceedings (OSTI)

A hybrid solar dehumidification air-conditioning system was used to study the absorption of water vapor from moist air by contacting the air with aqueous solutions that contained from 90 to 94% triethylene glycol (TEG). For the packings of 2-inch polypropylene Jaeger Tri-Packs, which have a surface-to-volume ratio of 157 m{sup 2}/m{sup 3} (48 ft{sup 2}/ft{sup 3}), the efficiency of dehumidification can reach 93.3%. The environmental air was introduced into the dehumidifier cocurrently flowing with the liquid desiccant, and the liquid desiccant was sprayed on the top of the packing material. The air-to-liquid mass flow ratio was controlled in a range of 0.46 to 1.36. As the moisture was absorbed from air by the TEG solution, the solution was diluted. The regeneration of the solution was carried out in 20-piece (38.8 m{sup 2}) basin-type solar collectors/regenerators whose regeneration coefficients of performance are above 0.2. Air generated by photovoltaic fans was blown into the solar collectors/regenerators and carried away the water vapor from the evaporation of the aqueous desiccant solution. On the basis of the experimental results, the system performance is acceptable for most applications.

Tsair-Wang Chung; Wei-Yih Wu; Wen-Jih Yan; Ching-Lin Huang [Industrial Technology Research Institute, Taiwan (China)

1995-04-01T23:59:59.000Z

425

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Stringfellow Superfund Site in Riverside, California  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Stringfellow Superfund Site in Riverside, California A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Otto VanGeet and Gail Mosey Technical Report NREL/TP-6A20-48770 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Feasibility Study of Economics and Performance of Solar Photovoltaics at the

426

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida  

NLE Websites -- All DOE Office Websites (Extended Search)

853 853 September 2010 Feasibility Study of Economics and Performance of Solar Photovoltaics at the Former St. Marks Refinery in St. Marks, Florida A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Lands Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Lars Lisell and Gail Mosey National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-48853 September 2010 Feasibility Study of Economics

427

Very Large-Scale Deployment of Grid-Connected Solar Photovoltaics in the United States: Challenges and Opportunities; Preprint  

SciTech Connect

This paper analyzes the potential for solar photovoltaics (PV) to be deployed on a very large scale and provide a large fraction of a system's electricity. It explicitly examines how the hourly availability of PV interacts with the limited flexibility of traditional electricity generation plants. The authors found that, under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. This excess PV generation results in increased costs, which can increase dramatically when PV provides on the order of 10%-15% of total electricity demand in systems that are heavily dependent on inflexible baseload steam plants. Measures to increase penetration of PV are also discussed, including increased system flexibility, increased dispatchable load, and energy storage.

Denholm, P.; Margolis, R.

2006-04-01T23:59:59.000Z

428

Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado  

DOE Green Energy (OSTI)

The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

Roberts, B.

2011-07-01T23:59:59.000Z

429

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Stringfellow Superfund Site in Riverside, California  

DOE Green Energy (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on the Stringfellow Superfund Site in Riverside, California. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.13/kWh and incentives offered by Southern California Edison under the California Solar Initiative. According to the assessment, a government-owned, ground-mounted PV system represents a technically and economically feasible option. The report recommends financing options that could assist in the implementation of such a system.

Mosey, G.; Van Geet, O.

2010-12-01T23:59:59.000Z

430

Very Large-Scale Deployment of Grid-Connected Solar Photovoltaics in the United States: Challenges and Opportunities; Preprint  

DOE Green Energy (OSTI)

This paper analyzes the potential for solar photovoltaics (PV) to be deployed on a very large scale and provide a large fraction of a system's electricity. It explicitly examines how the hourly availability of PV interacts with the limited flexibility of traditional electricity generation plants. The authors found that, under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. This excess PV generation results in increased costs, which can increase dramatically when PV provides on the order of 10%-15% of total electricity demand in systems that are heavily dependent on inflexible baseload steam plants. Measures to increase penetration of PV are also discussed, including increased system flexibility, increased dispatchable load, and energy storage.

Denholm, P.; Margolis, R.

