Sample records for kilometers temperature absolute

  1. Electron Cyclotron Emission Measurements on JET: Michelson Interferometer, New Absolute Calibration and Determination of Electron Temperature

    E-Print Network [OSTI]

    Electron Cyclotron Emission Measurements on JET: Michelson Interferometer, New Absolute Calibration and Determination of Electron Temperature

  2. E-Print Network 3.0 - absolute zero temperature Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Gases Group Collection: Physics 47 Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Summary: of...

  3. Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature

    E-Print Network [OSTI]

    Salvaggio, Carl

    of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal Abstract Determination of the internal temperature of a mechanical draft cooling tower (MDCT) from remotelyRadiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction

  4. Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27

    SciTech Connect (OSTI)

    Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

    1981-10-01T23:59:59.000Z

    This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

  5. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy

    E-Print Network [OSTI]

    Libbrecht, Kenneth G.

    A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m elements and thermoelectric modules to heat or cool in the 40 to 40 °C range. A schematic of our controller

  6. Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb and heat sink grease respectively). The dynamics of thermal effects is also presented. PACS 42.55.Xi (Diode-pumped in a diode-end-pumped Yb:YAG crystal, using a calibrated infrared camera, with a 60-µm spatial resolution

  7. Theoretical full power correction factors as related to changes in ambient temperature, pressure and absolute humidity for aircraft turbine engines

    E-Print Network [OSTI]

    Raphael, Michel Antoun

    1969-01-01T23:59:59.000Z

    IN AMBIENT TEMPERATURE, PRESSURF. AND ABSOLUTE HUMIDITY FOR AIRCRAFT TURBINE ENGINES (August 1969) Michael Antoun Raphael B. S. (Mechanical Engineering) Texas A&M University Directed by: Professor Stanley H, Lowy ABSTRACT Power losses in aircraft gas... rated at standard atmospheric conditions (i. e, ambient temperature 69 F 3'Fend atmospheric pressure 29. 92 in. Hg. dry) . Obviously this same turbine will not be exposed to such standard conditions; therefore we have a change in power directly...

  8. Decoherence at absolute zero

    E-Print Network [OSTI]

    Supurna Sinha

    2005-05-09T23:59:59.000Z

    We present an analytical study of the loss of quantum coherence at absolute zero. Our model consists of a harmonic oscillator coupled to an environment of harmonic oscillators at absolute zero. We find that for an Ohmic bath, the offdiagonal elements of the density matrix in the position representation decay as a power law in time at late times. This slow loss of coherence in the quantum domain is qualitatively different from the exponential decay observed in studies of high temperature environments.

  9. New experimental methodology, setup and LabView program for accurate absolute thermoelectric power and electrical resistivity measurements between 25 and 1600 K: Application to pure copper, platinum, tungsten, and nickel at very high temperatures

    SciTech Connect (OSTI)

    Abadlia, L.; Mayoufi, M. [Laboratoire de Chimie des Matériaux Inorganiques, Université Badji-Mokhtar Annaba, BP12, 23000 Annaba (Algeria); Gasser, F.; Khalouk, K.; Gasser, J. G., E-mail: jean-georges.gasser@univ-lorraine.fr [Laboratoire de Chimie et Physique - Approche Multi-échelle des Milieux Complexes (LCP-A2MC) Institut de Chimie, Physique et Matériaux, Université de Lorraine, 1 Boulevard Arago - 57078 Metz cedex 3 (France)

    2014-09-15T23:59:59.000Z

    In this paper we describe an experimental setup designed to measure simultaneously and very accurately the resistivity and the absolute thermoelectric power, also called absolute thermopower or absolute Seebeck coefficient, of solid and liquid conductors/semiconductors over a wide range of temperatures (room temperature to 1600 K in present work). A careful analysis of the existing experimental data allowed us to extend the absolute thermoelectric power scale of platinum to the range 0-1800 K with two new polynomial expressions. The experimental device is controlled by a LabView program. A detailed description of the accurate dynamic measurement methodology is given in this paper. We measure the absolute thermoelectric power and the electrical resistivity and deduce with a good accuracy the thermal conductivity using the relations between the three electronic transport coefficients, going beyond the classical Wiedemann-Franz law. We use this experimental setup and methodology to give new very accurate results for pure copper, platinum, and nickel especially at very high temperatures. But resistivity and absolute thermopower measurement can be more than an objective in itself. Resistivity characterizes the bulk of a material while absolute thermoelectric power characterizes the material at the point where the electrical contact is established with a couple of metallic elements (forming a thermocouple). In a forthcoming paper we will show that the measurement of resistivity and absolute thermoelectric power characterizes advantageously the (change of) phase, probably as well as DSC (if not better), since the change of phases can be easily followed during several hours/days at constant temperature.

  10. The Carnot efficiencybetween these temperatures is: This provides an absolute upper limit to the Rankine cycle effi-

    E-Print Network [OSTI]

    Liu, Y. A.

    to the Rankine cycle effi- ciency. Heat Absorbed from Stream 3 Power Produced by Steam Turbine Required Power a steam cycle alongsidethe gas turbine cycle. LITERATURE CITED Christodoulou,K., Diploma Thesis, N Output of Gas Turbine For the Gas Turbine Cycle Calculated for Case 2, Upper Exhaust Temperature T6

  11. absolutely calibrated effective: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    identical to the Sun, to set the absolute zero point of the effective temperature scale to within few degrees. Our newly calibrated, accurate and precise temperature...

  12. High Energy Neutrino Astronomy: Towards Kilometer-Scale Detectors

    E-Print Network [OSTI]

    F. Halzen

    2001-03-13T23:59:59.000Z

    Of all high-energy particles, only neutrinos can directly convey astronomical information from the edge of the universe---and from deep inside the most cataclysmic high-energy processes. Copiously produced in high-energy collisions, travelling at the velocity of light, and not deflected by magnetic fields, neutrinos meet the basic requirements for astronomy. Their unique advantage arises from a fundamental property: they are affected only by the weakest of nature's forces (but for gravity) and are therefore essentially unabsorbed as they travel cosmological distances between their origin and us. Many of the outstanding mysteries of astrophysics may be hidden from our sight at all wavelengths of the electromagnetic spectrum because of absorption by matter and radiation between us and the source. For example, the hot dense regions that form the central engines of stars and galaxies are opaque to photons. In other cases, such as supernova remnants, gamma ray bursters, and active galaxies, all of which may involve compact objects or black holes at their cores, the precise origin of the high-energy photons emerging from their surface regions is uncertain. Therefore, data obtained through a variety of observational windows---and especially through direct observations with neutrinos---may be of cardinal importance. In this talk, the scientific goals of high energy neutrino astronomy and the technical aspects of water and ice Cherenkov detectors are examined, and future experimental possibilities, including a kilometer-square deep ice neutrino telescope, are explored.

  13. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-05-15T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Absolute nuclear material assay

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2010-07-13T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  15. Absolute Biodiesel Potential Country Name

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume,234 0% 0% #12;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel;Absolute Biodiesel Potential Country Name Production Cost ($/liter) Potential Biodiesel Volume (liters

  16. Absolute CF{sub 2} density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas

    SciTech Connect (OSTI)

    Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei; Gong, Fa-Ping; Li, Xiao-Song; Zhu, Ai-Min [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Laboratory of Plasma Physical Chemistry, Dalian University of Technology, Dalian 116024 (China); Liu, Yong-Xin; Wang, You-Nian [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2014-10-15T23:59:59.000Z

    Broadband ultraviolet absorption spectroscopy has been used to determine the CF{sub 2} radical density in dual-frequency capacitively coupled CF{sub 4}/Ar plasmas, using the CF{sub 2} A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system of absorption spectrum. The rotational temperature of ground state CF{sub 2} and excited state CF was also estimated by using A{sup ~1}B{sub 1}?X{sup ~1}A{sub 1} system and B{sup 2}??X{sup 2}? system, respectively. The translational gas temperature was deduced from the Doppler width of the Ar{sup *}({sup 3}P{sub 2}) and Ar{sup *}({sup 3}P{sub 0}) metastable atoms absorption line by using the tunable diode laser absorption spectroscopy. The rotational temperatures of the excited state CF are about 100?K higher than those of ground state CF{sub 2}, and about 200?K higher than the translational gas temperatures. The dependences of the radical CF{sub 2} density, electron density, electron temperature, rotational temperature, and gas temperature on the high frequency power and pressure have been analyzed. Furthermore, the production and loss mechanisms of CF{sub 2} radical and the gas heating mechanisms have also been discussed.

  17. An absolute Johnson noise thermometer

    E-Print Network [OSTI]

    Luca Callegaro; Vincenzo D'Elia; Marco Pisani; Alessio Pollarolo

    2009-01-30T23:59:59.000Z

    We developed an absolute Johnson noise thermometer (JNT), an instrument to measure the thermodynamic temperature of a sensing resistor, with traceability to voltage, resistance and frequency quantities. The temperature is measured in energy units, and can be converted to SI units (kelvin) with the accepted value of the Boltzmann constant kb; or, conversely, it can be employed to perform measurements at the triple point of water, and obtain a determination of kb. The thermometer is composed of a correlation spectrum analyzer an a calibrated noise source, both constructed around commercial mixed-signal boards. The calibrator generates a pseudorandom noise, by digital synthesis and amplitude scaling with inductive voltage dividers; the signal spectrum is a frequency comb covering the measurement bandwidth. JNT measurements at room temperature are compatible with those of a standard platinum resistance thermometer within the combined uncertainty of 60 ppm. A path towards future improvements of JNT accuracy is also sketched.

  18. Modeling temporal variations of electrical resistivity associated with pore pressure change in a kilometer-scale

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (hautot@univ-brest.fr) [1] From 1995 to 1998 the natural electric field was monitored with an array of 20 role of fluids in the distortion of the induced electric fields. Electromagnetic methods could provide in a kilometer-scale natural system Sophie Hautot School of Geosciences, University of Edinburgh, Edinburgh, UK

  19. Measurement of the absolute \

    SciTech Connect (OSTI)

    Aunion, Jose Luis Alcaraz; /Barcelona, IFAE

    2010-07-01T23:59:59.000Z

    This thesis presents the measurement of the charged current quasi-elastic (CCQE) neutrino-nucleon cross section at neutrino energies around 1 GeV. This measurement has two main physical motivations. On one hand, the neutrino-nucleon interactions at few GeV is a region where existing old data are sparse and with low statistics. The current measurement populates low energy regions with higher statistics and precision than previous experiments. On the other hand, the CCQE interaction is the most useful interaction in neutrino oscillation experiments. The CCQE channel is used to measure the initial and final neutrino fluxes in order to determine the neutrino fraction that disappeared. The neutrino oscillation experiments work at low neutrino energies, so precise measurement of CCQE interactions are essential for flux measurements. The main goal of this thesis is to measure the CCQE absolute neutrino cross section from the SciBooNE data. The SciBar Booster Neutrino Experiment (SciBooNE) is a neutrino and anti-neutrino scattering off experiment. The neutrino energy spectrum works at energies around 1 GeV. SciBooNE was running from June 8th 2007 to August 18th 2008. In that period, the experiment collected a total of 2.65 x 10{sup 20} protons on target (POT). This thesis has used full data collection in neutrino mode 0.99 x 10{sup 20} POT. A CCQE selection cut has been performed, achieving around 70% pure CCQE sample. A fit method has been exclusively developed to determine the absolute CCQE cross section, presenting results in a neutrino energy range from 0.2 to 2 GeV. The results are compatible with the NEUT predictions. The SciBooNE measurement has been compared with both Carbon (MiniBoonE) and deuterium (ANL and BNL) target experiments, showing a good agreement in both cases.

  20. Square Kilometer Array Telescope - Precision Reference Frequency Synchronisation via 1f-2f Dissemination

    E-Print Network [OSTI]

    Wang, B; Gao, C; Bai, Y; Dong, J W; Wang, L J

    2015-01-01T23:59:59.000Z

    The Square Kilometer Array (SKA) is an international effort to build the world's largest radio telescope, with one square kilometer collecting area. Besides its ambitious scientific objectives, such as probing the cosmic dawn and cradle of life, SKA also demands several revolutionary technological breakthroughs, with ultra-high precision synchronisation of the frequency references for thousands of antennas being one of them. In this report, aimed at applications to SKA, we demonstrate a frequency reference synchronization and dissemination scheme with the phase noise compensation function placed at the client site. Hence, one central hub can be linked to a large number of client sites, forming a star-shaped topology. As a performance test, the 100 MHz reference signal from a Hydrogen maser clock is disseminated and recovered at two remote sites. Phase noise characteristics of the recovered reference frequency signal coincides with that of the hydrogen-maser source and satisfies SKA requirement.

  1. Absolute neutrino mass measurements

    SciTech Connect (OSTI)

    Wolf, Joachim [Karlsruhe Institute of Technology (KIT), IEKP, Postfach 3640, 76021 Karlsruhe (Germany)

    2011-10-06T23:59:59.000Z

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  2. Absolute cavity pyrgeometer

    DOE Patents [OSTI]

    Reda, Ibrahim

    2013-10-29T23:59:59.000Z

    Implementations of the present disclosure involve an apparatus and method to measure the long-wave irradiance of the atmosphere or long-wave source. The apparatus may involve a thermopile, a concentrator and temperature controller. The incoming long-wave irradiance may be reflected from the concentrator to a thermopile receiver located at the bottom of the concentrator to receive the reflected long-wave irradiance. In addition, the thermopile may be thermally connected to a temperature controller to control the device temperature. Through use of the apparatus, the long-wave irradiance of the atmosphere may be calculated from several measurements provided by the apparatus. In addition, the apparatus may provide an international standard of pyrgeometers' calibration that is traceable back to the International System of Units (SI) rather than to a blackbody atmospheric simulator.

  3. Absolute calibration of optical flats

    DOE Patents [OSTI]

    Sommargren, Gary E.

    2005-04-05T23:59:59.000Z

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  4. Absolute Motion and Gravitational Effects

    E-Print Network [OSTI]

    Cahill, R T

    2003-01-01T23:59:59.000Z

    The new Process Physics provides a new explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. An analysis of various experiments demonstrates that absolute motion relative to space has been observed experimentally by Michelson and Morley, Miller, Illingworth, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The in-flow also manifests turbulence and the experimental data confirms this as well, which amounts to the observation of a gravitational wave phenomena. The Einstein assumptions leading to the Special and General Theory of Relativity are shown to be falsified by the extensive experimental data. Contrary to the Einstein assumptions absolute motion is consistent with relativistic effects, which are caused by actual dynamical effects of absolute motion through the quantum foam, so that it is Lorentzian relativity that is seen to be essentially co...

  5. Absolute Motion and Gravitational Effects

    E-Print Network [OSTI]

    Reginald T Cahill

    2003-06-29T23:59:59.000Z

    The new Process Physics provides a new explanation of space as a quantum foam system in which gravity is an inhomogeneous flow of the quantum foam into matter. An analysis of various experiments demonstrates that absolute motion relative to space has been observed experimentally by Michelson and Morley, Miller, Illingworth, Torr and Kolen, and by DeWitte. The Dayton Miller and Roland DeWitte data also reveal the in-flow of space into matter which manifests as gravity. The in-flow also manifests turbulence and the experimental data confirms this as well, which amounts to the observation of a gravitational wave phenomena. The Einstein assumptions leading to the Special and General Theory of Relativity are shown to be falsified by the extensive experimental data. Contrary to the Einstein assumptions absolute motion is consistent with relativistic effects, which are caused by actual dynamical effects of absolute motion through the quantum foam, so that it is Lorentzian relativity that is seen to be essentially correct.

  6. 0 20 40 60 80 100 Miles 0 20 40 60 80 100 120 140 160 Kilometers

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    20 40 60 80 100 Miles 0 20 40 60 80 100 120 140 160 Kilometers UC Davis Water Management Research Group Aplication Efficiency: Dry Beans 2001 Developed as a cooperative project between University of California, Davis United States Geological Survey and California Department of Water Resources Map prepared

  7. Compressor performance, absolutely! M. R. Titchener

    E-Print Network [OSTI]

    Titchener, Mark R.

    Compressor performance, absolutely! M. R. Titchener Dept of CS, U. of Auck., N.Z. (Email: mark the absolute performance of existing string compressors may be measured. Kolmogorov (1958) recognised://tcode.auckland.ac.nz/~corpus has been used to evaluate the `absolute' performance of a series of popular compressors. The results

  8. Convective and absolute instabilities in eccentric Taylor

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Convective and absolute instabilities in eccentric Taylor Laboratoire de mécanique des fluides et d and absolute instabilities in Taylor-Couette-Poiseuille flow Benoît PIER Laboratoire de mécanique des fluides flow type often disrupt oil-well drilling By implementing a detailed instability analysis, the dynamics

  9. Absolute geopotential height system for Ethiopia 

    E-Print Network [OSTI]

    Bedada, Tullu Besha

    2010-01-01T23:59:59.000Z

    This study used airborne gravity data, the 2008 Earth Gravity Model (EGM08) and Shuttle Radar Topographic Mission (SRTM) digital elevation data in a ‘Remove-Compute-Restore’ process to determine absolute vertical reference ...

  10. Absolute vs. intensity-based emission caps

    E-Print Network [OSTI]

    Ellerman, A. Denny.

    Cap-and-trade systems limit emissions to some pre-specified absolute quantity. Intensity-based limits, that restrict emissions to some pre-specified rate relative to input or output, are much more widely used in environmental ...

  11. Emission trading with absolute and intensity caps

    E-Print Network [OSTI]

    Song, Jaemin

    2005-01-01T23:59:59.000Z

    The Kyoto Protocol introduced emission trading to help reduce the cost of compliances for the Annex B countries that have absolute caps. However, we need to expand the emission trading to cover developing countries in order ...

  12. Brownian motion at absolute zero

    E-Print Network [OSTI]

    Supurna Sinha; Rafael D. Sorkin

    2005-06-08T23:59:59.000Z

    We derive a general quantum formula giving the mean-square displacement of a diffusing particle as a function of time. Near {\\bf 0 K} we find a universal logarithmic behavior (valid for times longer than the relaxation time), and deviations from classical behavior can also be significant at larger values of time and temperature. Our derivation depends neither on the specific composition of the heat bath nor on the strength of the coupling between the bath and the particle. An experimental regime of microseconds and microdegrees Kelvin would elicit the pure logarithmic diffusion.

  13. absolute temperature monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advance Machian physics by maintaining that the heliocentric system must be replaced by Tycho Brahe's geocentric system. We show that while geocentrism relies on Mach's contention...

  14. absolute temperature mapping: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advance Machian physics by maintaining that the heliocentric system must be replaced by Tycho Brahe's geocentric system. We show that while geocentrism relies on Mach's contention...

  15. Absolute integrated intensities of vapor-phase hydrogen peroxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absolute integrated intensities of vapor-phase hydrogen peroxide (H202) in the mid-infrared at atmospheric pressure. Absolute integrated intensities of vapor-phase hydrogen...

  16. Organic Solar Cells: Absolute Measurement of Domain Composition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Solar Cells: Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in Solar Cells Organic Solar Cells: Absolute Measurement of...

  17. Quantum bath refrigeration towards absolute zero: unattainability principle challenged

    E-Print Network [OSTI]

    Michal Kolá?; David Gelbwaser-Klimovsky; Robert Alicki; Gershon Kurizki

    2012-08-05T23:59:59.000Z

    A minimal model of a quantum refrigerator (QR), i.e. a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards the absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons in strongly disordered media (fractons) or quantized spin-waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  18. A Model of Absolute Autonomy and Power: Toward Group Effects

    E-Print Network [OSTI]

    Hexmoor, Henry

    575 2420 fax:479 575 5339 Abstract. We present a model of absolute autonomy and power in agent systems present a model that approximates absolute autonomy and power in agent systems. This absolute sense1 A Model of Absolute Autonomy and Power: Toward Group Effects HENRY HEXMOOR Computer Science

  19. Multiverse Set Theory and Absolutely Undecidable Propositions

    E-Print Network [OSTI]

    Väänänen, Jouko

    Multiverse Set Theory and Absolutely Undecidable Propositions Jouko V¨a¨an¨anen University of Helsinki and University of Amsterdam Contents 1 Introduction 2 2 Background 4 3 The multiverse of sets 6 3.1 The one universe case . . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 The multiverse

  20. Absolute-magnitude distributions of supernovae

    SciTech Connect (OSTI)

    Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)

    2014-05-01T23:59:59.000Z

    The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.

  1. Absolute absorption spectroscopy based on molecule interferometry

    E-Print Network [OSTI]

    Stefan Nimmrichter; Klaus Hornberger; Hendrik Ulbricht; Markus Arndt

    2008-11-07T23:59:59.000Z

    We propose a new method to measure the absolute photon absorption cross section of neutral molecules in a molecular beam. It is independent of our knowledge of the particle beam density, nor does it rely on photo-induced fragmentation or ionization. The method is based on resolving the recoil resulting from photon absorption by means of near-field matter-wave interference, and it thus applies even to very dilute beams with low optical densities. Our discussion includes the possibility of internal state conversion as well as fluorescence. We assess the influence of various experimental uncertainties and show that the measurement of absolute absorption cross sections is conceivable with high precision and using existing technologies.

  2. Absolute instruments and perfect imaging in geometrical optics

    E-Print Network [OSTI]

    Tyc, Tomas

    Absolute instruments and perfect imaging in geometrical optics Tom´as Tyc, Lenka Herz symmetric absolute instruments that provide perfect imaging in the sense of geometrical optics. We derive to propose several new absolute instruments, in particular a lens providing a stigmatic image of an optically

  3. Absolute Calibration of the Auger Fluorescence Detectors

    E-Print Network [OSTI]

    P. Bauleo; J. Brack; L. Garrard; J. Harton; R. Knapik; R. Meyhandan; A. C. Rovero; A. Tamashiro; D. Warner; for the Auger Collaboration

    2005-07-14T23:59:59.000Z

    Absolute calibration of the Pierre Auger Observatory fluorescence detectors uses a light source at the telescope aperture. The technique accounts for the ombined effects of all detector components in a single measurement. The calibrated 2.5 m diameter light source fills the aperture, providing uniform illumination to each pixel. The known flux from the light source and the response of the acquisition system give the required calibration for each pixel. In the lab, light source uniformity is studied using CCD images and the intensity is measured relative to NIST-calibrated photodiodes. Overall uncertainties are presently 12%, and are dominated by systematics.

  4. Experiments for the absolute neutrino mass measurement

    E-Print Network [OSTI]

    Markus Steidl

    2009-06-02T23:59:59.000Z

    Experimental results and perspectives of different methods to measure the absolute mass scale of neutrinos are briefly reviewed. The mass sensitivities from cosmological observations, double beta decay searches and single beta decay spectroscopy differ in sensitivity and model dependance. Next generation experiments in the three fields reach the sensitivity for the lightest mass eigenstate of $m_1<0.2eV$, which will finally answer the question if neutrino mass eigenstates are degenerate. This sensitivity is also reached by the only model-independent approach of single beta decay (KATRIN experiment). For higher sensitivities on cost of model-dependance the neutrinoless double beta decay search and cosmological observation have to be applied. Here, in the next decade sensitivities are approached with the potential to test inverted hierarchy models.

  5. Absolute Maximal Entanglement and Quantum Secret Sharing

    E-Print Network [OSTI]

    Helwig, Wolfram; Riera, Arnau; Latorre, José I; Lo, Hoi-Kwong

    2012-01-01T23:59:59.000Z

    We study the existence of absolutely maximally entangled (AME) states in quantum mechanics and its applications to quantum information. AME states are characterized by being maximally entangled for all bipartitions of the system and exhibit genuine multipartite entanglement. With such states, we present a novel parallel teleportation protocol which teleports multiple quantum states between groups of senders and receivers. The notable features of this protocol are that (i) the partition into senders and receivers can be chosen after the state has been distributed, and (ii) one group has to perform joint quantum operations while the parties of the other group only have to act locally on their system. We also prove the equivalence between pure state quantum secret sharing schemes and AME states with an even number of parties. This equivalence implies the existence of AME states for an arbitrary number of parties based on known results about the existence of quantum secret sharing schemes.

  6. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Manoj K. (Pleasanton, CA); Snyderman, Neal J. (Berkeley, CA); Rowland, Mark S. (Alamo, CA)

    2012-06-05T23:59:59.000Z

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Power Challenges of Large Scale Research Infrastructures: the Square Kilometer Array and Solar Energy Integration; Towards a zero-carbon footprint next generation telescope

    E-Print Network [OSTI]

    Barbosa, Domingos; Ruiz, Valeriano; Silva, Manuel; Verdes-Montenegro, Lourdes; Santander-Vela, Juande; Maia, Dalmiro; Antón, Sonia; van Ardenne, Arnold; Vetter, Matthias; Kramer, Michael; Keller, Reinhard; Pereira, Nuno; Silva, Vitor

    2012-01-01T23:59:59.000Z

    The Square Kilometer Array (SKA) will be the largest Global science project of the next two decades. It will encompass a sensor network dedicated to radioastronomy, covering two continents. It will be constructed in remote areas of South Africa and Australia, spreading over 3000Km, in high solar irradiance latitudes. Solar Power supply is therefore an option to power supply the SKA and contribute to a zero carbon footprint next generation telescope. Here we outline the major characteristics of the SKA and some innovation approaches on thermal solar energy Integration with SKA prototypes.

  8. Sandia National Laboratories: high-precision absolute yaw encoder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-precision absolute yaw encoder Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events,...

  9. absolute neutrino mass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained in tritium beta decay experiments, cosmological observations and neutrinoless double-beta decay experiments. Carlo Giunti 2005-11-10 3 Absolute neutrino mass from...

  10. absolute neutrino masses: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    obtained in tritium beta decay experiments, cosmological observations and neutrinoless double-beta decay experiments. Carlo Giunti 2005-11-10 3 Absolute neutrino mass from...

  11. Absolute intensity calibration of the 32-channel heterodyne radiometer on experimental advanced superconducting tokamak

    SciTech Connect (OSTI)

    Liu, X.; Zhao, H. L.; Liu, Y., E-mail: liuyong@ipp.ac.cn; Li, E. Z.; Han, X.; Ti, A.; Hu, L. Q.; Zhang, X. D. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Domier, C. W.; Luhmann, N. C. [Department of Electrical and Computer Engineering, University of California at Davis, Davis, California 95616 (United States)

    2014-09-15T23:59:59.000Z

    This paper presents the results of the in situ absolute intensity calibration for the 32-channel heterodyne radiometer on the experimental advanced superconducting tokamak. The hot/cold load method is adopted, and the coherent averaging technique is employed to improve the signal to noise ratio. Measured spectra and electron temperature profiles are compared with those from an independent calibrated Michelson interferometer, and there is a relatively good agreement between the results from the two different systems.

  12. absolute gamma ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absolute gamma ray First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Absolute Branching Ratio of...

  13. Status of aeromagnetic survey coverage of Yucca Mountain and vicinity to a radius of about 140 kilometers, southwestern Nevada and southeastern California, 1992

    SciTech Connect (OSTI)

    Sikora, R.F.; Ponce, D.A.; Oliver, H.W.

    1993-12-31T23:59:59.000Z

    Fifty aeromagnetic surveys in the southwestern part of Nevada and the southeastern part of California have been evaluated to assess the quality and coverage of aeromagnetic data within 140 kilometers (km) of a potential nuclear waste repository at Yucca Mountain, Nevada. The compilation shows that all the study area is covered by aeromagnetic surveys, but in some areas, particularly in the Death Valley region, new surveys flown with closer flight line spacing and lower elevations than the existing coverage are needed. In addition, the California part of the study area needs to be analytically continued downward to 305 meters (m) above ground level to provide a consistent data set for interpretation of subsurface geologic structures.

  14. Measuring absolute infrared spectral radiance with correlated photons: new arrangements

    E-Print Network [OSTI]

    Migdall, Alan

    metrologia Measuring absolute infrared spectral radiance with correlated photons: new arrangements must be created in pairs, the VIS channel is also stimulated. In this Metrologia, 1998, 35, 295-300 295

  15. absolute efficiency calibration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging atmospheric...

  16. absolute radiometric calibration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging...

  17. absolute calibration site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging atmospheric...

  18. absolute intensity calibration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    good. This is used in a technique developed for the absolute calibration of ultra high energy cosmic ray fluorescence telescopes, and it can also be applied to imaging atmospheric...

  19. absolute solar transmission: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data were collected from Chang, Grace C. 7 January 1996 NREUfP-463-20619 Calibration of a Solar Absolute Renewable Energy Websites Summary: of Scientific and Technical Information...

  20. Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics

    E-Print Network [OSTI]

    High, Karen

    Comparative vs. Absolute Performance Assessment with Environmental Sustainability Metrics Xun Jin Different goals and potential audiences determine that two types of environmental performance assessments metrics can be partitioned into two camps. One suite of metrics aim to assess the environmental

  1. Absolutely minimal Lipschitz extension of tree-valued mappings

    E-Print Network [OSTI]

    Naor, Assaf

    We prove that every Lipschitz function from a subset of a locally compact length space to a metric tree has a unique absolutely minimal Lipschitz extension (AMLE). We relate these extensions to a stochastic game called ...

  2. absolute transition probabilities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation of transition...

  3. General Relativity and Spatial Flows: I. Absolute Relativistic Dynamics

    E-Print Network [OSTI]

    Tom Martin

    2000-06-08T23:59:59.000Z

    Two complementary and equally important approaches to relativistic physics are explained. One is the standard approach, and the other is based on a study of the flows of an underlying physical substratum. Previous results concerning the substratum flow approach are reviewed, expanded, and more closely related to the formalism of General Relativity. An absolute relativistic dynamics is derived in which energy and momentum take on absolute significance with respect to the substratum. Possible new effects on satellites are described.

  4. The Square Kilometer Array Interferometer

    E-Print Network [OSTI]

    Robert Braun

    1995-12-11T23:59:59.000Z

    The scientific motivation is reviewed for a next generation radio observatory operating at frequencies between about 200 MHz and 2 GHz with about 2 orders of magnitude greater sensitivity than that which is currently available, together with sub-arcsecond angular resolution. Instrumental concepts for the telescope are discussed, highlighting the role of mass produced receiver elements and digital electronics in increasing cost-effectiveness while actively reducing the instrument's sensitivity to radio frequency interference.

  5. Absolute Lineshifts - A new diagnostic for stellar hydrodynamics

    E-Print Network [OSTI]

    Dainis Dravins

    2003-02-28T23:59:59.000Z

    For hydrodynamic model atmospheres, absolute lineshifts are becoming an observable diagnostic tool beyond the classical ones of line-strength, -width, -shape, and -asymmetry. This is the wavelength displacement of different types of spectral lines away from the positions naively expected from the Doppler shift caused by stellar radial motion. Caused mainly by correlated velocity and brightness patterns in granular convection, such absolute lineshifts could in the past be studied only for the Sun (since the relative Sun-Earth motion, and the ensuing Doppler shift is known). For other stars, this is now becoming possible thanks to three separate developments: (a) Astrometric determination of stellar radial motion; (b) High-resolution spectrometers with accurate wavelength calibration, and (c) Accurate laboratory wavelengths for several atomic species. Absolute lineshifts offer a tool to segregate various 2- and 3-dimensional models, and to identify non-LTE effects in line formation.

