Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NREL: News - NREL Finds Up to 6-cent per Kilowatt-Hour Extra...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

714 NREL Finds Up to 6-cent per Kilowatt-Hour Extra Value with Concentrated Solar Power The greater the penetration of renewables in California, the greater the value of CSP with...

2

Sandia National Laboratories: $0.06 per kilowatt-hour for solar electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per kilowatt-hour for solar

3

Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost).  

E-Print Network [OSTI]

AIM Energy savings can be communicated in terms of kilowatt hours (energy), carbon (climate change) or pounds (cost). We want to know if these different communication units prime different motivations more broadly. This implies that considering carbon may result in wider changes in sustainable behaviour

McAuley, Derek

4

Experimental and cost analyses of a one kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

Over the past ten years, government regulations for energy standards, coupled with the utility industry`s promotion of energy-efficient appliances, have prompted appliance manufacturers to reduce energy consumption in refrigerator-freezers by approximately 40%. Global concerns over ozone depletion have also required the appliance industry to eliminate CFC-12 and CFC-11 while concurrently improving energy efficiency to reduce greenhouse emissions. In response to expected future regulations that will be more stringent, several design options were investigated for improving the energy efficiency of a conventionally designed, domestic refrigerator-freezer. The options, such as cabinet and door insulation improvements and a high-efficiency compressor were incorporated into a prototype refrigerator-freezer cabinet and refrigeration system. Baseline energy consumption of the original 1996 production refrigerator-freezer, along with cabinet heat load and compressor calorimeter test results, were extensively documented to provide a firm basis for experimentally measured energy savings. The goal for the project was to achieve an energy consumption that is 50% below in 1993 National Appliance Energy Conservation Act (NAECA) standard for 20 ft{sup 3} (570 l) units. Based on discussions with manufacturers to determine the most promising energy-saving options, a laboratory prototype was fabricated and tested to experimentally verify the energy consumption of a unit with vacuum insulation around the freezer, increased door thicknesses, a high-efficiency compressor, a low wattage condenser fan, a larger counterflow evaporator, and adaptive defrost control.

Vineyard, E.A.; Sand, J.R.

1997-05-01T23:59:59.000Z

5

Fridge of the future: Designing a one-kilowatt-hour/day domestic refrigerator-freezer  

SciTech Connect (OSTI)

An industry/government Cooperative Research and Development Agreement (CRADA) was established to evaluate and test design concepts for a domestic refrigerator-freezer unit that represents approximately 60% of the US market. The goal of the CRADA was to demonstrate advanced technologies which reduce, by 50 percent, the 1993 NAECA standard energy consumption for a 20 ft{sup 3} (570 I) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translated to an energy consumption of 1.003 kWh/d. The general objective of the research was to facilitate the introduction of cost-efficient technologies by demonstrating design changes that can be effectively incorporated into new products. A 1996 model refrigerator-freezer was selected as the baseline unit for testing. Since the unit was required to meet the 1993 NAECA standards, the energy consumption was quite low (1.676 kWh/d), thus making further reductions in energy consumption very challenging. Among the energy saving features incorporated into the original design of the baseline unit were a low-wattage evaporator fan, increased insulation thicknesses, and liquid line flange heaters.

Vineyard, E.A.; Sand, J.R.

1998-03-01T23:59:59.000Z

6

How Much Energy is a Kilowatt Hour? Jim Settelmeyer Cottage Grove High School  

E-Print Network [OSTI]

.k12.or.us Frank Vignola ­ University of Oregon fev@uoregon.edu For Emerald People's Utility District: ..........................................................................................................................................................2 Prelab for "Lab: My Personal Power Plant: ............................................................................................................................................................3 II. Lab: My Personal Power Plant

Oregon, University of

7

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network [OSTI]

electricity. The average cost per kWh (Kilowatt Hour) ofdirectly currently cost around $0.24 per kWh in Central and

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

8

Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation  

E-Print Network [OSTI]

heating, given the higher cost per KWh for electricity, aaverage cost of electrical energy per kilowatt-hour (kWh) is

Logue, J.M.

2012-01-01T23:59:59.000Z

9

Alaska Strategic Energy Plan and Planning Handbook  

Broader source: Energy.gov (indexed) [DOE]

AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

10

A restructuring agenda for developing competitive retail electric markets that is based on a low-cost, real-time, smart-kilowatt-hour meter adapter  

SciTech Connect (OSTI)

This paper proposes six agenda items that should expedite a politically smooth transition into a most efficient economically viable market-driven public power system. The agenda would introduce: the virtual marketplace for retail electric power, smart meters, smart meter readers, near-real-time load balancing and load apportionment, advanced supply and demand or commodity-style pricing, and reliability metering.

Chasek, N.E.

1997-12-31T23:59:59.000Z

11

Energy Replacement Generation Tax Exemption  

Broader source: Energy.gov [DOE]

Iowa imposes a replacement generation tax of 0.06 cents ($0.0006) per kilowatt-hour (kWh) on various forms of electricity generated within the state. This tax is imposed in lieu of a property tax...

12

City of Dallas- Green Energy Purchasing  

Broader source: Energy.gov [DOE]

In September 2007, the City of Dallas finalized purchase contracts for more than 333 million kilowatt-hours (kWh) of green electricity for city facilities during 2008. The city has elected to...

13

Private Companies, Federal Agencies and National Labs Join Better...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

over the next decade. Data centers consumed about 100 billion kilowatt-hours (kWh) of electricity in the U.S last year and that number is expected to grow as more information...

14

City of Houston- Green Power Purchasing  

Broader source: Energy.gov [DOE]

In 2007, the City of Houston negotiated a 5-year contract with Reliant Energy for up to 80 MW or 700 million kilowatt-hours (kWh) annually of renewable energy credits (RECs). These RECs will be...

15

Renewable Energy Production Incentive  

Broader source: Energy.gov [DOE]

Supported by the state's Renewable Development Fund, Minnesota offers a payment of 1.5¢ per kilowatt-hour (kWh) for on-farm biogas facilities. Previously, this incentive also offered payments to...

16

Freescale Semiconductor Successfully Implements an Energy Management...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than 2 million each year. Freescale...

17

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network [OSTI]

cost adds approxi- mately $0.01 per kilowatt-hour (kWh) torealize costs ranging from $0.05 to $0.07 per kWh. Where on-costs from biomass currently range from $0.06 to $0.10 per kWh

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

18

H A&S 222a: Introduction to Energy and Environment (Life Under the Pale Sun) out: Tues 4 April 2006  

E-Print Network [OSTI]

turbines connected to electrical generators, making that much average electric power). An average family) in this comparison? ·Electrical energy is sold by the kilowatt hour (KWH). What is the cost of one KWH in Seattle (for example being the electrical energy required to burn a 100-watt light bulb for 10 hours). Convert

19

Consumer-Friendly and Environmentally-Sound Electricity Rates for the Twenty-First Century By Lee S. Friedman  

E-Print Network [OSTI]

and changing fuel costs. However, the cost of providing electricity varies from as low as 1-cent per kWh continue to pay a rate per kilowatt-hour (kWh) that does not vary at all within a day. I will refer to over $1 per kWh depending upon the time and day that it is provided. Those on time invariant rates pay

Sekhon, Jasjeet S.

20

EXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST  

E-Print Network [OSTI]

to be recovered through variable, volume-based charges per kilowatt-hour (kWh). At the same time, however, someEXECUTIVE SUMMARY: RETHINKING STANDBY & FIXED COST CHARGES REGULATORY & RATE DESIGN PATHWAYS TO DEEPER SOLAR PV COST REDUCTIONS The Current Terrain In recent years, electric utilities have experienced

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

WHAT WE ARE DOING TO IT AND WHAT WE ARE DOING TO UNDERSTAND IT  

E-Print Network [OSTI]

.6 0.4 0.2 0.0 CO2emissions,Pounds(C)perKWH Coal Oil Natural gas Nuclear CARBON DIOXIDE EMISSIONS FROM ELECTRIC ENERGY PRODUCTION (1990's Technology) Suffolk County 2001 Legislation How much does your household contribute? A typical household using 1000 kilowatt hours of electricity per month is responsible

Schwartz, Stephen E.

22

Purdue Agricultural Economics Report Page 1 In This Issue  

E-Print Network [OSTI]

. Around 40% of all new-generation power added to the electric grid in the U.S. in recent years has been converts the blades' speeds of about 18 to 20 rotations per minute to electricity-generating speeds of 1.4 million and 3 million kilowatt- hours (kWh) annually to provide electricity for 240 to 300 households

23

84Unit Conversions Energy, Power, Flux Energy is measured in a number of ways depending on what property is being  

E-Print Network [OSTI]

kilowatt- hour (1 kWh)? Problem 4 ­ How many ergs of energy are collected from a solar panel on a roof, if the sunlight provides a flux of 300 Joules/sec/meter 2 , the solar panels have an area of 27 square feet84Unit Conversions ­ Energy, Power, Flux Energy is measured in a number of ways depending on what

24

Energy Security in Nova Scotia Larry Hughes  

E-Print Network [OSTI]

of energy) PV ­ Photovoltaic (usually solar panels that generate electricity from the sun) RES ­ Renewable ) joules (a unit of energy) HST ­ Harmonized Sales Tax (Nova Scotia's sales tax: 8% provincial plus 6% federal) ha ­ hectare IEA ­ International Energy Agency kWh ­ Kilowatt-hour (a unit of energy) LDV ­ Light

Hughes, Larry

25

Simple and Effective Dynamic Provisioning for Power-Proportional Data Centers  

E-Print Network [OSTI]

computer infrastructure. The closer to one PUE is, the better energy utilization is. Real-world statistics consumed an estimated 240 billion kilowatt-hours (kWh) of energy, roughly 1.3% of the world total energy Chen, and Lachlan L. H. Andrew Abstract--Energy consumption represents a significant cost in data

Andrew, Lachlan

26

BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA  

E-Print Network [OSTI]

average wind speed of 15.3 miles-per-hour ("mph") and annual energy production of 2,554 kilowatt hours ("k calculated that the annual energy production would be 9,513 kWh. Thus, it is impossible to reconcile the one in the Complaint and the KEMA Report, the claimed annual energy production of 2,554 kWh, and the annual energy

27

Recovery helps California company get ahead | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

XeroCoat provides as much as a 5-percent increase in energy on a kilowatt-hour basis. A medium-sized air conditioner runs for about one hour on a kilowatt-hour of electricity,...

28

Functions, Part 1 c csun Fall 2011 v15  

E-Print Network [OSTI]

customers $14.00 per month plus $0.10 per kilowatt-hour (KWH) of electricity used. Thus, the monthly cost on the price? If the price per gallon is $3.40, what is the cost to fill the tank? If the price per gallon. This is read as: The cost, C(p), to fill the tank is a function of the price p per gallon. Written form: "the

Fuller, Terry

29

Microsoft Word - CX-SnohomishPUD Equipment Purchase_140521  

Broader source: Energy.gov (indexed) [DOE]

data acquisition equipment (including kilowatt hour quantity) Bay 15: three current transformers Bay 15: three voltage transformers Bay 2: SCADA 5 systems, plus Snohomish data...

30

CX-011741: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

research and development activities for the demonstration of a 1 kilowatt-hour nanotechnology-based high-energy-density liquid energy storage media and corresponding flow...

31

ARPA-E 2011 Keynote: Dr. Arun Majumdar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

- gigawatt (power ?) - (inaudible) - storage. The way we do that today is by pumped hydro, using the dam in reverse. And that's about a hundred dollars a kilowatt hour,...

32

Property:Incentive/PVNPFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation, searchExpireDtStringPVNPFitDolKWh Jump

33

Kilowatts From Waste Wood In The Furniture Industry  

E-Print Network [OSTI]

recently, the Singer Furniture Co., Lenoir, N. Carolina, purchased a 450 kilowatt steam turbine/induction generator set to use extra steam - produced by 'free' waste wood fuel - in generating 15% of the plant's electrical energy demand. The turbine...

Nailen, R. L.

1981-01-01T23:59:59.000Z

34

3Energy in the Home Every month, we get the Bad  

E-Print Network [OSTI]

operating, the accelerator requires 70 megaWatts of electricity ­ about the same as the power consumption) What is the Tevatron's electricity consumption in kilowatt hours? B) At $0.11 per kilowatt hour, how operating, the accelerator requires 70 megaWatts of electricity ­ about the same as the power consumption

35

Palmetto Clean Energy (PaCE) Program  

Broader source: Energy.gov [DOE]

'''''Note: For a limited time, generators of 6 kilowatts or less of renewable energy can now take advantage of a premium $0.10 per kilowatt hour. This premium is available on a first-come-first...

36

Introduction to Benchmarking: Starting a Benchmarking Plan  

Broader source: Energy.gov (indexed) [DOE]

plant Btu per pound of product Manufacturer Btu per pound of product processed Refinery Btu per number of beds occupied Hotel or hospital Kilowatt-hours per square foot...

37

Residential Network Members Impact More Than 42,000 Households...  

Energy Savers [EERE]

annual electricity savings of more than 5 million kilowatt-hours; estimated natural gas savings of 71,580 British therms; and 653,245 estimated annual cost savings. In New...

38

Clean Energy Tax Credit (Maryland)  

Broader source: Energy.gov [DOE]

The Clean Energy Tax Credit is 0.85 cents for each kilowatt hour of electricity sold that was produced from a Maryland qualified energy resource during the 5-year period specified in the initial...

39

B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Journal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Partners celebrate win-win at hatchery Fewer kilowatt-hours in, more fish out, both numbering in the millions. That's the equation for success at Dworshak National Fish Hatchery...

40

Renewable Energy Production Tax Credit (Corporate)  

Broader source: Energy.gov [DOE]

Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the corporate income tax of one cent per kilowatt-hour for companies that generate electricity...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network [OSTI]

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

42

Webinar: Award-Winning LEEP Campaign Sites Demonstrate Big Savings in High Efficiency Parking Lighting  

Broader source: Energy.gov [DOE]

The Lighting Energy Efficiency in Parking (LEEP) Campaign is saving nearly 45 million kilowatt-hours and $4 million annually by upgrading its partners to high efficiency lighting in over 500,000 parking spaces.

43

SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)  

SciTech Connect (OSTI)

Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

Not Available

2013-10-01T23:59:59.000Z

44

Renewable Energy Production Tax Credit (Personal)  

Broader source: Energy.gov [DOE]

Enacted in 2002, the New Mexico Renewable Energy Production Tax Credit provides a tax credit against the personal income tax of one cent per kilowatt-hour for companies that generate electricity...

45

MEASURING ENERGY CONSERVATION WITH UTILITY BILLS  

E-Print Network [OSTI]

in British Thermal Units, BTU, for these comparisons. Themade by noting that there are 100,000 BTU's in one therm andthat there are 3413 BTU's in one kilowatt hour. It should be

Deckel, Walter

2013-01-01T23:59:59.000Z

46

EPA Clean Energy-Environment Guide to Action 5.5 Fostering Green Power Markets Policy Description and Objective Summary  

E-Print Network [OSTI]

Green power is a relatively small but growing market that provides electricity customers the opportunity to make environmental choices about their electricity consumption. Programs in more than 40 states currently serve approximately 540,000 customers, representing nearly 4 billion kilowatt-hours (kWh) annually. Green power is offered in both vertically integrated and competitive retail markets. Green power programs have existed for approximately 10 years and have contributed to the development of over 2,200 megawatts (MW) of new renewable capacity over that time. A recent study estimates that this could reach 8,000 MW by 2015 (Wiser et al. 2001). Because participation in green power programs is voluntary, the role for states may be more limited

unknown authors

47

Structural Composites Industries 4 kilowatt wind system development. Phase I: design and analysis, technical report  

SciTech Connect (OSTI)

A 4 kW small wind energy conversion system (SWECS) has been designed for residential applications in which relatively low (10 mph) mean annual wind speeds prevail. The objectives were to develop such a machine to produce electrical energy at 6 cents per kWh while operating in parallel with a utility grid or auxiliary generator. The Phase I effort began in November, 1979 and was carried through the Final Design Review in February 1981. During this period extensive trade, optimization and analytical studies were performed in an effort to provide the optimum machine to best meet the objectives. Certain components, systems and manufacturing processes were tested and evaluated and detail design drawings were produced. The resulting design is a 31-foot diameter horizontal axis downwind machine rated 5.7 kW and incorporating the following unique features: Composite Blades; Free-Standing Composite Tower; Torque-Actuated Blade Pitch Control. The design meets or exceeds all contract requirements except that for cost of energy. The target 6 cents per kWh will be achieved in a mean wind speed slightly below 12 mph instead of the specified 10 mph.

Malkine, N.; Bottrell, G.; Weingart, O.

1981-05-01T23:59:59.000Z

48

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

49

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect (OSTI)

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

50

Influences of pump transitions on thermal effects of multi-kilowatt thulium-doped fiber lasers  

E-Print Network [OSTI]

Thermal effects are critical constrains for developing high-power thulium-doped fiber lasers (TDFLs). In this paper, we numerically investigate the lasing and thermal characteristics of the TDFLs under different pump transitions. Our results show, the widely-used pump transition $^3H_6\\rightarrow^3H_4$, taking advantages of high-power high-efficiency laser diodes at $\\sim$0.8 $\\mu$m, may not be a superior choice for directly outputting multi-kilowatt at 2 $\\mu$m because of severe thermal problems. Meanwhile, using other pump transitions resulting 2-$\\mu$m emissions, especially the in-band pump transition $^3H_6\\rightarrow^3F_4$, will decrease the generated heat to a large extent. By optimizing the power filling factor of the gain fiber, we find a 2-$\\mu$m TDFL cladding-pumped at 1.9 $\\mu$m will lead to the laser slope efficiency close to its quantum efficiency (95\\%). The induced ultra-low quantum defect would be of great importance for power scaling. We thus propose tandem-pumped TDFLs for reducing the heat ...

Yang, Jianlong; Tang, Yulong; Xu, Jianqiu

2015-01-01T23:59:59.000Z

51

Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh  

SciTech Connect (OSTI)

Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

1980-04-01T23:59:59.000Z

52

The EPRI/DOE Utility Wind Turbine Performance Verification Program  

SciTech Connect (OSTI)

In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

1997-01-01T23:59:59.000Z

53

CEC-500-2010-FS-004 Development and Demonstration of  

E-Print Network [OSTI]

and electricity generation goals, the use of renewable energy technologies, including solar, must be expanded is to achieve a levelized cost of electricity of about 15 cents per kilowatt-hour for concentrating PV systems or absorbing reactive power to or from the grid. · Increasing plug-and-play capabilities of PV systems

54

Policies supporting Heat Pump Technologies  

E-Print Network [OSTI]

Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

Oak Ridge National Laboratory

55

Review of Conservation Costs and Benefits: Five Years of Experience under the Northwest Power Act  

E-Print Network [OSTI]

hours. Research, development and pilot projects have produced savings at costs that range from less than .10 cents to 8.9 cents per kilowatt hour. Based on the results described in this paper, the Northwest Power Planning Council has concluded...

Sheets, E.

56

Briefing Note 2010 6 28 May 2010  

E-Print Network [OSTI]

include connecting the Supergrid to solarvoltaic panels and concentrating solar power installations as having an abundance of renewable energy sources, with wind farms in Scotland, solar panels in Germany as early as 2030. The wholesale cost would be an estimated 4.6 eurocents per kilowatt-hour, close

Pedersen, Tom

57

Sustainable Energy Revolving Loan Fund PROJECT APPLICATION  

E-Print Network [OSTI]

1 Sustainable Energy Revolving Loan Fund PROJECT APPLICATION I. Project Administration 1. Project;2 III. Estimated Annual Energy Savings SHOW CALCULATIONS, RATIONALE AND/OR METHODOLOGY Attach additional documentation if needed Estimated Energy Savings Estimated Financial Savings ELECTRICAL ­ Kilowatt hour and

Escher, Christine

58

Making it Happen The Action Plan The Council believes it is critical that the region act now to help secure an adequate, efficient,  

E-Print Network [OSTI]

are minimal. This means that unlike a conventional generating unit, there are no operating costs to be avoided REDUCE SYSTEM COST AND RISK Conservation Conservation is the highest priority resource under passage at an average levelized cost of approximately 2.5 cents per kilowatt-hour. Despite

59

Novel Nanoscale Materials Reduce Electricity Needed for Sludge  

E-Print Network [OSTI]

This project researches the use of nanoscale materials (a broadly defined set of substances that haveNovel Nanoscale Materials Reduce Electricity Needed for Sludge Dewatering Industrial process, requiring up to 6000 kilowatt hours/year per million gallons per day. Project Description

60

Office of the President AGENDA ITEM 301 September 7, 2011  

E-Print Network [OSTI]

Care is the No. 1 health care system in the Salt Lake City metro area, according to U.S. News & World of 85 million kilowatt-hours of green electricity (green.) certified renewable energy and solar panel to 31 percent of the school's total electricity consumption. EPA's list highlights institutions

Capecchi, Mario R.

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

www.inl.gov A Future of Nuclear Energy  

E-Print Network [OSTI]

www.inl.gov A Future of Nuclear Energy: The Nuclear Renaissance, the Role of INL, and Potential in Nuclear Energy · Electrical Generation Supply/Demand · Global Warming, Greenhouse Gas Emissions/kilowatt-hour) Facts regarding nuclear energy in the US #12;· Standardized designs based on modularization producing

62

Authors' Note: Address correspondence to John Byrne, Center for Energy & Environmental Policy, University of Delaware, Newark, DE 19716-7301; e-mail: jbbyrne@udel.edu.  

E-Print Network [OSTI]

kilowatt-hours, so that increased energy consumption and economic growth can continue. The article doubts part by the energy sector,2 one might hope that social concerns would rival technical ones. But so far81 Authors' Note: Address correspondence to John Byrne, Center for Energy & Environmental Policy

Delaware, University of

63

Correspondence Latest MMR `dispute'  

E-Print Network [OSTI]

's reassurances. We should instead be considering solar energy -- a safe and sustainable option. India receives 5,000 trillion kilowatt-hours of solar energy equivalent every year, more than the total energy the country of the UK General Medical Council last year, but fail to report that it found Wakefield guilty, against

Gillespie, Rosemary

64

2009 Site Environmental Report Brookhaven National Laboratory  

E-Print Network [OSTI]

parts washer ­ Mercury Switch replacement ­ Biodiesel Tank Number of P2 Proposals 2 2 4 5 11 11 9 15 15 all Federal Facilities to: · Reduce Energy · Reduce Greenhouse Gas · Reduce Water · Buy sustainable products 2009 Statistics ­ 257 million kilowatt hours of electricity ­ 2.8 million gallons of fuel oil ­ 36

Homes, Christopher C.

65

Generating Revenue for Generating Green Electricity: Evidence from Laboratory Experiments on  

E-Print Network [OSTI]

Programs The first generation of green electricity programs were established over the last fifteen years generation. As of 2009, 860 such programs were operating in the United States (Bird and Sumner, 2010 per kilowatt-hour and decides the fraction of monthly electricity consumption to which the premium

Edwards, Paul N.

66

MA 16010 - Exam 2 Practice Exam 2 1. Given f(x) = x2 sinx . Find f/(x ...  

E-Print Network [OSTI]

The price of one kilowatt-hour of electricity is given by p(t)=(t2 + 2t)2, where p(t) is the price in dollars and t is years after 2014 (so 2015 corresponds to t = 1.).

2015-01-13T23:59:59.000Z

67

Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

Yu, Y. H.; Jenne, D. S.; Thresher, R.; Copping, A.; Geerlofs, S.; Hanna, L. A.

2015-01-01T23:59:59.000Z

68

Life-cycle analysis results of geothermal systems in comparison to other power systems.  

SciTech Connect (OSTI)

A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET model shows that fossil thermal plants have fossil energy use and GHG emissions per kWh of electricity output about one order of magnitude higher than renewable power systems, including geothermal power.

Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

2010-10-11T23:59:59.000Z

69

A reliability and availability sensitivity study of a large photovoltaic system.  

SciTech Connect (OSTI)

A reliability and availability model has been developed for a portion of the 4.6 megawatt (MWdc) photovoltaic system operated by Tucson Electric Power (TEP) at Springerville, Arizona using a commercially available software tool, GoldSim{trademark}. This reliability model has been populated with life distributions and repair distributions derived from data accumulated during five years of operation of this system. This reliability and availability model was incorporated into another model that simulated daily and seasonal solar irradiance and photovoltaic module performance. The resulting combined model allows prediction of kilowatt hour (kWh) energy output of the system based on availability of components of the system, solar irradiance, and module and inverter performance. This model was then used to study the sensitivity of energy output as a function of photovoltaic (PV) module degradation at different rates and the effect of location (solar irradiance). Plots of cumulative energy output versus time for a 30 year period are provided for each of these cases.

Stein, Joshua S.; Granata, Jennifer E.; Mundt, Michael Joseph; Miller, Steven P.; Quintana, Michael A.; Collins, Elmer W.; Sorensen, Neil Robert

2010-08-01T23:59:59.000Z

70

Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001  

SciTech Connect (OSTI)

Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

Smallwood, K. S.; Thelander, C. G.

2005-09-01T23:59:59.000Z

71

Commercialization of High-Temperature Solar Selective Coating: Cooperative Research and Development Final Report, CRADA Number CRD-08-300  

SciTech Connect (OSTI)

The goal for Concentrating Solar Power (CSP) technologies is to produce electricity at 15 cents/kilowatt-hour (kWh) with six hours of thermal storage in 2015 (intermediate power) and close to 10 cents/kWh with 12-17 hours of thermal storage in 2020 (baseload power). Cost reductions of up to 50% to the solar concentrator are targeted through technology advances. The overall solar-to-electric efficiency of parabolic-trough solar power plants can be improved and the cost of solar electricity can be reduced by improving the properties of the selective coating on the receiver and increasing the solar-field operating temperature to >450 degrees C. New, more-efficient selective coatings will be needed that have both high solar absorptance and low thermal emittance at elevated temperatures. Conduction and convection losses from the hot absorber surface are usually negligible for parabolic trough receivers. The objective is to develop new, more-efficient selective coatings with both high solar absorptance (..alpha.. > 0.95) and low thermal emittance (..epsilon.. < 0.08 @ 450 degrees C) that are thermally stable above 450 degrees C, ideally in air, with improved durability and manufacturability, and reduced cost.