2006-04-01T23:59:59.000Z

431

2007 IEEE Canada Electrical Power Conference Solar Photovoltaic Array's Shadow Evaluation  

E-Print Network (OSTI)

, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Chris Helm and Kari Burman Prepared area where PV can be installed. Hourly satellite solar radiation information is used to determine the amount of annual solar energy that can be pro- duced from PV for the designated area populated with PV

Lehman, Brad

432

SunShot Initiative: Organic Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Photovoltaics Research to Organic Photovoltaics Research to someone by E-mail Share SunShot Initiative: Organic Photovoltaics Research on Facebook Tweet about SunShot Initiative: Organic Photovoltaics Research on Twitter Bookmark SunShot Initiative: Organic Photovoltaics Research on Google Bookmark SunShot Initiative: Organic Photovoltaics Research on Delicious Rank SunShot Initiative: Organic Photovoltaics Research on Digg Find More places to share SunShot Initiative: Organic Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Crystalline Silicon Thin Films Multijunctions Organic Photovoltaics Dye-Sensitized Solar Cells Competitive Awards Systems Integration Balance of Systems Organic Photovoltaics Research Graphic showing the seven layers of an organic PV cell: electrode, donor, acceptor, active layer, PEDOT:PSS, transparent conductive oxide, and glass.

433

Photovoltaic System Performance  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV) systems are usually composed of numerous solar arrays, which in turn, are composed of numerous PV cells. The performance of the system is therefore dependent on the performance of...

434

Three-dimensional photovoltaics  

E-Print Network (OSTI)

The concept of three-dimensional (3D) photovoltaics is explored computationally using a genetic algorithm to optimize the energy production in a day for arbitrarily shaped 3D solar cells confined to a given area footprint ...

Myers, Bryan

435

Concentrator Photovoltaic Systems  

Energy.gov (U.S. Department of Energy (DOE))

Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the most expensive components of a PV system, on a per-area basis. A concentrator makes use...

436

Photovoltaic Cell Structures  

Energy.gov (U.S. Department of Energy (DOE))

The actual structural design of a photovoltaic (PV), or solar cell, depends on the limitations of the material used in the PV cell. The four basic device designs are:

437

Photovoltaic Cell Performance  

Energy.gov (U.S. Department of Energy (DOE))

Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. However, the amount of electricity produced depends on the quality of the light available and the performance of...

438

Photovoltaic Cell Quantum Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

Quantum efficiency (QE) is the ratio of the number of charge carriers collected by a photovoltaic (PV) cell to the number of photons—or packets of light—of a given energy shining on the solar cell....

439

Simulations of the energy performance of a solar photovoltaic residence and hybrid electric automobile in Fresno, California  

Science Conference Proceedings (OSTI)

The hour-by-hour energy performance of a photovoltaic residence and hybrid electric vehicle system that could be built with 1980s' technology is analyzed. Thermal and electrical performance in both stand-alone and grid-connected configurations were simulated with computer models using actual hourly solar and weather data for Fresno, California. The system centers around an energy-efficient residence that incorporates passive heating and cooling. For the simulations in this study, 110 square meters of GE photovoltaic shingle modules (9.6 kW(e) rated power), a 10 kW(e) dc-ac inverter, and advanced lead-acid batteries of 61 kWh(e) capacity were added to the residence. The auto has 30 kWh(e) of lead-acid batteries and a 40-hp electric drive motor for propulsion. The auto was assumed to travel 100 km (62 miles) each day (36,500 km (22,680 miles) annually). A small (10 kW(e)) backup liquid-fueled engine/generator in the auto provides supplemental electricity on cloudy days and for long-distance travel. The utility would provide backup electricity for the residence, or the auto engine/generator can provide this backup power to the residence as well as so-called waste heat from the engine for space heating and domestic hot water. Year-round heating and cooling needs are met primarily with passive design features, and most hot water comes from a solar water heater. The PV array meets all the electrical loads of the residence on 315 days and part of the load on the other 50 days. The PV array also meets the entire auto electricity load on 166 days, and part of the load on another 116 days. A brief cost analysis indicates that both stand-alone and grid-connected systems would be competitive with grid electricity and conventional autos within this decade.

Reuyl, J.S.; Schutt, R.D.