  6. Absolute Lineshifts - A new diagnostic for stellar hydrodynamics

    E-Print Network [OSTI]

    Dravins, D

    2003-01-01T23:59:59.000Z

    For hydrodynamic model atmospheres, absolute lineshifts are becoming an observable diagnostic tool beyond the classical ones of line-strength, -width, -shape, and -asymmetry. This is the wavelength displacement of different types of spectral lines away from the positions naively expected from the Doppler shift caused by stellar radial motion. Caused mainly by correlated velocity and brightness patterns in granular convection, such absolute lineshifts could in the past be studied only for the Sun (since the relative Sun-Earth motion, and the ensuing Doppler shift is known). For other stars, this is now becoming possible thanks to three separate developments: (a) Astrometric determination of stellar radial motion; (b) High-resolution spectrometers with accurate wavelength calibration, and (c) Accurate laboratory wavelengths for several atomic species. Absolute lineshifts offer a tool to segregate various 2- and 3-dimensional models, and to identify non-LTE effects in line formation.

  7. Stability comparison of two absolute gravimeters: optical versus atomic interferometers

    E-Print Network [OSTI]

    Gillot, Pierre; Landragin, Arnaud; Santos, Franck Pereira Dos; Merlet, Sébastien

    2014-01-01T23:59:59.000Z

    We report the direct comparison between the stabilities of two mobile absolute gravimeters of different technology: the LNE-SYRTE Cold Atom Gravimeter and FG5X\\#216 of the Universit\\'e du Luxembourg. These instruments rely on two different principles of operation: atomic and optical interferometry. The comparison took place in the Walferdange Underground Laboratory for Geodynamics in Luxembourg, at the beginning of the last International Comparison of Absolute Gravimeters, ICAG-2013. We analyse a 2h10 duration common measurement, and find that the CAG shows better immunity with respect to changes in the level of vibration noise, as well as a slightly better short term stability.

  8. Absolute Calibration of a Large-diameter Light Source

    E-Print Network [OSTI]

    Brack, J T; Dorofeev, A; Gookin, B; Harton, J L; Petrov, Y; Rovero, A C

    2013-01-01T23:59:59.000Z

    A method of absolute calibration for large aperture optical systems is presented, using the example of the Pierre Auger Observatory fluorescence detectors. A 2.5 m diameter light source illuminated by an ultra--violet light emitting diode is calibrated with an overall uncertainty of 2.1 % at a wavelength of 365 nm.

  9. Double Beta Decay and the Absolute Neutrino Mass Scale

    E-Print Network [OSTI]

    Carlo Giunti

    2003-08-20T23:59:59.000Z

    After a short review of the current status of three-neutrino mixing, the implications for the values of neutrino masses are discussed. The bounds on the absolute scale of neutrino masses from Tritium beta-decay and cosmological data are reviewed. Finally, we discuss the implications of three-neutrino mixing for neutrinoless double-beta decay.

  10. absolute standard hydrogen: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absolute standard hydrogen First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Hydrogen Storage CODES &...

  11. Correction due to finite speed of light in absolute gravimeters

    E-Print Network [OSTI]

    Nagornyi, V D; Zanimonskiy, Y Y

    2010-01-01T23:59:59.000Z

    Correction due to finite speed of light is among the most inconsistent ones in absolute gravimetry. Formulas reported by different authors yield corrections scattered up to 8 $\\mu$Gal with no obvious reasons. The problem, though noted before, has never been studied, and nowadays the correction is rather postulated than rigorously proven. In this paper we investigate the problem from several prospectives, find the corrections for different types of absolute gravimeters, and establish relationships between different ways of implement them. The obtained results enabled us to analyze and understand the discrepancies in the results of other authors. We found that the correction derived from the Doppler effect is accountable only for $\\tfrac{2}{3}$ of the total correction due to finite speed of light, if no signal delays are considered. Another major source of inconsistency was found in the tacit use of simplified trajectory models.

  12. In Self-contradiction, Machian Geocentrism Entails Absolute Space

    E-Print Network [OSTI]

    Hartman, Herbert I

    2014-01-01T23:59:59.000Z

    Luka Popov has attempted to advance Machian physics by maintaining that the heliocentric system must be replaced by Tycho Brahe's geocentric system. We show that while geocentrism relies on Mach's contention that accelerations are relative, this contention is untenable because, inter alia, the consequences of an acceleration of an object with respect to the fixed stars cannot be duplicated by acceleration of the stars with respect to this object and, if the universe and a co-rotating observer have the same angular velocity, this motion is detectable because they have different linear velocities. Also, geocentrism precludes the relativity of accelerations and leads to an absolute space while Mach argued against absolute space, Popov's result that the force exerted by the Earth on the Sun depends on the square of the Sun's mass but is independent of the Earth's mass is paradoxical, and the annual asymmetry of the Cosmic Microwave Background falsifies all geocentric or 'Tychonic/Brahean) systems.

  13. Absolute Source Activity Measurement with a Single Detector

    SciTech Connect (OSTI)

    Bikit, I.; Nemes, T.; Mrdja, D.; Forkapic, S. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 4, 21 000 Novi Sad (Serbia)

    2009-08-26T23:59:59.000Z

    In the present paper the activity of {sup 60}Co source was measured using the full absorption, sum and random coincidences (pile up) peaks and the total spectrum area in the gamma spectra. By the exact treatment of the chance coincidence and pile-up events, surprisingly good results were obtained. With the source on the detector end-cap (when the angular correlation effects are negligible), this simple method yields absolute activity values deviating from the reference activity for about 1 percent.

  14. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

    SciTech Connect (OSTI)

    Harty, P. D., E-mail: Peter.Harty@arpansa.gov.au; Ramanathan, G.; Butler, D. J.; Johnston, P. N. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia)] [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085 (Australia); Lye, J. E. [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia and Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia)] [Australian Radiation Protection and Nuclear Safety Agency, Yallambie, Victoria 3085, Australia and Australian Clinical Dosimetry Service, Yallambie, Victoria 3085 (Australia); Hall, C. J. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia)] [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168 (Australia); Stevenson, A. W. [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO, Materials Science and Engineering, Clayton Sth Victoria 3169 (Australia)] [Imaging and Medical Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia and CSIRO, Materials Science and Engineering, Clayton Sth Victoria 3169 (Australia)

    2014-05-15T23:59:59.000Z

    Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50?Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3.9%. Conclusions: The good agreement of the graphite calorimeter and free-air chamber results indicates that both devices are performing as expected. Further investigations at higher dose rates than 50?Gy/s are planned. At higher dose rates, recombination effects for the free-air chamber are much higher and expected to lead to much larger uncertainties. Since the graphite calorimeter does not have problems associated with dose rate, it is an appropriate primary standard detector for the synchrotron IMBL x rays and is the more accurate dosimeter for the higher dose rates expected in radiotherapy applications.

  15. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    E-Print Network [OSTI]

    Partridge, B; Perley, R A; Stevens, J; Butler, B J; Rocha, G; Walter, B; Zacchei, A

    2015-01-01T23:59:59.000Z

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite's annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated VLA and ATCA observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 3.6% +- 1.0% below Planck values; at 43 GHz, the discrepancy increases to 6.2% +- 1.4% for both ATCA and the VLA.

  16. Temperature behavior in the build section of multilateral wells

    E-Print Network [OSTI]

    Romero Lugo, Analis Alejandra

    2005-11-01T23:59:59.000Z

    would be most useful. Parameters that were varied for this experiment included fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. From...

  17. Absolute Efficiency Calibration of a Beta-Gamma Detector

    SciTech Connect (OSTI)

    Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Hayes, James C.; McIntyre, Justin I.; Lidey, Lance S.; Schrom, Brian T.

    2013-04-10T23:59:59.000Z

    Abstract- Identification and quantification of nuclear events such as the Fukushima reactor failure and nuclear explosions rely heavily on the accurate measurement of radioxenon releases. One radioxenon detection method depends on detecting beta-gamma coincident events paired with a stable xenon measurement to determine the concentration of a plume. Like all measurements, the beta-gamma method relies on knowing the detection efficiency for each isotope measured. Several methods are commonly used to characterize the detection efficiency for a beta-gamma detector. The most common method is using a NIST certified sealed source to determine the efficiency. A second method determines the detection efficiencies relative to an already characterized detector. Finally, a potentially more accurate method is to use the expected sample to perform an absolute efficiency calibration; in the case of a beta-gamma detector, this relies on radioxenon gas samples. The complication of the first method is it focuses only on the gamma detectors and does not offer a solution for determining the beta efficiency. The second method listed is not similarly constrained, however it relies on another detector to have a well-known efficiency calibration. The final method using actual radioxenon samples to make an absolute efficiency determination is the most desirable, but until recently it was not possible to produce all four isotopically pure radioxenon. The production, by University of Texas (UT), of isotopically pure radioxenon has allowed the beta-gamma detectors to be calibrated using the absolute efficiency method. The first four radioxenon isotope calibration will be discussed is this paper.

  18. Radiometric Modeling of Cavernous Targets to Assist in the Determination of Absolute Temperature

    E-Print Network [OSTI]

    Salvaggio, Carl

    Lomb Memorial Drive, Rochester, NY, USA; bSavannah River National Laboratory, Building 735-A, Office B an operating tower located at the Savannah River National Laboratory site. Keywords: CAVERNOUS TARGETS, THERMAL by the Digital Imaging and Remote Sensing (DIRS) Laboratory at the Rochester Institute of Technology (RIT) [2

  19. Signal generation mechanisms, intracavity-gas thermal-diffusivity temperature dependence, and absolute infrared emissivity measurements

    E-Print Network [OSTI]

    Mandelis, Andreas

    , Canada Received 22 September 1997; accepted for publication 8 October 1997 The operating thermal power dominance of thermal-wave radiation power transfer in the phase channel of the thermal-wave signal at large produces an ac electrical signal proportional to the energy of the standing thermal-wave pattern

  20. Two-Sensor System for Absolute Age and Temperature History - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandof EnergyTwoTwo

  1. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William (Overland Park, KS)

    2007-07-03T23:59:59.000Z

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  2. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William (Overland Park, KS)

    2007-10-02T23:59:59.000Z

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  3. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William (Overland Park, KS)

    2007-07-17T23:59:59.000Z

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  4. Precision Absolute Beam Current Measurement of Low Power Electron Beam

    SciTech Connect (OSTI)

    Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

    2012-11-01T23:59:59.000Z

    Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

  5. Optimized replica gas estimation of absolute integrals and partition functions.

    SciTech Connect (OSTI)

    Minh, D. (Biosciences Division)

    2010-01-01T23:59:59.000Z

    In contrast with most Monte Carlo integration algorithms, which are used to estimate ratios, the replica gas identities recently introduced by Adib enable the estimation of absolute integrals and partition functions using multiple copies of a system and normalized transition functions. Here, an optimized form is presented. After generalizing a replica gas identity with an arbitrary weighting function, we obtain a functional form that has the minimal asymptotic variance for samples from two replicas and is provably good for a larger number. This equation is demonstrated to improve the convergence of partition function estimates in a two-dimensional Ising model.

  6. Method of differential-phase/absolute-amplitude QAM

    SciTech Connect (OSTI)

    Dimsdle, Jeffrey William (Overland Park, KS)

    2008-10-21T23:59:59.000Z

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  7. Method of differential-phase/absolute-amplitude QAM

    DOE Patents [OSTI]

    Dimsdle, Jeffrey William (Overland Park, KS)

    2009-09-01T23:59:59.000Z

    A method of quadrature amplitude modulation involving encoding phase differentially and amplitude absolutely, allowing for a high data rate and spectral efficiency in data transmission and other communication applications, and allowing for amplitude scaling to facilitate data recovery; amplitude scale tracking to track-out rapid and severe scale variations and facilitate successful demodulation and data retrieval; 2.sup.N power carrier recovery; incoherent demodulation where coherent carrier recovery is not possible or practical due to signal degradation; coherent demodulation; multipath equalization to equalize frequency dependent multipath; and demodulation filtering.

  8. Absolute Values of Neutrino Masses: Status and Prospects

    E-Print Network [OSTI]

    S. M. Bilenky; C. Giunti; J. A. Grifols; E. Masso

    2003-03-27T23:59:59.000Z

    Compelling evidences in favor of neutrino masses and mixing obtained in the last years in Super-Kamiokande, SNO, KamLAND and other neutrino experiments made the physics of massive and mixed neutrinos a frontier field of research in particle physics and astrophysics. There are many open problems in this new field. In this review we consider the problem of the absolute values of neutrino masses, which apparently is the most difficult one from the experimental point of view. We discuss the present limits and the future prospects of beta-decay neutrino mass measurements and neutrinoless double-beta decay. We consider the important problem of the calculation of nuclear matrix elements of neutrinoless double-beta decay and discuss the possibility to check the results of different model calculations of the nuclear matrix elements through their comparison with the experimental data. We discuss the upper bound of the total mass of neutrinos that was obtained recently from the data of the 2dF Galaxy Redshift Survey and other cosmological data and we discuss future prospects of the cosmological measurements of the total mass of neutrinos. We discuss also the possibility to obtain information on neutrino masses from the observation of the ultra high-energy cosmic rays (beyond the GZK cutoff). Finally, we review the main aspects of the physics of core-collapse supernovae, the limits on the absolute values of neutrino masses from the observation of SN1987A neutrinos and the future prospects of supernova neutrino detection.

  9. Method and apparatus for making absolute range measurements

    DOE Patents [OSTI]

    Earl, Dennis D. (Knoxville, TN); Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Sanders, Alvin J. (Knoxville, TN)

    2002-09-24T23:59:59.000Z

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through a screen at least partially opaque at the wavelength. The screen has an aperture sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector spaced some distance from the screen. The detector detects the central intensity of the beam as well as a set of intensities displaced from a center of the aperture. The distance from the source to the target can then be calculated based upon the known wavelength, aperture radius, and beam intensity.

  10. Absolute Values of Neutrino Masses implied by the Seesaw Mechanism

    E-Print Network [OSTI]

    Tsujimoto, H

    2005-01-01T23:59:59.000Z

    It is found that the seesaw mechanism not only explain the smallness of neutrino masses but also account for the large mixing angles simultaneously, once the unification of the neutrino Dirac mass matrix with that of up-quark sector is realized. We show that provided the Majorana masses have hierarchical structure as is seen in the up-quark sector, we can reduce the information about the absolute values of neutrino masses through the data set of neutrino experiments. The results for the light neutrino masses are $m_1:m_2:m_3\\approx 1:3:17$ $(m_1\\simeq m_2:m_3\\approx 1.2:1)$ in the case of normal mass spectrum (inverted mass spectrum), and the heaviest Majorana mass turns out to be $m_3^R=1\\times 10^{15}$ GeV which just corresponds to the GUT scale.

  11. THE ABSOLUTE CALIBRATION OF THE EUV IMAGING SPECTROMETER ON HINODE

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Landi, Enrico [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-07-01T23:59:59.000Z

    We investigate the absolute calibration of the EUV Imaging Spectrometer (EIS) on Hinode by comparing EIS full-disk mosaics with irradiance observations from the EUV Variability Experiment on the Solar Dynamics Observatory. We also use extended observations of the quiet corona above the limb combined with a simple differential emission measure model to establish new effective area curves that incorporate information from the most recent atomic physics calculations. We find that changes to the EIS instrument sensitivity are a complex function of both time and wavelength. We find that the sensitivity is decaying exponentially with time and that the decay constants vary with wavelength. The EIS short wavelength channel shows significantly longer decay times than the long wavelength channel.

  12. The chromospherically active binary star EI Eridani I. Absolute dimensions

    E-Print Network [OSTI]

    A. Washuettl; K. G. Strassmeier; T. Granzer; M. Weber; K. Oláh

    2008-09-04T23:59:59.000Z

    We present a detailed determination of the astrophysical parameters of the chromospherically active binary star EI Eridani. Our new radial velocities allow to improve the set of orbital elements and reveal long-term variations of the barycentric velocity. A possible third-body orbit with a period of approximately 19 years is presented. Absolute parameters are determined in combination with the Hipparcos parallax. EI Eri's inclination angle of the rotational axis is confined to 56.0 plus/minus 4.5 degrees, its luminosity class IV is confirmed by its radius of 2.37 plus/minus 0.12 R_Sun. A comparison to theoretical stellar evolutionary tracks suggests a mass of 1.09 plus/minus 0.05 M_Sun and an age of approximately 6.15 Gyr. The present investigation is the basis of our long-term Doppler imaging study of its stellar surface.

  13. Conductance and absolutely continuous spectrum of 1D samples

    E-Print Network [OSTI]

    Laurent Bruneau; Vojkan Jakši?; Yoram Last; Claude-Alain Pillet

    2015-04-27T23:59:59.000Z

    We characterize the absolutely continuous spectrum of the one-dimensional Schr\\"odinger operators $h=-\\Delta+v$ acting on $\\ell^2(\\mathbb{Z}_+)$ in terms of the limiting behavior of the Landauer-B\\"uttiker and Thouless conductances of the associated finite samples. The finite sample is defined by restricting $h$ to a finite interval $[1,L]\\cap\\mathbb{Z}_+$ and the conductance refers to the charge current across the sample in the open quantum system obtained by attaching independent electronic reservoirs to the sample ends. Our main result is that the conductances associated to an energy interval $I$ are non-vanishing in the limit $L\\to\\infty$ iff ${\\rm sp}_{\\rm ac}(h)\\cap I=\\emptyset$. We also discuss the relationship between this result and the Schr\\"odinger Conjecture.

  14. Upgrade of absolute extreme ultraviolet diagnostic on J-TEXT

    SciTech Connect (OSTI)

    Zhang, X. L.; Cheng, Z. F., E-mail: chengfe@hust.edu.cn; Hou, S. Y.; Zhuang, G.; Luo, J. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-11-15T23:59:59.000Z

    The absolute extreme ultraviolet (AXUV) diagnostic system is used for radiation observation on J-TEXT tokamak [J. Zhang, G. Zhuang, Z. J. Wang, Y. H. Ding, X. Q. Zhang, and Y. J. Tang, Rev. Sci. Instrum. 81, 073509 (2010)]. The upgrade of the AXUV system is aimed to improve the spatial resolution and provide a three-dimensional image on J-TEXT. The new system consists of 12 AXUV arrays (4 AXUV16ELG arrays, 8 AXUV20ELG arrays). The spatial resolution in the cross-section is 21 mm for the AXUV16ELG arrays and 17 mm for the AXUV20ELG arrays. The pre-amplifier is also upgraded for a higher signal to noise ratio. By upgrading the AXUV imaging system, a more accurate observation on the radiation information is obtained.

  15. Absolute Measurement Of Laminar Shear Rate Using Photon Correlation Spectroscopy

    E-Print Network [OSTI]

    Elliot Jenner; Brian D'Urso

    2015-05-11T23:59:59.000Z

    An absolute measurement of the components of the shear rate tensor $\\mathcal{S}$ in a fluid can be found by measuring the photon correlation function of light scattered from particles in the fluid. Previous methods of measuring $\\mathcal{S}$ involve reading the velocity at various points and extrapolating the shear, which can be time consuming and is limited in its ability to examine small spatial scale or short time events. Previous work in Photon Correlation Spectroscopy has involved only approximate solutions, requiring free parameters to be scaled by a known case, or different cases, such as 2-D flows, but here we present a treatment that provides quantitative results directly and without calibration for full 3-D flow. We demonstrate this treatment experimentally with a cone and plate rheometer.

  16. Absolute properties of the eclipsing binary star IM Persei

    SciTech Connect (OSTI)

    Lacy, Claud H. Sandberg [Physics Department, University of Arkansas, Fayetteville, AR 72701 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fekel, Francis C.; Muterspaugh, Matthew W. [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Southworth, John, E-mail: clacy@uark.edu, E-mail: gtorres@cfa.harvard.edu, E-mail: fekel@evans.tsuniv.edu, E-mail: matthew1@coe.tsuniv.edu, E-mail: astro.js@keele.ac.uk [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom)

    2015-01-01T23:59:59.000Z

    IM Per is a detached A7 eccentric eclipsing binary star. We have obtained extensive measurements of the light curve (28,225 differential magnitude observations) and radial velocity curve (81 spectroscopic observations) which allow us to fit orbits and determine the absolute properties of the components very accurately: masses of 1.7831 ± 0.0094 and 1.7741 ± 0.0097 solar masses, and radii of 2.409 ± 0.018 and 2.366 ± 0.017 solar radii. The orbital period is 2.25422694(15) days and the eccentricity is 0.0473(26). A faint third component was detected in the analysis of the light curves, and also directly observed in the spectra. The observed rate of apsidal motion is consistent with theory (U = 151.4 ± 8.4 year). We determine a distance to the system of 566 ± 46 pc.

  17. absolute configurational entropies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entropy -- which we evaluate with two different methods -- we show that a configurational entropy maximum is observed at a temperature close to that of the diffusivity maximum. Our...

  18. Absolute measurement of the viscosity of classical and quantum fluids by rotating-cylinder viscometers

    SciTech Connect (OSTI)

    Donnelly, R.J.; LaMar, M.M.

    1987-11-01T23:59:59.000Z

    We discuss the use of rotating-cylinder viscometers to determine absolute shear viscosities of classical fluids and of helium II in the context of past and current knowledge of the stability and flow of these fluids between concentric cylinders. We identify a problem in measuring the absolute viscosity when the inner cylinder is rotating and the outer cylinder is at rest. We conclude by discussing the design of viscometers for absolute viscosity measurements in helium I and helium II.

  19. Further Developments of a Robust Absolute Calibration Method Utilizing Beta/Gamma Coincidence Techniques

    SciTech Connect (OSTI)

    McIntyre, Justin I.; Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Schrom, Brian T.; Warren, Glen A.

    2013-05-01T23:59:59.000Z

    This is a conference proceedings from the MARC conference. It discusses the research conducted into an alternative method of detector calibration and absolute activity measurement.

  20. absolute single-molecule entropies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page Last Page Topic Index 1 A simulation method for calculating the absolute entropy and free energy of fluids: Application to Chemistry Websites Summary: A simulation method for...

  1. Liu UCD Phy9B 07 1 Ch 17. Temperature & Heat

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    in temperature. Like water, flows from high to low (temperature). Not the energy a body contains. #12;Liu UCD Phy of how hot /cold an object is Temperature Scale Celsius (centigrade) ºC Fahrenheit ºF Absolute (Kelvin of heat necessary to raise the temperature of 1 gram of water by 1Cº kilocalorie (kcal) 1 kcal =1000 cal

  2. Absolute Values of Neutrino Masses implied by the Seesaw Mechanism

    E-Print Network [OSTI]

    H. Tsujimoto

    2005-12-12T23:59:59.000Z

    It is found that the seesaw mechanism not only explain the smallness of neutrino masses but also account for the large mixing angles simultaneously, even if the unification of the neutrino Dirac mass matrix with that of up-type quark sector is realized. We show that provided the Majorana masses have hierarchical structure as is seen in the up-type quark sector and all mass matrices are real, we can reduce the information about the absolute values of neutrino masses through the data set of neutrino experiments. Especially for $\\theta_{13}=0$, we found that the neutrino masses are decided as $m_1:m_2:m_3\\approx 1:3:17$ or $1:50:250$ ($m_1\\simeq m_2:m_3\\approx 3:1$ or $12:1$) in the case of normal mass spectrum (inverted mass spectrum), and the greatest Majorana mass turns out to be $m_3^R=1\\times 10^{15}$ GeV which just corresponds to the GUT scale. Including the decoupling effects caused by three singlet neutrinos, we also perform a renormalization group analysis to fix the neutrino Yukawa coupling matrix at low energy.

  3. INTERPRETATION OF THE ARCADE 2 ABSOLUTE SKY BRIGHTNESS MEASUREMENT

    SciTech Connect (OSTI)

    Seiffert, M.; Levin, S. M. [Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Fixsen, D. J.; Kogut, A.; Wollack, E. [University of Maryland, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Limon, M. [Columbia Astrophysics Laboratory, 550W 120th St., Mail Code 5247, New York, NY 10027-6902 (United States); Lubin, P. M. [Physics Department, University of California, Santa Barbara, CA (United States); Mirel, P. [Wyle Informations Systems, Code 665, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Singal, J. [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Villela, T.; Wuensche, C. A., E-mail: Michael.D.Seiffert@jpl.nasa.gov [Instituto Nacional de Pesquisas Espaciais, Divisao de Astrofisica, Caixa Postal 515, 12245-970-Sao Jose dos Campos, SP (Brazil)

    2011-06-10T23:59:59.000Z

    We use absolutely calibrated data between 3 and 90 GHz from the 2006 balloon flight of the ARCADE 2 instrument, along with previous measurements at other frequencies, to constrain models of extragalactic emission. Such emission is a combination of the cosmic microwave background (CMB) monopole, Galactic foreground emission, the integrated contribution of radio emission from external galaxies, any spectral distortions present in the CMB, and any other extragalactic source. After removal of estimates of foreground emission from our own Galaxy, and an estimated contribution of external galaxies, we present fits to a combination of the flat-spectrum CMB and potential spectral distortions in the CMB. We find 2{sigma} upper limits to CMB spectral distortions of {mu} < 6 x 10{sup -4} and |Y{sub ff}| < 1 x 10{sup -4}. We also find a significant detection of a residual signal beyond that, which can be explained by the CMB plus the integrated radio emission from galaxies estimated from existing surveys. This residual signal may be due to an underestimated galactic foreground contribution, an unaccounted for contribution of a background of radio sources, or some combination of both. The residual signal is consistent with emission in the form of a power law with amplitude 18.4 {+-} 2.1 K at 0.31 GHz and a spectral index of -2.57 {+-} 0.05.

  4. Method and apparatus for making absolute range measurements

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Key, W.S.; Sanders, A.J.; Earl, D.D.

    1999-06-22T23:59:59.000Z

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a beam splitter''), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beam splitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention. 9 figs.

  5. Method and apparatus for making absolute range measurements

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Key, William S. (Knoxville, TN); Sanders, Alvin J. (Knoxville, TN); Earl, Dennis D. (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    This invention relates to a method and apparatus for making absolute distance or ranging measurements using Fresnel diffraction. The invention employs a source of electromagnetic radiation having a known wavelength or wavelength distribution, which sends a beam of electromagnetic radiation through an object which causes it to be split (hereinafter referred to as a "beamsplitter"), and then to a target. The beam is reflected from the target onto a screen containing an aperture spaced a known distance from the beamsplitter. The aperture is sized so as to produce a Fresnel diffraction pattern. A portion of the beam travels through the aperture to a detector, spaced a known distance from the screen. The detector detects the central intensity of the beam. The distance from the object which causes the beam to be split to the target can then be calculated based upon the known wavelength, aperture radius, beam intensity, and distance from the detector to the screen. Several apparatus embodiments are disclosed for practicing the method embodiments of the present invention.

  6. Precision absolute-value amplifier for a precision voltmeter

    DOE Patents [OSTI]

    Hearn, W.E.; Rondeau, D.J.

    1982-10-19T23:59:59.000Z

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  7. Precision absolute value amplifier for a precision voltmeter

    DOE Patents [OSTI]

    Hearn, William E. (Berkeley, CA); Rondeau, Donald J. (El Sobrante, CA)

    1985-01-01T23:59:59.000Z

    Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

  8. A simulation method for calculating the absolute entropy and free energy of fluids: Application to

    E-Print Network [OSTI]

    Meirovitch, Hagai

    A simulation method for calculating the absolute entropy and free energy of fluids: Application is a general approach for calculating the absolute entropy and free energy by analyzing Boltzmann samples and the TIP3P model of water, and very good results for the free energy are obtained, as compared with results

  9. Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Free volume hypothetical scanning molecular dynamics method for the absolute free energy of liquids for calculating the absolute entropy, S, and free energy, F, by analyzing Boltzmann samples obtained by Monte energy evaluation is a central issue in atomistic modeling.1­5 When the free energy is known, equilibrium

  10. Bayesian modelling of an absolute chronology for Egypt's 18th Dynasty by astrophysical and radiocarbon methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Bayesian modelling of an absolute chronology for Egypt's 18th Dynasty by astrophysical Egyptology, the establishment of an absolute chronology for Ancient Egypt has been an ambition which has contained lists of the kings who reigned in Egypt. The Palermo Stone, the Abydos reliefs and the Turin Canon

  11. The Quantum Refrigerator: The quest for absolute zero

    E-Print Network [OSTI]

    Yair Rezek; Peter Salamon; Karl Heinz Hoffmann; Ronnie Kosloff

    2008-08-04T23:59:59.000Z

    The scaling of the optimal cooling power of a reciprocating quantum refrigerator is sought as a function of the cold bath temperature as $T_c \\to 0$. The working medium consists of noninteracting particles in a harmonic potential. Two closed-form solutions of the refrigeration cycle are analyzed, and compared to a numerical optimization scheme, focusing on cooling toward zero temperature. The optimal cycle is characterized by linear relations between the heat extracted from the cold bath, the energy level spacing of the working medium and the temperature. The scaling of the optimal cooling rate is found to be proportional to $T_c^{3/2}$ giving a dynamical interpretation to the third law of thermodynamics.

  12. Temperature, Temperature, Earth, geotherm for

    E-Print Network [OSTI]

    Treiman, Allan H.

    Temperature, Temperature, Earth, geotherm for total global heat flow Venus, geotherm for total global heat flow, 500 Ma #12;Temperature, Temperature, #12;Earth's modern regional continental geotherms Venusian Geotherms, 500 Ma Temperature, Temperature, After Blatt, Tracy, and Owens Petrology #12;Ca2Mg5Si8

  13. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1993-01-01T23:59:59.000Z

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  14. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured

  15. Powder River 0 20 40 KILOMETERS

    E-Print Network [OSTI]

    .S. coal basins. The Powder River Basin (PRB) in northeastern Wyoming and southeastern Montana (fig. 1 tons (MST), some 42 percent of the total coal pro- duction in the United States, making the PRB the single most important coal-producing basin in the Nation. About 426 MST (92 percent of total PRB coal

  16. Thermal emission microscopy measures the spa-tial distribution of temperature in a sample. Thermal

    E-Print Network [OSTI]

    per unit area emitted by an object is proportional to its absolute temperature to the fourth powerThermal emission microscopy measures the spa- tial distribution of temperature in a sample. Thermal- cause the optical power emitted by the sample is a function of its local temperature. The optical power

  17. Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under Uncertainty

    E-Print Network [OSTI]

    Sue Wing, Ian.

    We elucidate the differences between absolute and intensity-based limits of CO2 emission when there is uncertainty about the future. We demonstrate that the two limits are identical under certainty, and rigorously establish ...

  18. Absolute Percent Error Based Fitness Functions for Evolving Forecast Models AndyNovobilski,Ph.D.

    E-Print Network [OSTI]

    Fernandez, Thomas

    Absolute Percent Error Based Fitness Functions for Evolving Forecast Models Andy computfi~gas a methodof data mining,is its intrinsic ability to drive modelselection accordingto a mixedset of criteria. Basedon natural selection, evolutionary computing utilizes evaluationof candidatesolutions

  19. E-Print Network 3.0 - absolute gamma ray Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: absolute gamma ray Page: << < 1 2 3 4 5 > >> 1 Characterizing the Memory Behavior of CompilerParallelized...