Gray, M. H.

2014-01-01T23:59:59.000Z

72

Contract Provisions and Ratchets: Utility Security or Customer Equity?  

E-Print Network [OSTI]

CONTRACT PROVISIONS ANO RATCHETS: UTILITY SECURITY OR CUSTOMER EQUITY? BARBARA A. PENKALA Senior Research Analyst Houston Lighting & Power Company Houston. Texas ABSTRACT The contract provisions and ratchets con tained in an electric... of customers and the magnitude of the load served. A smaller part of the cost is dependent on kilowatt-hours. or energy supplied. The high investment required in the electric utility business relative to annual revenue has an important influence on price...

Penkala, B. A.

73

Reference Model 6 (RM6): Oscillating Wave Energy Converter.  

SciTech Connect (OSTI)

This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour (%24/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard A.

2014-10-01T23:59:59.000Z

74

Building opportunities for photovoltaics in the U.S. Final report [PV BONUS  

SciTech Connect (OSTI)

The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

Michael Nicklas

1999-09-08T23:59:59.000Z

75

Beyond Kilowatts: Utility Business Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sharing Smart Grid Experiences Through Performance Feedback Joe Miller, Smart Grid Implementation Strategy Team September 15, 2011 Prepared by: National Energy Technology...

76

Beyond Kilowatts: Utility Business Innovation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernardthe AlcatorBeverlyBeyond

77

KWhOURS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLC JumpKOENENKWhOURS

78

max kwh | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flatshydro Home Water Powerlaunch Home Kch's picturemax

79

OpenEI Community - max kwh  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coastfred

80

Communication and Collaboration Keep San Francisco VA Medical Center Project on Track  

Broader source: Energy.gov [DOE]

The Veterans Affairs Medical Center in San Francisco is saving almost 3 million kilowatt-hours of electricity, more than 70,000 therms of natural gas, and more than $500,000 annually. The energy savings are enough to power 400 homes and supply natural gas to more than 100 homes each year in California. These savings were realized by taking advantage of Super Energy Savings Performance Contracts (Super ESPCs) developed by the U.S. Department of Energy's Federal Energy Management Program (FEMP).

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wind energy as a significant source of electricity for the United States  

SciTech Connect (OSTI)

This paper discusses wind energy and its potential to significantly impact the generation of electricity within the US. The principles and the equipment used to convert wind energy to electricity are described, as is the status of current technology. Markets and production projections are given. There is discussion of the advances required to reduce the selling cost of electricity generated from the wind from today`s price of about $0.05 per kilowatt-hour to full cost-competitiveness with gas- and coal-based electricity.

Nix, R.G.

1996-06-01T23:59:59.000Z

82

Engineering innovation to reduce wind power COE  

SciTech Connect (OSTI)

There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

Ammerman, Curtt Nelson [Los Alamos National Laboratory

2011-01-10T23:59:59.000Z

83

Electric power monthly, February 1999 with data for November 1998  

SciTech Connect (OSTI)

The Electric Power Monthly presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. Statistics are provided for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt-hour of electricity sold.

NONE

1999-02-01T23:59:59.000Z

84

Photovoltaic system reliability  

SciTech Connect (OSTI)

This paper discusses the reliability of several photovoltaic projects including SMUD`s PV Pioneer project, various projects monitored by Ascension Technology, and the Colorado Parks project. System times-to-failure range from 1 to 16 years, and maintenance costs range from 1 to 16 cents per kilowatt-hour. Factors contributing to the reliability of these systems are discussed, and practices are recommended that can be applied to future projects. This paper also discusses the methodology used to collect and analyze PV system reliability data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Greenberg, D. [Ascension Technology, Inc., Lincoln Center, MA (United States)] [and others

1997-10-01T23:59:59.000Z

85

Cooling Towers Make Money  

E-Print Network [OSTI]

20 year life cycle costs for energizing the fan horsepower they proposed installing. The purchasing department issued an order for the low bid of $650,000.000, as opposed to the next bidder who quoted $790,000.00. This looked like a $140... constant 8 cent per kilowatt hour costs, Illustration 2 shows that after 19 months of operation the purchase price plus energizing the four fan motors would costs the same and beyond that for 20 year analysis, the difference would be over one and one...

Burger, R.

86

WindPACT Turbine Rotor Design Study: June 2000--June 2002 (Revised)  

SciTech Connect (OSTI)

This report presents the results of the turbine rotor study completed by Global Energy Concepts (GEC) as part of the U.S. Department of Energy's WindPACT (Wind Partnership for Advanced Component Technologies) project. The purpose of the WindPACT project is to identify technology improvements that will enable the cost of energy from wind turbines to fall to a target of 3.0 cents/kilowatt-hour in low wind speed sites. The study focused on different rotor configurations and the effect of scale on those rotors.

Malcolm, D. J.; Hansen, A. C.

2006-04-01T23:59:59.000Z

87

Sandia National Laboratories: 'Giant' Nanocrystal Quantum Dots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per kilowatt-hour for

88

Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge; About  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per kilowatt-hour for100

89

Sandia National Laboratories: 13,051 lbs of Carpet Sent for Reuse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguards andSan$0.06 per kilowatt-hour

90

Reducing Data Center Loads for a Large-Scale, Low-Energy Office Building: NREL's Research Support Facility (Book)  

SciTech Connect (OSTI)

This publication detailing the design, implementation strategies, and continuous performance monitoring of NREL's Research Support Facility data center. Data centers are energy-intensive spaces that facilitate the transmission, receipt, processing, and storage of digital data. These spaces require redundancies in power and storage, as well as infrastructure, to cool computing equipment and manage the resulting waste heat (Tschudi, Xu, Sartor, and Stein, 2003). Data center spaces can consume more than 100 times the energy of standard office spaces (VanGeet 2011). The U.S. Environmental Protection Agency (EPA) reported that data centers used 61 billion kilowatt-hours (kWh) in 2006, which was 1.5% of the total electricity consumption in the U.S. (U.S. EPA, 2007). Worldwide, data centers now consume more energy annually than Sweden (New York Times, 2009). Given their high energy consumption and conventional operation practices, there is a potential for huge energy savings in data centers. The National Renewable Energy Laboratory (NREL) is world renowned for its commitment to green building construction. In June 2010, the laboratory finished construction of a 220,000-square-foot (ft{sup 2}), LEED Platinum, Research Support Facility (RSF), which included a 1,900-ft{sup 2} data center. The RSF will expand to 360,000 ft{sup 2} with the opening of an additional wing December, 2011. The project's request for proposals (RFP) set a whole-building demand-side energy use requirement of a nominal 35 kBtu/ft{sup 2} per year. On-site renewable energy generation will offset the annual energy consumption. To support the RSF's energy goals, NREL's new data center was designed to minimize its energy footprint without compromising service quality. Several implementation challenges emerged during the design, construction, and first 11 months of operation of the RSF data center. This document highlights these challenges and describes in detail how NREL successfully overcame them. The IT settings and strategies outlined in this document have been used to significantly reduce data center energy requirements in the RSF; however, these can also be used in existing buildings and retrofits.

Sheppy, M.; Lobato, C.; Van Geet, O.; Pless, S.; Donovan, K.; Powers, C.

2011-12-01T23:59:59.000Z

91

Bonded Bracket Assmebly for Frameless Solar Panels  

SciTech Connect (OSTI)

In February 2011 the US Department of Energy announced their new Sunshot Initiative. The Sunshot goal is to reduce the total cost of solar energy systems by about 75 percent before the end of the decade. The DOE estimated that a total installed cost of $1 per watt for photovoltaic systems would be equivalent to 6���¢/kilowatt hour (kWh) for energy available from the grid. The DOE also estimated that to meet the $1 per watt goal, PV module costs would need to be reduced to $.50 per watt, balance of systems costs would need to be reduced to $.40 per watt, and power electronic costs would need to reach $.10 per watt. To address the BOS balance of systems cost component of the $1 per watt goal, the DOE announced a funding opportunity called (BOS-X) Extreme Balance of System Hardware Cost Reductions. The DOE identified eight areas within the total BOS costs: 1) installation labor, 2) installation materials, 3) installation overhead and profit, 4) tracker, 5) permitting and commissioning, 6) site preparation, 7) land acquisition, 8) sales tax. The BOS-X funding announcement requested applications in four specific topics: Topic 1: Transformational Building Integrated Photovoltaic (BIPV) Modules Topic 2: Roof and Ground Mount Innovations Topic 3: Transformational Photovoltaic System Designs Topic 4: Development of New Wind Load Codes for PV Systems The application submitted by ARaymond Tinnerman reflected the requirements listed in Topic #2, Roof and Ground Mount Innovations. The goal of topic #2 was to develop technologies that would result in the extreme reduction of material and labor costs associated with applications that require physical connections and attachments to roof and ground mount structures. The topics researched in this project included component cost reduction, labor reduction, weight reduction, wiring innovations, and alternative material utilization. The project objectives included: 1) The development of an innovative quick snap bracket assembly that would be bonded to frameless PV modules for commercial rooftop installations. 2) The development of a composite pultruded rail to replace traditional racking materials. 3) In partnership with a roofing company, pilot the certification of a commercial roof to be solar panel compliant, eliminating the need for structural analysis and government oversight resulting in significantly decreased permitting costs. 4) Reduce the sum of all cost impacts in topic #2 from a baseline total of $2.05/watt to $.34/watt.

Murray, Todd

2013-01-30T23:59:59.000Z

92

Nuclear Power: Is It a New Clear Choice for Malaysia  

SciTech Connect (OSTI)

Energy is essential for socio-economic development. Any nation's standard of living is closely related to its access to energy. To put into perspective, the per capita electricity consumptions in developed countries of the Organisation for Economic Cooperation and Development (OECD) is currently estimated at 8600 kilowatts-hour per year as compared to the consumption rates in Malaysia and some African countries of 3300 and 50 kilowatts-hour per year, respectively. Energy is therefore an important pre-requisite for achieving the Malaysian vision of becoming a developed nation by the year 2020, in that it is needed not only for industrialization programme but also in maintaining quality of life. In Malaysia, the main concern currently is still on the supply in term of adequacy, reliability and quality; and moving slowly but steadily towards security, sustainability, environmentally friendly and contribution to climate change. With this new dimension, nuclear power emerged as a good match to a possible alternative in the comprehensive national energy policy. Many studies presented the positive aspects of nuclear power while others indicated the bad sides and potential risks. This paper will highlight some of those pros and cons as well as the potential risks beside a discussion on relevant requirements for a nuclear power programme in particular those of interest to the professionals in the physical sciences.

Besar, Idris B. [Industrial Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia) Bangi, 43000 Kajang, Selangor (Malaysia)

2008-05-20T23:59:59.000Z

93

1979 year-end electric power survey. [Monograph  

SciTech Connect (OSTI)

The status of electric power supply, generating facility expansion, and electric power equipment manufacture is presented for 1979 on the basis of an industry survey covering investor-owned systems, public systems, and rural electric cooperatives as well as industrial installations which are interconnected with and supply power to utility systems. A 3.2 increase in generating capacity brought the total to 576.2 million kilowatts, 86 percent of which is thermal and the remainder hydro. Survey data for Hawaii is shown separately. December and summer peak capabilities, peak loads, and capability margins are presented for each of the nine regions. Their relationships to each other, to annual load factor, and to annual kilowatt hour requirements are also shown. Details of the orders placed with manufacturers for heavy power equipment are presented for the years 1975 to 1979. The manufacturing schedules of conventional and nuclear equipment are presented for the years 1979 to 1985. 28 tables. (DCK)

Not Available

1980-01-01T23:59:59.000Z

94

Comparing Mainframe and Windows Server Transactions per kWh  

E-Print Network [OSTI]

..................................................................................................................................15 Air Conditioner (Heat Pump) Efficiency Units

Narasayya, Vivek

95

kWh Analytics: Quality Ratings for PV  

Broader source: Energy.gov [DOE]

This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

96

Property:Incentive/PVComFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation, searchExpireDtString

97

Property:Incentive/PVResFitDolKWh | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County,ContAddr2 Jump to: navigation,

98

KWH_APS_DPP07_1Page.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan Pershingrelocates 18-ton machine |Inference of

99

Cost-Effective Silicon Wafers for Solar Cells: Direct Wafer Enabling Terawatt Photovoltaics  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: 1366 is developing a process to reduce the cost of solar electricity by up to 50% by 2020—from $0.15 per kilowatt hour to less than $0.07. 1366’s process avoids the costly step of slicing a large block of silicon crystal into wafers, which turns half the silicon to dust. Instead, the company is producing thin wafers directly from molten silicon at industry-standard sizes, and with efficiencies that compare favorably with today’s state-of-the-art technologies. 1366’s wafers could directly replace wafers currently on the market, so there would be no interruptions to the delivery of these products to market. As a result of 1366’s technology, the cost of silicon wafers could be reduced by 80%.

None

2010-01-15T23:59:59.000Z

100

Costs and Returns of Irrigated Peanut Production, West Cross Timbers, 1953-57.  

E-Print Network [OSTI]

.37 2.19 .60 5 3.55 .08 3.746 7.37 46.67 2.82 0. Average all farms 2.38 0.07 2.64 5.09 32.98 2.04 .4 1 'Per acre-inch of water applied with energy at 1.5 cents per kilowatt-hour. 'Includes both overhead and operating cost. "ased on a rate of 75... equipment for irrigation with wells of low capacity. The small heads of water (25 to 120 g.p.m.) combined with the types of equipment needed result in an irri- gation development cost that ranges from $146 to $301 per acre irrigated on individual farms...

Magee, A. C.; Hughes, Wm. F.

1958-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Electric power monthly, December 1996 with data for September 1996  

SciTech Connect (OSTI)

The report presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 57 tabs.

NONE

1996-12-01T23:59:59.000Z

102

Electric power monthly: April 1996, with data for January 1996  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatt hour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 64 tabs.

NONE

1996-04-01T23:59:59.000Z

103

Electric power monthly, September 1996, with data for June 1996  

SciTech Connect (OSTI)

The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.

NONE

1996-09-01T23:59:59.000Z

104

Electric power monthly, July 1999, with data for April 1999  

SciTech Connect (OSTI)

The Electric Power Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the Electric Power Monthly (EPM). This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 1 fig., 64 tabs.

NONE

1999-07-01T23:59:59.000Z

105

Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011  

SciTech Connect (OSTI)

This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

Glatzmaier, G.

2011-08-01T23:59:59.000Z

106

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect (OSTI)

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

107

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect (OSTI)

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

108

Industrial demand side management: A status report  

SciTech Connect (OSTI)

This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

1995-05-01T23:59:59.000Z

109

Trace elements in coal by glow discharge mass spectrometry  

SciTech Connect (OSTI)

A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr. [WAL Inc., Wheat Ridge, CO (United States)] [and others

1995-08-01T23:59:59.000Z

110

Design of cascaded low cost solar cell with CuO substrate  

SciTech Connect (OSTI)

For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250–400 / m{sup 2} leads to a cost of $0.12–0.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.06–0.08 / kW-hr.

Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan [Advanced Electronic Technology Center, ECE Dept., University of Massachusetts, Lowell, MA-01851 (United States)

2013-12-04T23:59:59.000Z

111

Elk Valley Rancheria Energy Efficiency and Alternatives Analysis  

SciTech Connect (OSTI)

Elk Valley Rancheria; Tribe; renewable energy; energy options analysis. The Elk Valley Rancheria, California ('Tribe') is a federally recognized Indian tribe located in Del Norte County, California, in the northwestern corner of California. The Tribe, its members and Tribal enterprises are challenged by increasing energy costs and undeveloped local energy resources. The Tribe currently lacks an energy program. The Tribal government lacked sufficient information to make informed decisions about potential renewable energy resources, energy alternatives and other energy management issues. To meet this challenge efficiently, the Tribe contracted with Frank Zaino and Associates, Inc. to help become more energy self-sufficient, by reducing their energy costs and promoting energy alternatives that stimulate economic development. Frank Zaino & Associates, Inc. provided a high level economic screening analysis based on anticipated electric and natural gas rates. This was in an effort to determine which alternative energy system will performed at a higher level so the Tribe could reduce their energy model by 30% from alternative fuel sources. The feasibility study will identify suitable energy alternatives and conservation methods that will benefit the Tribe and tribal community through important reductions in cost. The lessons learned from these conservation efforts will yield knowledge that will serve a wider goal of executing energy efficiency measures and practices in Tribal residences and business facilities. Pacific Power is the provider of electrical power to the four properties under review at $ 0.08 per Kilowatt-hour (KWH). This is a very low energy cost compared to alternative energy sources. The Tribe used baseline audits to assess current and historic energy usage at four Rancheria owned facilities. Past electric and gas billing statements were retained for review for the four buildings that will be audited. A comparative assessment of the various energy usages will determine the demand, forecast future need and identify the differences in energy costs, narrowing the focus of the work and defining its scope. The Tribe's peak demand periods will help determine the scope of need for alternative energy sources. The Tribe's Energy Efficiency and Alternatives Analysis report included several system investigations which include fuel cells, wind turbines, solar panels, hydro electric, ground source heat pumps, bio mass, cogeneration & energy conservation and implementation for the existing properties. The energy analysis included site visits to collect and analyze historical energy usage and cost. The analysis also included the study of the building systems for the Elk Valley Casino, Elk Valley Rancheria administration complex, United Indian Health Service/Small Community Center complex and the Tribal Gaming Commission Offices. The analysis involved identifying modifications, performing an engineering economic analysis, preparation of a rank ordered list of modifications and preparation of a report to provide recommendations and actions for the Tribe to implement.

Ed Wait, Elk Valley Rancheria; Frank Ziano & Associates, Inc.

2011-11-30T23:59:59.000Z

112

City of Phoenix - Energize Phoenix Program  

SciTech Connect (OSTI)

Energize Phoenix (EPHX) was designed as an ambitious, large-scale, three-year pilot program to provide energy efficiency upgrades in buildings, along Phoenix’s new Light Rail Corridor – part of a federal effort to reduce energy consumption and stimulate job growth, while simultaneously reducing the country’s carbon footprint and promoting a shift towards a green economy. The program was created through a 2010 competitive grant awarded to the City of Phoenix who managed the program in partnership with Arizona State University (ASU), the state’s largest university, and Arizona Public Service (APS), the state’s largest electricity provider. The U.S. Department of Energy (DOE) Better Buildings Neighborhood Program (BBNP) and the American Recovery and Reinvestment Act (ARRA) of 2009 provided $25M in funding for the EPHX program. The Light Rail Corridor runs through the heart of downtown Phoenix, making most high-rise and smaller commercial buildings eligible to participate in the EPHX program, along with a diverse mix of single and multi-family residential buildings. To ensure maximum impact and deeper market penetration, Energize Phoenix was subdivided into three unique parts: i. commercial rebate program, ii. commercial financing program, and iii. residential program Each component was managed by the City of Phoenix in partnership with APS. Phoenix was fortunate to partner with APS, which already operated robust commercial and residential rebate programs within its service territory. Phoenix tapped into the existing utility contractor network, provided specific training to over 100 contracting firms, and leveraged the APS rebate program structure (energy efficiency funding) to launch the EPHX commercial and residential rebate programs. The commercial finance program was coordinated and managed through a contract with National Bank of Arizona, NBAZ, which also provided project capital leveraging EPHX finance funds. Working in unison, approved contractors jointly produced more than 161,000 labor hours in pursuit of EPHX goals over the life of the project. Labor hours were spread among electricians, heating, ventilating and air-conditioning (HVAC) technicians, marketing professionals, engineers, sales, and administrative support staff across the approved contractor workforce. Program participants received both the utility rebate along with the EPHX rebate, and depending on project size and utility rebate structure some projects resulted in low to no-cost upgrades for customers. Phoenix also partnered with ASU, a grant sub-recipient, to leverage the institution’s expertise in research and data analysis. In this partnership, ASU accepted marketing responsibilities for the grant and partnered with DRA Communications (DRA), a Phoenix-based marketing firm, to create and communicate the message out to the marketplace. The EPHX program has completed its energy upgrade activities. A review of the work completed by ASU revealed that the EPHX program substantially exceeded the program’s stated goals by retrofitting/upgrading over 33 million sq ft of commercial space (30 million sq ft goal exceeded by 11%) and 2,014 residential units (1,700 unit goal exceeded by 18%) along the Light Rail Corridor. The program helped stimulate economic growth by adding $31million to the local economy and enhanced an already robust energy efficiency contractor network. This contractor network will continue to promote utility energy incentives to sustain energy efficiency upgrade activities in the future. Finally, EPHX helped reduce participants annual energy consumption by 135 million kilowatt-hour (kWh) translating into over $12.5 million of annual energy cost avoidance for the community. This also resulted in projected payback period of 4.5 years for total investment by all parties and reduced greenhouse gas emissions by over 95,000 metric tons of carbon dioxide equivalent (CO2e).

Laloudakis, Dimitrios J.

2014-09-29T23:59:59.000Z

113

The state of energy storage in electric utility systems and its effect on renewable energy resources  

SciTech Connect (OSTI)

This report describes the state of the art of electric energy storage technologies and discusses how adding intermittent renewable energy technologies (IRETs) to a utility network affects the benefits from storage dispatch. Load leveling was the mode of storage dispatch examined in the study. However, the report recommended that other modes be examined in the future for kilowatt and kilowatt-hour optimization of storage. The motivation to install storage with IRET generation can arise from two considerations: reliability and enhancement of the value of energy. Because adding storage increases cost, reliability-related storage is attractive only if the accruing benefits exceed the cost of storage installation. The study revealed that the operation of storage should not be guided by the output of the IRET but rather by system marginal costs. Consequently, in planning studies to quantify benefits, storage should not be considered as an entity belonging to the system and not as a component of IRETS. The study also indicted that because the infusion of IRET energy tends to reduce system marginal cost, the benefits from load leveling (value of energy) would be reduced. However, if a system has storage, particularly if the storage is underutilized, its dispatch can be reoriented to enhance the benefits of IRET integration.

Rau, N.S.

1994-08-01T23:59:59.000Z

114

Application of the SULF-X process to coal conversion and utilization. Phase II final report  

SciTech Connect (OSTI)

Pittsburgh Environmental and Energy Systems, Inc. contracted with the Department of Energy to demonstrate the efficacy of an iron sulfide flue gas treatment system (FGT) for removing sulfur dioxide (SO/sub 2/) and nitrogen oxides (NO/sub x/) and to correlate process variables to system performance. Laboratory and bench-scale testing was conducted with the SULF-X process, using both synthesized gas and actual flue gas from a coal-fired furnace. Laboratory tests resulted in 95% SO/sub 2/ removal and up to 95% NO/sub x/ removal. The bench-scale system demonstrated similar SO/sub 2/ removal efficiencies, but achieved only 39% NO/sub x/ removal due to relatively high oxygen concentrations in the flue gas and insufficient liquid-gas interfacial area within the absorber. Elemental sulfur was recovered during the regeneration steps. Total capital investment for the SULF-X system was estimated to be $91 to $103 per kilowatt (electric), compared to $90/kw for sodium solution scrubbing, $78 to $83/kw for magnesia slurry scrubbing and $74/kw for limestone slurry scrubbing. Annual operating costs for the SULF-X system were estimated to be 5.44 to 6.90 mills per kilowatt-hour, compared to 4.96 to 5.22 for sodium, 3.68 to 3.99 for magnesia and 3.73 to 4.25 for limestone. 6 references, 6 figures, 9 tables.

Shapiro, E.; Bramer, H.C.; New, R.A.

1984-01-01T23:59:59.000Z

115

Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer  

SciTech Connect (OSTI)

Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

Dennis Witmer; Thomas Johnson

2008-12-31T23:59:59.000Z

116

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

SciTech Connect (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

117

Property:Building/SPBreakdownOfElctrcityUseKwhM2AirCompressors | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory Jump to: navigation,Energy

118

Property:Building/SPBreakdownOfElctrcityUseKwhM2CirculationFans | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory Jump to:

119

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcEngineHeaters | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory Jump to:Energy

120

Property:Building/SPBreakdownOfElctrcityUseKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory Jump

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumps | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory JumpInformation

122

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeComputersServers |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory

123

Property:Building/SPBreakdownOfElctrcityUseKwhM2LargeKitchens | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategoryInformation

124

Property:Building/SPBreakdownOfElctrcityUseKwhM2Laundry | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open

125

Property:Building/SPBreakdownOfElctrcityUseKwhM2Misc | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | OpenInformation Misc Jump to: navigation, search This is

126

Property:Building/SPBreakdownOfElctrcityUseKwhM2Pcs | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | OpenInformation Misc Jump to: navigation, search This

127

Property:Building/SPBreakdownOfElctrcityUseKwhM2Printers | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | OpenInformation Misc Jump to: navigation, search

128

Property:Building/SPBreakdownOfElctrcityUseKwhM2Pumps | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | OpenInformation Misc Jump to: navigation,

129

Property:Building/SPBreakdownOfElctrcityUseKwhM2Total | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | OpenInformation Misc Jump to: navigation,Information

130

Property:Building/SPPurchasedEngyPerAreaKwhM2DigesterLandfillGas | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas Jump to:Energy

131

Property:Building/SPPurchasedEngyPerAreaKwhM2DstrtHeating | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas Jump

132

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrcHeating | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas Jump

133

Property:Building/SPPurchasedEngyPerAreaKwhM2ElctrtyTotal | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas JumpInformation

134

Property:Building/SPPurchasedEngyPerAreaKwhM2Oil-FiredBoiler | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGas

135

Property:Building/SPPurchasedEngyPerAreaKwhM2Other | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information SPPurchasedEngyNrmlYrMwhYrTownGasInformation

136

Property:Building/SPPurchasedEngyPerAreaKwhM2OtherElctrty | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,Information

137

Property:Building/SPPurchasedEngyPerAreaKwhM2Pellets | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,InformationInformation Pellets Jump to: navigation, search This is

138

Property:Building/SPPurchasedEngyPerAreaKwhM2Total | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,InformationInformation Pellets Jump to: navigation, search This

139

Property:Building/SPPurchasedEngyPerAreaKwhM2WoodChips | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County,InformationInformation Pellets Jump to: navigation, search

140

Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar  

SciTech Connect (OSTI)

Increased adoption of distributed PV, and other forms of distributed generation, have the potential to affect utility-customer interactions, system costs recovery, and utility revenue streams. If a greater number of electricity customers choose to self-generate, demand for system power will decrease and utility fixed costs will have to be recovered over fewer kilowatt hours of sales. As such, regulators will need to determine the value and cost of additional distributed PV and determine the appropriate allocation of the costs and benefits among consumers. The potential for new business models to emerge also has implications for regulation and rate structures that ensure equitable solutions for all electricity grid users. This report examines regulatory tools and rate designs for addressing emerging issues with the expanded adoption of distributed PV and evaluates the potential effectiveness and viability of these options going forward. It offers the groundwork needed in order for regulators to explore mechanisms and ensure that utilities can collect sufficient revenues to provide reliable electric service, cover fixed costs, and balance cost equity among ratepayers -- while creating a value proposition for customers to adopt distributed PV.