1982-01-01T23:59:59.000Z

440

Photovoltaic Energy Technology Module | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Energy Technology Module Photovoltaic Energy Technology Module Jump to: navigation, search Tool Summary Name: Photovoltaic Energy Technology Module Agency/Company /Organization: World Bank Sector: Energy Focus Area: Renewable Energy, Solar Topics: Technology characterizations Website: web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTENERGY2/EXTRENENERGYTK/0,, References: Photovoltaic Energy Technology Module[1] Resources Portable Solar Photovoltaic Lanterns: Performance and Certification Specification, and Type Approval, ESMAP TECHNICAL PAPER 078 Testing of Storage Batteries used in Stand Alone Photovoltaic Power Systems, Test procedures and examples of test results Technical Specifications for Solar Home Systems (SHS), Rural Electrification and Renewable Energy Development (PV Component) Project

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

DOE Green Energy (OSTI)

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

442

Program on Technology Innovation: Evaluation of Hydrophobic Nano Coating on Solar Photovoltaic Panels, Polaris Initiative Report  

Science Conference Proceedings (OSTI)

This project evaluated the effects of a hydrophobic nano coating on photovoltaic panels. Variables studied were hydrophobicity, changes in cleanliness of the surfaces, and changes in ice and snow accumulation.BackgroundThe nano coating evaluated was being marketed commercially as a vehicle windshield treatment that was meant to keep the windshield glass clean and repel water from the windshield. The treatment claimed to last for up to 1 year in automotive ...

2013-11-27T23:59:59.000Z

443

Solar resource-utility load matching assessment: NREL photovoltaic project summary  

DOE Green Energy (OSTI)

Many utility planners may be unfamiliar with the potential for the development of photovoltaics (PV) in their service areas. The goal of the research summarized in this document is to provide information on the match existing between the output of PV powder plants and the load requirements of US utilities. This material indicates whether or not the effective capacity (hence the value) of this renewable resource should be higher than that traditionally assigned to an intermittent resource.

Not Available

1993-11-01T23:59:59.000Z

444

Mission analysis of photovoltaic solar energy conversion. Volume IV. Supplementary studies  

DOE Green Energy (OSTI)

A discussion is presented of the most significant problems associated with the production and deployment of photovoltaic arrays. The principal chemical compounds to be used in the manufacture of silicon, gallium arsenide, and cadmium sulfide photovoltaic arrays are discussed with respect to physical and chemical properties, sources of the raw materials required to extract or synthesize these materials, the methods of manufacture, storage and handling in large quantities, transportation restrictions, spills, leaks, ignition and explosion. A discussion of safety hazards associated with the finished products is followed by an analysis of the toxicological properties of all raw, refined, and finished chemical species involved. The principal tool used in the evaluation of incentive strategies was a new Public Utility Financial Analysis and Planning Model which is described in some detail. After adaptation to match the characteristics of photovoltaic plants, it was used in the comparative evaluation of six different incentive strategies. The candidate strategies, the rationale for their selection, and the results of the comparative evaluation are presented. An account is given of an attempt to assess the full non-internalized costs of coal-fired power generation. A detailed description is given of the various damage elements and their associated societal costs for coal production, coal transportation, and coal-fired power generation. (MHR)

Leonard, S. L.; Breisacher, P.; Munjal, P. K.; Neiss, J. A.

1977-03-01T23:59:59.000Z

445

Synthesis and photovoltaic application of coper (I) sulfide nanocrystals  

E-Print Network (OSTI)

polymer hybrid photovoltaic cells. Appl. Phys. Lett. 88,S-CdS heterojunction photovoltaic cells. J. Appl. Phys. 45,photovoltaic devices, such as dye-sensitized solar cells 1-

Wu, Yue

2008-01-01T23:59:59.000Z

446

Table 10.9 Photovoltaic Cell and Module Shipments by Sector and ...  

U.S. Energy Information Administration (EIA)

1 See "Peak Kilowatt" in Glossary. 9 Photovoltaic cells/modules that are not connected to the electric power grid, and that are used to provide electric power to ...

447

Photovoltaic system reliability  

SciTech Connect

This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

1997-10-01T23:59:59.000Z

448

China Glass Solar aka CG Solar formerly Weihai Bluestar Terra...  