  20. Primary crossflow vortices, secondary absolute instabilities and their control in the rotating-disk boundary layer

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Primary crossflow vortices, secondary absolute instabilities and their control in the rotating patterns of crossflow vortices are derived by employing asymptotic techniques. This approach accounts three-dimensional velocity profiles, are subject to inviscid crossflow in- stabilities and rapidly

  1. Absolute Measure of Local Chirality and the Chiral Polarization Scale of the QCD Vacuum

    E-Print Network [OSTI]

    Andrei Alexandru; Terrence Draper; Ivan Horváth; Thomas Streuer

    2010-10-26T23:59:59.000Z

    The use of the absolute measure of local chirality is championed since it has a uniform distribution for randomly reshuffled chiral components so that any deviations from uniformity in the associated "X-distribution" are directly attributable to QCD-induced dynamics. We observe a transition in the qualitative behavior of this absolute X-distribution of low-lying eigenmodes which, we propose, defines a chiral polarization scale of the QCD vacuum.

  2. Use of the ultraviolet absorption spectrum of CF2 to determine the spatially resolved absolute CF2 density, rotational temperature,

    E-Print Network [OSTI]

    and control reactor performance. Plasmas based on fluorocarbon-containing gas mixtures are used for a variety, and chamber-wall cleaning after thin film deposi- tion. Most notably, fluorocarbon plasmas are widely used

  3. Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from

    E-Print Network [OSTI]

    Salvaggio, Carl

    Lomb Memorial Drive, Rochester, NY, USA; bSavannah River National Laboratory, Building 735-A, Office B at the Savannah River National Laboratory. A MDCT operates on the concept of evaporative cooling. Heated water

  4. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    SciTech Connect (OSTI)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com [Radiant Technologies, Inc., 2835C Pan American Fwy NE, Albuquerque, New Mexico 87107 (United States)

    2014-08-14T23:59:59.000Z

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude of the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.

  5. HC-1 Ideal Gas and Absolute Zero Name_______________________ Lab Worksheet Group member names__________________________________

    E-Print Network [OSTI]

    Winokur, Michael

    that you always start with the same volume and pressure. 3) Compress the gas in the syringe as slowly as possible clicking at 5cm3 intervals and recording the volume. You can continue to slowly compress the gas reasoning. b) What do we call this process? #12;HC-1 Ideal Gas and Absolute Zero Name

  6. Increasing absolute mortality disparities by education in Finland, Norway and Sweden, 1971e2000

    E-Print Network [OSTI]

    Increasing absolute mortality disparities by education in Finland, Norway and Sweden, 1971e2000 differences by education in Finland, Norway and Sweden over the period 1971 to 2000. Methods The age and the AIDs have increased since the 1970s in Norway and Sweden, and since the 1980s in Finland

  7. Absolute cross section for Si2 P... electron-impact excitation

    E-Print Network [OSTI]

    Savin, Daniel Wolf

    the excited ions was detected using an absolutely calibrated optical system. The fractional population such as qua- sars and active galactic nuclei. Modern space observatories such as the Hubble Space Telescope 3-ray line intensities with detectors calibrated to a high degree of accuracy 7,8,6 , placing more demand

  8. A rapid multiple-sample approach to the determination of absolute paleointensity

    E-Print Network [OSTI]

    Utrecht, Universiteit

    an alternative approach to absolute paleointensity determination, one which involves exactly five heatings involves the simultaneous thermal treatment of several subspecimens sampled from different regions throughout the igneous rock unit under investigation. For inclusion of data in a given determination, self

  9. Subjective evaluation of HDTV stereoscopic videos in IPTV scenarios using absolute category rating

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Subjective evaluation of HDTV stereoscopic videos in IPTV scenarios using absolute category rating.Sjöströmc a Dept. of NetLab: IPTV, Video and Display Quality, Acreo AB, Sweden b Dept. of Image and Video at the same time it inevitably brings quality degradations to the processed video. This paper investigated

  10. Absolutely continuous spectrum implies ballistic transport for quantum particles in a random potential on tree graphs

    SciTech Connect (OSTI)

    Aizenman, Michael [Departments of Physics and Mathematics, Princeton University, Princeton, New Jersey 08544 (United States); Warzel, Simone [Zentrum Mathematik, TU Munich, Boltzmannstr. 3, 85747 Garching (Germany)

    2012-09-15T23:59:59.000Z

    We discuss the dynamical implications of the recent proof that for a quantum particle in a random potential on a regular tree graph absolutely continuous (ac) spectrum occurs non-perturbatively through rare fluctuation-enabled resonances. The main result is spelled in the title.

  11. The absolute and relative de Rham-Witt complexes Lars Hesselholt

    E-Print Network [OSTI]

    -schemes to * *Z(p)-schemes. From this comparison, we derive a Gauss-Manin connection on the crystalline. There is a canonical surjective map Wn .X! Wn .X=S from the absolute de Rham of the canonical map f-1Wn* * 1S! Wn 1X. The graded pieces for the I-adic filtration are differential graded

  12. DIGITALVISION ltra-wideband (UWB) radios have relative bandwidths larger than 20% or absolute

    E-Print Network [OSTI]

    Giannakis, Georgios

    .S. Federal Communications Commission (FCC) allowed the use of unlicensed UWB communications [8]. The first bandwidths of more than 500 MHz. Such wide bandwidths offer a wealth of advan- tages for both communications ranging accuracy. For communications, both large relative and large absolute band- width alleviate small

  13. Sequential high temperature reduction, low temperature hydrolysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high temperature reduction, low temperature hydrolysis for the regeneration of sulfated NOx trap catalysts. Sequential high temperature reduction, low temperature hydrolysis for...

  14. Absolute x-ray energy calibration over a wide energy range using a diffraction-based iterative method

    E-Print Network [OSTI]

    Duffy, Thomas S.

    Mineral Physics Institute, Stony Brook University, Stony Brook, New York 11794, USA 2 DepartmentAbsolute x-ray energy calibration over a wide energy range using a diffraction-based iterative;REVIEW OF SCIENTIFIC INSTRUMENTS 83, 063901 (2012) Absolute x-ray energy calibration over a wide energy

  15. Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation of transition probabilities from local grand

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Absolute entropy and free energy of fluids using the hypothetical scanning method. I. Calculation the absolute entropy and free energy from a Boltzmann sample generated by Monte Carlo, molecular dynamics for the free energy. We demonstrate that very good results for the entropy and the free energy can be obtained

  16. Results of Second Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.

    2014-01-01T23:59:59.000Z

    The Absolute Cavity Pyrgeometer (ACP) and InfraRed Integrating Sphere radiometer (IRIS) are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are un-windowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The second outdoor comparison between the two designs was held from September 30 to October 11, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of the IRIS was within 1 W/m2 (3 IRISs: PMOD + Australia + Germany). From the first and second comparisons, a difference of 4-6 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG). This presentation includes results from the first and second comparison in an effort to establish the world reference for pyrgeometer calibrations, a key deliverable for the World Meteorological Organization (WMO), and the DOE-ASR.

  17. Absolute dipole gamma-ray strength functions for /sup 176/Lu

    SciTech Connect (OSTI)

    Gardner, D.G.; Gardner, M.A.; Hoff, R.W.

    1984-08-29T23:59:59.000Z

    We have derived absolute dipole strength-function information for /sup 176/Lu from an average resonance capture study of /sup 175/Lu with 2-keV neutrons, and from neutron capture cross-section measurements with neutrons from 30 keV to about 1 MeV. We found that we needed to increase our previous estimate of the relative M1/E1 strengths near 5 MeV by a factor of 3, and to revise downward the absolute magnitude of our E1 strength function. We accomplished the latter, while still maintaining continuity with the photonuclear data, by adjusting the one free parameter in our line shape. The present E1 and M1 strengths now seem correct both near the neutron separation energy and also around 1 MeV.

  18. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    SciTech Connect (OSTI)

    Wolff, Wania, E-mail: wania@if.ufrj.br; Luna, Hugo; Sigaud, Lucas; Montenegro, Eduardo C. [Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ (Brazil)] [Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ (Brazil); Tavares, Andre C. [Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, PO 38071, Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, RJ (Brazil)] [Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, PO 38071, Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, RJ (Brazil)

    2014-02-14T23:59:59.000Z

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.

  19. Absolute Magnitude Distribution And Light Curves Of Gamma-Ray Burst Supernovae

    E-Print Network [OSTI]

    Dean Richardson

    2008-12-10T23:59:59.000Z

    Photometry data were collected from the literature and analyzed for supernovae that are thought to have a gamma-ray burst association. There are several gamma-ray burst afterglow light curves that appear to have a supernova component. For these light curves, the supernova component was extracted and analyzed. A supernova light curve model was used to help determine the peak absolute magnitudes as well as estimates for the kinetic energy, ejected mass and nickel mass in the explosion. The peak absolute magnitudes are, on average, brighter than those of similar supernovae (stripped-envelope supernovae) that do not have a gamma-ray burst association, but this can easily be due to a selection effect. However, the kinetic energies and ejected masses were found to be considerably higher, on average, than those of similar supernovae without a gamma-ray burst association.

  20. The Roland De Witte 1991 Detection of Absolute Motion and Gravitational Waves

    E-Print Network [OSTI]

    Cahill, R T

    2006-01-01T23:59:59.000Z

    In 1991 Roland De Witte carried out an experiment in Brussels in which variations in the one-way speed of RF waves through a coaxial cable were recorded over 178 days. The data from this experiment shows that De Witte had detected absolute motion of the earth through space, as had six earlier experiments, beginning with the Michelson-Morley experiment of 1887. His results are in excellent agreement with the extensive data from the Miller 1925/26 detection of absolute motion using a gas-mode Michelson interferometer atop Mt.Wilson, California. The De Witte data reveals turbulence in the flow which amounted to the detection of gravitational waves. Similar effects were also seen by Miller, and by Torr and Kolen in their coaxial cable experiment. Here we bring together what is known about the De Witte experiment.

  1. The Roland De Witte 1991 Detection of Absolute Motion and Gravitational Waves

    E-Print Network [OSTI]

    Reginald T Cahill

    2006-08-21T23:59:59.000Z

    In 1991 Roland De Witte carried out an experiment in Brussels in which variations in the one-way speed of RF waves through a coaxial cable were recorded over 178 days. The data from this experiment shows that De Witte had detected absolute motion of the earth through space, as had six earlier experiments, beginning with the Michelson-Morley experiment of 1887. His results are in excellent agreement with the extensive data from the Miller 1925/26 detection of absolute motion using a gas-mode Michelson interferometer atop Mt.Wilson, California. The De Witte data reveals turbulence in the flow which amounted to the detection of gravitational waves. Similar effects were also seen by Miller, and by Torr and Kolen in their coaxial cable experiment. Here we bring together what is known about the De Witte experiment.

  2. Absolute calibration of a charge-coupled device camera with twin beams

    SciTech Connect (OSTI)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.; Brida, G.; Rastello, M. L.; Genovese, M. [Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91, 10135 Torino (Italy)

    2014-09-08T23:59:59.000Z

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  3. Absolute calibration of photon-number-resolving detectors with an analog output using twin beams

    SciTech Connect (OSTI)

    Pe?ina, Jan, E-mail: jan.perina.jr@upol.cz [RCPTM, Joint Laboratory of Optics of Palacký University and Institute of Physics AS CR, 17. listopadu 12, 77146 Olomouc (Czech Republic); Haderka, Ond?ej [Joint Laboratory of Optics of Palacký University and Institute of Physics AS CR, 17. listopadu 12, 771 46 Olomouc (Czech Republic); Allevi, Alessia [Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, I-22100 Como (Italy); Bondani, Maria [Istituto di Fotonica e Nanotecnologie, CNR-IFN, I-22100 Como (Italy)

    2014-01-27T23:59:59.000Z

    A method for absolute calibration of a photon-number resolving detector producing analog signals as the output is developed using a twin beam. The method gives both analog-to-digital conversion parameters and quantum detection efficiency for the photon fields. Characteristics of the used twin beam are also obtained. A simplified variant of the method applicable to fields with high signal to noise ratios and suitable for more intense twin beams is suggested.

  4. Comment on 'Simultaneous gravity and gradient measurements from a recoil-compensated absolute gravimeter'

    E-Print Network [OSTI]

    Nagornyi, V D

    2011-01-01T23:59:59.000Z

    The article (Niebauer et al. 2011 Metrologia 48 154-163) reports on the important innovations enhancing the ability of absolute gravimeter to measure vertical gravity gradient along with the gravity acceleration. This comment suggests experiments to further assess the improvements and the results obtained with the modified instrument, considers some limitations of non-linear models in metrology and ways to overcome them, and discusses possible applications of the described instrument.

  5. Comment on "Measurement of the speed-of-light perturbation of free-fall absolute gravimeters"

    E-Print Network [OSTI]

    Nagornyi, V D

    2014-01-01T23:59:59.000Z

    The paper (Rothleitner et al. 2014 Metrologia 51, L9) reports on the measurement of the speed-of-light perturbation in absolute gravimeters. The conclusion that the perturbation reaches only 2/3 of the commonly accepted value violates the fundamental limitation on the maximum speed of information transfer. The conclusion was deluded by unaccounted parasitic perturbations, some of which are obvious from the report.

  6. Precise Measurement of the Absolute Yield of Fluorescence Photons in Atmospheric Gases

    SciTech Connect (OSTI)

    Ave, M.; /Karlsruhe, Inst. Technol.; Bohacova, M.; /Chicago U., EFI; Daumiller, K.; /Karlsruhe, Inst. Technol.; Di Carlo, P.; /INFN, Aquila; Di Giulio, C.; /INFN, Rome; Luis, P.Facal San; /Chicago U., EFI; Gonzales, D.; /Karlsruhe U., EKP; Hojvat, C.; /Fermilab; Horandel, J.R.; /Nijmegen U., IMAPP; Hrabovsky, M.; /Palacky U.; Iarlori, M.; /INFN, Aquila /Karlsruhe, Inst. Technol.

    2011-01-01T23:59:59.000Z

    We have performed a measurement of the absolute yield of fluorescence photons at the Fermilab Test Beam. A systematic uncertainty at 5% level was achieved by the use of Cherenkov radiation as a reference calibration light source. A cross-check was performed by an independent calibration using a laser light source. A significant improvement on the energy scale uncertainty of Ultra-High Energy Cosmic Rays is expected.

  7. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tiedtke, K.; Sorokin, A. A.; Jastrow, U.; Jurani?, P.; Kreis, S.; Gerken, N.; Richter, M.; Arp, U.; Feng, Y.; Nordlund, D.; et al

    2014-01-01T23:59:59.000Z

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray opticalmore »elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content.« less

  8. Mass and temperature limits for blackbody radiation

    E-Print Network [OSTI]

    Alessandro Pesci

    2006-03-24T23:59:59.000Z

    A spherically symmetric distribution of classical blackbody radiation is considered, at conditions in which gravitational self-interaction effects become not negligible. Static solutions to Einstein field equations are searched for, for each choice of the assumed central energy density. Spherical cavities at thermodynamic equilibrium, i.e. filled with blackbody radiation, are then studied, in particular for what concerns the relation among the mass M of the ball of radiation contained in them and their temperature at center and at the boundary. For these cavities it is shown, in particular, that: i) there is no absolute limit to M as well to their central and boundary temperatures; ii) when radius R is fixed, however, limits exist both for mass and for boundary energy density rho_B: M temperature) of the ball of radiation.

  9. Absolute polarization standards at medium and high energies. [200 to 900 MeV

    SciTech Connect (OSTI)

    McNaughton, M.W.

    1980-01-01T23:59:59.000Z

    Although measurement of a polarization asymmetry is rather easy, the normalization of the measurement to obtain the analyzing power requires an absolute knowledge of the beam polarization or comparison with a known standard analyzing power. Such calibration standards can be hard to find. This paper concentrates on medium and higher energies, and divides the techniques into four categories: double scattering, polarized target methods, polarized source methods, and theoretical methods. Secondary standards are also discussed, and earlier data are assessed. 52 references, 6 figures. (RWR)

  10. The concepts of leak before break and absolute reliability of NPP equipment and piping

    SciTech Connect (OSTI)

    Getman, A.F.; Komarov, O.V.; Sokov, L.M. [and others

    1997-04-01T23:59:59.000Z

    This paper describes the absolute reliability (AR) concept for ensuring safe operation of nuclear plant equipment and piping. The AR of a pipeline or component is defined as the level of reliability when the probability of an instantaneous double-ended break is near zero. AR analysis has been applied to Russian RBMK and VVER type reactors. It is proposed that analyses required for application of the leak before break concept should be included in AR implementation. The basic principles, methods, and approaches that provide the basis for implementing the AR concept are described.

  11. An absolute quantum energy inequality for the Dirac field in curved spacetime

    E-Print Network [OSTI]

    Calvin J. Smith

    2007-05-15T23:59:59.000Z

    Quantum Weak Energy Inequalities (QWEIs) are results which limit the extent to which the smeared renormalised energy density of a quantum field can be negative. On globally hyperbolic spacetimes the massive quantum Dirac field is known to obey a QWEI in terms of a reference state chosen arbitrarily from the class of Hadamard states; however, there exist spacetimes of interest on which state-dependent bounds cannot be evaluated. In this paper we prove the first QWEI for the massive quantum Dirac field on four dimensional globally hyperbolic spacetime in which the bound depends only on the local geometry; such a QWEI is known as an absolute QWEI.

  12. The Absolute Magnitude of RR Lyrae Stars Derived from the Hipparcos Catalogue

    E-Print Network [OSTI]

    Takuji Tsujimoto; Masanori Miyamoto; Yuzuru Yoshii

    1997-11-04T23:59:59.000Z

    The present determination of the absolute magnitude $M_V(RR)$ of RR Lyrae stars is twofold, relying upon Hipparcos proper motions and trigonometric parallaxes separately. First, applying the statistical parallax method to the proper motions, we find $=0.69\\pm0.10$ for 99 halo RR Lyraes with $$ =--1.58. Second, applying the Lutz-Kelker correction to the RR Lyrae HIP95497 with the most accurately measured parallax, we obtain $M_V(RR)$=(0.58--0.68)$^{+0.28}_{-0.31}$ at [Fe/H]=--1.6. Furthermore, allowing full use of low accuracy and negative parallaxes as well for 125 RR Lyraes with -- 2.49$\\leq$[Fe/H]$\\leq$0.07, the maximum likelihood estimation yields the relation, $M_V(RR)$=(0.59$\\pm$0.37)+(0.20$\\pm$0.63)([Fe/H]+1.60), which formally agrees with the recent preferred relation. The same estimation yields again $$ = $0.65\\pm0.33$ for the 99 halo RR Lyraes. Although the formal errors in the latter three parallax estimates are rather large, all of the four results suggest the fainter absolute magnitude, $M_V(RR)$$\\approx$0.6--0.7 at [Fe/H]=--1.6. The present results still provide the lower limit on the age of the universe which is inconsistent with a flat, matter-dominated universe and current estimates of the Hubble constant.

  13. Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae

    E-Print Network [OSTI]

    Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi

    2015-01-01T23:59:59.000Z

    We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...

  14. Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors

    E-Print Network [OSTI]

    Selker, John

    Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors Scott W. TYLER,1 Susan A. BURAK,2 James P. MCNAMARA,3 Aurele LAMONTAGNE,3 John S. SELKER,4 Jeff, which use the scattered light in a standard telecommunications fiber-optic cable to infer absolute

  15. Absolute intensity calibration of flat-field space-resolved extreme ultraviolet spectrometer using radial profiles of visible and extreme ultraviolet bremsstrahlung continuum emitted from high-density plasmas in Large Helical Device

    SciTech Connect (OSTI)

    Dong Chunfeng; Wang Erhui [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); Morita, Shigeru; Goto, Motoshi [Department of Fusion Science, Graduate University for Advanced Studies, Toki 509-5292, Gifu (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2011-11-15T23:59:59.000Z

    A precise absolute intensity calibration of a flat-field space-resolved extreme ultraviolet (EUV) spectrometer working in wavelength range of 60-400 A is carried out using a new calibration technique based on radial profile measurement of the bremsstrahlung continuum in Large Helical Device. A peaked vertical profile of the EUV bremsstrahlung continuum has been successfully observed in high-density plasmas (n{sub e}{>=} 10{sup 14} cm{sup -3}) with hydrogen ice pellet injection. The absolute calibration can be done by comparing the EUV bremsstrahlung profile with the visible bremsstrahlung profile of which the absolute value has been already calibrated using a standard lamp. The line-integrated profile of measured visible bremsstrahlung continuum is firstly converted into the local emissivity profile by considering a magnetic surface distortion due to the plasma pressure, and the local emissivity profile of EUV bremsstrahlung is secondly calculated by taking into account the electron temperature profile and free-free gaunt factor. The line-integrated profile of the EUV bremsstrahlung continuum is finally calculated from the local emissivity profile in order to compare with measured EUV bremsstrahlung profile. The absolute intensity calibration can be done by comparing measured and calculated EUV bremsstrahlung profiles. The calibration factor is thus obtained as a function of wavelength with excellent accuracy. It is also found in the profile analysis that the grating reflectivity of EUV emissions is constant along the direction perpendicular to the wavelength dispersion. Uncertainties on the calibration factor determined with the present method are discussed including charge-coupled device operation modes.

  16. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature

    SciTech Connect (OSTI)

    Buß, J. H.; Schaefer, A.; Hägele, D.; Rudolph, J. [Arbeitsgruppe Spektroskopie der kondensierten Materie, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum (Germany); Schupp, T.; As, D. J. [Department of Physics, University of Paderborn, Warburger Str. 100, D-33095 Paderborn (Germany)

    2014-11-03T23:59:59.000Z

    The electron spin dynamics in n-doped bulk cubic GaN is investigated for very high temperatures from 293?K up to 500?K by time-resolved Kerr-rotation spectroscopy. We find extraordinarily long spin lifetimes exceeding 1?ns at 500?K. The temperature dependence of the spin relaxation time is in qualitative agreement with predictions of Dyakonov-Perel theory, while the absolute experimental times are an order of magnitude shorter than predicted. Possible reasons for this discrepancy are discussed, including the role of phase mixtures of hexagonal and cubic GaN as well as the impact of localized carriers.

  17. Can corner-cube absolute gravimeters sense the effects of Special Relativity?

    E-Print Network [OSTI]

    Nagornyi, V D; Zanimonskiy, Y Y

    2012-01-01T23:59:59.000Z

    Relativistic treatment of the finite speed of light correction in absolute gravimeters, as evolved by Rothleitner and Francis in Metrologia 2011, 48 442-445, following the initial publication in Metrologia 2011, 48 187-195, leads to spurious conclusions. The double Doppler shift implemented in the gravimeters obliterates the difference between its relativistic and non-relativistic formulation. Optical heterodyning used in Michelson-type interferometers makes the quadratic Lorenz-like term of the double Doppler shift discernable against the linear term, while in relativistic experiments the quadratic term has to be detected against the unit. The disturbance of the registered trajectory caused by the finite speed of light includes tracking signal delay as intrinsic part not reducible to the Doppler shifts.

  18. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Frenje, J. A. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Gatu Johnson, M. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Seguin, F. H. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Li, C. K. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Petrasso, R. D. [MIT, Cambridge, MA (United States). Plasma Science and Fusion Center; Glebov, V. Yu. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Katz, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Magoon, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Meyerhofer, D. D. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Sangster, T. C. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Shoup, M. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Ulreich, J. [Univ. of Rochester, NY (United States). Lab. for Laser Energitics; Ashabranner, R. C. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Bionta, R. M. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Carpenter, A. C. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Felker, B. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Khater, H. Y. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); LePape, S. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); MacKinnon, A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); McKernan, M. A. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Moran, M. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Rygg, J. R. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Yeoman, M. F. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Zacharias, R. [Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Leeper, R. J. [Sandia National Laboratories, Albuquerque, NM (United States); Fletcher, K. [State Univ. of New York at Geneseo, NY (United States); Farrell, M. [General Atomics, San Diego, CA (United States); Jasion, D. [General Atomics, San Diego, CA (United States); Kilkenny, J. [General Atomics, San Diego, CA (United States); Paguio, R. [General Atomics, San Diego, CA (United States)

    2013-01-01T23:59:59.000Z

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describes ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.

  19. Possible Observation of Nuclear Reactor Neutrinos Near the Oscillation Absolute Minimum

    E-Print Network [OSTI]

    C. Bouchiat

    2003-04-27T23:59:59.000Z

    After a summary of the basic three neutrino oscillation formalism we review briefly our present empirical knowledge of the oscillation parameters and conclude that the 2-neutrinos model is adequate to describe the survival probability of the electronic neutrino P(nue->nue). Then we proceed to the evaluation of P(nue->nue) relative to the antineutrinos emitted by the nuclear power stations presently in operation along the the Rhone valley. We assume that a detector has been installed in a existing cavity located under the Mont Ventoux at a depth equivalent to 1500 m of water. We show that such an experiment would provide the opportunity to observe neutrinos near the oscillation absolute minimum. We end by a rough estimate of the counting rate.

  20. The magnetic recoil spectrometer for measurements of the absolute neutron spectrum at OMEGA and the NIF

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Casey, D. T.; Frenje, J. A.; Gatu Johnson, M.; Seguin, F. H.; Li, C. K.; Petrasso, R. D.; Glebov, V. Yu.; Katz, J.; Magoon, J.; Meyerhofer, D. D.; et al

    2013-01-01T23:59:59.000Z

    The neutron spectrum produced by deuterium-tritium (DT) inertial confinement fusion implosions contains a wealth of information about implosion performance including the DT yield, iontemperature, and areal-density. The Magnetic Recoil Spectrometer (MRS) has been used at both the OMEGA laser facility and the National Ignition Facility (NIF) to measure the absolute neutron spectrum from 3 to 30 MeV at OMEGA and 3 to 36 MeV at the NIF. These measurements have been used to diagnose the performance of cryogenic target implosions to unprecedented accuracy. Interpretation of MRS data requires a detailed understanding of the MRS response and background. This paper describesmore »ab initio characterization of the system involving Monte Carlo simulations of the MRS response in addition to the commission experiments for in situ calibration of the systems on OMEGA and the NIF.« less

  1. The effective beta sensitivity to the incident neutron energy dependence of the absolute delayed neutron yields

    SciTech Connect (OSTI)

    D'Angelo, A. (ENEA, Casaccia (Italy)); Filip, A. (Centre d'Etudes Nucleaires de Cadarache, Saint Paul lez Durance (France). Commissariat a l'Energie Atomique)

    1993-08-01T23:59:59.000Z

    The uncertainty of the [sup 235]U, [sup 239]Pu, and [sup 238]U absolute delayed neutron yields v[sub d] is one of the principal sources of uncertainty in predicting the fission reactor reactivity scale [beta][sub eff]. The current uncertainties in the dependence of v[sub d] on incident neutron energy is investigated for significance in the evaluation of [beta][sub eff]. The uncertainty effects on the GODIVA, JEZEBEL, Zero Power Reactor, SNEAK, and Masurca benchmark facility calculations are analyzed using ENDF/B and JEF basic data. Different assumptions about the energy dependence result in variations of up to 5% in the reactor spectrum averaged values of v[sub d], and these would result in variations of up to [approximately] 2% in the value of [beta][sub eff] for a typical liquid-metal fast breeder reactor.

  2. The modified dynamics (MOND) predicts an absolute maximum to the acceleration produced by `dark halos'

    E-Print Network [OSTI]

    Rafael Brada; Mordehai Milgrom

    1998-12-21T23:59:59.000Z

    We have recently discovered that the modified dynamics (MOND) implies some universal upper bound on the acceleration that can be contributed by a `dark halo'--assumed in a Newtonian analysis to account for the effects of MOND. Not surprisingly, the limit is of the order of the acceleration constant of the theory. This can be contrasted directly with the results of structure-formation simulations. The new limit is substantial and different from earlier MOND acceleration limits (discussed in connection with the MOND explanation of the Freeman law for galaxy disks, and the Fish law for ellipticals): It pertains to the `halo', and not to the observed galaxy; it is absolute, and independent of further physical assumptions on the nature of the galactic system; and it applies at all radii, whereas the other limits apply only to the mean acceleration in the system.

  3. Measurement of the Absolute Branching Fraction of D0 to K- pi+

    SciTech Connect (OSTI)

    Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Lopez, L.; Palano, A.; /Bari U.; Eigen, G.; Ofte, I.; Stugu, B.; Sun, L.; /Bergen U.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /LBL, Berkeley

    2007-04-25T23:59:59.000Z

    The authors measure the absolute branching fraction for D{sup 0} {yields} K{sup -} {pi}{sup +} using partial reconstruction of {bar B}{sup 0} {yields} D*{sup +}X{ell}{sup -}{bar {nu}}{sub {ell}} decays, in which only the charged lepton and the pion from the decay D*{sup +} {yields} D{sup 0}{pi}{sup +} are used. Based on a data sample of 230 million B{bar B} pairs collected at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC, they obtain {Beta}(D{sup 0} {yields} K{sup -}{pi}{sup +}) = (4.007 {+-} 0.037 {+-} 0.070)%, where the first error is statistical and the second error is systematic.

  4. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  5. THE DESIGN AND CONSTRUCTION OF AN ABSOLUTE PERMEAMETER TO MEASURE THE

    E-Print Network [OSTI]

    Stanford University

    Recording Pressure Differences Recording and Calibrating Cooling System Flowrate Measuring Intake Water Flow, Temperature Recording, Ap Recor- ding, and Cooling System Flow Measurements a t Various Flowrates at a Constant Temperature (T, Ap, q) Heating t h e System Cooling t h e System Stopping t h e Flow Confining

  6. Temperature-dependent ion beam mixing

    SciTech Connect (OSTI)

    Rehn, L.E.; Alexander, D.E.

    1993-08-01T23:59:59.000Z

    Recent work on enhanced interdiffusion rates during ion-beam mixing at elevated temperatures is reviewed. As discussed previously, expected increase in ion-beam mixing rates due to `radiation-enhanced diffusion` (RED), i.e. the free migration of isolated vacancy and interstitial defects, is well documented in single-crystal specimens in the range of 0.4 to 0.6 of absolute melting temperature. In contrast, the increase often observed at somewhat lower temperatures during ion-beam mixing of polycrystalline specimens is not well understood. However, sufficient evidence is available to show that this increase reflects intracascade enhancement of a thermally-activated process that also occurs without irradiation. Recent evidence is presented which suggests that this process is Diffusion-induced Grain-Boundary Migration (DIGM). An important complementary conclusion is that because ion-beam mixing in single-crystal specimens exhibits no significant temperature dependence below that of RED, models that invoke only irradiation-specific phenomena, e.g., cascade-overlap, thermal-spikes, or liquid-diffusion, and hence which predict no difference in mixing behavior between single- or poly-crystalline specimens, cannot account for the existing results.