Bird, L.; McLaren, J.; Heeter, J.; Linvill, C.; Shenot, J.; Sedano, R.; Migden-Ostrander, J.

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Southwestern Power Administration Annual Report 2011  

SciTech Connect (OSTI)

Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2011. In FY 2011, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $167 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

none,

2013-04-01T23:59:59.000Z

142

Southwestern Power Administration Annual Report 2010  

SciTech Connect (OSTI)

Dear Secretary Chu: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2010. In FY 2010, Southwestern delivered nearly 7.6 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Texas, and Oklahoma, generating $189 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

none,

2012-09-01T23:59:59.000Z

143

Southwestern Power Administration Annual Report 2012  

SciTech Connect (OSTI)

Dear Secretary Moniz: I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2012. In FY 2012, Southwestern delivered over 4.1 billion kilowatt-hours of energy to its wholesale customers in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas, generating $195 million in revenue. In fulfilling its mission to market and reliably deliver renewable Federal hydroelectric power, Southwestern maintains 1,380 miles of high-voltage transmission lines, substations, and communications sites, contributing to the reliability of the regional and National electric grid. Southwestern also actively partners with the Department of Energy, the U.S. Army Corps of Engineers, Southwestern’s customers, and other Federal power stakeholders to most effectively balance their diverse interests with Southwestern’s mission while continuing to maximize Federal assets to repay the Federal investment in the 24 hydropower facilities within Southwestern’s marketing region. Southwestern is proud of its past successes, and we look forward to continuing to serve the Nation’s energy needs in the future. Sincerely, Christopher M. Turner Administrator

none,

2013-09-01T23:59:59.000Z

144

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

145

Accelerating Acceptance of Fuel Cell Backup Power Systems - Final Report  

SciTech Connect (OSTI)

Since 2001, Plug Power has installed more than 800 stationary fuel cell systems worldwide. Plug Power’s prime power systems have produced approximately 6.5 million kilowatt hours of electricity and have accumulated more than 2.5 million operating hours. Intermittent, or backup, power products have been deployed with telecommunications carriers and government and utility customers in North and South America, Europe, the United Kingdom, Japan and South Africa. Some of the largest material handling operations in North America are currently using the company’s motive power units in fuel cell-powered forklifts for their warehouses, distribution centers and manufacturing facilities. The low-temperature GenSys fuel cell system provides remote, off-grid and primary power where grid power is unreliable or nonexistent. Built reliable and designed rugged, low- temperature GenSys delivers continuous or backup power through even the most extreme conditions. Coupled with high-efficiency ratings, low-temperature GenSys reduces operating costs making it an economical solution for prime power requirements. Currently, field trials at telecommunication and industrial sites across the globe are proving the advantages of fuel cells—lower maintenance, fuel costs and emissions, as well as longer life—compared with traditional internal combustion engines.

Petrecky, James; Ashley, Christopher

2014-07-21T23:59:59.000Z

146

Status of flow-battery research in the United States  

SciTech Connect (OSTI)

Flow batteries are defined as electrochemical energy storage devices in which at least one of the active materials is stored external to the power converting cell-stack, and in which this soluble active material is circulated via the electrolyte, through the cell-stack during system charge or discharge. Although intensive development of some of these systems has been underway for some time, they were only classified as a distinct category in the United States recently. Of the projects on flow batteries which are still being conducted, the work on the zinc/chlorine system (EDA) has been in progress since 1968; programs on zinc/bromine (Exxon, Gould), on iron/chromium Redox (NASA-Lewis Research Center), and on the iron/ferric-ferrous chloride system (NRG/GEL) have all been underway about seven years; research on the zinc/ferro-ferricyanide battery (Lockheed) has been conducted since 1978. The present paper, which reviews the 1982 status of these battery programs, appears timely since, except for the Lockheed system, the developments have all reached the stage where multi-kilowatt-hour batteries are under test.

Clark, R.P.; Chamberlin, J.L.; Saxton, H.J.; Symons, P.C.

1982-01-01T23:59:59.000Z

147

US Department of Energy`s high-temperature and high-pressure particulate cleanup for advanced coal-based power systems  

SciTech Connect (OSTI)

The availability of reliable, low-cost electricity is a cornerstone for the United States` ability to compete in the world market. The Department of Energy (DOE) projects the total consumption of electricity in the US to rise from 2.7 trillion kilowatt-hours in 1990 to 3.5 trillion in 2010. Although energy sources are diversifying, fossil fuel still produces 90 percent of the nation`s energy. Coal is our most abundant fossil fuel resource and the source of 56 percent of our electricity. It has been the fuel of choice because of its availability and low cost. A new generation of high-efficiency power systems has made it possible to continue the use of coal while still protecting the environment. Such power systems greatly reduce the pollutants associated with cola-fired plants built before the 1970s. To realize this high efficiency and superior environmental performance, advanced coal-based power systems will require gas stream cleanup under high-temperature and high-pressure (HTHP) process conditions. Presented in this paper are the HTHP particulate capture requirements for the Integrated Gasification Combined Cycle (IGCC) and Pressurized Fluidized-Bed Combustion (PFBC) power systems, the HTHP particulate cleanup systems being implemented in the PFBC and IGCC Clean Coal Technology (CCT) Projects, and the currently available particulate capture performance results.

Dennis, R.A.

1997-05-01T23:59:59.000Z

148

Vintage-level energy and environmental performance of manufacturing establishments  

SciTech Connect (OSTI)

This report examines the relationship between an industrial plant`s vintage and its energy and environmental performance. Basic questions related to defining vintage and measuring the effects of the manufacturing industry`s vintage distribution of plant-level capacity and energy intensity are explored in general for six energy-intensive sectors (paper, chlorine, nitrogenous fertilizer, aluminum, steel, and cement) at the four-digit standard industrial classification (SIC) level and in detail for two sectors (steel and cement). Results show that greenfield (i.e., newly opened) plants in the paper, steel, and cement industries exhibit low fossil fuel intensities. These results are consistent with expectations. New plants in the paper and steel industries, where processes are undergoing electrification, exhibit high electricity intensities. An analysis of a subsector of the steel industry -- minimills that use scrap-based, electric arc furnaces -- reveals a decline in electricity intensity of 6.2 kilowatt-hours per ton for each newer year of installed vintage. This estimate is consistent with those of engineering studies and raises confidence that analyses of vintage effects in other industries could be conducted. When a vintage measure is assigned on the basis of investment data rather than trade association data, the vintage/performance relationship results for the cement industry are reasonably robust; thus, the analysis of vintage and performance could be extended to sectors for which only US Bureau of the Census data are available.

Boyd, G.A.; Bock, M.J.; Neifer, M.J. [Argonne National Lab., IL (United States); Karlson, S.H. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Economics; Ross, M.H. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics

1994-05-01T23:59:59.000Z

149

Investigation of design options for improving the energy efficiency of conventionally designed refrigerator-freezers  

SciTech Connect (OSTI)

Several design options for improving the energy efficiency of conventionally-designed, domestic refrigerator freezers (RFs) were incorporated into two 1990 production RF cabinets and refrigeration systems. The baseline performance of the original units and unit components were extensively documented to provide a firm basis for experimentally measured energy savings. A detailed refrigerator system computer model which could simulate cycling behavior was used to evaluate the daily energy use impacts for each modification, and modeled versus experimental results are compared. The model was shown to track measured RF performance improvement sufficiently well that it was used with some confidence to investigate additional options that could not be experimentally investigated. Substantial improvements in RF efficiency were demonstrated with relatively minor changes in system components and refrigeration circuit design. However, each improvement exacts a penalty in terms of increased cost or system complexity/reliability. For RF sizes typically sold in the United States (18-22 ft{sup 3} [510--620 1]), alternative, more-elaborate, refrigeration cycles may be required to achieve the program goal (1.00 Kilowatt-hour per day for a 560 l, top mount RF.

Sand, J.R.; Vineyard, E.A. [Oak Ridge National Lab., TN (United States); Bohman, R.H. [Consulting Engineer, Cedar Rapids, IA (United States)

1993-11-01T23:59:59.000Z

150

Electric power monthly, May 1999, with data for February 1999  

SciTech Connect (OSTI)

The Electric Power Monthly (EPM) presents monthly electricity statistics for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. The purpose of this publication is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead. This publication provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatt hour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 64 tabs.

NONE

1999-05-01T23:59:59.000Z

151

A guide to geothermal energy and the environment  

SciTech Connect (OSTI)

Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

Kagel, Alyssa; Bates, Diana; Gawell, Karl

2005-04-22T23:59:59.000Z

152

Economizer Based Data Center Liquid Cooling with Advanced Metal Interfaces  

SciTech Connect (OSTI)

A new chiller-less data center liquid cooling system utilizing the outside air environment has been shown to achieve up to 90% reduction in cooling energy compared to traditional chiller based data center cooling systems. The system removes heat from Volume servers inside a Sealed Rack and transports the heat using a liquid loop to an Outdoor Heat Exchanger which rejects the heat to the outdoor ambient environment. The servers in the rack are cooled using a hybrid cooling system by removing the majority of the heat generated by the processors and memory by direct thermal conduction using coldplates and the heat generated by the remaining components using forced air convection to an air- to- liquid heat exchanger inside the Sealed Rack. The anticipated benefits of such energy-centric configurations are significant energy savings at the data center level. When compared to a traditional 10 MW data center, which typically uses 25% of its total data center energy consumption for cooling this technology could potentially enable a cost savings of up to $800,000-$2,200,000/year (assuming electricity costs of 4 to 11 cents per kilowatt-hour) through the reduction in electrical energy usage.

Timothy Chainer

2012-11-30T23:59:59.000Z

153

Concentrating Solar Power (Fact Sheet)  

SciTech Connect (OSTI)

Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

Not Available

2011-10-01T23:59:59.000Z

154

Commercial equipment loads: End-Use Load and Consumer Assessment Program (ELCAP)  

SciTech Connect (OSTI)

The Office of Energy Resources of the Bonneville Power Administration is generally responsible for the agency's power and conservation resource planning. As associated responsibility which supports a variety of office functions is the analysis of historical trends in and determinants of energy consumption. The Office of Energy Resources' End-Use Research Section operates a comprehensive data collection program to provide pertinent information to support demand-side planning, load forecasting, and demand-side program development and delivery. Part of this on-going program is known as the End-Use Load and Consumer Assessment Program (ELCAP), an effort designed to collect electricity usage data through direct monitoring of end-use loads in buildings. This program is conducted for Bonneville by the Pacific Northwest Laboratory. This report provides detailed information on electricity consumption of miscellaneous equipment from the commercial portion of ELCAP. Miscellaneous equipment includes all commercial end-uses except heating, ventilating, air conditioning, and central lighting systems. Some examples of end-uses covered in this report are office equipment, computers, task lighting, refrigeration, and food preparation. Electricity consumption estimates, in kilowatt-hours per square food per year, are provided for each end-use by building type. The following types of buildings are covered: office, retail, restaurant, grocery, warehouse, school, university, and hotel/motel. 6 refs., 35 figs., 12 tabs.

Pratt, R.G.; Williamson, M.A.; Richman, E.E.; Miller, N.E.

1990-07-01T23:59:59.000Z

155

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect (OSTI)

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

156

Market Transformation (Fact Sheet)  

SciTech Connect (OSTI)

Through the SunShot Initiative, the U.S. Department of Energy (DOE) works with manufacturers, communities, states, utilities, and other partners to enable the solar market by reducing non-hardware balance-of-system (BOS) costs, developing a skilled workforce, and eliminating market barriers to widespread adoption of solar technologies. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

Not Available

2011-10-01T23:59:59.000Z

157

Defining a Standard Metric for Electricity Savings  

SciTech Connect (OSTI)

The growing investment by governments and electric utilities in energy efficiency programs highlights the need for simple tools to help assess and explain the size of the potential resource. One technique that is commonly used in this effort is to characterize electricity savings in terms of avoided power plants, because it is easier for people to visualize a power plant than it is to understand an abstraction such as billions of kilowatt-hours. Unfortunately, there is no standardization around the characteristics of such power plants. In this letter we define parameters for a standard avoided power plant that have physical meaning and intuitive plausibility, for use in back-of-the-envelope calculations. For the prototypical plant this article settles on a 500 MW existing coal plant operating at a 70percent capacity factor with 7percent T&D losses. Displacing such a plant for one year would save 3 billion kW h per year at the meter and reduce emissions by 3 million metric tons of CO2 per year. The proposed name for this metric is the Rosenfeld, in keeping with the tradition among scientists of naming units in honor of the person most responsible for the discovery and widespread adoption of the underlying scientific principle in question--Dr. Arthur H. Rosenfeld.

Brown, Marilyn; Akbari, Hashem; Blumstein, Carl; Koomey, Jonathan; Brown, Richard; Calwell, Chris; Carter, Sheryl; Cavanagh, Ralph; Chang, Audrey; Claridge, David; Craig, Paul; Diamond, Rick; Eto, Joseph H.; Fulkerson, William; Gadgil, Ashok; Geller, Howard; Goldemberg, Jose; Goldman, Chuck; Goldstein, David B.; Greenberg, Steve; Hafemeister, David; Harris, Jeff; Harvey, Hal; Heitz, Eric; Hirst, Eric; Hummel, Holmes; Kammen, Dan; Kelly, Henry; Laitner, Skip; Levine, Mark; Lovins, Amory; Masters, Gil; McMahon, James E.; Meier, Alan; Messenger, Michael; Millhone, John; Mills, Evan; Nadel, Steve; Nordman, Bruce; Price, Lynn; Romm, Joe; Ross, Marc; Rufo, Michael; Sathaye, Jayant; Schipper, Lee; Schneider, Stephen H; Sweeney, James L; Verdict, Malcolm; Vorsatz, Diana; Wang, Devra; Weinberg, Carl; Wilk, Richard; Wilson, John; Worrell, Ernst

2009-03-01T23:59:59.000Z

158

Assessing geothermal energy potential in upstate New York. Final report, Tasks 1, 3, and 4  

SciTech Connect (OSTI)

New York State`s geothermal energy potential was evaluated based on a new resource assessment performed by the State University of New York at Buffalo (SUNY-Buffalo) and currently commercial technologies, many of which have become available since New York`s potential was last evaluated. General background on geothermal energy and technologies was provided. A life-cycle cost analysis was performed to evaluate the economics of using geothermal energy to generate electricity in upstate New York. A conventional rankine cycle, binary power system was selected for the economic evaluation, based on SUNY-Buffalo`s resource assessment. Binary power systems are the most technologically suitable for upstate New York`s resources and have the added advantage of being environmentally attractive. Many of the potential environmental impacts associated with geothermal energy are not an issue in binary systems because the geothermal fluids are contained in a closed-loop and used solely to heat a working fluid that is then used to generate the electricity Three power plant sizes were selected based on geologic data supplied by SUNY-Buffalo. The hypothetical power plants were designed as 5 MW modular units and sized at 5 MW, 10 MW and 15 MW. The life-cycle cost analysis suggested that geothermal electricity in upstate New York, using currently commercial technology, will probably cost between 14 and 18 cents per kilowatt-hour.

Manger, K.C.

1996-07-25T23:59:59.000Z

159

Fossil fuel derivatives with reduced carbon. Phase I final report  

SciTech Connect (OSTI)

This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

1999-06-30T23:59:59.000Z

160

Property:Building/SPBreakdownOfElctrcityUseKwhM2HeatPumpsUsedForColg | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open EnergyAuthorOwnershipCategory JumpInformationEnergy

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A market and engineering study of a 3-kilowatt class gas turbine generator  

E-Print Network [OSTI]

Market and engineering studies were performed for the world's only commercially available 3 kW class gas turbine generator, the IHI Aerospace Dynajet. The objectives of the market study were to determine the competitive ...

Monroe, Mark A. (Mark Alan)

2003-01-01T23:59:59.000Z

162

Heat pipe cooled reactors for multi-kilowatt space power supplies  

SciTech Connect (OSTI)

Three nuclear reactor space power system designs are described that demonstrate how the use of high temperature heat pipes for reactor heat transport, combined with direct conversion of heat to electricity, can result in eliminating pumped heat transport loops for both primary reactor cooling and heat rejection. The result is a significant reduction in system complexity that leads to very low mass systems with high reliability, especially in the power range of 1 to 20 kWe. In addition to removing heat exchangers, electromagnetic pumps, and coolant expansion chambers, the heat pipe/direct conversion combination provides such capabilities as startup from the frozen state, automatic rejection of reactor decay heat in the event of emergency or accidental reactor shutdown, and the elimination of single point failures in the reactor cooling system. The power system designs described include a thermoelectric system that can produce 1 to 2 kWe, a bimodal modification of this system to increase its power level to 5 kWe and incorporate high temperature hydrogen propulsion capability, and a moderated thermionic reactor concept with 5 to 20 kWe power output that is based on beryllium modules that thermally couple cylindrical thermionic fuel elements (TFEs) to radiator heat pipes.

Ranken, W.A.; Houts, M.G.

1995-01-01T23:59:59.000Z

163

Assessment of a 40-kilowatt stirling engine for underground mining applications  

SciTech Connect (OSTI)

An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

Cairelli, J.E.; Kelm, G.G.; Slaby, J.G.

1982-06-01T23:59:59.000Z

164

Get to Know Viewtech-Kilowatt Financial PowerSaver Webinar (Afternoon  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial

165

Get to Know Viewtech-Kilowatt Financial PowerSaver Webinar (Morning  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatialSession) | Department of

166

From comfort to kilowatts: An integrated assessment of electricity conservation in Thailand's commercial sector  

SciTech Connect (OSTI)

Thailand serves as a case study of the potential to conserve electricity in the fast-growing commercial sectors of the tropical developing world. We performed a field study of over 1100 Thai office workers in which a questionnaire survey and simultaneous physical measurements were taken. Both air-conditioned and non-air-conditioned buildings were included. We analyzed Thai subjective responses on the ASHRAE, McIntyre and other rating scales, relating them to Effective Temperature, demographics, and to rational indices of warmth such as PMV and TSENS. These results suggest that without sacrificing comfort, significant energy conservation opportunities exist through the relaxation of upper space temperature limits. To investigate the potential for conserving energy in a cost-effective manner, we performed a series of parametric simulations using the DOE-2.1D computer program on three commercial building prototypes based on actual buildings in Bangkok; an office, a hotel, and a shopping center. We investigated a wide range of energy conservation measures appropriate for each building type, from architectural measures to HVAC equipment and control solutions. The best measures applied in combination into high efficiency cases can generate energy savings in excess of 50%. Economic analyses performed for the high efficiency cases, resulted in costs of conserved energy of less than and internal rates of return in excess of 40%. Thermal cool storage, cogeneration, and gas cooling technology showed promise as cost-effective electric load management strategies.

Busch, J.F. Jr.

1990-08-01T23:59:59.000Z

167

``White Land``...new Russian closed-cycle nuclear technology for global deployment  

SciTech Connect (OSTI)

A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

Bowman, C.D.

1996-07-01T23:59:59.000Z

168

Surplus weapons-grade plutonium: a resource for exploring and terraforming Mars  

SciTech Connect (OSTI)

With the end of the Cold War, greater than 100 metric tons (MT) of weapons-grade plutonium (WGPu) have become surplus to defense needs in the United States and the Former Soviet Union. This paper is a proposal for an option for WGPu disposition, i.e., use of the plutonium as a fuel for nuclear reactors for Mars exploration and eventual terraforming. WGPu was used in nuclear weapons because it has a much smaller critical mass than highly enriched uranium, allowing lighter weapons with consequent longer ranges. Similarly, WGPu reactors would also require smaller amounts of fuel to attain a critical mass, making the reactor much lighter overall and resulting in large savings in launch costs. The greater than 100 MT of WGPu would generate about 1000 billion kilowatt hours of heat energy, much of which could be converted into electricity. The waste heat would also be useful to a Martian outpost or colony. A potential way of getting the WGPu reactors into space is a large gas gun like that being developed at the Lawrence Livermore National Laboratory to orbit materials by achieving high velocity at the surface, greatly reducing launch costs and enhancing reliability. Reactor components would be launched on conventional rockets or space shuttles, the reactor fuel rods would be injected into orbit using the gas gun, and the reactor would be assembled in space. Implementation of this proposal would allow disposition of a serious, expensive problem on earth by removing the WGPu from the planet and simultaneously provide a very large energy resource for Mars exploration and terraforming.

Muscatello, A.C.; Houts, M.G.

1996-12-31T23:59:59.000Z

169

Opportunities for Demand Response in California Agricultural Irrigation: A Scoping Study  

SciTech Connect (OSTI)

California agricultural irrigation consumes more than ten billion kilowatt hours of electricity annually and has significant potential for contributing to a reduction of stress on the grid through demand response, permanent load shifting, and energy efficiency measures. To understand this potential, a scoping study was initiated for the purpose of determining the associated opportunities, potential, and adoption challenges in California agricultural irrigation. The primary research for this study was conducted in two ways. First, data was gathered and parsed from published sources that shed light on where the best opportunities for load shifting and demand response lie within the agricultural irrigation sector. Secondly, a small limited survey was conducted as informal face-to-face interviews with several different California growers to get an idea of their ability and willingness to participate in permanent load shifting and/or demand response programs. Analysis of the data obtained from published sources and the survey reveal demand response and permanent load shifting opportunities by growing region, irrigation source, irrigation method, grower size, and utility coverage. The study examines some solutions for demand response and permanent load shifting in agricultural irrigation, which include adequate irrigation system capacity, automatic controls, variable frequency drives, and the contribution from energy efficiency measures. The study further examines the potential and challenges for grower acceptance of demand response and permanent load shifting in California agricultural irrigation. As part of the examination, the study considers to what extent permanent load shifting, which is already somewhat accepted within the agricultural sector, mitigates the need or benefit of demand response for agricultural irrigation. Recommendations for further study include studies on how to gain grower acceptance of demand response as well as other related studies such as conducting a more comprehensive survey of California growers.

