Powered by Deep Web Technologies
Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Kilo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilo Geothermal Area Kilo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65.8101865,"lon":-151.2360627,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

3

POWERS OF TEN 10 deka (da)  

E-Print Network (OSTI)

/yr) World U.S. Petroleum 10 135 41 Natural Gas 10 60 20 Coal 250 90 15 Tar sands >2 0 0 Oil shale 2,000 0 0

Kammen, Daniel M.

4

Prefixes  

Science Conference Proceedings (OSTI)

... giga. jig'a a as in about, G. 10 9. Billion. mega. as in megaphone, M. 10 6. Million. kilo. as in kilowatt, k. 10 3. Thousand. hecto. heck'toe, h. 10 2. Hundred ...

2012-11-30T23:59:59.000Z

5

NON-STANDARD ENERGY SPECTRA OF SHOCK-ACCELERATED SOLAR PARTICLES  

SciTech Connect

We consider a numerical model for the shock acceleration of energetic ions in the magnetic environment of the solar corona. The model is motivated by observations of the deka-to-hecto-MeV proton energy spectra, ion and electron timing, and abundances in the beginning of major solar energetic particle (SEP) events, prior to the event's main phase associated with coronal mass ejection (CME) driven shock in the solar wind. Inasmuch as the obliquity of the CME-liftoff-associated shocks in solar corona and hence the seed-particle supply for the shock acceleration are essentially time dependent, a steady state energy spectrum of accelerated protons near the shock could not be attained. Energy spectrum of the SEP emission depends on the spatial and energy distribution of seed particles for the coronal shock acceleration, on the shock wave history, and on the location and scenario of the energetic particle escape into the interplanetary medium. We use a numerical model of the shock acceleration on a semicircular magnetic field line to learn a significance of different effects. If the shock geometry in a particular magnetic tube changes from nearly parallel to perpendicular, the resulting SEP spectrum in most distant sections of the tube, e.g., at the top of a transequatorial loop, resembles a wide beam, which is very different from the standard power-law spectrum that would be expected in a steady state. Possible escape of the shock-accelerated particles from more than one coronal location, stochastic re-acceleration, and the magnetic tube expansion can make the SEP spectra even more complicated.

Kocharov, Leon; Vainio, Rami; Pomoell, Jens [Department of Physics, P.O. Box 64, University of Helsinki, FI-00014 (Finland); Valtonen, Eino [Space Research Laboratory, Department of Physics and Astronomy, University of Turku, FI-20014 (Finland); Klassen, Andreas [Institut fuer Experimentelle und Angewandte Physik, Christian-Albrechts-Universitaet Kiel, D-24118 (Germany); Young, C. Alex [ADNET Systems Inc., NASA Goddard Space Flight Center, Greenbelt, MD 20850 (United States)

2012-07-01T23:59:59.000Z

6

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

South Dakota" South Dakota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",6427,6573,6246,5256,7991,8812,10066,12450,9089,10557,9697,7401,7722,7905,7358,6368,6989,5991,6942,7780,8682 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-",39,153,152,143,145,140,416,1367 "Electric Power Sector Generation Subtotal",6427,6573,6246,5256,7991,8812,10066,12450,9089,10557,9697,7401,7722,7944,7510,6521,7132,6137,7083,8196,10050 " Combined Heat and Power, Commercial","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","*","*","*"

7

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Washington" Washington" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",100479,101353,84115,83771,82348,95671,112606,117453,97128,112072,96227,67683,88568,82205,83501,83153,94067,90531,93162,90733,88057 " Independent Power Producers",177,189,312,302,336,365,324,408,350,484,6588,9454,9817,13541,15054,15287,10887,13797,14908,10531,12330 " Combined Heat and Power, Electric",8,257,706,2663,4568,4693,4204,2947,3246,3048,4065,4427,3268,3350,2583,2517,2385,1948,1860,2085,1740 "Electric Power Sector Generation Subtotal",100664,101799,85133,86736,87252,100729,117135,120808,100724,115604,106879,81564,101654,99097,101138,100956,107339,106277,109929,103349,102127

8

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska" Nebraska" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",21631,22972,22387,22724,21946,25279,27323,28388,28720,29981,29046,30412,31550,30368,31944,31392,31599,32403,32356,33776,36243 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",165,208 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",8,8,9,7,8,8,21,"*",8,4,5,5,5,6

9

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina" Carolina" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",69260,69838,71479,75588,74194,78440,76326,78374,84397,87347,90421,86735,93689,91544,94407,99104,95873,99997,97921,97337,100611 " Independent Power Producers",60,38,63,58,64,61,52,55,64,40,179,497,633,278,486,735,730,771,753,430,1034 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-",349,627,565,509,416,100,855,595,623,619,506,650,770 "Electric Power Sector Generation Subtotal",69320,69876,71541,75646,74258,78501,76378,78429,84810,88014,91165,87741,94738,91923,95747,100435,97225,101387,99179,98416,102414

10

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana" Indiana" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",97738,98200,97300,99951,103485,105189,105557,110466,112772,114183,119721,114666,112030,112396,114690,117374,117644,116728,115888,103594,107853 " Independent Power Producers","-","-","-","-","-",46,70,85,788,2828,3794,3665,9879,3417,3268,3659,3488,4518,4839,4228,6464 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-",1,12,22,5474,5630,5650,5526,5915,5301,5984,7525

11

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma" Oklahoma" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",45063,44850,45943,48811,45381,47955,47545,48380,51454,50279,51403,50414,51218,49777,48298,54251,51917,54178,60075,57517,57421 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",844,3970,4247,8913,10282,14784,14871,12651,14423,11546 " Combined Heat and Power, Electric",1017,2964,2895,3139,3381,3314,3042,3173,3539,3434,3027,2731,2622,5217,2256,2822,2642,2854,2682,2318,2382 "Electric Power Sector Generation Subtotal",46080,47814,48838,51949,48762,51269,50586,51553,54993,53712,54430,53988,57810,59240,59467,67355,69344,71902,75409,74258,71348

12

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Florida" Florida" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",123624,130744,133977,140067,141791,147157,145140,147984,169447,166914,169889,170966,182347,188035,193384,196096,200015,200534,196524,195063,206062 " Independent Power Producers",1696,2267,3025,3472,3551,4082,3903,3716,4258,4560,5676,5675,7247,8276,10334,10189,10156,11500,10142,10774,10587 " Combined Heat and Power, Electric",647,549,745,2138,5777,9333,11125,9779,9348,9526,10037,8957,9242,10335,8779,8515,8656,8420,8326,7203,6914 "Electric Power Sector Generation Subtotal",125967,133560,137746,145677,151119,160571,160168,161479,183053,181000,185602,185598,198835,206645,212497,214800,218827,220453,214992,213040,223563

13

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",77364,71254,72334,71078,77703,77322,83978,88284,89605,91678,89709,51609,63342,64057,59084,61242,68164,69348,66667,51709,56720 " Independent Power Producers",250,300,568,1238,1353,936,929,960,946,892,1040,28458,29373,28429,28498,30556,23959,23058,23138,17700,22757 " Combined Heat and Power, Electric","-","*",354,443,414,377,442,456,443,435,451,306,409,446,465,467,470,417,411,413,388 "Electric Power Sector Generation Subtotal",77614,71554,73256,72759,79470,78635,85349,89701,90994,93005,91200,80373,93123,92932,88047,92265,92593,92823,90216,69822,79865

14

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Rhode Island" Rhode Island" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",592,171,109,54,69,653,3301,3563,2061,9,11,"-",12,12,12,11,11,11,11,11,11 " Independent Power Producers",50,2403,4315,4037,4191,3310,3964,3552,5028,5843,5406,6990,6927,5557,4891,5957,5875,6989,7324,7633,7696 " Combined Heat and Power, Electric",422,292,291,502,400,447,379,539,518,473,506,459,71,9,"-",18,18,"-","-","-","-" "Electric Power Sector Generation Subtotal",1064,2867,4716,4594,4660,4410,7644,7654,7608,6326,5923,7449,7010,5578,4904,5987,5904,7000,7335,7644,7707

15

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",361,180,74,188,274,189,110,71,244,230,97,"-","-","-","-","-","-","-","-","-","-" " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",47,123,262,74,36,226,81,75,72,35,200 "Electric Power Sector Generation Subtotal",361,180,74,188,274,189,110,71,244,230,144,123,262,74,36,226,81,75,72,35,200

16

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware" Delaware" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",7100,7604,6267,8306,8501,8324,8122,6579,6318,6239,4137,1872,171,31,24,26,17,48,19,13,30 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",1402,4429,5271,6653,6866,7078,6025,7283,5227,3695,4839 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-","-","-",109,128,129,102,132,1579,675,758

17

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut" Connecticut" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",32156,23552,25154,28715,27201,26932,15774,13228,15123,20484,16993,2817,21,60,45,42,48,37,52,47,66 " Independent Power Producers",673,719,1024,1058,1099,1604,1279,1246,1461,4993,13223,25296,28878,27167,30345,31564,32431,31087,28138,28959,31185 " Combined Heat and Power, Electric",1987,2562,2671,2691,2552,2512,2289,2321,2264,2243,2401,2080,2053,1986,1966,1697,1874,1831,1956,1874,1724 "Electric Power Sector Generation Subtotal",34815,26833,28848,32463,30853,31048,19342,16795,18847,27720,32617,30193,30952,29212,32356,33303,34352,32956,30147,30880,32974

18

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina" North Carolina" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",79845,83520,83007,88754,91455,96110,102787,107371,113112,109882,114433,109807,115598,118433,118329,121675,117797,123216,118778,112961,121251 " Independent Power Producers",104,431,432,429,1175,1773,1638,1793,467,474,693,810,1914,1943,1699,1863,1815,1686,1398,1341,2605 " Combined Heat and Power, Electric",2587,3470,3579,3482,3544,3965,3247,1467,3024,2835,3287,3343,3272,3575,3207,3064,2854,3034,2929,2188,2598 "Electric Power Sector Generation Subtotal",82535,87420,87018,92665,96174,101848,107671,110631,116603,113191,118414,113961,120784,123951,123234,126602,122467,127936,123105,116490,126454

19

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi" Mississippi" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",22924,23305,20488,23234,26222,26395,28838,31228,31992,32212,33896,47550,35099,31359,32838,30619,34159,34427,33796,34759,40841 " Independent Power Producers","-","-","-",3,3,3,4,5,4,257,1404,2277,5028,7308,9060,12704,10182,13718,12653,12129,11779 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-",1440,1366,"-","-","-","-","-","-","-","-"

20

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey" Jersey" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",36489,37029,31167,34285,31932,27088,19791,23761,35911,38868,25254,1630,1569,1910,1649,1249,1043,-191,-206,-187,-186 " Independent Power Producers",253,716,1240,1099,1408,1434,1700,1556,1138,1229,15677,41097,43924,41228,42169,46809,48723,51439,52292,52182,56686 " Combined Heat and Power, Electric",2202,3824,8384,9975,12108,13591,13156,13370,13598,13525,14104,13418,13693,12777,10705,11365,9999,10653,10740,8717,8041 "Electric Power Sector Generation Subtotal",38943,41569,40791,45359,45448,42113,34647,38687,50647,53622,55035,56145,59186,55916,54523,59422,59765,61901,62825,60712,64540