  7. Design and Synthesis of Visible Isotope-Coded Affinity Tags for the Absolute Quantification of Specific Proteins in Complex Mixtures

    E-Print Network [OSTI]

    Gelb, Michael

    for selective enrichment of tag peptides. Another cysteine peptide enrichment and isotope tagging scheme hasDesign and Synthesis of Visible Isotope-Coded Affinity Tags for the Absolute Quantification spectrometry is most useful when quantitative data is also obtained. We recently introduced isotope

  8. Absolute orientation-dependent anisotropic TiN,,111... island step energies and stiffnesses from shape fluctuation analyses

    E-Print Network [OSTI]

    Khare, Sanjay V.

    by alternating 110 steps, which form 100 and 110 nanofacets with the terrace. Relative step energiesAbsolute orientation-dependent anisotropic TiN,,111... island step energies and stiffnesses from of the island per unit TiN area. We find that for alternating S1 and S2 110 steps, the ratio 1 / 2 0.72 0

  9. Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail Mihailescu and Hagai Meirovitch*

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail dissociation measurements suggest that the free-energy (F) penalty for the loop displacement is F ) Ffree contribution of water to the total free energy. Namely, for water densities close to the experimental value

  10. Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint

    SciTech Connect (OSTI)

    Leach, M.; Bonnema, E.; Pless, S.; Torcellini, P.

    2012-08-01T23:59:59.000Z

    This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

  11. Estimation of Absolute Free Energies of Hydration using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions

    E-Print Network [OSTI]

    Rizzo, Robert C.

    Estimation of Absolute Free Energies of Hydration using Continuum Methods: Accuracy of Partial, and Irwin D. Kuntz Supporting Information Table S1. Experimental Free Energies of Hydration (Ghyd) in kcal,2-dimethylcyclohexane 1.58 36 trans-1,4-dimethylcyclohexane 2.11 37 ethene 1.28 38 propene 1.32 39 but-1-ene 1.38 40

  12. Population effects on the red giant clump absolute magnitude The K-band

    E-Print Network [OSTI]

    Salaris, M; Salaris, Maurizio

    2002-01-01T23:59:59.000Z

    We present a detailed analysis of the behaviour of the Red Clump K-band absolute magnitude (M(K,RC)) in simple and composite stellar populations, in light of its use as standard candle for distance determinations. The advantage of using M(K,RC), following recent empirical calibrations of its value for the solar neighbourhood, arises from its very low sensitivity to the extinction by interstellar dust. We provide data and equations which allow the determination of the K-band population correction Delta(M(K,RC)) (difference between the Red Clump brightness in the solar neighbourhood and in the population under scrutiny) for any generic stellar population. These data complement the results presented in Girardi & Salaris(2001) for the V- and I-band. We show how data from galactic open clusters consistently support our predicted Delta(M(V,RC)), Delta(M(I,RC)) and Delta(M(K,RC)) values. Multiband VIK population corrections for various galaxy systems are provided. They can be used in conjunction with the method ...

  13. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    SciTech Connect (OSTI)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Allafort, A.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm; Baldini, L.; /INFN, Pisa; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bloom, E.D.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Bouvier, A.; /UC, Santa Cruz; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari Polytechnic /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Buson, S.; /INFN, Padua /Padua U. /CSIC, Catalunya /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Unlisted, US /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /ASDC, Frascati /Perugia U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /ASDC, Frascati /Bari Polytechnic /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Montpellier U. /Bari Polytechnic /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Ecole Polytechnique /Hiroshima U. /Stanford U., HEPL /SLAC /KIPAC, Menlo Park /Bari Polytechnic /INFN, Bari /INFN, Bari /NASA, Goddard /INFN, Perugia /Perugia U.; /more authors..

    2012-09-20T23:59:59.000Z

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  14. Absolute frequency measurement of the In$^{+}$ clock transition with a mode-locked laser

    E-Print Network [OSTI]

    J. von Zanthier; Th. Becker; M. Eichenseer; A. Yu. Nevsky; Ch. Schwedes; E. Peik; H. Walther; R. Holzwarth; J. Reichert; Th. Udem; T. W. Hänsch; P. V. Pokasov; M. N. Skvortsov; S. N. Bagayev

    2000-10-05T23:59:59.000Z

    The absolute frequency of the In$^{+}$ $5s^{2 1}S_{0}$ - $5s5p^{3}P_{0}$ clock transition at 237 nm was measured with an accuracy of 1.8 parts in $10^{13}$. Using a phase-coherent frequency chain, we compared the $^{1}S_{0}$ - $^{3}P_{0}$ transition with a methane-stabilized He-Ne laser at 3.39 $\\mu$m which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the He-Ne standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In$^{+}$ clock transition was found to be $1 267 402 452 899.92 (0.23)$ kHz, the accuracy being limited by the uncertainty of the He-Ne laser reference. This represents an improvement in accuracy of more than 2 orders of magnitude on previous measurements of the line and now stands as the most accurate measurement of an optical transition in a single ion.

  15. Can tree-ring chemistry reveal absolute dates for past volcanic eruptions?

    E-Print Network [OSTI]

    Manning, Sturt

    eruption, back-scatters incoming solar radiation and light, lowering ground temperatures * Corresponding, Sidney Smith Hall, 100 St. George Street, University of Toronto, Toronto, Ontario M5S 3G3, Canada. 0305

  16. New Method for Calculating the Absolute Free Energy of Binding: The Effect of a Mobile Loop on the Avidin/Biotin Complex

    E-Print Network [OSTI]

    Meirovitch, Hagai

    New Method for Calculating the Absolute Free Energy of Binding: The Effect of a Mobile Loop energy and entropy. HSMD is extended here for the first time for calculating the absolute free energy change to the total free energy of binding is calculated here for the first time. Our result, A0 ) -24

  17. Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method: Application to liquid argon and water

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Lower and upper bounds for the absolute free energy by the hypothetical scanning Monte Carlo method The hypothetical scanning HS method is a general approach for calculating the absolute entropy S and free energy F to provide the free energy through the analysis of a single configuration. © 2004 American Institute

  18. Observables sensitive to absolute neutrino masses: A reappraisal after WMAP-3y and first MINOS results

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Marrone; A. Melchiorri; A. Palazzo; P. Serra; J. Silk; A. Slosar

    2006-08-04T23:59:59.000Z

    In the light of recent neutrino oscillation and non-oscillation data, we revisit the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in single beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). In particular, we include the constraints coming from the first Main Injector Neutrino Oscillation Search (MINOS) data and from the Wilkinson Microwave Anisotropy Probe (WMAP) three-year (3y) data, as well as other relevant cosmological data and priors. We find that the largest neutrino squared mass difference is determined with a 15% accuracy (at 2-sigma) after adding MINOS to world data. We also find upper bounds on the sum of neutrino masses Sigma ranging from ~2 eV (WMAP-3y data only) to ~0.2 eV (all cosmological data) at 2-sigma, in agreement with previous studies. In addition, we discuss the connection of such bounds with those placed on the matter power spectrum normalization parameter sigma_8. We show how the partial degeneracy between Sigma and sigma_8 in WMAP-3y data is broken by adding further cosmological data, and how the overall preference of such data for relatively high values of sigma_8 pushes the upper bound of Sigma in the sub-eV range. Finally, for various combination of data sets, we revisit the (in)compatibility between current Sigma and m_2beta constraints (and claims), and derive quantitative predictions for future single and double beta decay experiments.

  19. Observables sensitive to absolute neutrino masses: Constraints and correlations from world neutrino data

    E-Print Network [OSTI]

    G. L. Fogli; E. Lisi; A. Marrone; A. Melchiorri; A. Palazzo; P. Serra; J. Silk

    2004-11-17T23:59:59.000Z

    In the context of three-flavor neutrino mixing, we present a thorough study of the phenomenological constraints applicable to three observables sensitive to absolute neutrino masses: The effective neutrino mass in Tritium beta decay (m_beta); the effective Majorana neutrino mass in neutrinoless double beta decay (m_2beta); and the sum of neutrino masses in cosmology (Sigma). We discuss the correlations among these variables which arise from the combination of all the available neutrino oscillation data, in both normal and inverse neutrino mass hierarchy. We set upper limits on m_beta by combining updated results from the Mainz and Troitsk experiments. We also consider the latest results on m_2beta from the Heidelberg-Moscow experiment, both with and without the lower bound claimed by such experiment. We derive upper limits on Sigma from an updated combination of data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite and the 2 degrees Fields (2dF) Galaxy Redshifts Survey, with and without Lyman-alpha forest data from the Sloan Digital Sky Survey (SDSS), in models with a non-zero running of the spectral index of primordial inflationary perturbations. The results are discussed in terms of two-dimensional projections of the globally allowed region in the (m_beta,m_2beta,Sigma) parameter space, which neatly show the relative impact of each data set. In particular, the (in)compatibility between Sigma and m_2beta constraints is highlighted for various combinations of data. We also briefly discuss how future neutrino data (both oscillatory and non-oscillatory) can further probe the currently allowed regions.

  20. Absolute kinematics of radio source components in the complete S5 polar cap sample

    E-Print Network [OSTI]

    M. A. Perez-Torres; J. M. Marcaide; J. C. Guirado; E. Ros

    2004-08-31T23:59:59.000Z

    We observed the thirteen extragalactic radio sources of the complete S5 polar cap sample at 15.4 GHz with the Very Long Baseline Array, on 27 July 1999 (1999.57) and 15 June 2000 (2000.46). We present the maps from those two epochs, along with maps obtained from observations of the 2 cm VLBA survey for some of the sources of the sample, making a total of 40 maps. We discuss the apparent morphological changes displayed by the radio sources between the observing epochs. Our VLBA observations correspond to the first two epochs at 15.4 GHz of a program to study the absolute kinematics of the radio source components of the members of the sample, by means of phase delay astrometry at 8.4 GHz, 15.4 GHz, and 43 GHz. Our 15.4 GHz VLBA imaging allowed us to disentangle the inner milliarcsecond structure of some of the sources, thus resolving components that appeared blended at 8.4 GHz. For most of the sources, we identified the brightest feature in each radio source with the core. These identifications are supported by the spectral index estimates for those brightest features, which are in general flat, or even inverted. Most of the sources display core-dominance in the overall emission. We find that three of the sources have their most inverted spectrum component shifted with respect to the origin in the map, which approximately coincides with the peak-of-brightness at both 15.4 GHz and 8.4 GHz.

  1. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    E-Print Network [OSTI]

    Reginald T Cahill

    2006-10-11T23:59:59.000Z

    Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000+/-400+/-20km/s in a measured direction RA=5.5+/-2hrs, Dec=70+/-10deg S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26), and even those of Michelson and Morley (1887). The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983), De Witte (1991) and the new experiment all reveal the presence of gravitational waves, as indicated by the last +/- variations above, but of a kind different from those supposedly predicted by General Relativity. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry - this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists - that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality.

  2. Cross-spectral study of the spatial relationships in the North Pacific sea-surface temperature anomaly field. Report No. 23

    SciTech Connect (OSTI)

    Middleton, J.W.

    1980-03-01T23:59:59.000Z

    Cross-spectral analysis is used to examine the dependence of the temporal covariation of sea-surface temperature (SST) anomalies at pairs of spatially separated points in the North Pacific on (1) the time scale of the variations, (2) the relative displacement of the points and (3) their location within the North Pacific basin. Spatial scales considered here range from 1000 kilometers up to the width of the basin. The study focuses on cross-spectral estimates for the interannual frequency band, 0.125-0.75 yr/sup -1/ although estimates for three other bands spanning higher frequencies are also examined.

  3. 1000 2000 3000 4000 .5 0 1 KILOMETER

    E-Print Network [OSTI]

    Kidd, William S. F.

    Rocks, Including Interbedded Limestone, Ordovician Black Shale/Slate Green Shale/Slate Bedded Limestone Quartz Arenite or Quartz Rich Wacke Brown/Tan/Olive DrabShale/Slate, Mudstone, and Sandstone Red Shale/Slate

  4. Topology of neutral hydrogen distribution with the Square Kilometer Array

    E-Print Network [OSTI]

    Wang, Yougang; Wu, Fengquan; Chen, Xuelei; Wang, Xin; Kim, Juhan; Park, Changbom; Lee, Khee-Gan; Cen, Renyue

    2015-01-01T23:59:59.000Z

    Morphology of the complex HI gas distribution can be quantified by statistics like the Minkowski functionals, and can provide a way to statistically study the large scale structure in the HI maps both at low redshifts, and during the epoch of reionization (EoR). At low redshifts, the 21cm emission traces the underlying matter distribution. Topology of the HI gas distribution, as measured by the genus, could be used as a "standard ruler". This enables the determination of distance-redshift relation and also the discrimination of various models of dark energy and of modified gravity. The topological analysis is also sensitive to certain primordial non-Gaussian features. Compared with two-point statistics, the topological statistics are more robust against the nonlinear gravitational evolution, bias, and redshift-space distortion. The HI intensity map observation naturally avoids the sparse sampling distortion, which is an important systematic in optical galaxy survey. The large cosmic volume accessible to SKA w...

  5. Absolute calibration of image plates for electrons at energy between 100 keV and 4 MeV

    SciTech Connect (OSTI)

    Chen Hui; Back, Norman L.; Eder, David C.; MacPhee, Andrew G.; Ping Yuan; Song, Peter M.; Throop, Alan [Lawrence Livermore National Laboratory, Livermore, California 94550-9234 (United States); Bartal, Teresa; Beg, F. N. [University of California, San Diego, La Jolla, California 92093 (United States); Link, Anthony J.; Van Woerkom, Linn [Ohio State University, Columbus, Ohio 43210 (United States)

    2008-03-15T23:59:59.000Z

    We measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV and 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on solid density targets. This paper presents the calibration results of image plate photon stimulated luminescence per electron at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energy depositions at these angles. These provide a complete set of tools that allows extraction of our absolute calibration to other spectrometer setting at this electron energy range.

  6. The earth's absolute gravitation potential function in the prospect 'gravitational potential metering' of geological objects and earthquake centers

    E-Print Network [OSTI]

    Aleksandr Fridrikson; Marina Kasatochkina

    2009-04-08T23:59:59.000Z

    The direct problem of the detection of the Earth's absolute gravitation potential maximum value (MGP) was solved. The inverse problem finding of the Earth maximum gravitation (where there is a maximum of gravitation field intensity and a potential function has a 'bending point') with the help of MGP was solved as well. The obtained results show that the revealed Earth maximum gravitation coincides quite strictly with the cseismic D" layer on the border of the inner and outer (liquid) core. The validity of the method of an absolute gravitation potential detection by the equal- potential velocity was proved as 'gravitation potential measurement' or 'Vs-gravity method'. The prospects of this method for detecting of low-power or distant geological objects with abnormal density and the possible earthquakes with low density was shown.

  7. Telescope Spectrophotometric and Absolute Flux Calibration, and National Security Applications, Using a Tunable Laser on a Satellite

    E-Print Network [OSTI]

    Justin Albert; William Burgett; Jason Rhodes

    2006-05-19T23:59:59.000Z

    We propose a tunable laser-based satellite-mounted spectrophotometric and absolute flux calibration system, to be utilized by ground- and space-based telescopes. As spectrophotometric calibration may play a significant role in the accuracy of photometric redshift measurement, and photometric redshift accuracy is important for measuring dark energy using SNIa, weak gravitational lensing, and baryon oscillations, a method for reducing such uncertainties is needed. We propose to improve spectrophotometric calibration, currently obtained using standard stars, by placing a tunable laser and a wide-angle light source on a satellite by early next decade (perhaps included in the upgrade to the GPS satellite network) to improve absolute flux calibration and relative spectrophotometric calibration across the visible and near-infrared spectrum. As well as fundamental astrophysical applications, the system proposed here potentially has broad utility for defense and national security applications such as ground target illumination and space communication.

  8. Absolute infrared vibrational band intensities of molecular ions determined by direct laser absorption spectroscopy in fast ion beams

    SciTech Connect (OSTI)

    Keim, E.R.; Polak, M.L.; Owrutsky, J.C.; Coe, J.V.; Saykally, R.J. (Department of Chemistry, University of California, Berkeley, CA (USA))

    1990-09-01T23:59:59.000Z

    The technique of direct laser absorption spectroscopy in fast ion beams has been employed for the determination of absolute integrated band intensities ({ital S}{sup 0}{sub {ital v}}) for the {nu}{sub 3} fundamental bands of H{sub 3}O{sup +} and NH{sup +}{sub 4}. In addition, the absolute band intensities for the {nu}{sub 1} fundamental bands of HN{sup +}{sub 2} and HCO{sup +} have been remeasured. The values obtained in units of cm{sup {minus}2} atm{sup {minus}1} at STP are 1880(290) and 580(90) for the {nu}{sub 1} fundamentals of HN{sup +}{sub 2} and HCO{sup +}, respectively; and 4000(800) and 1220(190) for the {nu}{sub 3} fundamentals of H{sub 3}O{sup +} and NH{sup +}{sub 4}, respectively. Comparisons with {ital ab} {ital initio} results are presented.

  9. Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection

    E-Print Network [OSTI]

    L. A. M. Johnson; H. O. Majeed; B. Sanguinetti; Th. Becker; B. T. H. Varcoe

    2010-02-16T23:59:59.000Z

    A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium Rydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.

  10. Absolute spin calibration of an electron spin polarimeter by spin-resolved photoemission from the Au(111) surface states

    SciTech Connect (OSTI)

    Cacho, Cephise M. [Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Photon Science Department, Science and Technology Facilities Council, Daresbury WA4 4AD (United Kingdom); Vlaic, Sergio [Dipartimento di Fisica, Universita di Trieste, via Valerio 2, 34127 Trieste (Italy); Malvestuto, Marco; Ressel, Barbara [Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Seddon, Elaine A. [Photon Science Department, Science and Technology Facilities Council, Daresbury WA4 4AD (United Kingdom); Parmigiani, Fulvio [Sincrotrone Trieste, Strada Statale 14, km 163,5 in AREA Science Park, 34012 Basovizza, Trieste (Italy); Dipartimento di Fisica, Universita di Trieste, via Valerio 2, 34127 Trieste (Italy)

    2009-04-15T23:59:59.000Z

    Here we report the absolute characterization of a spin polarimeter by measuring the Sherman function with high precision. These results have been obtained from the analysis of the spin and angle-resolved photoemission spectra of Au(111) surface states. The measurements have been performed with a 250 kHz repetition rate Ti:sapphire amplified laser system combined with a high energy-, angle-, and spin-resolving time-of-flight electron spectrometer.

  11. Constraining the absolute neutrino mass scale and Majorana CP violating phases by future neutrinoless double beta decay experiments

    E-Print Network [OSTI]

    H. Nunokawa; W. J. C. Teves; R. Zukanovich Funchal

    2002-10-10T23:59:59.000Z

    Assuming that neutrinos are Majorana particles, in a three generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta ($0\

  12. Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera

    E-Print Network [OSTI]

    Brida, Giorgio; Genovese, Marco; Rastello, Maria Luisa; Ruo-Berchera, Ivano

    2010-01-01T23:59:59.000Z

    We propose and demonstrate experimentally a new method based on the spatial entanglement for the absolute calibration of analog detector. The idea consists on measuring the sub-shot-noise intensity correlation between two branches of parametric down conversion, containing many pairwise correlated spatial modes. We calibrate a scientific CCD camera and a preliminary evaluation of the statistical uncertainty indicates the metrological interest of the method.

  13. Detection of multimode spatial correlation in PDC and application to the absolute calibration of a CCD camera

    E-Print Network [OSTI]

    Giorgio Brida; Ivo Pietro Degiovanni; Marco Genovese; Maria Luisa Rastello; Ivano Ruo-Berchera

    2010-05-17T23:59:59.000Z

    We propose and demonstrate experimentally a new method based on the spatial entanglement for the absolute calibration of analog detector. The idea consists on measuring the sub-shot-noise intensity correlation between two branches of parametric down conversion, containing many pairwise correlated spatial modes. We calibrate a scientific CCD camera and a preliminary evaluation of the statistical uncertainty indicates the metrological interest of the method.

  14. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P. (Idaho Falls, ID)

    1992-01-01T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  15. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04T23:59:59.000Z

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  16. Determination of electron temperature from spectral line intensity decay for radiation dominated plasmas

    SciTech Connect (OSTI)

    Michael, C.A.; Howard, J. [PRL, RSPhysSE, Australian National University, Canberra A.C.T. 0200 (Australia)

    2004-10-01T23:59:59.000Z

    We describe a technique to absolutely estimate the electron temperature in radiation dominated plasmas from the temporal decay during the plasma afterglow of the intensity of a single spectral line. The model and underlying assumptions are described. We apply the model to data in both rf heated argon discharges and electron cyclotron heated He/H discharges in the H-1 heliac. The results agree well with probe measurements.

  17. 2396 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I: REGULAR PAPERS, VOL. 53, NO. 11, NOVEMBER 2006 Absolute Temperature Monitoring Using RF

    E-Print Network [OSTI]

    Atalar, Ergin

    in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive of radiometry for envi- ronmental and astronomical applications including the measure- ment of ocean and planet

  18. A wearable system that learns a kinematic model and finds structure in everyday manipulation by using absolute orientation sensors and a camera

    E-Print Network [OSTI]

    Kemp, Charles C. (Charles Clark), 1972-

    2005-01-01T23:59:59.000Z

    This thesis presents Duo, the first wearable system to autonomously learn a kinematic model of the wearer via body-mounted absolute orientation sensors and a head-mounted camera. With Duo, we demonstrate the significant ...

  19. Measurements of absolute delayed neutron yield and group constants in the fast fission of {sup 235}U and {sup 237}Np

    SciTech Connect (OSTI)

    Loaiza, D.J.; Brunson, G.; Sanchez, R.; Butterfield, K. [Los Alamos National Lab., NM (United States)

    1998-03-01T23:59:59.000Z

    The delayed neutron activity resulting from the fast induced fission of {sup 235}U and {sup 237}Np has been studied. The six-group decay constants, relative abundances, and absolute yield of delayed neutrons from fast fission of {sup 235}U and {sup 237}Np were measured using the Godiva IV fast assembly at the Los Alamos Critical Experiments Facility. The absolute yield measured for {sup 235}U was 0.0163 {+-} 0.0008 neutron/fission. This value compares very well with the well-established Keepin absolute yield of 0.0165 {+-} 0.0005. The absolute yield value measured for {sup 237}Np was 0.0126 {+-} 0.0007. The measured delayed neutron parameters for {sup 235}U are corroborated with period (e-folding time) versus reactivity calculations.

  20. Would you like an absolutely free prescription for reduced risk of numerous diseases and increased energy, happiness and life expectancy that requires no trips to the store or

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Would you like an absolutely free prescription for reduced risk of numerous diseases and increased energy, happiness and life expectancy that requires no trips to the store or special equipment? What

  1. Strings at finite temperature

    SciTech Connect (OSTI)

    Arago C. de; Bazeia, D.; Eboli, O.J.P.; Marques, G.C.

    1985-12-15T23:59:59.000Z

    We obtain a semiclassical evaluation of the temperature for which the free energy of the strings of spontaneously broken scalar electrodynamics vanishes. We argue that, above this temperature, these objects should play a significant physical role.

  2. Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho

    SciTech Connect (OSTI)

    Nathenson, M.; Urban, T.C.; Diment, W.H.; Nehring, N.L.

    1980-01-01T23:59:59.000Z

    The Raft River area of Idaho contains a geothermal system of intermediate temperatures (approx. = 150/sup 0/C) at depths of about 1.5 km. Outside of the geothermal area, temperature measurements in three intermediate-depth drill holes (200 to 400 m) and one deep well (1500 m) indicate that the regional conductive heat flow is about 2.5 ..mu..cal/cm/sup 2/ sec or slightly higher and that temperature gradients range from 50/sup 0/ to 60/sup 0/C/km in the sediments, tuffs, and volcanic debris that fill the valley. Within and close to the geothermal system, temperature gradients in intermediate-depth drill holes (100 to 350 m) range from 120/sup 0/ to more than 600/sup 0/C/km, the latter value found close to an artesian hot well that was once a hot spring. Temperatures measured in three deep wells (1 to 2 km) within the geothermal area indicate that two wells are in or near an active upflow zone, whereas one well shows a temperature reversal. Assuming that the upflow is fault controlled, the flow is estimated to be 6 liter/sec per kilometer of fault length. From shut-in pressure data and the estimated flow, the permeability times thickness of the fault is calculated to be 2.4 darcy m. Chemical analyses of water samples from old flowing wells, recently completed intermediate-depth drill holes, and deep wells show a confused pattern. Geothermometer temperatures of shallow samples suggest significant re-equilibration at temperatures below those found in the deep wells. Silica geothermometer temperatures of water samples from the deep wells are in reasonable agreement with measured temperatures, whereas Na-K-Ca temperatures are significantly higher than measured temperatures. The chemical characteristics of the water, as indicated by chloride concentration, are extremely variable in shallow and deep samples. Chloride concentrations of the deep samples range from 580 to 2200 mg/kg.

  3. Absolute measurement of thermal noise in a resonant short-range force experiment

    E-Print Network [OSTI]

    H. Yan; E. A. Housworth; H. O. Meyer; G. Visser; E. Weisman; J. C. Long

    2014-10-23T23:59:59.000Z

    Planar, double-torsional oscillators are especially suitable for short-range macroscopic force search experiments, since they can be operated at the limit of instrumental thermal noise. As a study of this limit, we report a measurement of the noise kinetic energy of a polycrystalline tungsten oscillator in thermal equilibrium at room temperature. The fluctuations of the oscillator in a high-Q torsional mode with a resonance frequency near 1 kHz are detected with capacitive transducers coupled to a sensitive differential amplifier. The electronic processing is calibrated by means of a known electrostatic force and input from a finite element model. The measured average kinetic energy is in agreement with the expected value of 1/2 kT.

  4. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  5. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael (Plano, TX)

    1997-11-18T23:59:59.000Z

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  6. The temperature market A stochastic model for temperature

    E-Print Network [OSTI]

    Pfeifer, Holger

    The temperature market A stochastic model for temperature Temperature futures Conclusions The Volatility of Temperature and Pricing of Weather Derivatives Fred Espen Benth Work in collaboration with J Universit¨at Ulm, April 2007 #12;The temperature market A stochastic model for temperature Temperature

  7. A comparison of irradiance responsivity and thermodynamic temperature measurement between PTB and NIM

    SciTech Connect (OSTI)

    Lu, X.; Yuan, Z. [National Institute of Metrology, Beijing (China)] [National Institute of Metrology, Beijing (China); Anhalt, K.; Taubert, R. D. [Physikalisch-Technische Bundesanstalt, Berlin (Germany)] [Physikalisch-Technische Bundesanstalt, Berlin (Germany)

    2013-09-11T23:59:59.000Z

    This paper describes a comparison between PTB and NIM in the field of absolute spectral-band radiometry and thermodynamic temperature measurement. For the comparison a NIM made interference filter radiometer with a centre wavelength of 633 nm was taken to PTB. The filter radiometer was calibrated at NIM and PTB with respect to spectral irradiance responsivity. For the integral value in the band-pass range an agreement of 0.1% was observed in both calibrations. In a next step, the 633 nm filter radiometer was used to measure the temperature of a high-temperature blackbody in comparison to an 800 nm filter radiometer of PTB in the temperature range between 1400 K and 2750 K. The thermodynamic temperature measured by the two filter radiometers agreed to within 0.2 K to 0.5 K with an estimated measurement uncertainty ranging between 0.1 K and 0.4 K (k=1)

  8. A ROBUST ABSOLUTE DETECTION EFFICIENCY CALIBRATION METHOD UTILIZING BETA/GAMMA COINCIDENCE SIGNATURES AND ISOTOPICALLY PURIFIED NEUTRON ACTIVATED RADIOXENON ISOTOPES

    SciTech Connect (OSTI)

    McIntyre, Justin I.; Cooper, Matthew W.; Ely, James H.; Haas, Derek A.; Schrom, Brian T.

    2012-09-21T23:59:59.000Z

    Efforts to calibrate the absolute efficiency of gas cell radiations detectors have utilized a number of methodologies which allow adequate calibration but are time consuming and prone to a host of difficult-to-determine uncertainties. A method that extrapolates the total source strength from the measured beta and gamma gated beta coincidence signal was developed in the 1960’s and 1970’s. It has become clear that it is possible to achieve more consistent results across a range of isotopes and a range of activities using this method. Even more compelling is the ease with which this process can be used on routine samples to determine the total activity present in the detector. Additionally, recent advances in the generation of isotopically pure radioxenon samples of Xe-131m, Xe-133, and Xe-135 have allowed these measurement techniques to achieve much better results than would have been possible before when using mixed isotopic radioxenon source. This paper will discuss the beta/gamma absolute detection efficiency technique that utilizes several of the beta-gamma decay signatures to more precisely determine the beta and gamma efficiencies. It will than compare these results with other methods using pure sources of Xe-133, Xe-131m, and Xe-135 and a Xe-133/Xe-133m mix.

  9. Dynamical masses, absolute radii and 3D orbits of the triply eclipsing star HD 181068 from Kepler photometry

    E-Print Network [OSTI]

    Borkovits, Tamás; Kiss, László L; Király, Amanda; Forgács-Dajka, Emese; Bíró, Imre Barna; Bedding, Timothy R; Bryson, Stephen T; Huber, Daniel; Szabó, Róbert

    2012-01-01T23:59:59.000Z

    HD 181068 is the brighter of the two known triply eclipsing hierarchical triple stars in the Kepler field. It has been continuously observed for more than 2 years with the Kepler space telescope. Of the nine quarters of the data, three have been obtained in short-cadence mode, that is one point per 58.9 s. Here we analyse this unique dataset to determine absolute physical parameters (most importantly the masses and radii) and full orbital configuration using a sophisticated novel approach. We measure eclipse timing variations (ETVs), which are then combined with the single-lined radial velocity measurements to yield masses in a manner equivalent to double-lined spectroscopic binaries. We have also developed a new light curve synthesis code that is used to model the triple, mutual eclipses and the effects of the changing tidal field on the stellar surface and the relativistic Doppler-beaming. By combining the stellar masses from the ETV study with the simultaneous light curve analysis we determine the absolute...

  10. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E. (66 Overlook Rd., Bloomingdale, NJ 07403)

    1985-01-01T23:59:59.000Z

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  11. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1989-01-01T23:59:59.000Z

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  12. Temperature and RH Targets

    Broader source: Energy.gov [DOE]

    Presented by Vishal O Mittal of the Florida Solar Energy Center at the High Temperature Membrane Working Group Meeting, San Francisco, September 14, 2006.

  13. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  14. Measurement of the Absolute Branching Fractions of$B^\\pm \\to K^\\pm X_{c\\bar c}$

    SciTech Connect (OSTI)

    Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona, IFAE; Palano, A.; Pappagallo, M.; Pompili, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San

    2005-11-02T23:59:59.000Z

    We study the two-body decays of B{sup {+-}} mesons to K{sup {+-}} and a charmonium state, X{sub c{bar c}}, in a sample of 210.5 fb{sup -1} of data from the BABAR experiment. We perform measurements of absolute branching fractions {Beta}(B{sup {+-}} {yields} K{sup {+-}} X{sub c{bar c}}) using a missing mass technique, and report several new or improved results. In particular, the upper limit {Beta}(B{sup {+-}} {yields} K{sup {+-}}(3872)) < 3.2 x 10{sup -4} at 90% CL and the inferred lower limit {Beta}(X(3872) {yields} J/{psi}{pi}{sup +}{pi}{sup -}) > 4.2% will help in understanding the nature of the recently discovered X(3872).