Marks, Gary; Wilcox, Edmund; Olsen, Daniel; Goli, Sasank

2013-01-02T23:59:59.000Z

170

Southeastern Power Administration 2008 Annual Report  

SciTech Connect (OSTI)

Dear Secretary Chu: I am pleased to submit Southeastern Power Administration’s (Southeastern’s) fiscal year (FY) 2008 Annual Report for your review. The information included in this document reflects our agency’s programs, accomplishments, operational and financial activities for the 12-month period beginning October 1, 2007 and ending September 30, 2008. Southeastern marketed more than 4.5 billion kilowatt-hours of energy to 491 wholesale customers in ten southeastern states this past year. Revenues from the sale of this power totaled approximately $263 million. Drought conditions persisted in the southeastern region of the United States during FY 2008 placing strains on our natural and financial resources. Power purchases for FY 2008 totaled $91 million. Approximately $44 million of this amount was for replacement power which is paid only during adverse water conditions in order to meet our customers’ contract requirements. With the continued financial assistance and support of our Federal power customers, funding for capitalized equipment purchases and replacements at U.S. Army Corps of Engineers’ (Corps) hydroelectric projects provided much needed repairs and maintenance for these aging facilities. Southeastern’s cyber and physical security programs continued to be reviewed and updated to meet Department of Energy (DOE), Homeland Security, and North American Electric Reliability Corporation (NERC) standards and requirements. In the coming year, Southeastern will continue open communication and cooperation with DOE, the Federal power customers, and the Corps to maximize the benefits of our region’s water resources. Although competing uses of water and the prolonged drought conditions will present another challenging year for our agency, Southeastern’s employees will meet these challenges and continue to provide reliable hydroelectric power to the people in the southeast. Sincerely, Kenneth E.Legg Administrator

none,

2008-12-29T23:59:59.000Z

171

Southeastern Power Administration 2011 Annual Report  

SciTech Connect (OSTI)

Dear Secretary Chu: I am pleased to submit Southeastern Power Administration’s (Southeastern) fiscal year (FY) 2011 Annual Report for your review. This report reflects our agency’s programs, accomplishments, operational, and financial activities for the 12-month period beginning October 1, 2010, and ending September 31, 2011. This past year, Southeastern marketed approximately 6.2 billion kilowatt-hours of energy to 489 wholesale customers in 10 southeastern states. Revenues from the sale of this power totaled more than $264 million. With the financial assistance and support of Southeastern’s customers, funding for capitalized equipment purchases and replacements at hydroelectric facilities operated by the U.S. Army Corps of Engineers (Corps) continued in FY 2011. This funding, which totaled more than $45 million, provided much needed repairs and maintenance for aging projects in Southeastern’s marketing area. Currently, there are more than 214 customers participating in the funding efforts in the Georgia-Alabama-South Carolina, Kerr-Philpott, and Cumberland Systems of projects. Drought conditions continued in the southeastern region of the United States this past year, particularly in the Savannah River Basin. Lack of rain placed strains on our natural and financial resources. Power purchases for FY 2011 totaled approximately $38 million. About $9 million of this amount was for replacement power, which is purchased only during adverse water conditions in order to meet Southeastern’s customer contract requirements. Southeastern’s goal is to maximize the benefits of our region’s water resources. Competing uses of these resources will present another challenging year for Southeastern’s employees. With the cooperation and communication among the Department of Energy (DOE), preference customers, and Corps, I am certain Southeastern is positioned to meet these challenges in the future. We are committed to providing reliable hydroelectric power to preference customers, which ultimately serve more than 12 million consumers in the southeast.

none,

2011-12-31T23:59:59.000Z

172

Southwestern Power Administration Annual Report 2008  

SciTech Connect (OSTI)

Dear Secretary Chu, I am pleased to present the financial statements and operating data for Southwestern Power Administration (Southwestern) for Fiscal Year (FY) 2008. In FY 2008, Southwestern delivered over 7.3 billion kilowatt-hours of energy to its wholesale customers – nearly 31% more than average due to numerous record rainfall amounts in the southwest region. These record amounts produced revenues which exceeded the average annual revenue requirement by nearly $20 million and resulted in over $200 million in economic benefits to the region. Yet even as Southwestern exceeded its goals of marketing and delivering Federal hydroelectric power to our customers, we stayed focused on safety, security, and reliability. For example, we maintained our nearly 1,400 miles of high-voltage transmission lines, substations, and communications sites while achieving a Recordable Accident Frequency Rate of 0.0, a record that reflects Southwestern’s safety achievement of no recordable injuries for every 200,000 hours worked. We kept our rights-of-way secure from vegetation and other obstacles, work that not only supports our mission but also promotes reliability of the regional and National grid. We exceeded all North American Electric Reliability Corporation (NERC) Control Performance Standards (CPS- 1 and CPS-2), and maintained regulation and reserve obligations and reactive reserve margins to ensure the reliability of the bulk electric system, even during extended periods of restricted hydro operations due to unusually high project inflows. Finally, we continued our partnerships with the Department of Energy, the U.S. Army Corps of Engineers, our customers, and other Federal power stakeholders, partnerships that are vital to our continued success in marketing and delivering carbon-free, renewable, and domestically produced energy to our customers and to the Nation. Sincerely, Jon Worthington Administrator

none,

2010-12-01T23:59:59.000Z

173

Southeastern Power Administration 2012 Annual Report  

SciTech Connect (OSTI)

Dear Secretary Moniz: I am pleased to submit Southeastern Power Administration’s (Southeastern) fiscal year (FY) 2012 Annual Report for your review. This report reflects our agency’s programs, accomplishments, operational, and financial activities for the 12-month period beginning October 1, 2011, and ending September 30, 2012. This past year, Southeastern marketed approximately 5.4 billion kilowatt-hours of energy to 487 wholesale customers in 10 southeastern states. Revenues from the sale of this power totaled about $263 million. With the financial assistance and support of Southeastern’s customers, funding for capitalized equipment purchases and replacements at hydroelectric facilities operated by the U.S. Army Corps of Engineers (Corps) continued in FY 2012. Currently, there are more than 214 customers participating in funding infrastructure renewal efforts of powerplants feeding the Georgia-Alabama-South Carolina, Kerr-Philpott, and Cumberland Systems. This funding, which totaled more than $71 million, provided much needed repairs and maintenance for aging projects in Southeastern’s marketing area. Drought conditions continued in the southeastern region of the United States this past year, particularly in the Savannah River Basin. Lack of rainfall strained our natural and financial resources. Power purchases for FY 2012 in the Georgia-Alabama-South Carolina System totaled approximately $29 million. About $8 million of this amount was for replacement power, which is purchased only during adverse water conditions in order to meet Southeastern’s customer contract requirements. Southeastern’s goal is to maximize the benefits of our region’s water resources. Competing uses of these resources will present another challenging year for Southeastern’s employees. With the cooperation and communication among the Department of Energy (DOE), preference customers, and Corps, I am certain Southeastern is positioned to meet these challenges in the future. We are committed to providing reliable hydroelectric power to preference customers, which ultimately serve more than 12 million consumers in the southeast. Sincerely, Kenneth E. Legg Administrator

none,

2012-01-01T23:59:59.000Z

174

Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of nuclear electricity generation technologies was performed to determine causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions to clarify the state of knowledge and inform decision making. LCA literature indicates that life cycle GHG emissions from nuclear power are a fraction of traditional fossil sources, but the conditions and assumptions under which nuclear power are deployed can have a significant impact on the magnitude of life cycle GHG emissions relative to renewable technologies. Screening 274 references yielded 27 that reported 99 independent estimates of life cycle GHG emissions from light water reactors (LWRs). The published median, interquartile range (IQR), and range for the pool of LWR life cycle GHG emission estimates were 13, 23, and 220 grams of carbon dioxide equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), respectively. After harmonizing methods to use consistent gross system boundaries and values for several important system parameters, the same statistics were 12, 17, and 110 g CO{sub 2}-eq/kWh, respectively. Harmonization (especially of performance characteristics) clarifies the estimation of central tendency and variability. To explain the remaining variability, several additional, highly influential consequential factors were examined using other methods. These factors included the primary source energy mix, uranium ore grade, and the selected LCA method. For example, a scenario analysis of future global nuclear development examined the effects of a decreasing global uranium market-average ore grade on life cycle GHG emissions. Depending on conditions, median life cycle GHG emissions could be 9 to 110 g CO{sub 2}-eq/kWh by 2050.

Warner, E. S.; Heath, G. A.

2012-04-01T23:59:59.000Z

175

The New York Power Authority`s energy-efficient refrigerator program for the New York City Housing Authority -- 1997 savings evaluation  

SciTech Connect (OSTI)

This document describes the estimation of the annual energy savings achieved from the replacement of 20,000 refrigerators in New York City Housing Authority (NYCHA) public housing with new, highly energy-efficient models in 1997. The US Department of Housing and Urban Development (HUD) pays NYCHA`s electricity bills, and agreed to reimburse NYCHA for the cost of the refrigerator installations. Energy savings over the lifetime of the refrigerators accrue to HUD. Savings were demonstrated by a metering project and are the subject of the analysis reported here. The New York Power Authority (NYPA) identified the refrigerator with the lowest life-cycle cost, including energy consumption over its expected lifetime, through a request for proposals (RFP) issued to manufacturers for a bulk purchase of 20,000 units in 1997. The procurement was won by Maytag with a 15-ft{sup 3} top-freezer automatic-defrost refrigerator rated at 437 kilowatt-hours/year (kWh/yr). NYCHA then contracted with NYPA to purchase, finance, and install the new refrigerators, and demanufacture and recycle materials from the replaced units. The US Department of Energy (DOE) helped develop and plan the project through the ENERGY STAR{reg_sign} Partnerships program conducted by its Pacific Northwest National Laboratory (PNNL). PNNL designed the metering protocol and occupant survey used in 1997, supplied and calibrated the metering equipment, and managed and analyzed the data collected by NYPA. The objective of the 1997 metering study was to achieve a general understanding of savings as a function of refrigerator label ratings, occupant effects, indoor and compartment temperatures, and characteristics (such as size, defrost features, and vintage). The data collected in 1997 was used to construct models of refrigerator energy consumption as a function of key refrigerator and occupant characteristics.

Pratt, R.G.; Miller, J.D.

1998-09-01T23:59:59.000Z

176

Southeastern Power Administration 2007 Annual Report  

SciTech Connect (OSTI)

Dear Secretary Chu: I am proud to submit Southeastern Power Administration’s (Southeastern’s) fiscal year (FY) 2007 Annual Report for your review. The information included in this report reflects Southeastern’s programs, accomplishments, and financial activities for the 12-month period beginning October 1, 2006 and ending September 30, 2007. Southeastern marketed more than 5 billion kilowatt-hours of energy to 492 wholesale Federal power customers in an 11-state marketing area in FY 2007. Revenues from the sale of this power totaled approximately $219 million. Drought conditions continued to plague the southeast region of the United States during 2007 placing strains on our natural and financial resources. Southeastern purchased more than $40 million in replacement power to meet customer contract requirements to ensure the continued reliability of our nation’s power grid. With the financial assistance and support of our Federal power customers, continued funding for capitalized equipment replacements at various Corps of Engineers’ (Corps) hydroelectric projects provided much needed repairs and maintenance for aging facilities. Southeastern’s cyber and physical security program continued to be reviewed and updated to meet Department of Energy (DOE), Homeland Security, and North American Electric Reliability Corporation standards and requirements. Plans for the upcoming year include communication and cooperation with DOE, Federal power customers, and the Corps to maximize the benefits of our nation’s water resources. Competition for the use of water and the prolonged drought conditions will present another challenging year for our agency. The employees at Southeastern will be proactive in meeting these challenges and providing reliable hydroelectric power to the people in the southeast. Sincerely, Kenneth E. Legg Administrator

none,

2007-12-28T23:59:59.000Z

177

Life Cycle Greenhouse Gas Emissions of Coal-Fired Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

This systematic review and harmonization of life cycle assessments (LCAs) of utility-scale coal-fired electricity generation systems focuses on reducing variability and clarifying central tendencies in estimates of life cycle greenhouse gas (GHG) emissions. Screening 270 references for quality LCA methods, transparency, and completeness yielded 53 that reported 164 estimates of life cycle GHG emissions. These estimates for subcritical pulverized, integrated gasification combined cycle, fluidized bed, and supercritical pulverized coal combustion technologies vary from 675 to 1,689 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh) (interquartile range [IQR]= 890-1,130 g CO{sub 2}-eq/kWh; median = 1,001) leading to confusion over reasonable estimates of life cycle GHG emissions from coal-fired electricity generation. By adjusting published estimates to common gross system boundaries and consistent values for key operational input parameters (most importantly, combustion carbon dioxide emission factor [CEF]), the meta-analytical process called harmonization clarifies the existing literature in ways useful for decision makers and analysts by significantly reducing the variability of estimates ({approx}53% in IQR magnitude) while maintaining a nearly constant central tendency ({approx}2.2% in median). Life cycle GHG emissions of a specific power plant depend on many factors and can differ from the generic estimates generated by the harmonization approach, but the tightness of distribution of harmonized estimates across several key coal combustion technologies implies, for some purposes, first-order estimates of life cycle GHG emissions could be based on knowledge of the technology type, coal mine emissions, thermal efficiency, and CEF alone without requiring full LCAs. Areas where new research is necessary to ensure accuracy are also discussed.

Whitaker, M.; Heath, G. A.; O'Donoughue, P.; Vorum, M.

2012-04-01T23:59:59.000Z

178

Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids  

SciTech Connect (OSTI)

Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when used with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.

Raade, Justin; Roark, Thomas; Vaughn, John; Bradshaw, Robert

2013-07-22T23:59:59.000Z

179

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

180

Gasification combined cycle: Carbon dioxide recovery, transport, and disposal  

SciTech Connect (OSTI)

The objective of the project is to develop engineering evaluations of technologies for the capture, use, and disposal of carbon dioxide (CO{sub 2}). This project emphasizes CO{sub 2}-capture technologies combined with integrated gasification combined-cycle (IGCC) power systems. Complementary evaluations address CO{sub 2} transportation, CO{sub 2} use, and options for the long-term sequestering of unused CO{sub 2}. Commercially available CO{sub 2}-capture technology is providing a performance and economic baseline against which to compare innovative technologies. The intent is to provide the CO{sub 2} budget, or an {open_quotes}equivalent CO{sub 2}{close_quotes} budget, associated with each of the individual energy-cycle steps, in addition to process design capital and operating costs. The value used for the {open_quotes}equivalent CO{sub 2}{close_quotes} budget is 1 kg of CO{sub 2} per kilowatt-hour (electric). The base case is a 458-MW IGCC system that uses an air-blown Kellogg-Rust-Westinghouse agglomerating fluidized-bed gasifier, Illinois No. 6 bituminous coal feed, and in-bed sulfur removal. Mining, feed preparation, and conversion result in a net electric power production of 454 MW, with a CO{sub 2} release rate of 0.835 kg/kWhe. Two additional life-cycle energy balances for emerging technologies were considered: (1) high-temperature CO{sub 2} separation with calcium- or magnesium-based sorbents, and (2) ambient-temperature facilitated-transport polymer membranes for acid-gas removal.

Doctor, R.D.; Molburg, J.C.; Thimmapuram, P.R.; Berry, G.F.; Livengood, C.D.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Natural gas conversion to higher hydrocarbons using plasma interactions with surfaces. Final report  

SciTech Connect (OSTI)

Experiments are reported in which a methane plasma is created, and the methyl ions and hydrogen ions are accelerated within a microchannel array so that they interact with neutral methane molecules on the inside surfaces of the microchannels. No catalysts are used, and the device operates at room temperature. Impact energies of the ions are in the range of 10 eV to greater than 100 eV, and the energy delivered in the interaction at the surfaces causes the production of larger hydrocarbon molecules, such as C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}, along with C{sub 3}, C{sub 4}, C{sub 5}m C{sub 6}, C{sub 7}m and C{sub 8} molecules. There is a decreasing percentage of larger molecules produced, in comparison with the C{sub 2} and C{sub 3} types. Conversion effectiveness is greater at higher pressure, due to the increased ionic activity. The yield of the higher hydrocarbons depends upon the external voltage used, and voltage can be used as a control parameter to adjust the output mixture proportions. A conversion energy of 2.59 kilowatt hours/killogram of output has been demonstrated, and a reduction of this by a factor of 10 is possible using known techniques. In batch experiments, the selectivity for C{sub 2} has varied from 47% to 88%, and selectivity for C{sub 6} has ranged from 0% to 12.8%. Other hydrocarbon selectivities also span a wide and useful range. The estimated costs for hydrocarbons produced with this technology are in the range of $200 per tonne, in production quantities, depending upon natural gas costs. Pilot production experiments are recommended to make these estimates more precise, and to address strategies for scaling the technology up to production levels. Applications are discussed.

Sackinger, W.M.; Kamath, V.A.; Morgan, B.L.; Airey, R.W.

1993-12-01T23:59:59.000Z

182

Aquaculture in the Imperial Valley -- A geothermal success story  

SciTech Connect (OSTI)

The Salton Sea and Imperial Valley area of southern California has long been recognized as a hot spot of geothermal development. In the geothermal industry, this area has for some time been synonymous with electric power generation projects. Starting with the first plant in East Mesa in 1979, geothermal power has increased over the years to the present 400+ MW of installed capacity in the three primary areas of Salton Sea, Heber and East Mesa. Although most in the industry are aware of the millions of kilowatt-hours annually produced in this desert oasis of development, they remain surprisingly uninformed about the Valley`s other geothermal industry -- aquaculture. At present, there are approximately 15 fish farming (or aquaculture) operations clustered, for the most part, around the Salton Sea. All of these farms use geothermal fluids to control the temperature of the fish culture facilities so as to produce larger fish in a shorter period of time and to permit winter production which would otherwise not be possible. In aggregate, these farms produce on the order of 10,000,000 lbs of fish per year most of which is sold into the California market. Principle species are catfish, striped bass and tilapia. For the past several years, tilapia has been the fastest growing part of the aquaculture industry. In 1996, the total US consumption of tilapia was 62,000 lbs. Of this, only 16,000,000 lbs (26%) was domestically produced and the balance imported. The primary market for the fish on the West Coast is among the Asian-American populations in the major cities. Fish are shipped and sold liver at the retail level.

Rafferty, K. [Geo-Heat Center, Klamath Falls, OR (United States)

1999-03-01T23:59:59.000Z

183

Life Cycle Greenhouse Gas Emissions of Utility-Scale Wind Power: Systematic Review and Harmonization  

SciTech Connect (OSTI)

A systematic review and harmonization of life cycle assessment (LCA) literature of utility-scale wind power systems was performed to determine the causes of and, where possible, reduce variability in estimates of life cycle greenhouse gas (GHG) emissions. Screening of approximately 240 LCAs of onshore and offshore systems yielded 72 references meeting minimum thresholds for quality, transparency, and relevance. Of those, 49 references provided 126 estimates of life cycle GHG emissions. Published estimates ranged from 1.7 to 81 grams CO{sub 2}-equivalent per kilowatt-hour (g CO{sub 2}-eq/kWh), with median and interquartile range (IQR) both at 12 g CO{sub 2}-eq/kWh. After adjusting the published estimates to use consistent gross system boundaries and values for several important system parameters, the total range was reduced by 47% to 3.0 to 45 g CO{sub 2}-eq/kWh and the IQR was reduced by 14% to 10 g CO{sub 2}-eq/kWh, while the median remained relatively constant (11 g CO{sub 2}-eq/kWh). Harmonization of capacity factor resulted in the largest reduction in variability in life cycle GHG emission estimates. This study concludes that the large number of previously published life cycle GHG emission estimates of wind power systems and their tight distribution suggest that new process-based LCAs of similar wind turbine technologies are unlikely to differ greatly. However, additional consequential LCAs would enhance the understanding of true life cycle GHG emissions of wind power (e.g., changes to other generators operations when wind electricity is added to the grid), although even those are unlikely to fundamentally change the comparison of wind to other electricity generation sources.

Dolan, S. L.; Heath, G. A.

2012-04-01T23:59:59.000Z

184

Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation: Systematic Review and Harmonization  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale concentrating solar power (CSP) systems, this analysis focuses on reducing variability and clarifying the central tendency of published estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emissions estimates passing screens for quality and relevance: 19 for parabolic trough (trough) technology and 17 for power tower (tower) technology. The interquartile range (IQR) of published estimates for troughs and towers were 83 and 20 grams of carbon dioxide equivalent per kilowatt-hour (g CO2-eq/kWh),1 respectively; median estimates were 26 and 38 g CO2-eq/kWh for trough and tower, respectively. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. The IQR and median were reduced by 87% and 17%, respectively, for troughs. For towers, the IQR and median decreased by 33% and 38%, respectively. Next, five trough LCAs reporting detailed life cycle inventories were identified. The variability and central tendency of their estimates are reduced by 91% and 81%, respectively, after light harmonization. By harmonizing these five estimates to consistent values for global warming intensities of materials and expanding system boundaries to consistently include electricity and auxiliary natural gas combustion, variability is reduced by an additional 32% while central tendency increases by 8%. These harmonized values provide useful starting points for policy makers in evaluating life cycle GHG emissions from CSP projects without the requirement to conduct a full LCA for each new project.

Burkhardt, J. J.; Heath, G.; Cohen, E.

2012-04-01T23:59:59.000Z

185

Energy Conservation Through Industrial Cogeneration Systems  

E-Print Network [OSTI]

illustrates potential savings. Assume that we have a business with a given thermal requirement. Assume further that it is possible to fill this requirement by recovering exhaust heat from a gas turbine which also powers an electric generator. Fuel....021 - 0.013 = 0.008 kWh ? Annual Saving/Kilowatt Installed = $72/kW CD Simple Payback: 266 --;- 72 = 3. 69 years @ Rate of Return = 15% Conclusion Solar has used gas turbine engines to provide site-generated electric power in almost every...

Solt, J. C.

1979-01-01T23:59:59.000Z

186

Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target  

SciTech Connect (OSTI)

The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (?2 × 10{sup 10} n/s having a peak energy of ?27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.

Halfon, S.; Feinberg, G. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z. [Soreq NRC, Yavne 81800 (Israel); Paul, M., E-mail: paul@vms.huji.ac.il; Tessler, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

2014-05-15T23:59:59.000Z

187

North Wind Power Company 2-kilowatt high-reliability wind system. Phase I. Design and analysis. Technical report  

SciTech Connect (OSTI)

Results are presented of Phase I of a program to design a 2kW high reliability wind turbine for use in remote locations and harsh environments. In phase I of the program, a predecessor of the proposed design was procured and tested in a wind tunnel and in the freestream to observe operational characteristics. An analytical procedure was developed for designing and modelling the proposed variable axis rotor control system (VARCS). This was then verified by extensive mobile testing of pre-prototype components. A low speed three phase alternator with a Lundel type rotor was designed. Prototypes were fabricated and tested to refine calculation procedures and develop an effective alternator with appropriate characteristics. A solid state field switching regulator was designed and tested successfully. All necessary support elements were designed and engineered. A complete analysis of system reliability was conducted including failure mode and effects analyses and reliability, maintenance and safety analyses. Cost estimates were performed for a mature product in production rates of 1000 per year. Analysis and testing conducted throughout the first phase is included.

Mayer, D J; Norton, Jr, J H

1981-07-01T23:59:59.000Z

188

Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.  

SciTech Connect (OSTI)

In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

Ferreira, Summer Rhodes; Rose, David Martin

2012-02-01T23:59:59.000Z

189

--No Title--  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

172015 15:50 SLCAIP Hydro Generation Estimates Month Forecast Generation less losses (kWh) Less Proj. Use (kWh) Net Generation (kWh) SHP Deliveries (kWh) Firming Purchases (kWh)...

190

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

191

Final Technical Report  

SciTech Connect (OSTI)

From September 1, 2002, to November 30, 2006, the Industrial Assessment Center (IAC) at the University of Illinois at Chicago (UIC) conducted over 120 industrial assessments across 19 different industry types in five different states. In the 1,000+ assessment recommendations written during the award, the UIC-IAC has written recommendations that, if implemented will save several millions of kilowatt-hours of electricity and several million British thermal units of natural gas annually. Additionally, the UIC-IAC has achieved an overall implementation rate in excess of 50%. During the overall span of the award period, the UIC-IAC has trained over 50 students, nearly 25% of which have remained in the energy field in some way after graduating from the IAC program. UIC-IAC students have received over $23,000 in scholarships in the last two years alone. During the course of the award, the UIC-IAC has made it a priority to incorporate ITP tools and technologies whenever possible. The ITP Best Practices tools have been used on several assessments and introduced to clients. DOE technologies are constantly compared against assessment clients to determine what technologies have reached the stage where they can effectively be introduced into industrial operations. The UIC-IAC has been involved in several projects for the Department of Energy (DOE), including energy assessments of Department of Defense bases and industrial facilities, the Plant Energy Profiler (PEP) tool assessment, and expanding the range of assessments to include large- energy users. Additionally, the UIC-IAC has forged a close relationship with the Midwest CHP Application Center, working to incorporate combined heat and power (CHP) and distributed generation (DG) technologies into industrial plants. The most recent project is the Save Energy Now (SEN) six- and 12-month follow-up surveys being conducted by UIC-IAC students. The SEN surveys are an effort for the DOE to determine the implementation rate of energy efficiency measures identified by Qualified System (QS) specialists throughout the nation. The UIC-IAC has also written several papers highlighting its work in the arena of energy efficiency. Currently, several UIC-IAC students have submitted a paper to the American Council for an Energy-Efficient Economy (ACEEE). This paper has been accepted by ACEEE and will be presented later in 2007.

Miller, Robert A.

2007-04-18T23:59:59.000Z

192

Economic Evaluation of Electrical Power Generation Using Laser Inertial Fusion Energy (LIFE)  

E-Print Network [OSTI]

With the completion of the National Ignition Facility (NIF) and upcoming ignition experiments, there is renewed interest in laser fusion-fission hybrids and pure fusion systems for base load power generation. An advantage of a laser fusion based system is that it would produce copious neutrons ( ~ 1.8x10 20 /s for a 500 MW fusion source). This opens the door to hybrid systems with once through, high burn-up, closed fuel cycles. With abundant fusion neutrons, only modest fission gain (5 to 10) is needed for power production. Depleted uranium can be used as the fission fuel, effectively eliminating the need for uranium mining and enrichment. With high burn up, a hybrid would generate only 5 % to 10% the volume of high-level nuclear waste per kilowatt hour that a once through light water reactor (LWR) does. Reprocessing is no longer needed to close the fuel cycle as the spent fuel can, after interim cooling, go directly to geologic disposal. While the depleted uranium fuel cycle offers advantages of simplicity and proliferation avoidance, it has the most challenging fuel lifetime requirements. Fissile fuel such as plutonium, or plutonium and minor actinides separated from spent nuclear fuel, would have roughly twice the fission gain and incur only about 25 % of the radiation damage to reach the same burn up level as depleted uranium. These missions are interesting in their own right and also provide an opportunity for early market entry of laser fusion based energy sources. A third fuel cycle option is to burn spent fuel directly, without prior separation of the plutonium and minor actinides. The neutronic and economic performance of this fuel cycle is very similar to the depleted uranium system. The primary difference is the need to fabricate new LIFE fuel from spent LWR fuel. The advantage of this fuel cycle is that it would burn the residual actinides in spent nuclear fuel, greatly reducing long term radio-toxicity and heat load, while avoiding the need to chemically separate spent LWR fuel.