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama" Alabama" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",76232,85051,90792,94124,95171,99589,115093,113684,113394,113909,118037,118744,123739,126846,124555,126304,124365,124273,128055,118782,122766 " Independent Power Producers",28,25,25,11,15,7,6,5,4,49,42,45,2357,4065,6127,4821,7103,9202,10683,15302,20923 " Combined Heat and Power, Electric",666,787,778,788,693,647,671,683,842,747,550,698,1459,1311,1446,2174,4683,5705,2569,4606,4243 "Electric Power Sector Generation Subtotal",76925,85863,91596,94922,95879,100244,115770,114372,114240,114704,118629,119487,127555,132221,132127,133299,136152,139180,141307,138690,147933

22

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana" Louisiana" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",58168,57158,55188,59353,60170,65555,58643,61120,66107,64837,57601,50378,54922,43485,47604,44158,40891,43523,43164,43592,51681 " Independent Power Producers",866,749,855,1434,1169,1162,1167,1253,1264,1024,11091,14007,16941,21184,18811,18095,18740,17735,18768,16746,17780 " Combined Heat and Power, Electric",1604,1581,954,1579,1606,1404,1377,1568,1664,1522,1421,1551,1650,1845,5233,8254,4165,4416,4317,4836,5083 "Electric Power Sector Generation Subtotal",60638,59488,56997,62366,62945,68121,61187,63941,69035,67383,70113,65936,73513,66513,71648,70507,63796,65674,66249,65174,74544

23

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska" Alaska" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",4493,4286,4167,4581,4762,4847,4982,5108,4590,4609,4938,5416,5472,5673,5866,5946,6069,6146,6262,6167,6205 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-","-",80,"-","-","-" " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-",211,227,224,237,244,162,182,174,187,210,177,209,204

24

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Texas" Texas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",234047,238343,239964,248174,255141,261709,272283,277190,293068,292458,297299,265013,149587,86882,92054,95187,94638,97260,94637,90418,95099 " Independent Power Producers",24,24,24,22,21,24,122,151,183,1072,10466,30779,138777,197114,205978,216933,224749,224719,229159,227007,232230 " Combined Heat and Power, Electric",13642,13589,14417,15794,15448,18178,19080,19891,23626,25590,28495,35618,56862,55432,49841,44759,41286,46010,45785,44780,43045 "Electric Power Sector Generation Subtotal",247713,251956,254405,263990,270610,279911,291485,297232,316877,319120,336259,331410,345226,339428,347872,356879,360674,367989,369581,362206,370374

25

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

New Hampshire" New Hampshire" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",10810,12705,13451,14586,11888,13936,15419,14264,14238,13876,12702,13095,12276,6232,6169,5638,4575,4888,4348,3788,3979 " Independent Power Producers",1135,1168,1209,1216,1130,1099,1180,1164,1360,1818,1861,1574,3385,15014,17315,18438,17297,18237,18471,16314,18163 " Combined Heat and Power, Electric",93,90,87,83,68,85,85,75,92,94,86,80,20,"-","-","-","-","-","-","-","-" "Electric Power Sector Generation Subtotal",12038,13964,14747,15885,13086,15120,16684,15504,15690,15788,14648,14749,15681,21245,23484,24076,21872,23125,22819,20103,22143

26

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas" Kansas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",33869,32315,31764,36433,37284,38230,39875,37844,41481,42003,44765,44643,46692,46156,46409,45421,44621,49256,45276,44443,45270 " Independent Power Producers",1,1,10,5,10,11,11,14,11,12,15,65,479,377,368,436,895,857,1354,2234,2654 "Electric Power Sector Generation Subtotal",33870,32316,31774,36438,37294,38242,39886,37858,41492,42015,44780,44708,47171,46532,46778,45857,45516,50114,46630,46677,47924 " Combined Heat and Power, Commercial","-","-","-","-",5,5,1,1,1,2,2,2,1,1,1,"*","-","-","-","-","-"

27

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky" Kentucky" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",73807,75505,77351,84998,84097,86162,88438,91558,86151,81658,81350,83678,80162,80697,82921,85680,86816,85259,86012,90030,97472 " Independent Power Producers","-","-","-","-","-","-","-","-",4766,11011,11503,11448,11369,10566,11097,11622,11449,11397,11316,119,171 "Electric Power Sector Generation Subtotal",73807,75505,77351,84998,84097,86162,88438,91558,90917,92669,92853,95126,91530,91263,94018,97302,98266,96656,97328,90149,97644 " Combined Heat and Power, Commercial","-","-","-","-","-","-","-","-","-","-","-",98,"-","-","-","-","-","-","-","-","-"

28

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

North Dakota" North Dakota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",26824,27535,28592,28500,29004,28842,30770,29720,30519,31260,31123,30136,31147,31075,29527,31513,30328,30403,30853,31375,31344 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-","-","-",52,209,215,363,614,1687,2625,3216 "Electric Power Sector Generation Subtotal",26824,27535,28592,28500,29004,28842,30770,29720,30519,31260,31123,30136,31147,31127,29735,31728,30692,31016,32539,34000,34560

29

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri" Missouri" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",59011,60121,56627,53202,61519,65400,67827,71073,74894,73505,76284,78991,79797,86102,86420,90159,91118,89926,89179,86705,90177 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",226,1039,783,828,319,165,820,1423,1383,1843 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-","-","-","-",46,5,30,45,127,41,55

30

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",97565,90809,91779,95738,98753,102016,98729,101780,108717,110537,116177,110565,111856,115755,117919,126445,127368,132832,126031,115075,120426 " Independent Power Producers",8,7,8,11,53,316,124,219,407,513,1431,1847,4894,3031,3861,4913,5164,6843,5431,9080,12115 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",568,792,716,664,386,388,207,33,141,178,274,114,25,178 "Electric Power Sector Generation Subtotal",97573,90816,91787,95748,98806,102332,98853,102567,109915,111766,118271,112798,117138,118993,121813,131499,132709,139949,131576,124180,132719

31

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania" Pennsylvania" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",165683,162367,166034,166201,169029,168942,175022,177167,173903,161596,97076,27634,30537,30099,33900,1058,1311,1077,1225,1160,1087 " Independent Power Producers",784,1158,1892,2839,3331,4161,5191,4742,5231,21630,93924,158605,164018,165678,170336,205816,205075,212668,209081,205083,213653 " Combined Heat and Power, Electric",4587,4726,6302,6692,6588,7129,7301,7239,7732,7107,6558,6171,5718,6774,6676,7629,8854,9033,8978,10278,12168 "Electric Power Sector Generation Subtotal",171054,168251,174228,175731,178948,180232,187513,189147,186867,190333,197557,192410,200274,202551,210912,214503,215240,222778,219284,216521,226908

32

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon" Oregon" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",49172,46298,41220,40743,37490,44031,47884,49068,46352,51698,46060,38060,39732,38578,39093,37407,43069,43203,44591,42703,41143 " Independent Power Producers",370,330,335,427,399,429,457,511,510,583,496,467,718,4003,4801,4493,4055,4269,5801,6621,6953 " Combined Heat and Power, Electric",250,324,300,326,276,276,2032,2166,3686,3916,4464,5675,5842,5358,5891,5947,4831,6181,6952,6386,6421 "Electric Power Sector Generation Subtotal",49792,46952,41855,41496,38165,44736,50373,51746,50549,56196,51020,44201,46292,47939,49785,47847,51955,53653,57344,55710,54516

33

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho" Idaho" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",8618,8282,6260,9023,7303,10063,12231,13512,11978,12456,10114,6667,8164,7733,7766,8032,10495,8612,8894,9978,8589 " Independent Power Producers",498,464,394,693,613,927,1053,1164,958,1043,855,1696,681,1788,2175,1895,2042,2098,2361,2324,2674 " Combined Heat and Power, Electric",81,81,81,83,81,79,98,205,215,209,194,201,245,245,248,240,214,177,134,192,156 "Electric Power Sector Generation Subtotal",9197,8827,6736,9799,7997,11069,13381,14881,13150,13708,11163,8564,9090,9765,10188,10167,12751,10888,11389,12494,11419

34

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

California" California" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",114528,104968,119310,125782,126749,121881,114706,112183,114926,87875,85856,70133,74588,81728,75177,89348,100338,87349,83347,85124,96940 " Independent Power Producers",15407,17428,17919,20462,18752,18957,19080,18587,31929,57912,78996,88665,63545,65429,75928,68721,76509,82491,85067,80767,69294 " Combined Heat and Power, Electric",17547,19021,21149,21598,21642,21691,21513,21932,23267,22964,23410,21305,26976,25458,24567,23459,21399,22342,21535,21009,19582 "Electric Power Sector Generation Subtotal",147482,141418,158378,167842,167143,162529,155299,152701,170122,168751,188263,180103,165109,172616,175672,181527,198247,192181,189949,186900,185816

35

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado" Colorado" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",31313,31038,31899,32687,33324,32674,33972,34376,35471,36167,40108,41958,41510,41226,40436,41015,42056,42353,41177,37468,39584 " Independent Power Producers",226,206,218,231,246,237,267,298,308,178,790,1667,961,2877,5596,6834,7004,9680,10629,11515,9937 " Combined Heat and Power, Electric",930,984,1012,1013,1775,2427,2632,2726,2850,2897,3044,2958,2866,2314,1685,1643,1533,1782,1545,1531,1135 "Electric Power Sector Generation Subtotal",32469,32228,33128,33931,35345,35337,36871,37400,38630,39243,43942,46582,45337,46417,47718,49492,50593,53816,53351,50513,50656

36

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas" Arkansas" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",37053,38365,37370,38049,39548,39527,43678,42790,43199,44131,41486,44728,42873,41637,45055,40545,42068,45523,45880,45423,47108 " Independent Power Producers","-","-","*",2,1,"-","*",4,3,1,"*","*",1247,5030,3204,3997,6966,6311,5940,8786,10732 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-","-","-",539,1304,1550,1436,1215,1151,847,1286,1361,1220

37

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota" Minnesota" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",41550,40428,37784,41254,40917,42503,41792,40303,43977,44154,46616,44798,48569,49576,47232,46791,46711,47793,46758,44442,45429 " Independent Power Producers",240,174,316,294,330,399,432,445,506,832,1067,1424,1206,2858,2792,3332,4136,3774,5472,5851,5909 " Combined Heat and Power, Electric","-","-","-","-","-","-","-",50,650,606,605,510,552,697,309,938,639,1143,784,628,560 "Electric Power Sector Generation Subtotal",41789,40602,38099,41548,41247,42902,42224,40798,45133,45592,48288,46732,50327,53132,50333,51062,51485,52710,53014,50921,51898

38

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland" Maryland" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",31497,38215,39587,43488,43766,44659,44381,44553,48514,49324,31783,88,31,52,30,44,12,24,6,2,3 " Independent Power Producers",20,20,20,18,20,167,277,290,305,341,15801,46079,44828,48824,48457,48780,45406,46274,43748,40492,40879 " Combined Heat and Power, Electric",1227,1192,1122,1017,1067,1071,1136,1377,1405,1528,3050,2808,2835,2813,2926,3196,2902,3275,3086,2795,2237 "Electric Power Sector Generation Subtotal",32744,39427,40729,44524,44852,45896,45793,46219,50223,51193,50634,48975,47695,51689,51413,52020,48320,49573,46840,43290,43118

39

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

New York" New York" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",128655,126077,112229,106315,103763,101161,104360,108099,115840,97009,73188,58569,43466,41579,40956,39963,41599,40248,38170,35771,34633 " Independent Power Producers",2433,2411,2837,2833,3040,3142,3479,3187,3316,24869,40757,62191,76297,77979,81182,90252,86965,91333,89612,86856,89333 " Combined Heat and Power, Electric",1262,2815,6252,9652,13943,23754,22950,25109,21459,21097,21188,20401,17189,15615,13744,14475,11624,12388,10722,8866,11183 "Electric Power Sector Generation Subtotal",132350,131303,121318,118799,120746,128057,130790,136394,140615,142975,135132,141161,136952,135173,135882,144690,140187,143969,138504,131494,135150