Open Energy Info (EERE)

Glass Solar aka CG Solar formerly Weihai Bluestar Terra Photovoltaic Co Ltd Jump to: navigation, search Name China Glass Solar (aka CG Solar, formerly Weihai Bluestar Terra...

449

SunShot Initiative: National Laboratory Photovoltaics Research  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Photovoltaics National Laboratory Photovoltaics Research to someone by E-mail Share SunShot Initiative: National Laboratory Photovoltaics Research on Facebook Tweet about SunShot Initiative: National Laboratory Photovoltaics Research on Twitter Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Google Bookmark SunShot Initiative: National Laboratory Photovoltaics Research on Delicious Rank SunShot Initiative: National Laboratory Photovoltaics Research on Digg Find More places to share SunShot Initiative: National Laboratory Photovoltaics Research on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

450

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

she's an expert in charms and potions) and why she became a scientist. February 10, 2011 Energy 101: Solar Photovoltaics Photovoltaic systems convert light energy into electrical...

451

A reliability and availability sensitivity study of a large photovoltaic system.  

Science Conference Proceedings (OSTI)

A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

Stein, Joshua S.; Granata, Jennifer E.; Mundt, Michael Joseph; Miller, Steven P.; Quintana, Michael A.; Collins, Elmer W.; Sorensen, Neil Robert

2010-08-01T23:59:59.000Z

452

Marin Solar | Open Energy Information  

Open Energy Info (EERE)

Marin Solar Jump to: navigation, search Name Marin Solar Place San Rafael, California Zip 94901 Sector Solar Product Marin Solar is a residential installer of photovoltaic systems....

453

EEC 289-L Photovoltaics and Solar Cells 3 Units Winter Quarter (Alternate Years)  

E-Print Network (OSTI)

-96) PVEV Airport: 8kW Arco System (1995-96) PV Solar Carport: 128kW (158kW,EPF) UPG/ Siemens (1995://eeredev.nrel.gov/greenpower/ases96.html #12;Figure 5. SMUD/WAPA Building Integrated 3 kW PV Roofing System Solar Design Associates of intermittency of the solar generated electricity continue to limit PV utility applications. Significant RD

Yoo, S. J. Ben

454

Impact of Solar Resource and Atmospheric Constituents on Energy Yield Models for Concentrated Photovoltaic Systems .  

E-Print Network (OSTI)

??Global economic trends suggest that there is a need to generate sustainable renewable energy to meet growing global energy demands. Solar energy harnessed by concentrated… (more)

Mohammed, Jafaru

2013-01-01T23:59:59.000Z

455

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

Quantum Capture and Energy Storage. Photochem. Photobio.D ISSERTATION Solar Energy Storage through the Homogeneoussolar based fuels and energy storage. At present, it is not

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

456

Photovoltaic/District-Heated and Desiccant-Cooled Solar Powered Community Using an Insulated Pond .  

E-Print Network (OSTI)

??In 1987 Arizona's governor announced a goal of constructing a solar powered community that would produce as much energy from the sun as it consumed.… (more)

Cluff, C. Brent

1991-01-01T23:59:59.000Z

457

The Solar Energy Consortium of New York Photovoltaic Research and Development Center  

Science Conference Proceedings (OSTI)

Project Objective: To lead New York State to increase its usage of solar electric systems. The expected outcome is that appropriate technologies will be made available which in turn will help to eliminate barriers to solar energy usage in New York State. Background: The Solar Energy Consortium has been created to lead New York State research on solar systems specifically directed at doubling the efficiency, halving the cost and reducing the cost of installation as well as developing unique form factors for the New York City urban environment.

Klein, Petra M.

2012-10-15T23:59:59.000Z

458

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

day, time of year, solar activity, weather events, etc. Airsolar resource is variable, primarily due to the day/night diurnal cycle, seasonal changes, and clouds from weather.