Tm Anklam; Wayne Meier; Al Erl; Robin Miles; Aaron Simon

2009-01-01T23:59:59.000Z

193

Weatherization Innovation Pilot Program: Program Overview and Philadelphia Project Highlight (Fact Sheet)  

SciTech Connect (OSTI)

Case Study with WIPP program overview, information regarding eligibility, and successes from Pennsylvania's Commission on Economic Opportunity (CEO) that demonstrate innovative approaches that maximize the benefit of the program. The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) recently launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of homes of low-income families. Since 2010, WIPP has helped weatherization service providers as well as new and nontraditional partners leverage non-federal financial resources to supplement federal grants, saving taxpayer money. WIPP complements the Weatherization Assistance program (WAP), which operates nation-wide, in U.S. territories and in three Native American tribes. 16 grantees are implementing weatherization innovation projects using experimental approaches to find new and better ways to weatherize homes. They are using approaches such as: (1) Financial tools - by understanding a diverse range of financing mechanisms, grantees can maximize the impact of the federal grant dollars while providing high-quality work and benefits to eligible low-income clients; (2) Green and healthy homes - in addition to helping families reduce their energy costs, grantees can protect their health and safety. Two WIPP projects (Connecticut and Maryland) will augment standard weatherization services with a comprehensive green and healthy homes approach; (3) New technologies and techniques - following the model of continuous improvement in weatherization, WIPP grantees will continue to use new and better technologies and techniques to improve the quality of work; (4) Residential energy behavior change - Two grantees are rigorously testing home energy monitors (HEMs) that display energy used in kilowatt-hours, allowing residents to monitor and reduce their energy use, and another is examining best-practices for mobile home energy efficiency; (5) Workforce development and volunteers - with a goal of creating a self-sustaining weatherization model that does not require future federal investment, three grantees are adapting business models successful in other sectors of the home performance business to perform weatherization work. Youthbuild is training youth to perform home energy upgrades to eligible clients and Habitat for Humanity is developing a model for how to incorporate volunteer labor in home weatherization. These innovative approaches will improve key weatherization outcomes, such as: Increasing the total number of homes that are weatherized; Reducing the weatherization cost per home; Increasing the energy savings in each weatherized home; Increasing the number of weatherization jobs created and retained; and Reducing greenhouse gas emissions.

Not Available

2012-01-01T23:59:59.000Z

194

Tradeoffs between Costs and Greenhouse Gas Emissions in the Design of Urban Transit Systems  

E-Print Network [OSTI]

of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/of veh (kWh/veh-km) Cost per kWh ($/kWh) Operating cost ($/

Griswold, Julia Baird

2013-01-01T23:59:59.000Z

195

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

kW. 9¢/kWh 7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle Oilhigh operating costs (such as gas turbines) during those fewtechnology. 9¢/kWh 7¢/kWh Gas Turbine 5¢/kWh Combined-Cycle

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

196

Abstract--Current grid standards seem to largely require low power (e.g. several kilowatts) single-phase photovoltaic (PV)  

E-Print Network [OSTI]

--Grid requirements; photovoltaic systems; low voltage ride through; ancillary services; grid support; reliability I-phase photovoltaic (PV) systems to operate at unity power factor with maximum power point tracking, and disconnect. INTRODUCTION Due to the declining photovoltaic (PV) module price and the strong feed-in tariff policies

Berning, Torsten

197

Investigation Of Synergistic NOx Reduction From Cofiring And Air Staged Combustion Of Coal And Low Ash Dairy Biomass In A 30 Kilowatt Low NOx Furnace  

E-Print Network [OSTI]

Alternate, cost effective disposal methods must be developed for reducing phosphorous and nitrogen loading from land application of animal waste. Cofiring coal with animal waste, termed dairy biomass (DB), is the proposed thermo-chemical method...

Lawrence, Benjamin Daniel

2013-08-01T23:59:59.000Z

198

Conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications. Final Report  

SciTech Connect (OSTI)

The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developed engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

Vatsky, A.; Chen, H.S.; Dineen, J.

1982-05-01T23:59:59.000Z

199

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible hydrocarbons, CO, or NO{sub x} and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at low to intermediate temperatures tremendous benefits may be accrued. At low temperatures, in particular, it becomes feasible to use ferritic steel for interconnects instead of expensive and brittle ceramic materials such as those based on LaCrO{sub 3}. In addition, sealing the fuel cell becomes easier and more reliable; rapid startup is facilitated; thermal stresses (e.g., those caused by thermal expansion mismatches) are reduced; radiative losses ({approx}T{sup 4}) become minimal; electrode sintering becomes negligible and (due to a smaller thermodynamic penalty) the SOFC operating cycle (heating from ambient) would be more efficient. Combined, all these improvements further result in reduced initial and operating costs. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (> 0.05 S cm{sup -1} at {le} 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of a layer of erbia-stabilized bismuth oxide (ESB) on the oxidizing side and a layer of SDC or GDC on the reducing side, see Fig. 1. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. In this arrangement, the ceria layer protects the bismuth oxide layer from decomposing by shielding it from very low P{sub O{sub 2}}'s and the ESB layer serves to block electronic flux through the electrolyte. This arrangement has two significant advantages over the YSZ/SDC bilayers investigated by others [1, 2]. The first advantage is that SDC is conductive enough to serve as an intermediate temperature SOFC electrolyte. Moreover, ESB is conductive enough to serve as a low temperature electrolyte. Consequently, at worst an SDC/ESB bilayered SOFC should have the conductivity of SDC but with improved efficiency due to the electronic flux barrier provided by ESB. The second advantage is that small (dopant) concentrations of SDC in ESB or ESB in SDC, have been found to have conductivities comparable to the host lattice [3, 4]. Therefore, if solid solutioning occurs at the SDC-ESB interface, it should not be detrimental to the performance of the bilayer. In contrast, solid solutions of SDC and YSZ have been found to be significantly less conductive than SDC or YSZ. Thus, it bears emphasizing that, at this time, only SDC/ESB electrolytes have potential in low temperature SOFC applications.

Eric D. Wachsman; Keith L. Duncan

2002-03-31T23:59:59.000Z

200

STABLE HIGH CONDUCTIVITY BILAYERED ELECTROLYTES FOR LOW TEMPERATURE SOLID OXIDE FUEL CELLS  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFCs) are the future of energy production in America. They offer great promise as a clean and efficient process for directly converting chemical energy to electricity while providing significant environmental benefits (they produce negligible CO, HC, or NOx and, as a result of their high efficiency, produce about one-third less CO{sub 2} per kilowatt hour than internal combustion engines). Unfortunately, the current SOFC technology, based on a stabilized zirconia electrolyte, must operate in the region of 1000 C to avoid unacceptably high ohmic losses. These high temperatures demand (a) specialized (expensive) materials for the fuel cell interconnects and insulation, (b) time to heat up to the operating temperature and (c) energy input to arrive at the operating temperature. Therefore, if fuel cells could be designed to give a reasonable power output at lower temperatures tremendous benefits may be accrued, not the least of which is reduced cost. The problem is, at lower temperatures the conductivity of the conventional stabilized zirconia electrolyte decreases to the point where it cannot supply electrical current efficiently to an external load. The primary objectives of the proposed research is to develop a stable high conductivity (>0.05 S cm{sup -1} at 550 C) electrolyte for lower temperature SOFCs. This objective is specifically directed toward meeting the lowest (and most difficult) temperature criteria for the 21st Century Fuel Cell Program. Meeting this objective provides a potential for future transportation applications of SOFCs, where their ability to directly use hydrocarbon fuels could permit refueling within the existing transportation infrastructure. In order to meet this objective we are developing a functionally gradient bilayer electrolyte comprised of bismuth oxide on the air side and ceria on the fuel side. Bismuth oxide and doped ceria are among the highest ionic conducting electrolytes and in fact bismuth oxide based electrolytes are the only known solid oxide electrolytes to have an ionic conductivity that meets the program conductivity goal. We have previously demonstrated that this concept works, that a bismuth oxide/ceria bilayer electrolyte provides near theoretical open circuit potential (OCP) and is stable for 1400 h of fuel cell operation under both open circuit and maximum power conditions. More recently, we developed a computer model to determine the defect transport in this bilayer and have found that a bilayer comprised primarily of the more conductive component (bismuth oxide) is stable for 500 C operation. In this first year of the project we are obtaining necessary thermochemical data to complete the computer model as well as initial SOFC results based on thick 1-2 mm single and bilayer ceria/bismuth oxide electrolytes. We will use the computer model to obtain the optimum relative layer thickness as a function of temperature and air/fuel conditions. SOFCs will be fabricated with 1-2 mm single and bilayer electrolytes based on the modeling results, tested for OCP, conductivity, and stability and compared against the predictions. The computer modeling is a continuation of previous work under support from GRI and the student was available at the inception of the contract. However, the experimental effort was delayed until the beginning of the Spring Semester because the contract was started in October, 2 months after the start of our Fall Semester, and after all of the graduate students were committed to other projects. The results from both of these efforts are described in the following two sections: (1) Experimental; and (2) Computer Modeling.

Eric D. Wachsman

2000-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

New ORNL electric vehicle technology packs more punch in smaller...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ORNL electric vehicle technology packs more punch in smaller package ORNL's 30-kilowatt power inverter offers greater reliability and power in a compact package. ORNL's 30-kilowatt...

202

A study of time-dependent responses of a mechanical displacement ventilation (DV) system and an underfloor air distribution (UFAD) system : building energy performance of the UFAD system  

E-Print Network [OSTI]

kWh. The elec- tricity cost per kWh is obtained from U.S.Ad- ministration. The gas cost per kWh is calculated fromper kWh. The electricity cost per kWh is obtained from U.S.

Yu, Jong Keun

2010-01-01T23:59:59.000Z

203

Estimated Value of Service Reliability for Electric Utility Customers in the United States  

E-Print Network [OSTI]

kW demand and costs per annual kWh sales. Cost estimates arePer Un-served kWh Cost Per Annual kWh Small C&I Cost PerPer Un-served kWh Cost Per Annual kWh Residential Cost Per

Sullivan, M.J.

2009-01-01T23:59:59.000Z

204

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

increases in size, the cost per kWh decreases significantly.batteries typically cost about $100 per kWh for “wet” typesto MW in size and cost $500 to $800 per kWh. As the overall

Stadler, Michael

2009-01-01T23:59:59.000Z

205

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

variable costs, and cost per delivered kWh. The informationvariable costs, and cost per delivered kWh. The informationto represent the cost per delivered kWh), while CAPP may be

Koomey, J.G.

2008-01-01T23:59:59.000Z

206

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

electricity rates on a cost per kWh basis only with someTable 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycle

Williams, Brett D

2007-01-01T23:59:59.000Z

207

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

the amortised investment cost per kWh of the DG unit is lessis equal to the fixed cost per kWh of switching states. Forcurves reflects the investment cost per kWh. As indicated in

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

208

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

amortised investment cost per kWh e of the DG unit is lessis equal to the fixed cost per kWh e of switching states.reflects the investment cost per kWh e . As indicated in

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

209

COST-EFFECTIVE VISIBILITY-BASED DESIGN PROCEDURES FOR GENERAL OFFICE LIGHTING  

E-Print Network [OSTI]

were calculated at the stated cost per Kwh by assuming 30to the work surface. The costs per Kwh essentially span themostly dependent upon the cost per Kwh divided by the area

Clear, Robert

2013-01-01T23:59:59.000Z

210

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

Table 2-5 presents the cost per kWh produced by variouselectricity rates on a cost per kWh basis only with someHybrid battery module cost per kWh required for lifecycle

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

211

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

Greer, Mark R

2012-01-01T23:59:59.000Z

212

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

variable costs, and cost per delivered kWh. The informationvariable costs, and cost per delivered kWh. The informationto represent the cost per delivered kWh), while CAPP may be

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

213

Electricity Rate Structures and the Economics of Solar PV: Could Mandatory Time-of-Use Rates Undermine California’s Solar Photovoltaic Subsidies?  

E-Print Network [OSTI]

ation-adjusted) levelized cost per kWh of power the panelsarrive at a lifetime real cost per kWh produced. Studies ofnot for soiling. The cost per kWh is then calculated by ?

Borenstein, Severin

2007-01-01T23:59:59.000Z

214

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

Table 2-5 presents the cost per kWh produced by variousHybrid battery module cost per kWh required for lifecycleelectricity rates on a cost per kWh basis only with some

Williams, Brett D

2010-01-01T23:59:59.000Z

215

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network [OSTI]

kWh) (kWh) b b Refrigerator and Freezer (kWh) Source: Unionseveral months for refrigerators and freezers to a maximumPart 2, June, 1980. Refrigerator/freezers Freezers Clothes

Authors, Various

2010-01-01T23:59:59.000Z

216

California’s Energy Future: Transportation Energy Use in California  

E-Print Network [OSTI]

associated reductions in cost per kWh. Over time, largerpack costs for BEV sedan as a function of assumed per kWh

Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

2011-01-01T23:59:59.000Z

217

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

have lower operational costs per kWh produced. There is alsoper kWh of energy, the energy payback time (EPBT), the cost

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

218

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

programs, and the average cost per kWh saved. Using utilitythat the average per kWh program costs reported by utilities

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

219

Energy dispatch schedule optimization and cost benefit analysis for grid-connected, photovoltaic-battery storage systems  

E-Print Network [OSTI]

or $100- 400 per kWh) at an installed cost of approximatelyinstalled cost of about $400 - $500 per kWh (approximately

Nottrott, A.; Kleissl, J.; Washom, B.

2013-01-01T23:59:59.000Z

220

DOE Zero Energy Ready Home Verification...  

Broader source: Energy.gov (indexed) [DOE]

annual energy savings Electric: 12024 kWh Natural Gas: 181 Therms Electric: 13593 kWh Natural gas: 35 Therms Energy cost rates Estimated annual emissions reductions...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

222

E-Print Network 3.0 - area guizhou province Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and John Gibson Summary: exporting Provinces in 2006 included Shanxi, 43 billion KWh (coal based); Guizhou 36 billion KWh (coal based... driving demand and supply. The final...

223

Nonlinear Pricing in Energy and Environmental Markets  

E-Print Network [OSTI]

the state level, the cost per kWh reduction was 14.8 cents.study concludes that the cost per kWh savings range from 29kWh consumption. The average cost per kWh reduction is 14.8

Ito, Koichiro

2011-01-01T23:59:59.000Z

224

Guidelines for Company Reporting on Greenhouse Gas Emissions Annexes updated July 2005  

E-Print Network [OSTI]

0.32 LPG kWh x 0.214 therms x 6.27 litres x 1.49 Coking Coal tonnes x 2736 kWh x 0.331 Aviation.63 Petrol tonnes x 3135 kWh x 0.24 litres x 2.30 Fuel Oil tonnes x 3223 kWh x 0.27 Coal2 tonnes x 2548 kWh xWh x 0.25 Petroleum Coke tonnes x 3410 kWh x 0.34 Refinery Miscellaneous kWh x 0.24 therms x 7

225

Portland General Electric Company Fourth Revision of Sheet No. 32-1 P.U.C. Oregon No. E-17 Canceling Third Revision of Sheet No. 32-1  

E-Print Network [OSTI]

Over 5,000 kWh 0.264 ¢ per kWh Energy Charge Standard Cost of Service Offer 4.677 ¢ per kWh (I) or Time.00 Transmission and Related Services Charge 0.248 ¢ per kWh Distribution Charge First 5,000 kWh 2.350 ¢ per kWh-of-Use (TOU) Offer (enrollment is necessary) On-Peak Period 7.817 ¢ per kWh (I) Mid-Peak Period 4.677 ¢ per kWh

226

Demonstration of Rack-Mounted Computer Equipment Cooling Solutions  

E-Print Network [OSTI]

technology kW kilowatt NC net cooling PDU power distribution units PPS power per server PUE power usage

Coles, Henry

2014-01-01T23:59:59.000Z

227

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

228

HIGH-TEMPERATURE HEAT EXCHANGER TESTING IN A PILOT-SCALE SLAGGING FURNACE SYSTEM  

SciTech Connect (OSTI)

The University of North Dakota Energy & Environmental Research Center (EERC), in partnership with United Technologies Research Center (UTRC) under a U.S. Department of Energy (DOE) contract, has designed, constructed, and operated a 3.0-million Btu/hr (3.2 x 10{sup 6} kJ/hr) slagging furnace system (SFS). Successful operation has demonstrated that the SFS meets design objectives and is well suited for testing very high-temperature heat exchanger concepts. Test results have shown that a high-temperature radiant air heater (RAH) panel designed and constructed by UTRC and used in the SFS can produce a 2000 F (1094 C) process air stream. To support the pilot-scale work, the EERC has also constructed laboratory- and bench-scale equipment which was used to determine the corrosion resistance of refractory and structural materials and develop methods to improve corrosion resistance. DOE projects that from 1995 to 2015, worldwide use of electricity will double to approach 20 trillion kilowatt hours. This growth comes during a time of concern over global warming, thought by many policy makers to be caused primarily by increases from coal-fired boilers in carbon dioxide (CO{sub 2}) emissions through the use of fossil fuels. Assuming limits on CO{sub 2} emissions from coal-fired boilers are imposed in the future, the most economical CO{sub 2} mitigation option may be efficiency improvements. Unless efficiency improvements are made in coal-fired power plants, utilities may be forced to turn to more expensive fuels or buy CO{sub 2} credits. One way to improve the efficiency of a coal-fired power plant is to use a combined cycle involving a typical steam cycle along with an indirectly fired turbine cycle using very high-temperature but low-pressure air as the working fluid. At the heart of an indirectly fired turbine combined-cycle power system are very high-temperature heat exchangers that can produce clean air at up to 2600 F (1427 C) and 250 psi (17 bar) to turn an aeroderivative turbine. The overall system design can be very similar to that of a typical pulverized coal-fired boiler system, except that ceramics and alloys are used to carry the very high-temperature air rather than steam. This design makes the combined-cycle system especially suitable as a boiler-repowering technology. With the use of a gas-fired duct heater, efficiencies of 55% can be achieved, leading to reductions in CO{sub 2} emissions of 40% as compared to today's coal-fired systems. On the basis of work completed to date, the high-temperature advanced furnace (HITAF) concept appears to offer a higher-efficiency technology option for coal-fired power generation systems than conventional pulverized coal firing. Concept analyses have demonstrated the ability to achieve program objectives for emissions (10% of New Source Performance Standards, i.e., 0.003 lb/MMBtu of particulate), efficiency (47%-55%), and cost of electricity (10%-25% below today's cost). Higher-efficiency technology options for new plants as well as repowering are important to the power generation industry in order to conserve valuable fossil fuel resources, reduce the quantity of pollutants (air and water) and solid wastes generated per MW, and reduce the cost of power production in a deregulated industry. Possibly more important than their potential application in a new high-temperature power system, the RAH panel and convective air heater tube bank are potential retrofit technology options for existing coal-fired boilers to improve plant efficiencies. Therefore, further development of these process air-based high-temperature heat exchangers and their potential for commercial application is directly applicable to the development of enabling technologies in support of the Vision 21 program objectives. The objective of the work documented in this report was to improve the performance of the UTRC high-temperature heat exchanger, demonstrate the fuel flexibility of the slagging combustor, and test methods for reducing corrosion of brick and castable refractory in such combustion environments. Specif

Michael E. Collings; Bruce A. Dockter; Douglas R. Hajicek; Ann K. Henderson; John P. Hurley; Patty L. Kleven; Greg F. Weber

1999-12-01T23:59:59.000Z

229

How to Estimate the Value of Service Reliability Improvements  

E-Print Network [OSTI]

and costs per annual kWh. Cost estimates are provided forper event, costs per average kW, costs per un-served kWhinvestments: 1. Cost per un-served kWh is substantially

Sullivan, Michael J.

2010-01-01T23:59:59.000Z

230

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

industrial users. Costs and per kWh increased from to 2.7rf-30, 1978, the average cost per kWh was 6.09i for residential

Sands, M. D.

2011-01-01T23:59:59.000Z

231

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

Operation kWh Making ice, Cooling storage is 1846.8kWh 2 Icebuilding is equipped with a cooling ice storage system Peakmeasured data on ice storage power and cooling load was not

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

232

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network [OSTI]

10,000-psi tank cost $2,458, or $11.1/kWh. Carbon fiber wastank cost is in the range of $10-$17/kWh and carbon fiber

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

233

DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...  

Energy Savers [EERE]

FOA also calls for the reduction of the levelized cost of electricity for new methods of geothermal energy production from 0.10 kWh to 0.06 kWh. Applicants must submit an...

234

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

to small scale electricity generation plants and is alsoElectricity Use (KWh/gallon FT Liquid) Plant Electricity Generation (Electricity Usage (MW) Plant Electricity Use (KWh/gallon FT Liquid) Plant Electricity Generation (

Lu, Xiaoming

2012-01-01T23:59:59.000Z

235

The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions  

E-Print Network [OSTI]

can be true. Either, coal generation can be sold in bothin the policy region and coal generation must be utilized inKWh) Pre-Policy Coal Generation (KWh) ? r ? g ? c Demand

Accordino, Megan H.; Rajagopal, Deepak

2012-01-01T23:59:59.000Z

236

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network [OSTI]

5. Power generation via IGCC from bituminous coal. It shouldElectricity Generation (KWh/gallon FT Liquid) Coal-to-PowerElectricity Generation (KWh/gallon FT Liquid) Coal-to-Power

Lu, Xiaoming

2012-01-01T23:59:59.000Z

237

The Impact of Retail Rate Structures on the Economics of Commercial Photovoltaic Systems in California  

E-Print Network [OSTI]

with PV Annual PV Energy Production ( $ / kWh ) Expressingwith PV Annual PV Energy Production ( $ / kWh ) It is clearanalysis, and the annual energy production of a PV system,

Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

2007-01-01T23:59:59.000Z

238

Flow of mantle fluids through the ductile lower crust: Helium isotope trends  

E-Print Network [OSTI]

particularly for geothermal energy development. Mantlex 10 kWh of accessible geothermal energy. This is a sizable

Kennedy, B. Mack; van Soest, Matthijs C.

2008-01-01T23:59:59.000Z

239

The Open Source Stochastic Building Simulation Tool SLBM and Its Capabilities to Capture Uncertainty of Policymaking in the U.S. Building Sector  

E-Print Network [OSTI]

market share [1] levelized cost of energy [$/kWh] specificwith the lowest levelized costs of energy supply will gain

Stadler, Michael

2009-01-01T23:59:59.000Z

240

Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid  

E-Print Network [OSTI]

battery 220$/kWh and 2125$/kW photovoltaics Table ES 5. Energy storage parameters Description charging efficiency (

Lasseter, Robert

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network [OSTI]

substantial (517 kW) and the battery bank huge (2082 kWh),181 kW), as is the battery bank (1518 kWh). In this case thePV array and a huge battery bank (6434 kWh). Note that this

Stadler, Michael

2009-01-01T23:59:59.000Z

242

Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid  

E-Print Network [OSTI]

substantial (517 kW) and the battery bank huge (2082 kWh),181 kW), as is the battery bank (1518 kWh). In this case thePV array and a huge battery bank (6434 kWh). Note that this

Lasseter, Robert

2010-01-01T23:59:59.000Z

243

Exceeding Energy Consumption Design Expectations  

E-Print Network [OSTI]

) the building consumed 208.7 kWh m-2 yr-1, 83% of the expected energy consumption (250 kWh m-2 yr-1). This dropped further to 176.1 kWh m-2 yr-1 in 2012 (70% below expected). Factors affecting building energy consumption have been discussed and appraised...

Castleton, H. F.; Beck, S. B. M.; Hathwat, E. A.; Murphy, E.

2013-01-01T23:59:59.000Z

244

Essays on the Economics of Environmental Issues: The Environmental Kuznets Curve to Optimal Energy Portfolios  

E-Print Network [OSTI]

levelized generating costs per kWh. Expected portfolioThis is due to the high cost per kWh (low return) shown in2 costs are derived by multiplying 1kg of CO 2 per kWh for

Meininger, Aaron G.

2012-01-01T23:59:59.000Z

245

Techno-Economic Analysis of Indian Draft Standard Levels for Room Air Conditioners  

E-Print Network [OSTI]

the current cost of production of 3.5 Rs per kWh. It isthe average cost of production to be 3.50 Rs. per kWh, or $the cost of production significantly at 4.80 Rs. per kWh. As

McNeil, Michael A.; Iyer, Maithili

2008-01-01T23:59:59.000Z

246

Solar Adoption and Energy Consumption in the Residential Sector  

E-Print Network [OSTI]

customer groups. While the cost per kWh for each respectivewith the average cost declines, per kWh for average andcost of doing so would be zero (prior to 2011), or small, on the order of 5 cents per kWh (

McAllister, Joseph Andrew

2012-01-01T23:59:59.000Z

247

LIGHTING CONTROLS: SURVEY OF MARKET POTENTIAL  

E-Print Network [OSTI]

Increased Energy Cost (B$) @ $0.10 per kWh Decrease Energytypical energy costs ($0.05 to $0.10 per kWh), and standardand for energy costs of $0.05 and $0.10 per kWh for four

Verderber, R.R.

2010-01-01T23:59:59.000Z

248

Providing better indoor environmental quality brings economic benefits  

E-Print Network [OSTI]

to operate fans cost 0.10 € per kWh, the daily energy costdata, and energy costs of 0.04 € per kWh for heat and 0.1 €0.05 and 0.15 € per kWh, the benefit-cost ratios are 80 and

Fisk, William; Seppanen, Olli

2007-01-01T23:59:59.000Z

249

Potential Electricity Impacts of a 1978 California Drought  

E-Print Network [OSTI]

is assumed to cost 11 mills per kWh in steam expense.33are assumed to cost 32 mills per kWh to PG&E. fuel costs,we arrive at costs of 24 mills per kWh for oil genera- tion

Sathaye, J.

2011-01-01T23:59:59.000Z

250

Selecting Thermal Storage Systems for Schools  

E-Print Network [OSTI]

per meter + KWH charge. On peak monthly average (June 89 thru September 89) $.0676/KWH. Off peak monthly average (October 89 thru May 90) $.0481/KWH. Natural Gas - Lone Star Gas Company - September 88 thru August 89 monthly average $4.41 MCF...

Maxwell, C. L.