40

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Maine" Maine" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",9064,9519,8335,8076,9016,2668,7800,3223,3549,1189,3,"-",1,1,1,1,"*",1,1,1,2 " Independent Power Producers",1880,1884,1807,1922,1911,1501,1611,1595,1805,5949,7619,12050,13006,11668,12630,13127,11091,10154,10942,10946,11278 " Combined Heat and Power, Electric",473,751,824,801,661,803,815,787,842,829,1691,2924,3212,1691,1400,730,701,702,575,479,603 "Electric Power Sector Generation Subtotal",11417,12154,10967,10799,11588,4972,10226,5605,6195,7967,9313,14975,16219,13361,14031,13858,11792,10857,11517,11426,11883

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts" Massachusetts" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",36479,35802,32838,28164,27466,26972,27759,33899,26037,4360,1705,1566,1157,2056,1524,1622,943,494,507,448,803 " Independent Power Producers",1729,1772,1941,2398,2938,3577,3114,3560,12600,29003,30158,30176,34031,40102,41036,42122,41847,43406,39846,35883,38145 " Combined Heat and Power, Electric",751,2573,4422,5619,6648,6241,6139,6647,6296,6333,5981,5769,5852,5378,4053,2896,1938,2400,1444,1918,3192 "Electric Power Sector Generation Subtotal",38958,40148,39201,36180,37052,36790,37012,44105,44933,39695,37844,37511,41040,47536,46614,46640,44728,46300,41797,38249,42139

42

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan" Michigan" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",89059,94567,82679,92250,83721,92479,95155,89565,85146,87875,89572,97067,100452,96634,99609,104831,97374,96786,94504,82787,89667 " Independent Power Producers",639,694,868,1186,1343,1456,1777,1679,1747,1723,1751,2399,5031,2302,2560,4337,3859,11028,10954,10449,12570 " Combined Heat and Power, Electric",6354,6702,7907,8906,9221,9611,12045,12288,11014,11080,10476,10502,10138,9917,13904,10161,9077,9327,7350,6204,7475 "Electric Power Sector Generation Subtotal",96051,101963,91455,102341,94285,103546,108977,103532,97907,100678,101800,109968,115620,108853,116073,119329,110310,117141,112807,99440,109712

43

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio" Ohio" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",126510,132694,136297,133735,129021,137860,142900,141249,146448,140912,144358,135484,139904,139086,142305,102751,98159,100536,98397,93940,92198 " Independent Power Producers",9,9,9,7,3,5,5,"-","-","-",3157,5242,6421,6124,4699,52817,55836,53366,53646,40775,49722 " Combined Heat and Power, Electric",32,26,33,26,1305,20,49,44,155,117,275,268,302,382,319,328,322,350,298,472,652 "Electric Power Sector Generation Subtotal",126551,132729,136338,133768,130329,137885,142954,141293,146603,141029,147790,140995,146627,145591,147324,155896,154317,154252,152341,135187,142572

44

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Utah" Utah" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",32260,30158,32921,33461,34455,32101,32229,33969,35160,36071,35827,35139,36072,37545,37166,36695,39591,43320,44424,40992,39522 " Independent Power Producers",23,23,23,229,384,377,424,402,395,409,440,396,485,447,406,706,829,1096,976,1325,1517 " Combined Heat and Power, Electric","-","-","-","-","-","-","-","-","-",8,9,10,11,9,7,7,11,11,-2,10,9 "Electric Power Sector Generation Subtotal",32283,30181,32943,33690,34839,32478,32653,34371,35556,36488,36276,35544,36568,38002,37579,37408,40430,44427,45398,42327,41048

45

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont" Vermont" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",4993,5259,4698,4301,5294,4840,5004,5323,4394,4735,5307,4734,2971,626,643,674,803,701,753,712,721 " Independent Power Producers",134,95,132,297,282,280,309,314,508,933,958,711,2465,5396,4800,5013,6256,5121,6046,6546,5874 "Electric Power Sector Generation Subtotal",5126,5353,4830,4598,5576,5120,5313,5637,4902,5668,6265,5445,5437,6022,5444,5687,7059,5822,6799,7257,6595 " Combined Heat and Power, Industrial",38,35,40,46,41,40,37,43,45,36,38,35,20,6,27,30,25,2,21,25,25 "Industrial and Commercial Generation Subtotal",38,35,40,46,41,40,37,43,45,36,38,35,20,6,27,30,25,2,21,25,25

46

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

United States" United States" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",2808151,2825023,2797219,2882525,2910712,2994529,3077442,3122523,3212171,3173674,3015383,2629946,2549457,2462281,2505231,2474846,2483656,2504131,2475367,2372776,2471632 " Independent Power Producers",31895,38596,45836,53396,54514,58222,60132,58741,91455,200905,457540,780592,955331,1063205,1118870,1246971,1259062,1323856,1332068,1277916,1338712 " Combined Heat and Power, Electric",61275,71942,91319,107976,123500,141480,146567,148111,153790,155404,164606,169515,193670,195674,184259,180375,165359,177356,166915,159146,162042

47

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii" Hawaii" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",7996,7333,6861,6084,6055,6191,6420,6213,6301,6452,6535,6383,7513,6493,6982,6915,7040,6928,6701,6510,6416 " Independent Power Producers",386,377,408,512,623,641,606,656,647,603,656,521,400,551,267,280,349,508,901,804,762 " Combined Heat and Power, Electric",542,146,1760,2585,2713,2809,2932,2869,2790,2782,2860,3225,3289,3640,3568,3769,3566,3525,3190,3122,2945 "Electric Power Sector Generation Subtotal",8924,7856,9030,9181,9391,9640,9958,9738,9738,9837,10051,10129,11202,10685,10818,10964,10956,10961,10792,10435,10123

48

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada" Nevada" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",19286,20922,20963,19820,20519,19997,21362,22870,26553,26486,29342,27896,25009,24635,24246,24112,19686,22377,22979,26095,23711 " Independent Power Producers",764,999,1181,1552,1565,1611,1762,1831,1749,1712,3691,3535,4653,5324,11022,13955,9546,7624,9872,9393,9015 " Combined Heat and Power, Electric","-",144,1203,2130,2433,2356,2456,2331,2312,2335,2453,2445,2428,3236,2399,2146,2282,2257,1900,2013,2157 "Electric Power Sector Generation Subtotal",20051,22065,23348,23502,24518,23964,25580,27031,30614,30532,35485,33876,32089,33195,37667,40214,31515,32257,34751,37500,34883

49

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico" Mexico" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",28491,25065,27708,28364,30018,29432,29364,30568,31428,31654,32856,32211,29926,31770,32243,33562,35411,34033,33845,34245,30848 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-",185,370,40,273,589,805,1291,1404,2420,4881,4912 " Combined Heat and Power, Electric",19,19,19,17,18,17,382,507,520,524,520,493,496,504,"-",479,479,472,464,477,417 "Electric Power Sector Generation Subtotal",28510,25084,27726,28382,30036,29449,29747,31075,31948,32179,33560,33074,30462,32548,32831,34846,37181,35909,36729,39603,36178

50

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia" Virginia" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",47200,48941,48964,52182,52732,52727,56533,58986,63815,65071,65843,62135,62880,61806,65104,65456,61176,64317,59780,59225,58902 " Independent Power Producers",428,813,1670,2298,2313,3341,3017,2510,2285,2408,2858,4697,4828,6058,6263,5279,4636,6538,4970,5627,9303 " Combined Heat and Power, Electric",2162,2318,2886,4068,4062,3856,3952,3746,2827,3234,5344,4593,4074,4368,4509,5251,4409,4638,5020,2608,2545 "Electric Power Sector Generation Subtotal",49790,52072,53520,58547,59107,59925,63502,65242,68927,70713,74045,71426,71783,72232,75876,75986,70221,75493,69770,67461,70750

51

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming" Wyoming" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",39378,38667,41852,40155,42337,39684,40852,40765,44699,42951,44586,43764,42532,42261,43060,44032,42905,43144,43909,43182,44739 " Independent Power Producers","-","-","-","-","-","-","-","-",2,11,246,349,576,1052,1350,702,1484,1465,1627,1918,2408 "Electric Power Sector Generation Subtotal",39378,38667,41852,40155,42337,39684,40852,40765,44701,42962,44832,44113,43108,43314,44410,44734,44389,44610,45537,45100,47146 " Combined Heat and Power, Industrial",597,631,622,617,665,568,620,644,646,670,663,664,676,313,398,833,1012,1024,964,929,973

52

Table 10. Supply and Disposition of Electricity, 1990 Through 2010 (Million Kilo  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona" Arizona" "Category",1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010 "Supply" "Generation" " Electric Utilities",62289,66767,70109,68025,71204,68967,70877,78060,81299,83096,88150,85808,81710,80348,81352,82915,84356,88826,94453,89640,91233 " Independent Power Producers","-","-","-","-","-","-","-","-","-","-","-",3290,10954,11851,20891,16390,17617,22209,24217,21713,19954 " Combined Heat and Power, Electric","-","-","-","-",271,399,388,383,410,434,425,459,1153,1823,1874,1689,1959,1853,370,301,188

53

College of Letters and Science Commencement 2008  

E-Print Network (OSTI)

Mario Leyba, Mary Deka, Vikram Deka, Stephanie Mayes, Marshall L. Smith and John Ferrera from and Informatics, as well as John Howard, associate dean of libraries; Libby Wentz (Department of Geography

Grether, Gregory

54

Institute of European Studies Biannual Report 2008-2010  

E-Print Network (OSTI)

Mario Leyba, Mary Deka, Vikram Deka, Stephanie Mayes, Marshall L. Smith and John Ferrera from and Informatics, as well as John Howard, associate dean of libraries; Libby Wentz (Department of Geography

Walker, Matthew P.

55

CatalystF a l l 2 0 0 6 Volume 1 Issue 1 The art of the practical  

E-Print Network (OSTI)

Mario Leyba, Mary Deka, Vikram Deka, Stephanie Mayes, Marshall L. Smith and John Ferrera from and Informatics, as well as John Howard, associate dean of libraries; Libby Wentz (Department of Geography

Neumark, Daniel M.

56

unitsmetricrpp.dvi  

NLE Websites -- All DOE Office Websites (Extended Search)

International International system of units (SI) 1 3. INTERNATIONAL SYSTEM OF UNITS (SI) See "The International System of Units (SI)," NIST Special Publication 330, B.N. Taylor, ed. (USGPO, Washington, DC, 1991); and "Guide for the Use of the International System of Units (SI)," NIST Special Publication 811, 1995 edition, B.N. Taylor (USGPO, Washington, DC, 1995). SI prefixes 10 24 yotta (Y) 10 21 zetta (Z) 10 18 exa (E) 10 15 peta (P) 10 12 tera (T) 10 9 giga (G) 10 6 mega (M) 10 3 kilo (k) 10 2 hecto (h) 10 deca (da) 10 -1 deci (d) 10 -2 centi (c) 10 -3 milli (m) 10 -6 micro (µ) 10 -9 nano (n) 10 -12 pico (p) 10 -15 femto (f) 10 -18 atto (a) 10 -21 zepto (z) 10 -24 yocto (y) J. Beringer et al.(PDG), PR D86, 010001 (2012) and 2013 update for the 2014 edition (http://pdg.lbl.gov) December 18, 2013 12:01 2 3. International system of units (SI) Physical quantity Name of unit Symbol Base units length meter

57

ESS 2012 Peer Review - Protocol for Measuring and Expressing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CEC CESA Coda Energy Con Ed Deka Batteries Dresser-Rand Duke Energy Eaton Yale Emerson EnerVault EOS Energy Storage EPRI ...