  15. Statistics of particle time-temperature histories.

    SciTech Connect (OSTI)

    Hewson, John C.; Lignell, David O.; Sun, Guangyuan

    2014-10-01T23:59:59.000Z

    Particles in non - isothermal turbulent flow are subject to a stochastic environment tha t produces a distribution of particle time - temperature histories. This distribution is a function of the dispersion of the non - isothermal (continuous) gas phase and the distribution of particles relative to that gas phase. In this work we extend the one - dimensional turbulence (ODT) model to predict the joint dispersion of a dispersed particle phase and a continuous phase. The ODT model predicts the turbulent evolution of continuous scalar fields with a model for the cascade of fluctuations to smaller sc ales (the 'triplet map') at a rate that is a function of the fully resolved one - dimens ional velocity field . Stochastic triplet maps also drive Lagrangian particle dispersion with finite Stokes number s including inertial and eddy trajectory - crossing effect s included. Two distinct approaches to this coupling between triplet maps and particle dispersion are developed and implemented along with a hybrid approach. An 'instantaneous' particle displacement model matches the tracer particle limit and provide s an accurate description of particle dispersion. A 'continuous' particle displacement m odel translates triplet maps into a continuous velocity field to which particles respond. Particles can alter the turbulence, and modifications to the stochastic rate expr ession are developed for two - way coupling between particles and the continuous phase. Each aspect of model development is evaluated in canonical flows (homogeneous turbulence, free - shear flows and wall - bounded flows) for which quality measurements are ava ilable. ODT simulations of non - isothermal flows provide statistics for particle heating. These simulations show the significance of accurately predicting the joint statistics of particle and fluid dispersion . Inhomogeneous turbulence coupled with the in fluence of the mean flow fields on particles of varying properties alter s particle dispersion. The joint particle - temperature dispersion leads to a distribution of temperature histories predicted by the ODT . Predictions are shown for the lower moments an d the full distributions of the particle positions, particle - observed gas temperatures and particle temperatures. An analysis of the time scales affecting particle - temperature interactions covers Lagrangian integral time scales based on temperature autoco rrelations, rates of temperature change associated with particle motion relative to the temperature field and rates of diffusional change of temperatures. These latter two time scales have not been investigated previously; they are shown to be strongly in termittent having peaked distributions with long tails. The logarithm of the absolute value of these time scales exhibits a distribution closer to normal. A cknowledgements This work is supported by the Defense Threat Reduction Agency (DTRA) under their Counter - Weapons of Mass Destruction Basic Research Program in the area of Chemical and Biological Agent Defeat under award number HDTRA1 - 11 - 4503I to Sandia National Laboratories. The authors would like to express their appreciation for the guidance provi ded by Dr. Suhithi Peiris to this project and to the Science to Defeat Weapons of Mass Destruction program.

  16. Temperature effects on the energy bandgap and conductivity effective masses of charge carriers in lead telluride from first-principles calculations

    SciTech Connect (OSTI)

    Venkatapathi, S., E-mail: saran@vt.edu; Dong, B., E-mail: bind89@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Hin, C., E-mail: celhin@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07T23:59:59.000Z

    We determined the temperature effects on the electronic properties of lead telluride (PbTe) such as the energy bandgap and the effective masses of charge carriers by incorporating the structural changes of the material with temperature using ab-initio density functional theory (DFT) calculations. Though the first-principles DFT calculations are done at absolute zero temperatures, by incorporating the lattice thermal expansion and the distortion of Pb{sup 2+} ions from the equilibrium positions, we could determine the stable structural configuration of the PbTe system at different temperatures.

  17. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24T23:59:59.000Z

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  18. High Temperature Capacitor Development

    SciTech Connect (OSTI)

    John Kosek

    2009-06-30T23:59:59.000Z

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a unique high-temperature electrolyte developed during the course of the program. During this program the feasibility of operating a high voltage hybridized capacitor at 230oC was demonstrated. Capacitor specifications were established in conjunction with potential capacitor users. A method to allow for capacitor operation at both ambient and elevated temperatures was demonstrated. The program was terminated prior to moving into Phase II due to a lack of cost-sharing funds.

  19. Finite Temperature Effective Actions

    E-Print Network [OSTI]

    Ashok Das; J. Frenkel

    2009-08-27T23:59:59.000Z

    We present, from first principles, a direct method for evaluating the exact fermion propagator in the presence of a general background field at finite temperature, which can be used to determine the finite temperature effective action for the system. As applications, we determine the complete one loop finite temperature effective actions for 0+1 dimensional QED as well as the Schwinger model. These effective actions, which are derived in the real time (closed time path) formalism, generate systematically all the Feynman amplitudes calculated in thermal perturbation theory and also show that the retarded (advanced) amplitudes vanish in these theories.

  20. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08T23:59:59.000Z

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  1. Penrose Well Temperatures

    SciTech Connect (OSTI)

    Christopherson, Karen

    2013-03-15T23:59:59.000Z

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  2. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12T23:59:59.000Z

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  3. Temperature in the Throat

    E-Print Network [OSTI]

    Dariush Kaviani; Amir Esmaeil Mosaffa

    2015-03-06T23:59:59.000Z

    We study the temperature of extended objects in string theory. Rotating D-branes in warped Calabi-Yau throats have induced metrics with thermal horizons and Hawking temperatures a la Unruh effect. We solve the equations of motion for slow rotating probe branes and derive their induced metrics in the UV/IR solutions of warped conifold throats. Our analysis shows that horizons and temperatures of expected features form on the world volume of the rotating probe brane in terms of conserved charges in the UV solutions of the conifold throat. In certain limits, we find world volume horizons and temperatures of the form similar to those of rotating probes in the AdS throat.

  4. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul (Pittsburgh, PA); Scandrol, Roy O. (Library, PA)

    1981-01-01T23:59:59.000Z

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  5. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J. (Oak Ridge, TN); Bible, Don W. (Clinton, TN); Sohns, Carl W. (Oak Ridge, TN)

    1999-01-01T23:59:59.000Z

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  6. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    SciTech Connect (OSTI)

    Chu, A; Ahmad, M; Chen, Z; Nath, R [Yale New Haven Hospital/School of Medicine Yale University, New Haven, CT (United States); Feng, W [New York Presbyterian Hospital, Tenafly, NJ (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions. Conclusion: LOOP can cooperate with any fitting routine functioning as a “robust fit”. In addition, it can be set as a benchmark for film-dose calibration fitting performance.

  7. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, C.W.

    1994-11-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  8. Temperature initiated passive cooling system

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01T23:59:59.000Z

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  9. Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001 This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    been downloaded from IOPscience. Please scroll down to see the full text article. 2002 Metrologia 39 IOPscience #12;metrologia Results of the Sixth International Comparison of Absolute Gravimeters, ICAG-2001 L di Metrologia "G. Colonnetti" (IMGC), Turin, Italy. M. Diament: Institut de Physique du Globe de

  10. The effect of task structure, practice schedule, and model type on the learning of relative and absolute timing by physical and observational practice

    E-Print Network [OSTI]

    Black, Charles Beyer

    2004-11-15T23:59:59.000Z

    Three experiments compared learning of relative and absolute timing of a sequential key-pressing task by physical and observational practice. Experiment 1 compared a task with a complex internal structure (goal proportions of 22.2, 44.4, 33...

  11. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and R are determined in thin-shell inertial-confinement-fusion

    E-Print Network [OSTI]

    A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield for extending by 103 the dynamic range of compact proton spectrometers for diagnosing ICF implosions. Sci. Instrum. 85, 063502 (2014); 10.1063/1.4880203 D 3 He -proton emission imaging for inertial

  12. A detailed analysis of next generation sequencing reads of microRNA expression in Barrett’s Esophagus: absolute versus relative quantification

    E-Print Network [OSTI]

    Lee, In-Hee; Hong, Xiaoman; Mathur, Sharad C.; Sharma, Mukut; Rastogi, Amit; Sharma, Prateek; Christenson, Lane K.; Bansal, Ajay

    2014-04-04T23:59:59.000Z

    compared (>1000 vs. 500 vs. 100 vs. <100). The accuracy, precision and recall of NGS to label a miRNA as differentially expressed were 0.71, 0.88 and 0.74 respectively. Conclusion Absolute NGS reads correlated modestly with q...

  13. The Model 5000-16C 1000 WATT FEL Lamp Standard pro-vides absolute calibration of spectral irradiance from 250 nm to

    E-Print Network [OSTI]

    The Model 5000-16C 1000 WATT FEL Lamp Standard pro- vides absolute calibration of spectral irradiance from 250 nm to 2.5 microns.This Tungsten-Halogen Lamp Standard bears the ANSI designation of FEL might be discernible at the crossover point of the two referenced NIST Scales. 5000 FEL 1000Watt Lamp

  14. Temperature Data Evaluation

    SciTech Connect (OSTI)

    Gillespie, David

    2003-03-01T23:59:59.000Z

    Groundwater temperature is sensitive to the competing processes of heat flow from below the advective transport of heat by groundwater flow. Because groundwater temperature is sensitive to conductive and advective processes, groundwater temperature may be utilized as a tracer to further constrain the uncertainty of predictions of advective radionuclide transport models constructed for the Nevada Test Site (NTS). Since heat transport, geochemical, and hydrologic models for a given area must all be consistent, uncertainty can be reduced by devaluing the weight of those models that do not match estimated heat flow. The objective of this study was to identify the quantity and quality of available heat flow data at the NTS. One-hundred-forty-five temperature logs from 63 boreholes were examined. Thirteen were found to have temperature profiles suitable for the determination of heat flow values from one or more intervals within the boreholes. If sufficient spatially distributed heat flow values are obtained, a heat transport model coupled to a hydrologic model may be used to reduce the uncertainty of a nonisothermal hydrologic model of the NTS.

  15. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  16. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  17. High-temperature Pump Monitoring - High-temperature ESP Monitoring...

    Broader source: Energy.gov (indexed) [DOE]

    7 4.4.4 High-temperature Pump Monitoring - High-temperature ESP Monitoring Presentation Number: 018 Investigator: Dhruva, Brindesh (Schlumberger Technology Corp.) Objectives: To...

  18. Absolute Time-Resolved Emission of Non-LTE L-Shell Spectra from Ti-Doped Aerogels

    SciTech Connect (OSTI)

    Back,C.; Feldman, U.; Weaver, J.; Seely, J.; Constantin, C.; Holland, G.; Lee, R.; Chung, H.; Scott, H.

    2006-01-01T23:59:59.000Z

    Outstanding discrepancies between data and calculations of laser-produced plasmas in recombination have been observed since the 1980s. Although improvements in hydrodynamic modeling may reduce the discrepancies, there are indications that non-LTE atomic kinetics may be the dominant cause. Experiments to investigate non-LTE effects were recently performed at the NIKE KrF laser on low-density Ti-doped aerogels. The laser irradiated a 2 mm diameter, cylindrical sample of various lengths with a 4-ns square pulse to create a volumetrically heated plasma. Ti L-shell spectra spanning a range of 0.47-3 keV were obtained with a transmission grating coupled to Si photodiodes. The diagnostic can be configured to provide 1-dimensional spatial resolution at a single photon energy, or 18 discrete energies with a resolving power, {gamma}/{delta}{gamma} of 3-20. The data are examined and compared to calculations to develop absolute emission measurements that can provide new tests of the non-LTE physics.

  19. High temperature adsorption measurements

    SciTech Connect (OSTI)

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24T23:59:59.000Z

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  20. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  1. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11T23:59:59.000Z

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  2. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01T23:59:59.000Z

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  3. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03T23:59:59.000Z

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  4. Development of a new radiometer for the thermodynamic measurement of high temperature fixed points

    SciTech Connect (OSTI)

    Dury, M. R.; Goodman, T. M.; Lowe, D. H.; Machin, G.; Woolliams, E. R. [National Physical Laboratory, Teddington (United Kingdom)] [National Physical Laboratory, Teddington (United Kingdom)

    2013-09-11T23:59:59.000Z

    The National Physical Laboratory (NPL) has developed a new radiometer to measure the thermodynamic melting point temperatures of high temperature fixed points with ultra-low uncertainties. In comparison with the NPL's Absolute Radiation Thermometer (ART), the 'THermodynamic Optical Radiometer' (THOR) is more portable and compact, with a much lower size-of-source effect and improved performance in other parameters such as temperature sensitivity. It has been designed for calibration as a whole instrument via the radiance method, removing the need to calibrate the individual subcomponents, as required by ART, and thereby reducing uncertainties. In addition, the calibration approach has been improved through a new integrating sphere that has been designed to have greater uniformity.

  5. Realization of Holographic Entaglement Temperature for a Nearly-AdS boundary

    E-Print Network [OSTI]

    Momeni, D; Gholizade, H; Myrzakulov, R

    2015-01-01T23:59:59.000Z

    Computation from the holographic entanglement entropy proposal of Ryu-Takayanagi shows that thermal near boundary region in $AdS_3$ has a maximum of the temperature. The absolute maxima of temperature is $T^{Max}_{E}= \\frac{4G_3 \\epsilon_{\\infty}}{l}$. By simple physical investigations it has become possible to predict a phase transition of first order at critical temperature $T_c\\leq T_{E}$ . It is pertinent to mention here that our structure is comprising the properties of metamaterials-an artificial material build with the composition of real materials, whose properties are triggered on the desired basis. The Phase transitions of this form have received a striking experimental verification in so far as they predict a tail or root towards which the AdS space ultimately tend when the boundary is considered thermalized.

  6. Transition temperature in QCD

    SciTech Connect (OSTI)

    Cheng, M.; Christ, N. H.; Mawhinney, R. D. [Physics Department, Columbia University, New York, New York 10027 (United States); Datta, S.; Jung, C.; Schmidt, C.; Umeda, T. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Heide, J. van der; Kaczmarek, O.; Laermann, E.; Miao, C. [Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Karsch, F. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Fakultaet fuer Physik, Universitaet Bielefeld, D-33615 Bielefeld (Germany); Petreczky, P. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States); Petrov, K. [Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2006-09-01T23:59:59.000Z

    We present a detailed calculation of the transition temperature in QCD with two light and one heavier (strange) quark mass on lattices with temporal extent N{sub {tau}}=4 and 6. Calculations with improved staggered fermions have been performed for various light to strange quark mass ratios in the range, 0.05{<=}m-circumflex{sub l}/m-circumflex{sub s}{<=}0.5, and with a strange quark mass fixed close to its physical value. From a combined extrapolation to the chiral (m-circumflex{sub l}{yields}0) and continuum (aT{identical_to}1/N{sub {tau}}{yields}0) limits we find for the transition temperature at the physical point T{sub c}r{sub 0}=0.457(7) where the scale is set by the Sommer-scale parameter r{sub 0} defined as the distance in the static quark potential at which the slope takes on the value (dV{sub qq}(r)/dr){sub r=r{sub 0}}=1.65/r{sub 0}{sup 2}. Using the currently best known value for r{sub 0} this translates to a transition temperature T{sub c}=192(7)(4) MeV. The transition temperature in the chiral limit is about 3% smaller. We discuss current ambiguities in the determination of T{sub c} in physical units and also comment on the universal scaling behavior of thermodynamic quantities in the chiral limit.

  7. High temperature storage battery

    SciTech Connect (OSTI)

    Sammells, A.F.

    1988-06-07T23:59:59.000Z

    A high temperature electrochemical cell is described comprising: a solid-state divalent cation conducting electrolyte; a positive electrode in contact with the electrolyte; a solid-state negative electrode contacting a divalent cation conducting molten salt mediating agent providing ionic mediation between the solid-state negative electrode and the solid-state electrolyte.

  8. Low Temperature Performance Characterization

    Broader source: Energy.gov (indexed) [DOE]

    0.0036 0.0038 0.004 0.0042 Inverse Temperature, 1K Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww) (BID 1935), 4.1V, 3 Sep. Gen2 Electrodes and 1.2M LiPF6 in EC:EMC (3:7 ww)...

  9. Localized temperature stability of low temperature cofired ceramics

    DOE Patents [OSTI]

    Dai, Steven Xunhu

    2013-11-26T23:59:59.000Z

    The present invention is directed to low temperature cofired ceramic modules having localized temperature stability by incorporating temperature coefficient of resonant frequency compensating materials locally into a multilayer LTCC module. Chemical interactions can be minimized and physical compatibility between the compensating materials and the host LTCC dielectrics can be achieved. The invention enables embedded resonators with nearly temperature-independent resonance frequency.

  10. Temperature Temperature is the physical property of a

    E-Print Network [OSTI]

    Alexeenko, Alina

    Temperature Temperature is the physical property of a system which underlines the common notion and said to be at the same temperature. If a thermometer is placed in a gas container then the thermal zero. #12;Temperature The energy exchange between gas and thermometer is through collisions of gas

  11. Formby et al.: Integration Without Absolute Energy Cues 1285Journal of Speech, Language, and Hearing Research Vol. 45 12851296 December 2002 American Speech-Language-Hearing Association 1092-4388/02/4506-1285

    E-Print Network [OSTI]

    Heinz, Michael G.

    Formby et al.: Integration Without Absolute Energy Cues 1285Journal of Speech, Language Baltimore Temporal Integration of Sinusoidal Increments in the Absence of Absolute Energy Cues Classical temporal integration (TI) is often viewed as a frequency-dependent, energy-based detection process

  12. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

    SciTech Connect (OSTI)

    Hornbeck, Amaury, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr; Garcia, Tristan, E-mail: amauryhornbeck@gmail.com, E-mail: tristan.garcia@cea.fr [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette Cedex (France)] [CEA, LIST, Laboratoire National Henri Becquerel, 91191 Gif-sur-Yvette Cedex (France); Cuttat, Marguerite; Jenny, Catherine [Radiotherapy Department, Medical Physics Unit, University Hospital Pitié-Salpêtrière, 75013 Paris (France)] [Radiotherapy Department, Medical Physics Unit, University Hospital Pitié-Salpêtrière, 75013 Paris (France)

    2014-06-15T23:59:59.000Z

    Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of ?1.7% and ?0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

  13. High Temperature Membrane Working Group

    Broader source: Energy.gov [DOE]

    This presentation provides an overview of the High Temperature Membrane Working Group Meeting in May 2007.

  14. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick (Peoria, IL); Duffy, Kevin Patrick (Metamora, IL)

    2005-09-27T23:59:59.000Z

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  15. Thermionic Converter Temperature Controller

    SciTech Connect (OSTI)

    Shaner,B. J.; Wolf, Joseph H.; Johnson, Robert G. R.

    1999-08-23T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  16. Thermionic converter temperature controller

    DOE Patents [OSTI]

    Shaner, Benjamin J. (McMurray, PA); Wolf, Joseph H. (Pittsburgh, PA); Johnson, Robert G. R. (Trafford, PA)

    2001-04-24T23:59:59.000Z

    A method and apparatus for controlling the temperature of a thermionic reactor over a wide range of operating power, including a thermionic reactor having a plurality of integral cesium reservoirs, a honeycomb material disposed about the reactor which has a plurality of separated cavities, a solid sheath disposed about the honeycomb material and having an opening therein communicating with the honeycomb material and cavities thereof, and a shell disposed about the sheath for creating a coolant annulus therewith so that the coolant in the annulus may fill the cavities and permit nucleate boiling during the operation of the reactor.

  17. Drexel University Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) Drexel University Project 31091 irradiation. The objective of this test was to assess the radiation performance of new ceramic materials for advanced reactor applications. Accordingly, irradiations of transition metal carbides and nitrides were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in static capsules inserted into the A-3 and East Flux Trap Position 5 locations of the ATR.

  18. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related Links Facilities and InstrumentsInstrumentsTemperature

  19. Temperature | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:HoldingsTechint Spa JumpTVCEtTemperature" Showing 9

  20. Temperature Maps and Data

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps and Data

  1. Temperature Maps and Data

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)ThousandNumber andCrudeTemperature Maps and

  2. Low-Temperature Light Detectors with Neganov-Luke Amplification

    E-Print Network [OSTI]

    Isaila, C; Feilitzsch, F v; Gütlein, A; Kemmer, J; Lachenmaier, T; Lanfranchi, J -C; Pfister, S; Potzel, W; Roth, S; Sivers, M v; Strauss, R; Westphal, W; Wiest, F

    2011-01-01T23:59:59.000Z

    The simultaneous measurement of phonons and scintillation light induced by incident particles in a scintillating crystal such as CaWO4 is a powerful technique for the active rejection of background induced by gamma's and beta's as well as neutrons in direct Dark Matter searches. However, less than ~1% of the energy deposited in a CaWO4 crystal is detected as light. Thus, very sensitive light detectors are needed for an efficient event-by-event background discrimination. Due to the Neganov-Luke effect, the threshold of low-temperature light detectors based on semiconducting substrates can be improved significantly by drifting the photon-induced electron-hole pairs in an applied electric field. We present measurements with low-temperature light detectors based on this amplification mechanism. The Neganov-Luke effect makes it possible to improve the signal-to-noise ratio of our light detectors by a factor of ~9 corresponding to an energy threshold of ~21 eV. We also describe a method for an absolute energy calib...

  3. The Greenhouse Effect Temperature Equilibrium

    E-Print Network [OSTI]

    Walter, Frederick M.

    The Greenhouse Effect #12;Temperature Equilibrium The Earth is in equilibrium with the Sun temperature is about 14C, or 287K. The 40K difference is due to the greenhouse effect. Essentially all

  4. Philosophy 26 High Temperature Superconductivity

    E-Print Network [OSTI]

    Callender, Craig

    Philosophy 26 High Temperature Superconductivity By Ohm's Law, resistance will dim. Low temperature superconductivity was discovered in 1911 by Heike was explained by BCS theory. BCS theory explains superconductivity microscopically

  5. Hot Pot Contoured Temperature Gradient Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  6. Hot Pot Contoured Temperature Gradient Map

    SciTech Connect (OSTI)

    Lane, Michael

    2013-06-28T23:59:59.000Z

    Temperature gradient contours derived from Oski temperature gradient hole program and from earlier published information.

  7. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  8. Results of First Outdoor Comparison Between Absolute Cavity Pyrgeometer (ACP) and Infrared Integrating Sphere (IRIS) Radiometer at PMOD (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Grobner, J.; Wacker, S.; Stoffel, T.

    2013-03-01T23:59:59.000Z

    The ACP and IRIS are developed to establish a world reference for calibrating pyrgeometers with traceability to SI units. The two radiometers are unwindowed with negligible spectral dependence, and traceable to SI units through the temperature scale (ITS-90). The first outdoor comparison between the two designs was held from January 28 to February 8, 2013 at the Physikalisch-Metorologisches Observatorium Davos (PMOD). The difference between the irradiance measured by ACP and that of IRIS was within 1 W/m2. A difference of 5 W/m2 was observed between the irradiance measured by ACP&IRIS and that of the interim World Infrared Standard Group (WISG).

  9. Absolute kinematics of radio source components in the complete S5 polar cap sample I. First and second epoch maps at 8.4 GHz

    E-Print Network [OSTI]

    E. Ros; J. M. Marcaide; J. C. Guirado; M. A. Perez-Torres

    2001-07-25T23:59:59.000Z

    We observed the thirteen extragalactic radio sources of the S5 polar cap sample at 8.4 GHz with the Very Long Baseline Array, on 1997.93 and 1999.41. We present the maps from those two epochs and briefly discuss the morphological changes experimented by some of the radio sources in the 1.4 yr elapsed. These results correspond to the first two epochs at 8.4 GHz of a program directed to study the absolute kinematics of the radio source components of the members of the sample by means of phase delay astrometry at 8.4, 15 and 43 GHz.

  10. A review of "“By My Absolute Royal Authority”: Justice and the Castilian Commonwealth at the Beginning of the First Global Age." by J. B. Owens

    E-Print Network [OSTI]

    Levin, Michael J.

    2007-01-01T23:59:59.000Z

    family to court, claiming that they had seized the land illegally. The lawsuit thus became a literal test case for what ?absolute royal authority? (a commonly used phrase throughout the period) actually meant. Owens also uses this case to illustrate how... of land was illegal. The Duke?s lawyers tried to obfuscate matters and delay the hearing (for example, by deposing witnesses who happen to be in America at the time), but they could never deny this basic fact. Nonetheless the tribunal did not find...

  11. High temperature interfacial superconductivity

    DOE Patents [OSTI]

    Bozovic, Ivan (Mount Sinai, NY); Logvenov, Gennady (Port Jefferson Station, NY); Gozar, Adrian Mihai (Port Jefferson, NY)

    2012-06-19T23:59:59.000Z

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  12. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect (OSTI)

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

    2013-09-11T23:59:59.000Z

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  13. Recombination of W18+ ions with electrons: Absolute rate coefficients from a storage-ring experiment and from theoretical calculations

    E-Print Network [OSTI]

    Spruck, K; Krantz, C; Novotný, O; Becker, A; Bernhardt, D; Grieser, M; Hahn, M; Repnow, R; Savin, D W; Wolf, A; Müller, A; Schippers, S

    2014-01-01T23:59:59.000Z

    We present new experimentally measured and theoretically calculated rate coefficients for the electron-ion recombination of W$^{18+}$([Kr] $4d^{10}$ $4f^{10}$) forming W$^{17+}$. At low electron-ion collision energies, the merged-beam rate coefficient is dominated by strong, mutually overlapping, recombination resonances. In the temperature range where the fractional abundance of W$^{18+}$ is expected to peak in a fusion plasma, the experimentally derived Maxwellian recombination rate coefficient is 5 to 10 times larger than that which is currently recommended for plasma modeling. The complexity of the atomic structure of the open-$4f$-system under study makes the theoretical calculations extremely demanding. Nevertheless, the results of new Breit-Wigner partitioned dielectronic recombination calculations agree reasonably well with the experimental findings. This also gives confidence in the ability of the theory to generate sufficiently accurate atomic data for the plasma modeling of other complex ions.

  14. High-temperature ceramic receivers

    SciTech Connect (OSTI)

    Jarvinen, P. O.

    1980-01-01T23:59:59.000Z

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  15. RECHARGEABLE HIGH-TEMPERATURE BATTERIES

    E-Print Network [OSTI]

    Cairns, Elton J.

    2014-01-01T23:59:59.000Z

    F. Eshman, High-Performance Batteries for Electric-VehicleS. Sudar, High Performance Batteries for Electric-VehicleHIGH-TEMPERATURE BATTERIES Elton J. Cairns January 1981 TWO-

  16. Hotline IV ?High Temperature ESP

    Broader source: Energy.gov (indexed) [DOE]

    Hotline IV - High Temperature ESP Brindesh Dhruva (principal Inv.) Michael Dowling (presenter) Schlumberger Track Name May 18, 2010 This presentation does not contain any...

  17. Low Temperature Material Bonding Technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2000-10-10T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  18. Low temperature material bonding technique

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-02-12T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  19. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; Frenje, J. A.; Seguin, F. H.; Petrasso, R. D.; Glebov, V. Yu.; Sangster, T. C.; Stoeckl, C.

    2015-05-01T23:59:59.000Z

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more »comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  20. Real-time absolute frequency measurement of continuous-wave terahertz wave based on dual terahertz combs of photocarriers with different frequency spacings

    E-Print Network [OSTI]

    Yasui, Takeshi; Ichikawa, Ryuji; Cahyadi, Harsono; Hsieh, Yi-Da; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Inaba, Hajime; Minoshima, Kaoru

    2015-01-01T23:59:59.000Z

    Real-time measurement of the absolute frequency of continuous-wave terahertz (CW-THz) waves is required for characterization and frequency calibration of practical CW-THz sources. We proposed a method for real-time monitoring of the absolute frequency of CW-THz waves involving temporally parallel, i.e., simultaneous, measurement of two pairs of beat frequencies and laser repetition frequencies based on dual THz combs of photocarriers (PC-THz combs) with different frequency spacings. To demonstrate the method, THz-comb-referenced spectrum analyzers were constructed with a dual configuration based on dual femtosecond lasers. Regardless of the presence or absence of frequency control in the PC-THz combs, a frequency precision of 10-11 was achieved at a measurement rate of 100 Hz. Furthermore, large fluctuation of the CW-THz frequencies, crossing several modes of the PC-THz combs, was correctly monitored in real time. The proposed method will be a powerful tool for the research and development of practical CW-THz...

  1. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waugh, C. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Rosenberg, M. J. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Zylstra, A. B. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Frenje, J. A. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Seguin, F. H. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Petrasso, R. D. [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States).; Glebov, V. Yu. [Lab. for Laser Energetics, Rochester, NY (United States); Sangster, T. C. [Lab. for Laser Energetics, Rochester, NY (United States); Stoeckl, C. [Lab. for Laser Energetics, Rochester, NY (United States)

    2015-05-01T23:59:59.000Z

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  2. Systematic Uncertainties in the Spectroscopic Measurements of Neutron-Star Masses and Radii from Thermonuclear X-ray Bursts. III. Absolute Flux Calibration

    E-Print Network [OSTI]

    Guver, Tolga; Marshall, Herman; Psaltis, Dimitrios; Guainazzi, Matteo; Diaz-Trigo, Maria

    2015-01-01T23:59:59.000Z

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826-238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE/PCA as well as by XMM-Newton EPIC-pn and RXTE/PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE/PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0$\\pm$0.3% less flux than the RXTE/PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared to EPIC-MOS1, MOS2 and ACIS-S detectors. We also address the calibration uncertainty in the RXTE/PCA int...

  3. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect (OSTI)

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01T23:59:59.000Z

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  4. Low temperature irradiation tests on

    E-Print Network [OSTI]

    McDonald, Kirk

    Sample cool down by He gas loop 10K ­ 20K Fast neutron flux Measured by Ni activation in 2010 1.4xK #12;reactor Cryogenics #12;Al-Cu-Mg He gas temperature near sample 12K Resistance changesLow temperature irradiation tests on stabilizer materials using reactor neutrons at KUR Makoto

  5. Detecting temperature fluctuations at equilibrium

    E-Print Network [OSTI]

    Dixit, Purushottam D

    2015-01-01T23:59:59.000Z

    Gibbs and Boltzmann definitions of temperature agree only in the macroscopic limit. The ambiguity in identifying the equilibrium temperature of a finite sized `small' system exchanging energy with a bath is usually understood as a limitation of conventional statistical mechanics. We interpret this ambiguity as resulting from a stochastically fluctuating temperature coupled with the phase space variables giving rise to a broad temperature distribution. With this ansatz, we develop the equilibrium statistics and dynamics of small systems. Numerical evidence using an analytically tractable model shows that the effects of temperature fluctuations can be detected in equilibrium and dynamical properties of the phase space of the small system. Our theory generalizes statistical mechanics to small systems relevant to biophysics and nanotechnology.

  6. Use of the portable infrared thermometer as a means of measuring limb surface temperature in the horse

    SciTech Connect (OSTI)

    Palmer, S.E.