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

459

Final Technical Report, City of Brockton Solar Brightfield: Deploying a Solar Array on a Brockton Brownfield  

SciTech Connect

The City of Brockton, Massachusetts sought to install New England’s largest solar array at a remediated brownfield site on Grove Street. The 425-kilowatt solar photovoltaic array – or “Brightfield” – was installed in an urban park setting along with interpretive displays to maximize the educational opportunities. The “Brightfield” project included 1,395 310-Watt solar panels connected in “strings” that span the otherwise unusable 3.7-acre site. The project demonstrated that it is both technically and economically feasible to install utility scale solar photovoltaics on a capped landfill site. The US Department of Energy conceived the Brightfields program in 2000, and Brockton’s Brightfield is the largest such installation nationwide. Brockton’s project demonstrated that while it was both technically and economically feasible to perform such a project, the implementation was extremely challenging due to the state policy barriers, difficulty obtaining grant funding, and level of sophistication required to perform the financing and secure required state approvals. This demonstration project can be used as a model for other communities that wish to implement “Brownfields to Brightfields” projects; 2) implementing utility scale solar creates economies of scale that can help to decrease costs of photovoltaics; 3) the project is an aesthetic, environmental, educational and economic asset for the City of Brockton.

Ribeiro, Lori

2007-08-23T23:59:59.000Z

460

Planar micro-optic solar concentration  

E-Print Network (OSTI)

22nd European Photovoltaic Solar Energy Conference, Milan,the photovoltaic effect requires specific photon energiesphotovoltaic designs based on miniature parabolic dishes,” Solar Energy,

Karp, Jason Harris

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar Power: Using Photovoltaics to Preserve California's Electricity Capacity Reserves  

SciTech Connect

The California Power Authority (CPA) is committed to increasing the use of renewable energy supplies--such as photovoltaics and wind--as a hedge against price fluctuations of electricity and natural gas. The CPA wants to own and operate an adequate supply of reserve generation that: - Can be deployed quickly in response to severe summer peak loads, unexpected loss of base and intermediate generation units, and failure of critical transmission facilities; - Will minimize the reliance on spot market purchases during periods when the State is most vulnerable to price gouging from private generators.

Herig, C..

2001-09-01T23:59:59.000Z

462

Energy Basics: Concentrating Solar Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Photovoltaics Concentrating Solar Power Linear...

463

Method and apparatus for uniformly concentrating solar flux for photovoltaic applications  

DOE Patents (OSTI)

This invention is comprised of a dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

Jorgensen, G.J.; Carasso, M.; Wendelin, T.J.; Lewandowski, A.A.

1991-12-31T23:59:59.000Z

464

Method and apparatus for uniformly concentrating solar flux for photovoltaic applications  

DOE Patents (OSTI)

This invention is comprised of a dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

Jorgensen, G.J.; Carasso, M.; Wendelin, T.J.; Lewandowski, A.A.

1991-01-01T23:59:59.000Z

465

Method and apparatus for uniformly concentrating solar flux for photovoltaic applications  

DOE Patents (OSTI)

A dish reflector and method for concentrating moderate solar flux uniformly on a target plane on a solar cell array, the dish having a stepped reflective surface that is characterized by a plurality of ring-like segments arranged about a common axis, and each segment having a concave spherical configuration.

Jorgensen, Gary J. (Pine, CO); Carasso, Meir (Lakewood, CO); Wendelin, Timothy J. (Golden, CO); Lewandowski, Allan A. (Evergreen, CO)

1992-01-01T23:59:59.000Z

466

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Boulder established a solar sales and use tax rebate for photovoltaic (PV) and solar water heating installations. Solar system owners may receive a rebate (essentially a...

467

Photovoltaics | Open Energy Information  

Open Energy Info (EERE)

(The following text is derived from NREL's description of photovoltaic (The following text is derived from NREL's description of photovoltaic technology.)[1] Photovoltaic Panels Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual solar PV systems. Utility companies are also using PV technology for large

468

Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown  

NLE Websites -- All DOE Office Websites (Extended Search)

» Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt » Central Florida Energy Efficiency Alliance (CFEEA) Kilowatt Crackdown Challenge Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section How can we help you? Build an energy program Improve building and plant performance Earn the ENERGY STAR and other recognition Benchmark energy use ENERGY STAR in action Communicate and educate

469

Photovoltaic Cell Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials Photovoltaic Cell Materials August 19, 2013 - 4:43pm Addthis Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made...

470

Photovoltaic Cell Basics | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV...