58

NERSC/DOE FES Requirements Workshop Worksheet - John Ludlow  

NLE Websites -- All DOE Office Websites (Extended Search)

allocations at NERSC in Oakland, CA, NICS in Knoxville, TN, NCCS in Oak Ridge, TN, and ALCF in Argonne, IL; with pending proposals to HECToR in Edinburgh, UK and PRACE in Julich,...

59

Table of Contents  

Science Conference Proceedings (OSTI)

... Agency g gram K Kelvin temperature scale kg kilogram kJ kiloJoule kPa kiloPascal kW kilowatt LH2 liquid hydrogen LNG liquefied natural gas m ...

2006-06-03T23:59:59.000Z

60

Replication and stability of the linear plasmid pBSSB2  

E-Print Network (OSTI)

acid g gram G guanine hr hour IPTG Isopropyl-?-D-thiogalactopyranoside KmR Kanamycin resistant kb kilo base kDa kilo Daltons kV kilo Volt l litre xx LB Luria Bertani m metre MCS multiple cloning site min minute...

Ahsan, Sunjukta

2012-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Am. J. Hum. Genet. 61:719733, 1997 Differential Structuring of Human Populations for Homologous X and  

E-Print Network (OSTI)

, University of Ankara, Ankara; 9 A. Q. Khan Research Laboratories, Islamabad; 10 Clinica Pediatrica A. Filia Olckers,6 Pedro Moral,7 Luciano Terrenato,3 Nejat Akar,8 Raheel Qamar,9 Atika Mansoor,9 Syed Q. Mehdi,9- 1994; Deka et al. 1995a, 1995b; Armour et al. 1996; linked polymorphism, all groups of populations

Kidd, Kenneth

62

WCAP-10574  

Office of Legacy Management (LM)

more than 6 tonnes of mixed oxide fuel pellets. Fabrication of these rods required handling of nearly ZOO kilo- grams of plutonium of various isotopic analyses. The...

63

Market Mechanisms for Financing Green Real Estate Investments  

E-Print Network (OSTI)

CEUS ) Electricity Consumption (kWh/sf/yr) Year Builtelectricity consumptions per Kilo Watt Hours (KWh) per square foot per year

Jaffee, Dwight M.; Wallace, Nancy E.

2009-01-01T23:59:59.000Z

64

Technology@TMS: Online Article - Materials Technology@TMS  

Science Conference Proceedings (OSTI)

According to an announcement posted on the NWO Web site, an electric car comparable to the Toyota Prius would need to carry 317 kilos of lithium batteries to...

65

Microsoft Word - 08101885 DVP.doc  

Office of Legacy Management (LM)

resolution. For several samples, the tracer width at half maximum exceeded 100 kilo- electron volts, which is expected for isotopes such as thorium-229 with alpha emissions at...

66

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

Energy Information Administration Electricity Market Module of NEMS Geographic Information System(s) 10 9 (giga)watt 10 3 (kilo)watt Market Analysis

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

67

Data:Aef33206-fa70-4806-80b4-6a12b6f671cb | Open Energy Information  

Open Energy Info (EERE)

this increased cost is not included in OEC's base rate of .08728 per kilo-watt hour (kWh), we collect those increased costs through the PPA. Source or reference: http:...

68

NNSA National Labs, Y-12 Earn 11 R&D 100 Awards | Y-12 National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Camera AG, JDS Uniphase and JENOPTIK Optical Systems, LLC. KiloPower - This uses a nuclear fission system as a heat source that transfers heat via a heat pipe to a small...

69

High-frequency Quasi-Periodic Oscillations from GRS 1915+105 in its C state  

E-Print Network (OSTI)

We report the results of a systematic timing analysis of RXTE observations of GRS 1915+105 when the source was in its variability class theta, characterized by alternating soft and hard states on a time scale of a few hundred seconds. The aim was to examine the high-frequency part of the power spectrum in order to confirm the hecto-Hertz Quasi-Periodic Oscillations (QPO) previously reported from observations from mixed variability behaviours. During the hard intervals (corresponding to state C in the classification of Belloni et al., 2000, A&A, 35, 271), we find a significant QPO at a frequency of ~170 Hz, although much broader (Q~2) than previously reported. No other significant peak is observed at frequencies >30 Hz. A time-resolved spectral analysis of selected observations shows that the hard intervals from class theta show a stronger and steeper (Gamma=2.8-3.0) power-law component than hard intervals from other classes. We discuss these results in the framework of hecto-Hertz QPOs reported from GRS 1915+105 and other black-hole binaries.

T. Belloni; P. Soleri; P. Casella; M. Mendez; S. Migliari

2006-03-08T23:59:59.000Z

70

EMPIRICAL DETERMINATION OF THE ENERGY LOSS RATE OF ACCELERATED ELECTRONS IN A WELL-OBSERVED SOLAR FLARE  

Science Conference Proceedings (OSTI)

We present electron images of an extended solar flare source, deduced from RHESSI hard X-ray imaging spectroscopy data. We apply the electron continuity equation to these maps in order to determine empirically the form of the energy loss rate for the bremsstrahlung-emitting electrons. We show that this form is consistent with an energy transport model involving Coulomb collisions in a target with a temperature of about 2 Multiplication-Sign 10{sup 7} K, with a continuous injection of fresh deka-keV electrons at a rate of approximately 10{sup -2} electrons s{sup -1} per ambient electron.

Torre, Gabriele; Pinamonti, Nicola; Guo, Jingnan; Piana, Michele [Dipartimento di Matematica, Universita di Genova, Genova, via Dodecaneso 35, 16146 Genova (Italy); Emslie, A. Gordon [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY 42101 (United States); Massone, Anna Maria, E-mail: torre@dima.unige.it, E-mail: pinamont@dima.unige.it, E-mail: guo@pitagora.dima.unige.it, E-mail: piana@dima.unige.it, E-mail: emslieg@wku.edu, E-mail: annamaria.massone@cnr.it [CNR-SPIN, Via Dodecaneso 33, I-16146 Genova (Italy)

2012-06-01T23:59:59.000Z

71

Property:IdentifiedHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

IdentifiedHydrothermalPotential IdentifiedHydrothermalPotential Jump to: navigation, search Property Name IdentifiedHydrothermalPotential Property Type Quantity Description Conventional hydrothermal electricity generation potential from identified hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

72

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

73

Property:PotentialRooftopPVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRooftopPVCapacity PotentialRooftopPVCapacity Jump to: navigation, search Property Name PotentialRooftopPVCapacity Property Type Quantity Description The nameplate capacity technical potential from Rooftop PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

74

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

75

Property:PotentialBiopowerSolidCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidCapacity PotentialBiopowerSolidCapacity Jump to: navigation, search Property Name PotentialBiopowerSolidCapacity Property Type Quantity Description The nameplate capacity technical potential from solid biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

76

Property:UndiscoveredHydrothermalPotential | Open Energy Information  

Open Energy Info (EERE)

UndiscoveredHydrothermalPotential UndiscoveredHydrothermalPotential Jump to: navigation, search Property Name UndiscoveredHydrothermalPotential Property Type Quantity Description Estimated conventional hydrothermal electricity generation potential from undiscovered hydrothermal sites, as determined by the USGS 2008 Geothermal Resource Assessment (Williams et al, 2008). Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS

77

Property:PotentialBiopowerGaseousMass | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousMass PotentialBiopowerGaseousMass Jump to: navigation, search Property Name PotentialBiopowerGaseousMass Property Type Quantity Description The potential mass of gaseous biopower material for a place. Use this type to express a quantity of magnitude, or an object's resistance to acceleration. The default unit is the kilogram (kg). http://en.wikipedia.org/wiki/Kilogram Acceptable units (and their conversions) are: Kilograms - 1 kg, kilo, kilogram, kilograms, Kilogram, kilogramme, kilos Grams - 1000 g, gram, gramme, grams Tonnes - 0.001 tonnes, metric tons, Tonnes, Metric Tonnes Pounds - 2.205 lbs, pounds, pound, Pounds, Lbs Stone - 0.1575 stones, st, stone Ounces - 35.27 ounces, oz, Ounces, ounce BDT - 0.001 BDT, Bone Dry Tonnes, bdt Pages using the property "PotentialBiopowerGaseousMass"

78

Property:NetProdCapacity | Open Energy Information  

Open Energy Info (EERE)

NetProdCapacity NetProdCapacity Jump to: navigation, search Property Name NetProdCapacity Property Type Quantity Description Sum of the property SummerPeakNetCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

79

Property:PotentialRuralUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialRuralUtilityScalePVCapacity PotentialRuralUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialRuralUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from rural utility-scale PV for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

80

Property:PotentialUrbanUtilityScalePVCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialUrbanUtilityScalePVCapacity PotentialUrbanUtilityScalePVCapacity Jump to: navigation, search Property Name PotentialUrbanUtilityScalePVCapacity Property Type Quantity Description The nameplate capacity technical potential from utility-scale PV in urban areas of a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

82

Property:PotentialEGSGeothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalCapacity PotentialEGSGeothermalCapacity Jump to: navigation, search Property Name PotentialEGSGeothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from EGS Geothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

83

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

84

Property:PotentialCSPCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialCSPCapacity PotentialCSPCapacity Jump to: navigation, search Property Name PotentialCSPCapacity Property Type Quantity Description The nameplate capacity technical potential from CSP for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

85

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

86

Property:GrossProdCapacity | Open Energy Information  

Open Energy Info (EERE)

GrossProdCapacity GrossProdCapacity Jump to: navigation, search Property Name GrossProdCapacity Property Type Quantity Description Sum of the property AvgAnnlGrossOpCpcty for all Energy Generation Facilities with properties: Sector: Geothermal Energy InGeothermalResourceArea: set to the the variable vName of the Geothermal Resource Area Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS

87

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

88

Property:PotentialGeothermalHydrothermalCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialGeothermalHydrothermalCapacity PotentialGeothermalHydrothermalCapacity Jump to: navigation, search Property Name PotentialGeothermalHydrothermalCapacity Property Type Quantity Description The nameplate capacity technical potential from Geothermal Hydrothermal for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

89

Property:PotentialHydropowerCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerCapacity PotentialHydropowerCapacity Jump to: navigation, search Property Name PotentialHydropowerCapacity Property Type Quantity Description The nameplate capacity technical potential from Hydropower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

90

Property:PotentialBiopowerGaseousCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousCapacity PotentialBiopowerGaseousCapacity Jump to: navigation, search Property Name PotentialBiopowerGaseousCapacity Property Type Quantity Description The nameplate capacity technical potential from gaseous biopower for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

91

Property:PotentialBiopowerSolidMass | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:PotentialBiopowerSolidMass Jump to: navigation, search Property Name PotentialBiopowerSolidMass Property Type Quantity Description The potential mass of solid biopower material for a place. Use this type to express a quantity of magnitude, or an object's resistance to acceleration. The default unit is the kilogram (kg). http://en.wikipedia.org/wiki/Kilogram Acceptable units (and their conversions) are: Kilograms - 1 kg, kilo, kilogram, kilograms, Kilogram, kilogramme, kilos Grams - 1000 g, gram, gramme, grams Tonnes - 0.001 tonnes, metric tons, Tonnes, Metric Tonnes Pounds - 2.205 lbs, pounds, pound, Pounds, Lbs Stone - 0.1575 stones, st, stone Ounces - 35.27 ounces, oz, Ounces, ounce

92

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

93

Edge-enhanced imaging obtained with very broad energy band x-rays  

SciTech Connect

We demonstrate both theoretically and experimentally that edge-enhancement effects are produced when objects, in contact with the x-ray detector, are imaged by using very broad x-ray spectra. Radiographs of thin Al objects have been obtained with a table-top synchrotron source which generates x-rays in the energy range from a few kilo-electron-volts up to 6 MeV. Edge-enhancement effects arise from the combination of x-ray absorption (kilo-electron-volt part of the spectrum) and secondary particle emission (mega-electron-volt part of the spectrum) within the sample. The exact contribution of absorption and emission profiles in the edge-enhanced images has been calculated via Monte Carlo simulation.