1990-01-01T23:59:59.000Z

251

CX-002785: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

created from renewable solar systems and diesel generator. Two efficient 12 kilowatt diesel powered generators for battery charging, emergency use, and limited power backup...

252

E-Print Network 3.0 - afc-1 transmutation fuels Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Limited Liability... 10 year of shutdown or the US taxpayer pays for spend fuel storage costs One mil per kilowatt Source: Laughlin, Robert B. - Department of Physics, Stanford...

253

Direct Liquid Cooling for Electronic Equipment  

E-Print Network [OSTI]

technology   kW   kilowatt   LBNL   Lawrence  Berkeley  National  Laboratory   LLNL   Lawrence  Livermore  National  Laboratory   PDU   power  distribution  unit   pPUE   partial  power  usage  

Coles, Henry

2014-01-01T23:59:59.000Z

254

Utilizing Supplemental Ultra-Low-NO  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Standards and Improve System Efficiency This project developed a Flexible Combined Heat and Power (FlexCHP) system that incorporates new burner technology into a 65-kilowatt...

255

Advanced Wind Energy Projects Test Facility Moving to Texas Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Lubbock site will include an initial installation of two 225-kilowatt wind turbines and three anemometer towers, with the potential to expand to nine or more wind...

256

CX-002712: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

roof-mounted solar photovoltaic (3.84 kilowatt) for the City of Bowie Genealogical Library; 4) establish a residential energy efficiency program to assist senior citizens with...

257

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network [OSTI]

50 Effluent Hydropower- Kilowatt Output as Function of HeadDepartment of Energy (2003). Hydropower Setting a Course forEnergy Commission). Hydropower: Hydropower turbines for low-

Lekov, Alex

2010-01-01T23:59:59.000Z

258

CX-004655: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in State Energy Program funding to Avatar Energy, LLC to install an anaerobic digester and a 75 kilowatt combined heat and power generation unit at Desert Hills, an...

259

CX-007738: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Funding will support development of a low-cost, high-efficiency 100 kilowatt power inverter to connect photovoltaic (PV) solar panels to the grid, using revolutionary...

260

CX-005520: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

street lights with light emitting diodes; and 4) install an approximately 20 kilowatt solar electric panel array on the Beaverton Library. DOCUMENT(S) AVAILABLE FOR DOWNLOAD...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-001568: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

involves the purchase and installation of a 9 kilowatt (kW) photovoltaic (PV) solar panel system on the roof of the Trexler Environmental Center building. The proposed...

262

EA-1819: Final Environmental Assessment | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Assessment EA-1819: Final Environmental Assessment Kilowatts for Kenston Wind Energy Project, Chagrin Falls, Geauga County The Department of Energy has provided Federal...

263

TMCC WIND RESOURCE ASSESSMENT  

SciTech Connect (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

264

IMPROVING THE EFFICIENCY OF AN EXISTING GROUNDWATER REMEDIATION SYSTEM  

E-Print Network [OSTI]

.9 kilowatt total) 14 #12;ENERGY IMPROVEMENT BENEFITS 15 #12;RETURN ON INVESTMENT: SOLAR PANELS 16 #12 of grid energy with solar panel arrays Long-term operations and maintenance costs were significantly.7 kilowatt total) 13 #12;GROUNDWATER SYSTEM ENERGY IMPROVEMENTS ­ Northern Solar Array: 56 panel system (10

Illinois at Urbana-Champaign, University of

265

Wood Fuel Future: The Potential Web Text December 2010  

E-Print Network [OSTI]

Wth for one family, with larger scale systems of 1 MWth heating 200 houses. Small scale wood fuel electricity provide electricity for up to 30,000 houses. Many electricity generating systems also produce heat and are called Combined Heat and Power systems. kWth = kilowatt thermal (i.e. heat) kWe = kilowatt electricity

266

IBM Systems and Technology Electronics IBM CMOS 7HV for  

E-Print Network [OSTI]

companies can significantly improve these metrics today by using IBM technology in smart solar- panel to improve effi- ciency, cost per kilowatt and reliability of solar modules IBM CMOS 7HV is the industry, cost per kilowatt and reliability of solar modules. While this research is critical, photovoltaics

267

J.Ongena Our Energy Future Bochum, 18 November 2012 How to shape our future energy supply ?  

E-Print Network [OSTI]

­ 5kWh One liter of petrol ­ 10kWh One aluminum can for coke, water,... (15g) ­ 0.6kWh Energy : Some: There are only 3 different methods to produce energy 1. Burning Fossil Fuels : Coal, Oil, Gas ? Enormous in the world (2007) Energy source Power [TW] Contribution [%] Oil 4.6 36.6 Coal 3.12 24.9 Gas 3.02 24.1 Hydro

Gerwert, Klaus

268

Final Project Due: May 18, 2010  

E-Print Network [OSTI]

1 Geos 206 Final Project Due: May 18, 2010 Save the trees, and the music stands: An Energy: Monthly totals Total Electricity in kWh Average kWh per day Cost $.11/kWh Emissions .41 kg/kWh (unit in kg electricity bill, cost and emissions of the Bernhard/Chapin complex. 4 Figure 3: This graph provides a monthly

Aalberts, Daniel P.

269

Analysis of Energy Consumption of Duplex Residences in College Station, Texas  

E-Print Network [OSTI]

heating base ioad base load cooling heating days temperature kwh kwh kwh % month month January 31 48.5 0 705 836 54 0 1 February 28.25 52.4 0 507 762 60 0 1 March 31 60.3 0 255 836 77 0 1 April 30 68.2 0 0 809 100 0 0 May 31 74.6 175 0 836 83 1 0...

Kim, S. B.; Woods, P. K.

1998-01-01T23:59:59.000Z

270

The Cost of Power Disturbances to Industrial & Digital Economy Companies  

E-Print Network [OSTI]

-4: Average Cost Per Outage by Annual kWh and Duration 2-5 Figure 2-5: Average Cost Per Outage for DE by Data-5: Average Annual Per Establishment Cost of Outages by Annual kWh 3-6 Figure 3-6: Aggregate Annual Cost-4: Average Annual Per Establishment Cost of PQ Problems by Annual kWh 4-4 Figure 4-5: Aggregate Annual Cost

Schrijver, Karel

271

Water and Energy Interactions  

E-Print Network [OSTI]

energy intensive of the four types—consume 2,951 kWh of electricity per million gallons (3.8 million liters) of treated water

McMahon, James E.

2013-01-01T23:59:59.000Z

272

Guidelines to Defra's GHG conversion factors for company reporting Annexes updated June 2007  

E-Print Network [OSTI]

.498 Coking Coal tonnes x 2810 x 2810 kWh x 0.349 x 0.332 Aviation Spirit tonnes x 3128 x 3128 kWh x 0.250 x 0.281 x 0.267 Burning Oil1 tonnes x 3150 x 3150 kWh x 0.258 x 0.245 litres x 2.518 x 2.518 Coal 2 tonnes xWh x 0.249 x 0.237 Lubricants tonnes x 3171 x 3171 kWh x 0.263 x 0.250 Petroleum Coke tonnes x 3410 x

273

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network [OSTI]

biogas digester .. Installation of a biogas digester  In order to demonstrate heat value of biogas production: 321 kWh.   The digester is 

Casillas, Christian E.

2012-01-01T23:59:59.000Z

274

Automated Demand Response Technologies and Demonstration in New York City using OpenADR  

E-Print Network [OSTI]

C. McParland, "Open Automated Demand Response Communications2011. Utility & Demand Response Programs Energy ProviderAnnual Consumption (kWh) Demand Response Program Curtailment

Kim, Joyce Jihyun

2014-01-01T23:59:59.000Z

275

E-Print Network 3.0 - alternative fuels experience Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TECHNOLOGIES MARKET REPORT Summary: -hours (kWh) of experience. The company's presently markets phosphoric acid fuel cell (PAFC) and PEM units... 2008 FUEL CELL TECHNOLOGIES...

276

Air movement as an energy efficient means toward occupant comfort  

E-Print Network [OSTI]

only by electrical lighting (481 trillion BTU vs. 1340only by electrical lighting (141 billion kWh vs. 393 billion

Arens, Edward; Zhang, Hui; Pasut, Wilmer; Zhai, Yongchao; Hoyt, Tyler; Huang, Li

2013-01-01T23:59:59.000Z

277

Measured Energy Savings from the Application of Reflective Roofs in 3 AT&T Regeneration Buildings  

E-Print Network [OSTI]

of the buildings are about 125kWh per year (8.6 kWh/m2 [0.8 kWh/ft2 ]); at a cost of $0.1/kWh, savings are about the reflectivities increased to about 72%. In two of these buildings, we monitored savings of about 0.5kWh per day of about 13kWh per day (860 Wh/m2 [80 Wh/ft2 ]). These savings probably resulted from the differences

278

Catalog of DC Appliances and Power Systems  

E-Print Network [OSTI]

battery storage.grid, the cost of battery storage per unit of load servedalong with 22 kWh of battery storage. This study claims only

Garbesi, Karina

2012-01-01T23:59:59.000Z

279

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

4. Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot...

280

Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?  

E-Print Network [OSTI]

for 90% of household electricity consumption in China. Usinggives an annual electricity consumption of 12kWh assumingto look at is electricity consumption at the household

Letschert, Virginie

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Essays in Public Economics and Development  

E-Print Network [OSTI]

but only economic incentives (kWh) Simulations: totargets through economic incentives is often consideredtargets through economic incentives (e.g. , prices) is often

Gerard, Francois

2013-01-01T23:59:59.000Z

282

Flow of mantle fluids through the ductile lower crust: Helium isotope trends  

E-Print Network [OSTI]

particularly for geothermal energy development. Mantlex 10 kWh of accessible geothermal energy. This is a sizableBasic Energy Sciences and Office of Geothermal Technologies

Kennedy, B. Mack; van Soest, Matthijs C.

2008-01-01T23:59:59.000Z

283

Preliminary Assumptions for Natural Gas Peaking  

E-Print Network [OSTI]

") 179 MW lifecycle Site heat rate (Btu/kwh): 9,350 ("new and clean") 9,430 lifecycle (36% efficiency

284

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

47 3.8 Economic Evaluation…………………………………………………………….49 4. AElectrical (kWh) Electrical COP 3.8 Economic Evaluation Asimple economic evaluation of the system was performed using

Widyolar, Bennett

2013-01-01T23:59:59.000Z

285

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Table C22. Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace...

286

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

287

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1 Total Electricity Consumption (billion kWh) Total Floorspace of...

288

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

5. Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

289

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

290

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

291

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

292

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

0. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

293

Energy Information Administration - Commercial Energy Consumption...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

294

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Real Prices (2005$) Crude Oil (left) US Retail Gasoline (retail prices in California including PG&E residential electricity $0.1144/kWh, gasolineretail prices Gasoline

2007-01-01T23:59:59.000Z

295

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Real Prices (2005$) Crude Oil (left) US Retail Gasoline (retail prices in California including PG&E residential electricity $0.1144/kWh, gasolineretail prices Gasoline

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

296

Energy Information Administration - Commercial Energy Consumption...  

Gasoline and Diesel Fuel Update (EIA)

6A. Electricity Expenditures by Census Region for All Buildings, 2003 Total Electricity Expenditures (million dollars) Electricity Expenditures (dollars) per kWh per Square Foot...

297

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

electricity prices with non-generation costs of $0.07816/kWh (Pacific Gas and Electric Company, 2006). Households

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

298

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

electricity prices with non-generation costs of $0.07816/kWh (Pacific Gas and Electric Company, 2006). Households

2007-01-01T23:59:59.000Z

299

Water, Neighborhoods and Urban Design: Micro-Utilities and the Fifth Infrastructure  

E-Print Network [OSTI]

the very aggressive “passive house” standard of 15 Kwh/m2-yplus energy houses”) which combine a passive solar direct

Elmer, Vicki; Fraker, Harrison

2011-01-01T23:59:59.000Z

300

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards "Top-Runner Approach"  

E-Print Network [OSTI]

Transformers Electric Rice Cookers, DVD Recorders, MicrowaveElectric Toilet Seats Rice Cookers kWh/year kWh/year kWh/

Komiyama, Ryoichi

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

What does a negawatt really cost?  

E-Print Network [OSTI]

We use data from ten utility conservation programs to calculate the cost per kWh of electricity saved -- the cost of a "negawatthour" -- resulting from these programs. We first compute the life-cycle cost per kWh saved ...

Joskow, Paul L.

1991-01-01T23:59:59.000Z

302

Long Term Operation of Renewable Energy Building  

E-Print Network [OSTI]

hot water, daylighting, passive cooling, and generation of electricity from a 10 kW wind turbine and 1.9 kW of photovoltaic panels, each connected to the utility grid through inverters. Since 1991, 16,900 kWh have been purchased and 31,300 kWh returned...

Nelson, V.; Starcher, K.; Davis, D.

1996-01-01T23:59:59.000Z

303

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

kWh MPG per FWHET Test Cumulative MPG Cumulative AC kWh 15 FY07 EnergyCS Prius - Fuel Costs EnergyCS PHEV Prius UDDS & HWFET Fuel Cost per Mile 0.000 0.005 0.010 0.015...

304

Bill Bradbury Jennifer Anders  

E-Print Network [OSTI]

production can be a very electricity intensive. Provide information on energy efficiency potential Electricity Use in Indoor Production Aluminum Production ~ 16 KWH/kg Indoor Cannabis production ~ 5000 KWH 3, 2014 MEMORANDUM TO: Power Committee FROM: Massoud Jourabchi SUBJECT: Electrical load impacts

305

Energy Fluxes optimization for PV integrated Rim.Missaoui, Ghaith.Warkozek, Seddik. Bacha, Stphane.Ploix.  

E-Print Network [OSTI]

capable both to satisfy the maximum available electrical energy constraint and to maximize user comfort-time simulation I. NOMENCLATURE t Sampling step time, [hour]. Sampling time of the anticipatory layer. i by the load [kWh]. E (i, k) Energy produced by the source i during period k [kWh]. Ppv PV power produced

Boyer, Edmond

306

1360 Barrington Street P.O. Box 1000  

E-Print Network [OSTI]

.1 cents per kWh. This seems excessive, considering that residential electricity now costs about 10 cents per kWh. It is unclear whether this is the annual cost or the projected cost in 2029. The cost the consumer cost is pegged at $141 million with an energy savings of 1,551 GWh (see Table, page 15) or about 9

Hughes, Larry

307

Physics Today Livermore ends LIFE  

E-Print Network [OSTI]

represent considerable sav- ings, since vanadium electrolyte costs about $200/kWh. The company antici- pates and for a cost of $1000 per unit. Using other bat- tery technologies, such units now sell for around $4000. Other Scuderi, business development manager, the Zn­MnO2 technology could attain the $100/kWh cost target once

308

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

cost and the marginal fuel savings (assuming a base case of ten cents per kWhper kWh, which would bring it in line with the break-even costcost per mile: electricity vs. gasoline PRICE OF ELECTRICITY ($/kWh)

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

309

Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States  

E-Print Network [OSTI]

5W to 1 W, at a cost of two cents per kWh. Electric cookingassume a cost of conserved energy of two cents per kWh forCost of Conserved Energy Utility Price $ per MMbtu $ per kWh

Bojda, Nicholas

2011-01-01T23:59:59.000Z

310

CeSOS Highlights and AMOS Visions 27-29th May 2013 Aurlien Babarit  

E-Print Network [OSTI]

2013 Criteria for comparison > The true criterion is cost of kWh. > kWh (power production) can absorption · Income side of COE · The higher the power absorption per unit, the less the installation cost a limit to the allowed cost for viability #12;A. Babarit CeSOS Highlights and AMOS Visions ­ 27-29th May

Nørvåg, Kjetil

311

COMPUTER DESIGN AND OPTIMIZATION OF CRYOGENIC REFRIGERATION SYSTEMS  

E-Print Network [OSTI]

and the assumed electrical energy cost is $0.04 per kWh.cost (the cost is given in US$ per kWh at 80.4°K) andThe cost of nitrogen refrigeration given in $ per kWh at

green, M.A.

2011-01-01T23:59:59.000Z

312

Economic and Conservation Evaluation of Capital Renovation Projects: United Irrigation District of Hidalgo County (United) - Rehabilitation of Main Canal, Laterals, and Diversion Pump Station - Preliminary  

E-Print Network [OSTI]

construction cost per BTU (kwh) of energy savings measure is $0.0003376 per BTU ($1.152 per kwh). The aggregate ratio of initial construction costs per dollar of total annual economic savings is estimated to be -3.442....

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

313

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network [OSTI]

have a much higher cost per kWh produced than baseload coal,life to 30 years on the cost per kWh is fairly small due tocosts through non-energy payments, which are incorporated as a constant per-kWh

Borenstein, Severin

2008-01-01T23:59:59.000Z

314

Microgrid Selection and Operation for Commercial Buildings in California and New York States  

E-Print Network [OSTI]

a low storage, PV, and solar thermal price run; and 6. a lowstorage of US$50/kWh for solar thermal and US$60/kWh forof 2.5US$/W & low solar thermal costs (minus 10% of original

Marnay, Chris; Environmental Energy Technologies Division

2008-01-01T23:59:59.000Z

315

LABORATOIRE D'ECONOMIE DE LA PRODUCTION ET DE L'INTEGRATION INTERNATIONALE  

E-Print Network [OSTI]

Wh/h] Smax = Storage system capacity [kWh] SOCmax = Storage upper capacity limit [kWh] SOCmin = Storage lower = Storage efficiency Greek symbols - Decision variables (t) = Binary decision variable, (t) = 1 if the battery is in charge mode, (t) = 0 if the battery is in discharge mode (t) = Binary decision variable, (t

Paris-Sud XI, Université de

316

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

short-run marginal cost or avoided cost) to get a value ofcan be added to the fuel cost avoided by each kWh (i.e. ,CCE, in ¢/kWh) and the Cost of Avoided Peak Power (CAPP, in

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

317

2015 Vehicle Buyer's Guide (Brochure), Clean Cities, Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Year) Driving Range (Miles) GHG Score** Fuel Economy (MPGe) CityHwy Starting MSRP BMW i3 125 kW21 kWh 0.2 81 10 137114 41,350 Chevrolet Spark 104 kW20 kWh 0.2 82 10 128...

318

Increasing Energy Efficiency and Reducing Emissions from China's Cement Kilns: Audit Report of Two Cement Plants in Shandong Province, China  

E-Print Network [OSTI]

conversion: 1 kwh = 10,500 Btu for power production Averageelectricity and at 10,500 Btu/kwh or 2,646 kcal/kHz energyHCs Unit Nm3/hr Nm3/hr cfh Btu/scf MM Btu/hr GJ/hr Btu/scf

Price, Lynn

2013-01-01T23:59:59.000Z

319

CX-005986: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

of Energy funding to deploy and test their full scale 150 kilowatt PowerBuoy, a wave energy conversion technology in the Oregon Territorial Sea. DOCUMENT(S) AVAILABLE FOR...

320

CX-003979: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Tuscola North Plant 100 Kilowatt Wind Turbine InstallationCX(s) Applied: B5.1Date: 09/22/2010Location(s): Tuscola, IllinoisOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Uniform Capacity Tax and Exemption for Solar (Vermont)  

Broader source: Energy.gov [DOE]

During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the...

322

Vertical Farrning in the Windy City  

E-Print Network [OSTI]

ofTechnology are also building a custom-designed digester that will turn the project's leftover vegetable and fish waste into fertilizer and biogas to power a heating, cooling, and 280-kilowatt electrical

Saniie, Jafar

323

CX-006329: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and route optimization for waste trucks; and 5) install an existing 50 kilowatt hydroelectric generator into an existing turbine chamber at the city-owned dam at the East Race...

324

CX-002859: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and replacing approximately 7,800 feet of old pipeline feeding into a run-of-river hydroelectric unit, with a nameplate capacity of 800 kilowatts, with an updated, bigger pipeline...

325

Net Metering  

Broader source: Energy.gov [DOE]

Montana's net-metering law, enacted in July 1999, applies to all customers of investor-owned utilities. Systems up to 50 kilowatts (kW) in capacity that generate electricity using solar, wind or...

326

Net Metering  

Broader source: Energy.gov [DOE]

Washington's net-metering law applies to systems up to 100 kilowatts (kW) in capacity that generate electricity using solar, wind, hydro, biogas from animal waste, or combined heat and power...

327

--No Title--  

U.S. Energy Information Administration (EIA) Indexed Site

in the Virgin Islands were paying an average price of 47 cents per kilowatthour for electricity. The Virgin Islands' first large-scale solar project, the 451-kilowatt King...

328

1.1.1Real Numbers and Operations 1 Astronomical Unit = 1.0 AU = 1.49 x 108  

E-Print Network [OSTI]

- A house is being fitted for solar panels. The roof measures 50 feet x 28 feet. The solar panels cost $1 in kilowatts? B) How much would the solar panels cost to install? C) What would be the owners cost

329

Distributed Wind Market Report: Small Turbines Lead to Big Growth...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Growth in Exports August 18, 2014 - 12:13pm Addthis 1 of 11 Three 100 kilowatt (kW) wind turbines in Bisaccia, Italy. Last year, U.S. small wind turbines were exported to more than...

330

PV/cogeneration hybrid system nets large contract  

SciTech Connect (OSTI)

Alpha Solarco Inc. announced on May 18, 1987 the signing of two $175 million exclusive development contracts with the Pawnee and Otoe-Missouria Tribes of Oklahoma to build two 70,000-kilowatt photovoltaic electric generating stations on Tribal lands in Oklahoma to supply Indian and other requirements. The projects, to be built in four phases, will each consists of 35,000 kilowatts of photovoltaic generating capacity to be supplied by the company's proprietary Modular Solar-Electric Photovoltaic Generator (MSEPG), and 35,000 kilowatts of gas-fired cogeneration. Alpha Solarco is starting to build and finance itself a 500-kilowatt demonstration plant as the initial step in the first project. This plant will be used to demonstrate that proven MSEPG design and technology can be integrated in electric utility systems, either as a base-load generator for small utilities, or as a peak-shaving device for large ones.

Not Available

1987-09-01T23:59:59.000Z

331

NASA Green Flight Challenge: Conceptual Design Approaches and Technologies to Enable 200 Passenger Miles  

E-Print Network [OSTI]

-diesel, and other bio-fuel engines. The aircraft are using various technologies to improve aerodynamic, propulsionW = = = Jet Propellant Knots True Airspeed Kilo-Watt MPG = Miles Per Gallon MPGe MSL = = Miles Per Gallon

Waliser, Duane E.

332

U.S. DOE TAP Webinar - Commercial PACE - Updates from the Field...  

Broader source: Energy.gov (indexed) [DOE]

and other lighting controls, which will also have the benefit of reducing long-term maintenance and the costs associated with that. And a 200 kilowatt rooftop solar array as well....

333

File] [Worksheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in integers from 1 through 50." ,,,,,"Total System Size (kW)",0,,"Y","Total Solar panel system size in kilowatts." "OPTION A - STATUS QUO" "Continue to pay retail energy cost...

334

CX-010248: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

build and commission a scalable 100 kilowatt (kW) wind turbine connected to a 100 kW battery storage bank running a 100 horsepower variable speed drive and well pump....

335

CX-005445: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Commercialization of an Advanced 450 Kilowatt Midsize TurbineCX(s) Applied: A9Date: 03/17/2011Location(s): Barre, VermontOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

336

Biomass Energy Production Incentive  

Broader source: Energy.gov [DOE]

In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

337

SaskPower Net Metering (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

Residents, farms and businesses with approved Environmental Preferred Technologies of up to 100 kilowatts (kW) of nominal (nameplate) generating capacity can deliver their excess electricity to our...

338

NEXT GENERATION NUCLEAR PLANT NGNP Technology Development Roadmapping  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ISR Inner Side Reflector Kc Fracture Toughness kg Kilogram K-T Kepner-Tregoe KTA German nuclear technical committee kW Kilowatt LANL Los Alamos National Laboratory LBE Licensing...

339

Black Hills Energy- Solar Power Program  

Broader source: Energy.gov [DOE]

Black Hills Energy has a performance-based incentive (PBI) for photovoltaic (PV) systems up to 100 kilowatts (kW) in capacity. In exchange for these incentives, Black Hills Energy earns the right...

340

CX-002814: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002814: Categorical Exclusion Determination City of Arcola 40 Kilowatt Wind Turbine Project CX(s) Applied: B5.1 Date: 06232010 Location(s): Arcola, Illinois Office(s):...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Net Metering  

Broader source: Energy.gov [DOE]

North Dakota's net-metering policy, adopted in 1991 by the state Public Service Commission (PSC), applies to renewable-energy systems and combined heat and power (CHP) systems up to 100 kilowatts ...

342

Austin Energy- Net Metering (Texas)  

Broader source: Energy.gov [DOE]

Austin Energy, the municipal utility of Austin Texas, offers net metering for renewable energy systems up to 20 kilowatts (kW) to its non-residential retail electricity customers. The definition of...

343

Green Supercomputing at Argonne  

SciTech Connect (OSTI)

Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing—everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

Pete Beckman

2009-11-18T23:59:59.000Z

344

Community Renewable Energy Success Stories Webinar: Exploring...  

Office of Environmental Management (EM)

are on residential property and are generally smaller than 10 kilowatts. In 2008, Concord Light introduced a solar PV rebate and also net metering and we saw some growth in the...

345

Taunton Municipal Lighting Plant- Residential PV Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for $2.00/watt rebate on solar photovoltaic (PV) installations. The minimum system size eligible for this rebate is 1 kilowatt ...

346

Microsoft Word - S07225_Sustainability_Final  

Broader source: Energy.gov (indexed) [DOE]

are on DOE property or Native American land controlled by DOE. A 51-kilowatt (kW) photovoltaic (PV) solar array is currently operating at LM's Tuba City Site. A...