471

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

1981-12-31T23:59:59.000Z

472

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

for Improvement of Photovoltaic Solar Energy Converters,”drastic improvement in photovoltaic (PV) energy conversionwith photovoltaic devices to improve the energy conversion

Shao, Qinghui

2009-01-01T23:59:59.000Z

473

Photovoltaic-Reliability R&D Toward a Solar-Powered World: Preprint  

DOE Green Energy (OSTI)

Paper about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.; Quintana, M.

2009-08-01T23:59:59.000Z

474

Photovoltaic-Reliability R&D Toward a Solar-Powered World (Presentation)  

DOE Green Energy (OSTI)

Presentation about the importance of continued progress toward low-cost, high-reliability, and high-performance PV systems. High reliability is an essential element in achieving low-cost solar electricity.

Kurtz, S.; Granata, J.

2009-08-01T23:59:59.000Z

475

Interagency Advanced Power Group Solar Photovoltaic Panel Fall meeting minutes, October 22, 1992  

DOE Green Energy (OSTI)

This report contains discussions on the following topics: Leaf, TPL, and {sup 60}Co Gamma source testing facilities; in-house photovolatic research effort; US Army`s interest developing small thermophotovoatic power source for a variety of missions; charging lead acid batteries with unregulated photovolatic panels; testing of solar array panels for space applications; polycrystalline CuInSe{sub 2} & CdTe PV solar cells and, current activities in the US photovolatic program.

Not Available

1992-12-31T23:59:59.000Z

476

NREL: Photovoltaics Research - Accomplishments in Photovoltaic  

NLE Websites -- All DOE Office Websites (Extended Search)

Accomplishments in Photovoltaic Manufacturing R&D Accomplishments in Photovoltaic Manufacturing R&D Successful efforts within the PV Manufacturing R&D Project were recognized by the solar industry. Key highlights from the project are summarized below. Overall, the project resulted in a more than 50% reduction in manufacturing costs and a substantial return on investment for both the U.S. government and the industries involved. A number of companies participating in the project were able to make technological advances that helped them attract millions of dollars in private investment capital. The project focused on four primary areas of solar manufacturing: Solar cells and modules Manufacturing processes Systems integration System components. Solar Cells and Modules Advances in solar cells and modules were made that significantly reduced

477

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are eligible for a 0.20 per kilowatt-hour (kWh) production...

478

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for solar water heating has been reduced to 0.40 per equivalent kilowatt-hour (kWh), and incentives for all non-solar renewable energy technologies have been suspended. ''''' Prev...

479

Four Federal Grid-Connected Photovoltaic Systems: Powering Our Nation's Capital with Solar  

DOE Green Energy (OSTI)

One of the fastest growing markets for photovoltaics (PV) is the urban sector. Municipal planners have discovered that PV systems operate favorably in their urban areas, and can be aesthetically integrated into the urban landscape. The federal government has a long history of using PV in a variety of applications, but until recently few applications have been in urban environments. During the last five years, four grid-connected PV systems have been installed on federally owned or federally leased facilities in the Washington, D.C. area: (1) Earth Day Park, (2) U.S. Department of Energy Headquarters, (3) the Pentagon, and (4) Federal Energy Regulatory Commission Headquarters. This paper reviews these four urban, grid-connected systems-particularly the issues of siting, permitting, and grid interconnection.

Plympton, P.; Kappaz, P.; Kroposki, B.; Stafford, B.; Thornton, J.

2001-04-16T23:59:59.000Z

480

Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics  

DOE Green Energy (OSTI)

Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C) ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.

Drury, E.; Denholm, P.; Margolis, R.

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt solar photovoltaic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Feasibility Study of Economics and Performance of Solar Photovoltaics in the Commonwealth of Puerto Rico  

DOE Green Energy (OSTI)

This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on brownfield sites in the Commonwealth of Puerto Rico. All of the assessed sites are landfills. The sites were assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.119/kWh and incentives offered by Puerto Rico and by the serving utility, PREPA. According to the site production calculations, the most cost-effective system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.

Salasovich, J.; Mosey, G.