    1981-01-01T23:59:59.000Z

    Evaluation was made of the portable infrared thermometer to measure limb surface temperature in 3 horses--first standing in a stall and then placed in lateral recumbency under general anesthesia. To determine the effect of pigment, black and white targets were examined with the instrument under various clinical conditions. In each horse, thermal gradient measurements were consistent along the extremities. Mean limb surface temperatures were less than rectal temperature and greater than ambient temperature. Limb surface temperatures measured in lateral recumbency under general anesthesia were uniformly higher than those obtained in the standing position in the stall. The average SD of absolute temperature measurements made under general anesthesia was +/- 0.1 C, whereas the average SD of those made in standing horses was +/- 0.2 C. For practical use, the latter deviation of +/- 0.2 C was considered more appropriate as the limit of significance for clinical measurements made with the instrument. When used indoors in the absence of direct sunlight, the influence of pigment on measurements made with the instrument was not significant. Optimal conditions for the clinical use of the portable infrared thermometer are defined and factors which affect limb surface temperature are discussed.

  7. Long-term, One-dimensional Simulation of Lower Snake River Temperatures for Current and Unimpounded Conditions

    SciTech Connect (OSTI)

    Perkins, William A.; Richmond, Marshall C.

    2001-02-15T23:59:59.000Z

    The objective of the study was to compare water temperatures in the Lower Snake River for current (impounded) and unimpounded conditions using a mathematical model of the river system. A long-term analysis was performed using the MASS1 one-dimensional (1D) hydrodynamic and water quality model. The analysis used historical flows and meteorological conditions for a 35-year period spanning between 1960 and 1995. Frequency analysis was performed on the model results to calculate river temperatures at various percent of time exceeded levels. Results were are also analyzed to compute the time when, during the year, water temperatures rose above or fell below various temperature levels. The long-term analysis showed that the primary difference between the current and unimpounded river scenarios is that the reservoirs decrease the water temperature variability. The reservoirs also create a thermal inertia effect which tends to keep water cooler later into the spring and warmer later into the fall compared to the unimpounded river condition. Given the uncertainties in the simulation model, inflow temperatures, and meteorological conditions the results show only relatively small differences between current and unimpounded absolute river temperatures.

  8. Research Initiative Will Demonstrate Low Temperature Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Initiative Will Demonstrate Low Temperature Geothermal Electrical Power Generation Systems Using Oilfield Fluids Research Initiative Will Demonstrate Low Temperature...

  9. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    E-Print Network [OSTI]

    unknown authors

    Abstract—The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbine exhaust temperature, stack temperature and ambient temperature, the most dominating factor of increasing the overall efficiency of the combine cycle power plant is the stack temperature.

  10. Method for measuring surface temperature

    DOE Patents [OSTI]

    Baker, Gary A. (Los Alamos, NM); Baker, Sheila N. (Los Alamos, NM); McCleskey, T. Mark (Los Alamos, NM)

    2009-07-28T23:59:59.000Z

    The present invention relates to a method for measuring a surface temperature using is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  11. Shock temperature measurements in ammonia

    SciTech Connect (OSTI)

    Radousky, H.B.; Mitchell, A.C.; Nellis, W.J.; Ross, M.

    1985-07-01T23:59:59.000Z

    Our first shock temperature measurements on a cryogenic target are reported for NH/sub 3/. A new fast optical pyrometer and a cryogenic specimen holder for liquid NH/sub 3/ were developed to measure shock temperatures of 4400 and 3600 K at pressures of 61 and 48 GPa. These conditions correspond to those in the ice layers in Uranus and Neptune. The shock temperature data are in reasonable agreement with an equation of state based on an intermolecular potential derived from NH/sub 3/ Hugoniot data.

  12. Permitted Oxygen Abundances and the Temperature Scale of Metal-Poor Turn-Off Stars

    E-Print Network [OSTI]

    J. Melendez; N. G. Shchukina; I. E. Vasiljeva; I. Ramirez

    2006-01-12T23:59:59.000Z

    We use high quality VLT/UVES published data of the permitted OI triplet and FeII lines to determine oxygen and iron abundances in unevolved (dwarfs, turn-off, subgiants) metal-poor halo stars. The calculations have been performed both in LTE and NLTE, employing effective temperatures obtained with the new infrared flux method (IRFM) temperature scale by Ramirez & Melendez, and surface gravities from Hipparcos parallaxes and theoretical isochrones. A new list of accurate transition probabilities for FeII lines, tied to the absolute scale defined by laboratory measurements, has been used. We find a plateau in the oxygen-to-iron ratio over more than two orders of magnitude in iron abundance (-3.2 < [Fe/H] < -0.7), with a mean [O/Fe] = 0.5 dex (sigma = 0.1 dex), independent of metallicity, temperature and surface gravity. According to the new IRFM Teff scale, the temperatures of turn-off halo stars strongly depend on metallicity, a result that is in excellent qualitative and quantitative agreement with stellar evolution calculations, which predict that the Teff of the turn-off at [Fe/H] = -3 is about 600-700 K higher than that at [Fe/H] = -1.

  13. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Anne Amy-Klein; Andrei Goncharov; Mickael Guinet; Christophe Daussy; Olivier Lopez; Alexander Shelkovnikov; Christian Chardonnet

    2005-09-07T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  14. Absolute frequency measurement of an SF6 two-photon line using a femtosecond optical comb and sum-frequency generation

    E-Print Network [OSTI]

    Amy-Klein, A; Guinet, M; Daussy, C; López, O; Shelkovnikov, A; Chardonnet, C; Amy-Klein, Anne; Goncharov, Andrei; Guinet, Mickael; Daussy, Christophe; Lopez, Olivier; Shelkovnikov, Alexander; Chardonnet, Christian

    2005-01-01T23:59:59.000Z

    We demonstrate a new simple technique to measure IR frequencies near 30 THz using a femtosecond (fs) laser optical comb and sum-frequency generation. The optical frequency is directly compared to the distance between two modes of the fs laser, and the resulting beat note is used to control this distance which depends only on the repetition rate fr of the fs laser. The absolute frequency of a CO2 laser stabilized onto an SF6 two-photon line has been measured for the first time. This line is an attractive alternative to the usual saturated absorption OsO4 resonances used for the stabilization of CO2 lasers. First results demonstrate a fractional Allan deviation of 3.10-14 at 1 s.

  15. A compact proton spectrometer for measurement of the absolute DD proton spectrum from which yield and ?R are determined in thin-shell inertial-confinement-fusion implosions

    SciTech Connect (OSTI)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Frenje, J. A.; Rinderknecht, H. G.; Gatu Johnson, M.; Waugh, C. J.; Séguin, F. H.; Sio, H.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Glebov, V. Yu.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Yeamans, C. B.; LePape, S.; Mackinnon, A. J.; Bionta, R. M.; Talison, B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-10-15T23:59:59.000Z

    A compact, step range filter proton spectrometer has been developed for the measurement of the absolute DD proton spectrum, from which yield and areal density (?R) are inferred for deuterium-filled thin-shell inertial confinement fusion implosions. This spectrometer, which is based on tantalum step-range filters, is sensitive to protons in the energy range 1-9 MeV and can be used to measure proton spectra at mean energies of ?1-3 MeV. It has been developed and implemented using a linear accelerator and applied to experiments at the OMEGA laser facility and the National Ignition Facility (NIF). Modeling of the proton slowing in the filters is necessary to construct the spectrum, and the yield and energy uncertainties are ±<10% in yield and ±120?keV, respectively. This spectrometer can be used for in situ calibration of DD-neutron yield diagnostics at the NIF.

  16. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    SciTech Connect (OSTI)

    Niemi, K.; O'Connell, D.; Gans, T. [York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom); Oliveira, N. de; Joyeux, D.; Nahon, L. [Synchrotron Soleil, l'Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France); Booth, J. P. [Laboratoire de Physique des Plasmas-CNRS, Ecole Polytechnique, 91128 Palaiseau (France)

    2013-07-15T23:59:59.000Z

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N{sub 2}/O{sub 2} (4:1) admixtures. A maximum in the O-atom concentration of (9.1 {+-} 0.7) Multiplication-Sign 10{sup 20} m{sup -3} was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 {+-} 0.4) Multiplication-Sign 10{sup 19} m{sup -3} at 0.1 vol. %.

  17. A quantum cascade laser-based mid-IR frequency metrology system with ultra-narrow linewidth and $1\\times 10^{-13}$-level absolute frequency stability

    E-Print Network [OSTI]

    Hansen, Michael G; Chen, Qun-Feng; Ernsting, Ingo; Schiller, Stephan

    2015-01-01T23:59:59.000Z

    We demonstrate a powerful tool for high-resolution mid-IR spectroscopy and frequency metrology with quantum cascade lasers (QCLs). We have implemented frequency stabilization of a QCL to an ultra-low expansion (ULE) reference cavity, via upconversion to the near-IR spectral range, at a level of $1\\times10^{-13}$. The absolute frequency of the QCL is measured relative to a hydrogen maser, with instability $<1\\times10^{-13}$ and inaccuracy $5\\times10^{-13}$, using a frequency comb phase-stabilized to an independent ultrastable laser. The QCL linewidth is determined to be 60 Hz, dominated by fiber noise. Active suppression of fiber noise could result in sub-10 Hz linewidth.

  18. Absolute cross sections for electron loss, electron capture, and multiple ionization in collisions of C{sup 3+} with noble gases

    SciTech Connect (OSTI)

    Santos, A. C. F.; Sant'Anna, M. M.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21945-970 (Brazil); Sigaud, G. M. [Departamento de Fisica, Pontificia Universidade Catolica do Rio de Janeiro, Caixa Postal 38071, Rio de Janeiro, RJ 22452-970 (Brazil); Melo, W. S. [Departamento de Fisica, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-330 (Brazil)

    2010-07-15T23:59:59.000Z

    Absolute charge-state-correlated cross sections for projectile electron loss, electron capture, and target multiple ionization in collisions between C{sup 3+} ions and noble gases have been measured for energies between 1.3 and 3.5 MeV. The data have been compared with other similar absolute cross sections existent in the literature for several projectiles. Calculations for the single-loss-multiple-ionization channel have been performed for the screening mode, using both an extended version of the classical-impulse free-collision model and the plane-wave Born approximation (PWBA), and for the antiscreening mode within the PWBA. The energy dependence of the average number of target active electrons which contribute to the antiscreening has been described by means of a simple function, which is ''universal'' for noble gases but, in principle, projectile dependent. A method has been developed to obtain the number of active target electrons for each subshell in the high-velocity regime, which presented physically reasonable results. Analyses of the dependences of the single-capture and transfer-ionization (SC and TI, respectively) processes on the projectile charge states showed that, for He, equally charged bare and dressed projectiles have very similar cross sections; the latter thus acting as structureless point charges. A behavior similar to that in the SC has been observed for the pure single ionization of He by projectiles with different charge states and of the other noble gases by singly charged projectiles. It has been shown that the q{sup 2} dependence of the pure-single and total-ionization cross sections, predicted by first-order models, is only valid for high-collision velocities. For slower collisions, the electron capture process becomes more relevant and competes with the ionization channel, a feature which grows in importance as the projectile charge state increases.

  19. Optimizing Low Temperature Diesel Combustion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Consortium 2008 DOE Merit Review - UW-ERC 1 Optimizing Low Temperature Diesel Combustion Profs. Rolf Reitz, P. Farrell, D. Foster, J. Ghandhi, C. Rutland, S. Sanders Engine...

  20. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, W.Y.

    1984-07-27T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  1. High temperature structural insulating material

    DOE Patents [OSTI]

    Chen, Wayne Y. (Munster, IN)

    1987-01-01T23:59:59.000Z

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  2. Fuel Temperature Coefficient of Reactivity

    SciTech Connect (OSTI)

    Loewe, W.E.

    2001-07-31T23:59:59.000Z

    A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

  3. Low to moderate temperature nanolaminate heater

    DOE Patents [OSTI]

    Eckels, J. Del (Livermore, CA); Nunes, Peter J. (Danville, CA); Simpson, Randall L. (Livermore, CA); Hau-Riege, Stefan (Fremont, CA); Walton, Chris (Oakland, CA); Carter, J. Chance (Livermore, CA); Reynolds, John G. (San Ramon, CA)

    2011-01-11T23:59:59.000Z

    A low to moderate temperature heat source comprising a high temperature energy source modified to output low to moderate temperatures wherein the high temperature energy source modified to output low to moderate temperatures is positioned between two thin pieces to form a close contact sheath. In one embodiment the high temperature energy source modified to output low to moderate temperatures is a nanolaminate multilayer foil of reactive materials that produces a heating level of less than 200.degree. C.

  4. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, Stephen W. (Knoxville, TN); Cates, Michael R. (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN); Gillies, George T. (Earlysville, VA)

    1998-01-01T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  5. High temperature thermometric phosphors for use in a temperature sensor

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24T23:59:59.000Z

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  6. Apparatus and method for high temperature viscosity and temperature measurements

    DOE Patents [OSTI]

    Balasubramaniam, Krishnan (Mississippi State, MS); Shah, Vimal (Houston, TX); Costley, R. Daniel (Mississippi State, MS); Singh, Jagdish P. (Mississippi State, MS)

    2001-01-01T23:59:59.000Z

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  7. THE TEMPERATURES OF RED SUPERGIANTS

    SciTech Connect (OSTI)

    Davies, Ben [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)] [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom); Kudritzki, Rolf-Peter; Gazak, Zach [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)] [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS, F-34095 Montpellier (France)] [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS, F-34095 Montpellier (France); Trager, Scott [Kapteyn Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands)] [Kapteyn Institute, University of Groningen, P.O. Box 800, 9700-AV Groningen (Netherlands); Lancon, Ariane [Observatoire Astronomique and CNRS UMR 7550, Universite de Strasbourg, F-67000 Strasbourg (France)] [Observatoire Astronomique and CNRS UMR 7550, Universite de Strasbourg, F-67000 Strasbourg (France); Bergemann, Maria [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)] [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Evans, Chris [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom)] [UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Chiavassa, Andrea [CNRS Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)] [CNRS Laboratoire Lagrange, Universite de Nice Sophia-Antipolis, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)

    2013-04-10T23:59:59.000Z

    We present a re-appraisal of the temperatures of red supergiants (RSGs) using their optical and near-infrared spectral energy distributions (SEDs). We have obtained data of a sample of RSGs in the Magellanic Clouds using VLT+XSHOOTER, and we fit MARCS model atmospheres to different regions of the spectra, deriving effective temperatures for each star from (1) the TiO bands, (2) line-free continuum regions of the SEDs, and (3) the integrated fluxes. We show that the temperatures derived from fits to the TiO bands are systematically lower than the other two methods by several hundred kelvin. The TiO fits also dramatically overpredict the flux in the near-IR, and imply extinctions which are anomalously low compared to neighboring stars. In contrast, the SED temperatures provide good fits to the fluxes at all wavelengths other than the TiO bands, are in agreement with the temperatures from the flux integration method, and imply extinctions consistent with nearby stars. After considering a number of ways to reconcile this discrepancy, we conclude that three-dimensional effects (i.e., granulation) are the most likely cause, as they affect the temperature structure in the upper layers where the TiO lines form. The continuum, however, which forms at much deeper layers, is apparently more robust to such effects. We therefore conclude that RSG temperatures are much warmer than previously thought. We discuss the implications of this result for stellar evolution and supernova progenitors, and provide relations to determine the bolometric luminosities of RSGs from single-band photometry.

  8. Thermal disconnect for high-temperature batteries

    DOE Patents [OSTI]

    Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

    2000-01-01T23:59:59.000Z

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  9. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class temperature. #12;temperature & nuclear fusion 2 Nuclear Fusion 2. There are a few different energy scales

  10. Finite Temperature Closed Superstring Theory

    E-Print Network [OSTI]

    Shyamoli Chaudhuri

    2005-09-12T23:59:59.000Z

    We find that the gas of IIA strings undergoes a phase transition into a gas of IIB strings at the self-dual temperature. A gas of free heterotic strings undergoes a Kosterlitz-Thouless duality transition with positive free energy and positive specific heat but vanishing internal energy at criticality. We examine the consequences of requiring a tachyon-free thermal string spectrum. We show that in the absence of Ramond-Ramond fluxes the IIA and IIB string ensembles are thermodynamically ill-defined. The 10D heterotic superstrings have nonabelian gauge fields and in the presence of a temperature dependent Wilson line background are found to share a stable and tachyon-free ground state at all temperatures starting from zero with gauge group SO(16)xSO(16). The internal energy of the heterotic string is a monotonically increasing function of temperature with a stable and supersymmetric zero temperature limit. Our results point to the necessity of gauge fields in a viable weakly coupled superstring theory. Note Added (Sep 2005).

  11. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    SciTech Connect (OSTI)

    C. BARNES

    2000-07-01T23:59:59.000Z

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  12. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J. [Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tritt, T. [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Uher, C. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2010-12-15T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  13. High temperature Seebeck coefficient metrology

    SciTech Connect (OSTI)

    Martin, J.; Tritt, T.; Uher, Ctirad

    2010-01-01T23:59:59.000Z

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential propertymeasurement for evaluating the potential performance of novel thermoelectricmaterials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectricmeasurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  14. Mechanical instability at finite temperature

    E-Print Network [OSTI]

    Xiaoming Mao; Anton Souslov; Carlos I. Mendoza; T. C. Lubensky

    2014-07-08T23:59:59.000Z

    Many physical systems including lattices near structural phase transitions, glasses, jammed solids, and bio-polymer gels have coordination numbers that place them at the edge of mechanical instability. Their properties are determined by an interplay between soft mechanical modes and thermal fluctuations. In this paper we investigate a simple square-lattice model with a $\\phi^4$ potential between next-nearest-neighbor sites whose quadratic coefficient $\\kappa$ can be tuned from positive negative. We show that its zero-temperature ground state for $\\kappa power-law behavior of the shear modulus as a function of temperature. We expect our study to provide a general framework for the study of finite-temperature mechanical and phase behavior of other systems with a large number of floppy modes.

  15. Integrated Emissivity And Temperature Measurement

    DOE Patents [OSTI]

    Poulsen, Peter (Livermore, CA)

    2005-11-08T23:59:59.000Z

    A multi-channel spectrometer and a light source are used to measure both the emitted and the reflected light from a surface which is at an elevated temperature relative to its environment. In a first method, the temperature of the surface and emissivity in each wavelength is calculated from a knowledge of the spectrum and the measurement of the incident and reflected light. In the second method, the reflected light is measured from a reference surface having a known reflectivity and the same geometry as the surface of interest and the emitted and the reflected light are measured for the surface of interest. These measurements permit the computation of the emissivity in each channel of the spectrometer and the temperature of the surface of interest.

  16. RFID tag antenna based temperature sensing

    E-Print Network [OSTI]

    Bhattacharyya, Rahul

    Temperature monitoring is important in a number of fields, particularly cold supply chain applications. Most commercial wireless temperature sensors consist of transceivers, memory and batteries to maintain a temperature ...

  17. Temperature dependence of the indentation size effect

    E-Print Network [OSTI]

    Franke, Oliver

    The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere ...

  18. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22T23:59:59.000Z

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  19. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01T23:59:59.000Z

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  20. Temperature Resistant Optimal Ratchet Transport

    E-Print Network [OSTI]

    Cesar Manchein; Alan Celestino; Marcus W Beims

    2012-11-12T23:59:59.000Z

    Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter [PRL 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destruction, valid from the overdamping to close to the conservative limits, are obtained numerically and shown to be connected to the current efficiency, given here analytically. Results are demonstrated for a discrete ratchet model and generalized to the Langevin equation with an additional external oscillating force.

  1. High temperature superconductor current leads

    DOE Patents [OSTI]

    Hull, J.R.; Poeppel, R.B.

    1995-06-20T23:59:59.000Z

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  2. Status of Neutrino Astronomy: The Quest for Kilometer-Scale Instruments

    E-Print Network [OSTI]

    F. Halzen

    1997-01-07T23:59:59.000Z

    This is a (very) personal attempt to summarize the status of neutrino astronomy: its scientific motivations, our understanding of natural water and ice as particle detectors and, finally, the detector technology.

  3. Adaptive Selective Learning for Automatic Identification of Sub-Kilometer Craters

    E-Print Network [OSTI]

    Ding, Wei

    Martian terrain characterized by heterogeneous surface morphology. The experimental results demonstrate and present geological processes and provide the only tool for measuring rela- tive ages of observed geologic. Geologic stratigraphy based on manually collected databases has coarse spatial resolutions. Finer spatial

  4. Semi-supervised based Active Class Selection for Automatic Identification of Sub-Kilometer Craters

    E-Print Network [OSTI]

    Ding, Wei

    characterized by heterogeneous surface morphology. The experimental results demonstrate that the proposed about the past and present geological processes and provide the only tool to measuring relative ages of observed geologic formations. The size distribution of craters conforms to the power-law as large craters

  5. Thermodynamic Advantages of Low Temperature Combustion Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use...

  6. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  7. Variable Temperature UHV STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature UHV STMAFM The Omicron variable temperature ultra-high vacuum (UHV) scanning tunneling microscope (VTSTM) is designed to study the structure of both clean and...

  8. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  9. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  10. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  11. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  12. Temperature and cooling management in computing systems

    E-Print Network [OSTI]

    Ayoub, Raid

    2011-01-01T23:59:59.000Z

    Chapter 6 Conclusion and Future Work Temperature and coolingthan 1%. Future research directions Temperature and coolingcooling are critical aspects of design in today’s and future

  13. SPREADSHEET DESCRIPTION DOCUMENT FOR SATURATION TEMPERATURE CALCULATION

    SciTech Connect (OSTI)

    JO J

    2008-08-29T23:59:59.000Z

    This document describes the methodology for determining the saturation temperature in waste tanks. The saturation temperature is used to calculate neutral buoyancy ratio.

  14. Geothermal Food Processors Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Food Processors Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Geothermal Food Processors Agricultural Drying Low Temperature Geothermal...

  15. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  16. Manufacturing Barriers to High Temperature PEM Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D...

  17. Temperature Independent Physisorption Kinetics and Adsorbate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Independent Physisorption Kinetics and Adsorbate Layer Compression for Ar Adsorbed on Pt (111). Temperature Independent Physisorption Kinetics and Adsorbate Layer...

  18. High temperature synthetic cement retarder

    SciTech Connect (OSTI)

    Eoff, L.S.; Buster, D.

    1995-11-01T23:59:59.000Z

    A synthetic cement retarder which provides excellent retardation and compressive strength development has been synthesized. The response properties and temperature ranges of the synthetic retarder far exceed those of commonly used retarders such as lignosulfonates. The chemical nature of the new retarder is discussed and compared to another synthetic retarder.

  19. Temperature controlled high voltage regulator

    DOE Patents [OSTI]

    Chiaro, Jr., Peter J. (Clinton, TN); Schulze, Gerald K. (Knoxville, TN)

    2004-04-20T23:59:59.000Z

    A temperature controlled high voltage regulator for automatically adjusting the high voltage applied to a radiation detector is described. The regulator is a solid state device that is independent of the attached radiation detector, enabling the regulator to be used by various models of radiation detectors, such as gas flow proportional radiation detectors.

  20. HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING

    E-Print Network [OSTI]

    Schroeder, R.C.

    2009-01-01T23:59:59.000Z

    on the Cerro P r i e t o Geothermal F i e l d , Mexicali,e C e r r o P r i e t o Geothermal F i e l d , Baja C a l i1979 HIGH TEMPERATURE GEOTHERMAL RESERVOIR ENGINEERING R.

  1. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi (Mastic Beach, NY)

    1989-01-01T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  2. High temperature lightweight foamed cements

    DOE Patents [OSTI]

    Sugama, Toshifumi.

    1989-10-03T23:59:59.000Z

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  3. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, J.A.

    1983-05-26T23:59:59.000Z

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  4. Geothermal high temperature instrumentation applications

    SciTech Connect (OSTI)

    Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Livesay, B.J. [Livesay Consultants (United States)

    1998-06-11T23:59:59.000Z

    A quick look at the geothermal industry shows a small industry producing about $1 billion in electric sales annually. The industry is becoming older and in need of new innovative solutions to instrumentation problems. A quick look at problem areas is given along with basic instrumentation requirements. The focus of instrumentation is on high temperature electronics.

  5. Low-temperature magnetic refrigerator

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM)

    1985-01-01T23:59:59.000Z

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  6. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  7. absolutely comparing absolute: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advance Machian physics by maintaining that the heliocentric system must be replaced by Tycho Brahe's geocentric system. We show that while geocentrism relies on Mach's contention...

  8. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  9. Optimizing the Low Temperature Cooling Energy Supply: Experimental Performance of an Absorption Chiller, a Compression Refrigeration Machine and Direct Cooling - a Comparison 

    E-Print Network [OSTI]

    Uhrhan, S.; Gerber, A.

    2012-01-01T23:59:59.000Z

    and the Ambient Temperature and their Absolute Frequencies 5. Conclusion and Outlook In terms of primary energy consumption and with the underlying operating parameters first DC and if demand exceeds the capacity of DC the AC should be operated at present... ? Methodology ? Results ? Outlook ? Conclusion 2 The System RCP:?Re?cooling plant AC:?Absorption?chiller CC:?Compressor chiller CHP:?Combined heat and power?plant 3 RCP 2400 kW CC 665 kW AC 710 kW CHP Buffer Buffer Consumer8?C 95?C 27?C 27...

  10. Soot volume fraction and temperature measurements in laminar nonpremixed flames using thermocouples

    SciTech Connect (OSTI)

    Mcenally, C.S.; Koeylue, U.O.; Pfefferle, L.D.; Rosner, D.E. [Yale Univ., New Haven, CT (United States)] [Yale Univ., New Haven, CT (United States)

    1997-06-01T23:59:59.000Z

    Thermocouple particle densitometry (TPD), a new method for measuring absolute soot volume fraction in flames which was suggested by Eisner and Rosner, has been successfully implemented in several laminar nonpremixed flames. This diagnostic relies on measuring the junction temperature history of a thermocouple rapidly inserted into a soot-containing flame region, then optimizing the fit between this history and one calculated from the principles of thermophoretic mass transfer. The TPD method is very simple to implement experimentally, yields spatially resolved volume fractions directly, can easily measure small volume fractions, and does not depend on the prevailing soot particle size, morphology, or optical characteristics. In a series of methane and ethylene counterflow flames whose soot volume fractions varied by more than an order of magnitude, the TPD results agreed to within experimental error with the authors own laser extinction measurements. In axisymmetric methane and ethylene co-flowing flames, the shape of TPD profiles agreed well with published laser extinction measurements, but the TPD concentrations were significantly larger in the early regions of the ethylene flame and throughout the methane flame; these discrepancies are probably attributable to visible light-transparent particles that are detectable with TPD but not with laser extinction. The TPD method is not applicable to the upper regions of these co-flowing flames since OH concentrations there suffice to rapidly oxidize any soot particles that deposit. Gas temperatures were obtained simultaneously with volume fraction by averaging the junction temperature history shortly after insertion. The error in these temperatures due to soot deposition-imposed changes in the junction diameter and emissivity were assessed and found to be moderate, e.g., less than 60 K near the centerline of the ethylene coflowing flame where the volume fraction was 6 ppm and the gas temperature was 1,550 K.

  11. Temperature & Nuclear Fusion 4 October 2011

    E-Print Network [OSTI]

    Militzer, Burkhard

    Temperature & Nuclear Fusion 4 October 2011 Goals · Review temperature in stars · Practice using the important energy scales for nuclear fusion Temperature 1. For each relation we regularly use in class-Boltzmann equation: L = 4R2 T4 . (d) In fusion energy generation: T . #12;temperature & nuclear fusion 2 Nuclear

  12. Absolute pitch and related abilities

    E-Print Network [OSTI]

    Dooley, Kevin David

    2011-01-01T23:59:59.000Z

    Am. 128, 890-893. Hsieh, I. & Saberi, K. (2007). “TemporalAm. 119, 719-722. Hsieh, I. & Saberi, K. (2007). “Temporal233, 108-116. Hsieh, I. & Saberi, K. (2008a). “Dissociation

  13. Designing for Absolute Moisture Control

    E-Print Network [OSTI]

    Nunnelly, R. M.; Fex, J. P.

    2002-01-01T23:59:59.000Z

    to use for most major cities. See Figures 4 and 5 for a glimpse of the information available in these newer tables. Figure 4. ASHRAE Data, Panama City, FL3 Figure 5. Design Conditions, Panama City, FL (0.4% Occurrence, ASHRAE... Condition)3 Understanding this new weather data is the first step in accurately designing an outside air conditioning system. For example, considering the following ambient conditions for Panama City, FL, notice the three points...

  14. Variable Average Absolute Percent Differences

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas FieldsLiquids

  15. Quantum radiation at finite temperature

    E-Print Network [OSTI]

    Ralf Schützhold; Günter Plunien; Gerhard Soff

    2001-05-23T23:59:59.000Z

    We investigate the phenomenon of quantum radiation - i.e. the conversion of (virtual) quantum fluctuations into (real) particles induced by dynamical external conditions - for an initial thermal equilibrium state. For a resonantly vibrating cavity a rather strong enhancement of the number of generated particles (the dynamical Casimir effect) at finite temperatures is observed. Furthermore we derive the temperature corrections to the energy radiated by a single moving mirror and an oscillating bubble within a dielectric medium as well as the number of created particles within the Friedmann-Robertson-Walker universe. Possible implications and the relevance for experimental tests are addressed. PACS: 42.50.Lc, 03.70.+k, 11.10.Ef, 11.10.Wx.

  16. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  17. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1994-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  18. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1993-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  19. High temperature turbine engine structure

    DOE Patents [OSTI]

    Carruthers, William D. (Mesa, AZ); Boyd, Gary L. (Tempe, AZ)

    1992-01-01T23:59:59.000Z

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  20. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  1. Quantifying Temperature Effects on Fall Chinook Salmon

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL

    2011-11-01T23:59:59.000Z

    The motivation for this study was to recommend relationships for use in a model of San Joaquin fall Chinook salmon. This report reviews literature pertaining to relationships between water temperature and fall Chinook salmon. The report is organized into three sections that deal with temperature effects on development and timing of freshwater life stages, temperature effects on incubation survival for eggs and alevin, and temperature effects on juvenile survival. Recommendations are made for modeling temperature influences for all three life stages.

  2. Finite temperature reservoir engineering and entanglement dynamics

    E-Print Network [OSTI]

    S. Fedortchenko; A. Keller; T. Coudreau; P. Milman

    2014-05-29T23:59:59.000Z

    We propose experimental methods to engineer reservoirs at arbitrary temperature which are feasible with current technology. Our results generalize to mixed states the possibility of quantum state engineering through controlled decoherence. Finite temperature engineered reservoirs can lead to the experimental observation of thermal entanglement --the appearance and increase of entanglement with temperature-- to the study of the dependence of finite time disentanglement and revival with temperature, quantum thermodynamical effects, among many other applications, enlarging the comprehension of temperature dependent entanglement properties.