347

How to Improve Productivity with Energy-Efficient Motors  

E-Print Network [OSTI]

productivity is to reduce costs, particularly those which are rising faster than others such as electricity. Today's new energy efficient motors reduce the kilowatts consumed, thus reducing electric bills and improving productivity. This paper will discuss...

Curley, J. P.

1983-01-01T23:59:59.000Z

348

Interconnection Guidelines  

Broader source: Energy.gov [DOE]

Wyoming's net-metering law includes basic interconnection requirements for systems up to 25 kilowatts (kW) in capacity that generate electricity using solar, wind, hydropower or biomass resources....

349

Interconnection Standards  

Broader source: Energy.gov [DOE]

Minnesota's net-metering law, enacted in 1983, applies to all investor-owned utilities, municipal utilities and rural electric cooperatives. Qualifying facilities of less than 1,000 kilowatts (kW)...

350

Interconnection Guidelines  

Broader source: Energy.gov [DOE]

The Georgia Cogeneration and Distributed Generation Act of 2001 allows residential electricity customers with photovoltaic (PV) systems, wind-energy systems or fuel cells up to 10 kilowatts (kW) in...

351

Interconnection Standards  

Broader source: Energy.gov [DOE]

Hawaii has established simplified interconnection rules for small renewables and separate rules for all other distributed generation (DG). For inverter-based systems up to 10 kilowatts (kW) in...

352

New Jersey SmartStart Buildings- Direct Install Program  

Broader source: Energy.gov [DOE]

The Direct Install program offers turn-key energy efficiency solutions to qualified industrial and commercial customers that, with some exceptions, have a peak electricity demand of 150 kilowatts ...

353

California DREAMing: the design of residential demand responsive technology with people in mind  

E-Print Network [OSTI]

customers with advanced or smart meters 6 to permit dynamicAn advanced or smart meter refers to an electrical watt-hourAlso called advanced or smart meter. kilowatt: a unit of

Peffer, Therese E.

2009-01-01T23:59:59.000Z

354

Duncan Valley Electric Cooperative- SunWatts Rebate Program (Arizona)  

Broader source: Energy.gov [DOE]

Duncan Valley Electric Cooperative is providing rebates to for the purchase of renewable energy systems through its SunWatts program. Photovoltaic (PV) and wind energy systems 10 kilowatts (kW) or...

355

Sawnee EMC- Solar Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Sawnee EMC offers a rebate of $300 per kilowatt (kW) to residential customers who install photovoltaic (PV) systems that meet the cooperative's [http://www.sawnee.com/Rate%20Pdfs/NEM%20Rider.pdf...

356

OTEC- Residential Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

Customers of Oregon Trail Electric Consumers Cooperative (OTEC) who install photovoltaic systems are eligible for a rebate of $500 for the first kilowatt (kW) of installed capacity per year. ...

357

Central Georgia EMC- Photovoltaic Rebate Program  

Broader source: Energy.gov [DOE]

In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

358

Green Supercomputing at Argonne  

ScienceCinema (OSTI)

Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF) talks about Argonne National Laboratory's green supercomputing?everything from designing algorithms to use fewer kilowatts per operation to using cold Chicago winter air to cool the machine more efficiently.

Pete Beckman

2010-01-08T23:59:59.000Z

359

CX-003598: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1,200,000 in Recovery Act funds to Avatar Energy, LLC to install an anaerobic digester and a 65 kilowatt combined heat and power generation unit at the existing, Frade...

360

Cobb EMC- Solar Rebate Program  

Broader source: Energy.gov [DOE]

Beginning in February 2008, Cobb Energy Management Corporation (EMC) offers rebates for residential solar photovoltaic (PV) systems. Cobb EMC is offering members $450 per kilowatt-AC (kW-AC)...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

SaskPower Small Power Producers Program (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

362

Expedited Permitting Process for Solar Photovoltaic Systems (Vermont)  

Broader source: Energy.gov [DOE]

Vermont has established an expedited permitting process for solar photovoltaic systems that are 10 kilowatts-AC (kW) or less. In order to interconnect and net meter, electric customers in Vermont...

363

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2007-01-01T23:59:59.000Z

364

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D

2010-01-01T23:59:59.000Z

365

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

366

Decision on the choice of the site for ITER reactor LEMONDE.FR|20.12.03| 19h25  

E-Print Network [OSTI]

Technologies Claudie Haigneré and the Minister for Education and Research in Italy, Letizia Moratti, whose is not for the near future: the founders of the project do not envisage the first kilowatts of electricity before

367

Small Business Program  

Broader source: Energy.gov [DOE]

Focus on Energy offers a free energy assessment and free or discounted energy savings items to small businesses with a peak monthly electric demand of less than 100 kilowatts. After the initial...

368

CX-008210: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Commercialization of an Advanced 450 Kilowatt Wind Turbine for Distributed CX(s) Applied: A9, B3.6 Date: 03/27/2012 Location(s): Vermont Offices(s): Golden Field Office

369

MotorWeek Fuel Cell Video | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

project. 100% of their onion waste, up to 300,000 pounds per day, is converted into biogas to make hydrogen that in turn powers a pair of 300-kilowatt fuel cells. Their electric...

370

NYSEG (Electric)- Small Business Lighting Retrofit Program  

Broader source: Energy.gov [DOE]

NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy...

371

RG&E (Electric)- Small Business Lighting Retrofit Program  

Broader source: Energy.gov [DOE]

RG&E offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy...

372

City of Danville- Net Metering  

Broader source: Energy.gov [DOE]

For a renewable fuel generator with a capacity of 25 kilowatts (kW) or less, a notification form shall be submitted at least 30 days prior to the date the customer intends to interconnect their...

373

Unidades de Energa Energa mecanica  

E-Print Network [OSTI]

refrescos) = 11.7 kilowatt-hora (1 foco prendido 117 hrs)] Energa solar Radiacion solar en la tierra: 1 kilowatt por metro cuadrado (max.) [El promedio es la 1/4 parte. Un calentador solar da 60 %; celda-watt-segundo ; 1 cerrillo que se quema = 1 kilo-joule; 1 latido de corazon = 0.5 joules Mas informacion: http://es.wikipedia.org/wiki/Energia

Bor, Gil

374

State-Level Comparison of Processes and Timelines for Distributed Photovoltaic Interconnection in the United States  

SciTech Connect (OSTI)

This report presents results from an analysis of distributed photovoltaic (PV) interconnection and deployment processes in the United States. Using data from more than 30,000 residential (up to 10 kilowatts) and small commercial (10-50 kilowatts) PV systems, installed from 2012 to 2014, we assess the range in project completion timelines nationally (across 87 utilities in 16 states) and in five states with active solar markets (Arizona, California, New Jersey, New York, and Colorado).

Ardani, K.; Davidson, C.; Margolis, R.; Nobler, E.

2015-01-01T23:59:59.000Z

375

23rd steam-station cost survey  

SciTech Connect (OSTI)

The results of the 23rd Steam Station Cost Survey covering the year 1982 are summarized. The major categories of the survey are as follows: general data; output data, 1982; fuel consumption, 1982; operation 1982 (mills/net kWh); investment ($/net kWh); energy cost, 1982 (mills/net kWh); and station performance, 1982. Thirty-one fossil-fuel steam plants and four nuclear stations were included in the survey. Fuel and operating cost increases are felt to be responsible for the moderate rise in total busbar-enery costs. 11 figures, 1 table.

Friedlander, G.D.; Going, M.C.

1983-11-01T23:59:59.000Z

376

Energy and Greenhouse Gas Emissions in China: Growth, Transition, and Institutional Change  

E-Print Network [OSTI]

in particular: cement, energy (coal mining and hydropower),average of renewable energy and coal, which significantlyManufacture Coal Electricity Specific Energy (kg, kWh t -1

Kahrl, Fredrich James

2011-01-01T23:59:59.000Z

377

NREL PV Projects - FUPWG Meeting: "Going Coastal for Energy Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

kWdc (1,200,000 kWh) one-axis tracking PV system - Grid connected (NREL "side of the meter") - Milestones Agreements: January 2008 Operation: August 2008 Solar Rewards...

378

Measured energy performance of a US-China demonstration energy-efficient office building  

E-Print Network [OSTI]

low price period kWh Ice storage system power consumption 2loss through the ice storage system, the average coolingto the measured results. Ice storage system The two Carrier

Xu, Peng; Huang, Joe; Jin, Ruidong; Yang, Guoxiong

2006-01-01T23:59:59.000Z

379

Third-Party Financing and Power Purchase Agreements for Public...  

Broader source: Energy.gov (indexed) [DOE]

500 kW system @ 3.5 to 4 million Federal tax benefits 55% 6 Some key elements of a PPA Price per kWh of electricity Annual escalation factor (2-5%) Length of the agreement...

380

Microsoft Word - Tab 2d - Project Descriptions Press Format ...  

Broader source: Energy.gov (indexed) [DOE]

Micrel; Colorado - NREL. Key Metrics Key Metrics LCOE (kWh) Manufacturing Capacity (MW) 0.1400 60 Baseline (2006) 0.3300 1 0.0600 1000 2009-2010 2014-2015 High...

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar America Initiative  

Broader source: Energy.gov (indexed) [DOE]

Micrel; Colorado - NREL. Key Metrics Key Metrics LCOE (kWh) Manufacturing Capacity (MW) 0.1400 60 Baseline (2006) 0.3300 1 0.0600 1000 2009-2010 2014-2015 The Boeing...

382

Interpreting human activity from electrical consumption data through non-intrusive load monitoring  

E-Print Network [OSTI]

Non-intrusive load monitoring (NILM) has three distinct advantages over today's smart meters. First, it offers accountability. Few people know where their kWh's are going. Second, it is a maintenance tool. Signs of wear ...

Gillman, Mark Daniel

2014-01-01T23:59:59.000Z

383

--No Title--  

Gasoline and Diesel Fuel Update (EIA)

Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

384

Case Study of Two MBCx Projects: Using M&V to Track Energy Performance  

E-Print Network [OSTI]

operation • Re-establish supply air temperature set point reset control in AHU1 • Other measures • Approximately 483,000 kWh (10%), 2.7M lbs/yr steam (51%) #0;? Estimated using DOE 2 analysis • Cost reduction $84,000 (14%), Payback 0.7 years 13 Soda Hall... 006 3/ 24/ 2 006 3/ 26/ 2 00 6 3/ 28/ 2 00 6 3/ 3 0/ 2 006 Date kW h 0 10 20 30 40 50 60 70 80 De g F AHU 1 Daily kWh AHU 3 Daily kWh AHU 4 Daily kWh OAT Daily Average AHU 1 supply fan malf. begins here. Same date as economizer fix. 17 M...

Jump, D.

2007-01-01T23:59:59.000Z

385

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

not only the tangible investment costs such as the turnkeyDG unit minus the investment cost. As for Eq. (9), it is aplus the amortised investment cost per kWh e of the DG unit

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

386

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

only the tangible investment costs, but also the opportunityDG unit minus the investment cost. As for Equation (9), itplus the amortised investment cost per kWh of the DG unit is

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

387

Designing PV Incentive Programs to Promote Performance: A Review of Current Practice in the U.S.  

E-Print Network [OSTI]

Program Washington Renewable Energy Production Incentivesrenewable energy credits (RECs) via energy production-basedRenewable DG Program ($0.01/kWh for the first year of energy production)

Barbose, Galen; Wiser, Ryan; Bolinger, Mark

2008-01-01T23:59:59.000Z

388

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

12 Table 3. Renewable Energy Production Required forTable  Table 3. Renewable Energy Production Required forEnergy Consumption Renewable Energy Production B kWH Year In

Budhraja, Vikram

2008-01-01T23:59:59.000Z

389

Sam, Booth, Targeting Net Zero DoD Project Review  

Broader source: Energy.gov (indexed) [DOE]

Cost Savings () 43,976,816 Base Case LCOE (kWh) 0.281 RE Case LCOE(kWh) 0.226 Power Plant 17% Energy Efficiency 25% SHW 5% PV 18% Wind 35% Contribution from EERE Phase...

390

Research, development, and demonstration of lead-acid batteries for electric vehicle propulsion. Annual report, 1979  

SciTech Connect (OSTI)

The initial phase of work comprises three factorial experiments to evaluate a variety of component combinations. Goals to be met by these batteries include the following: capacity at 3 h discharge, 20 to 30 kWh; specific energy, 40 Wh/kg; specific power, 1000 W/kg for 15 s; cycle life, 800 cycles to 80% depth; price, $50/kWh. The status of the factorial experiments is reviewed. The second phase of work, design of an advanced battery, has the following goals: 30 to 40 kWh; 60 Wh/kg; 150 W/kg for 15 s; 1000 cycles to 80% depth; $40/kWh. It is not yet possible to say whether these goals can be met. Numerous approaches are under study to increase the utilization of battery chemicals. A battery design with no live electrical connection above the battery is being developed. 52 figures, 52 tables. (RWR)

Not Available

1980-06-01T23:59:59.000Z

391

A Near-Term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

392

A Near-term Economic Analysis of Hydrogen Fueling Stations  

E-Print Network [OSTI]

0.07/kWh has on hydrogen cost for electrolysis type station.3-12: Hydrogen Cost Comparison for Electrolysis Station,3-12: Hydrogen Cost Comparison for Electrolysis Station, NAS

Weinert, Jonathan X.

2005-01-01T23:59:59.000Z

393

IRS Parking Facility Lighting Retrofit Reduces Annual Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in Kansas City, Missouri. The retrofit resulted in annual energy savings of 2 million kWh, annual cost savings of over 122,000, and a simple payback of 2.5 years....

394

Tariff-based analysis of commercial building electricity prices  

E-Print Network [OSTI]

is higher than the average cost per-kWh, the question of howcost recovery adders are neglected unless they are speci?ed as a price per kWh

Coughlin, Katie M.; Bolduc, Chris A.; Rosenquist, Greg J.; Van Buskirk, Robert D.; McMahon, James E.

2008-01-01T23:59:59.000Z

395

Energy Blog | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Authority (NYSERDA). Library Patrons in New York Check-Out Renewable Energy The new solar system on the Esopus Library in New York is expected to generate 31,200 kWh of...

396

Chrysler RAM PHEV Fleet Results Report  

Broader source: Energy.gov (indexed) [DOE]

number of charging events 2,590 Number of charging events at Level 1 | Level 2 588 | 1990 Total charging energy consumed (AC kWh) 17,571 Charging energy consumed at Level 1 |...

397

Value and Technology Assessment to Enhance the Business Case for the CERTS Microgrid  

E-Print Network [OSTI]

DER available include solar thermal, photovoltaics (PV) and1 absorption chiller solar thermal flow battery 220$/kWh andabsorption chiller (kW) Solar thermal (kW) PV (kW) lead-acid

Lasseter, Robert

2010-01-01T23:59:59.000Z

398

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

photovoltaics (PV), and battery storage, are considered forStorage Heat Storage Flow Battery Energy Flow Battery PowerkW) Battery Capacity (kWh) Photo voltaic (kW) Heat Storage (

Feng, Wei

2013-01-01T23:59:59.000Z

399

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

to assist the energy storage battery (12 kWh) in providingbattery and ultracapacitors in the vehicles when the characteristics of the energy storageBattery, Hybrid and Fuel Cell Electric Vehicle Symposium the energy storage

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

400

Optimizing Energy Savings from Direct-DC in U.S. Residential Buildings  

E-Print Network [OSTI]

the market, in fact, the battery-storage inverter describedalong with 22 kWh of battery storage. This study by Baek etpower, but the cost of battery storage per unit of load

Garbesi, Karina

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...  

Energy Savers [EERE]

capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of Batteries Sold and Battery Capacity Sold for Model Year 2013 Graph of the number of batteries...

402

Impacts of Electric Vehicles on Primary Energy Consumption and Petroleum Displacement  

E-Print Network [OSTI]

These studiesprojected electricity consumption EVs and theMPG) and EV electricity consumption (in Kwh per mile).weight of increases. 3.2. Electricity Consumption EVs of To

Wang, Quanlu; Delucchi, Mark A.

1991-01-01T23:59:59.000Z

403

Conservation Screening Curves to Compare Efficiency Investments to Power Plants  

E-Print Network [OSTI]

be added to the fuel cost avoided by each kWh (i.e. , theCost ($/yr Other Costs Avoided ($/yr) Total Annualizedapplications, where the avoided maintenance costs more than

Koomey, J.G.

2008-01-01T23:59:59.000Z

404

Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia  

E-Print Network [OSTI]

The study found that refrigerator and freezer temperaturekWh per year), and refrigerator and freezer (1,120 kWh perrefrigeration (refrigerators and freezers) included in the

Tiedemann, Kenneth Mr.

2013-01-01T23:59:59.000Z

405

Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?  

E-Print Network [OSTI]

+ inverter) Fuel Cell Stack Only Cost ($/kW) Reformer Cost (Capital Cost ($/kWh) Maintenance and fuel cell stackof Ref. Cost for FCVs Fuel Cell Cost ($kW) (stack + aux

Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

2002-01-01T23:59:59.000Z

406

DOE Zero Energy Ready Home: Near Zero Maine Home II, Vassalboro...  

Energy Savers [EERE]

an R-20 insulated slab, R-70 cellulose in the attic, extensive air sealing, a mini-split heat pump, an heat recovery ventilator, solar water heating, LED lighting, 3.9 kWh PV, and...

407

Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs  

E-Print Network [OSTI]

top graph) as a percent of the total average energy usage ofgraph) as a percentage of each hour’s average energy usagegraph: first, kWh savings; second, normalized savings as a percent of the total average energy usage

Todd, Annika

2014-01-01T23:59:59.000Z

408

Exemption from Wholesale Energy Transaction Tax (Montana)  

Broader source: Energy.gov [DOE]

Electricity from wind generation on state lands is exempt from the wholesale energy transaction tax of $0.00015/kWh transmitted. Electricity from any source, including renewables, that is generated...

409

Development of the Supply Chain Optimization and Planning for the Environment (SCOPE) Tool - Applied to Solar Energy  

E-Print Network [OSTI]

USA) Panel (Germany) Panel (China) indicates the number of years a technology must produce electricity,Electricity (kg-CO2/kWh) Circularity Production Distribution Circularity Production Germany Hungary Italy Finland Spain USA

Reich-Weiser, Corinne; Fletcher, Tristan; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

410

Conservation screening curves to compare efficiency investments to power plants: Applications to commercial sector conservation programs  

E-Print Network [OSTI]

per delivered kWh. References EPRI, Electric Power ResearchAssessment Guide: Vol. 1: Electricity Supply-1986. EPRI.EPRI P-4463-SR. December 1986. Kahn, Edward. 1988. Electric

Koomey, Jonathan; Rosenfeld, Arthur H.; Gadgil, Ashok J.

2008-01-01T23:59:59.000Z

411

China Energy Databook -- User Guide and Documentation, Version 7.0  

E-Print Network [OSTI]

on average coal consumption in power generation in the samePrice of Coal used for Power Generation Source: State400 g of coal per kWh (43-46% gross generation efficiency),

Fridley, Ed., David

2008-01-01T23:59:59.000Z

412

2012 ENVIRONMENTAL PERFORMANCE INDEX 61 Appendix I: Indicator Profiles  

E-Print Network [OSTI]

emissions per electricity generation CO2KWH Ecosystem Vitality Climate change Renewable electricity RENEW if it is private or shared (but not public) and if hygienically separates human excreta

Columbia University

413

Renewable Resource Integration Project - Scoping Study of Strategic Transmission, Operations, and Reliability Issues  

E-Print Network [OSTI]

production level from small hydro as recorded in 2006.  kWH Geothermal Biomass Small Hydro 830 est Wind Solar TotalRPS Geothermal Biomass Small Hydro 830 est Wind Solar Total

Budhraja, Vikram

2008-01-01T23:59:59.000Z

414

Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...  

Office of Environmental Management (EM)

energy generation by driving the cost towards 0.06kWh through the use of thermochemical energy storage (TCES). The project uses inexpensive, safe, and non-corrosive...

415

2009 Template  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

applications One of three deployment options for the demo system, shown in relation to diesel genset and balance of system. 3 kW 5 kWh Flywheel Engineering, Operations &...

416

E-Print Network 3.0 - arterial-end tidal carbon Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

kWh range. Typical cost ranges include: Tidal generation - between 16 and 38pkWh Offshore wind - between 15... account of multiple factors for each generation type...

417

2011 Wind Technologies Market Report  

E-Print Network [OSTI]

WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

Bolinger, Mark

2013-01-01T23:59:59.000Z

418

2009 Wind Technologies Market Report  

E-Print Network [OSTI]

Texas, May 24, 2010. MISO. 2010. Dispatchable Intermittentand Windlogics Inc. (2006) [MN-MISO]; Puget Sound Energy (ITC kW kWh LADWP LIBOR MISO American Wind Energy Association

Wiser, Ryan

2010-01-01T23:59:59.000Z

419

2010 Wind Technologies Market Report  

E-Print Network [OSTI]

WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

Wiser, Ryan

2012-01-01T23:59:59.000Z

420

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

10 B. Conversion Factors andfinal energy using a conversion factor of 0.0001229 kWh/tonto primary energy using a conversion factor of 0.000404 kWh/

Price, Lynn

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Iron and Steel Industry in China  

E-Print Network [OSTI]

4 2.2. Conversion Factors anda primary energy conversion factor of 0.404 kgce/ kWh was2005; and final energy conversion factor of 0.1228 kgce/kWh

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

422

November 2012 Key Performance Indicator (KPI): Energy Consumption  

E-Print Network [OSTI]

and district heating scheme* data. Year Energy Consumption (KWh) Percentage Change 2005/06 65,916,243 N/A 2006 buildings are connected to the Nottingham District Heating Scheme. This service meets all the heating

Evans, Paul

423

Denver Public Schools Get Solar Energy System | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Kevin Craft What are the key facts? Local company adds five full-time jobs to support solar panel project. Solar panels are estimated to generate 1,640,457 kWh of electricity...

424

Integrated System Transmission and Ancillary Services Rate Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Rate 10 4.14 MillsKWh (L5 * 1000) 730 hours per month 7 RATE FOR SCHEDULING, SYSTEM CONTROL AND DISPATCH SERVICE FOR 2014 A. Fixed Charge Rate 22.770% (1)...

425

Integrated System Transmission and Ancillary Services Rate Calculation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Rate 10 4.00 MillsKWh (L5 * 1000) 730 hours per month 7 RATE FOR SCHEDULING, SYSTEM CONTROL AND DISPATCH SERVICE FOR 2015 A. Fixed Charge Rate 21.652% (1)...

426

Refrigerator Efficiency in Ghana: Tailoring an appliance market transformation program design for Africa  

E-Print Network [OSTI]

in the residential electricity sector in Ghana. Althoughprice of electricity for the residential sector is zero forprice of electricity for the commercial sector is $0.093/kWh

Ben Hagan, Essel; Van Buskirk, Robert; Ofosu-Ahenkorah, Alfred; McNeil, Michael A.

2006-01-01T23:59:59.000Z

427

Study of Energy and Demand Savings on a High Efficiency Hydraulic Pump System with Infinite Turn Down Technology (ITDT)  

E-Print Network [OSTI]

Detailed field measurement and verification of electrical energy (kWh) and demand (kW) savings is conducted on an injection molding machine used in typical plastic manufacturing facility retrofitted with a high efficiency hydraulic pump system...

Sfeir, R. A.; Kanungo, A.; Liou, S.

2005-01-01T23:59:59.000Z

428

Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

kWh (intermittent, 22% capacity factor on electrolyzer) Renewable pipeline quality biogas delivered to station via short pipeline (5-12 miles) 20-40MMBTU (CEC & USDA studies)...

429

PublicationsmailagreementNo.40014024 DECEMBER 2011  

E-Print Network [OSTI]

will be turned off where possible. Last year these strategies cut UVic's electrical consumption by 170,000 kwh for submitting Great Moments is Jan. 20 The university is currently collecting submissions online of historical

Pedersen, Tom

430

Implementation of electric vehicle system based on solar energy in Singapore assessment of flow batteries for energy storage  

E-Print Network [OSTI]

For large-scale energy storage application, flow battery has the advantages of decoupled power and energy management, extended life cycles and relatively low cost of unit energy output ($/kWh). In this thesis, an overview ...

Chen, Yaliang

2009-01-01T23:59:59.000Z

431

New Braunfels Utilities- Residential Solar Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

New Braunfels Utilities offers a rebate for residential customers who purchase and install solar water heating systems on eligible homes. A rebate of the equivalent of $0.265 per kWh is available...

432

Enhancing Resource Sustainability by Transforming Urban and Suburban Transportation  

E-Print Network [OSTI]

battery electric LLM will have about the same life cycle costBattery contribution to retail cost (€) Average maintenance cost (€/yr) Energy cost (€/l or €/kWh) (a) Total life cycle cost (

Delucchi, Mark

2009-01-01T23:59:59.000Z

433

California's Energy Future - The View to 2050  

E-Print Network [OSTI]

gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

2011-01-01T23:59:59.000Z

434

Calendar Year 2007 Program Benefits for U.S. EPA Energy Star Labeled Products: Expanded Methodology  

E-Print Network [OSTI]

$/MBtu) Electric Heat Rate (Btu/kWh) kWh = kilowatthour; TWh= terawatthour; MBtu = Million Btu; MtC = Metric tons ofon heavy load. Idle Rate (Btu/h) Table 6-9. Energy Star

Sanchez, Marla

2010-01-01T23:59:59.000Z

435

California’s Energy Future: The View to 2050 - Summary Report  

E-Print Network [OSTI]

gge) (kg H 2 ) (million Btu) tons) Electricity (kWh) GaseousH 2 ) Thermal (million Btu) Biomass (dry tons) Electricity (2 (MtH 2 ). Thermal (million Btu, TBtu): One million British

Yang, Christopher

2011-01-01T23:59:59.000Z

436

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network [OSTI]

per kWh), but that CO2 emissions from hydropower plantswill be less than CO2 emissions from fossil-fuel plants.kg/ha) 2. Difference in CO2 emissions vs. control plot (kg/

Delucchi, Mark

1997-01-01T23:59:59.000Z

437

Testing and evaluation of advanced lead-acid batteries for utility load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for utility load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep discharge cycles. This paper describes results obtained to date from the test program. Parametric test results and general performance observations for these batteries are reported.