Taibi, A.; Cardarelli, P.; Di Domenico, G.; Marziani, M.; Gambaccini, M. [Department of Physics, University of Ferrara, INFN Section of Ferrara, via Saragat 1, 44100 Ferrara (Italy); Hanashima, T. [Photon Production Laboratory Ltd., 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Yamada, H. [Synchrotron Light Life Science Center, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan)

2010-04-05T23:59:59.000Z

94

Temperature Relaxation in Hot Dense Hydrogen  

SciTech Connect

Temperature equilibration of hydrogen is studied for conditions relevant to inertial confinement fusion. New molecular-dynamics simulations and results from quantum many-body theory are compared with Landau-Spitzer predictions for temperatures T with 50kilo-electron-volt range, but converge to agreement in the high-T limit.

Murillo, Michael S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Dharma-wardana, M. W. C. [National Research Council, Ottawa, K1A 0R6 (Canada)

2008-05-23T23:59:59.000Z

95

Comparison with Other Techniques  

Science Conference Proceedings (OSTI)

Table 4   Various categories of spectroscopy...lamp Photocell, photographic film Electron volt 1.602 ? 10 -19 X-ray 10 16 ??10 19 30-0.03 μm Electron volt 1.602 ? 10 -19 Electronic transitions Kilo electron volt 1.602 ? 10 -16 γ-ray 10 19 ??10 22 3 ? 10 -9 ?? 3 ? 10 -12 cm Mega electron volt 1.602 ? 10 -13 Discharge tube Photocell Low energy,...

96

An active-optic x-ray fluorescence analyzer with high energy resolution, large solid angle coverage, and a large tuning range  

SciTech Connect

A crystal-optic x-ray fluorescence energy analyzer has been designed and tested, which combines the features of electron-volt energy resolution, large solid angle coverage, and tunability over several kilo-electron-volts. The design is based upon the principle of active optics, with ten actuators available to optimally adjust the shape of a silicon crystal used in the Bragg geometry. In most applications the shape is that of a logarithmic spiral for high energy resolution with a spatially nonresolving detector, but a wide range of other shapes is also possible for applications such as imaging or single-shot spectroscopy in a spectral range of the operator's choosing.

Adams, Bernhard W.; Attenkofer, Klaus [Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2008-02-15T23:59:59.000Z

97

Testing and Evaluation of a Power Factor Correction for Power-Savings Potential  

E-Print Network (OSTI)

Power factor correction (PFC) is an important technology that can be used to enhance power quality. It was noted that the power factor was low for packaged air-conditioning (PAC) units utilized in residential buildings in Kuwait. To study the impact of PFC units, a PAC unit was selected, a PFC unit was installed,and three cases were developed to assess their energy-saving potential. It was found that the PFC unit was able to correct the power factor from 0.61 to 0.96. The reactive power was then reduced from 13.9 to 3.0 kVAR (kilo volts amps reactive), the apparent power was decreased from 17.5 to 11.0 kVA (kilo volts amps). and the current was reduced from 23.4 to 14.5 amps. The Ministry of Electricity & Water (MEW) in Kuwait is expected to be the major beneficiary of installing PFC units since MEW does not charge consumers for the cost of reactive power.. Key words: PFC unit, power factor, reactive power, active power and apparent power.

Alotaibi, A.

2011-01-01T23:59:59.000Z

98

CX-009705: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

705: Categorical Exclusion Determination 705: Categorical Exclusion Determination CX-009705: Categorical Exclusion Determination Lane Substation 500/230-kV Transformer Phase Separation Project CX(s) Applied: B4.6 Date: 12/06/2012 Location(s): Oregon Offices(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to increase the physical distance that separates each phase of the 500/230-kiloVolt transformer banks at BPA's Lane Substation. The reason for the increased distance is to minimize the effects of a transformer fire or explosion as outlined in the Institute of Electrical and Electronic Engineers, Inc. guidelines for substation fire suppression. CX-009705.pdf More Documents & Publications CX-008705: Categorical Exclusion Determination CX-009708: Categorical Exclusion Determination

99

Dr. Yuan Ping Lawrence Livermore National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating, diagnosing and Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM Refreshments at 2:45PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Since their invention in 1960's, lasers with power spanning from Kilo- Watt to PetaWatt have been widely used in almost every branch of sci- ence, leading to numerous discoveries and novel techniques. At present, lasers are capable of creating extreme states of matter in a laboratory, at conditions resembling those most extreme in the Universe: they heat matter up to the temperatures inside stars, they create electric field and

100

Data:561a47f4-71ac-4163-acc1-f26728c3bded | Open Energy Information  

Open Energy Info (EERE)

f4-71ac-4163-acc1-f26728c3bded f4-71ac-4163-acc1-f26728c3bded No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Tell City, Indiana (Utility Company) Effective date: 2009/09/01 End date if known: Rate name: Tariff OPL: Single Phase Off Peak Lighting Sector: Lighting Description: "This rate applies to kilo-watt hours use for Street and Private Dusk to Dawn lighting. The purpose of this rate is for the Tell City Electric Department to bill the Electric Department for the KWH used for off peak lighting." Source or reference: Rates Binder 1, Illinois State University Source Parent:

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Creating Market Change from the Inside Out: Applying the Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

These industrial applications have These industrial applications have been largely overlooked, yet represent a major energy savings opportunity- for industrial electric motor systems alone, USDOE Motor Challenge estimates savings of 9 billion kiloWatt-hours per year by 2010. Because the savings are typically found in system-based instead of component-based solutions, persuasive actions (education, incentives) are usually more effective than directed actions (regulations) in these applications. To be successful and persistent, persuasive actions require lasting behavioral change, which is often difficult to accomplish. This talk focuses on a process model that has emerged from work on industrial motor system efficiency in the Washington DC project office. The model seeks to effect institutional and behavioral change by using government in the role of a

102

STATEMENT OF CONSIDERATIONS REQUEST BY MARTIN MARIETTA CORPORATION (MMC) FORMERLY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MARTIN MARIETTA CORPORATION (MMC) FORMERLY MARTIN MARIETTA CORPORATION (MMC) FORMERLY KNOWN AS GENERAL DYNAMICS - SPACE SYSTEMS DIVISION (GD- SSD) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE CONTRACT NO: DE-FC36- 93CH10554; W(A)-94-012; CH-0831 Martin Marietta Corporation (MMC) has recently acquired the Space Systems Division of the General Dynamics Corporation (GD- SSD) which had earlier requested a waiver of domestic and foreign patent rights for all subject inventions under a cooperative agreement for the development of a 1 kilo-Joule current limiter under DOE Contract No. DE-FC36-93CH10554. MMC, by accepting the Advance Waiver Patent Rights and certain amendments to the Data Rights, has indicated that they wish to proceed with the waiver petition. This agreement was awarded under DOE's

103

Microsoft Word - CX-LanePhaseSeparationProjects_FY13_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Michael Marleau - TEP-TPP-1 Project Manager Proposed Action: Lane Substation 500/230-kV Transformer Phase Separation Project Project Work Order Number: 00298187 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions or modifications to electric power transmission facilities Location: Lane Substation, Lane County, Oregon Township 17 South, Range 5 East, Section 36 Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to increase the physical distance that separates each phase of the 500/230-kiloVolt transformer banks at BPA's Lane Substation. The reason for the increased distance is to minimize the effects of a transformer fire or explosion as

104

Batteries - Materials Engineering Facility: Scale-Up R&D Bridges Gap  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Argonne's Advanced Battery Materials Synthesis and Manufacturing R&D program Initial discovery amounts of battery materials are small compared to the kilo-scale amounts needed for validation of new battery technologies. Argonne researcher Sabine Gallagher Argonne researcher Sabine Gallagher loads a sample mount of battery cathode materials for X-ray diffraction, an analysis tool for obtaining information on the crystallographic structure and composition of materials. Materials Engineering Research Facility (MERF) Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for

105

CX-002196: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2196: Categorical Exclusion Determination 2196: Categorical Exclusion Determination CX-002196: Categorical Exclusion Determination STS-100 Test Stand Experiment CX(s) Applied: B3.6 Date: 05/04/2010 Location(s): Princeton, New Jersey Office(s): Princeton Site Office, Science The proposed action would consist of operation of a 100 kilovolt (kV) test stand, the STS-I00, acquired from the Lawrence Berkeley National Laboratory (LBNL), in which advanced plasma sources will be developed and ion-ion plasmas will be studied at Princeton Plasma Physics Laboratory. The STS-100 would be used to generate 100 kilo-electron volt ion beams, as well as a general purpose vacuum chamber with excellent diagnostic access. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-002196.pdf More Documents & Publications EA-0813: Final Environmental Assessment

106

Acceleration Modules in Linear Induction Accelerators  

E-Print Network (OSTI)

Linear Induction Accelerator (LIA) is a unique type of accelerator, which is capable to accelerate kiloAmpere charged particle current to tens of MeV energy. The present development of LIA in MHz busting mode and successful application into synchrotron broaden LIAs usage scope. Although transformer model is widely used to explain the acceleration mechanism of LIAs, it is not appropriate to consider the induction electric field as the field which accelerates charged particles for many modern LIAs. Authors examined the transition of the magnetic cores functions during LIA acceleration modules evolution, distinguished transformer type and transmission line type LIA acceleration modules, and reconsidered several related issues based on transmission line type LIA acceleration module. The clarified understanding should be helpful in the further development and design of the LIA acceleration modules.

Wang, Shaoheng

2013-01-01T23:59:59.000Z

107

A high-dispersion molecular gas component in nearby galaxies  

E-Print Network (OSTI)

We present a comprehensive study of the velocity dispersion of the atomic (HI) and molecular (H2) gas components in the disks (R gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kilo-parsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galacto-centric distance, star formation rate surface density, HI surface density, H2 surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for HI of 11.9 +/- 3.1 km/s and for H2 of 12.0 +/- 3.9 km/s. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of HI, with an average ratio of sigma(HI)/sigma(CO) = 1.0 +/- 0.2 i...

Caldu-Primo, Anahi; Walter, Fabian; Leroy, Adam; Sandstrom, Karin; de Blok, W J G; Ianjamasimanana, Roger; Mogotsi, K M

2013-01-01T23:59:59.000Z

108

Simulation of High-Harmonic Fast-Wave Heating on the National Spherical Tokamak Experiment  

SciTech Connect

Images associated with radio-frequency heating of low-confinement mode plasmas in the National Spherical Tokamak Experiment, as calculated by computer simulation, are presented. The AORSA code has been extended to simulate the whole antenna-to-plasma heating system by including both the kinetic physics of the well-confined core plasma and a poorly confined scrape-off plasma and vacuum vessel structure. The images presented show the 3-D electric wave field amplitude for various antenna phasings. Visualization of the simulation results in 3-D makes clear that -30 degrees phasing excites kilo-volt per meter coaxial standing modes in the scrape-off plasma and shows magnetic-field-aligned whispering-gallery type modes localized to the plasma edge.