2011-03-01T23:59:59.000Z

482

Black Hills Energy - Solar Power Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program Black Hills Energy - Solar Power Program < Back Eligibility Commercial Fed. Government General Public/Consumer Industrial Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 7/1/2006 State Colorado Program Type Performance-Based Incentive Rebate Amount Systems up to 10 kW: $0.1267/kWh (only for first 5 kW) Systems larger than 10 kW up to 100 kW: $0.16/kWh Provider Black Hills Energy Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right to the renewable energy credits (RECs) associated with the PV-generated electricity for a period of

483

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

484

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

485

Integrated photovoltaic electrolytic cell  

SciTech Connect

A photovoltaic-electrolytic unit is provided to produce an electric current from solar energy and utilize the current to produce hydrogen by the electrolysis of water. The unit floats in an aqueous medium so that photoelectric cells are exposed to solar radiation, and electrodes submerged in the medium produce oxygen which is vented and hydrogen which is collected in the unit.

Ohkawa, T.

1982-10-05T23:59:59.000Z

486

Hybrid solar thermal-photovoltaic systems demonstration, Phase I and II. Final technical progress report, July 5, 1979-December 1982  

DOE Green Energy (OSTI)

The purpose of the project is to investigate a system based on combined photovoltaic/thermal (PV/T) panels to supply the energy needs of a small single family residence. The system finally selected and constructed uses PV/T panels which utilize air as the heat transfer medium. Optimization of thermal performance was accomplished by attaching metal fins to the back surface of each cell which significantly increased the heat transfer coefficient from the solar cells to the air stream. The other major components of the selected system are an air-to-air heat pump, a rock bin thermal energy storage bin, a synchronous dc-to-ac converter, a microprocessor to control the system, a heat exchanger for the domestic hot water system and of course the building itself which is a one story, well insulated structure having a floor area of 1200 ft/sup 2/. A prototype collector was constructed and tested. Based on this experience, twenty collectors, containing 2860 four inch diameter solar cells, were constructed and installed on the building. Performance of the system was simulated using a TRNSYS-derived program, modified to accommodate PV/T panels and to include the particular components included in the selected system. Simulation of the performance showed that about 65 percent of the total annual energy needs of the building would be provided by the PV/T system. Of this total, about one half is produced at a time when it can be used in the building and one half must be sold back to the utility.

Loferski, J.J. (ed.)

1983-12-01T23:59:59.000Z

487

Photovoltaic performance of ZnO nanosheets solar cell sensitized with beta-substituted porphyrin  

Science Conference Proceedings (OSTI)

Publisher Statement: This article has been retracted at the request of the author as it is identical in the title and the technical content with another article submitted to Solar Energy with the following information, S. Suresh, A. Pandikumar, S. Murugesan, ...

Arumugam Mahesh

2011-01-01T23:59:59.000Z

488

Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open Energy  

Open Energy Info (EERE)

Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place Kunming, Yunnan Province, China Zip 650033 Sector Solar Product Crystalline solar cell and module manufacturer. Coordinates 25.051001°, 102.702011° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.051001,"lon":102.702011,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Photovoltaic Energy Ratings Methods Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1) empirical relationships based on air mass, and (2) use of spectral irradiance models and PV module spectral response data. Methods of the first type were the Sandia National Laboratories absolute air-mass function, or f(AMa), and the CREST air-mass function, or f(AM). The second

490

Impacts of Variability and Uncertainty in Solar Photovoltaic Generation at Multiple Timescales  

SciTech Connect

The characteristics of variability and uncertainty of PV solar power have been studied extensively. These characteristics can create challenges for system operators who must ensure a balance between generation and demand while obeying power system constraints at the lowest possible cost. A number of studies have looked at the impact of wind power plants, and some recent studies have also included solar PV. The simulations that are used in these studies, however, are typically fixed to one time resolution. This makes it difficult to analyze the variability across several timescales. In this study, we use a simulation tool that has the ability to evaluate both the economic and reliability impacts of PV variability and uncertainty at multiple timescales. This information should help system operators better prepare for increases of PV on their systems and develop improved mitigation strategies to better integrate PV with enhanced reliability. Another goal of this study is to understand how different mitigation strategies and methods can improve the integration of solar power more reliably and efficiently.

Ela, E.; Diakov, V.; Ibanez, E.; Heaney, M.