  3. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  4. NSTX High Temperature Sensor Systems

    SciTech Connect (OSTI)

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01T23:59:59.000Z

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  5. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  6. EUV SPECTRAL LINE FORMATION AND THE TEMPERATURE STRUCTURE OF ACTIVE REGION FAN LOOPS: OBSERVATIONS WITH HINODE/EIS AND SDO/AIA

    SciTech Connect (OSTI)

    Brooks, David H.; Young, Peter R. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22020 (United States); Warren, Harry P., E-mail: dhbrooks@ssd5.nrl.navy.mil [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2011-04-01T23:59:59.000Z

    With the aim of studying active region fan loops using observations from the Hinode EUV Imaging Spectrometer (EIS) and Solar Dynamics Observatory Atmospheric Imaging Assembly (AIA), we investigate a number of inconsistencies in modeling the absolute intensities of Fe VIII and Si VII lines, and address why spectroheliograms formed from these lines look very similar despite the fact that ionization equilibrium calculations suggest that they have significantly different formation temperatures: log(T{sub e} /K) = 5.6 and 5.8, respectively. It is important to resolve these issues because confidence has been undermined in their use for differential emission measure (DEM) analysis, and Fe VIII is the main contributor to the AIA 131 A channel at low temperatures. Furthermore, the strong Fe VIII 185.213 A and Si VII 275.368 A lines are the best EIS lines to use for velocity studies in the transition region, and for assigning the correct temperature to velocity measurements in the fans. We find that the Fe VIII 185.213 A line is particularly sensitive to the slope of the DEM, leading to disproportionate changes in its effective formation temperature. If the DEM has a steep gradient in the log(T{sub e} /K) = 5.6-5.8 temperature range, or is strongly peaked, Fe VIII 185.213 A and Si VII 275.368 A will be formed at the same temperature. We show that this effect explains the similarity of these images in the fans. Furthermore, we show that the most recent ionization balance compilations resolve the discrepancies in absolute intensities. With these difficulties overcome, we combine EIS and AIA data to determine the temperature structure of a number of fan loops and find that they have peak temperatures of 0.8-1.2 MK. The EIS data indicate that the temperature distribution has a finite (but narrow) width < log ({sigma}{sub Te}/K) = 5.5 which, in one detailed case, is found to broaden substantially toward the loop base. AIA and EIS yield similar results on the temperature, emission measure magnitude, and thermal distribution in the fans, though sometimes the AIA data suggest a relatively larger thermal width. The result is that both the Fe VIII 185.213 A and Si VII 275.368 A lines are formed at log(T{sub e} /K){approx} 5.9 in the fans, and the AIA 131 A response also shifts to this temperature.

  7. Renormalization of QED near Decoupling Temperature

    E-Print Network [OSTI]

    Samina S. Masood

    2014-07-05T23:59:59.000Z

    We study the effective parameters of QED near decoupling temperatures and show that the QED perturbative series is convergent, at temperatures below the decoupling temperature. The renormalization constant of QED acquires different values if a system cools down from a hotter system to the electron mass temperature or heats up from a cooler system to the same temperature. At T = m, the first order contribution to the electron selfmass, {\\delta}m/m is 0.0076 for a heating system and 0.0115 for a cooling system and the difference between two values is equal to 1/3 of the low temperature value and 1/2 of the high temperature value around T~m. This difference is a measure of hot fermion background at high temperatures. With the increase in release of more fermions at hotter temperatures, the fermion background contribution dominates and weak interactions have to be incorporated to understand the background effects.

  8. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, P.E.; Livingston, R.R.; Prather, W.S.

    1994-09-20T23:59:59.000Z

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe are disclosed. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped borosilicate glass, accurate to [+-]0.5 C over an operating temperature range of about [minus]196 C to 400 C; and a mixture of D[sub 2]O and H[sub 2]O, accurate to [+-]0.1 C over an operating range of about 5 C to 90 C. 13 figs.

  9. Method and apparatus for optical temperature measurement

    DOE Patents [OSTI]

    O'Rourke, Patrick E. (Martinez, GA); Livingston, Ronald R. (Aiken, SC); Prather, William S. (Augusta, GA)

    1994-01-01T23:59:59.000Z

    A temperature probe and a method for using said probe for temperature measurements based on changes in light absorption by the probe. The probe comprises a first and a second optical fiber that carry light to and from the probe, and a temperature sensor material, the absorbance of which changes with temperature, through which the light is directed. Light is directed through the first optical fiber, passes through the temperature sensor material, and is transmitted by a second optical fiber from the material to a detector. Temperature-dependent and temperature-independent factors are derived from measurements of the transmitted light intensity. For each sensor material, the temperature T is a function of the ratio, R, of these factors. The temperature function f(R) is found by applying standard data analysis techniques to plots of T versus R at a series of known temperatures. For a sensor having a known temperature function f(R) and known characteristic and temperature-dependent factors, the temperature can be computed from a measurement of R. Suitable sensor materials include neodymium-doped boresilicate glass, accurate to .+-.0.5.degree. C. over an operating temperature range of about -196.degree. C. to 400.degree. C.; and a mixture of D.sub.2 O and H.sub.2 O, accurate to .+-.0.1.degree. C. over an operating range of about 5.degree. C. to 90.degree. C.

  10. University of Illinois Temperature Sensors

    SciTech Connect (OSTI)

    K. L. Davis; D. L. Knudson; J. L. Rempe; B. M. Chase

    2014-09-01T23:59:59.000Z

    This document summarizes background information and presents results related to temperature measurements in the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) University of Illinois Project 29609 irradiation. The objective of this test was to assess the radiation performance of ferritic alloys for advanced reactor applications. The FeCr-based alloy system is considered the lead alloy system for a variety of advanced reactor components and applications. Irradiations of FeCr alloy samples were performed using the Hydraulic Shuttle Irradiation System (HSIS) in the B-7 position and in a static capsule in the A-11 position of the ATR.

  11. Seasonal Average Temperature - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook TwitterSearch-Comments Sign In About | CareersAverage Temperature

  12. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... of thermostat, and the relationship between room temperature set point and return air temperature. The Role Of Thermostat Traditional pneumatic thermostat is a proportional (P) type controller. It senses the space temperature changes and produces...

  13. Development of a High Pressure/High Temperature Down-hole Turbine Generator

    SciTech Connect (OSTI)

    Ben Plamp

    2008-06-30T23:59:59.000Z

    As oil & natural gas deposits become more difficult to obtain by conventional means, wells must extend to deeper more heat-intensive environments. The technology of the drilling equipment required to reach these depths has exceeded the availability of electrical power sources needed to operate these tools. Historically, logging while drilling (LWD) and measure while drilling (MWD) devices utilized a wireline to supply power and communication from the operator to the tool. Lithium ion batteries were used in scenarios where a wireline was not an option, as it complicated operations. In current downhole applications, lithium ion battery (LIB) packs are the primary source for electrical power. LIB technology has been proven to supply reliable downhole power at temperatures up to 175 °C. Many of the deeper well s reach ambient temperatures above 200 °C, creating an environment too harsh for current LIB technology. Other downfalls of LIB technology are cost, limitations on charge cycles, disposal issues and possible safety hazards including explosions and fires. Downhole power generation can also be achieved by utilizing drilling fluid flow and converting it to rotational motion. This rotational motion can be harnessed to spin magnets around a series of windings to produce power proportional to the rpm experienced by the driven assembly. These generators are, in most instances, driven by turbine blades or moyno-based drilling fluid pumps. To date, no commercially available downhole power generators are capable of operating at ambient temperatures of 250 °C. A downhole power g enerator capable of operation in a 250 °C and 20,000 psi ambient environment will be an absolute necessity in the future. Dexter Magnetic Technologies’ High-Pressure High-Temperature (HPHT) Downhole Turbine Generator is capable of operating at 250 °C and 20, 000 psi, but has not been tested in an actual drilling application. The technology exists, but to date no company has been willing to test the tool.

  14. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2003-03-31T23:59:59.000Z

    This report represents a summary of the work carried out on this project which started October 1999 and ended March 2003. A list of the publications resulting from the work are contained in Appendix A. The most significant achievements are: (1) Dense nanocrystalline zirconia and ceria films were obtained at temperatures < 400 C. (2) Nanocrystalline films of both ceria and zirconia were characterized. (3) We showed that under anodic conditions 0.5 to 1 micron thick nanocrystalline films of Sc doped zirconia have sufficient electronic conductivity to prevent them from being useful as an electrolyte. (4) We have developed a process by which dense 0.5 to 5 micron thick dense films of either YSZ or ceria can be deposited on sintered porous substrates which serve as either the cathode or anode at temperatures as low as 400 C. (5) The program has provided the research to produce two PhD thesis for students, one is now working in the solid oxide fuel cell field. (6) The results of the research have resulted in 69 papers published, 3 papers submitted or being prepared for publication, 50 oral presentations and 3 patent disclosures.

  15. Magnetic insulation at finite temperatures

    SciTech Connect (OSTI)

    Goedecke, G. H.; Davis, Brian T.; Chen, Chiping [Physics Department, New Mexico State University, Las Cruces, New Mexico 88003 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States); Intense Beam Theoretical Research Group, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 and Raytheon Missile Systems, 1151 E. Hermans Road, Tucson, Arizona 85706 (United States)

    2006-08-15T23:59:59.000Z

    A finite-temperature non-neutral plasma (FTNNP) theory of magnetically insulated (MI) electron flows in crossed-field vacuum devices is developed and applied in planar geometry. It is shown that, in contrast to the single type of MI flow predicted by traditional cold-plasma treatments, the nonlinear FTNNP equations admit five types of steady flow, of which three types are MI flows, including flows in which the electric field and/or the tangential velocity at the cathode may be zero or nonzero. It is also shown that finite-temperature Vlasov-Poisson treatments yield solutions for electron number densities and electrostatic potentials that are a subset of the FTNNP solutions. The algorithms that are used to solve the FTNNP equations numerically are discussed, and the numerical results are presented for several examples of the three types of MI flow. Results include prediction of the existence, boundaries, number density profiles, and other properties of sheaths of electrons in the anode-cathode gap.

  16. The N2K Consortium. IV. New temperatures and metallicities for 100,000+ FGK dwarfs

    E-Print Network [OSTI]

    S. Mark Ammons; Sarah E. Robinson; Jay Strader; Gregory Laughlin; Debra Fischer; Aaron Wolf

    2005-10-07T23:59:59.000Z

    We have created a framework to facilitate the construction of specialized target lists for radial velocity surveys that are biased toward stars that (1) possess planets and (2) are easiest to observe with current detection techniques. We use a procedure that uniformly estimates fundamental stellar properties of Tycho 2 stars, with errors, using spline functions of broadband photometry and proper motion found in Hipparcos/Tycho 2 and 2MASS. We provide estimates of temperature and distance for 2.4 million Tycho 2 stars that lack trigonometric distances. For stars that appear to be FGK dwarfs according to estimated temperature and absolute magnitude, we also derive [Fe/H] and identify unresolved binary systems with mass ratios between 1.25 and 3. Our spline function models are trained on the unique Valenti & Fischer (2005) set, composed of 1000 dwarfs with precise stellar parameters estimated from HIRES spectroscopy. For FGK dwarfs with V photometric error less than 0.05 magnitudes, or V 0.2). Our metallicity estimates have been used to identify targets for N2K (Fischer et al. 2005), a large-scale radial velocity search for Hot Jupiters, which has published the detection of 4 Hot Jupiters with one transit. The broadband filtering outlined here is the first screening tier for N2K; the second tier is a low-resolution spectroscopy program headed by S.E. Robinson (astro-ph/0510150).

  17. Low-Temperature Light Detectors: Neganov-Luke Amplification and Calibration

    E-Print Network [OSTI]

    C. Isaila; C. Ciemniak; F. v. Feilitzsch; A. Gütlein; J. Kemmer; T. Lachenmaier; J. -C. Lanfranchi; S. Pfister; W. Potzel; S. Roth; M. v. Sivers; R. Strauss; W. Westphal; F. Wiest

    2012-09-17T23:59:59.000Z

    The simultaneous measurement of phonons and scintillation light induced by incident particles in a scintillating crystal such as CaWO4 is a powerful technique for the active rejection of background induced by gamma's and beta's and even neutrons in direct Dark Matter searches. However, less than ~1% of the energy deposited in a CaWO4 crystal is detected as light. Thus, very sensitive light detectors are needed for an efficient event-by-event background discrimination. Due to the Neganov-Luke effect, the threshold of low-temperature light detectors based on semiconducting substrates can be improved significantly by drifting the photon-induced electron-hole pairs in an applied electric field. We present measurements with low-temperature light detectors based on this amplification mechanism. The Neganov-Luke effect makes it possible to improve the signal-to-noise ratio of our light detectors by a factor of ~9 corresponding to an energy threshold of ~21 eV. We also describe a method for an absolute energy calibration using a light-emitting diode.

  18. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01T23:59:59.000Z

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  19. Low Temperature Heat Recovery for Boiler Systems 

    E-Print Network [OSTI]

    Shook, J. R.; Luttenberger, D. B.

    1986-01-01T23:59:59.000Z

    Low temperature corrosion proof heat exchangers designed to reduce boiler flue gas temperatures to 150°F or lower are now being commercially operated on gas, oil and coal fired boilers. These heat exchangers, when applied to boiler flue gas...

  20. Temperature calibration of Gulf of Mexico corals

    E-Print Network [OSTI]

    Smith, Jennifer Mae

    2001-01-01T23:59:59.000Z

    for measurement of extension, density, and isotopes ([]¹?O, []¹³C). The coral oxygen isotope signature was calibrated against high-resolution daily temperature and salinity data sets spanning 1990-1997. Coralline estimates of water temperature demonstrate only...

  1. Low Temperature UHV STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UHV STMAFM Low Temperature UHV STMAFM EMSL's ultra-high vacuum, low-temperature scanning probe microscope instrument, or UHV LT SPM, is the preeminent system dedicated to surface...

  2. Variable Temperature STM/AFM | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STMAFM Variable Temperature STMAFM EMSL's ultra-high vacuum, variable-temperature scanning probe microscope system, or UHV VT SPM, is a state-of-the-art surface science tool...

  3. High-temperature thermocouples and related methods

    DOE Patents [OSTI]

    Rempe, Joy L. (Idaho Falls, ID); Knudson, Darrell L. (Firth, ID); Condie, Keith G. (Idaho Falls, ID); Wilkins, S. Curt (Idaho Falls, ID)

    2011-01-18T23:59:59.000Z

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  4. Temperature Sensor Data Michael W. Bigrigg

    E-Print Network [OSTI]

    Sadeh, Norman M.

    in the room. Sensor networks can be used to identify larger trends in temperature which could be used to report energy usage, HVAC problems, computer failures based on high temperatures, and fire evacuation

  5. Development and Processing Temperature Dependence of Ferromagnetism...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Processing Temperature Dependence of Ferromagnetism in Zn0.98Co0.02O. Development and Processing Temperature Dependence of Ferromagnetism in Zn0.98Co0.02O. Abstract: We report...

  6. STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS

    SciTech Connect (OSTI)

    Boyajian, Tabetha S.; McAlister, Harold A.; Jones, Jeremy; White, Russel; Henry, Todd; Gies, Douglas; Jao, Wei-Chun; Parks, J. Robert [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 4106, Atlanta, GA 30302-4106 (United States); Von Braun, Kaspar; Kane, Stephen R.; Ciardi, David [NASA Exoplanet Science Institute, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Van Belle, Gerard [Lowell Observatory, Flagstaff, AZ 86001 (United States); Ten Brummelaar, Theo A.; Schaefer, Gail; Sturmann, Laszlo; Sturmann, Judit [The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Muirhead, Philip S. [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125 (United States); Lopez-Morales, Mercedes [Institut de Ciencies de L'Espai (CSIC-IEEC), E-08193 Bellaterra (Spain); Ridgway, Stephen [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726-6732 (United States); Rojas-Ayala, Barbara [Department of Astrophysics, Division of Physical Sciences, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); and others

    2012-10-01T23:59:59.000Z

    We present interferometric angular diameter measurements of 21 low-mass, K- and M-dwarfs made with the CHARA Array. This sample is enhanced by adding a collection of radius measurements published in the literature to form a total data set of 33 K-M-dwarfs with diameters measured to better than 5%. We use these data in combination with the Hipparcos parallax and new measurements of the star's bolometric flux to compute absolute luminosities, linear radii, and effective temperatures for the stars. We develop empirical relations for {approx}K0 to M4 main-sequence stars that link the stellar temperature, radius, and luminosity to the observed (B - V), (V - R), (V - I), (V - J), (V - H), and (V - K) broadband color index and stellar metallicity [Fe/H]. These relations are valid for metallicities ranging from [Fe/H] = -0.5 to +0.1 dex and are accurate to {approx}2%, {approx}5%, and {approx}4% for temperature, radius, and luminosity, respectively. Our results show that it is necessary to use metallicity-dependent transformations in order to properly convert colors into stellar temperatures, radii, and luminosities. Alternatively, we find no sensitivity to metallicity on relations we construct to the global properties of a star omitting color information, e.g., temperature-radius and temperature-luminosity. Thus, we are able to empirically quantify to what order the star's observed color index is impacted by the stellar iron abundance. In addition to the empirical relations, we also provide a representative look-up table via stellar spectral classifications using this collection of data. Robust examinations of single star temperatures and radii compared to evolutionary model predictions on the luminosity-temperature and luminosity-radius planes reveal that models overestimate the temperatures of stars with surface temperatures <5000 K by {approx}3%, and underestimate the radii of stars with radii <0.7 R{sub Sun} by {approx}5%. These conclusions additionally suggest that the models over account for the effects that the stellar metallicity may have on the astrophysical properties of an object. By comparing the interferometrically measured radii for the single star population to those of eclipsing binaries, we find that for a given mass, single and binary star radii are indistinguishable. However, we also find that for a given radius, the literature temperatures for binary stars are systematically lower compared to our interferometrically derived temperatures of single stars by {approx}200 to 300 K. The nature of this offset is dependent on the validation of binary star temperatures, where bringing all measurements to a uniform and correctly calibrated temperature scale is needed to identify any influence stellar activity may have on the physical properties of a star. Lastly, we present an empirically determined H-R diagram using fundamental properties presented here in combination with those in Boyajian et al. for a total of 74 nearby, main-sequence, A- to M-type stars, and define regions of habitability for the potential existence of sub-stellar mass companions in each system.

  7. Corrosion Resistant Coatings for High Temperature Applications

    SciTech Connect (OSTI)

    Besman, T.M.; Cooley, K.M.; Haynes, J.A.; Lee, W.Y.; Vaubert, V.M.

    1998-12-01T23:59:59.000Z

    Efforts to increase efficiency of energy conversion devices have required their operation at ever higher temperatures. This will force the substitution of higher-temperature structural ceramics for lower temperature materials, largely metals. Yet, many of these ceramics will require protection from high temperature corrosion caused by combustion gases, atmospheric contaminants, or the operating medium. This paper discusses examples of the initial development of such coatings and materials for potential application in combustion, aluminum smelting, and other harsh environments.

  8. The stable fly: prediction of larval temperature

    E-Print Network [OSTI]

    Foerster, Kenneth Wayne

    1978-01-01T23:59:59.000Z

    of the manure and to develop a dynamic heat transfer model, Larval migration behavior was observed in simulated sections of a manure mound. From these data a dynamic, temperature-dependent, larval migration model was developed. The results indicate... Of The Stable Fly Response To Temperature Heat Transfer Model III. EXPERIMENTAL PROCEDURE AND MATERIALS Manure Mound Temperature Distribution Temperature Measurement Thermodynamic Model Heat Transfer in the Mound Convective Heat Transfer Heat Transfer...

  9. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweighting Materials Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus Lightweighting Materials 2011 DOE Hydrogen and Fuel Cells...

  10. Integrated Ingredients Dehydrated Agricultural Drying Low Temperature...

    Open Energy Info (EERE)

    Ingredients Dehydrated Agricultural Drying Low Temperature Geothermal Facility Jump to: navigation, search Name Integrated Ingredients Dehydrated Agricultural Drying Low...

  11. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  12. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  13. Determining Outdoor CPV Cell Temperature: Preprint

    SciTech Connect (OSTI)

    Muller, M.; Deline, C.; Marion, B.; Kurtz, S.; Bosco, N.

    2011-07-01T23:59:59.000Z

    An accurate method is needed for determining cell temperature when measuring CPV modules outdoors. It has been suggested that cell temperature can be calculated though a procedure that shutters sunlight to the cells while measuring the transients in open-circuit voltage (Voc) and heat sink temperature. This paper documents application of this shutter procedure to multiple CPV modules at NREL. The challenges and limitations are presented along with an alternate approach to measuring CPV cell operating temperature.

  14. Progress in lattice QCD at finite temperature

    E-Print Network [OSTI]

    Peter Petreczky

    2006-06-09T23:59:59.000Z

    I review current status of lattice QCD calculations of the deconfining transition at finite temperature and quarkonia spectral functions.

  15. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29T23:59:59.000Z

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  16. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  17. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  18. Agenda: High Temperature Membrane Working Group Meeting

    Broader source: Energy.gov [DOE]

    Agenda for the High Temperature Membrane Working Group (HTMWG) meeting on May 18, 2009, in Arlington, Virginia

  19. Simulation of Top Oil Temperature for Transformers

    E-Print Network [OSTI]

    Simulation of Top Oil Temperature for Transformers Masters Thesis and Final Project Report Power-Oil Temperature for Transformers Thesis and Final Report Yong Liang PSERC Publication 01-21 February 2001 #12 for the PSERC project "On-Line Peak Loading of Substation Distribution Transformers Through Accurate Temperature

  20. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01T23:59:59.000Z

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  1. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, J.R.

    1997-02-04T23:59:59.000Z

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  2. Temperature Dependent Wire Delay Estimation in Floorplanning

    E-Print Network [OSTI]

    Nannarelli, Alberto

    Temperature Dependent Wire Delay Estimation in Floorplanning Andreas Thor Winther, Wei Liu, Alberto, Arizona State University, Tempe, USA Abstract--Due to large variations in temperature in VLSI cir- cuits and the linear relationship between metal resistance and temperature, the delay through wires of the same length

  3. Progress in Lattice QCD at finite temperature

    E-Print Network [OSTI]

    P. Petreczky

    2007-05-19T23:59:59.000Z

    I review recent developements in lattice QCD at finite temperature, including the determination of the transition temperature T_c, equation of state and diffenet static screening lengths. The lattice data suggest that at temperatures above 1.5T_c the quark gluon plasma can be considered as gas consisting of quarks and gluons.

  4. LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON

    E-Print Network [OSTI]

    McDonald, Kirk

    LOW TEMPERATURE PHYSICS RADIATION EFFECTS ON FUSION MAGNET COMPONENTS Harald W. Weber Vienna Stabilizer Insulation Conclusions ESS, 4th High Power Targetry Workshop, Malmö 5 May 2011 #12;LOW TEMPERATURE PHYSICS Overview: ITER 300-500 s INTRODUCTION #12;LOW TEMPERATURE PHYSICS ITER Magnet System (5 K / 6.5 K

  5. High temperature superconducting fault current limiter

    DOE Patents [OSTI]

    Hull, John R. (Hinsdale, IL)

    1997-01-01T23:59:59.000Z

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  6. Air Handling Unit Supply Air Temperature Optimization During Economizer Cycles

    E-Print Network [OSTI]

    Xu, K.; Liu, M.; Wang, G.; Wang, Z.

    2007-01-01T23:59:59.000Z

    temperature at supply air temperature setpoint. Mechanical cooling is always required when outside air temperature is higher than the supply air temperature setpoint. Generally the supply air temperature setpoint is set at 55°F for space humidity control...

  7. Apparent Temperature Dependence on Localized Atmospheric Water Vapor

    E-Print Network [OSTI]

    Salvaggio, Carl

    Apparent Temperature Dependence on Localized Atmospheric Water Vapor Matthew Montanaroa, Carl temperature of the target if not properly accounted for. The temperature error is defined as the difference between the target leaving apparent temperature and observed apparent temperature. The effects

  8. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, L.A.; Reichert, P.

    1997-03-18T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  9. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2000-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Microstructural changes in unsupported nanocrystalline yttrium stabilized zirconia (ZrO{sub 2}:16%Y, or YSZ) thin films were examined as a function of temperature and annealing time in order to determine the grain growth exponent and the mechanisms of pinhole formation. Grain growth and pinhole formation were measured using high resolution transmission electron microscopy (HRTEM), normal imaging mode transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray microanalysis (EDS). Grain growth was found to vary with a time exponent of about one half before pinhole formation and about one third after. Pinhole formation in 70 nm thick films occurred at temperatures near 600 C, corresponding to a grain size of about 15 nm, or a grain size to film thickness ration of approximately 0.25. The deposition of films on porous substrates is hampered by the penetration of the polymer precursor solution into the substrate whose pores as > 0.2 {micro}m, therefore much attention has to be paid to the development of porous colloidal oxide films onto surfaces. Thus during this line period we have been studying these films. Optical properties have proven to be an excellent way to study the quality of these nanoporous films. The influence of porosity and densification on optical properties of films on sapphire substrates that were prepared from water colloidal suspensions of small ({approx}5nm) particles of ceria was investigated. The colloidal ceria films have initially very porous structure (porosity about 50%) and densification starts at about 600 C accompanied by grain growth. The concurrence of these two processes makes it difficult to interpret the results of the optical spectrophotometry, but the combination of transmittance and reflectance measurements provides enough data to separate these two influences and to calculate the porosity, particle size and energy band gap separately. XRD, SEM, ellipsometry and mechanical profilometry were used to confirm the results obtained from the spectrophotometric measurements. All these methods gave results, which are in good agreement: the change in the porosity from 50% to 15% and the particle size increased from 5 to 65nm in the temperature region from 400 to 1000 C. An important result of the investigation is the fact that the main optical properties of the coating such as refractive index and band gap energy depend only on the porosity, but not on the grain size. The grain size influences the scattering properties of the coating, which allows the grain size to be estimated from optical measurements.

  10. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson

    2000-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates. However, they have the potential of being useful as an interface on the anode side of the electrolyte. NexTech has focused much of its effort during the past few months on establishing tape casting methods for porous LSM substrates. This work, performed under a separate DOE-funded program, involved tape casting formulations comprising LSM powders with bi-modal particle size distributions and fugitive pore forming additives. Sintered LSM substrates with porosities in the 30 to 40 vol% range, and pore sizes of 10 {approx} 20 microns have been prepared. In addition, tape casting formulations involving composite mixtures of LSM and Sm-doped ceria (SDC) have been evaluated. The LSM/SDC cathode substrates are expected to provide better performance at low temperatures. Characterization of these materials is currently underway.

  11. Faraday imaging at high temperatures

    DOE Patents [OSTI]

    Hackel, Lloyd A. (Livermore, CA); Reichert, Patrick (Hayward, CA)

    1997-01-01T23:59:59.000Z

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  12. Coronal Temperature as an Age Indicator

    E-Print Network [OSTI]

    Hwankyung Sung; M. S. Bessell; Hugues Sana

    2008-03-26T23:59:59.000Z

    The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in the corona shows a larger scatter and is probably affected by the activity of stars, such as flares. We confirm the power-law decay of the temperature of the hot plasma, but the temperature of the cool component decays linearly with log (age).

  13. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19T23:59:59.000Z

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  14. Temperature and electrical memory of polymer fibers

    SciTech Connect (OSTI)

    Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe [Centre de Recherche Paul Pascal - CNRS, University of Bordeaux, Avenue Schweitzer, 33600 Pessac (France)

    2014-05-15T23:59:59.000Z

    We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.

  15. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-08-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  16. Nuclear fuels for very high temperature applications

    SciTech Connect (OSTI)

    Lundberg, L.B.; Hobbins, R.R.

    1992-01-01T23:59:59.000Z

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO{sub 2} or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  17. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model Zaher Abstract We have analysed low and high temperature series expansions for the three­dimensional Ising model on the simple cubic lattice. Our analysis of Butera and Comi's new 32 term high temperature series yields K c

  18. High and Low Temperature Series Estimates for the Critical Temperature of the 3D Ising Model

    E-Print Network [OSTI]

    Adler, Joan

    High and Low Temperature Series Estimates for the Critical Temperature Abstract We have analysed low and high temperature series expansions for the three high temperature series yields Kc = 0.221659 +0.000002-0.000005and from the 32 term low

  19. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31T23:59:59.000Z

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the temperature increase inside the device due the internal heat that is generated due to conduction and switching losses. Capacitors and high current switches that are reliable and meet performance specifications over an increased temperature range are necessary to realize electronics needed for hybrid-electric vehicles (HEVs), fuel cell (FC) and plug-in HEVs (PHEVs). In addition to individual component level testing, it is necessary to evaluate and perform long term module level testing to ascertain the effects of high temperature operation on power electronics.

  20. Topological Insulators at Room Temperature

    SciTech Connect (OSTI)

    Zhang, Haijun; /Beijing, Inst. Phys.; Liu, Chao-Xing; /Tsinghua U., Beijing; Qi, Xiao-Liang; /Stanford U., Phys. Dept.; Dai, Xi; Fang, Zhong; /Beijing, Inst. Phys.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-25T23:59:59.000Z

    Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.

  1. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R. (Van Nuys, CA); Gallup, David F. (Pasadena, CA); Noles, David R. (Glendale, CA); Gregory, Christian T. (Alhambra, CA)

    1997-05-06T23:59:59.000Z

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  3. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect (OSTI)

    Köck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Klötzer, Bernhard; Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck (Austria)

    2014-08-15T23:59:59.000Z

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  4. Temperature Dependent Neutron Scattering Sections for Polyethylene

    E-Print Network [OSTI]

    Roger E. Hill; C. -Y. Liu

    2003-09-05T23:59:59.000Z

    This note presents neutron scattering cross sections for polyethylene at 296 K, 77 K and 4 K derived from a new scattering kernel for neutron scattering off of hydrogen in polyethylene. The kernel was developed in ENDF-6 format as a set of S(alpha,beta) tables using the LEAPR module of the NJOY94 code package. The polyethylene density of states (from 0 to sub eV) adopted to derive the new kernel is presented. We compare our calculated room temperature total scattering cross sections and double differential cross sections at 232 meV at various angles with the available experimental data (at room temperature), and then extrapolate the calculations to lower temperatures (77K and 4K). The new temperature dependent scattering kernel gives a good quantitative fit to the available room temperature data and has a temperature dependence that is qualitatively consistent with thermodynamics.

  5. Temperature detection in a gas turbine

    DOE Patents [OSTI]

    Lacy, Benjamin; Kraemer, Gilbert; Stevenson, Christian

    2012-12-18T23:59:59.000Z

    A temperature detector includes a first metal and a second metal different from the first metal. The first metal includes a plurality of wires and the second metal includes a wire. The plurality of wires of the first metal are connected to the wire of the second metal in parallel junctions. Another temperature detector includes a plurality of resistance temperature detectors. The plurality of resistance temperature detectors are connected at a plurality of junctions. A method of detecting a temperature change of a component of a turbine includes providing a temperature detector include ing a first metal and a second metal different from the first metal connected to each other at a plurality of junctions in contact with the component; and detecting any voltage change at any junction.