Green, David L [ORNL; Jaeger, Erwin Frederick [ORNL; Chen, Guangye [ORNL; Berry, Lee A [ORNL; Pugmire, Dave [ORNL; Canik, John [ORNL; Ryan, Philip Michael [ORNL

2011-01-01T23:59:59.000Z

109

Design and imaging performance of achromatic diffractive/refractive X-ray and Gamma-ray Fresnel lenses  

E-Print Network (OSTI)

Achromatic combinations of a diffractive Phase Fresnel Lens and a refractive correcting element have been proposed for X-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without `stepping' is investigated and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided the focal ratio is large, correction lenses made of low atomic number materials can be used with X-rays in the range approximately 10--100 keV without stepping. The use of stepping extends the possibility of correction to higher aperture systems, to energies as low as a few kilo electron volts and to gamma-rays of $\\sim$ mega electron volt energy.

Gerald K. Skinner

2004-07-21T23:59:59.000Z

110

Polyamide 66 as a Cryogenic Dielectric  

SciTech Connect

Improvements in superconductor and cryogenic technologies enable novel power apparatus, \\eg, cables, transformers, fault current limiters, generators, \\etc, with better device characteristics than their conventional counterparts. In these applications electrical insulation materials play an important role in system weight, footprint (size), and voltage level. The trend in the electrical insulation material selection has been to adapt or to employ conventional insulation materials to these new systems. However, at low temperatures, thermal contraction and loss of mechanical strength in many materials make them unsuitable for superconducting power applications. In this paper, a widely used commercial material was characterized as a potential cryogenic dielectric. The material is used in ``oven bag'' a heat-resistant polyamide (nylon) used in cooking (produced by Reynolds\\textregistered, Richmond, VA, USA). It is first characterized by Fourier transform infrared and x-ray diffraction techniques and determined to be composed of polyamide 66 (PA66) polymer. Secondly the complex dielectric permittivity and dielectric breakdown strength of the PA66 films are investigated. The dielectric data are then compared with data reported in the literature. A comparison of dielectric strength with a widely used high-temperature superconductor electrical insulation material, polypropylene-laminated paper (PPLP\\texttrademark\\ a product of Sumitomo Electric Industries, Japan), is provided. It is observed that the statistical analysis of the PA66 films yields 1\\% failure probability at $127\\ \\kilo\\volt\\milli\\meter^{-1}$; this value is approximately $46\\ \\kilo\\volt\\milli\\meter^{-1}$ higher than PPLP\\texttrademark. It is concluded that PA66 may be a good candidate for cryogenic applications. Finally, a summary of dielectric properties of some of the commercial tape insulation materials and various polymers is also provided.

Tuncer, Enis [ORNL; Polyzos, Georgios [ORNL; Sauers, Isidor [ORNL; James, David Randy [ORNL; Ellis, Alvin R [ORNL; Messman, Jamie M [ORNL; Aytug, Tolga [ORNL

2009-01-01T23:59:59.000Z

111

Systematic measurements of whole-body imaging dose distributions in image-guided radiation therapy  

Science Conference Proceedings (OSTI)

Purpose: The full benefit of the increased precision of contemporary treatment techniques can only be exploited if the accuracy of the patient positioning is guaranteed. Therefore, more and more imaging modalities are used in the process of the patient setup in clinical routine of radiation therapy. The improved accuracy in patient positioning, however, results in additional dose contributions to the integral patient dose. To quantify this, absorbed dose measurements from typical imaging procedures involved in an image-guided radiation therapy treatment were measured in an anthropomorphic phantom for a complete course of treatment. The experimental setup, including the measurement positions in the phantom, was exactly the same as in a preceding study of radiotherapy stray dose measurements. This allows a direct combination of imaging dose distributions with the therapy dose distribution. Methods: Individually calibrated thermoluminescent dosimeters were used to measure absorbed dose in an anthropomorphic phantom at 184 locations. The dose distributions from imaging devices used with treatment machines from the manufacturers Accuray, Elekta, Siemens, and Varian and from computed tomography scanners from GE Healthcare were determined and the resulting effective dose was calculated. The list of investigated imaging techniques consisted of cone beam computed tomography (kilo- and megavoltage), megavoltage fan beam computed tomography, kilo- and megavoltage planar imaging, planning computed tomography with and without gating methods and planar scout views. Results: A conventional 3D planning CT resulted in an effective dose additional to the treatment stray dose of less than 1 mSv outside of the treated volume, whereas a 4D planning CT resulted in a 10 times larger dose. For a daily setup of the patient with two planar kilovoltage images or with a fan beam CT at the TomoTherapy unit, an additional effective dose outside of the treated volume of less than 0.4 mSv and 1.4 mSv was measured, respectively. Using kilovoltage or megavoltage radiation to obtain cone beam computed tomography scans led to an additional dose of 8-46 mSv. For treatment verification images performed once per week using double exposure technique, an additional effective dose of up to 18 mSv was measured. Conclusions: Daily setup imaging using kilovoltage planar images or TomoTherapy megavoltage fan beam CT imaging can be used as a standard procedure in clinical routine. Daily kilovoltage and megavoltage cone beam computed tomography setup imaging should be applied on an individual or indication based protocol. Depending on the imaging scheme applied, image-guided radiation therapy can be administered without increasing the dose outside of the treated volume compared to therapies without image guidance.

Haelg, Roger A.; Besserer, Juergen; Schneider, Uwe [Radiotherapie Hirslanden AG, Institute for Radiotherapy, Aarau 5000 (Switzerland); Vetsuisse Faculty, University of Zurich, Zurich 8057 (Switzerland) and Radiotherapie Hirslanden AG, Institute for Radiotherapy, Aarau 5000 (Switzerland)

2012-12-15T23:59:59.000Z

112

Ferroelectric opening switches for large-scale pulsed power drivers.  

DOE Green Energy (OSTI)

Fast electrical energy storage or Voltage-Driven Technology (VDT) has dominated fast, high-voltage pulsed power systems for the past six decades. Fast magnetic energy storage or Current-Driven Technology (CDT) is characterized by 10,000 X higher energy density than VDT and has a great number of other substantial advantages, but it has all but been neglected for all of these decades. The uniform explanation for neglect of CDT technology is invariably that the industry has never been able to make an effective opening switch, which is essential for the use of CDT. Most approaches to opening switches have involved plasma of one sort or another. On a large scale, gaseous plasmas have been used as a conductor to bridge the switch electrodes that provides an opening function when the current wave front propagates through to the output end of the plasma and fully magnetizes the plasma - this is called a Plasma Opening Switch (POS). Opening can be triggered in a POS using a magnetic field to push the plasma out of the A-K gap - this is called a Magnetically Controlled Plasma Opening Switch (MCPOS). On a small scale, depletion of electron plasmas in semiconductor devices is used to affect opening switch behavior, but these devices are relatively low voltage and low current compared to the hundreds of kilo-volts and tens of kilo-amperes of interest to pulsed power. This work is an investigation into an entirely new approach to opening switch technology that utilizes new materials in new ways. The new materials are Ferroelectrics and using them as an opening switch is a stark contrast to their traditional applications in optics and transducer applications. Emphasis is on use of high performance ferroelectrics with the objective of developing an opening switch that would be suitable for large scale pulsed power applications. Over the course of exploring this new ground, we have discovered new behaviors and properties of these materials that were here to fore unknown. Some of these unexpected discoveries have lead to new research directions to address challenges.

Brennecka, Geoffrey L.; Rudys, Joseph Matthew; Reed, Kim Warren; Pena, Gary Edward; Tuttle, Bruce Andrew; Glover, Steven Frank

2009-11-01T23:59:59.000Z

113

Data:Be67027f-f923-4a18-afc1-fbf56b41265b | Open Energy Information  

Open Energy Info (EERE)

7027f-f923-4a18-afc1-fbf56b41265b 7027f-f923-4a18-afc1-fbf56b41265b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Otsego Electric Coop, Inc Effective date: End date if known: Rate name: Single Phase in Excess of 25 kVa Sector: Description: *PPA Charges apply to all rates Your monthly bill may include an item called "PPA" (Purchased Power Adjustment). The PPA charge is the "Fuels Charge" that other utilities pass along as the cost of fuel increases. The wholesale cost for power and energy, as well as the cost for delivering that power and energy over NYSEG's transmission lines, varies from month to month-even from hour to hour. Since this increased cost is not included in OEC's base rate of $.08728 per kilo-watt hour (kWh), we collect those increased costs through the PPA.

114

STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 14:37 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/04 5 14:37 FR IPL DOE CH 630 252 2779 TO RGCP-HQ P.02/04 * * STATEMENT OF CONSIDERATIONS REQUEST BY OSRAM OPTO SEMICONDUCTORS FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN INVENTION RIGHTS UNDER DOE CONTRACT NO. DE-FC26-05NT42341, SUBCONTRACT QZ001; W(A)-05-017, CH-1280 The Petitioner, OSRAM Opto Semiconductor (Osram) was awarded a subcontract under this cooperative agreement for the performance of work entitled, "Scaling Up KiloLumen Solid- State Lighting Exceeding 100 LPW via Remote Phosphor." The cooperative agreement was awarded to Light Prescriptions Innovators, LLC (LPI). The purpose of the cooperative agreement is to develop a new white light emitting diode (LED) light source that emits 1000 lumens with an efficacy exceeding 100 lumens per watt (LPW). The new white LED light source will use multiple

115

FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology  

Science Conference Proceedings (OSTI)

The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

2009-11-12T23:59:59.000Z

116

The eect of fast food restaurants on obesity and weight gain  

E-Print Network (OSTI)

We investigate how changes in the supply of fast food restaurants affect weight outcomes of 3 million children and 3 million pregnant women. Among ninth graders, a fast food restaurant within 0.1 miles of a school results in a 5.2 percent increase in obesity rates. Among pregnant women, a fast-food restaurant within 0.5 miles of residence results in a 1.6 percent increase in the probability of gaining over 20 kilos. The implied effects on caloric intake are one order of magnitude larger for children than for mothers, consistent with smaller travel cost for adults. Non-fast food restaurants and future fast-food restaurants are uncorrelated with weight outcomes. (JEL I12, J13, J16, L83) In the public debate over obesity it is often assumed the widespread availability of fast food restaurants is an important determinant of obesity rates. Policy makers in several cities have responded by restricting the availability or content of fast food, or by requiring posting of the caloric content of the meals (Julie Samia Mair, Matthew

Janet Currie; Stefano Dellavigna; Enrico Moretti; Vikram Pathania

2010-01-01T23:59:59.000Z

117

The Effect of Fast Food Restaurants on Obesity  

E-Print Network (OSTI)

Abstract. We investigate the health consequences of changes in the supply of fast food using the exact geographical location of fast food restaurants. Specifically, we ask how the supply of fast food affects the obesity rates of 3 million school children and the weight gain of over 1 million pregnant women. We find that among 9 th grade children, a fast food restaurant within a tenth of a mile of a school is associated with at least a 5.2 percent increase in obesity rates. There is no discernable effect at.25 miles and at.5 miles. Among pregnant women, models with mother fixed effects indicate that a fast food restaurant within a half mile of her residence results in a 2.5 percent increase in the probability of gaining over 20 kilos. The effect is larger, but less precisely estimated at.1 miles. In contrast, the presence of non-fast food restaurants is uncorrelated with obesity and weight gain. Moreover, proximity to future fast food restaurants is uncorrelated with current obesity and weight gain, conditional on current proximity to fast food. The implied effects of fast-food on caloric intake are at least one order of magnitude smaller for mothers, which suggests that they are less constrained by travel costs than school children. Our results imply that policies restricting access to fast food near schools could

Janet Currie

2009-01-01T23:59:59.000Z

118

The Sensitivity of SNO+ to $?m_{12}^{2}$ Using Reactor Anti-neutrino Data  

E-Print Network (OSTI)

Insofar as the detection of anti-neutrinos from nuclear reactors is concerned, the SNO+ detector -- a 1 kilo-tonne liquid scintillator detector that inherits the experimental infrastructure from the recently finished SNO experiment -- is expected to perform just as well as the KamLAND experiment. The most important difference between these experiments is the distribution of nuclear reactors: whereas KamLAND has 9 nuclear reactor sites within 300 km with a flux-averaged baseline of about 180 km, SNO+ has only 1 within 300 km, with an average baseline of $\\approx 750$ km. As a result, the reactor anti-neutrino flux at SNO+ is only about 1/5 that at KamLAND, and the ability of SNO+ to constrain the solar neutrino oscillation parameter is diminished by a factor of about $\\sqrt{1/5} = 1/2.2$ relative to KamLAND. In spite of this, SNO+ has comparable sensitivity to $\\Delta m^{2}_{12}$ as KamLAND because the rate of change of the spectral distortion as a function of this parameter is much greater than for KamLAND. In this report, this advantage is examined quantitatively using a geometric approximation that makes clear how the shape from SNO+ has more statistical power than that from KamLAND. This result then is confirmed by determining the sensitivity to $\\Delta m^{2}_{12}$ using an ensemble experiment technique.