2013-05-01T23:59:59.000Z

491

DOE Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pursues SunShot Initiative to Achieve Cost Competitive Solar Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by 2020 DOE Pursues SunShot Initiative to Achieve Cost Competitive Solar Energy by 2020 February 4, 2011 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced additional details of the Department of Energy's "SunShot" initiative to reduce the total costs of photovoltaic solar energy systems by about 75 percent so that they are cost competitive at large scale with other forms of energy without subsidies before the end of the decade. By reducing the cost for utility scale installations by about 75 percent to roughly $1 a watt - which would correspond to roughly 6 cents per kilowatt-hour - solar energy systems could be broadly deployed across the country.

492

City Water Light and Power - Solar Rewards Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » City Water Light and Power - Solar Rewards Program City Water Light and Power - Solar Rewards Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $15,000 per account Program Info Start Date 01/23/2012 State Illinois Program Type Utility Rebate Program Rebate Amount $1,500/kW Provider City Water Light and Power '''''Note: Funding for the Solar Rewards program has been exhausted. Check the program web site for more information regarding additional funding, expected March 2013.''''' City Water, Light and Power (CWLP) is now offering residential and commercial customers a $1,500 per kilowatt (kW) rebate for installing solar photovoltaic (PV) systems. Rebates are limited to $15,000 per customer

493

Snohomish County PUD No 1 - Solar Express Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program Rebate Program Snohomish County PUD No 1 - Solar Express Rebate Program < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Residential Savings Category Solar Buying & Making Electricity Heating & Cooling Water Heating Maximum Rebate Residential PV: $2,500 Commercial PV: $10,000 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount PV: $500/kW-DC SWH: $500/system Provider Snohomish County PUD In March 2009, Snohomish County PUD introduced the Solar Express Program. This program provides rebates to support residential and commercial installations of solar photovoltaics (PV) and solar water heating (SWH). The program also provides loans to support residential installations. This rebate program provides $500 per kilowatt (kW) of installed PV, up to

494

City of San Jose - Photovoltaic Permit Requirements (California...  

Open Energy Info (EERE)

Jose - Solar Hot Water Heaters & Photovoltaic Systems Permit Requirements Incentive Type SolarWind Permitting Standards Applicable Sector Commercial, Construction, Industrial,...

495

Novel materials, computational spectroscopy, and multiscale simulation in nanoscale photovoltaics  

E-Print Network (OSTI)

Photovoltaic (PV) solar cells convert solar energy to electricity using combinations of semiconducting sunlight absorbers and metallic materials as electrical contacts. Novel nanoscale materials introduce new paradigms for ...

Bernardi, Marco, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

496

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

with Photovoltaic Cells Contains initial work for the current PV kit experiments o Solar Cells o Solar Electric Arrays o Photovoltaics in Arrays: Solar Cells Generating Electricity http://www.californiasolarcenter.org/history_pv and the Solar Radiation Monitoring Laboratory

Kaiser, Todd J.

497

SunShot Initiative: Reducing Photovoltaic Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Photovoltaic Costs to Reducing Photovoltaic Costs to someone by E-mail Share SunShot Initiative: Reducing Photovoltaic Costs on Facebook Tweet about SunShot Initiative: Reducing Photovoltaic Costs on Twitter Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Google Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Delicious Rank SunShot Initiative: Reducing Photovoltaic Costs on Digg Find More places to share SunShot Initiative: Reducing Photovoltaic Costs on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of Systems Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. Past Incubator awardee, Innovalight, is creating high-efficiency, low-cost

498

Solar Energy: What's next for Solar Technology  

Solar Energy: What’s next for Solar Technology John P. Benner Group Leader, Electronic Materials and Devices. National Center for Photovoltaics. National Renewable ...

499

Photovoltaic Electrical Contacts and Cell Coatings  

Energy.gov (U.S. Department of Energy (DOE))

The outermost layers of photovoltaic (PV) cell, or solar cell, are the electrical contacts and anti-reflective coating. These layers provide essential functions to the cell's operation.

500

SPUTTERED THIN FILM PHOTOVOLTAICS - Home - Energy ...  

for photovoltaic (PV) applications .These processes result in films with better unif ormity over ... ultimately resulting in a more efficient solar ce ...