  6. High temperature solar selective coatings

    DOE Patents [OSTI]

    Kennedy, Cheryl E

    2014-11-25T23:59:59.000Z

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  7. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01T23:59:59.000Z

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  8. Electron temperature fluctuations in NGC 346

    E-Print Network [OSTI]

    V. A. Oliveira; M. V. F. Copetti; A. C. Krabbe

    2008-10-28T23:59:59.000Z

    The existence and origin of large spatial temperature fluctuations in HII regions and planetary nebulae are assumed to explain the differences between the heavy element abundances inferred from collisionally excited and recombination lines, although this interpretation remains significantly controversial. We investigate the spatial variation in electron temperature inside NGC 346, the brightest HII region in the Small Magellanic Cloud. Long slit spectrophotometric data of high signal-to-noise were employed to derive the electron temperature from measurements derived from localized observations of the [OIII]($\\lambda4959 + \\lambda5007)/\\lambda4363$ ratio in three directions across the nebula. The electron temperature was estimated in 179 areas of 5$^{\\prime\\prime}\\times1.5^{\\prime\\prime}$ of size distributed along three different declinations. A largely homogeneous temperature distribution was found with a mean temperature of 12 269 K and a dispersion of 6.1%. After correcting for pure measurements errors, a temperature fluctuation on the plane of the sky of $t^2_{\\rm s} = 0.0021$ (corresponding to a dispersion of 4.5%) was obtained, which indicates a 3D temperature fluctuation parameter of $t^2 \\approx 0.008$. A large scale gradient in temperature of the order of $-5.7\\pm1.3$ K arcsec$^{-1}$ was found. The magnitude of the temperature fluctuations observed agrees with the large scale variations in temperature predicted by standard photoionization models, but is too small to explain the abundance discrepancy problem. However, the possible existence of small spatial scale temperature variations is not excluded.

  9. Finite Temperature Phase Transition in $?^6$ potential

    E-Print Network [OSTI]

    Hatem Widyan

    2008-12-29T23:59:59.000Z

    The temperature dependance of the action in the thin-wall and thick-wall limits is obtained analytically for the $\\phi^6$ scalar potential. The nature of the phase transition is investigated from the quantum tunnelling regime at low temperatures to the thermal hopping regime at high temperatures. It is first-order for the case of a thin wall while for the thick wall it is second- order.

  10. Local temperature for dynamical black holes

    E-Print Network [OSTI]

    Sean A. Hayward; R. Di Criscienzo; M. Nadalini; L. Vanzo; S. Zerbini

    2008-12-13T23:59:59.000Z

    A local Hawking temperature was recently derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi tunneling method, and is given by a dynamical surface gravity as defined geometrically. Descriptions are given of the operational meaning of the temperature, in terms of what observers measure, and its relation to the usual Hawking temperature for static black holes. Implications for the final fate of an evaporating black hole are discussed.

  11. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  12. Deep Trek High Temperature Electronics Project

    SciTech Connect (OSTI)

    Bruce Ohme

    2007-07-31T23:59:59.000Z

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  13. High-Temperature Water Splitting | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Temperature Water Splitting High-Temperature Water Splitting High-temperature water splitting (a "thermochemical" process) is a long-term technology in the early stages of...

  14. Multicylinder Diesel Engine for Low Temperature Combustion Operation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Low Temperature Combustion Operation Multicylinder Diesel Engine for Low Temperature Combustion Operation Fuel injection strategies to extend low temperature combustion...

  15. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature-High-Volume Lifting for...

  16. High Temperature, High Pressure Devices for Zonal Isolation in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells High Temperature,...

  17. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    ,nm nm * High UV Radiant Exposure (8400 W UV) * 95% exposure uniformity * Visible and infrared radiation mostly removed * Temperature and relative humidity around specimens...

  18. Relativistic Random Phase Approximation At Finite Temperature

    SciTech Connect (OSTI)

    Niu, Y. F. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); Paar, N.; Vretenar, D. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Meng, J. [State Key Laboratory for Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

    2009-08-26T23:59:59.000Z

    The fully self-consistent finite temperature relativistic random phase approximation (FTRRPA) has been established in the single-nucleon basis of the temperature dependent Dirac-Hartree model (FTDH) based on effective Lagrangian with density dependent meson-nucleon couplings. Illustrative calculations in the FTRRPA framework show the evolution of multipole responses of {sup 132}Sn with temperature. With increased temperature, in both monopole and dipole strength distributions additional transitions appear in the low energy region due to the new opened particle-particle and hole-hole transition channels.

  19. Biodiesel's Enabling Characteristics in Attaining Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Discusses reasons and physical significance of cool-flame behavior of biodiesel on improving low temperature diesel combustion deer11jacobs.pdf More Documents &...

  20. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded Projects for...

  1. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. lm028laracurzio2010o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  2. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation lm028laracurzio2011o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  3. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    and Peer Evaluation Meeting lm028laracurzio2012o.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  4. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May 18-22, 2009 -- Washington D.C. lm01laracurzio.pdf More Documents & Publications Materials Characterization Capabilities at the High Temperature Materials Laboratory and HTML...

  5. Materials Characterization Capabilities at the High Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory: Focus on Carbon Fiber and Composites Materials Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites 2011 DOE...

  6. Low Temperature/Coproduced/Geopressured Subprogram Overview ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010. overviewlowtemp.pdf More Documents & Publications AAPG Low-Temperature Webinar SMU Geothermal Conference 2011 - Geothermal Technologies Program Geothermal Technologies...

  7. High-flux magnetorheology at elevated temperatures

    E-Print Network [OSTI]

    Ocalan, Murat

    Commercial applications of magnetorheological (MR) fluids often require operation at elevated temperatures as a result of surrounding environmental conditions or intense localized viscous heating. Previous experimental ...

  8. Low Temperature Material Bonding Techniq Ue

    DOE Patents [OSTI]

    Ramsey, J. Michael (Knoxville, TN); Foote, Robert S. (Oak Ridge, TN)

    2002-08-06T23:59:59.000Z

    A method of performing a lower temperature bonding technique to bond together two mating pieces of glass includes applying a sodium silicate aqueous solution between the two pieces.

  9. Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...

    Office of Scientific and Technical Information (OSTI)

    Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

  10. Materials Characterization Capabilities at the High Temperature...

    Broader source: Energy.gov (indexed) [DOE]

    Characterization Capabilities at the High Temperature Materials Laboratory: Focus on Carbon Fiber and Composites Project ID: LM027 DOE 2011 Vehicle Technologies Annual Merit...

  11. Intertwined Orders in High Temperature Superconductors

    E-Print Network [OSTI]

    Ostoja-Starzewski, Martin

    Intertwined Orders in High Temperature Superconductors ! Eduardo Fradkin University of Illinois · Electronic liquid crystal phases have also been seen heavy fermions and iron superconductors 7 #12

  12. Low temperature proton conducting oxide devices

    DOE Patents [OSTI]

    Armstrong, Timothy R. (Clinton, TN); Payzant, Edward A. (Oak Ridge, TN); Speakman, Scott A. (Oak Ridge, TN); Greenblatt, Martha (Highland Park, NJ)

    2008-08-19T23:59:59.000Z

    A device for conducting protons at a temperature below 550.degree. C. includes a LAMOX ceramic body characterized by an alpha crystalline structure.

  13. Polyelectrolyte Materials for High Temperature Fuel Cells

    Broader source: Energy.gov (indexed) [DOE]

    High 3M (3M) Temperature Fuel Cells John B. Kerr Lawrence Berkeley National Laboratory (LBNL) Collaborators: Los Alamos National Laboratory (LANL). February 13, 2007 This...

  14. Gribov gap equation at finite temperature

    E-Print Network [OSTI]

    Fabrizio Canfora; Pablo Pais; Patricio Salgado-Rebolledo

    2014-06-05T23:59:59.000Z

    In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. It also suggests the presence of the so-called semi-quark-gluon-plasma phase in between the confined and quark-gluon plasma phases.

  15. High Temperature 300°C Directional Drilling System

    Broader source: Energy.gov [DOE]

    Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

  16. The temperature dependence of equilibrium plasma density

    E-Print Network [OSTI]

    B. V. Vasiliev

    2002-03-17T23:59:59.000Z

    Temperature dependence of an electron-nuclear plasma equilibrium density is considered basing on known approaches, which are given in (1)(2). It is shown that at a very high temperature, which is characteristic for a star interior, the equilibrium plasma density is almost constant and equals approximately to $10^{25}$ particles per $cm^3$. At a relatively low temperature, which is characteristic for star surface, the equilibrium plasma density is in several orders lower and depends on temperature as $T^{3/2}$.

  17. Quantitative Modeling of High Temperature Magnetization Dynamics

    SciTech Connect (OSTI)

    Zhang, Shufeng

    2009-03-01T23:59:59.000Z

    Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

  18. Group 3: Humidity, Temperature, and Voltage (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01T23:59:59.000Z

    Group 3 is chartered to develop accelerated stress tests that can be used as comparative predictors of module lifetime versus stresses associated with humidity, temperature and voltage.

  19. Photonic crystals for high temperature applications

    E-Print Network [OSTI]

    Yeng, Yi Xiang

    2014-01-01T23:59:59.000Z

    This thesis focuses on the design, optimization, fabrication, and experimental realization of metallic photonic crystals (MPhCs) for high temperature applications, for instance thermophotovoltaic (TPV) energy conversion ...

  20. Estimating Temperature Distributions In Geothermal Areas Using...

    Open Energy Info (EERE)

    an analytical model, showing that the errors in neuronet temperature estimates based on well log data derive from: (a) the neuronet "education level" (which depends on the amount...

  1. High-Temperature Falling-Particle Receiver

    Broader source: Energy.gov (indexed) [DOE]

    temperatures, nitrate salt fluids become chemically unstable. In contrast, direct absorption receivers using solid particles that fall through a beam of concentrated solar...

  2. Advanced Low Temperature Absorption Chiller Module Integrated...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Low Temperature Absorption Chiller Module Integrated with a CHP System at a Distributed Data Center - Presentation by Exergy Partners Corp., June 2011 Advanced Low...

  3. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Fatih Dogan; Vladimir Petrovsky

    2002-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. This period has continued to address the problem of making dense 1/2 to 5 {micro}m thick dense layers on porous substrates (the cathode LSM). Our current status is that we are making structures of 2-5 cm{sup 2} in area, which consist of either dense YSZ or CGO infiltrated into a 2-5 {micro}m thick 50% porous layer made of either nanoncrystalline CGO or YSZ powder. This composite structure coats a macroporous cathode or anode; which serves as the structural element of the bi-layer structure. These structures are being tested as SOFC elements. A number of structures have been evaluated both as symmetrical and as button cell configuration. Results of this testing indicates that the cathodes contribute the most to cell losses for temperatures below 750 C. In this investigation different cathode materials were studied using impedance spectroscopy of symmetric cells and IV characteristics of anode supported fuel cells. Cathode materials studied included La{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (LSCF), La{sub 0.7}Sr{sub 0.2}MnO{sub 3} (LSM), Pr{sub 0.8}Sr{sub 0.2}Fe{sub 0.8}O{sub 3} (PSCF), Sm{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF), and Yb{sub .8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3} (SSCF). A new technique for filtering the Fourier transform of impedance data was used to increase the sensitivity of impedance analysis. By creating a filter specifically for impedance spectroscopy the resolution was increased. The filter was tailored to look for specific circuit elements like R//C, Warburg, or constant phase elements. As many as four peaks can be resolved using the filtering technique on symmetric cells. It may be possible to relate the different peaks to material parameters, like the oxygen exchange coefficient. The cathode grouped in order from lowest to highest ASR is LSCF < PSCF < SSCF < YSCF < LSM. The button cell results agree with this ordering indicating that this is an important tool for use in developing our understanding of electrode behavior in fuel cells.

  4. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-03-31T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. Substantial progress has been made on both characterizing thin films as well as developing methods to produce films on nanoporous substrates. The results of electrical conductivity measurements on ZrO{sub 2}:16%Sc nanocrystalline thin films under controlled oxygen partial pressure and temperature are presented. The experimental data have been interpreted using a defect model, which describes the interaction between Sc and oxygen vacancies resulting in the formation of donor - (Sc{sub Zr} - V{sub o} - e){sup x} and acceptor - (Sc{sub Zr}-h){sup x} levels. From this the electronic and ionic contribution to the electrical transport has been determined and correlated with the band structure. These results suggest that ZrO{sub 2}:16%Sc possesses higher electronic conductivity than ZrO{sub 2}:16%Y, which dominates the total conductivity in reducing atmospheres. This is an important result since it indicates that Sc-YSZ maybe useful in the anode regions of the cell. We have made important breakthroughs on depositing dense Ceria films on to porous LSM substrates. In previous studies we have found that in order to produce a surface which is smooth enough to coat with dense polymer precursor derived films, the required thickness of the colloidal film layer is determined by the maximum surface roughness. That is, if we wish to make 2 micron thick colloidal oxide layers, the roughness of the LSM surface can not exceed 2 microns. Currently, we are producing the composite CeO{sub 2}/LSM structures that can be coated with polymer precursor to produce 0.5 to 1.5 micron thickness dense YSZ films. In the next quarter, we will be testing SOFC's using these structures. YSZ/CeO{sub 2}/LSM composites have been formed by annealing at 800 C. Our studies show that the YSZ films are very dense with a 20 nm grain size. SOFC's using these composites are being fabricated and we expect to obtain cell data during the next quarter. As we reported in November 2000, we have had difficulties in making pore free films with larger areas that about 0.2cm{sup 2} which is due to problems in our clean room. Modifications have now been completed on the clean room and we should be approaching a class 100 in the film making area. This level of cleanliness is sufficient to obtain films without pores over areas up to 100cm{sup 2}.

  5. THE MULTI-USE STEINEL VARIABLE TEMPERATURE

    E-Print Network [OSTI]

    Kleinfeld, David

    THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212" F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

  6. THE MULTI-USE STEINEL VARIABLE TEMPERATURE

    E-Print Network [OSTI]

    Kleinfeld, David

    THE MULTI-USE STEINEL VARIABLE TEMPERATURE ELECTRONICALLY CONTROLLED HEAT GUNTEMPERATURE RANGE 212 at the outlet nozzle will bum flesh. Do not tum on Heat Gun with hand in front of nozzle. DO NOT USE NEAR equipment Specifications Temperature Variable from 212° F to 1100° F Watts 1500W Weight 1.5 lbs. Supply

  7. Introduction Importance of temperature in streams

    E-Print Network [OSTI]

    Toran, Laura

    , fish reproduction, and aquatic metabolism rates. Nearly every species is temperature sensitive a downstream gradient as the surface water is exposed to solar radiation. Theurer et al. (1984) listed sources-radiation. Inverted temperature gradients (downstream cooling) have been observed where clear cutting exposed head

  8. High temperature hot water systems: A primer

    SciTech Connect (OSTI)

    Govan, F.A. [NMD and Associates, Cincinnati, OH (United States)

    1998-01-01T23:59:59.000Z

    The fundamental principles of high temperature water (HTW) system technology and its advantages for thermal energy distribution are presented. Misconceptions of this technology are also addressed. The paper describes design principles, applications, HTW properties, HTW system advantages, selecting the engineer, load diversification, design temperatures, system pressurization, pump considerations, constant vs. VS pumps, HTW generator types, and burners and controls.

  9. High Temperature Gas Reactors The Next Generation ?

    E-Print Network [OSTI]

    -Proof Advanced Reactor and Gas Turbine #12;Flow through Power Conversion Vessel 8 #12;9 TRISO Fuel Particle1 High Temperature Gas Reactors The Next Generation ? Professor Andrew C Kadak Massachusetts of Brayton vs. Rankine Cycle · High Temperature Helium Gas (900 C) · Direct or Indirect Cycle · Originally

  10. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23T23:59:59.000Z

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  11. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert (Norwich, VT); Valenzuela, Javier A. (Grantham, NH); Nutt, William E. (Enfield, NH)

    1991-07-23T23:59:59.000Z

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  12. Postgraduate Scholarship Pricing temperature derivatives and modelling

    E-Print Network [OSTI]

    Banaji,. Murad

    the volumetric risk of the energy units sold, rather than the price risk of each unit. Weather derivativesPostgraduate Scholarship Pricing temperature derivatives and modelling the market price of risk: Pricing temperature derivatives and modelling the market price of risk. Main Supervisor: A. Alexandridis

  13. Temperature-Aware Architecture: Lessons and Opportunities

    E-Print Network [OSTI]

    Skadron, Kevin

    TEMPERATURE-AWARE, NOT JUST POWER-AWARE? To address these thermal concerns requires modeling at every design the two design approaches [2]. First, temperature is proportional to power density, not just power unit area is scaling up faster than the power density is scaling down. This requires more expensive

  14. Extending the Upper Temperature Limit for Life

    E-Print Network [OSTI]

    Lovley, Derek

    ) un- der N2-CO2 (80:20) in sealed culture tubes that con- tained formate (10 mM) as the electron donor that permit strain 121 to grow at such high temperatures are unknown. It is gen- erally assumed that the upperExtending the Upper Temperature Limit for Life Kazem Kashefi and Derek R. Lovley* The upper

  15. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M. (Woodridge, IL)

    1982-01-01T23:59:59.000Z

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  16. Dynamic temperature measurements with embedded optical sensors.

    SciTech Connect (OSTI)

    Dolan, Daniel H.,; Seagle, Christopher T; Ao, Tommy

    2013-10-01T23:59:59.000Z

    This report summarizes LDRD project number 151365, %5CDynamic Temperature Measurements with Embedded Optical Sensors%22. The purpose of this project was to develop an optical sensor capable of detecting modest temperature states (<1000 K) with nanosecond time resolution, a recurring diagnostic need in dynamic compression experiments at the Sandia Z machine. Gold sensors were selected because the visible re ectance spectrum of gold varies strongly with temperature. A variety of static and dynamic measurements were performed to assess re ectance changes at di erent temperatures and pressures. Using a minimal optical model for gold, a plausible connection between static calibrations and dynamic measurements was found. With re nements to the model and diagnostic upgrades, embedded gold sensors seem capable of detecting minor (<50 K) temperature changes under dynamic compression.

  17. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect (OSTI)

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2001-09-30T23:59:59.000Z

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. In this portion of study we have focused on producing YSZ films on porous LSM substrates. When using the polymer precursor there are a number of obstacles to overcome in order to form dense electrolyte layers on porous substrates (cathode or anode). Probably the most difficult problems are: (1) Extreme penetration of the polymer into the substrate must be prevented. (2) Shrinkage cracking must be avoided. (3) Film thickness in the 1 to 5{micro}m range must be achieved. We have demonstrated that cracking due to shrinkage involved during the elimination of solvents and organic matter and densification of the remaining oxide is not a problem as long as the resulting oxide film is < {approx} 0.15 {micro}m in thickness. We have also shown that we can make thicker films by making multiple depositions if the substrate is smooth (roughness {le} 0.1 {micro}m) and contains no surface pores > 0.2 {micro}m. The penetration of the polymer into the porous substrate can be minimized by increasing the viscosity of the polymer and reducing the largest pore at the surface of the substrate to {le} 0.2 {micro}m. We have shown that this can be done, but we have also shown that it is difficult to make dense films that are defect free with areas > 1 cm{sup 2}. This is because of the roughness of the substrate and the difficulty in making a substrate which does not have surface voids > 0.2 {micro}m. Thus the process works well for dense, smooth substrates for films < 1 {micro}m thick, but is difficult to apply to rough, porous surfaces and to make film thickness > 1 {micro}m. As a result of these problems, we have been addressing the issue of how to make dense films in the thickness range of 1 to 5 {micro}m on sintered porous substrates without introducing cracks and holes due to shrinkage and surface voids? These endeavors have lead us to a solution which we think is quite unique and should allow us to obtain flaw free dense films of thickness in the 0.5 to 5 {micro}m range at processing temperatures {le} 900{sup o}. The process involves the deposition of a slurry of nanocrystalline YSZ onto a presintered porous LSM substrate. The key element in the deposition is that the slurry contains sufficient YSZ polymer precursor to allow adhesion of the YSZ particles to each other and the surface after annealing at about 600 C. This allows the formation of a porous film of 0.5 to 5 {micro}m thick which adheres to the surface. After formation of this film, YSZ polymer precursor is allowed to impregnate the porous surface layer (capillary forces tend to confine the polymer solution in the nanoporous layer). After several impregnation/heat treatment cycles, a dense film results. Within the next few months, this process should be developed to the point that single cell measurements can be made on 0.5 to 5 {micro}m films on a LSM substrate. This type of processing allows the formation of essentially flaw free films over areas > 1 cm{sup 2}.

  18. Is obesity associated with lower body temperatures? Core temperature: a forgotten variable in energy balance

    E-Print Network [OSTI]

    Linsenmeier, Robert

    Is obesity associated with lower body temperatures? Core temperature: a forgotten variable Northwestern University Comprehensive Center on Obesity, Chicago, IL 60611, USA Northwestern University in obesity, along with the associated adverse health consequences, has heightened interest in the fundamental

  19. Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

    Office of Environmental Management (EM)

    Temperature, Coproduced, and Geopressured Geothermal Technologies Strategic Action Plan, September 2010 Low-Temperature, Coproduced, and Geopressured Geothermal Technologies...

  20. Inverse Temperature-Dependent Pathway of Cellulose Decrystallization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in Trifluoroacetic Acid. Inverse Temperature-Dependent Pathway of Cellulose Decrystallization in...

  1. Surface temperature trends in Russia over the past five centuries reconstructed from borehole temperatures

    E-Print Network [OSTI]

    Smerdon, Jason E.

    ; KEYWORDS: Russia, borehole temperatures, climate reconstruction Citation: Pollack, H. N., D. Y. Demezhko, A and extent of 20th century temperature changes in Russia, within the context of the temperature history of climate changing on decadal, centennial, or millennial timescales, the outward flux and its subsurface

  2. Temperature distribution in an oscillatory flow with a sinusoidal wall temperature

    E-Print Network [OSTI]

    Texas at Austin. University of

    generated by an oscillatory boundary layer flow in the presence of a wall with a sinusoidal temperatureTemperature distribution in an oscillatory flow with a sinusoidal wall temperature Eduardo Ramos a that in all cases, the long-time, time averaged heat transfer from the boundary to the fluid is zero. Ó 2004

  3. A Harmonic Approach for Calculating Daily Temperature Normals Constrained by2 Homogenized Monthly Temperature Normals3

    E-Print Network [OSTI]

    1 1 A Harmonic Approach for Calculating Daily Temperature Normals Constrained by2 Homogenized a constrained harmonic technique that forces the daily30 temperature normals to be consistent with the monthly, or harmonic even though the annual march of temperatures for some locations can be highly asymmetric. Here, we

  4. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; /SLAC; ,

    2010-11-17T23:59:59.000Z

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  5. Low temperature properties of holographic condensates

    E-Print Network [OSTI]

    Pallab Basu

    2011-06-16T23:59:59.000Z

    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS^4. At a non-zero temperature a small horizon would form deep inside this AdS^4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.

  6. Ultra-High Temperature Distributed Wireless Sensors

    SciTech Connect (OSTI)

    May, Russell; Rumpf, Raymond; Coggin, John; Davis, Williams; Yang, Taeyoung; O'Donnell, Alan; Bresnahan, Peter

    2013-03-31T23:59:59.000Z

    Research was conducted towards the development of a passive wireless sensor for measurement of temperature in coal gasifiers and coal-fired boiler plants. Approaches investigated included metamaterial sensors based on guided mode resonance filters, and temperature-sensitive antennas that modulate the frequency of incident radio waves as they are re-radiated by the antenna. In the guided mode resonant filter metamaterial approach, temperature is encoded as changes in the sharpness of the filter response, which changes with temperature because the dielectric loss of the guided mode resonance filter is temperature-dependent. In the mechanically modulated antenna approach, the resonant frequency of a vibrating cantilever beam attached to the antenna changes with temperature. The vibration of the beam perturbs the electrical impedance of the antenna, so that incident radio waves are phase modulated at a frequency equal to the resonant frequency of the vibrating beam. Since the beam resonant frequency depends on temperature, a Doppler radar can be used to remotely measure the temperature of the antenna. Laboratory testing of the guided mode resonance filter failed to produce the spectral response predicted by simulations. It was concluded that the spectral response was dominated by spectral reflections of radio waves incident on the filter. Laboratory testing of the mechanically modulated antenna demonstrated that the device frequency shifted incident radio waves, and that the frequency of the re-radiated waves varied linearly with temperature. Radio wave propagation tests in the convection pass of a small research boiler plant identified a spectral window between 10 and 13 GHz for low loss propagation of radio waves in the interior of the boiler.

  7. Hot One-Temperature Accretion Flows Revisited

    E-Print Network [OSTI]

    Feng Yuan; Ronald E. Taam; Yongquan Xue; Wei Cui

    2005-09-11T23:59:59.000Z

    The effectiveness of the thermal coupling of ions and electrons in the context of optically thin, hot accretion flows is investigated. In the limit of complete coupling, we focus on the one-temperature accretion flows. Based on a global analysis, the results are compared with two-temperature accretion flow models and with the observations of black hole sources. Many features are quite similar. That is, hot one-temperature solutions are found to exist for mass flow rates less than a critical value; i.e., $\\dot{M}\\la 10\\alpha^2\\dot{M}_{\\rm Edd}$, where $\\dot{M}_{\\rm Edd}= L_{\\rm Edd}/c^2$ is the Eddington accretion rate. At low mass flow rates, $\\dot{M}\\la 10^{-3}\\alpha^2 \\dot{M}_{\\rm Edd}$, the solution is in the advection-dominated accretion flow (ADAF) regime. But at higher rates, radiative cooling is effective and is mainly balanced by advective {\\em heating}, placing the solution in the regime of luminous hot accretion flow (LHAF). To test the viability of the one-temperature models, we have fitted the spectra of the two black hole sources, Sgr A* and XTE J1118+480, which have been examined successfully with two-temperature models. It is found that the one-temperature models do not provide acceptable fits to the multi-wavelength spectra of Sgr A* nor to XTE J1118+480 as a result of the higher temperatures characteristic of the one-temperature models. It is concluded that the thermal coupling of ions and electrons cannot be fully effective and that a two-temperature description is required in hot accretion flow solutions.

  8. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOE Patents [OSTI]

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19T23:59:59.000Z

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  9. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOE Patents [OSTI]

    Britton, Jr., Charles L. (Alcoa, TN); Ericson, M. Nance (Knoxville, TN)

    1999-01-01T23:59:59.000Z

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  10. Single-Duct Constant Air Volume System Supply Air Temperature Reset: Using Return Air Temperature or Outside Air Temperature?

    E-Print Network [OSTI]

    Wei, G.; Turner, W. D.; Claridge, D.; Liu, M.

    2002-01-01T23:59:59.000Z

    space area. Room temperatures are controlled by pneumatic thermostats. The AHU has a minimum outside air damper and a maximum outside air damper. The minimum outside air damper is fully open when the AHU is in operation. The maximum outside air... understand how this reset scheme responds to building load change, thus resulting in supply air temperature reset, it is helpful to explain the role of thermostat. In the following section, we explain the way how the thermostat works, the type...

  11. The temperature sensitivity of a bistable RAM

    E-Print Network [OSTI]

    Brown, Janet Kay

    1986-01-01T23:59:59.000Z

    is applied to the polycrystalline-silicon resistor of a new bistable RAM cell. The effect of temperature on the resistor is explored with respect to the operation of the RAM cell's refresh mechanism. A temperature range of 0 ? 100'C is investigated... of user defined function, DER 16. TB, fpiy verses doping concentration 17. TB, f ty verses temperature range Page 16 17 26 27' 28 29 30 CHAPTER I INTRODUCTION The search for small, dense memories has led to the dynamic RAM cell which...

  12. Low-temperature thermodynamics with quantum coherence

    E-Print Network [OSTI]

    Varun Narasimhachar; Gilad Gour

    2014-10-02T23:59:59.000Z

    We find a new characterization of low-temperature processes, which we call "cooling processes", incorporating quantum coherence in the model of thermodynamics for the first time. We derive necessary and sufficient conditions for the feasibility of state transitions under cooling processes. We also rigorously confirm the intuitive robustness of coherence against low-temperature thermal noise. Additionally, we develop the low-temperature "Gibbs-preserving" model, and by comparing our results on the two models, we argue that the latter is a poor approximation to physical processes.

  13. High temperature crystalline superconductors from crystallized glasses

    DOE Patents [OSTI]

    Shi, Donglu (Downers Grove, IL)

    1992-01-01T23:59:59.000Z

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  14. High temperature, minimally invasive optical sensing modules

    DOE Patents [OSTI]

    Riza, Nabeel Agha (Oviedo, FL); Perez, Frank (Tujunga, CA)

    2008-02-05T23:59:59.000Z

    A remote temperature sensing system includes a light source selectively producing light at two different wavelengths and a sensor device having an optical path length that varies as a function of temperature. The sensor receives light emitted by the light source and redirects the light along the optical path length. The system also includes a detector receiving redirected light from the sensor device and generating respective signals indicative of respective intensities of received redirected light corresponding to respective wavelengths of light emitted by the light source. The system also includes a processor processing the signals generated by the detector to calculate a temperature of the device.

  15. Relationship Between Liquidus Temperature and Solubility

    SciTech Connect (OSTI)

    Hrma, Pavel R.; Vienna, John D.

    2002-05-21T23:59:59.000Z

    The literature on high-level waste glass crystallization uses three basic ways of organizing data: 1) solubilities of sparsely soluble glass components are plotted as functions of temperature; 2) liquidus temperature (TL) of glass is expressed as a function of glass composition; and 3) fractions of crystalline phases at equilibrium with molten glass are measured as a function of temperature below TL. To make the results mathematically tractable, the response functions are constructed by fitting simple mathematical expressions to data. The relationship between solubility-based and TL-based formulae is discussed.

  16. Deformation of contour and Hawking temperature

    E-Print Network [OSTI]

    Chikun Ding; Jiliang Jing

    2010-01-19T23:59:59.000Z

    It was found that, in an isotropic coordinate system, the tunneling approach brings a factor of 1/2 for the Hawking temperature of a Schwarzschild black hole. In this paper, we address this kind of problem by studying the relation between the Hawking temperature and the deformation of integral contour for the scalar and Dirac particles tunneling. We find that correct Hawking temperature can be obtained exactly as long as the integral contour deformed corresponding to the radial coordinate transform if the transformation is a non-regular or zero function at the event horizon.

  17. Low temperature monitoring system for subsurface barriers

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); McKinzie, II. Billy John (Houston, TX)

    2009-08-18T23:59:59.000Z

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  18. Device for self-verifying temperature measurement and control

    DOE Patents [OSTI]

    Watkins, Arthur D.; Cannon, Collins P.; Tolle, Charles R.

    2004-08-03T23:59:59.000Z

    A measuring instrument includes a first temperature sensor, a second temperature sensor and circuitry. The first and second temperature sensors each generate a signal indicative of the temperature of a medium being detected. The circuitry is configured to activate verification of temperature being sensed with the first sensor. According to one construction, the first temperature sensor comprises at least one thermocouple temperature sensor and the second temperature sensor comprises an optical temperature sensor, each sensor measuring temperature over the same range of temperature, but using a different physical phenomena. Also according to one construction, the circuitry comprises a computer configured to detect failure of one of the thermocouples by comparing temperature of the optical temperature sensor with each of the thermocouple temperature sensors. Even further, an output control signal is generated via a fuzzy inference machine and control apparatus.

  19. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J. (Ames, IA); Anderson, Iver E. (Ames, IA); Ijadi-Maghsoodi, Sina (Ames, IA); Nosrati, Mohammad (Ames, IA); Unal, Ozer (Ames, IA)

    2001-04-10T23:59:59.000Z

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  20. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12T23:59:59.000Z

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.