Eugene Guillian

2008-09-09T23:59:59.000Z

119

Generation of Coherent X-Ray Radiation through Modulation Compression  

Science Conference Proceedings (OSTI)

In this paper, we propose a scheme to generate tunable coherent X-ray radiation for future light source applications. This scheme uses an energy chirped electron beam, a laser modulator, a laser chirper and two bunch compressors to generate a prebunched kilo-Ampere current electron beam from a few tens Ampere electron beam out of a linac. The initial modulation energy wavelength can be compressed by a factor of 1 + h{sub b}R{sub 56}{sup a} in phase space, where h{sub b} is the energy bunch length chirp introduced by the laser chirper, R{sub 56}{sup a} is the momentum compaction factor of the first bunch compressor. As an illustration, we present an example to generate more than 400 MW, 170 attoseconds pulse, 1 nm coherent X-ray radiation using a 60 A electron beam out of the linac and 200 nm laser seed. Both the final wavelength and the radiation pulse length in the proposed scheme are tunable by adjusting the compression factor and the laser parameters.

Qiang, Ji; /LBL, Berkeley; Wu, Juhao; /SLAC

2012-06-12T23:59:59.000Z

120

Cosmic Ray Interactions in Shielding Materials  

SciTech Connect

This document provides a detailed study of materials used to shield against the hadronic particles from cosmic ray showers at Earths surface. This work was motivated by the need for a shield that minimizes activation of the enriched germanium during transport for the MAJORANA collaboration. The materials suitable for cosmic-ray shield design are materials such as lead and iron that will stop the primary protons, and materials like polyethylene, borated polyethylene, concrete and water that will stop the induced neutrons. The interaction of the different cosmic-ray components at ground level (protons, neutrons, muons) with their wide energy range (from kilo-electron volts to giga-electron volts) is a complex calculation. Monte Carlo calculations have proven to be a suitable tool for the simulation of nucleon transport, including hadron interactions and radioactive isotope production. The industry standard Monte Carlo simulation tool, Geant4, was used for this study. The result of this study is the assertion that activation at Earths surface is a result of the neutronic and protonic components of the cosmic-ray shower. The best material to shield against these cosmic-ray components is iron, which has the best combination of primary shielding and minimal secondary neutron production.

Aguayo Navarrete, Estanislao; Kouzes, Richard T.; Ankney, Austin S.; Orrell, John L.; Berguson, Timothy J.; Troy, Meredith D.

2011-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "kilo hecto deka" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Integrated Laser-Target Interaction Experiments on the RAL Petawatt Laser  

Science Conference Proceedings (OSTI)

Since the construction of the first Petawatt laser on the Nova laser facility at Lawrence Livermore National Laboratory we are witnessing the emergence of similar Petawatt-class laser systems at laboratories all around the world. This new generation of lasers, able to deliver several hundred joules of energy in a sub-picosecond pulse, has enabled a host of new discoveries to be made and continues to provide a valuable tool to explore new regimes in relativistic laser-plasma physics--encompassing high energy X-rays and -rays, relativistic electrons, intense ion beams, and superstrong magnetic fields. The coupling in the near-future of multi-kiloJoule Petawatt-class lasers with large-scale fusion lasers.including the NIF and Omega EP (US), LIL (France), and FIREX (Japan)--will further expand opportunities in fast ignition, high energy X-ray radiography, and high energy density physics research. The 500 J Petawatt laser at the Rutherford Appleton Laboratory is currently the highest energy short-pulse laser in the world. In this paper we describe a recent experimental campaign carried out on the facility. The campaign, performed by a large collaborative team from eight different laboratories, was designed to study a variety of relativistic laser-interaction phenomena including laser absorption, fast electron transport, proton heating, and high-brightness x-ray generation. The wide scope of the experiment necessitated the deployment of a very large set of diagnostics--in total twenty-five separate instruments. In order to obtain the most comprehensive set of measurements all twenty-five diagnostics were fielded simultaneously on every shot.

Patel, P K; Key, M H; Mackinnon, A J; Berry, R; Borghesi, M; Chambers, D M; Chen, H; Clarke, R; Damian, C; Eagleton, R; Freeman, R; Glenzer, S; Gregori, G; Heathcote, R; Hey, D; Izumi, N; Kar, S; King, J; Nikroo, A; Niles, A; Park, H S; Pasley, J; Patel, N; Shepherd, R; Snavely, R A; Steinman, D; Stoeckl, C; Storm, M; Town, R; Van Maren, R; Theobald, W; Wilks, S C; Zhang, B

2006-10-11T23:59:59.000Z

122

Scaling to Ultra-High Intensities by High-Energy Petawatt Beam Combining  

SciTech Connect

The output pulse energy from a single-aperture high-energy laser amplifier (e.g. fusion lasers such as NIF and LMJ) are critically limited by a number of factors including optical damage, which places an upper bound on the operating fluence; parasitic gain, which limits together with manufacturing costs the maximum aperture size to {approx} 40-cm; and non-linear phase effects which limits the peak intensity. For 20-ns narrow band pulses down to transform-limited sub-picosecond pulses, these limiters combine to yield 10-kJ to 1-kJ maximum pulse energies with up to petawatt peak power. For example, the Advanced Radiographic Capability (ARC) project at NIF is designed to provide kilo-Joule pulses from 0.75-ps to 50-ps, with peak focused intensity above 10{sup 19} W/cm{sup 2}. Using such a high-energy petawatt (HEPW) beamline as a modular unit, they discuss large-scale architectures for coherently combining multiple HEPW pulses from independent apertures, called CAPE (Coherent Addition of Pulses for Energy), to significantly increase the peak achievable focused intensity. Importantly, the maximum intensity achievable with CAPE increases non-linearly. Clearly, the total integrated energy grows linearly with the number of apertures N used. However, as CAPE combines beams in the focal plane by increasing the angular convergence to focus (i.e. the f-number decreases), the foal spot diameter scales inversely with N. Hence the peak intensity scales as N{sup 2}. Using design estimates for the focal spot size and output pulse energy (limited by damage fluence on the final compressor gratings) versus compressed pulse duration in the ARC system, Figure 2 shows the scaled focal spot intensity and total energy for various CAPE configurations from 1,2,4, ..., up to 192 total beams. They see from the fixture that the peak intensity for event modest 8 to 16 beam combinations reaches the 10{sup 21} to 10{sup 22} W/cm{sup 2} regime. With greater number of apertures, or with improvements to the focusability of the individual beams, the maximum peak intensity can be increased further to {approx} 10{sup 24} W/cm{sup 2}. Lastly, an important feature of the CAPE architecture is the ability to coherently combine beams to produce complex spatio-temporal intensity distributions for laser-based accelerators (e.g. all-optical electron injection and acceleration) and high energy density science applications such as fast ignition.

Siders, C W; Jovanovic, I; Crane, J; Rushford, M; Lucianetti, A; Barty, C J

2006-06-23T23:59:59.000Z

123

Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices  

SciTech Connect

Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be improved, regardless of the detector material.

Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

2006-07-31T23:59:59.000Z

124

Stability and support issues in the construction of large span caverns for physics  

Science Conference Proceedings (OSTI)

New physics experiments, proposed to study neutrinos and protons, call for the use of large underground particle detectors. In the United States, such detectors would be housed in the US Deep Underground Science and Engineering Laboratory (DUSEL), sited within the footprint of the defunct Homestake Mine, South Dakota. Although the experimental proposals differ in detail, all rely heavily upon the ability of the mined and reinforced rock mass to serve as a stable host for the detector facilities. Experimental proposals, based on the use of Water Cherenkov detector technology, specify rock caverns with excavated volumes in excess of half a million cubic meters, spans of at least 50 m, sited at depths of approximately one to 1.5 kilometers. Although perhaps sited at shallower depth, proposals based on the use of Liquid Argon (LAr) detector technology are no less challenging. LAr proposals not only call for the excavation of large span caverns, but have an additional need for the safe management of large quantities (kilo-tonnes) of cryogenic liquid, including critical provisions for the fail-safe egress of underground personnel and the reliable exhaust of Argon gas in the event of a catastrophic release. These multi-year, high value physics experiments will provide the key experimental data needed to support the research of a new generation of physicists as they probe the behavior of basic particles and the fundamental laws of nature. The rock engineer must deliver caverns that will reliably meet operational requirements and remain stable for periods conservatively estimated to be in excess of twenty years. This paper provides an overview of the DUSEL site conditions and discusses key end-user requirements and design criteria likely to dominate in determining the viability of experimental options. The paper stresses the paramount importance of collecting adequate site-specific data to inform early siting, dimensioning and layout decisions. Given the large-scale of the excavation and likely timeline to construction, the paper also strongly suggests that there are exciting opportunities for the rock mechanics and engineering community to identify and efficiently integrate research components into the design and construction process.