Miller, J.F.; Corp, D.O.; Hayes, E.R.; Hornstra, F.; Yao, N.P.

1983-01-01T23:59:59.000Z

438

Testing and evaluation of advanced lead-acid batteries for utility load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for utility load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep discharge cycles. This paper describes results obtained to date from the test program. Parametric test results and general performance observations for these batteries are reported.

Miller, J.F.; Corp, D.O.; Hayes, E.R.; Hornstra, F.; Yao, N.P.

1983-08-01T23:59:59.000Z

439

Electric Currents Electric Current  

E-Print Network [OSTI]

;Problem 3: At $0.095/kWh, what does it cost to leave a 25W porch light on day and night for a year = 219000 Watt- hour = 219kWh. So, total cost = 219 x$0.095 = $20.8 #12;Problem 4: A 100 W light bulb has of charge per unit time: = . Unit of current: Ampere (A). The purpose of a battery is to produce

Yu, Jaehoon

440

Mesures d'estalvi energtic Introducci  

E-Print Network [OSTI]

reducció de cost es deu a la contractació de l'energia elèctrica per subhasta electrònica per a tots els): Any Electricitat * Electricitat kWh Gas Gas kWh Aigua Aigua m2 2008 3.595.493 33.647.244 789.547 17 immediat Climatització La temperatura de consigna d'equips de climatització per a espais interiors ha de

Politècnica de Catalunya, Universitat

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

China's March on the 21st Century  

E-Print Network [OSTI]

,523/3,299 5,250/10,581 25,028/43,676 0 1 2 3 4 5 6 7 8 Oil Natural Gas Electricity Nuclear Electricity Coal CO/day (oil); trillion cu feet (natural gas); billion kWh (electricity); billion kWh (nuclear electricity, this economic expansion has been accompanied by a corresponding surge in energy consumption. China beca

Deutch, John

442

2012 Site Environmental Report Brookhaven National Laboratory  

E-Print Network [OSTI]

­ Waste Generation #12;Chapter 2 ­ Energy Management & Conservation 2012 Statistics 278 million kilowatt lbs. of industrial, sanitary, hazardous, and rad waste Funds invested in FY 2012 = $13,500 8 proposals submitted, 3 funded Annual cost savings ~ $179,000 from new projects Average payback ~ 1 month

Johnson, Peter D.

443

Improvement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W. Cameron  

E-Print Network [OSTI]

. Earth Simulator requires 18 megawatts of power. Petaflop systems may require 100 megawatts of power[2], nearly the output of a small power plant (300 megawatts). At $100 per megawatt ($.10 per kilowatt), peakImprovement of Power-Performance Efficiency for High-End Computing Rong Ge, Xizhou Feng, Kirk W

Freeh, Vincent

444

H222c Introduction to Energy & Environment: Humans & Nature P. B. Rhines  

E-Print Network [OSTI]

Joules/year. With 312 million people our per capita energy consumption is 10.2 kilowatts, or 5.6 times consumption per person, including all the familiar energy sources. (The USCB estimates that the world 1020 Joules per year currently. If words are easy to remember this is 400 exaJoules. With about 7

445

JOURNALDE PHYSIQUEIV ColloqueC7, suppl6ment au Journal de Physique 111,Vol. 1, dhmbre 1991  

E-Print Network [OSTI]

system (figure I)consists o f a bubble column singlet oxygen generator, a water vapor cold trap are being conducted on a high power chemical oxygen iodine laser. Optical diagnostics were developed t o power o f at least one kilowatt i s expected. 1 - Introduction The chemical oxygen iodine laser (COIL

Boyer, Edmond

446

FEMP Webcast: O&M Best Practices for Small-Scale PV Systems  

Broader source: Energy.gov [DOE]

Hosted by the Federal Energy Management Program (FEMP), this seminar covers operations and maintenance (O&M) best practices for photovoltaic (PV) systems of 100 kilowatt or less, including planning for a PV O&M scope of work and maintenance procedures to keep the system operating at optimal capacity.

447

CX-006536: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Development and Demonstration of a New Generation High Efficiency 1-10 Kilowatt Stationary Fuel Cell SystemCX(s) Applied: A9, B3.6, B5.1Date: 08/15/2011Location(s): CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

448

Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells  

E-Print Network [OSTI]

1 Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells Keith A SpitznagelKeith A Spitznagel Senior VP Buildings & Facilities · 5 Kilowatts to Megawatts Speciality vehicles & Material handling · 1 to 50

449

U.S.U.S. Federal Agency Purchasing ManagersFederal Agency Purchasing Managers Fuel Cell Systems for Portable, Backup and UPSFuel Cell Systems for Portable, Backup and UPS  

E-Print Network [OSTI]

U.S.U.S. Federal Agency Purchasing ManagersFederal Agency Purchasing Managers Fuel Cell Systems, remote, aux. power Buildings & Facilities · 100 Kilowatts to · Primary power, critica Speciality vehicles applications world-wide. Central Oregon business, 68 Employees World class energy technology company focused

450

SusLabNWE: Integrating qualitative and quantitative data to understand people’s everyday energy behavior  

E-Print Network [OSTI]

design. Kybernetes, 36(9), 1301-1317 E.ON (undated). ‘What’sa (kilo)Watt? ’ Coventry: E.ON UK. Fell, D. , King, G. (or even a boy band. ” (E.ON, undated) Van Dam et al (2010)

Lockton, Dan; Bowden, Flora; Greene, Catherine; Brass, Clare; Gheerawo, Rama

2013-01-01T23:59:59.000Z

451

International Business Machines Corporation  

E-Print Network [OSTI]

grown to approximately 2.93 million sq. ft. with another 300,000 sq. ft. addition to be under construction within the next three months. The facility's present contract level is 24,000 kilowatts but their efforts have reduced their demand continuously...

Gumula, M. G.

452

THI SAFETY SYSTEM Christophe Jamet, Thierry Andr, Pascal Anger, J.L. Baelde,  

E-Print Network [OSTI]

Abstract THI MODES For several years, GANIL has been allowed to reach a maximum beam power of six kilowatts). The "surveillance" mode requires a safety system to protect equipment against beam losses. Inside cyclotrons measure beam-loss currents at the input and output of dipoles. Current transformers are used for beam

Boyer, Edmond

453

Preliminary draft research topics subject to revision prior to a solicitation being issued May 18, 2007  

E-Print Network [OSTI]

, 2007 FUEL CELL MANUFACTURING R & D Presently, Polymer Electrolyte Membrane (PEM) fuel cell stacks the potential to reduce the component count of a stack and allow alternative, lower cost approaches to cell are fabricated at low volume, and the costs of these stacks range from $3,000 to $5,500 per kilowatt (kW) 1

454

Indoor Lighting Overview Page 5-1 2008 Nonresidential Compliance Manual August 2009  

E-Print Network [OSTI]

Compliance Manual August 2009 5.1 Overview The primary mechanism for regulating indoor lighting energy under building's energy consumption, including lighting power, meets the energy budget. The performance approach lighting applications. Indoor lighting is one of the single largest consumers of energy (kilowatt

455

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

VALIDATION OF A 25 KILOWATT DUAL SHELL STIRLING ENGINE APRIL 2009 CEC5002009061 Prepared for: California · Transportation Proof of Concept and Test Validation of a 25 kW Dualshell Stirling Engine final report for the 25kW Dualshell Stirling Engine Project (Contract Number 50004017) conducted by ADI Thermal Power

456

3Water on Planetary Surfaces Space is very cold!  

E-Print Network [OSTI]

incandescent bulb consume if left on for 1 hour? Problem 2: A house consumes about 3,000 kilowatts in one hour, in Joules, does a 100 watt incandescent bulb consume if left on for 1 hour? Answer: 100 watts is the same

457

UNM engineering s p r i N g 2 0 0 6  

E-Print Network [OSTI]

't new at all. Fuel cells, which use electrochemical processes to turn chemical energy in hydrogen gas their success in an actual fuel cell environment. Three Researchers, Three Approaches The catalyst, which from the grid--with a fuel cell, you'd pay somewhere between $1--$10 per kilowatt. It's a reasonable

New Mexico, University of

458

CEC-500-2010-FS-014 New Engine Technology for  

E-Print Network [OSTI]

technology for CHP (Image credit: Tecogen, Inc.) The Issue Small-scale combined heat and power (CHP) systems difficulty meeting the California's 2007 CHP emission standards. These inefficient engines also cause under-effective CHP systems 75 kilowatt (kW) are needed to address significant market populations that have limited

459

Minnesota Power- Solar-Electric (PV) Rebate Program  

Broader source: Energy.gov [DOE]

Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

460

The inverter is a major component of photovoltaic (PV) systems either autonomous or grid connected. It affects the  

E-Print Network [OSTI]

and a variety of photovoltaic modules. The PV systems range in size from 2.5 to 3.6 kilowatts. The purposeABSTRACT The inverter is a major component of photovoltaic (PV) systems either autonomous or grid. INTRODUCTION For any grid tied photovoltaic (PV) system, the inverter is the essential piece of equipment

Oregon, University of

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings  

E-Print Network [OSTI]

to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

Paris-Sud XI, Université de

462

High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading  

E-Print Network [OSTI]

: the catalyst of a fuel cell can cost no more than 5/3 per kilowatt [1]. If the catalyst is platinum (~40 g-1High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading M. Mougenot1, 2 potential for the fuel cell technology to overcome the upcoming energy and resources issues in our society

Paris-Sud XI, Université de

463

CX-004522: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Operation of Grid-tied 5 Kilowatt Direct Current Solar Array to Develop Laboratory Experiments for Solar Photovoltaic Energy System Courses Date: 11/14/2010Location(s): TexasOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

464

The Oregon Coast Book, 201112 Edition 123 Check Web site for updates: hmsc.oregonstate.edu/visitor/oregon-coast-quests  

E-Print Network [OSTI]

. These panels demonstrate that solar energy is viable on the coast though it's not always sunny. HMSC by these solar panels? The answer is in the Quest Box at the end of your journey! Sustainability "The ability.oregonstate.edu/visitor/oregon-coast-quests In front of the Visitor Center a patio lies outside. Find panels facing skyward. kilowatts they provide

Wright, Dawn Jeannine

465

Fan Energy Savings Decisions  

E-Print Network [OSTI]

Axial fans are used for thousands of industrial applications consuming millions of kilowatts daily. The decision that saves dollars is to either automatically change fan speed or change blade pitch to save up to 50 percent of consumed power over a...

Monroe, R. C.

466

Controlling of grid connected photovoltaic lighting system with fuzzy logic  

SciTech Connect (OSTI)

In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

Saglam, Safak; Ekren, Nazmi; Erdal, Hasan [Technical Education Faculty, Marmara University, Istanbul 34722 (Turkey)

2010-02-15T23:59:59.000Z

467

Performance of advanced lead-acid batteries for load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep-discharge cycles. This paper presents the results of performance and life tests obtained to date. Battery capacities and efficiencies are shown as a function of discharge rate. The status of ongoing accelerated life-cycle tests being conducted at 50/sup 0/C and 60/sup 0/C are presented.

Miller, J.F.; Gay, E.C.; Hornstra, G.F.; Yao, N.P.

1984-10-01T23:59:59.000Z

468

Performance of advanced lead-acid batteries for load-leveling applications  

SciTech Connect (OSTI)

Testing and evaluation of advanced lead-acid batteries developed by Exide for load-leveling applications have been conducted at Argonne National Laboratory's National Battery Test Laboratory since April 1982. These batteries (36-kWh and 18-kWh modules) have a projected life of greater than 4000 deep-discharge cycles. This paper presents the results of performance and life tests obtained to date. Battery capacities and efficiencies are shown as a function of discharge rate. The status of ongoing accelerated life-cycle tests being conducted at 50/sup 0/C and 60/sup 0/C are presented.

Miller, J.F.; Gay, E.C.; Hornstra, F.; Yao, N.P.

1984-01-01T23:59:59.000Z

469

Study to establish cost projections for production of redox chemicals  

SciTech Connect (OSTI)

A cost study of four proposed manufacturing processes for redox chemicals for the NASA REDOX Energy Storage System yielded favorable selling prices in the range $0.99 to $1.91/kg of chromic chloride, anhydrous basis, including ferrous chloride. The prices corresponded to specific energy storage costs from under $9 to $17/kWh. A refined and expanded cost analysis of the most favored process yielded a price estimate corresponding to a storage cost of $11/kWh. The findings supported the potential economic viability of the NASA REDOX system.

Walther, J.F.; Greco, C.C.; Rusinko, R.N.; Wadsworth, A.L. III

1982-11-01T23:59:59.000Z

470

Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas  

E-Print Network [OSTI]

The annual energy cost savings were estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. 2009 IECC Cost Savings Report, p.ii January 2011 Energy Systems Laboratory, Texas A...). 3.2 Annual Total Energy Cost Similar trends were observed in the annual energy costs estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. Across the counties, the 2001...

Kim, H.; Baltazar, J. C.; Haberl, J.

471

responsARBOLidad FRENTE AL CAMBIO CLIMTICO  

E-Print Network [OSTI]

nuestras emisiones contaminantes, y podemos COMPENSAR estas emisiones plantando árboles y asumiendo así Unidas para el Medio Ambiente (PNUMA): #12;CALCULAR las emisiones de CO2: 1 Kwh. de electricidad = 356 g. en autobús = 30 g. CO2 emisiones que debemos REDUCIR y... #12;COMPENSAR plantando árboles: · Cada

Rey Benayas, José María

472

INTRODUCCIN En este manual de buenas prcticas se explicarn las diferentes medidas que se  

E-Print Network [OSTI]

de gas natural por su mayor rendimiento energético y las menores emisiones contaminantes. oWh eléctrico producido genera, además, unas emisiones de CO2 entre 2 y 2,5 veces mayores que un kWh térmico

Rey Juan Carlos, Universidad

473

CALiPER Report 21.3: Cost-Effectiveness of Linear (T8) LED Lamps  

SciTech Connect (OSTI)

Meeting performance expectations is important for driving adoption of linear LED lamps, but cost-effectiveness may be an overriding factor in many cases. Linear LED lamps cost more initially than fluorescent lamps, but energy and maintenance savings may mean that the life-cycle cost is lower. This report details a series of life-cycle cost simulations that compared a two-lamp troffer using LED lamps (38 W total power draw) or fluorescent lamps (51 W total power draw) over a 10-year study period. Variables included LED system cost ($40, $80, or $120), annual operating hours (2,000 hours or 4,000 hours), LED installation time (15 minutes or 30 minutes), and melded electricity rate ($0.06/kWh, $0.12/kWh, $0.18/kWh, or $0.24/kWh). A full factorial of simulations allows users to interpolate between these values to aid in making rough estimates of economic feasibility for their own projects. In general, while their initial cost premium remains high, linear LED lamps are more likely to be cost-effective when electric utility rates are higher than average and hours of operation are long, and if their installation time is shorter.

Miller, Naomi J.; Perrin, Tess E.; Royer, Michael P.

2014-05-27T23:59:59.000Z

474

Retrofit Savings for Brazos County  

E-Print Network [OSTI]

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a...

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

475

Rural electrification, climate change, and local economies: Facilitating communication in development policy and practice on Nicaragua's Atlantic Coast  

E-Print Network [OSTI]

day is the resulting  load following the implementation of 408 kWh/day   Load following installation: 293 kWh/day  kWh/293 kWh/day   Load following installation: 243 kWh/day  

Casillas, Christian E.

2012-01-01T23:59:59.000Z

476

Feature Article From Intermountain West Climate Summary, March 2012 Intermountain West Climate Summary  

E-Print Network [OSTI]

-cooled concentrating solar plants in California and Nevada have run into opposition, driving them toward dry cooling that several thousand MW of electrical capacity might go offline if the drought persists into spring of 2012. Thermal solar plants use as much water as a coal plant per kWh, but wind power uses little to no water. So

Neff, Jason

477

STEWARDSHIP MAINTAINING NATURAL RICHES  

E-Print Network [OSTI]

;Outstanding Results 5 Energy Conservation: Saved 240 Million KWH over last fifteen years. Green BuildingLAND STEWARDSHIP MAINTAINING NATURAL RICHES TRANSPORTATION GOING THE EXTRA MILE GREEN BUILDING SHOWCASING INNOVATION WATER CONSERVING PRESCIOUS RESOURCES ENERGY MOVING TO A BRIGHTER FUTURE WASTE REDUCING

Ford, James

478

Validation of an Integrated System for a Hydrogen-Fueled Power Park  

E-Print Network [OSTI]

? · Electrons Lowest Cost ­ run electric wires vs. hydrogen pipe · Electrons ($50K), Protons ($100k) ­ Combined Heat and Power Has the Potential to Lower Power Cost by ~$0.01/kWh · CHP Requires Reformer and Fuel Feedstock ­ Potential Uses of PEM in Distributed Power Applications · Hydrogen Pipeline or Low Cost Hydrogen

479

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

kW of PV, a 53 kWh battery bank, and a 5 kW diesel genset.kW of PV, and an 880 Ah battery bank. Other projects includeand a 100 kW lead-acid battery bank. Seven Hachinohe City

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

480

Microgrids: An emerging paradigm for meeting building electricity and heat requirements efficiently and with appropriate energy quality  

E-Print Network [OSTI]

composed of 10 kW of PV, a 53 kWh battery bank, and a 5 kWkW CHP plant, 35 kW of PV, and an 880 Ah battery bank. OtherPV and wind turbines, five 80 kW biogas engines, a 250 kW MCFC, and 100 kW of battery

Marnay, Chris; Firestone, Ryan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "kilowatt kwh kilowatt-hour" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dean's Faculty Meeting 5/7/13 UHM Total $  

E-Print Network [OSTI]

penetration PV · Smart Grid applications 1 MW / 250 kWh fast response Lithium ion Titanate battery Rick scientific analyses. Don Thomas Nicole Lautze #12;Battery Energy Storage for Generation Smoothing & Frequency Regulation ·Testing and evaluation of emerging battery technologies (integrated testing from laboratory

Wang, Yuqing

482

Distributed Energy Resource Optimization Using a Software as Service (SaaS) Approach at the University of California, Davis Campus  

E-Print Network [OSTI]

kW) Flow Battery Energy Installed (kWh) PV Installed (kW)input to Flow Battery Electricity Generation f rom PV TotalPV array with a rated peak power of 326.7 kW as well as a flow battery

Michael, Stadler

2011-01-01T23:59:59.000Z

483

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network [OSTI]

Table 1. Energy and carbon intensity values for conventionalin “hybrid mode” kWh/mi Fuel Carbon Intensity (C) gCO 2 /ggegCO 2 /kWh Vehicle Carbon Intensity (ExC) gCO 2 /mi BEVs /

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

484

Estimating the manufacturing cost of purely organic solar cells Joseph Kalowekamo 1  

E-Print Network [OSTI]

to a levelized cost of electricity (LEC) of between 49¢ and 85¢/kWh. In order to achieve a more competitive COE that into a levelized electricity cost (LEC). We find that there is a great deal of uncertainty about the capital costs., Estimating the manufacturing cost of purely organic solar cells, Sol. Energy (2009), doi:10.1016/j

Massachusetts at Amherst, University of

485

Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks Frank Y. Fan1  

E-Print Network [OSTI]

. Lowering the cost of stored energy below ~$100/kWh at system level remains a challenge, however2,3 . Many of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both to decouple stored energy (the tanks) from power (the stack), inherent scalability, and potentially low cost1

486

DISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

-scale problems such as energy demand, pollution, and environment safety. The cost ($/kWh) is the primaryDISSERTATION ANALYSIS OF IMPACT OF NON-UNIFORMITIES ON THIN-FILM SOLAR CELLS AND MODULES WITH 2-D-FILM SOLAR CELLS AND MODULES WITH 2-D SIMULATIONS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS

Sites, James R.

487

OAKRIDGENATIONALLABORATORY MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY  

E-Print Network [OSTI]

with solar photovoltaic power production at times feed electricity to the grid when TVA's cost owner a premium rate of $0.15/kWh for all the solar power these houses can produce. Under the Green an airtight envelope (~1 air change per hour at 50 Pascal) of structural insulated panels (SIP), which

Oak Ridge National Laboratory

488

CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES  

E-Print Network [OSTI]

overall efficiency and a power-to-heat ratio of 0.66. Thisfrom boiler based on Power/Heat of 0.607 MBtu/kWh Energywith 70% efficiency ; Power/Heat = 0.66 kWh MBtu/kWh Overall

Xu, T.

2011-01-01T23:59:59.000Z

489

Park Load Reduction by Preconditioning of Buildings at Night  

E-Print Network [OSTI]

arounde50%. The local utility charges approximately p - 10 $/kWe per month for demand and pc - 0.05 $$?h and Pw - 0.07 $/kwh for energy, off and on $eak respectively - nihbers that are representative. If pc/Pw were greater than r), night cooling...

Rabl, A.; Norford, L. K.

1988-01-01T23:59:59.000Z

490

Can migrogrids make a major contribution to UK energy supply ?  

E-Print Network [OSTI]

Working Paper No. 70 March 2005 Manuscript to appear in Renewable and Sustainable Energy Reviews #12;ii energy balance on a yearly basis if supplemented by energy storage of 2.7kWh per household. We findCan migrogrids make a major contribution to UK energy supply ? Suleiman Abu-Sharkh, Rachel Li, Tom

Watson, Andrew

491

Energy Systems Engineering 1 Clean Coal Technologies  

E-Print Network [OSTI]

Energy Systems Engineering 1 Clean Coal Technologies Presentation at BARC 4th December 2007 #12/kWh) 0.14 0.03 0.6 #12;Energy Systems Engineering 9 Status of Advanced Coal Technologies Types of advanced coal technologies Supercritical Pulverised Combustion Circulating Fluidised Bed Combustion (CFBC

Banerjee, Rangan

492

Economic and Conservation Evaluation of Capital Renovation Projects: Hidalgo County Irrigation District No. 2 (San Juan) - Rehabilitation of Alamo Main Canal - Final  

E-Print Network [OSTI]

the total project are estimated, using amortization procedures, to be 876 ac-ft of water per year and 331,389,647 BTUs (97,125 kwh) of energy per year. The calculated economic and financial cost of water savings is estimated to be $201.50 per ac...

Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.

493

2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim710 wileyonlinelibrary.com  

E-Print Network [OSTI]

, overestimates the amount of Li required per kWh of stored energy, it indi- cates that in the long term the cost to renewable energy production, high energy density becomes less critical. Moreover, the abundance and low cost-scale applications, though at this point, the cost of Li is not a large contribution to the cost of LIBs. But most

Ceder, Gerbrand

494

nature photonics | VOL 6 | MARCH 2012 | www.nature.com/naturephotonics 133 focus | commentary  

E-Print Network [OSTI]

this requirement: if solar energy harvesting is achieved at an installed cost of $1 per watt- peak (Wp), then it will produce electricity over its lifetime at an equivalent cost of around $0.05 kWh­1 , which is compellingly equation provides a breakdown of the overall cost per watt- peak, given that the Sun provides a peak

495

Paper Presented at Power Engineering Systems 2005 Conference, San Francisco, CA 1 June 12-16, 2005  

E-Print Network [OSTI]

they were able to earn a pre-specified credit per kWh for each unit of electricity less than their benchmark that minimizes total system cost is based upon the actual cost of generation (e.g. perfectly regulated or perfectly competitive markets). But when that least-cost dispatch is based upon offers from deregulated

496

Solid State Communications 150 (2010) 561563 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

can cost upwards of several dollars per installed watt, with a per kWh cost several times higher than of hydrogenated amorphous silicon (aSi:H), have the potential to cut costs because much less material is required the complexity and the cost of manufacturing, and Corresponding author at: University of California, Berkeley

Zettl, Alex

2010-01-01T23:59:59.000Z

497

Exploiting Performance Counters to Predict and Improve Energy Performance of HPC Systems  

E-Print Network [OSTI]

and cooling cost of about $3.5 million per year, which is significant. Beyond the operating cost, some data, Tianhe-1A consumes 4.04 Megawatts of electricity [1]; a simple calculation at $0.10/KWh yields a powering

Boyer, Edmond

498

Georgia Institute of Technology | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University  

E-Print Network [OSTI]

.152 / kWh #12;Today TB3: January 13, 2010NSF CCEFP Site Visit Cost comparison - 2 MN cost calculation, cost. http://www.google.org/recharge/ #12;Today TB3: January 13, 2010NSF CCEFP Site Visit GFleet fuel sources #12;Today TB3: January 13, 2010NSF CCEFP Site Visit Emission ­ CO2 Vehicle emission per

Li, Perry Y.

499

The Digital Divide: Implications on the Forest Products  

E-Print Network [OSTI]

.htm #12;Connectivity Country Inhabitants Per Telephone Consume of Electricity Per Person In KWh China 60 areas · Limited purchasing power · Limited information flow · Paper-based documentation · High cost · 180 Million global users · Only 14% users from developing countries · Telephone density: ­ 52.3 per

500

RESOURCE April/May 2009 31 ... with no fertilizer or tillage input and that produces no  

E-Print Network [OSTI]

for drivers in the United States. The cost per mile would be one-third as much for electricity as for gasoline (at ten cents per kWh and three dollars per gallon). I have read that a capacity increase of 20 everywhere at the rate of a horsepower per square yard (1000 watts per square meter), and it's free. I think

Gilbert, Matthew