Laughton, C.; /Fermilab

2008-05-01T23:59:59.000Z

125

System Modeling of kJ-class Petawatt Lasers at LLNL  

Science Conference Proceedings (OSTI)

Advanced Radiographic Capability (ARC) project at the National Ignition Facility (NIF) is designed to produce energetic, ultrafast x-rays in the range of 70-100 keV for backlighting NIF targets. The chirped pulse amplification (CPA) laser system will deliver kilo-Joule pulses at an adjustable pulse duration from 1 ps to 50 ps. System complexity requires sophisticated simulation and modeling tools for design, performance prediction, and comprehension of experimental results. We provide a brief overview of ARC, present our main modeling tools, and describe important performance predictions. The laser system (Fig. 1) consists of an all-fiber front end, including chirped-fiber Bragg grating (CFBG) stretchers. The beam after the final fiber amplifier is split into two apertures and spatially shaped. The split beam first seeds a regenerative amplifier and is then amplified in a multi-pass Nd:glass amplifier. Next, the preamplified chirped pulse is split in time into four identical replicas and injected into one NIF Quad. At the output of the NIF beamline, each of the eight amplified pulses is compressed in an individual, folded, four-grating compressor. Compressor grating pairs have slightly different groove densities to enable compact folding geometry and eliminate adjacent beam cross-talk. Pulse duration is adjustable with a small, rack-mounted compressor in the front-end. We use non-sequential ray-tracing software, FRED for design and layout of the optical system. Currently, our FRED model includes all of the optical components from the output of the fiber front end to the target center (Fig. 2). CAD designed opto-mechanical components are imported into our FRED model to provide a complete system description. In addition to incoherent ray tracing and scattering analysis, FRED uses Gaussian beam decomposition to model coherent beam propagation. Neglecting nonlinear effects, we can obtain a nearly complete frequency domain description of the ARC beam at different stages in the system. We employ 3D Fourier based propagation codes: MIRO, Virtual Beamline (VBL), and PROP for time-domain pulse analysis. These codes simulate nonlinear effects, calculate near and far field beam profiles, and account for amplifier gain. Verification of correct system set-up is a major difficulty to using these codes. VBL and PROP predictions have been extensively benchmarked to NIF experiments, and the verified descriptions of specific NIF beamlines are used for ARC. MIRO has the added capability of treating bandwidth specific effects of CPA. A sample MIRO model of the NIF beamline is shown in Fig. 3. MIRO models are benchmarked to VBL and PROP in the narrow bandwidth mode. Developing a variety of simulation tools allows us to cross-check predictions of different models and gain confidence in their fidelity. Preliminary experiments, currently in progress, are allowing us to validate and refine our models, and help guide future experimental campaigns.

Shverdin, M Y; Rushford, M; Henesian, M A; Boley, C; Haefner, C; Heebner, J E; Crane, J K; Siders, C W; Barty, C P

2010-04-14T23:59:59.000Z

126

Building opportunities for photovoltaics in the U.S. Final report [PV BONUS  

DOE Green Energy (OSTI)

The objective of the North Carolina's PV Bonus Team was to develop and demonstrate a commercially viable, building-integrated, photovoltaic system that, in addition to providing electricity, would capture and effectively utilize the thermal energy produced by the photovoltaic array. This project objective was successfully achieved by designing, testing, constructing, and monitoring two roof integrated photovoltaic systems--one on a Applebee's Restaurant in Salisbury, North Carolina and the second on a Central Carolina Bank in Bessemer City, North Carolina. The goal of Innovative Design is to now use these successful demonstrations to facilitate entry of building integrated, pv/thermal systems into the marketplace. The strategy was to develop the two systems that could be utilized in future applications. Both systems were designed and then constructed at the North Carolina Solar Center at North Carolina State University. After extensive testing at the North Carolina Solar Center, the systems were moved to the actual construction sites and implemented. The Applebee's Restaurant system was designed to substitute for the roof assembly of a low sloping, south-facing sunspace roof that typically incorporated clay tile. After monitoring the installed system for one year it was determined that the 1.2 kilowatt (peak) system produces an average peak reduction of 1 kilowatt (rated peak is 1.7 kiloWatts), saves 1,529 kilowatt-hours of electricity, and offsets 11,776 kilowatt-hours of thermal energy savings used to pre-heat water. A DC fan connected directly to eight of the thirty-two amorphous modules moves air through air passages mounted on the backside of the modules and into a closed loop duct system to a heat exchanger. This heat exchanger is, in turn, connected to a pre-heat hot water tank that is used to heat the water for the restaurant. The Central Carolina Bank system was designed to substitute for the roof assembly of the drive-in window area of the bank. The design featured a triangulated truss that incorporated ten crystalline photovoltaic modules on one side of the truss and a reflective panel on the opposite side. The system used a utility interactive, programmable inverter and a 18.9 kilowatt-hour battery bank. The system is designed so that a DC fan, connected to one of the modules, forces ambient air across the back side of the modules. In the summer this heat is vented to the outside but in the winter this heated, fresh air is introduced into the building as ventilation air. Like the Applebee's system, the design allowed the entire roof assembly to be constructed off-site, tested, and then shipped to the site in pie-assembled, large components. During the first full year of operation, the 2.2 kilowatt (rated peak is 2.7 kilowatts) system contributed to an average peak reduction of .9 kilowatts. The system, as designed, saves 2,576 kilowatt-hours of electricity and offsets 3,473 kilowatt hours (of a potential thermal benefit of 10,172 collected kWhs) of thermal energy savings that is used as fresh air make-up in the colder months. This report is a summary of their conclusions.

Michael Nicklas

1999-09-08T23:59:59.000Z

127

Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis  

SciTech Connect

Under the auspices of the U.S. Department of Energy (USDOE), researchers from the Lawrence Livermore National Laboratory (LLNL) have recently implemented a series of initiatives to address long-term radiological surveillance needs at former nuclear test sites in the Republic of the Marshall Islands (RMI). The aim of this radiological surveillance monitoring program (RSMP) is to provide timely radiation protection for individuals in the Marshall Islands with respect to two of the most important internally deposited fallout radionuclides-cesium-137 ({sup 137}Cs) and long-lived isotopes 239 and 240 of plutonium ({sup 239+240}Pu) (Robison et al., 1997 and references therein). Therefore, whole-body counting for {sup 137}Cs and a sensitive bioassay for the presence of {sup 239+240}Pu excreted in urine were adopted as the two most applicable in vivo analytical methods to assess radiation doses for individuals in the RMI from internally deposited fallout radionuclides (see Hamilton et al., 2006a-c; Bell et al., 2002). Through 2005, the USDOE has established three permanent whole-body counting facilities in the Marshall Islands: the Enewetak Radiological Laboratory on Enewetak Atoll, the Utrok Whole-Body Counting Facility on Majuro Atoll, and the Rongelap Whole-Body Counting Facility on Rongelap Atoll. These whole-body counting facilities are operated and maintained by trained Marshallese technicians. Scientists from LLNL provide the technical support and training necessary for maintaining quality assurance for data acquisition and dose reporting. This technical basis document summarizes the methodologies used to calculate the annual total effective dose equivalent (TEDE; or dose for the calendar year of measurement) based on whole-body counting of internally deposited {sup 137}Cs and the measurement of {sup 239+240}Pu excreted in urine. Whole-body counting provides a direct measure of the total amount (or burden) of {sup 137}Cs present in the human body at the time of measurement. The amount of {sup 137}Cs detected is often reported in activity units of kilo-Becquerel (kBq), where 1 kBq equals 1000 Bq and 1 Bq = 1 nuclear transformation per second (t s{sup -1}). [However, in the United States the Curie (Ci) continues to be used as the unit of radioactivity; where 1 Ci = 3.7 x 10{sup 10} Bq.] The detection of {sup 239}Pu and {sup 240}Pu in bioassay (urine) samples indicates the presence of internally deposited (systemic) plutonium in the body. Urine samples that are collected in the Marshall Islands from volunteers participating in the RSMP are transported to LLNL, where measurements for {sup 239+240}Pu are performed using a state-of-the-art technology based on Accelerator Mass Spectrometry (AMS) (Hamilton et al., 2004, 2007; Brown et al., 2004). The urinary excretion of plutonium by RSMP volunteers is usually described in activity units, expressed as micro-Becquerel ({micro}Bq) of {sup 239+240}Pu (i.e., representing the sum of the {sup 239}Pu and {sup 240}Pu activity) excreted (lost) per day (d{sup -1}), where 1 {micro}Bq d{sup -1} = 10{sup -6} Bq d{sup -1} and 1 Bq = 1 t s{sup -1}. The systemic burden of plutonium is then estimated from biokinetic relationships as described by the International Commission on Radiological Protection (e.g., see ICRP, 1990). In general, nuclear transformations are accompanied by the emission of energy and/or particles in the form of gamma rays ({gamma}), beta particles ({beta}), and/or alpha particles ({alpha}). Tissues in the human body may adsorb these emissions, where there is a potential for any deposited energy to cause biological damage. The general term used to quantify the extent of any radiation exposure is referred to as the dose. The equivalent dose is defined by the average absorbed dose in an organ or tissue weighted by the average quality factor for the type and energy of the emission causing the dose. The effective dose equivalent (EDE; as applied to the whole body), is the sum of the average dose equivalent for each tissue weighted by each applicable tissue-specific weighing factor

Daniels, J; Hickman, D; Kehl, S; Hamilton, T

2007-06-11T23:59:59.000Z

128

Scaling Up: Kilolumen Solid-State Lighting Exceeding 100 LPW via Remote Phosphor  

SciTech Connect

This thirty-month project was successful in attaining its ambitious objectives of demonstrating a radically novel 'remote-phosphor' LED light source that can out-perform conventional conformal coated phosphor LED sources. Numerous technical challenges were met with innovative techniques and optical configurations. This product development program for a new generation of solid-state light sources has attained unprecedented luminosity (over 1 kilo-lumen) and efficacy (based on the criterion lumens per 100mw radiant blue). LPI has successfully demonstrated its proprietary technology for optical synthesis of large uniform sources out of the light output of an array of separated LEDs. Numerous multiple blue LEDs illuminate single a phosphor patch. By separating the LEDs from the phosphor, the phosphor and LEDs operate cooler and with higher efficiency over a wide range of operating conditions (from startup to steady state). Other benefits of the system include: better source uniformity, more types of phosphor can be used (chemical interaction and high temperatures are no longer an issue), and the phosphor can be made up from a pre-manufactured sheet (thereby lowering cost and complexity of phosphor deposition). Several laboratory prototypes were built and operated at the expected high performance level. The project fully explored two types of remote phosphor system: transmissive and reflective. The first was found to be well suited for a replacement for A19 type incandescent bulbs, as it was able to replicate the beam pattern of a traditional filament bulb. The second type has the advantages that it is pre-collimate source that has an adjustable color temperature. The project was divided in two phases: Phase I explored a transmissive design and Phase II of the project developed reflective architectures. Additionally, in Phase II the design of a spherical emitting transmissive remote phosphor bulb was developed that is suitable for replacement of A19 and similar light bulbs. In Phase II several new reflective remote phosphor systems were developed and patents applied for. This research included the development of reflective systems in which the short-pass filter operated at a nominal incidence angle of 15{sup o}, a major advancement of this technology. Another goal of the project was to show that it is possible to align multiple optics to multiple LEDs (spaced apart for better thermal management) to within an accuracy in the z-direction of 10 microns or less. This goal was achieved. A further goal was to show it is possible to combine and homogenize the output from multiple LEDs without any flux loss or significant increase in etendue. This goal also was achieved. The following color-coded computer drawing of the Phase 2 reflective remote phosphor prototype gives an idea of the accuracy challenges encountered in such an assembly. The actual setup has less functional clarity due to the numerous items of auxiliary equipment involved. Not only did 10 degrees of freedoms alignment have to be supplied to the LEDs and component prisms as well, but there were also micro-titrating glue dispensers and vacuum hoses. The project also utilized a recently introduced high-index glass, available in small customized prisms. This prototype also embodies a significant advance in thin-film design, by which an unprecedented 98% single-pass efficiency was attained over a 30 degree range of incidence angle (Patents Pending). Such high efficiency is especially important since it applies to the blue light going to the phosphor and then again to the phosphor's light, so that the 'system' efficiency associated with short-pass filter was 95.5%. Other losses have to be kept equally small, towards which a new type of ultra-clear injection-moldable acrylic was discovered and used to make ultra-transparent CPC optics. Several transmissive remote phosphor prototypes were manufactured that could replace screw-in type incandescent bulbs. The CRI of the white light from these prototypes varied from 55 to 93. The system efficiency achieved was between 27 to 29.5

Waqidi Falicoff

2008-09-15T23:59:59.000Z